1
0

ggml.c 670 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnigns
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. return (int) WaitForSingleObject(thread, INFINITE);
  77. }
  78. static int sched_yield (void) {
  79. Sleep (0);
  80. return 0;
  81. }
  82. #else
  83. #include <pthread.h>
  84. #include <stdatomic.h>
  85. typedef void * thread_ret_t;
  86. #include <sys/types.h>
  87. #include <sys/stat.h>
  88. #include <unistd.h>
  89. #endif
  90. #ifdef GGML_USE_CPU_HBM
  91. #include <hbwmalloc.h>
  92. #endif
  93. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  94. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  95. #ifndef __FMA__
  96. #define __FMA__
  97. #endif
  98. #ifndef __F16C__
  99. #define __F16C__
  100. #endif
  101. #ifndef __SSE3__
  102. #define __SSE3__
  103. #endif
  104. #endif
  105. /*#define GGML_PERF*/
  106. #define GGML_DEBUG 0
  107. #define GGML_GELU_FP16
  108. #define GGML_GELU_QUICK_FP16
  109. #define GGML_SILU_FP16
  110. // #define GGML_CROSS_ENTROPY_EXP_FP16
  111. // #define GGML_FLASH_ATTN_EXP_FP16
  112. #define GGML_SOFT_MAX_UNROLL 4
  113. #define GGML_VEC_DOT_UNROLL 2
  114. //
  115. // logging
  116. //
  117. #if (GGML_DEBUG >= 1)
  118. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG(...)
  121. #endif
  122. #if (GGML_DEBUG >= 5)
  123. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  124. #else
  125. #define GGML_PRINT_DEBUG_5(...)
  126. #endif
  127. #if (GGML_DEBUG >= 10)
  128. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  129. #else
  130. #define GGML_PRINT_DEBUG_10(...)
  131. #endif
  132. #define GGML_PRINT(...) printf(__VA_ARGS__)
  133. #ifdef GGML_USE_ACCELERATE
  134. // uncomment to use vDSP for soft max computation
  135. // note: not sure if it is actually faster
  136. //#define GGML_SOFT_MAX_ACCELERATE
  137. #endif
  138. //
  139. // logging
  140. //
  141. #if (GGML_DEBUG >= 1)
  142. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG(...)
  145. #endif
  146. #if (GGML_DEBUG >= 5)
  147. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_5(...)
  150. #endif
  151. #if (GGML_DEBUG >= 10)
  152. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  153. #else
  154. #define GGML_PRINT_DEBUG_10(...)
  155. #endif
  156. #define GGML_PRINT(...) printf(__VA_ARGS__)
  157. //
  158. // end of logging block
  159. //
  160. #if defined(_MSC_VER) || defined(__MINGW32__)
  161. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  162. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  163. #else
  164. inline static void * ggml_aligned_malloc(size_t size) {
  165. if (size == 0) {
  166. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  167. return NULL;
  168. }
  169. void * aligned_memory = NULL;
  170. #ifdef GGML_USE_CPU_HBM
  171. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  172. #elif GGML_USE_METAL
  173. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  174. #else
  175. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  176. #endif
  177. if (result != 0) {
  178. // Handle allocation failure
  179. const char *error_desc = "unknown allocation error";
  180. switch (result) {
  181. case EINVAL:
  182. error_desc = "invalid alignment value";
  183. break;
  184. case ENOMEM:
  185. error_desc = "insufficient memory";
  186. break;
  187. }
  188. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  189. return NULL;
  190. }
  191. return aligned_memory;
  192. }
  193. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  194. #ifdef GGML_USE_CPU_HBM
  195. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  196. #else
  197. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  198. #endif
  199. #endif
  200. #define UNUSED GGML_UNUSED
  201. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  202. //
  203. // tensor access macros
  204. //
  205. #define GGML_TENSOR_UNARY_OP_LOCALS \
  206. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  207. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  208. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  209. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  210. #define GGML_TENSOR_BINARY_OP_LOCALS \
  211. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  212. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  213. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  214. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  215. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  216. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  217. #if defined(GGML_USE_ACCELERATE)
  218. #include <Accelerate/Accelerate.h>
  219. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  220. #include "ggml-opencl.h"
  221. #endif
  222. #elif defined(GGML_USE_OPENBLAS)
  223. #if defined(GGML_BLAS_USE_MKL)
  224. #include <mkl.h>
  225. #else
  226. #include <cblas.h>
  227. #endif
  228. #elif defined(GGML_USE_CUBLAS)
  229. #include "ggml-cuda.h"
  230. #elif defined(GGML_USE_CLBLAST)
  231. #include "ggml-opencl.h"
  232. #endif
  233. #undef MIN
  234. #undef MAX
  235. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  236. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  237. // floating point type used to accumulate sums
  238. typedef double ggml_float;
  239. // 16-bit float
  240. // on Arm, we use __fp16
  241. // on x86, we use uint16_t
  242. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  243. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  244. //
  245. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  246. //
  247. #include <arm_neon.h>
  248. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  249. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  250. #define GGML_FP16_TO_FP32(x) ((float) (x))
  251. #define GGML_FP32_TO_FP16(x) (x)
  252. #else
  253. #ifdef __wasm_simd128__
  254. #include <wasm_simd128.h>
  255. #else
  256. #ifdef __POWER9_VECTOR__
  257. #include <altivec.h>
  258. #undef bool
  259. #define bool _Bool
  260. #else
  261. #if defined(_MSC_VER) || defined(__MINGW32__)
  262. #include <intrin.h>
  263. #else
  264. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  265. #if !defined(__riscv)
  266. #include <immintrin.h>
  267. #endif
  268. #endif
  269. #endif
  270. #endif
  271. #endif
  272. #ifdef __riscv_v_intrinsic
  273. #include <riscv_vector.h>
  274. #endif
  275. #ifdef __F16C__
  276. #ifdef _MSC_VER
  277. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  278. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  279. #else
  280. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  281. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  282. #endif
  283. #elif defined(__POWER9_VECTOR__)
  284. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  285. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  286. /* the inline asm below is about 12% faster than the lookup method */
  287. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  288. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  289. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  290. register float f;
  291. register double d;
  292. __asm__(
  293. "mtfprd %0,%2\n"
  294. "xscvhpdp %0,%0\n"
  295. "frsp %1,%0\n" :
  296. /* temp */ "=d"(d),
  297. /* out */ "=f"(f):
  298. /* in */ "r"(h));
  299. return f;
  300. }
  301. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  302. register double d;
  303. register ggml_fp16_t r;
  304. __asm__( /* xscvdphp can work on double or single precision */
  305. "xscvdphp %0,%2\n"
  306. "mffprd %1,%0\n" :
  307. /* temp */ "=d"(d),
  308. /* out */ "=r"(r):
  309. /* in */ "f"(f));
  310. return r;
  311. }
  312. #else
  313. // FP16 <-> FP32
  314. // ref: https://github.com/Maratyszcza/FP16
  315. static inline float fp32_from_bits(uint32_t w) {
  316. union {
  317. uint32_t as_bits;
  318. float as_value;
  319. } fp32;
  320. fp32.as_bits = w;
  321. return fp32.as_value;
  322. }
  323. static inline uint32_t fp32_to_bits(float f) {
  324. union {
  325. float as_value;
  326. uint32_t as_bits;
  327. } fp32;
  328. fp32.as_value = f;
  329. return fp32.as_bits;
  330. }
  331. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  332. const uint32_t w = (uint32_t) h << 16;
  333. const uint32_t sign = w & UINT32_C(0x80000000);
  334. const uint32_t two_w = w + w;
  335. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  336. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  337. const float exp_scale = 0x1.0p-112f;
  338. #else
  339. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  340. #endif
  341. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  342. const uint32_t magic_mask = UINT32_C(126) << 23;
  343. const float magic_bias = 0.5f;
  344. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  345. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  346. const uint32_t result = sign |
  347. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  348. return fp32_from_bits(result);
  349. }
  350. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  351. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  352. const float scale_to_inf = 0x1.0p+112f;
  353. const float scale_to_zero = 0x1.0p-110f;
  354. #else
  355. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  356. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  357. #endif
  358. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  359. const uint32_t w = fp32_to_bits(f);
  360. const uint32_t shl1_w = w + w;
  361. const uint32_t sign = w & UINT32_C(0x80000000);
  362. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  363. if (bias < UINT32_C(0x71000000)) {
  364. bias = UINT32_C(0x71000000);
  365. }
  366. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  367. const uint32_t bits = fp32_to_bits(base);
  368. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  369. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  370. const uint32_t nonsign = exp_bits + mantissa_bits;
  371. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  372. }
  373. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  374. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  375. #endif // __F16C__
  376. #endif // __ARM_NEON
  377. //
  378. // global data
  379. //
  380. // precomputed gelu table for f16 (128 KB)
  381. static ggml_fp16_t table_gelu_f16[1 << 16];
  382. // precomputed quick gelu table for f16 (128 KB)
  383. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  384. // precomputed silu table for f16 (128 KB)
  385. static ggml_fp16_t table_silu_f16[1 << 16];
  386. // precomputed exp table for f16 (128 KB)
  387. static ggml_fp16_t table_exp_f16[1 << 16];
  388. // precomputed f32 table for f16 (256 KB)
  389. static float table_f32_f16[1 << 16];
  390. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  391. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  392. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  393. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  394. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  395. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  396. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  397. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  398. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  399. // precomputed tables for expanding 8bits to 8 bytes:
  400. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  401. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  402. #endif
  403. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  404. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  405. // This is also true for POWER9.
  406. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  407. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  408. uint16_t s;
  409. memcpy(&s, &f, sizeof(uint16_t));
  410. return table_f32_f16[s];
  411. }
  412. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  413. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  414. #endif
  415. // note: do not use these inside ggml.c
  416. // these are meant to be used via the ggml.h API
  417. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  418. return (float) GGML_FP16_TO_FP32(x);
  419. }
  420. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  421. return GGML_FP32_TO_FP16(x);
  422. }
  423. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  424. for (int i = 0; i < n; i++) {
  425. y[i] = GGML_FP16_TO_FP32(x[i]);
  426. }
  427. }
  428. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  429. int i = 0;
  430. #if defined(__F16C__)
  431. for (; i + 7 < n; i += 8) {
  432. __m256 x_vec = _mm256_loadu_ps(x + i);
  433. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  434. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  435. }
  436. for(; i + 3 < n; i += 4) {
  437. __m128 x_vec = _mm_loadu_ps(x + i);
  438. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  439. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  440. }
  441. #endif
  442. for (; i < n; i++) {
  443. y[i] = GGML_FP32_TO_FP16(x[i]);
  444. }
  445. }
  446. //
  447. // timing
  448. //
  449. #if defined(_MSC_VER) || defined(__MINGW32__)
  450. static int64_t timer_freq, timer_start;
  451. void ggml_time_init(void) {
  452. LARGE_INTEGER t;
  453. QueryPerformanceFrequency(&t);
  454. timer_freq = t.QuadPart;
  455. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  456. // and the uptime is high enough.
  457. // We subtract the program start time to reduce the likelihood of that happening.
  458. QueryPerformanceCounter(&t);
  459. timer_start = t.QuadPart;
  460. }
  461. int64_t ggml_time_ms(void) {
  462. LARGE_INTEGER t;
  463. QueryPerformanceCounter(&t);
  464. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  465. }
  466. int64_t ggml_time_us(void) {
  467. LARGE_INTEGER t;
  468. QueryPerformanceCounter(&t);
  469. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  470. }
  471. #else
  472. void ggml_time_init(void) {}
  473. int64_t ggml_time_ms(void) {
  474. struct timespec ts;
  475. clock_gettime(CLOCK_MONOTONIC, &ts);
  476. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  477. }
  478. int64_t ggml_time_us(void) {
  479. struct timespec ts;
  480. clock_gettime(CLOCK_MONOTONIC, &ts);
  481. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  482. }
  483. #endif
  484. int64_t ggml_cycles(void) {
  485. return clock();
  486. }
  487. int64_t ggml_cycles_per_ms(void) {
  488. return CLOCKS_PER_SEC/1000;
  489. }
  490. #ifdef GGML_PERF
  491. #define ggml_perf_time_ms() ggml_time_ms()
  492. #define ggml_perf_time_us() ggml_time_us()
  493. #define ggml_perf_cycles() ggml_cycles()
  494. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  495. #else
  496. #define ggml_perf_time_ms() 0
  497. #define ggml_perf_time_us() 0
  498. #define ggml_perf_cycles() 0
  499. #define ggml_perf_cycles_per_ms() 0
  500. #endif
  501. //
  502. // cache line
  503. //
  504. #if defined(__cpp_lib_hardware_interference_size)
  505. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  506. #else
  507. #if defined(__POWER9_VECTOR__)
  508. #define CACHE_LINE_SIZE 128
  509. #else
  510. #define CACHE_LINE_SIZE 64
  511. #endif
  512. #endif
  513. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  514. //
  515. // quantization
  516. //
  517. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  518. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  519. // multiply int8_t, add results pairwise twice
  520. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  521. // Get absolute values of x vectors
  522. const __m128i ax = _mm_sign_epi8(x, x);
  523. // Sign the values of the y vectors
  524. const __m128i sy = _mm_sign_epi8(y, x);
  525. // Perform multiplication and create 16-bit values
  526. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  527. const __m128i ones = _mm_set1_epi16(1);
  528. return _mm_madd_epi16(ones, dot);
  529. }
  530. #if __AVX__ || __AVX2__ || __AVX512F__
  531. // horizontally add 8 floats
  532. static inline float hsum_float_8(const __m256 x) {
  533. __m128 res = _mm256_extractf128_ps(x, 1);
  534. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  535. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  536. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  537. return _mm_cvtss_f32(res);
  538. }
  539. // horizontally add 8 int32_t
  540. static inline int hsum_i32_8(const __m256i a) {
  541. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  542. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  543. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  544. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  545. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  546. }
  547. // horizontally add 4 int32_t
  548. static inline int hsum_i32_4(const __m128i a) {
  549. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  550. const __m128i sum64 = _mm_add_epi32(hi64, a);
  551. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  552. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  553. }
  554. #if defined(__AVX2__) || defined(__AVX512F__)
  555. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  556. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  557. uint32_t x32;
  558. memcpy(&x32, x, sizeof(uint32_t));
  559. const __m256i shuf_mask = _mm256_set_epi64x(
  560. 0x0303030303030303, 0x0202020202020202,
  561. 0x0101010101010101, 0x0000000000000000);
  562. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  563. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  564. bytes = _mm256_or_si256(bytes, bit_mask);
  565. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  566. }
  567. // Unpack 32 4-bit fields into 32 bytes
  568. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  569. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  570. {
  571. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  572. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  573. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  574. return _mm256_and_si256(lowMask, bytes);
  575. }
  576. // add int16_t pairwise and return as float vector
  577. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  578. const __m256i ones = _mm256_set1_epi16(1);
  579. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  580. return _mm256_cvtepi32_ps(summed_pairs);
  581. }
  582. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  583. #if __AVXVNNI__
  584. const __m256i zero = _mm256_setzero_si256();
  585. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  586. return _mm256_cvtepi32_ps(summed_pairs);
  587. #else
  588. // Perform multiplication and create 16-bit values
  589. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  590. return sum_i16_pairs_float(dot);
  591. #endif
  592. }
  593. // multiply int8_t, add results pairwise twice and return as float vector
  594. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  595. #if __AVXVNNIINT8__
  596. const __m256i zero = _mm256_setzero_si256();
  597. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  598. return _mm256_cvtepi32_ps(summed_pairs);
  599. #else
  600. // Get absolute values of x vectors
  601. const __m256i ax = _mm256_sign_epi8(x, x);
  602. // Sign the values of the y vectors
  603. const __m256i sy = _mm256_sign_epi8(y, x);
  604. return mul_sum_us8_pairs_float(ax, sy);
  605. #endif
  606. }
  607. static inline __m128i packNibbles( __m256i bytes )
  608. {
  609. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  610. #if __AVX512F__
  611. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  612. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  613. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  614. #else
  615. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  616. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  617. __m256i low = _mm256_and_si256( lowByte, bytes );
  618. high = _mm256_srli_epi16( high, 4 );
  619. bytes = _mm256_or_si256( low, high );
  620. // Compress uint16_t lanes into bytes
  621. __m128i r0 = _mm256_castsi256_si128( bytes );
  622. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  623. return _mm_packus_epi16( r0, r1 );
  624. #endif
  625. }
  626. #elif defined(__AVX__)
  627. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  628. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  629. uint32_t x32;
  630. memcpy(&x32, x, sizeof(uint32_t));
  631. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  632. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  633. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  634. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  635. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  636. bytesl = _mm_or_si128(bytesl, bit_mask);
  637. bytesh = _mm_or_si128(bytesh, bit_mask);
  638. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  639. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  640. return MM256_SET_M128I(bytesh, bytesl);
  641. }
  642. // Unpack 32 4-bit fields into 32 bytes
  643. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  644. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  645. {
  646. // Load 16 bytes from memory
  647. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  648. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  649. const __m128i lowMask = _mm_set1_epi8(0xF);
  650. tmpl = _mm_and_si128(lowMask, tmpl);
  651. tmph = _mm_and_si128(lowMask, tmph);
  652. return MM256_SET_M128I(tmph, tmpl);
  653. }
  654. // add int16_t pairwise and return as float vector
  655. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  656. const __m128i ones = _mm_set1_epi16(1);
  657. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  658. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  659. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  660. return _mm256_cvtepi32_ps(summed_pairs);
  661. }
  662. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  663. const __m128i axl = _mm256_castsi256_si128(ax);
  664. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  665. const __m128i syl = _mm256_castsi256_si128(sy);
  666. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. // multiply int8_t, add results pairwise twice and return as float vector
  673. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  674. const __m128i xl = _mm256_castsi256_si128(x);
  675. const __m128i xh = _mm256_extractf128_si256(x, 1);
  676. const __m128i yl = _mm256_castsi256_si128(y);
  677. const __m128i yh = _mm256_extractf128_si256(y, 1);
  678. // Get absolute values of x vectors
  679. const __m128i axl = _mm_sign_epi8(xl, xl);
  680. const __m128i axh = _mm_sign_epi8(xh, xh);
  681. // Sign the values of the y vectors
  682. const __m128i syl = _mm_sign_epi8(yl, xl);
  683. const __m128i syh = _mm_sign_epi8(yh, xh);
  684. // Perform multiplication and create 16-bit values
  685. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  686. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  687. return sum_i16_pairs_float(doth, dotl);
  688. }
  689. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  690. {
  691. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  692. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  693. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  694. __m128i low = _mm_and_si128( lowByte, bytes1 );
  695. high = _mm_srli_epi16( high, 4 );
  696. bytes1 = _mm_or_si128( low, high );
  697. high = _mm_andnot_si128( lowByte, bytes2 );
  698. low = _mm_and_si128( lowByte, bytes2 );
  699. high = _mm_srli_epi16( high, 4 );
  700. bytes2 = _mm_or_si128( low, high );
  701. return _mm_packus_epi16( bytes1, bytes2);
  702. }
  703. #endif
  704. #elif defined(__SSSE3__)
  705. // horizontally add 4x4 floats
  706. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  707. __m128 res_0 =_mm_hadd_ps(a, b);
  708. __m128 res_1 =_mm_hadd_ps(c, d);
  709. __m128 res =_mm_hadd_ps(res_0, res_1);
  710. res =_mm_hadd_ps(res, res);
  711. res =_mm_hadd_ps(res, res);
  712. return _mm_cvtss_f32(res);
  713. }
  714. #endif // __AVX__ || __AVX2__ || __AVX512F__
  715. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  716. #if defined(__ARM_NEON)
  717. #if !defined(__aarch64__)
  718. inline static int32_t vaddvq_s32(int32x4_t v) {
  719. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  720. }
  721. inline static float vaddvq_f32(float32x4_t v) {
  722. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  723. }
  724. inline static float vmaxvq_f32(float32x4_t v) {
  725. return
  726. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  727. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  728. }
  729. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  730. int32x4_t res;
  731. res[0] = roundf(vgetq_lane_f32(v, 0));
  732. res[1] = roundf(vgetq_lane_f32(v, 1));
  733. res[2] = roundf(vgetq_lane_f32(v, 2));
  734. res[3] = roundf(vgetq_lane_f32(v, 3));
  735. return res;
  736. }
  737. #endif
  738. #endif
  739. #define QK4_0 32
  740. typedef struct {
  741. ggml_fp16_t d; // delta
  742. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  743. } block_q4_0;
  744. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  745. #define QK4_1 32
  746. typedef struct {
  747. ggml_fp16_t d; // delta
  748. ggml_fp16_t m; // min
  749. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  750. } block_q4_1;
  751. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  752. #define QK5_0 32
  753. typedef struct {
  754. ggml_fp16_t d; // delta
  755. uint8_t qh[4]; // 5-th bit of quants
  756. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  757. } block_q5_0;
  758. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  759. #define QK5_1 32
  760. typedef struct {
  761. ggml_fp16_t d; // delta
  762. ggml_fp16_t m; // min
  763. uint8_t qh[4]; // 5-th bit of quants
  764. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  765. } block_q5_1;
  766. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  767. #define QK8_0 32
  768. typedef struct {
  769. ggml_fp16_t d; // delta
  770. int8_t qs[QK8_0]; // quants
  771. } block_q8_0;
  772. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  773. #define QK8_1 32
  774. typedef struct {
  775. float d; // delta
  776. float s; // d * sum(qs[i])
  777. int8_t qs[QK8_1]; // quants
  778. } block_q8_1;
  779. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  780. // reference implementation for deterministic creation of model files
  781. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  782. static const int qk = QK4_0;
  783. assert(k % qk == 0);
  784. const int nb = k / qk;
  785. for (int i = 0; i < nb; i++) {
  786. float amax = 0.0f; // absolute max
  787. float max = 0.0f;
  788. for (int j = 0; j < qk; j++) {
  789. const float v = x[i*qk + j];
  790. if (amax < fabsf(v)) {
  791. amax = fabsf(v);
  792. max = v;
  793. }
  794. }
  795. const float d = max / -8;
  796. const float id = d ? 1.0f/d : 0.0f;
  797. y[i].d = GGML_FP32_TO_FP16(d);
  798. for (int j = 0; j < qk/2; ++j) {
  799. const float x0 = x[i*qk + 0 + j]*id;
  800. const float x1 = x[i*qk + qk/2 + j]*id;
  801. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  802. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  803. y[i].qs[j] = xi0;
  804. y[i].qs[j] |= xi1 << 4;
  805. }
  806. }
  807. }
  808. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  809. quantize_row_q4_0_reference(x, y, k);
  810. }
  811. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  812. const int qk = QK4_1;
  813. assert(k % qk == 0);
  814. const int nb = k / qk;
  815. for (int i = 0; i < nb; i++) {
  816. float min = FLT_MAX;
  817. float max = -FLT_MAX;
  818. for (int j = 0; j < qk; j++) {
  819. const float v = x[i*qk + j];
  820. if (v < min) min = v;
  821. if (v > max) max = v;
  822. }
  823. const float d = (max - min) / ((1 << 4) - 1);
  824. const float id = d ? 1.0f/d : 0.0f;
  825. y[i].d = GGML_FP32_TO_FP16(d);
  826. y[i].m = GGML_FP32_TO_FP16(min);
  827. for (int j = 0; j < qk/2; ++j) {
  828. const float x0 = (x[i*qk + 0 + j] - min)*id;
  829. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  830. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  831. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  832. y[i].qs[j] = xi0;
  833. y[i].qs[j] |= xi1 << 4;
  834. }
  835. }
  836. }
  837. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  838. quantize_row_q4_1_reference(x, y, k);
  839. }
  840. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  841. static const int qk = QK5_0;
  842. assert(k % qk == 0);
  843. const int nb = k / qk;
  844. for (int i = 0; i < nb; i++) {
  845. float amax = 0.0f; // absolute max
  846. float max = 0.0f;
  847. for (int j = 0; j < qk; j++) {
  848. const float v = x[i*qk + j];
  849. if (amax < fabsf(v)) {
  850. amax = fabsf(v);
  851. max = v;
  852. }
  853. }
  854. const float d = max / -16;
  855. const float id = d ? 1.0f/d : 0.0f;
  856. y[i].d = GGML_FP32_TO_FP16(d);
  857. uint32_t qh = 0;
  858. for (int j = 0; j < qk/2; ++j) {
  859. const float x0 = x[i*qk + 0 + j]*id;
  860. const float x1 = x[i*qk + qk/2 + j]*id;
  861. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  862. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  863. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  864. // get the 5-th bit and store it in qh at the right position
  865. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  866. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  867. }
  868. memcpy(&y[i].qh, &qh, sizeof(qh));
  869. }
  870. }
  871. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  872. quantize_row_q5_0_reference(x, y, k);
  873. }
  874. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  875. const int qk = QK5_1;
  876. assert(k % qk == 0);
  877. const int nb = k / qk;
  878. for (int i = 0; i < nb; i++) {
  879. float min = FLT_MAX;
  880. float max = -FLT_MAX;
  881. for (int j = 0; j < qk; j++) {
  882. const float v = x[i*qk + j];
  883. if (v < min) min = v;
  884. if (v > max) max = v;
  885. }
  886. const float d = (max - min) / ((1 << 5) - 1);
  887. const float id = d ? 1.0f/d : 0.0f;
  888. y[i].d = GGML_FP32_TO_FP16(d);
  889. y[i].m = GGML_FP32_TO_FP16(min);
  890. uint32_t qh = 0;
  891. for (int j = 0; j < qk/2; ++j) {
  892. const float x0 = (x[i*qk + 0 + j] - min)*id;
  893. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  894. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  895. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  896. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  897. // get the 5-th bit and store it in qh at the right position
  898. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  899. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  900. }
  901. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  902. }
  903. }
  904. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  905. quantize_row_q5_1_reference(x, y, k);
  906. }
  907. // reference implementation for deterministic creation of model files
  908. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  909. assert(k % QK8_0 == 0);
  910. const int nb = k / QK8_0;
  911. for (int i = 0; i < nb; i++) {
  912. float amax = 0.0f; // absolute max
  913. for (int j = 0; j < QK8_0; j++) {
  914. const float v = x[i*QK8_0 + j];
  915. amax = MAX(amax, fabsf(v));
  916. }
  917. const float d = amax / ((1 << 7) - 1);
  918. const float id = d ? 1.0f/d : 0.0f;
  919. y[i].d = GGML_FP32_TO_FP16(d);
  920. for (int j = 0; j < QK8_0; ++j) {
  921. const float x0 = x[i*QK8_0 + j]*id;
  922. y[i].qs[j] = roundf(x0);
  923. }
  924. }
  925. }
  926. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  927. assert(QK8_0 == 32);
  928. assert(k % QK8_0 == 0);
  929. const int nb = k / QK8_0;
  930. block_q8_0 * restrict y = vy;
  931. #if defined(__ARM_NEON)
  932. for (int i = 0; i < nb; i++) {
  933. float32x4_t srcv [8];
  934. float32x4_t asrcv[8];
  935. float32x4_t amaxv[8];
  936. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  937. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  938. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  939. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  940. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  941. const float amax = vmaxvq_f32(amaxv[0]);
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < 8; j++) {
  946. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  947. const int32x4_t vi = vcvtnq_s32_f32(v);
  948. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  949. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  950. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  951. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  952. }
  953. }
  954. #elif defined(__wasm_simd128__)
  955. for (int i = 0; i < nb; i++) {
  956. v128_t srcv [8];
  957. v128_t asrcv[8];
  958. v128_t amaxv[8];
  959. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  960. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  961. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  962. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  963. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  964. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  965. wasm_f32x4_extract_lane(amaxv[0], 1)),
  966. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  967. wasm_f32x4_extract_lane(amaxv[0], 3)));
  968. const float d = amax / ((1 << 7) - 1);
  969. const float id = d ? 1.0f/d : 0.0f;
  970. y[i].d = GGML_FP32_TO_FP16(d);
  971. for (int j = 0; j < 8; j++) {
  972. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  973. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  974. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  975. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  976. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  977. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  978. }
  979. }
  980. #elif defined(__AVX2__) || defined(__AVX__)
  981. for (int i = 0; i < nb; i++) {
  982. // Load elements into 4 AVX vectors
  983. __m256 v0 = _mm256_loadu_ps( x );
  984. __m256 v1 = _mm256_loadu_ps( x + 8 );
  985. __m256 v2 = _mm256_loadu_ps( x + 16 );
  986. __m256 v3 = _mm256_loadu_ps( x + 24 );
  987. x += 32;
  988. // Compute max(abs(e)) for the block
  989. const __m256 signBit = _mm256_set1_ps( -0.0f );
  990. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  991. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  992. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  993. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  994. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  995. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  996. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  997. const float maxScalar = _mm_cvtss_f32( max4 );
  998. // Quantize these floats
  999. const float d = maxScalar / 127.f;
  1000. y[i].d = GGML_FP32_TO_FP16(d);
  1001. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1002. const __m256 mul = _mm256_set1_ps( id );
  1003. // Apply the multiplier
  1004. v0 = _mm256_mul_ps( v0, mul );
  1005. v1 = _mm256_mul_ps( v1, mul );
  1006. v2 = _mm256_mul_ps( v2, mul );
  1007. v3 = _mm256_mul_ps( v3, mul );
  1008. // Round to nearest integer
  1009. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1010. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1011. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1012. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1013. // Convert floats to integers
  1014. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1015. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1016. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1017. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1018. #if defined(__AVX2__)
  1019. // Convert int32 to int16
  1020. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1021. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1022. // Convert int16 to int8
  1023. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1024. // We got our precious signed bytes, but the order is now wrong
  1025. // These AVX2 pack instructions process 16-byte pieces independently
  1026. // The following instruction is fixing the order
  1027. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1028. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1029. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1030. #else
  1031. // Since we don't have in AVX some necessary functions,
  1032. // we split the registers in half and call AVX2 analogs from SSE
  1033. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1034. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1035. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1036. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1037. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1038. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1039. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1040. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1041. // Convert int32 to int16
  1042. ni0 = _mm_packs_epi32( ni0, ni1 );
  1043. ni2 = _mm_packs_epi32( ni2, ni3 );
  1044. ni4 = _mm_packs_epi32( ni4, ni5 );
  1045. ni6 = _mm_packs_epi32( ni6, ni7 );
  1046. // Convert int16 to int8
  1047. ni0 = _mm_packs_epi16( ni0, ni2 );
  1048. ni4 = _mm_packs_epi16( ni4, ni6 );
  1049. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1050. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1051. #endif
  1052. }
  1053. #else
  1054. // scalar
  1055. quantize_row_q8_0_reference(x, y, k);
  1056. #endif
  1057. }
  1058. // reference implementation for deterministic creation of model files
  1059. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1060. assert(QK8_1 == 32);
  1061. assert(k % QK8_1 == 0);
  1062. const int nb = k / QK8_1;
  1063. for (int i = 0; i < nb; i++) {
  1064. float amax = 0.0f; // absolute max
  1065. for (int j = 0; j < QK8_1; j++) {
  1066. const float v = x[i*QK8_1 + j];
  1067. amax = MAX(amax, fabsf(v));
  1068. }
  1069. const float d = amax / ((1 << 7) - 1);
  1070. const float id = d ? 1.0f/d : 0.0f;
  1071. y[i].d = d;
  1072. int sum = 0;
  1073. for (int j = 0; j < QK8_1/2; ++j) {
  1074. const float v0 = x[i*QK8_1 + j]*id;
  1075. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1076. y[i].qs[ j] = roundf(v0);
  1077. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1078. sum += y[i].qs[ j];
  1079. sum += y[i].qs[QK8_1/2 + j];
  1080. }
  1081. y[i].s = sum*d;
  1082. }
  1083. }
  1084. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1085. assert(k % QK8_1 == 0);
  1086. const int nb = k / QK8_1;
  1087. block_q8_1 * restrict y = vy;
  1088. #if defined(__ARM_NEON)
  1089. for (int i = 0; i < nb; i++) {
  1090. float32x4_t srcv [8];
  1091. float32x4_t asrcv[8];
  1092. float32x4_t amaxv[8];
  1093. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1094. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1095. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1096. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1097. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1098. const float amax = vmaxvq_f32(amaxv[0]);
  1099. const float d = amax / ((1 << 7) - 1);
  1100. const float id = d ? 1.0f/d : 0.0f;
  1101. y[i].d = d;
  1102. int32x4_t accv = vdupq_n_s32(0);
  1103. for (int j = 0; j < 8; j++) {
  1104. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1105. const int32x4_t vi = vcvtnq_s32_f32(v);
  1106. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1107. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1108. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1109. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1110. accv = vaddq_s32(accv, vi);
  1111. }
  1112. y[i].s = d * vaddvq_s32(accv);
  1113. }
  1114. #elif defined(__wasm_simd128__)
  1115. for (int i = 0; i < nb; i++) {
  1116. v128_t srcv [8];
  1117. v128_t asrcv[8];
  1118. v128_t amaxv[8];
  1119. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1120. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1121. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1122. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1123. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1124. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1125. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1126. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1127. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1128. const float d = amax / ((1 << 7) - 1);
  1129. const float id = d ? 1.0f/d : 0.0f;
  1130. y[i].d = d;
  1131. v128_t accv = wasm_i32x4_splat(0);
  1132. for (int j = 0; j < 8; j++) {
  1133. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1134. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1135. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1136. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1137. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1138. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1139. accv = wasm_i32x4_add(accv, vi);
  1140. }
  1141. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1142. wasm_i32x4_extract_lane(accv, 1) +
  1143. wasm_i32x4_extract_lane(accv, 2) +
  1144. wasm_i32x4_extract_lane(accv, 3));
  1145. }
  1146. #elif defined(__AVX2__) || defined(__AVX__)
  1147. for (int i = 0; i < nb; i++) {
  1148. // Load elements into 4 AVX vectors
  1149. __m256 v0 = _mm256_loadu_ps( x );
  1150. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1151. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1152. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1153. x += 32;
  1154. // Compute max(abs(e)) for the block
  1155. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1156. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1157. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1158. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1159. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1160. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1161. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1162. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1163. const float maxScalar = _mm_cvtss_f32( max4 );
  1164. // Quantize these floats
  1165. const float d = maxScalar / 127.f;
  1166. y[i].d = d;
  1167. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1168. const __m256 mul = _mm256_set1_ps( id );
  1169. // Apply the multiplier
  1170. v0 = _mm256_mul_ps( v0, mul );
  1171. v1 = _mm256_mul_ps( v1, mul );
  1172. v2 = _mm256_mul_ps( v2, mul );
  1173. v3 = _mm256_mul_ps( v3, mul );
  1174. // Round to nearest integer
  1175. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1176. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1177. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1178. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1179. // Convert floats to integers
  1180. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1181. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1182. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1183. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1184. #if defined(__AVX2__)
  1185. // Compute the sum of the quants and set y[i].s
  1186. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1187. // Convert int32 to int16
  1188. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1189. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1190. // Convert int16 to int8
  1191. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1192. // We got our precious signed bytes, but the order is now wrong
  1193. // These AVX2 pack instructions process 16-byte pieces independently
  1194. // The following instruction is fixing the order
  1195. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1196. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1197. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1198. #else
  1199. // Since we don't have in AVX some necessary functions,
  1200. // we split the registers in half and call AVX2 analogs from SSE
  1201. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1202. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1203. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1204. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1205. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1206. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1207. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1208. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1209. // Compute the sum of the quants and set y[i].s
  1210. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1211. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1212. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1213. // Convert int32 to int16
  1214. ni0 = _mm_packs_epi32( ni0, ni1 );
  1215. ni2 = _mm_packs_epi32( ni2, ni3 );
  1216. ni4 = _mm_packs_epi32( ni4, ni5 );
  1217. ni6 = _mm_packs_epi32( ni6, ni7 );
  1218. // Convert int16 to int8
  1219. ni0 = _mm_packs_epi16( ni0, ni2 );
  1220. ni4 = _mm_packs_epi16( ni4, ni6 );
  1221. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1222. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1223. #endif
  1224. }
  1225. #else
  1226. // scalar
  1227. quantize_row_q8_1_reference(x, y, k);
  1228. #endif
  1229. }
  1230. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1231. static const int qk = QK4_0;
  1232. assert(k % qk == 0);
  1233. const int nb = k / qk;
  1234. for (int i = 0; i < nb; i++) {
  1235. const float d = GGML_FP16_TO_FP32(x[i].d);
  1236. for (int j = 0; j < qk/2; ++j) {
  1237. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1238. const int x1 = (x[i].qs[j] >> 4) - 8;
  1239. y[i*qk + j + 0 ] = x0*d;
  1240. y[i*qk + j + qk/2] = x1*d;
  1241. }
  1242. }
  1243. }
  1244. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1245. static const int qk = QK4_1;
  1246. assert(k % qk == 0);
  1247. const int nb = k / qk;
  1248. for (int i = 0; i < nb; i++) {
  1249. const float d = GGML_FP16_TO_FP32(x[i].d);
  1250. const float m = GGML_FP16_TO_FP32(x[i].m);
  1251. for (int j = 0; j < qk/2; ++j) {
  1252. const int x0 = (x[i].qs[j] & 0x0F);
  1253. const int x1 = (x[i].qs[j] >> 4);
  1254. y[i*qk + j + 0 ] = x0*d + m;
  1255. y[i*qk + j + qk/2] = x1*d + m;
  1256. }
  1257. }
  1258. }
  1259. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1260. static const int qk = QK5_0;
  1261. assert(k % qk == 0);
  1262. const int nb = k / qk;
  1263. for (int i = 0; i < nb; i++) {
  1264. const float d = GGML_FP16_TO_FP32(x[i].d);
  1265. uint32_t qh;
  1266. memcpy(&qh, x[i].qh, sizeof(qh));
  1267. for (int j = 0; j < qk/2; ++j) {
  1268. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1269. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1270. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1271. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1272. y[i*qk + j + 0 ] = x0*d;
  1273. y[i*qk + j + qk/2] = x1*d;
  1274. }
  1275. }
  1276. }
  1277. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1278. static const int qk = QK5_1;
  1279. assert(k % qk == 0);
  1280. const int nb = k / qk;
  1281. for (int i = 0; i < nb; i++) {
  1282. const float d = GGML_FP16_TO_FP32(x[i].d);
  1283. const float m = GGML_FP16_TO_FP32(x[i].m);
  1284. uint32_t qh;
  1285. memcpy(&qh, x[i].qh, sizeof(qh));
  1286. for (int j = 0; j < qk/2; ++j) {
  1287. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1288. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1289. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1290. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1291. y[i*qk + j + 0 ] = x0*d + m;
  1292. y[i*qk + j + qk/2] = x1*d + m;
  1293. }
  1294. }
  1295. }
  1296. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1297. static const int qk = QK8_0;
  1298. assert(k % qk == 0);
  1299. const int nb = k / qk;
  1300. const block_q8_0 * restrict x = vx;
  1301. for (int i = 0; i < nb; i++) {
  1302. const float d = GGML_FP16_TO_FP32(x[i].d);
  1303. for (int j = 0; j < qk; ++j) {
  1304. y[i*qk + j] = x[i].qs[j]*d;
  1305. }
  1306. }
  1307. }
  1308. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1309. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1310. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1311. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1312. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1313. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1314. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1315. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1316. [GGML_TYPE_I8] = {
  1317. .type_name = "i8",
  1318. .blck_size = 1,
  1319. .type_size = sizeof(int8_t),
  1320. .is_quantized = false,
  1321. },
  1322. [GGML_TYPE_I16] = {
  1323. .type_name = "i16",
  1324. .blck_size = 1,
  1325. .type_size = sizeof(int16_t),
  1326. .is_quantized = false,
  1327. },
  1328. [GGML_TYPE_I32] = {
  1329. .type_name = "i32",
  1330. .blck_size = 1,
  1331. .type_size = sizeof(int32_t),
  1332. .is_quantized = false,
  1333. },
  1334. [GGML_TYPE_F32] = {
  1335. .type_name = "f32",
  1336. .blck_size = 1,
  1337. .type_size = sizeof(float),
  1338. .is_quantized = false,
  1339. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1340. .vec_dot_type = GGML_TYPE_F32,
  1341. },
  1342. [GGML_TYPE_F16] = {
  1343. .type_name = "f16",
  1344. .blck_size = 1,
  1345. .type_size = sizeof(ggml_fp16_t),
  1346. .is_quantized = false,
  1347. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1348. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1349. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1350. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1351. .vec_dot_type = GGML_TYPE_F16,
  1352. },
  1353. [GGML_TYPE_Q4_0] = {
  1354. .type_name = "q4_0",
  1355. .blck_size = QK4_0,
  1356. .type_size = sizeof(block_q4_0),
  1357. .is_quantized = true,
  1358. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1359. .from_float = quantize_row_q4_0,
  1360. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1361. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1362. .vec_dot_type = GGML_TYPE_Q8_0,
  1363. },
  1364. [GGML_TYPE_Q4_1] = {
  1365. .type_name = "q4_1",
  1366. .blck_size = QK4_1,
  1367. .type_size = sizeof(block_q4_1),
  1368. .is_quantized = true,
  1369. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1370. .from_float = quantize_row_q4_1,
  1371. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1372. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1373. .vec_dot_type = GGML_TYPE_Q8_1,
  1374. },
  1375. [GGML_TYPE_Q5_0] = {
  1376. .type_name = "q5_0",
  1377. .blck_size = QK5_0,
  1378. .type_size = sizeof(block_q5_0),
  1379. .is_quantized = true,
  1380. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1381. .from_float = quantize_row_q5_0,
  1382. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1383. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1384. .vec_dot_type = GGML_TYPE_Q8_0,
  1385. },
  1386. [GGML_TYPE_Q5_1] = {
  1387. .type_name = "q5_1",
  1388. .blck_size = QK5_1,
  1389. .type_size = sizeof(block_q5_1),
  1390. .is_quantized = true,
  1391. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1392. .from_float = quantize_row_q5_1,
  1393. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1394. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1395. .vec_dot_type = GGML_TYPE_Q8_1,
  1396. },
  1397. [GGML_TYPE_Q8_0] = {
  1398. .type_name = "q8_0",
  1399. .blck_size = QK8_0,
  1400. .type_size = sizeof(block_q8_0),
  1401. .is_quantized = true,
  1402. .to_float = dequantize_row_q8_0,
  1403. .from_float = quantize_row_q8_0,
  1404. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1405. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1406. .vec_dot_type = GGML_TYPE_Q8_0,
  1407. },
  1408. [GGML_TYPE_Q8_1] = {
  1409. .type_name = "q8_1",
  1410. .blck_size = QK8_1,
  1411. .type_size = sizeof(block_q8_1),
  1412. .is_quantized = true,
  1413. .from_float = quantize_row_q8_1,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1415. .vec_dot_type = GGML_TYPE_Q8_1,
  1416. },
  1417. #ifdef GGML_USE_K_QUANTS
  1418. [GGML_TYPE_Q2_K] = {
  1419. .type_name = "q2_K",
  1420. .blck_size = QK_K,
  1421. .type_size = sizeof(block_q2_K),
  1422. .is_quantized = true,
  1423. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1424. .from_float = quantize_row_q2_K,
  1425. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1426. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1427. .vec_dot_type = GGML_TYPE_Q8_K,
  1428. },
  1429. [GGML_TYPE_Q3_K] = {
  1430. .type_name = "q3_K",
  1431. .blck_size = QK_K,
  1432. .type_size = sizeof(block_q3_K),
  1433. .is_quantized = true,
  1434. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1435. .from_float = quantize_row_q3_K,
  1436. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1437. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1438. .vec_dot_type = GGML_TYPE_Q8_K,
  1439. },
  1440. [GGML_TYPE_Q4_K] = {
  1441. .type_name = "q4_K",
  1442. .blck_size = QK_K,
  1443. .type_size = sizeof(block_q4_K),
  1444. .is_quantized = true,
  1445. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1446. .from_float = quantize_row_q4_K,
  1447. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1448. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1449. .vec_dot_type = GGML_TYPE_Q8_K,
  1450. },
  1451. [GGML_TYPE_Q5_K] = {
  1452. .type_name = "q5_K",
  1453. .blck_size = QK_K,
  1454. .type_size = sizeof(block_q5_K),
  1455. .is_quantized = true,
  1456. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1457. .from_float = quantize_row_q5_K,
  1458. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1459. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1460. .vec_dot_type = GGML_TYPE_Q8_K,
  1461. },
  1462. [GGML_TYPE_Q6_K] = {
  1463. .type_name = "q6_K",
  1464. .blck_size = QK_K,
  1465. .type_size = sizeof(block_q6_K),
  1466. .is_quantized = true,
  1467. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1468. .from_float = quantize_row_q6_K,
  1469. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1470. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1471. .vec_dot_type = GGML_TYPE_Q8_K,
  1472. },
  1473. [GGML_TYPE_Q8_K] = {
  1474. .type_name = "q8_K",
  1475. .blck_size = QK_K,
  1476. .type_size = sizeof(block_q8_K),
  1477. .is_quantized = true,
  1478. .from_float = quantize_row_q8_K,
  1479. }
  1480. #endif
  1481. };
  1482. // For internal test use
  1483. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1484. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1485. return type_traits[type];
  1486. }
  1487. //
  1488. // simd mappings
  1489. //
  1490. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1491. // we then implement the fundamental computation operations below using only these macros
  1492. // adding support for new architectures requires to define the corresponding SIMD macros
  1493. //
  1494. // GGML_F32_STEP / GGML_F16_STEP
  1495. // number of elements to process in a single step
  1496. //
  1497. // GGML_F32_EPR / GGML_F16_EPR
  1498. // number of elements to fit in a single register
  1499. //
  1500. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1501. #define GGML_SIMD
  1502. // F32 NEON
  1503. #define GGML_F32_STEP 16
  1504. #define GGML_F32_EPR 4
  1505. #define GGML_F32x4 float32x4_t
  1506. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1507. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1508. #define GGML_F32x4_LOAD vld1q_f32
  1509. #define GGML_F32x4_STORE vst1q_f32
  1510. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1511. #define GGML_F32x4_ADD vaddq_f32
  1512. #define GGML_F32x4_MUL vmulq_f32
  1513. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1514. #define GGML_F32x4_REDUCE(res, x) \
  1515. { \
  1516. int offset = GGML_F32_ARR >> 1; \
  1517. for (int i = 0; i < offset; ++i) { \
  1518. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1519. } \
  1520. offset >>= 1; \
  1521. for (int i = 0; i < offset; ++i) { \
  1522. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1523. } \
  1524. offset >>= 1; \
  1525. for (int i = 0; i < offset; ++i) { \
  1526. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1527. } \
  1528. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1529. }
  1530. #define GGML_F32_VEC GGML_F32x4
  1531. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1532. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1533. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1534. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1535. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1536. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1537. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1538. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1539. // F16 NEON
  1540. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1541. #define GGML_F16_STEP 32
  1542. #define GGML_F16_EPR 8
  1543. #define GGML_F16x8 float16x8_t
  1544. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1545. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1546. #define GGML_F16x8_LOAD vld1q_f16
  1547. #define GGML_F16x8_STORE vst1q_f16
  1548. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1549. #define GGML_F16x8_ADD vaddq_f16
  1550. #define GGML_F16x8_MUL vmulq_f16
  1551. #define GGML_F16x8_REDUCE(res, x) \
  1552. { \
  1553. int offset = GGML_F16_ARR >> 1; \
  1554. for (int i = 0; i < offset; ++i) { \
  1555. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1556. } \
  1557. offset >>= 1; \
  1558. for (int i = 0; i < offset; ++i) { \
  1559. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1560. } \
  1561. offset >>= 1; \
  1562. for (int i = 0; i < offset; ++i) { \
  1563. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1564. } \
  1565. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1566. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1567. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1568. }
  1569. #define GGML_F16_VEC GGML_F16x8
  1570. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1571. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1572. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1573. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1574. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1575. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1576. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1577. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1578. #else
  1579. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1580. // and take advantage of the vcvt_ functions to convert to/from FP16
  1581. #define GGML_F16_STEP 16
  1582. #define GGML_F16_EPR 4
  1583. #define GGML_F32Cx4 float32x4_t
  1584. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1585. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1586. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1587. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1588. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1589. #define GGML_F32Cx4_ADD vaddq_f32
  1590. #define GGML_F32Cx4_MUL vmulq_f32
  1591. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1592. #define GGML_F16_VEC GGML_F32Cx4
  1593. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1594. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1595. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1596. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1597. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1598. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1599. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1600. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1601. #endif
  1602. #elif defined(__AVX__)
  1603. #define GGML_SIMD
  1604. // F32 AVX
  1605. #define GGML_F32_STEP 32
  1606. #define GGML_F32_EPR 8
  1607. #define GGML_F32x8 __m256
  1608. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1609. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1610. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1611. #define GGML_F32x8_STORE _mm256_storeu_ps
  1612. #if defined(__FMA__)
  1613. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1614. #else
  1615. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1616. #endif
  1617. #define GGML_F32x8_ADD _mm256_add_ps
  1618. #define GGML_F32x8_MUL _mm256_mul_ps
  1619. #define GGML_F32x8_REDUCE(res, x) \
  1620. { \
  1621. int offset = GGML_F32_ARR >> 1; \
  1622. for (int i = 0; i < offset; ++i) { \
  1623. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1624. } \
  1625. offset >>= 1; \
  1626. for (int i = 0; i < offset; ++i) { \
  1627. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1628. } \
  1629. offset >>= 1; \
  1630. for (int i = 0; i < offset; ++i) { \
  1631. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1632. } \
  1633. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1634. _mm256_extractf128_ps(x[0], 1)); \
  1635. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1636. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1637. }
  1638. // TODO: is this optimal ?
  1639. #define GGML_F32_VEC GGML_F32x8
  1640. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1641. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1642. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1643. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1644. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1645. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1646. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1647. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1648. // F16 AVX
  1649. #define GGML_F16_STEP 32
  1650. #define GGML_F16_EPR 8
  1651. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1652. #define GGML_F32Cx8 __m256
  1653. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1654. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1655. #if defined(__F16C__)
  1656. // the _mm256_cvt intrinsics require F16C
  1657. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1658. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1659. #else
  1660. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1661. float tmp[8];
  1662. for (int i = 0; i < 8; i++) {
  1663. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1664. }
  1665. return _mm256_loadu_ps(tmp);
  1666. }
  1667. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1668. float arr[8];
  1669. _mm256_storeu_ps(arr, y);
  1670. for (int i = 0; i < 8; i++)
  1671. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1672. }
  1673. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1674. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1675. #endif
  1676. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1677. #define GGML_F32Cx8_ADD _mm256_add_ps
  1678. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1679. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1680. #define GGML_F16_VEC GGML_F32Cx8
  1681. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1682. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1683. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1684. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1685. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1686. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1687. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1688. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1689. #elif defined(__POWER9_VECTOR__)
  1690. #define GGML_SIMD
  1691. // F32 POWER9
  1692. #define GGML_F32_STEP 32
  1693. #define GGML_F32_EPR 4
  1694. #define GGML_F32x4 vector float
  1695. #define GGML_F32x4_ZERO 0.0f
  1696. #define GGML_F32x4_SET1 vec_splats
  1697. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1698. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1699. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1700. #define GGML_F32x4_ADD vec_add
  1701. #define GGML_F32x4_MUL vec_mul
  1702. #define GGML_F32x4_REDUCE(res, x) \
  1703. { \
  1704. int offset = GGML_F32_ARR >> 1; \
  1705. for (int i = 0; i < offset; ++i) { \
  1706. x[i] = vec_add(x[i], x[offset+i]); \
  1707. } \
  1708. offset >>= 1; \
  1709. for (int i = 0; i < offset; ++i) { \
  1710. x[i] = vec_add(x[i], x[offset+i]); \
  1711. } \
  1712. offset >>= 1; \
  1713. for (int i = 0; i < offset; ++i) { \
  1714. x[i] = vec_add(x[i], x[offset+i]); \
  1715. } \
  1716. res = vec_extract(x[0], 0) + \
  1717. vec_extract(x[0], 1) + \
  1718. vec_extract(x[0], 2) + \
  1719. vec_extract(x[0], 3); \
  1720. }
  1721. #define GGML_F32_VEC GGML_F32x4
  1722. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1723. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1724. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1725. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1726. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1727. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1728. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1729. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1730. // F16 POWER9
  1731. #define GGML_F16_STEP GGML_F32_STEP
  1732. #define GGML_F16_EPR GGML_F32_EPR
  1733. #define GGML_F16_VEC GGML_F32x4
  1734. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1735. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1736. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1737. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1738. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1739. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1740. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1741. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1742. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1743. #define GGML_F16_VEC_STORE(p, r, i) \
  1744. if (i & 0x1) \
  1745. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1746. r[i - GGML_ENDIAN_BYTE(0)]), \
  1747. 0, p - GGML_F16_EPR)
  1748. #elif defined(__wasm_simd128__)
  1749. #define GGML_SIMD
  1750. // F32 WASM
  1751. #define GGML_F32_STEP 16
  1752. #define GGML_F32_EPR 4
  1753. #define GGML_F32x4 v128_t
  1754. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1755. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1756. #define GGML_F32x4_LOAD wasm_v128_load
  1757. #define GGML_F32x4_STORE wasm_v128_store
  1758. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1759. #define GGML_F32x4_ADD wasm_f32x4_add
  1760. #define GGML_F32x4_MUL wasm_f32x4_mul
  1761. #define GGML_F32x4_REDUCE(res, x) \
  1762. { \
  1763. int offset = GGML_F32_ARR >> 1; \
  1764. for (int i = 0; i < offset; ++i) { \
  1765. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1766. } \
  1767. offset >>= 1; \
  1768. for (int i = 0; i < offset; ++i) { \
  1769. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1770. } \
  1771. offset >>= 1; \
  1772. for (int i = 0; i < offset; ++i) { \
  1773. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1774. } \
  1775. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1776. wasm_f32x4_extract_lane(x[0], 1) + \
  1777. wasm_f32x4_extract_lane(x[0], 2) + \
  1778. wasm_f32x4_extract_lane(x[0], 3); \
  1779. }
  1780. #define GGML_F32_VEC GGML_F32x4
  1781. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1782. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1783. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1784. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1785. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1786. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1787. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1788. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1789. // F16 WASM
  1790. #define GGML_F16_STEP 16
  1791. #define GGML_F16_EPR 4
  1792. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1793. float tmp[4];
  1794. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1795. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1796. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1797. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1798. return wasm_v128_load(tmp);
  1799. }
  1800. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1801. float tmp[4];
  1802. wasm_v128_store(tmp, x);
  1803. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1804. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1805. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1806. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1807. }
  1808. #define GGML_F16x4 v128_t
  1809. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1810. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1811. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1812. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1813. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1814. #define GGML_F16x4_ADD wasm_f32x4_add
  1815. #define GGML_F16x4_MUL wasm_f32x4_mul
  1816. #define GGML_F16x4_REDUCE(res, x) \
  1817. { \
  1818. int offset = GGML_F16_ARR >> 1; \
  1819. for (int i = 0; i < offset; ++i) { \
  1820. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1821. } \
  1822. offset >>= 1; \
  1823. for (int i = 0; i < offset; ++i) { \
  1824. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1825. } \
  1826. offset >>= 1; \
  1827. for (int i = 0; i < offset; ++i) { \
  1828. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1829. } \
  1830. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1831. wasm_f32x4_extract_lane(x[0], 1) + \
  1832. wasm_f32x4_extract_lane(x[0], 2) + \
  1833. wasm_f32x4_extract_lane(x[0], 3); \
  1834. }
  1835. #define GGML_F16_VEC GGML_F16x4
  1836. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1837. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1838. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1839. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1840. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1841. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1842. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1843. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1844. #elif defined(__SSE3__)
  1845. #define GGML_SIMD
  1846. // F32 SSE
  1847. #define GGML_F32_STEP 32
  1848. #define GGML_F32_EPR 4
  1849. #define GGML_F32x4 __m128
  1850. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1851. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1852. #define GGML_F32x4_LOAD _mm_loadu_ps
  1853. #define GGML_F32x4_STORE _mm_storeu_ps
  1854. #if defined(__FMA__)
  1855. // TODO: Does this work?
  1856. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1857. #else
  1858. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1859. #endif
  1860. #define GGML_F32x4_ADD _mm_add_ps
  1861. #define GGML_F32x4_MUL _mm_mul_ps
  1862. #define GGML_F32x4_REDUCE(res, x) \
  1863. { \
  1864. int offset = GGML_F32_ARR >> 1; \
  1865. for (int i = 0; i < offset; ++i) { \
  1866. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1867. } \
  1868. offset >>= 1; \
  1869. for (int i = 0; i < offset; ++i) { \
  1870. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1871. } \
  1872. offset >>= 1; \
  1873. for (int i = 0; i < offset; ++i) { \
  1874. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1875. } \
  1876. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1877. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1878. }
  1879. // TODO: is this optimal ?
  1880. #define GGML_F32_VEC GGML_F32x4
  1881. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1882. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1883. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1884. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1885. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1886. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1887. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1888. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1889. // F16 SSE
  1890. #define GGML_F16_STEP 32
  1891. #define GGML_F16_EPR 4
  1892. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1893. float tmp[4];
  1894. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1895. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1896. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1897. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1898. return _mm_loadu_ps(tmp);
  1899. }
  1900. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1901. float arr[4];
  1902. _mm_storeu_ps(arr, y);
  1903. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1904. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1905. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1906. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1907. }
  1908. #define GGML_F32Cx4 __m128
  1909. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1910. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1911. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1912. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1913. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1914. #define GGML_F32Cx4_ADD _mm_add_ps
  1915. #define GGML_F32Cx4_MUL _mm_mul_ps
  1916. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1917. #define GGML_F16_VEC GGML_F32Cx4
  1918. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1919. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1920. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1922. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1923. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1924. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1925. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1926. #endif
  1927. // GGML_F32_ARR / GGML_F16_ARR
  1928. // number of registers to use per step
  1929. #ifdef GGML_SIMD
  1930. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1931. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1932. #endif
  1933. //
  1934. // fundamental operations
  1935. //
  1936. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1937. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1938. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1939. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1940. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1941. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1942. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1943. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1944. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1945. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1946. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1947. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1948. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1949. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1950. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1951. #ifdef GGML_SIMD
  1952. float sumf = 0.0f;
  1953. const int np = (n & ~(GGML_F32_STEP - 1));
  1954. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1955. GGML_F32_VEC ax[GGML_F32_ARR];
  1956. GGML_F32_VEC ay[GGML_F32_ARR];
  1957. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1958. for (int j = 0; j < GGML_F32_ARR; j++) {
  1959. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1960. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1961. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1962. }
  1963. }
  1964. // reduce sum0..sum3 to sum0
  1965. GGML_F32_VEC_REDUCE(sumf, sum);
  1966. // leftovers
  1967. for (int i = np; i < n; ++i) {
  1968. sumf += x[i]*y[i];
  1969. }
  1970. #else
  1971. // scalar
  1972. ggml_float sumf = 0.0;
  1973. for (int i = 0; i < n; ++i) {
  1974. sumf += (ggml_float)(x[i]*y[i]);
  1975. }
  1976. #endif
  1977. *s = sumf;
  1978. }
  1979. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1980. ggml_float sumf = 0.0;
  1981. #if defined(GGML_SIMD)
  1982. const int np = (n & ~(GGML_F16_STEP - 1));
  1983. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1984. GGML_F16_VEC ax[GGML_F16_ARR];
  1985. GGML_F16_VEC ay[GGML_F16_ARR];
  1986. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1987. for (int j = 0; j < GGML_F16_ARR; j++) {
  1988. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1989. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1990. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1991. }
  1992. }
  1993. // reduce sum0..sum3 to sum0
  1994. GGML_F16_VEC_REDUCE(sumf, sum);
  1995. // leftovers
  1996. for (int i = np; i < n; ++i) {
  1997. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1998. }
  1999. #else
  2000. for (int i = 0; i < n; ++i) {
  2001. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2002. }
  2003. #endif
  2004. *s = sumf;
  2005. }
  2006. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2007. const int qk = QK8_0;
  2008. const int nb = n / qk;
  2009. assert(n % qk == 0);
  2010. const block_q4_0 * restrict x = vx;
  2011. const block_q8_0 * restrict y = vy;
  2012. #if defined(__ARM_NEON)
  2013. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2014. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2015. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2016. for (int i = 0; i < nb; i += 2) {
  2017. const block_q4_0 * restrict x0 = &x[i + 0];
  2018. const block_q4_0 * restrict x1 = &x[i + 1];
  2019. const block_q8_0 * restrict y0 = &y[i + 0];
  2020. const block_q8_0 * restrict y1 = &y[i + 1];
  2021. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2022. const int8x16_t s8b = vdupq_n_s8(0x8);
  2023. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2024. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2025. // 4-bit -> 8-bit
  2026. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2027. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2028. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2029. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2030. // sub 8
  2031. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2032. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2033. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2034. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2035. // load y
  2036. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2037. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2038. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2039. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2040. #if defined(__ARM_FEATURE_DOTPROD)
  2041. // dot product into int32x4_t
  2042. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2043. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2044. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2045. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2046. #else
  2047. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2048. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2049. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2050. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2051. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2052. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2053. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2054. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2055. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2056. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2057. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2058. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2059. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2060. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2061. #endif
  2062. }
  2063. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2064. #elif defined(__AVX2__)
  2065. // Initialize accumulator with zeros
  2066. __m256 acc = _mm256_setzero_ps();
  2067. // Main loop
  2068. for (int i = 0; i < nb; ++i) {
  2069. /* Compute combined scale for the block */
  2070. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2071. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2072. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2073. const __m256i off = _mm256_set1_epi8( 8 );
  2074. bx = _mm256_sub_epi8( bx, off );
  2075. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2076. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2077. /* Multiply q with scale and accumulate */
  2078. acc = _mm256_fmadd_ps( d, q, acc );
  2079. }
  2080. *s = hsum_float_8(acc);
  2081. #elif defined(__AVX__)
  2082. // Initialize accumulator with zeros
  2083. __m256 acc = _mm256_setzero_ps();
  2084. // Main loop
  2085. for (int i = 0; i < nb; ++i) {
  2086. // Compute combined scale for the block
  2087. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2088. const __m128i lowMask = _mm_set1_epi8(0xF);
  2089. const __m128i off = _mm_set1_epi8(8);
  2090. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2091. __m128i bx = _mm_and_si128(lowMask, tmp);
  2092. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2093. bx = _mm_sub_epi8(bx, off);
  2094. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2095. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2096. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2097. bx = _mm_sub_epi8(bx, off);
  2098. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2099. // Convert int32_t to float
  2100. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2101. // Apply the scale, and accumulate
  2102. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2103. }
  2104. *s = hsum_float_8(acc);
  2105. #elif defined(__SSSE3__)
  2106. // set constants
  2107. const __m128i lowMask = _mm_set1_epi8(0xF);
  2108. const __m128i off = _mm_set1_epi8(8);
  2109. // Initialize accumulator with zeros
  2110. __m128 acc_0 = _mm_setzero_ps();
  2111. __m128 acc_1 = _mm_setzero_ps();
  2112. __m128 acc_2 = _mm_setzero_ps();
  2113. __m128 acc_3 = _mm_setzero_ps();
  2114. // First round without accumulation
  2115. {
  2116. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2117. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2118. // Compute combined scale for the block 0 and 1
  2119. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2120. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2121. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2122. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2123. bx_0 = _mm_sub_epi8(bx_0, off);
  2124. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2125. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2126. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2127. bx_1 = _mm_sub_epi8(bx_1, off);
  2128. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2129. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2130. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2131. // Compute combined scale for the block 2 and 3
  2132. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2133. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2134. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2135. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2136. bx_2 = _mm_sub_epi8(bx_2, off);
  2137. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2138. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2139. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2140. bx_3 = _mm_sub_epi8(bx_3, off);
  2141. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2142. // Convert int32_t to float
  2143. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2144. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2145. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2146. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2147. // Apply the scale
  2148. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2149. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2150. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2151. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2152. }
  2153. // Main loop
  2154. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2155. for (int i = 2; i < nb; i+=2) {
  2156. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2157. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2158. // Compute combined scale for the block 0 and 1
  2159. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2160. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2161. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2162. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2163. bx_0 = _mm_sub_epi8(bx_0, off);
  2164. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2165. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2166. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2167. bx_1 = _mm_sub_epi8(bx_1, off);
  2168. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2169. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2170. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2171. // Compute combined scale for the block 2 and 3
  2172. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2173. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2174. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2175. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2176. bx_2 = _mm_sub_epi8(bx_2, off);
  2177. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2178. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2179. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2180. bx_3 = _mm_sub_epi8(bx_3, off);
  2181. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2182. // Convert int32_t to float
  2183. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2184. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2185. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2186. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2187. // Apply the scale
  2188. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2189. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2190. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2191. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2192. // Acummulate
  2193. acc_0 = _mm_add_ps(p0_d, acc_0);
  2194. acc_1 = _mm_add_ps(p1_d, acc_1);
  2195. acc_2 = _mm_add_ps(p2_d, acc_2);
  2196. acc_3 = _mm_add_ps(p3_d, acc_3);
  2197. }
  2198. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2199. #elif defined(__riscv_v_intrinsic)
  2200. float sumf = 0.0;
  2201. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2202. for (int i = 0; i < nb; i++) {
  2203. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2204. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2205. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2206. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2207. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2208. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2209. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2210. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2211. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2212. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2213. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2214. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2215. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2216. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2217. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2218. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2219. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2220. }
  2221. *s = sumf;
  2222. #else
  2223. // scalar
  2224. float sumf = 0.0;
  2225. for (int i = 0; i < nb; i++) {
  2226. int sumi = 0;
  2227. for (int j = 0; j < qk/2; ++j) {
  2228. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2229. const int v1 = (x[i].qs[j] >> 4) - 8;
  2230. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2231. }
  2232. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2233. }
  2234. *s = sumf;
  2235. #endif
  2236. }
  2237. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2238. const int qk = QK8_1;
  2239. const int nb = n / qk;
  2240. assert(n % qk == 0);
  2241. const block_q4_1 * restrict x = vx;
  2242. const block_q8_1 * restrict y = vy;
  2243. // TODO: add WASM SIMD
  2244. #if defined(__ARM_NEON)
  2245. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2246. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2247. float summs = 0;
  2248. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2249. for (int i = 0; i < nb; i += 2) {
  2250. const block_q4_1 * restrict x0 = &x[i + 0];
  2251. const block_q4_1 * restrict x1 = &x[i + 1];
  2252. const block_q8_1 * restrict y0 = &y[i + 0];
  2253. const block_q8_1 * restrict y1 = &y[i + 1];
  2254. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2255. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2256. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2257. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2258. // 4-bit -> 8-bit
  2259. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2260. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2261. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2262. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2263. // load y
  2264. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2265. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2266. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2267. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2268. #if defined(__ARM_FEATURE_DOTPROD)
  2269. // dot product into int32x4_t
  2270. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2271. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2272. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2273. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2274. #else
  2275. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2276. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2277. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2278. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2279. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2280. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2281. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2282. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2283. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2284. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2285. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2286. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2287. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2288. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2289. #endif
  2290. }
  2291. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2292. #elif defined(__AVX2__) || defined(__AVX__)
  2293. // Initialize accumulator with zeros
  2294. __m256 acc = _mm256_setzero_ps();
  2295. float summs = 0;
  2296. // Main loop
  2297. for (int i = 0; i < nb; ++i) {
  2298. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2299. const float d1 = y[i].d;
  2300. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2301. const __m256 d0v = _mm256_set1_ps( d0 );
  2302. const __m256 d1v = _mm256_set1_ps( d1 );
  2303. // Compute combined scales
  2304. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2305. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2306. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2307. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2308. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2309. // Accumulate d0*d1*x*y
  2310. #if defined(__AVX2__)
  2311. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2312. #else
  2313. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2314. #endif
  2315. }
  2316. *s = hsum_float_8(acc) + summs;
  2317. #elif defined(__riscv_v_intrinsic)
  2318. float sumf = 0.0;
  2319. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2320. for (int i = 0; i < nb; i++) {
  2321. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2322. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2323. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2324. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2325. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2326. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2327. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2328. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2329. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2330. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2331. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2332. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2333. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2334. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2335. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2336. }
  2337. *s = sumf;
  2338. #else
  2339. // scalar
  2340. float sumf = 0.0;
  2341. for (int i = 0; i < nb; i++) {
  2342. int sumi = 0;
  2343. for (int j = 0; j < qk/2; ++j) {
  2344. const int v0 = (x[i].qs[j] & 0x0F);
  2345. const int v1 = (x[i].qs[j] >> 4);
  2346. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2347. }
  2348. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2349. }
  2350. *s = sumf;
  2351. #endif
  2352. }
  2353. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2354. const int qk = QK8_0;
  2355. const int nb = n / qk;
  2356. assert(n % qk == 0);
  2357. assert(qk == QK5_0);
  2358. const block_q5_0 * restrict x = vx;
  2359. const block_q8_0 * restrict y = vy;
  2360. #if defined(__ARM_NEON)
  2361. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2362. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2363. uint32_t qh0;
  2364. uint32_t qh1;
  2365. uint64_t tmp0[4];
  2366. uint64_t tmp1[4];
  2367. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2368. for (int i = 0; i < nb; i += 2) {
  2369. const block_q5_0 * restrict x0 = &x[i];
  2370. const block_q5_0 * restrict x1 = &x[i + 1];
  2371. const block_q8_0 * restrict y0 = &y[i];
  2372. const block_q8_0 * restrict y1 = &y[i + 1];
  2373. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2374. // extract the 5th bit via lookup table ((!b) << 4)
  2375. memcpy(&qh0, x0->qh, sizeof(qh0));
  2376. memcpy(&qh1, x1->qh, sizeof(qh1));
  2377. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2378. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2379. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2380. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2381. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2382. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2383. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2384. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2385. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2386. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2387. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2388. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2389. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2390. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2391. // 4-bit -> 8-bit
  2392. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2393. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2394. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2395. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2396. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2397. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2398. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2399. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2400. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2401. // load y
  2402. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2403. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2404. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2405. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2406. #if defined(__ARM_FEATURE_DOTPROD)
  2407. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2408. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2409. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2410. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2411. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2412. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2413. #else
  2414. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2415. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2416. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2417. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2418. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2419. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2420. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2421. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2422. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2423. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2424. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2425. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2426. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2427. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2428. #endif
  2429. }
  2430. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2431. #elif defined(__wasm_simd128__)
  2432. v128_t sumv = wasm_f32x4_splat(0.0f);
  2433. uint32_t qh;
  2434. uint64_t tmp[4];
  2435. // TODO: check if unrolling this is better
  2436. for (int i = 0; i < nb; ++i) {
  2437. const block_q5_0 * restrict x0 = &x[i];
  2438. const block_q8_0 * restrict y0 = &y[i];
  2439. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2440. // extract the 5th bit
  2441. memcpy(&qh, x0->qh, sizeof(qh));
  2442. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2443. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2444. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2445. tmp[3] = table_b2b_1[(qh >> 24) ];
  2446. const v128_t qhl = wasm_v128_load(tmp + 0);
  2447. const v128_t qhh = wasm_v128_load(tmp + 2);
  2448. const v128_t v0 = wasm_v128_load(x0->qs);
  2449. // 4-bit -> 8-bit
  2450. const v128_t v0l = wasm_v128_and (v0, m4b);
  2451. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2452. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2453. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2454. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2455. // load y
  2456. const v128_t v1l = wasm_v128_load(y0->qs);
  2457. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2458. // int8x16 -> int16x8
  2459. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2460. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2461. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2462. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2463. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2464. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2465. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2466. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2467. // dot product
  2468. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2469. wasm_i32x4_add(
  2470. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2471. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2472. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2473. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2474. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2475. }
  2476. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2477. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2478. #elif defined(__AVX2__)
  2479. // Initialize accumulator with zeros
  2480. __m256 acc = _mm256_setzero_ps();
  2481. // Main loop
  2482. for (int i = 0; i < nb; i++) {
  2483. /* Compute combined scale for the block */
  2484. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2485. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2486. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2487. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2488. bx = _mm256_or_si256(bx, bxhi);
  2489. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2490. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2491. /* Multiply q with scale and accumulate */
  2492. acc = _mm256_fmadd_ps(d, q, acc);
  2493. }
  2494. *s = hsum_float_8(acc);
  2495. #elif defined(__AVX__)
  2496. // Initialize accumulator with zeros
  2497. __m256 acc = _mm256_setzero_ps();
  2498. __m128i mask = _mm_set1_epi8((char)0xF0);
  2499. // Main loop
  2500. for (int i = 0; i < nb; i++) {
  2501. /* Compute combined scale for the block */
  2502. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2503. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2504. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2505. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2506. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2507. bxhil = _mm_andnot_si128(bxhil, mask);
  2508. bxhih = _mm_andnot_si128(bxhih, mask);
  2509. __m128i bxl = _mm256_castsi256_si128(bx);
  2510. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2511. bxl = _mm_or_si128(bxl, bxhil);
  2512. bxh = _mm_or_si128(bxh, bxhih);
  2513. bx = MM256_SET_M128I(bxh, bxl);
  2514. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2515. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2516. /* Multiply q with scale and accumulate */
  2517. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2518. }
  2519. *s = hsum_float_8(acc);
  2520. #elif defined(__riscv_v_intrinsic)
  2521. float sumf = 0.0;
  2522. uint32_t qh;
  2523. // These temp values are for masking and shift operations
  2524. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2525. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2526. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2527. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2528. for (int i = 0; i < nb; i++) {
  2529. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2530. // temporary registers
  2531. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2532. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2533. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2534. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2535. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2536. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2537. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2538. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2539. // ((qh & (1u << (j + 16))) >> (j + 12));
  2540. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2541. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2542. // narrowing
  2543. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2544. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2545. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2546. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2547. // load
  2548. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2549. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2550. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2551. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2552. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2553. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2554. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2555. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2556. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2557. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2558. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2559. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2560. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2561. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2562. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2563. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2564. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2565. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2566. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2567. }
  2568. *s = sumf;
  2569. #else
  2570. // scalar
  2571. float sumf = 0.0;
  2572. for (int i = 0; i < nb; i++) {
  2573. uint32_t qh;
  2574. memcpy(&qh, x[i].qh, sizeof(qh));
  2575. int sumi = 0;
  2576. for (int j = 0; j < qk/2; ++j) {
  2577. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2578. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2579. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2580. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2581. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2582. }
  2583. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2584. }
  2585. *s = sumf;
  2586. #endif
  2587. }
  2588. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2589. const int qk = QK8_1;
  2590. const int nb = n / qk;
  2591. assert(n % qk == 0);
  2592. assert(qk == QK5_1);
  2593. const block_q5_1 * restrict x = vx;
  2594. const block_q8_1 * restrict y = vy;
  2595. #if defined(__ARM_NEON)
  2596. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2597. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2598. float summs0 = 0.0f;
  2599. float summs1 = 0.0f;
  2600. uint32_t qh0;
  2601. uint32_t qh1;
  2602. uint64_t tmp0[4];
  2603. uint64_t tmp1[4];
  2604. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2605. for (int i = 0; i < nb; i += 2) {
  2606. const block_q5_1 * restrict x0 = &x[i];
  2607. const block_q5_1 * restrict x1 = &x[i + 1];
  2608. const block_q8_1 * restrict y0 = &y[i];
  2609. const block_q8_1 * restrict y1 = &y[i + 1];
  2610. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2611. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2612. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2613. // extract the 5th bit via lookup table ((b) << 4)
  2614. memcpy(&qh0, x0->qh, sizeof(qh0));
  2615. memcpy(&qh1, x1->qh, sizeof(qh1));
  2616. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2617. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2618. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2619. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2620. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2621. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2622. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2623. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2624. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2625. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2626. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2627. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2628. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2629. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2630. // 4-bit -> 8-bit
  2631. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2632. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2633. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2634. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2635. // add high bit
  2636. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2637. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2638. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2639. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2640. // load y
  2641. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2642. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2643. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2644. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2645. #if defined(__ARM_FEATURE_DOTPROD)
  2646. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2647. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2648. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2649. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2650. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2651. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2652. #else
  2653. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2654. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2655. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2656. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2657. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2658. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2659. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2660. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2661. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2662. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2663. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2664. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2665. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2666. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2667. #endif
  2668. }
  2669. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2670. #elif defined(__wasm_simd128__)
  2671. v128_t sumv = wasm_f32x4_splat(0.0f);
  2672. float summs = 0.0f;
  2673. uint32_t qh;
  2674. uint64_t tmp[4];
  2675. // TODO: check if unrolling this is better
  2676. for (int i = 0; i < nb; ++i) {
  2677. const block_q5_1 * restrict x0 = &x[i];
  2678. const block_q8_1 * restrict y0 = &y[i];
  2679. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2680. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2681. // extract the 5th bit
  2682. memcpy(&qh, x0->qh, sizeof(qh));
  2683. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2684. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2685. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2686. tmp[3] = table_b2b_0[(qh >> 24) ];
  2687. const v128_t qhl = wasm_v128_load(tmp + 0);
  2688. const v128_t qhh = wasm_v128_load(tmp + 2);
  2689. const v128_t v0 = wasm_v128_load(x0->qs);
  2690. // 4-bit -> 8-bit
  2691. const v128_t v0l = wasm_v128_and (v0, m4b);
  2692. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2693. // add high bit
  2694. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2695. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2696. // load y
  2697. const v128_t v1l = wasm_v128_load(y0->qs);
  2698. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2699. // int8x16 -> int16x8
  2700. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2701. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2702. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2703. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2704. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2705. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2706. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2707. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2708. // dot product
  2709. sumv = wasm_f32x4_add(sumv,
  2710. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2711. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2712. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2713. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2714. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2715. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2716. }
  2717. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2718. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2719. #elif defined(__AVX2__)
  2720. // Initialize accumulator with zeros
  2721. __m256 acc = _mm256_setzero_ps();
  2722. float summs = 0.0f;
  2723. // Main loop
  2724. for (int i = 0; i < nb; i++) {
  2725. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2726. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2727. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2728. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2729. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2730. bx = _mm256_or_si256(bx, bxhi);
  2731. const __m256 dy = _mm256_set1_ps(y[i].d);
  2732. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2733. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2734. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2735. }
  2736. *s = hsum_float_8(acc) + summs;
  2737. #elif defined(__AVX__)
  2738. // Initialize accumulator with zeros
  2739. __m256 acc = _mm256_setzero_ps();
  2740. __m128i mask = _mm_set1_epi8(0x10);
  2741. float summs = 0.0f;
  2742. // Main loop
  2743. for (int i = 0; i < nb; i++) {
  2744. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2745. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2746. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2747. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2748. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2749. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2750. bxhil = _mm_and_si128(bxhil, mask);
  2751. bxhih = _mm_and_si128(bxhih, mask);
  2752. __m128i bxl = _mm256_castsi256_si128(bx);
  2753. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2754. bxl = _mm_or_si128(bxl, bxhil);
  2755. bxh = _mm_or_si128(bxh, bxhih);
  2756. bx = MM256_SET_M128I(bxh, bxl);
  2757. const __m256 dy = _mm256_set1_ps(y[i].d);
  2758. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2759. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2760. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2761. }
  2762. *s = hsum_float_8(acc) + summs;
  2763. #elif defined(__riscv_v_intrinsic)
  2764. float sumf = 0.0;
  2765. uint32_t qh;
  2766. // These temp values are for shift operations
  2767. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2768. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2769. for (int i = 0; i < nb; i++) {
  2770. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2771. // temporary registers
  2772. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2773. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2774. // load qh
  2775. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2776. // ((qh >> (j + 0)) << 4) & 0x10;
  2777. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2778. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2779. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2780. // ((qh >> (j + 12)) ) & 0x10;
  2781. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2782. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2783. // narrowing
  2784. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2785. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2786. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2787. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2788. // load
  2789. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2790. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2791. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2792. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2793. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2794. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2795. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2796. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2797. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2798. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2799. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2800. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2801. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2802. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2803. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2804. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2805. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2806. }
  2807. *s = sumf;
  2808. #else
  2809. // scalar
  2810. float sumf = 0.0;
  2811. for (int i = 0; i < nb; i++) {
  2812. uint32_t qh;
  2813. memcpy(&qh, x[i].qh, sizeof(qh));
  2814. int sumi = 0;
  2815. for (int j = 0; j < qk/2; ++j) {
  2816. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2817. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2818. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2819. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2820. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2821. }
  2822. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2823. }
  2824. *s = sumf;
  2825. #endif
  2826. }
  2827. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2828. const int qk = QK8_0;
  2829. const int nb = n / qk;
  2830. assert(n % qk == 0);
  2831. const block_q8_0 * restrict x = vx;
  2832. const block_q8_0 * restrict y = vy;
  2833. #if defined(__ARM_NEON)
  2834. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2835. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2836. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2837. for (int i = 0; i < nb; i += 2) {
  2838. const block_q8_0 * restrict x0 = &x[i + 0];
  2839. const block_q8_0 * restrict x1 = &x[i + 1];
  2840. const block_q8_0 * restrict y0 = &y[i + 0];
  2841. const block_q8_0 * restrict y1 = &y[i + 1];
  2842. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2843. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2844. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2845. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2846. // load y
  2847. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2848. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2849. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2850. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2851. #if defined(__ARM_FEATURE_DOTPROD)
  2852. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2853. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2854. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2855. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2856. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2857. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2858. #else
  2859. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2860. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2861. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2862. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2863. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2864. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2865. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2866. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2867. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2868. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2869. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2870. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2871. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2872. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2873. #endif
  2874. }
  2875. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2876. #elif defined(__AVX2__) || defined(__AVX__)
  2877. // Initialize accumulator with zeros
  2878. __m256 acc = _mm256_setzero_ps();
  2879. // Main loop
  2880. for (int i = 0; i < nb; ++i) {
  2881. // Compute combined scale for the block
  2882. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2883. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2884. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2885. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2886. // Multiply q with scale and accumulate
  2887. #if defined(__AVX2__)
  2888. acc = _mm256_fmadd_ps( d, q, acc );
  2889. #else
  2890. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2891. #endif
  2892. }
  2893. *s = hsum_float_8(acc);
  2894. #elif defined(__riscv_v_intrinsic)
  2895. float sumf = 0.0;
  2896. size_t vl = __riscv_vsetvl_e8m1(qk);
  2897. for (int i = 0; i < nb; i++) {
  2898. // load elements
  2899. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2900. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2901. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2902. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2903. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2904. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2905. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2906. }
  2907. *s = sumf;
  2908. #else
  2909. // scalar
  2910. float sumf = 0.0;
  2911. for (int i = 0; i < nb; i++) {
  2912. int sumi = 0;
  2913. for (int j = 0; j < qk; j++) {
  2914. sumi += x[i].qs[j]*y[i].qs[j];
  2915. }
  2916. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2917. }
  2918. *s = sumf;
  2919. #endif
  2920. }
  2921. // compute GGML_VEC_DOT_UNROLL dot products at once
  2922. // xs - x row stride in bytes
  2923. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2924. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2925. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2926. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2927. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2928. }
  2929. #if defined(GGML_SIMD)
  2930. const int np = (n & ~(GGML_F16_STEP - 1));
  2931. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2932. GGML_F16_VEC ax[GGML_F16_ARR];
  2933. GGML_F16_VEC ay[GGML_F16_ARR];
  2934. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2935. for (int j = 0; j < GGML_F16_ARR; j++) {
  2936. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2937. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2938. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2939. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2940. }
  2941. }
  2942. }
  2943. // reduce sum0..sum3 to sum0
  2944. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2945. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2946. }
  2947. // leftovers
  2948. for (int i = np; i < n; ++i) {
  2949. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2950. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2951. }
  2952. }
  2953. #else
  2954. for (int i = 0; i < n; ++i) {
  2955. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2956. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2957. }
  2958. }
  2959. #endif
  2960. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2961. s[i] = sumf[i];
  2962. }
  2963. }
  2964. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2965. #if defined(GGML_SIMD)
  2966. const int np = (n & ~(GGML_F32_STEP - 1));
  2967. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2968. GGML_F32_VEC ax[GGML_F32_ARR];
  2969. GGML_F32_VEC ay[GGML_F32_ARR];
  2970. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2971. for (int j = 0; j < GGML_F32_ARR; j++) {
  2972. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2973. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2974. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2975. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2976. }
  2977. }
  2978. // leftovers
  2979. for (int i = np; i < n; ++i) {
  2980. y[i] += x[i]*v;
  2981. }
  2982. #else
  2983. // scalar
  2984. for (int i = 0; i < n; ++i) {
  2985. y[i] += x[i]*v;
  2986. }
  2987. #endif
  2988. }
  2989. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2990. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2991. #if defined(GGML_USE_ACCELERATE)
  2992. vDSP_vsmul(y, 1, &v, y, 1, n);
  2993. #elif defined(GGML_SIMD)
  2994. const int np = (n & ~(GGML_F32_STEP - 1));
  2995. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2996. GGML_F32_VEC ay[GGML_F32_ARR];
  2997. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2998. for (int j = 0; j < GGML_F32_ARR; j++) {
  2999. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3000. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3001. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3002. }
  3003. }
  3004. // leftovers
  3005. for (int i = np; i < n; ++i) {
  3006. y[i] *= v;
  3007. }
  3008. #else
  3009. // scalar
  3010. for (int i = 0; i < n; ++i) {
  3011. y[i] *= v;
  3012. }
  3013. #endif
  3014. }
  3015. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3016. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3017. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3018. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3019. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3020. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3021. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3022. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3023. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3024. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3025. static const float GELU_COEF_A = 0.044715f;
  3026. static const float GELU_QUICK_COEF = -1.702f;
  3027. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3028. inline static float ggml_gelu_f32(float x) {
  3029. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3030. }
  3031. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3032. const uint16_t * i16 = (const uint16_t *) x;
  3033. for (int i = 0; i < n; ++i) {
  3034. y[i] = table_gelu_f16[i16[i]];
  3035. }
  3036. }
  3037. #ifdef GGML_GELU_FP16
  3038. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3039. uint16_t t;
  3040. for (int i = 0; i < n; ++i) {
  3041. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3042. memcpy(&t, &fp16, sizeof(uint16_t));
  3043. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3044. }
  3045. }
  3046. #else
  3047. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3048. for (int i = 0; i < n; ++i) {
  3049. y[i] = ggml_gelu_f32(x[i]);
  3050. }
  3051. }
  3052. #endif
  3053. inline static float ggml_gelu_quick_f32(float x) {
  3054. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3055. }
  3056. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3057. // const uint16_t * i16 = (const uint16_t *) x;
  3058. // for (int i = 0; i < n; ++i) {
  3059. // y[i] = table_gelu_quick_f16[i16[i]];
  3060. // }
  3061. //}
  3062. #ifdef GGML_GELU_QUICK_FP16
  3063. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3064. uint16_t t;
  3065. for (int i = 0; i < n; ++i) {
  3066. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3067. memcpy(&t, &fp16, sizeof(uint16_t));
  3068. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3069. }
  3070. }
  3071. #else
  3072. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3073. for (int i = 0; i < n; ++i) {
  3074. y[i] = ggml_gelu_quick_f32(x[i]);
  3075. }
  3076. }
  3077. #endif
  3078. // Sigmoid Linear Unit (SiLU) function
  3079. inline static float ggml_silu_f32(float x) {
  3080. return x/(1.0f + expf(-x));
  3081. }
  3082. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3083. // const uint16_t * i16 = (const uint16_t *) x;
  3084. // for (int i = 0; i < n; ++i) {
  3085. // y[i] = table_silu_f16[i16[i]];
  3086. // }
  3087. //}
  3088. #ifdef GGML_SILU_FP16
  3089. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3090. uint16_t t;
  3091. for (int i = 0; i < n; ++i) {
  3092. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3093. memcpy(&t, &fp16, sizeof(uint16_t));
  3094. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3095. }
  3096. }
  3097. #else
  3098. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3099. for (int i = 0; i < n; ++i) {
  3100. y[i] = ggml_silu_f32(x[i]);
  3101. }
  3102. }
  3103. #endif
  3104. inline static float ggml_silu_backward_f32(float x, float dy) {
  3105. const float s = 1.0f/(1.0f + expf(-x));
  3106. return dy*s*(1.0f + x*(1.0f - s));
  3107. }
  3108. #ifdef GGML_SILU_FP16
  3109. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3110. for (int i = 0; i < n; ++i) {
  3111. // we did not use x[i] to compute forward silu but its f16 equivalent
  3112. // take derivative at f16 of x[i]:
  3113. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3114. float usedx = GGML_FP16_TO_FP32(fp16);
  3115. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3116. }
  3117. }
  3118. #else
  3119. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3120. for (int i = 0; i < n; ++i) {
  3121. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3122. }
  3123. }
  3124. #endif
  3125. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3126. #ifndef GGML_USE_ACCELERATE
  3127. ggml_float sum = 0.0;
  3128. for (int i = 0; i < n; ++i) {
  3129. sum += (ggml_float)x[i];
  3130. }
  3131. *s = sum;
  3132. #else
  3133. vDSP_sve(x, 1, s, n);
  3134. #endif
  3135. }
  3136. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3137. ggml_float sum = 0.0;
  3138. for (int i = 0; i < n; ++i) {
  3139. sum += (ggml_float)x[i];
  3140. }
  3141. *s = sum;
  3142. }
  3143. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3144. float sum = 0.0f;
  3145. for (int i = 0; i < n; ++i) {
  3146. sum += GGML_FP16_TO_FP32(x[i]);
  3147. }
  3148. *s = sum;
  3149. }
  3150. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3151. #ifndef GGML_USE_ACCELERATE
  3152. float max = -INFINITY;
  3153. for (int i = 0; i < n; ++i) {
  3154. max = MAX(max, x[i]);
  3155. }
  3156. *s = max;
  3157. #else
  3158. vDSP_maxv(x, 1, s, n);
  3159. #endif
  3160. }
  3161. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3162. ggml_vec_norm_f32(n, s, x);
  3163. *s = 1.f/(*s);
  3164. }
  3165. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3166. float max = -INFINITY;
  3167. int idx = 0;
  3168. for (int i = 0; i < n; ++i) {
  3169. max = MAX(max, x[i]);
  3170. if (max == x[i]) { idx = i; }
  3171. }
  3172. *s = idx;
  3173. }
  3174. //
  3175. // data types
  3176. //
  3177. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3178. "NONE",
  3179. "DUP",
  3180. "ADD",
  3181. "ADD1",
  3182. "ACC",
  3183. "SUB",
  3184. "MUL",
  3185. "DIV",
  3186. "SQR",
  3187. "SQRT",
  3188. "LOG",
  3189. "SUM",
  3190. "SUM_ROWS",
  3191. "MEAN",
  3192. "ARGMAX",
  3193. "REPEAT",
  3194. "REPEAT_BACK",
  3195. "CONCAT",
  3196. "SILU_BACK",
  3197. "NORM",
  3198. "RMS_NORM",
  3199. "RMS_NORM_BACK",
  3200. "GROUP_NORM",
  3201. "MUL_MAT",
  3202. "OUT_PROD",
  3203. "SCALE",
  3204. "SET",
  3205. "CPY",
  3206. "CONT",
  3207. "RESHAPE",
  3208. "VIEW",
  3209. "PERMUTE",
  3210. "TRANSPOSE",
  3211. "GET_ROWS",
  3212. "GET_ROWS_BACK",
  3213. "DIAG",
  3214. "DIAG_MASK_INF",
  3215. "DIAG_MASK_ZERO",
  3216. "SOFT_MAX",
  3217. "SOFT_MAX_BACK",
  3218. "ROPE",
  3219. "ROPE_BACK",
  3220. "ALIBI",
  3221. "CLAMP",
  3222. "CONV_1D",
  3223. "CONV_2D",
  3224. "CONV_TRANSPOSE_2D",
  3225. "POOL_1D",
  3226. "POOL_2D",
  3227. "UPSCALE",
  3228. "FLASH_ATTN",
  3229. "FLASH_FF",
  3230. "FLASH_ATTN_BACK",
  3231. "WIN_PART",
  3232. "WIN_UNPART",
  3233. "GET_REL_POS",
  3234. "ADD_REL_POS",
  3235. "UNARY",
  3236. "MAP_UNARY",
  3237. "MAP_BINARY",
  3238. "MAP_CUSTOM1_F32",
  3239. "MAP_CUSTOM2_F32",
  3240. "MAP_CUSTOM3_F32",
  3241. "MAP_CUSTOM1",
  3242. "MAP_CUSTOM2",
  3243. "MAP_CUSTOM3",
  3244. "CROSS_ENTROPY_LOSS",
  3245. "CROSS_ENTROPY_LOSS_BACK",
  3246. };
  3247. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3248. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3249. "none",
  3250. "x",
  3251. "x+y",
  3252. "x+y",
  3253. "view(x,nb,offset)+=y->x",
  3254. "x-y",
  3255. "x*y",
  3256. "x/y",
  3257. "x^2",
  3258. "√x",
  3259. "log(x)",
  3260. "Σx",
  3261. "Σx_k",
  3262. "Σx/n",
  3263. "argmax(x)",
  3264. "repeat(x)",
  3265. "repeat_back(x)",
  3266. "concat(x, y)",
  3267. "silu_back(x)",
  3268. "norm(x)",
  3269. "rms_norm(x)",
  3270. "rms_norm_back(x)",
  3271. "group_norm(x)",
  3272. "X*Y",
  3273. "X*Y",
  3274. "x*v",
  3275. "y-\\>view(x)",
  3276. "x-\\>y",
  3277. "cont(x)",
  3278. "reshape(x)",
  3279. "view(x)",
  3280. "permute(x)",
  3281. "transpose(x)",
  3282. "get_rows(x)",
  3283. "get_rows_back(x)",
  3284. "diag(x)",
  3285. "diag_mask_inf(x)",
  3286. "diag_mask_zero(x)",
  3287. "soft_max(x)",
  3288. "soft_max_back(x)",
  3289. "rope(x)",
  3290. "rope_back(x)",
  3291. "alibi(x)",
  3292. "clamp(x)",
  3293. "conv_1d(x)",
  3294. "conv_2d(x)",
  3295. "conv_transpose_2d(x)",
  3296. "pool_1d(x)",
  3297. "pool_2d(x)",
  3298. "upscale(x)",
  3299. "flash_attn(x)",
  3300. "flash_ff(x)",
  3301. "flash_attn_back(x)",
  3302. "win_part(x)",
  3303. "win_unpart(x)",
  3304. "get_rel_pos(x)",
  3305. "add_rel_pos(x)",
  3306. "unary(x)",
  3307. "f(x)",
  3308. "f(x,y)",
  3309. "custom_f32(x)",
  3310. "custom_f32(x,y)",
  3311. "custom_f32(x,y,z)",
  3312. "custom(x)",
  3313. "custom(x,y)",
  3314. "custom(x,y,z)",
  3315. "cross_entropy_loss(x,y)",
  3316. "cross_entropy_loss_back(x,y)",
  3317. };
  3318. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3319. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3320. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3321. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3322. // WARN:
  3323. // Mis-confguration can lead to problem that's hard to reason about:
  3324. // * At best it crash or talks nosense.
  3325. // * At worst it talks slightly difference but hard to perceive.
  3326. //
  3327. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3328. // Take care about compile options (e.g., GGML_USE_xxx).
  3329. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3330. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3331. static void ggml_setup_op_has_task_pass(void) {
  3332. { // INIT
  3333. bool * p = GGML_OP_HAS_INIT;
  3334. p[GGML_OP_ACC ] = true;
  3335. p[GGML_OP_MUL_MAT ] = true;
  3336. p[GGML_OP_OUT_PROD ] = true;
  3337. p[GGML_OP_SET ] = true;
  3338. p[GGML_OP_GET_ROWS_BACK ] = true;
  3339. p[GGML_OP_DIAG_MASK_INF ] = true;
  3340. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3341. p[GGML_OP_CONV_1D ] = true;
  3342. p[GGML_OP_CONV_2D ] = true;
  3343. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3344. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3345. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3346. p[GGML_OP_ADD_REL_POS ] = true;
  3347. }
  3348. { // FINALIZE
  3349. bool * p = GGML_OP_HAS_FINALIZE;
  3350. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3351. }
  3352. }
  3353. //
  3354. // ggml context
  3355. //
  3356. struct ggml_context {
  3357. size_t mem_size;
  3358. void * mem_buffer;
  3359. bool mem_buffer_owned;
  3360. bool no_alloc;
  3361. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3362. int n_objects;
  3363. struct ggml_object * objects_begin;
  3364. struct ggml_object * objects_end;
  3365. struct ggml_scratch scratch;
  3366. struct ggml_scratch scratch_save;
  3367. };
  3368. struct ggml_context_container {
  3369. bool used;
  3370. struct ggml_context context;
  3371. };
  3372. //
  3373. // NUMA support
  3374. //
  3375. #define GGML_NUMA_MAX_NODES 8
  3376. #define GGML_NUMA_MAX_CPUS 512
  3377. struct ggml_numa_node {
  3378. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3379. uint32_t n_cpus;
  3380. };
  3381. struct ggml_numa_nodes {
  3382. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3383. uint32_t n_nodes;
  3384. uint32_t total_cpus; // hardware threads on system
  3385. };
  3386. //
  3387. // ggml state
  3388. //
  3389. struct ggml_state {
  3390. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3391. struct ggml_numa_nodes numa;
  3392. };
  3393. // global state
  3394. static struct ggml_state g_state;
  3395. static atomic_int g_state_barrier = 0;
  3396. // barrier via spin lock
  3397. inline static void ggml_critical_section_start(void) {
  3398. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3399. while (processing > 0) {
  3400. // wait for other threads to finish
  3401. atomic_fetch_sub(&g_state_barrier, 1);
  3402. sched_yield(); // TODO: reconsider this
  3403. processing = atomic_fetch_add(&g_state_barrier, 1);
  3404. }
  3405. }
  3406. // TODO: make this somehow automatically executed
  3407. // some sort of "sentry" mechanism
  3408. inline static void ggml_critical_section_end(void) {
  3409. atomic_fetch_sub(&g_state_barrier, 1);
  3410. }
  3411. void ggml_numa_init(void) {
  3412. if (g_state.numa.n_nodes > 0) {
  3413. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3414. return;
  3415. }
  3416. #ifdef __linux__
  3417. struct stat st;
  3418. char path[256];
  3419. int rv;
  3420. // enumerate nodes
  3421. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3422. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3423. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3424. if (stat(path, &st) != 0) { break; }
  3425. ++g_state.numa.n_nodes;
  3426. }
  3427. // enumerate CPUs
  3428. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3429. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3430. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3431. if (stat(path, &st) != 0) { break; }
  3432. ++g_state.numa.total_cpus;
  3433. }
  3434. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3435. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3436. g_state.numa.n_nodes = 0;
  3437. return;
  3438. }
  3439. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3440. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3441. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3442. node->n_cpus = 0;
  3443. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3444. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3445. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3446. if (stat(path, &st) == 0) {
  3447. node->cpus[node->n_cpus++] = c;
  3448. GGML_PRINT_DEBUG(" %u", c);
  3449. }
  3450. }
  3451. GGML_PRINT_DEBUG("\n");
  3452. }
  3453. if (ggml_is_numa()) {
  3454. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3455. if (fptr != NULL) {
  3456. char buf[42];
  3457. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3458. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3459. }
  3460. fclose(fptr);
  3461. }
  3462. }
  3463. #else
  3464. // TODO
  3465. #endif
  3466. }
  3467. bool ggml_is_numa(void) {
  3468. return g_state.numa.n_nodes > 1;
  3469. }
  3470. ////////////////////////////////////////////////////////////////////////////////
  3471. void ggml_print_object(const struct ggml_object * obj) {
  3472. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3473. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3474. }
  3475. void ggml_print_objects(const struct ggml_context * ctx) {
  3476. struct ggml_object * obj = ctx->objects_begin;
  3477. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3478. while (obj != NULL) {
  3479. ggml_print_object(obj);
  3480. obj = obj->next;
  3481. }
  3482. GGML_PRINT("%s: --- end ---\n", __func__);
  3483. }
  3484. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3485. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3486. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3487. }
  3488. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3489. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3490. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3491. }
  3492. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3493. size_t nbytes;
  3494. size_t blck_size = ggml_blck_size(tensor->type);
  3495. if (blck_size == 1) {
  3496. nbytes = ggml_type_size(tensor->type);
  3497. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3498. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3499. }
  3500. }
  3501. else {
  3502. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3503. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3504. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3505. }
  3506. }
  3507. return nbytes;
  3508. }
  3509. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3510. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3511. }
  3512. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3513. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3514. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3515. }
  3516. int ggml_blck_size(enum ggml_type type) {
  3517. return type_traits[type].blck_size;
  3518. }
  3519. size_t ggml_type_size(enum ggml_type type) {
  3520. return type_traits[type].type_size;
  3521. }
  3522. float ggml_type_sizef(enum ggml_type type) {
  3523. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3524. }
  3525. const char * ggml_type_name(enum ggml_type type) {
  3526. return type_traits[type].type_name;
  3527. }
  3528. bool ggml_is_quantized(enum ggml_type type) {
  3529. return type_traits[type].is_quantized;
  3530. }
  3531. const char * ggml_op_name(enum ggml_op op) {
  3532. return GGML_OP_NAME[op];
  3533. }
  3534. const char * ggml_op_symbol(enum ggml_op op) {
  3535. return GGML_OP_SYMBOL[op];
  3536. }
  3537. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3538. return ggml_type_size(tensor->type);
  3539. }
  3540. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3541. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3542. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3543. }
  3544. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3545. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3546. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3547. }
  3548. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3549. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3550. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3551. }
  3552. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3553. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3554. return (t0->ne[0] == t1->ne[0]) &&
  3555. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3556. (t1->ne[3]%t0->ne[3] == 0);
  3557. }
  3558. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3559. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3560. return
  3561. (t0->ne[1] == t1->ne[1]) &&
  3562. (t0->ne[2] == t1->ne[2]) &&
  3563. (t0->ne[3] == t1->ne[3]);
  3564. }
  3565. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3566. enum ggml_type wtype = GGML_TYPE_COUNT;
  3567. switch (ftype) {
  3568. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3569. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3570. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3571. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3572. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3573. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3574. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3575. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3576. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3577. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3578. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3579. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3580. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3581. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3582. }
  3583. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3584. return wtype;
  3585. }
  3586. size_t ggml_tensor_overhead(void) {
  3587. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3588. }
  3589. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3590. return tensor->nb[0] > tensor->nb[1];
  3591. }
  3592. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3593. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3594. return
  3595. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3596. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3597. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3598. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3599. }
  3600. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3601. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3602. return
  3603. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3604. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3605. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3606. }
  3607. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3608. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3609. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3610. }
  3611. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3612. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3613. return
  3614. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3615. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3616. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3617. }
  3618. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3619. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3620. return
  3621. (t0->ne[0] == t1->ne[0] ) &&
  3622. (t0->ne[1] == t1->ne[1] ) &&
  3623. (t0->ne[2] == t1->ne[2] ) &&
  3624. (t0->ne[3] == t1->ne[3] );
  3625. }
  3626. // check if t1 can be represented as a repeatition of t0
  3627. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3628. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3629. return
  3630. (t1->ne[0]%t0->ne[0] == 0) &&
  3631. (t1->ne[1]%t0->ne[1] == 0) &&
  3632. (t1->ne[2]%t0->ne[2] == 0) &&
  3633. (t1->ne[3]%t0->ne[3] == 0);
  3634. }
  3635. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3636. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3637. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3638. }
  3639. static inline int ggml_up32(int n) {
  3640. return (n + 31) & ~31;
  3641. }
  3642. //static inline int ggml_up64(int n) {
  3643. // return (n + 63) & ~63;
  3644. //}
  3645. static inline int ggml_up(int n, int m) {
  3646. // assert m is a power of 2
  3647. GGML_ASSERT((m & (m - 1)) == 0);
  3648. return (n + m - 1) & ~(m - 1);
  3649. }
  3650. // assert that pointer is aligned to GGML_MEM_ALIGN
  3651. #define ggml_assert_aligned(ptr) \
  3652. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3653. ////////////////////////////////////////////////////////////////////////////////
  3654. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3655. // make this function thread safe
  3656. ggml_critical_section_start();
  3657. static bool is_first_call = true;
  3658. if (is_first_call) {
  3659. // initialize time system (required on Windows)
  3660. ggml_time_init();
  3661. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3662. {
  3663. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3664. ggml_fp16_t ii;
  3665. for (int i = 0; i < (1 << 16); ++i) {
  3666. uint16_t ui = i;
  3667. memcpy(&ii, &ui, sizeof(ii));
  3668. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3669. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3670. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3671. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3672. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3673. }
  3674. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3675. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3676. }
  3677. // initialize g_state
  3678. {
  3679. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3680. g_state = (struct ggml_state) {
  3681. /*.contexts =*/ { { 0 } },
  3682. /*.numa =*/ {
  3683. .n_nodes = 0,
  3684. .total_cpus = 0,
  3685. },
  3686. };
  3687. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3688. g_state.contexts[i].used = false;
  3689. }
  3690. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3691. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3692. }
  3693. #if defined(GGML_USE_CUBLAS)
  3694. ggml_init_cublas();
  3695. #elif defined(GGML_USE_CLBLAST)
  3696. ggml_cl_init();
  3697. #endif
  3698. ggml_setup_op_has_task_pass();
  3699. is_first_call = false;
  3700. }
  3701. // find non-used context in g_state
  3702. struct ggml_context * ctx = NULL;
  3703. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3704. if (!g_state.contexts[i].used) {
  3705. g_state.contexts[i].used = true;
  3706. ctx = &g_state.contexts[i].context;
  3707. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3708. break;
  3709. }
  3710. }
  3711. if (ctx == NULL) {
  3712. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3713. ggml_critical_section_end();
  3714. return NULL;
  3715. }
  3716. // allow to call ggml_init with 0 size
  3717. if (params.mem_size == 0) {
  3718. params.mem_size = GGML_MEM_ALIGN;
  3719. }
  3720. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3721. *ctx = (struct ggml_context) {
  3722. /*.mem_size =*/ mem_size,
  3723. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3724. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3725. /*.no_alloc =*/ params.no_alloc,
  3726. /*.no_alloc_save =*/ params.no_alloc,
  3727. /*.n_objects =*/ 0,
  3728. /*.objects_begin =*/ NULL,
  3729. /*.objects_end =*/ NULL,
  3730. /*.scratch =*/ { 0, 0, NULL, },
  3731. /*.scratch_save =*/ { 0, 0, NULL, },
  3732. };
  3733. GGML_ASSERT(ctx->mem_buffer != NULL);
  3734. ggml_assert_aligned(ctx->mem_buffer);
  3735. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3736. ggml_critical_section_end();
  3737. return ctx;
  3738. }
  3739. void ggml_free(struct ggml_context * ctx) {
  3740. // make this function thread safe
  3741. ggml_critical_section_start();
  3742. bool found = false;
  3743. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3744. if (&g_state.contexts[i].context == ctx) {
  3745. g_state.contexts[i].used = false;
  3746. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3747. __func__, i, ggml_used_mem(ctx));
  3748. if (ctx->mem_buffer_owned) {
  3749. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3750. }
  3751. found = true;
  3752. break;
  3753. }
  3754. }
  3755. if (!found) {
  3756. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3757. }
  3758. ggml_critical_section_end();
  3759. }
  3760. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3761. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3762. }
  3763. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3764. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3765. ctx->scratch = scratch;
  3766. return result;
  3767. }
  3768. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3769. return ctx->no_alloc;
  3770. }
  3771. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3772. ctx->no_alloc = no_alloc;
  3773. }
  3774. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3775. return ctx->mem_buffer;
  3776. }
  3777. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3778. return ctx->mem_size;
  3779. }
  3780. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3781. size_t max_size = 0;
  3782. struct ggml_object * obj = ctx->objects_begin;
  3783. while (obj != NULL) {
  3784. if (obj->type == GGML_OBJECT_TENSOR) {
  3785. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3786. const size_t size = ggml_nbytes(tensor);
  3787. if (max_size < size) {
  3788. max_size = size;
  3789. }
  3790. }
  3791. obj = obj->next;
  3792. }
  3793. return max_size;
  3794. }
  3795. // IMPORTANT:
  3796. // when creating "opt" tensors, always save and load the scratch buffer
  3797. // this is an error prone process, but it is necessary to support inplace
  3798. // operators when using scratch buffers
  3799. // TODO: implement a better way
  3800. static void ggml_scratch_save(struct ggml_context * ctx) {
  3801. // this is needed to allow opt tensors to store their data
  3802. // TODO: again, need to find a better way
  3803. ctx->no_alloc_save = ctx->no_alloc;
  3804. ctx->no_alloc = false;
  3805. ctx->scratch_save = ctx->scratch;
  3806. ctx->scratch.data = NULL;
  3807. }
  3808. static void ggml_scratch_load(struct ggml_context * ctx) {
  3809. ctx->no_alloc = ctx->no_alloc_save;
  3810. ctx->scratch = ctx->scratch_save;
  3811. }
  3812. ////////////////////////////////////////////////////////////////////////////////
  3813. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3814. // always insert objects at the end of the context's memory pool
  3815. struct ggml_object * obj_cur = ctx->objects_end;
  3816. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3817. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3818. const size_t cur_end = cur_offs + cur_size;
  3819. // align to GGML_MEM_ALIGN
  3820. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3821. char * const mem_buffer = ctx->mem_buffer;
  3822. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3823. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3824. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3825. __func__, cur_end + size_needed, ctx->mem_size);
  3826. assert(false);
  3827. return NULL;
  3828. }
  3829. *obj_new = (struct ggml_object) {
  3830. .offs = cur_end + GGML_OBJECT_SIZE,
  3831. .size = size_needed,
  3832. .next = NULL,
  3833. .type = type,
  3834. };
  3835. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3836. if (obj_cur != NULL) {
  3837. obj_cur->next = obj_new;
  3838. } else {
  3839. // this is the first object in this context
  3840. ctx->objects_begin = obj_new;
  3841. }
  3842. ctx->objects_end = obj_new;
  3843. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3844. return obj_new;
  3845. }
  3846. static struct ggml_tensor * ggml_new_tensor_impl(
  3847. struct ggml_context * ctx,
  3848. enum ggml_type type,
  3849. int n_dims,
  3850. const int64_t * ne,
  3851. struct ggml_tensor * view_src,
  3852. size_t view_offs) {
  3853. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3854. // find the base tensor and absolute offset
  3855. if (view_src != NULL && view_src->view_src != NULL) {
  3856. view_offs += view_src->view_offs;
  3857. view_src = view_src->view_src;
  3858. }
  3859. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3860. for (int i = 1; i < n_dims; i++) {
  3861. data_size *= ne[i];
  3862. }
  3863. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3864. void * data = view_src != NULL ? view_src->data : NULL;
  3865. if (data != NULL) {
  3866. data = (char *) data + view_offs;
  3867. }
  3868. size_t obj_alloc_size = 0;
  3869. if (view_src == NULL && !ctx->no_alloc) {
  3870. if (ctx->scratch.data != NULL) {
  3871. // allocate tensor data in the scratch buffer
  3872. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3873. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3874. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3875. assert(false);
  3876. return NULL;
  3877. }
  3878. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3879. ctx->scratch.offs += data_size;
  3880. } else {
  3881. // allocate tensor data in the context's memory pool
  3882. obj_alloc_size = data_size;
  3883. }
  3884. }
  3885. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3886. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3887. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3888. *result = (struct ggml_tensor) {
  3889. /*.type =*/ type,
  3890. /*.backend =*/ GGML_BACKEND_CPU,
  3891. /*.n_dims =*/ n_dims,
  3892. /*.ne =*/ { 1, 1, 1, 1 },
  3893. /*.nb =*/ { 0, 0, 0, 0 },
  3894. /*.op =*/ GGML_OP_NONE,
  3895. /*.op_params =*/ { 0 },
  3896. /*.is_param =*/ false,
  3897. /*.grad =*/ NULL,
  3898. /*.src =*/ { NULL },
  3899. /*.perf_runs =*/ 0,
  3900. /*.perf_cycles =*/ 0,
  3901. /*.perf_time_us =*/ 0,
  3902. /*.view_src =*/ view_src,
  3903. /*.view_offs =*/ view_offs,
  3904. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3905. /*.name =*/ { 0 },
  3906. /*.extra =*/ NULL,
  3907. /*.padding =*/ { 0 },
  3908. };
  3909. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3910. //ggml_assert_aligned(result->data);
  3911. for (int i = 0; i < n_dims; i++) {
  3912. result->ne[i] = ne[i];
  3913. }
  3914. result->nb[0] = ggml_type_size(type);
  3915. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3916. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3917. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3918. }
  3919. ctx->n_objects++;
  3920. return result;
  3921. }
  3922. struct ggml_tensor * ggml_new_tensor(
  3923. struct ggml_context * ctx,
  3924. enum ggml_type type,
  3925. int n_dims,
  3926. const int64_t * ne) {
  3927. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3928. }
  3929. struct ggml_tensor * ggml_new_tensor_1d(
  3930. struct ggml_context * ctx,
  3931. enum ggml_type type,
  3932. int64_t ne0) {
  3933. return ggml_new_tensor(ctx, type, 1, &ne0);
  3934. }
  3935. struct ggml_tensor * ggml_new_tensor_2d(
  3936. struct ggml_context * ctx,
  3937. enum ggml_type type,
  3938. int64_t ne0,
  3939. int64_t ne1) {
  3940. const int64_t ne[2] = { ne0, ne1 };
  3941. return ggml_new_tensor(ctx, type, 2, ne);
  3942. }
  3943. struct ggml_tensor * ggml_new_tensor_3d(
  3944. struct ggml_context * ctx,
  3945. enum ggml_type type,
  3946. int64_t ne0,
  3947. int64_t ne1,
  3948. int64_t ne2) {
  3949. const int64_t ne[3] = { ne0, ne1, ne2 };
  3950. return ggml_new_tensor(ctx, type, 3, ne);
  3951. }
  3952. struct ggml_tensor * ggml_new_tensor_4d(
  3953. struct ggml_context * ctx,
  3954. enum ggml_type type,
  3955. int64_t ne0,
  3956. int64_t ne1,
  3957. int64_t ne2,
  3958. int64_t ne3) {
  3959. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3960. return ggml_new_tensor(ctx, type, 4, ne);
  3961. }
  3962. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3963. ggml_scratch_save(ctx);
  3964. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3965. ggml_scratch_load(ctx);
  3966. ggml_set_i32(result, value);
  3967. return result;
  3968. }
  3969. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3970. ggml_scratch_save(ctx);
  3971. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3972. ggml_scratch_load(ctx);
  3973. ggml_set_f32(result, value);
  3974. return result;
  3975. }
  3976. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3977. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3978. }
  3979. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3980. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3981. assert(params_size <= GGML_MAX_OP_PARAMS);
  3982. memcpy(tensor->op_params, params, params_size);
  3983. }
  3984. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3985. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3986. return ((const int32_t *)(tensor->op_params))[i];
  3987. }
  3988. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3989. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3990. ((int32_t *)(tensor->op_params))[i] = value;
  3991. }
  3992. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3993. memset(tensor->data, 0, ggml_nbytes(tensor));
  3994. return tensor;
  3995. }
  3996. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3997. const int n = ggml_nrows(tensor);
  3998. const int nc = tensor->ne[0];
  3999. const size_t n1 = tensor->nb[1];
  4000. char * const data = tensor->data;
  4001. switch (tensor->type) {
  4002. case GGML_TYPE_I8:
  4003. {
  4004. assert(tensor->nb[0] == sizeof(int8_t));
  4005. for (int i = 0; i < n; i++) {
  4006. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4007. }
  4008. } break;
  4009. case GGML_TYPE_I16:
  4010. {
  4011. assert(tensor->nb[0] == sizeof(int16_t));
  4012. for (int i = 0; i < n; i++) {
  4013. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4014. }
  4015. } break;
  4016. case GGML_TYPE_I32:
  4017. {
  4018. assert(tensor->nb[0] == sizeof(int32_t));
  4019. for (int i = 0; i < n; i++) {
  4020. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4021. }
  4022. } break;
  4023. case GGML_TYPE_F16:
  4024. {
  4025. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4026. for (int i = 0; i < n; i++) {
  4027. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4028. }
  4029. } break;
  4030. case GGML_TYPE_F32:
  4031. {
  4032. assert(tensor->nb[0] == sizeof(float));
  4033. for (int i = 0; i < n; i++) {
  4034. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4035. }
  4036. } break;
  4037. default:
  4038. {
  4039. GGML_ASSERT(false);
  4040. } break;
  4041. }
  4042. return tensor;
  4043. }
  4044. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4045. const int n = ggml_nrows(tensor);
  4046. const int nc = tensor->ne[0];
  4047. const size_t n1 = tensor->nb[1];
  4048. char * const data = tensor->data;
  4049. switch (tensor->type) {
  4050. case GGML_TYPE_I8:
  4051. {
  4052. assert(tensor->nb[0] == sizeof(int8_t));
  4053. for (int i = 0; i < n; i++) {
  4054. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4055. }
  4056. } break;
  4057. case GGML_TYPE_I16:
  4058. {
  4059. assert(tensor->nb[0] == sizeof(int16_t));
  4060. for (int i = 0; i < n; i++) {
  4061. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4062. }
  4063. } break;
  4064. case GGML_TYPE_I32:
  4065. {
  4066. assert(tensor->nb[0] == sizeof(int32_t));
  4067. for (int i = 0; i < n; i++) {
  4068. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4069. }
  4070. } break;
  4071. case GGML_TYPE_F16:
  4072. {
  4073. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4074. for (int i = 0; i < n; i++) {
  4075. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4076. }
  4077. } break;
  4078. case GGML_TYPE_F32:
  4079. {
  4080. assert(tensor->nb[0] == sizeof(float));
  4081. for (int i = 0; i < n; i++) {
  4082. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4083. }
  4084. } break;
  4085. default:
  4086. {
  4087. GGML_ASSERT(false);
  4088. } break;
  4089. }
  4090. return tensor;
  4091. }
  4092. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4093. switch (tensor->type) {
  4094. case GGML_TYPE_I8:
  4095. {
  4096. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4097. return ((int8_t *)(tensor->data))[i];
  4098. } break;
  4099. case GGML_TYPE_I16:
  4100. {
  4101. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4102. return ((int16_t *)(tensor->data))[i];
  4103. } break;
  4104. case GGML_TYPE_I32:
  4105. {
  4106. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4107. return ((int32_t *)(tensor->data))[i];
  4108. } break;
  4109. case GGML_TYPE_F16:
  4110. {
  4111. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4112. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4113. } break;
  4114. case GGML_TYPE_F32:
  4115. {
  4116. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4117. return ((float *)(tensor->data))[i];
  4118. } break;
  4119. default:
  4120. {
  4121. GGML_ASSERT(false);
  4122. } break;
  4123. }
  4124. return 0.0f;
  4125. }
  4126. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4127. switch (tensor->type) {
  4128. case GGML_TYPE_I8:
  4129. {
  4130. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4131. ((int8_t *)(tensor->data))[i] = value;
  4132. } break;
  4133. case GGML_TYPE_I16:
  4134. {
  4135. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4136. ((int16_t *)(tensor->data))[i] = value;
  4137. } break;
  4138. case GGML_TYPE_I32:
  4139. {
  4140. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4141. ((int32_t *)(tensor->data))[i] = value;
  4142. } break;
  4143. case GGML_TYPE_F16:
  4144. {
  4145. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4146. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4147. } break;
  4148. case GGML_TYPE_F32:
  4149. {
  4150. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4151. ((float *)(tensor->data))[i] = value;
  4152. } break;
  4153. default:
  4154. {
  4155. GGML_ASSERT(false);
  4156. } break;
  4157. }
  4158. }
  4159. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4160. switch (tensor->type) {
  4161. case GGML_TYPE_I8:
  4162. {
  4163. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4164. return ((int8_t *)(tensor->data))[i];
  4165. } break;
  4166. case GGML_TYPE_I16:
  4167. {
  4168. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4169. return ((int16_t *)(tensor->data))[i];
  4170. } break;
  4171. case GGML_TYPE_I32:
  4172. {
  4173. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4174. return ((int32_t *)(tensor->data))[i];
  4175. } break;
  4176. case GGML_TYPE_F16:
  4177. {
  4178. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4179. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4180. } break;
  4181. case GGML_TYPE_F32:
  4182. {
  4183. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4184. return ((float *)(tensor->data))[i];
  4185. } break;
  4186. default:
  4187. {
  4188. GGML_ASSERT(false);
  4189. } break;
  4190. }
  4191. return 0.0f;
  4192. }
  4193. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4194. switch (tensor->type) {
  4195. case GGML_TYPE_I8:
  4196. {
  4197. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4198. ((int8_t *)(tensor->data))[i] = value;
  4199. } break;
  4200. case GGML_TYPE_I16:
  4201. {
  4202. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4203. ((int16_t *)(tensor->data))[i] = value;
  4204. } break;
  4205. case GGML_TYPE_I32:
  4206. {
  4207. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4208. ((int32_t *)(tensor->data))[i] = value;
  4209. } break;
  4210. case GGML_TYPE_F16:
  4211. {
  4212. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4213. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4214. } break;
  4215. case GGML_TYPE_F32:
  4216. {
  4217. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4218. ((float *)(tensor->data))[i] = value;
  4219. } break;
  4220. default:
  4221. {
  4222. GGML_ASSERT(false);
  4223. } break;
  4224. }
  4225. }
  4226. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4227. return tensor->data;
  4228. }
  4229. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4230. assert(tensor->type == GGML_TYPE_F32);
  4231. return (float *)(tensor->data);
  4232. }
  4233. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4234. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4235. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4236. }
  4237. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4238. return tensor->name;
  4239. }
  4240. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4241. strncpy(tensor->name, name, sizeof(tensor->name));
  4242. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4243. return tensor;
  4244. }
  4245. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4246. va_list args;
  4247. va_start(args, fmt);
  4248. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4249. va_end(args);
  4250. return tensor;
  4251. }
  4252. struct ggml_tensor * ggml_view_tensor(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * src) {
  4255. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4256. ggml_format_name(result, "%s (view)", src->name);
  4257. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4258. result->nb[i] = src->nb[i];
  4259. }
  4260. return result;
  4261. }
  4262. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4263. struct ggml_object * obj = ctx->objects_begin;
  4264. char * const mem_buffer = ctx->mem_buffer;
  4265. while (obj != NULL) {
  4266. if (obj->type == GGML_OBJECT_TENSOR) {
  4267. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4268. if (strcmp(cur->name, name) == 0) {
  4269. return cur;
  4270. }
  4271. }
  4272. obj = obj->next;
  4273. }
  4274. return NULL;
  4275. }
  4276. ////////////////////////////////////////////////////////////////////////////////
  4277. // ggml_dup
  4278. static struct ggml_tensor * ggml_dup_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. bool inplace) {
  4282. bool is_node = false;
  4283. if (!inplace && (a->grad)) {
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_DUP;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src[0] = a;
  4290. return result;
  4291. }
  4292. struct ggml_tensor * ggml_dup(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a) {
  4295. return ggml_dup_impl(ctx, a, false);
  4296. }
  4297. struct ggml_tensor * ggml_dup_inplace(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a) {
  4300. return ggml_dup_impl(ctx, a, true);
  4301. }
  4302. // ggml_add
  4303. static struct ggml_tensor * ggml_add_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. bool inplace) {
  4308. // TODO: support less-strict constraint
  4309. // GGML_ASSERT(ggml_can_repeat(b, a));
  4310. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4311. bool is_node = false;
  4312. if (!inplace && (a->grad || b->grad)) {
  4313. // TODO: support backward pass for broadcasting
  4314. GGML_ASSERT(ggml_are_same_shape(a, b));
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_ADD;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_add(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. return ggml_add_impl(ctx, a, b, false);
  4329. }
  4330. struct ggml_tensor * ggml_add_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_add_impl(ctx, a, b, true);
  4335. }
  4336. // ggml_add1
  4337. static struct ggml_tensor * ggml_add1_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. bool inplace) {
  4342. GGML_ASSERT(ggml_is_scalar(b));
  4343. GGML_ASSERT(ggml_is_padded_1d(a));
  4344. bool is_node = false;
  4345. if (a->grad || b->grad) {
  4346. is_node = true;
  4347. }
  4348. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4349. result->op = GGML_OP_ADD1;
  4350. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4351. result->src[0] = a;
  4352. result->src[1] = b;
  4353. return result;
  4354. }
  4355. struct ggml_tensor * ggml_add1(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. struct ggml_tensor * b) {
  4359. return ggml_add1_impl(ctx, a, b, false);
  4360. }
  4361. struct ggml_tensor * ggml_add1_inplace(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. struct ggml_tensor * b) {
  4365. return ggml_add1_impl(ctx, a, b, true);
  4366. }
  4367. // ggml_acc
  4368. static struct ggml_tensor * ggml_acc_impl(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a,
  4371. struct ggml_tensor * b,
  4372. size_t nb1,
  4373. size_t nb2,
  4374. size_t nb3,
  4375. size_t offset,
  4376. bool inplace) {
  4377. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4378. GGML_ASSERT(ggml_is_contiguous(a));
  4379. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4380. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4381. bool is_node = false;
  4382. if (!inplace && (a->grad || b->grad)) {
  4383. is_node = true;
  4384. }
  4385. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4386. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4387. ggml_set_op_params(result, params, sizeof(params));
  4388. result->op = GGML_OP_ACC;
  4389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4390. result->src[0] = a;
  4391. result->src[1] = b;
  4392. return result;
  4393. }
  4394. struct ggml_tensor * ggml_acc(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a,
  4397. struct ggml_tensor * b,
  4398. size_t nb1,
  4399. size_t nb2,
  4400. size_t nb3,
  4401. size_t offset) {
  4402. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4403. }
  4404. struct ggml_tensor * ggml_acc_inplace(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. struct ggml_tensor * b,
  4408. size_t nb1,
  4409. size_t nb2,
  4410. size_t nb3,
  4411. size_t offset) {
  4412. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4413. }
  4414. // ggml_sub
  4415. static struct ggml_tensor * ggml_sub_impl(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b,
  4419. bool inplace) {
  4420. GGML_ASSERT(ggml_are_same_shape(a, b));
  4421. bool is_node = false;
  4422. if (!inplace && (a->grad || b->grad)) {
  4423. is_node = true;
  4424. }
  4425. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4426. result->op = GGML_OP_SUB;
  4427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4428. result->src[0] = a;
  4429. result->src[1] = b;
  4430. return result;
  4431. }
  4432. struct ggml_tensor * ggml_sub(
  4433. struct ggml_context * ctx,
  4434. struct ggml_tensor * a,
  4435. struct ggml_tensor * b) {
  4436. return ggml_sub_impl(ctx, a, b, false);
  4437. }
  4438. struct ggml_tensor * ggml_sub_inplace(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. return ggml_sub_impl(ctx, a, b, true);
  4443. }
  4444. // ggml_mul
  4445. static struct ggml_tensor * ggml_mul_impl(
  4446. struct ggml_context * ctx,
  4447. struct ggml_tensor * a,
  4448. struct ggml_tensor * b,
  4449. bool inplace) {
  4450. // TODO: support less-strict constraint
  4451. // GGML_ASSERT(ggml_can_repeat(b, a));
  4452. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4453. bool is_node = false;
  4454. if (!inplace && (a->grad || b->grad)) {
  4455. // TODO: support backward pass for broadcasting
  4456. GGML_ASSERT(ggml_are_same_shape(a, b));
  4457. is_node = true;
  4458. }
  4459. if (inplace) {
  4460. GGML_ASSERT(!is_node);
  4461. }
  4462. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4463. result->op = GGML_OP_MUL;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src[0] = a;
  4466. result->src[1] = b;
  4467. return result;
  4468. }
  4469. struct ggml_tensor * ggml_mul(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. struct ggml_tensor * b) {
  4473. return ggml_mul_impl(ctx, a, b, false);
  4474. }
  4475. struct ggml_tensor * ggml_mul_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b) {
  4479. return ggml_mul_impl(ctx, a, b, true);
  4480. }
  4481. // ggml_div
  4482. static struct ggml_tensor * ggml_div_impl(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. struct ggml_tensor * b,
  4486. bool inplace) {
  4487. GGML_ASSERT(ggml_are_same_shape(a, b));
  4488. bool is_node = false;
  4489. if (!inplace && (a->grad || b->grad)) {
  4490. is_node = true;
  4491. }
  4492. if (inplace) {
  4493. GGML_ASSERT(!is_node);
  4494. }
  4495. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4496. result->op = GGML_OP_DIV;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src[0] = a;
  4499. result->src[1] = b;
  4500. return result;
  4501. }
  4502. struct ggml_tensor * ggml_div(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. struct ggml_tensor * b) {
  4506. return ggml_div_impl(ctx, a, b, false);
  4507. }
  4508. struct ggml_tensor * ggml_div_inplace(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. return ggml_div_impl(ctx, a, b, true);
  4513. }
  4514. // ggml_sqr
  4515. static struct ggml_tensor * ggml_sqr_impl(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. bool inplace) {
  4519. bool is_node = false;
  4520. if (!inplace && (a->grad)) {
  4521. is_node = true;
  4522. }
  4523. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4524. result->op = GGML_OP_SQR;
  4525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4526. result->src[0] = a;
  4527. return result;
  4528. }
  4529. struct ggml_tensor * ggml_sqr(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a) {
  4532. return ggml_sqr_impl(ctx, a, false);
  4533. }
  4534. struct ggml_tensor * ggml_sqr_inplace(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a) {
  4537. return ggml_sqr_impl(ctx, a, true);
  4538. }
  4539. // ggml_sqrt
  4540. static struct ggml_tensor * ggml_sqrt_impl(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. bool inplace) {
  4544. bool is_node = false;
  4545. if (!inplace && (a->grad)) {
  4546. is_node = true;
  4547. }
  4548. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4549. result->op = GGML_OP_SQRT;
  4550. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4551. result->src[0] = a;
  4552. return result;
  4553. }
  4554. struct ggml_tensor * ggml_sqrt(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a) {
  4557. return ggml_sqrt_impl(ctx, a, false);
  4558. }
  4559. struct ggml_tensor * ggml_sqrt_inplace(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a) {
  4562. return ggml_sqrt_impl(ctx, a, true);
  4563. }
  4564. // ggml_log
  4565. static struct ggml_tensor * ggml_log_impl(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. bool inplace) {
  4569. bool is_node = false;
  4570. if (!inplace && (a->grad)) {
  4571. is_node = true;
  4572. }
  4573. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4574. result->op = GGML_OP_LOG;
  4575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4576. result->src[0] = a;
  4577. return result;
  4578. }
  4579. struct ggml_tensor * ggml_log(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_log_impl(ctx, a, false);
  4583. }
  4584. struct ggml_tensor * ggml_log_inplace(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a) {
  4587. return ggml_log_impl(ctx, a, true);
  4588. }
  4589. // ggml_sum
  4590. struct ggml_tensor * ggml_sum(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a) {
  4593. bool is_node = false;
  4594. if (a->grad) {
  4595. is_node = true;
  4596. }
  4597. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4598. result->op = GGML_OP_SUM;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = a;
  4601. return result;
  4602. }
  4603. // ggml_sum_rows
  4604. struct ggml_tensor * ggml_sum_rows(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a) {
  4607. bool is_node = false;
  4608. if (a->grad) {
  4609. is_node = true;
  4610. }
  4611. int64_t ne[4] = {1,1,1,1};
  4612. for (int i=1; i<a->n_dims; ++i) {
  4613. ne[i] = a->ne[i];
  4614. }
  4615. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4616. result->op = GGML_OP_SUM_ROWS;
  4617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4618. result->src[0] = a;
  4619. return result;
  4620. }
  4621. // ggml_mean
  4622. struct ggml_tensor * ggml_mean(
  4623. struct ggml_context * ctx,
  4624. struct ggml_tensor * a) {
  4625. bool is_node = false;
  4626. if (a->grad) {
  4627. GGML_ASSERT(false); // TODO: implement
  4628. is_node = true;
  4629. }
  4630. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4631. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4632. result->op = GGML_OP_MEAN;
  4633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4634. result->src[0] = a;
  4635. return result;
  4636. }
  4637. // ggml_argmax
  4638. struct ggml_tensor * ggml_argmax(
  4639. struct ggml_context * ctx,
  4640. struct ggml_tensor * a) {
  4641. GGML_ASSERT(ggml_is_matrix(a));
  4642. bool is_node = false;
  4643. if (a->grad) {
  4644. GGML_ASSERT(false);
  4645. is_node = true;
  4646. }
  4647. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4648. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4649. result->op = GGML_OP_ARGMAX;
  4650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4651. result->src[0] = a;
  4652. return result;
  4653. }
  4654. // ggml_repeat
  4655. struct ggml_tensor * ggml_repeat(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. struct ggml_tensor * b) {
  4659. GGML_ASSERT(ggml_can_repeat(a, b));
  4660. bool is_node = false;
  4661. if (a->grad) {
  4662. is_node = true;
  4663. }
  4664. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4665. result->op = GGML_OP_REPEAT;
  4666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4667. result->src[0] = a;
  4668. result->src[1] = b;
  4669. return result;
  4670. }
  4671. // ggml_repeat_back
  4672. struct ggml_tensor * ggml_repeat_back(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. struct ggml_tensor * b) {
  4676. GGML_ASSERT(ggml_can_repeat(b, a));
  4677. bool is_node = false;
  4678. if (a->grad) {
  4679. is_node = true;
  4680. }
  4681. if (ggml_are_same_shape(a, b) && !is_node) {
  4682. return a;
  4683. }
  4684. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4685. result->op = GGML_OP_REPEAT_BACK;
  4686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4687. result->src[0] = a;
  4688. result->src[1] = b;
  4689. return result;
  4690. }
  4691. // ggml_concat
  4692. struct ggml_tensor * ggml_concat(
  4693. struct ggml_context* ctx,
  4694. struct ggml_tensor* a,
  4695. struct ggml_tensor* b) {
  4696. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4697. bool is_node = false;
  4698. if (a->grad || b->grad) {
  4699. is_node = true;
  4700. }
  4701. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4702. result->op = GGML_OP_CONCAT;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = a;
  4705. result->src[1] = b;
  4706. return result;
  4707. }
  4708. // ggml_abs
  4709. struct ggml_tensor * ggml_abs(
  4710. struct ggml_context * ctx,
  4711. struct ggml_tensor * a) {
  4712. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4713. }
  4714. struct ggml_tensor * ggml_abs_inplace(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a) {
  4717. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4718. }
  4719. // ggml_sgn
  4720. struct ggml_tensor * ggml_sgn(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a) {
  4723. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4724. }
  4725. struct ggml_tensor * ggml_sgn_inplace(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a) {
  4728. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4729. }
  4730. // ggml_neg
  4731. struct ggml_tensor * ggml_neg(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a) {
  4734. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4735. }
  4736. struct ggml_tensor * ggml_neg_inplace(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a) {
  4739. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4740. }
  4741. // ggml_step
  4742. struct ggml_tensor * ggml_step(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a) {
  4745. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4746. }
  4747. struct ggml_tensor * ggml_step_inplace(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a) {
  4750. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4751. }
  4752. // ggml_tanh
  4753. struct ggml_tensor * ggml_tanh(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a) {
  4756. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4757. }
  4758. struct ggml_tensor * ggml_tanh_inplace(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a) {
  4761. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4762. }
  4763. // ggml_elu
  4764. struct ggml_tensor * ggml_elu(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a) {
  4767. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4768. }
  4769. struct ggml_tensor * ggml_elu_inplace(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a) {
  4772. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4773. }
  4774. // ggml_relu
  4775. struct ggml_tensor * ggml_relu(
  4776. struct ggml_context * ctx,
  4777. struct ggml_tensor * a) {
  4778. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4779. }
  4780. struct ggml_tensor * ggml_relu_inplace(
  4781. struct ggml_context * ctx,
  4782. struct ggml_tensor * a) {
  4783. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4784. }
  4785. // ggml_gelu
  4786. struct ggml_tensor * ggml_gelu(
  4787. struct ggml_context * ctx,
  4788. struct ggml_tensor * a) {
  4789. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4790. }
  4791. struct ggml_tensor * ggml_gelu_inplace(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a) {
  4794. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4795. }
  4796. // ggml_gelu_quick
  4797. struct ggml_tensor * ggml_gelu_quick(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a) {
  4800. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4801. }
  4802. struct ggml_tensor * ggml_gelu_quick_inplace(
  4803. struct ggml_context * ctx,
  4804. struct ggml_tensor * a) {
  4805. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4806. }
  4807. // ggml_silu
  4808. struct ggml_tensor * ggml_silu(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a) {
  4811. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4812. }
  4813. struct ggml_tensor * ggml_silu_inplace(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a) {
  4816. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4817. }
  4818. // ggml_silu_back
  4819. struct ggml_tensor * ggml_silu_back(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. struct ggml_tensor * b) {
  4823. bool is_node = false;
  4824. if (a->grad || b->grad) {
  4825. // TODO: implement backward
  4826. is_node = true;
  4827. }
  4828. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4829. result->op = GGML_OP_SILU_BACK;
  4830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4831. result->src[0] = a;
  4832. result->src[1] = b;
  4833. return result;
  4834. }
  4835. // ggml_norm
  4836. static struct ggml_tensor * ggml_norm_impl(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a,
  4839. float eps,
  4840. bool inplace) {
  4841. bool is_node = false;
  4842. if (!inplace && (a->grad)) {
  4843. GGML_ASSERT(false); // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4847. ggml_set_op_params(result, &eps, sizeof(eps));
  4848. result->op = GGML_OP_NORM;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src[0] = a;
  4851. return result;
  4852. }
  4853. struct ggml_tensor * ggml_norm(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. float eps) {
  4857. return ggml_norm_impl(ctx, a, eps, false);
  4858. }
  4859. struct ggml_tensor * ggml_norm_inplace(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. float eps) {
  4863. return ggml_norm_impl(ctx, a, eps, true);
  4864. }
  4865. // ggml_rms_norm
  4866. static struct ggml_tensor * ggml_rms_norm_impl(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. float eps,
  4870. bool inplace) {
  4871. bool is_node = false;
  4872. if (!inplace && (a->grad)) {
  4873. is_node = true;
  4874. }
  4875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4876. ggml_set_op_params(result, &eps, sizeof(eps));
  4877. result->op = GGML_OP_RMS_NORM;
  4878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4879. result->src[0] = a;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_rms_norm(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. float eps) {
  4886. return ggml_rms_norm_impl(ctx, a, eps, false);
  4887. }
  4888. struct ggml_tensor * ggml_rms_norm_inplace(
  4889. struct ggml_context * ctx,
  4890. struct ggml_tensor * a,
  4891. float eps) {
  4892. return ggml_rms_norm_impl(ctx, a, eps, true);
  4893. }
  4894. // ggml_rms_norm_back
  4895. struct ggml_tensor * ggml_rms_norm_back(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. struct ggml_tensor * b,
  4899. float eps) {
  4900. bool is_node = false;
  4901. if (a->grad) {
  4902. // TODO: implement backward
  4903. is_node = true;
  4904. }
  4905. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4906. ggml_set_op_params(result, &eps, sizeof(eps));
  4907. result->op = GGML_OP_RMS_NORM_BACK;
  4908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4909. result->src[0] = a;
  4910. result->src[1] = b;
  4911. return result;
  4912. }
  4913. // ggml_group_norm
  4914. static struct ggml_tensor * ggml_group_norm_impl(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. int n_groups,
  4918. bool inplace) {
  4919. bool is_node = false;
  4920. if (!inplace && (a->grad)) {
  4921. GGML_ASSERT(false); // TODO: implement backward
  4922. is_node = true;
  4923. }
  4924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4925. result->op = GGML_OP_GROUP_NORM;
  4926. result->op_params[0] = n_groups;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4930. return result;
  4931. }
  4932. struct ggml_tensor * ggml_group_norm(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. int n_groups) {
  4936. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4937. }
  4938. struct ggml_tensor * ggml_group_norm_inplace(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. int n_groups) {
  4942. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4943. }
  4944. // ggml_mul_mat
  4945. struct ggml_tensor * ggml_mul_mat(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. struct ggml_tensor * b) {
  4949. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4950. GGML_ASSERT(!ggml_is_transposed(a));
  4951. bool is_node = false;
  4952. if (a->grad || b->grad) {
  4953. is_node = true;
  4954. }
  4955. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4956. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4957. result->op = GGML_OP_MUL_MAT;
  4958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4959. result->src[0] = a;
  4960. result->src[1] = b;
  4961. return result;
  4962. }
  4963. // ggml_out_prod
  4964. struct ggml_tensor * ggml_out_prod(
  4965. struct ggml_context * ctx,
  4966. struct ggml_tensor * a,
  4967. struct ggml_tensor * b) {
  4968. GGML_ASSERT(ggml_can_out_prod(a, b));
  4969. GGML_ASSERT(!ggml_is_transposed(a));
  4970. bool is_node = false;
  4971. if (a->grad || b->grad) {
  4972. is_node = true;
  4973. }
  4974. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4975. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4976. result->op = GGML_OP_OUT_PROD;
  4977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4978. result->src[0] = a;
  4979. result->src[1] = b;
  4980. return result;
  4981. }
  4982. // ggml_scale
  4983. static struct ggml_tensor * ggml_scale_impl(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. bool inplace) {
  4988. GGML_ASSERT(ggml_is_scalar(b));
  4989. GGML_ASSERT(ggml_is_padded_1d(a));
  4990. bool is_node = false;
  4991. if (a->grad || b->grad) {
  4992. is_node = true;
  4993. }
  4994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4995. result->op = GGML_OP_SCALE;
  4996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4997. result->src[0] = a;
  4998. result->src[1] = b;
  4999. return result;
  5000. }
  5001. struct ggml_tensor * ggml_scale(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b) {
  5005. return ggml_scale_impl(ctx, a, b, false);
  5006. }
  5007. struct ggml_tensor * ggml_scale_inplace(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b) {
  5011. return ggml_scale_impl(ctx, a, b, true);
  5012. }
  5013. // ggml_set
  5014. static struct ggml_tensor * ggml_set_impl(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * b,
  5018. size_t nb1,
  5019. size_t nb2,
  5020. size_t nb3,
  5021. size_t offset,
  5022. bool inplace) {
  5023. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5024. bool is_node = false;
  5025. if (a->grad || b->grad) {
  5026. is_node = true;
  5027. }
  5028. // make a view of the destination
  5029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5030. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5031. ggml_set_op_params(result, params, sizeof(params));
  5032. result->op = GGML_OP_SET;
  5033. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5034. result->src[0] = a;
  5035. result->src[1] = b;
  5036. return result;
  5037. }
  5038. struct ggml_tensor * ggml_set(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. struct ggml_tensor * b,
  5042. size_t nb1,
  5043. size_t nb2,
  5044. size_t nb3,
  5045. size_t offset) {
  5046. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5047. }
  5048. struct ggml_tensor * ggml_set_inplace(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b,
  5052. size_t nb1,
  5053. size_t nb2,
  5054. size_t nb3,
  5055. size_t offset) {
  5056. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5057. }
  5058. struct ggml_tensor * ggml_set_1d(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. size_t offset) {
  5063. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5064. }
  5065. struct ggml_tensor * ggml_set_1d_inplace(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. struct ggml_tensor * b,
  5069. size_t offset) {
  5070. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5071. }
  5072. struct ggml_tensor * ggml_set_2d(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a,
  5075. struct ggml_tensor * b,
  5076. size_t nb1,
  5077. size_t offset) {
  5078. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5079. }
  5080. struct ggml_tensor * ggml_set_2d_inplace(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. struct ggml_tensor * b,
  5084. size_t nb1,
  5085. size_t offset) {
  5086. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5087. }
  5088. // ggml_cpy
  5089. static struct ggml_tensor * ggml_cpy_impl(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. struct ggml_tensor * b,
  5093. bool inplace) {
  5094. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5095. bool is_node = false;
  5096. if (!inplace && (a->grad || b->grad)) {
  5097. is_node = true;
  5098. }
  5099. // make a view of the destination
  5100. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5101. if (strlen(b->name) > 0) {
  5102. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5103. } else {
  5104. ggml_format_name(result, "%s (copy)", a->name);
  5105. }
  5106. result->op = GGML_OP_CPY;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = b;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_cpy(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. struct ggml_tensor * b) {
  5116. return ggml_cpy_impl(ctx, a, b, false);
  5117. }
  5118. struct ggml_tensor * ggml_cpy_inplace(
  5119. struct ggml_context * ctx,
  5120. struct ggml_tensor * a,
  5121. struct ggml_tensor * b) {
  5122. return ggml_cpy_impl(ctx, a, b, true);
  5123. }
  5124. // ggml_cont
  5125. static struct ggml_tensor * ggml_cont_impl(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. bool inplace) {
  5129. bool is_node = false;
  5130. if (!inplace && a->grad) {
  5131. is_node = true;
  5132. }
  5133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5134. ggml_format_name(result, "%s (cont)", a->name);
  5135. result->op = GGML_OP_CONT;
  5136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5137. result->src[0] = a;
  5138. return result;
  5139. }
  5140. struct ggml_tensor * ggml_cont(
  5141. struct ggml_context * ctx,
  5142. struct ggml_tensor * a) {
  5143. return ggml_cont_impl(ctx, a, false);
  5144. }
  5145. struct ggml_tensor * ggml_cont_inplace(
  5146. struct ggml_context * ctx,
  5147. struct ggml_tensor * a) {
  5148. return ggml_cont_impl(ctx, a, true);
  5149. }
  5150. // ggml_reshape
  5151. struct ggml_tensor * ggml_reshape(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b) {
  5155. GGML_ASSERT(ggml_is_contiguous(a));
  5156. GGML_ASSERT(ggml_is_contiguous(b));
  5157. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5158. bool is_node = false;
  5159. if (a->grad) {
  5160. is_node = true;
  5161. }
  5162. if (b->grad) {
  5163. // gradient propagation is not supported
  5164. //GGML_ASSERT(false);
  5165. }
  5166. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5167. ggml_format_name(result, "%s (reshaped)", a->name);
  5168. result->op = GGML_OP_RESHAPE;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. return result;
  5172. }
  5173. struct ggml_tensor * ggml_reshape_1d(
  5174. struct ggml_context * ctx,
  5175. struct ggml_tensor * a,
  5176. int64_t ne0) {
  5177. GGML_ASSERT(ggml_is_contiguous(a));
  5178. GGML_ASSERT(ggml_nelements(a) == ne0);
  5179. bool is_node = false;
  5180. if (a->grad) {
  5181. is_node = true;
  5182. }
  5183. const int64_t ne[1] = { ne0 };
  5184. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5185. ggml_format_name(result, "%s (reshaped)", a->name);
  5186. result->op = GGML_OP_RESHAPE;
  5187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5188. result->src[0] = a;
  5189. return result;
  5190. }
  5191. struct ggml_tensor * ggml_reshape_2d(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * a,
  5194. int64_t ne0,
  5195. int64_t ne1) {
  5196. GGML_ASSERT(ggml_is_contiguous(a));
  5197. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5198. bool is_node = false;
  5199. if (a->grad) {
  5200. is_node = true;
  5201. }
  5202. const int64_t ne[2] = { ne0, ne1 };
  5203. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5204. ggml_format_name(result, "%s (reshaped)", a->name);
  5205. result->op = GGML_OP_RESHAPE;
  5206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5207. result->src[0] = a;
  5208. return result;
  5209. }
  5210. struct ggml_tensor * ggml_reshape_3d(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. int64_t ne0,
  5214. int64_t ne1,
  5215. int64_t ne2) {
  5216. GGML_ASSERT(ggml_is_contiguous(a));
  5217. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5218. bool is_node = false;
  5219. if (a->grad) {
  5220. is_node = true;
  5221. }
  5222. const int64_t ne[3] = { ne0, ne1, ne2 };
  5223. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5224. ggml_format_name(result, "%s (reshaped)", a->name);
  5225. result->op = GGML_OP_RESHAPE;
  5226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5227. result->src[0] = a;
  5228. return result;
  5229. }
  5230. struct ggml_tensor * ggml_reshape_4d(
  5231. struct ggml_context * ctx,
  5232. struct ggml_tensor * a,
  5233. int64_t ne0,
  5234. int64_t ne1,
  5235. int64_t ne2,
  5236. int64_t ne3) {
  5237. GGML_ASSERT(ggml_is_contiguous(a));
  5238. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5239. bool is_node = false;
  5240. if (a->grad) {
  5241. is_node = true;
  5242. }
  5243. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5244. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5245. ggml_format_name(result, "%s (reshaped)", a->name);
  5246. result->op = GGML_OP_RESHAPE;
  5247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5248. result->src[0] = a;
  5249. return result;
  5250. }
  5251. static struct ggml_tensor * ggml_view_impl(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a,
  5254. int n_dims,
  5255. const int64_t * ne,
  5256. size_t offset) {
  5257. bool is_node = false;
  5258. if (a->grad) {
  5259. is_node = true;
  5260. }
  5261. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5262. ggml_format_name(result, "%s (view)", a->name);
  5263. ggml_set_op_params(result, &offset, sizeof(offset));
  5264. result->op = GGML_OP_VIEW;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src[0] = a;
  5267. return result;
  5268. }
  5269. // ggml_view_1d
  5270. struct ggml_tensor * ggml_view_1d(
  5271. struct ggml_context * ctx,
  5272. struct ggml_tensor * a,
  5273. int64_t ne0,
  5274. size_t offset) {
  5275. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5276. return result;
  5277. }
  5278. // ggml_view_2d
  5279. struct ggml_tensor * ggml_view_2d(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. int64_t ne0,
  5283. int64_t ne1,
  5284. size_t nb1,
  5285. size_t offset) {
  5286. const int64_t ne[2] = { ne0, ne1 };
  5287. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5288. result->nb[1] = nb1;
  5289. result->nb[2] = result->nb[1]*ne1;
  5290. result->nb[3] = result->nb[2];
  5291. return result;
  5292. }
  5293. // ggml_view_3d
  5294. struct ggml_tensor * ggml_view_3d(
  5295. struct ggml_context * ctx,
  5296. struct ggml_tensor * a,
  5297. int64_t ne0,
  5298. int64_t ne1,
  5299. int64_t ne2,
  5300. size_t nb1,
  5301. size_t nb2,
  5302. size_t offset) {
  5303. const int64_t ne[3] = { ne0, ne1, ne2 };
  5304. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5305. result->nb[1] = nb1;
  5306. result->nb[2] = nb2;
  5307. result->nb[3] = result->nb[2]*ne2;
  5308. return result;
  5309. }
  5310. // ggml_view_4d
  5311. struct ggml_tensor * ggml_view_4d(
  5312. struct ggml_context * ctx,
  5313. struct ggml_tensor * a,
  5314. int64_t ne0,
  5315. int64_t ne1,
  5316. int64_t ne2,
  5317. int64_t ne3,
  5318. size_t nb1,
  5319. size_t nb2,
  5320. size_t nb3,
  5321. size_t offset) {
  5322. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5323. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5324. result->nb[1] = nb1;
  5325. result->nb[2] = nb2;
  5326. result->nb[3] = nb3;
  5327. return result;
  5328. }
  5329. // ggml_permute
  5330. struct ggml_tensor * ggml_permute(
  5331. struct ggml_context * ctx,
  5332. struct ggml_tensor * a,
  5333. int axis0,
  5334. int axis1,
  5335. int axis2,
  5336. int axis3) {
  5337. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5338. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5339. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5340. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5341. GGML_ASSERT(axis0 != axis1);
  5342. GGML_ASSERT(axis0 != axis2);
  5343. GGML_ASSERT(axis0 != axis3);
  5344. GGML_ASSERT(axis1 != axis2);
  5345. GGML_ASSERT(axis1 != axis3);
  5346. GGML_ASSERT(axis2 != axis3);
  5347. bool is_node = false;
  5348. if (a->grad) {
  5349. is_node = true;
  5350. }
  5351. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5352. ggml_format_name(result, "%s (permuted)", a->name);
  5353. int ne[GGML_MAX_DIMS];
  5354. int nb[GGML_MAX_DIMS];
  5355. ne[axis0] = a->ne[0];
  5356. ne[axis1] = a->ne[1];
  5357. ne[axis2] = a->ne[2];
  5358. ne[axis3] = a->ne[3];
  5359. nb[axis0] = a->nb[0];
  5360. nb[axis1] = a->nb[1];
  5361. nb[axis2] = a->nb[2];
  5362. nb[axis3] = a->nb[3];
  5363. result->ne[0] = ne[0];
  5364. result->ne[1] = ne[1];
  5365. result->ne[2] = ne[2];
  5366. result->ne[3] = ne[3];
  5367. result->nb[0] = nb[0];
  5368. result->nb[1] = nb[1];
  5369. result->nb[2] = nb[2];
  5370. result->nb[3] = nb[3];
  5371. result->op = GGML_OP_PERMUTE;
  5372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5373. result->src[0] = a;
  5374. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5375. ggml_set_op_params(result, params, sizeof(params));
  5376. return result;
  5377. }
  5378. // ggml_transpose
  5379. struct ggml_tensor * ggml_transpose(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a) {
  5382. bool is_node = false;
  5383. if (a->grad) {
  5384. is_node = true;
  5385. }
  5386. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5387. ggml_format_name(result, "%s (transposed)", a->name);
  5388. result->ne[0] = a->ne[1];
  5389. result->ne[1] = a->ne[0];
  5390. result->nb[0] = a->nb[1];
  5391. result->nb[1] = a->nb[0];
  5392. result->op = GGML_OP_TRANSPOSE;
  5393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5394. result->src[0] = a;
  5395. return result;
  5396. }
  5397. // ggml_get_rows
  5398. struct ggml_tensor * ggml_get_rows(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. struct ggml_tensor * b) {
  5402. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5403. bool is_node = false;
  5404. if (a->grad || b->grad) {
  5405. is_node = true;
  5406. }
  5407. // TODO: implement non F32 return
  5408. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5409. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5410. result->op = GGML_OP_GET_ROWS;
  5411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5412. result->src[0] = a;
  5413. result->src[1] = b;
  5414. return result;
  5415. }
  5416. // ggml_get_rows_back
  5417. struct ggml_tensor * ggml_get_rows_back(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. struct ggml_tensor * b,
  5421. struct ggml_tensor * c) {
  5422. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5423. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5424. bool is_node = false;
  5425. if (a->grad || b->grad) {
  5426. is_node = true;
  5427. }
  5428. // TODO: implement non F32 return
  5429. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5430. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5431. result->op = GGML_OP_GET_ROWS_BACK;
  5432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5433. result->src[0] = a;
  5434. result->src[1] = b;
  5435. result->src[2] = c;
  5436. return result;
  5437. }
  5438. // ggml_diag
  5439. struct ggml_tensor * ggml_diag(
  5440. struct ggml_context * ctx,
  5441. struct ggml_tensor * a) {
  5442. GGML_ASSERT(a->ne[1] == 1);
  5443. bool is_node = false;
  5444. if (a->grad) {
  5445. is_node = true;
  5446. }
  5447. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5448. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5449. result->op = GGML_OP_DIAG;
  5450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5451. result->src[0] = a;
  5452. return result;
  5453. }
  5454. // ggml_diag_mask_inf
  5455. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. int n_past,
  5459. bool inplace) {
  5460. bool is_node = false;
  5461. if (a->grad) {
  5462. is_node = true;
  5463. }
  5464. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5465. int32_t params[] = { n_past };
  5466. ggml_set_op_params(result, params, sizeof(params));
  5467. result->op = GGML_OP_DIAG_MASK_INF;
  5468. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5469. result->src[0] = a;
  5470. return result;
  5471. }
  5472. struct ggml_tensor * ggml_diag_mask_inf(
  5473. struct ggml_context * ctx,
  5474. struct ggml_tensor * a,
  5475. int n_past) {
  5476. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5477. }
  5478. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5479. struct ggml_context * ctx,
  5480. struct ggml_tensor * a,
  5481. int n_past) {
  5482. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5483. }
  5484. // ggml_diag_mask_zero
  5485. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5486. struct ggml_context * ctx,
  5487. struct ggml_tensor * a,
  5488. int n_past,
  5489. bool inplace) {
  5490. bool is_node = false;
  5491. if (a->grad) {
  5492. is_node = true;
  5493. }
  5494. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5495. int32_t params[] = { n_past };
  5496. ggml_set_op_params(result, params, sizeof(params));
  5497. result->op = GGML_OP_DIAG_MASK_ZERO;
  5498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5499. result->src[0] = a;
  5500. return result;
  5501. }
  5502. struct ggml_tensor * ggml_diag_mask_zero(
  5503. struct ggml_context * ctx,
  5504. struct ggml_tensor * a,
  5505. int n_past) {
  5506. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5507. }
  5508. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5509. struct ggml_context * ctx,
  5510. struct ggml_tensor * a,
  5511. int n_past) {
  5512. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5513. }
  5514. // ggml_soft_max
  5515. static struct ggml_tensor * ggml_soft_max_impl(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a,
  5518. bool inplace) {
  5519. bool is_node = false;
  5520. if (a->grad) {
  5521. is_node = true;
  5522. }
  5523. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5524. result->op = GGML_OP_SOFT_MAX;
  5525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5526. result->src[0] = a;
  5527. return result;
  5528. }
  5529. struct ggml_tensor * ggml_soft_max(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a) {
  5532. return ggml_soft_max_impl(ctx, a, false);
  5533. }
  5534. struct ggml_tensor * ggml_soft_max_inplace(
  5535. struct ggml_context * ctx,
  5536. struct ggml_tensor * a) {
  5537. return ggml_soft_max_impl(ctx, a, true);
  5538. }
  5539. // ggml_soft_max_back
  5540. static struct ggml_tensor * ggml_soft_max_back_impl(
  5541. struct ggml_context * ctx,
  5542. struct ggml_tensor * a,
  5543. struct ggml_tensor * b,
  5544. bool inplace) {
  5545. bool is_node = false;
  5546. if (a->grad || b->grad) {
  5547. is_node = true; // TODO : implement backward pass
  5548. }
  5549. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5550. result->op = GGML_OP_SOFT_MAX_BACK;
  5551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5552. result->src[0] = a;
  5553. result->src[1] = b;
  5554. return result;
  5555. }
  5556. struct ggml_tensor * ggml_soft_max_back(
  5557. struct ggml_context * ctx,
  5558. struct ggml_tensor * a,
  5559. struct ggml_tensor * b) {
  5560. return ggml_soft_max_back_impl(ctx, a, b, false);
  5561. }
  5562. struct ggml_tensor * ggml_soft_max_back_inplace(
  5563. struct ggml_context * ctx,
  5564. struct ggml_tensor * a,
  5565. struct ggml_tensor * b) {
  5566. return ggml_soft_max_back_impl(ctx, a, b, true);
  5567. }
  5568. // ggml_rope
  5569. static struct ggml_tensor * ggml_rope_impl(
  5570. struct ggml_context * ctx,
  5571. struct ggml_tensor * a,
  5572. int n_past,
  5573. int n_dims,
  5574. int mode,
  5575. int n_ctx,
  5576. float freq_base,
  5577. float freq_scale,
  5578. float xpos_base,
  5579. bool xpos_down,
  5580. bool inplace) {
  5581. GGML_ASSERT(n_past >= 0);
  5582. bool is_node = false;
  5583. if (a->grad) {
  5584. is_node = true;
  5585. }
  5586. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5587. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5588. memcpy(params + 4, &freq_base, sizeof(float));
  5589. memcpy(params + 5, &freq_scale, sizeof(float));
  5590. memcpy(params + 6, &xpos_base, sizeof(float));
  5591. memcpy(params + 7, &xpos_down, sizeof(bool));
  5592. ggml_set_op_params(result, params, sizeof(params));
  5593. result->op = GGML_OP_ROPE;
  5594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5595. result->src[0] = a;
  5596. return result;
  5597. }
  5598. struct ggml_tensor * ggml_rope(
  5599. struct ggml_context * ctx,
  5600. struct ggml_tensor * a,
  5601. int n_past,
  5602. int n_dims,
  5603. int mode,
  5604. int n_ctx) {
  5605. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5606. }
  5607. struct ggml_tensor * ggml_rope_inplace(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. int n_past,
  5611. int n_dims,
  5612. int mode,
  5613. int n_ctx) {
  5614. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5615. }
  5616. struct ggml_tensor * ggml_rope_custom(
  5617. struct ggml_context * ctx,
  5618. struct ggml_tensor * a,
  5619. int n_past,
  5620. int n_dims,
  5621. int mode,
  5622. int n_ctx,
  5623. float freq_base,
  5624. float freq_scale) {
  5625. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5626. }
  5627. struct ggml_tensor * ggml_rope_custom_inplace(
  5628. struct ggml_context * ctx,
  5629. struct ggml_tensor * a,
  5630. int n_past,
  5631. int n_dims,
  5632. int mode,
  5633. int n_ctx,
  5634. float freq_base,
  5635. float freq_scale) {
  5636. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5637. }
  5638. struct ggml_tensor * ggml_rope_xpos_inplace(
  5639. struct ggml_context * ctx,
  5640. struct ggml_tensor * a,
  5641. int n_past,
  5642. int n_dims,
  5643. float base,
  5644. bool down) {
  5645. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5646. }
  5647. // ggml_rope_back
  5648. struct ggml_tensor * ggml_rope_back(
  5649. struct ggml_context * ctx,
  5650. struct ggml_tensor * a,
  5651. int n_past,
  5652. int n_dims,
  5653. int mode,
  5654. int n_ctx,
  5655. float freq_base,
  5656. float freq_scale,
  5657. float xpos_base,
  5658. bool xpos_down) {
  5659. GGML_ASSERT(n_past >= 0);
  5660. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5661. bool is_node = false;
  5662. if (a->grad) {
  5663. is_node = false; // TODO: implement backward
  5664. }
  5665. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5666. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5667. memcpy(params + 4, &freq_base, sizeof(float));
  5668. memcpy(params + 5, &freq_scale, sizeof(float));
  5669. memcpy(params + 6, &xpos_base, sizeof(float));
  5670. memcpy(params + 7, &xpos_down, sizeof(bool));
  5671. ggml_set_op_params(result, params, sizeof(params));
  5672. result->op = GGML_OP_ROPE_BACK;
  5673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5674. result->src[0] = a;
  5675. return result;
  5676. }
  5677. // ggml_alibi
  5678. struct ggml_tensor * ggml_alibi(
  5679. struct ggml_context * ctx,
  5680. struct ggml_tensor * a,
  5681. int n_past,
  5682. int n_head,
  5683. float bias_max) {
  5684. GGML_ASSERT(n_past >= 0);
  5685. bool is_node = false;
  5686. if (a->grad) {
  5687. GGML_ASSERT(false); // TODO: implement backward
  5688. is_node = true;
  5689. }
  5690. // TODO: when implement backward, fix this:
  5691. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5692. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5693. int32_t op_params[3] = { n_past, n_head };
  5694. memcpy(op_params + 2, &bias_max, sizeof(float));
  5695. ggml_set_op_params(result, op_params, sizeof(op_params));
  5696. result->op = GGML_OP_ALIBI;
  5697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5698. result->src[0] = a;
  5699. return result;
  5700. }
  5701. // ggml_clamp
  5702. struct ggml_tensor * ggml_clamp(
  5703. struct ggml_context * ctx,
  5704. struct ggml_tensor * a,
  5705. float min,
  5706. float max) {
  5707. bool is_node = false;
  5708. if (a->grad) {
  5709. GGML_ASSERT(false); // TODO: implement backward
  5710. is_node = true;
  5711. }
  5712. // TODO: when implement backward, fix this:
  5713. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5714. float params[] = { min, max };
  5715. ggml_set_op_params(result, params, sizeof(params));
  5716. result->op = GGML_OP_CLAMP;
  5717. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5718. result->src[0] = a;
  5719. return result;
  5720. }
  5721. // ggml_conv_1d
  5722. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5723. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5724. }
  5725. GGML_API struct ggml_tensor * ggml_conv_1d(
  5726. struct ggml_context * ctx,
  5727. struct ggml_tensor * a,
  5728. struct ggml_tensor * b,
  5729. int s0,
  5730. int p0,
  5731. int d0) {
  5732. GGML_ASSERT(ggml_is_matrix(b));
  5733. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5734. bool is_node = false;
  5735. if (a->grad || b->grad) {
  5736. GGML_ASSERT(false); // TODO: implement backward
  5737. is_node = true;
  5738. }
  5739. const int64_t ne[4] = {
  5740. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5741. a->ne[2], 1, 1,
  5742. };
  5743. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5744. int32_t params[] = { s0, p0, d0 };
  5745. ggml_set_op_params(result, params, sizeof(params));
  5746. result->op = GGML_OP_CONV_1D;
  5747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5748. result->src[0] = a;
  5749. result->src[1] = b;
  5750. return result;
  5751. }
  5752. // ggml_conv_1d_ph
  5753. struct ggml_tensor* ggml_conv_1d_ph(
  5754. struct ggml_context * ctx,
  5755. struct ggml_tensor * a,
  5756. struct ggml_tensor * b,
  5757. int s,
  5758. int d) {
  5759. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5760. }
  5761. // ggml_conv_2d
  5762. struct ggml_tensor * ggml_conv_2d(
  5763. struct ggml_context * ctx,
  5764. struct ggml_tensor * a,
  5765. struct ggml_tensor * b,
  5766. int s0,
  5767. int s1,
  5768. int p0,
  5769. int p1,
  5770. int d0,
  5771. int d1) {
  5772. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5773. bool is_node = false;
  5774. if (a->grad || b->grad) {
  5775. GGML_ASSERT(false); // TODO: implement backward
  5776. is_node = true;
  5777. }
  5778. const int64_t ne[4] = {
  5779. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5780. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5781. a->ne[3], b->ne[3],
  5782. };
  5783. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5784. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5785. ggml_set_op_params(result, params, sizeof(params));
  5786. result->op = GGML_OP_CONV_2D;
  5787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5788. result->src[0] = a;
  5789. result->src[1] = b;
  5790. return result;
  5791. }
  5792. // ggml_conv_2d_sk_p0
  5793. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. struct ggml_tensor * b) {
  5797. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5798. }
  5799. // ggml_conv_2d_s1_ph
  5800. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b) {
  5804. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5805. }
  5806. // ggml_conv_transpose_2d_p0
  5807. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5808. return (ins - 1) * s - 2 * p + ks;
  5809. }
  5810. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5811. struct ggml_context * ctx,
  5812. struct ggml_tensor * a,
  5813. struct ggml_tensor * b,
  5814. int stride) {
  5815. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5816. bool is_node = false;
  5817. if (a->grad || b->grad) {
  5818. GGML_ASSERT(false); // TODO: implement backward
  5819. is_node = true;
  5820. }
  5821. const int64_t ne[4] = {
  5822. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5823. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5824. a->ne[2], b->ne[3],
  5825. };
  5826. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5827. ggml_set_op_params_i32(result, 0, stride);
  5828. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5830. result->src[0] = a;
  5831. result->src[1] = b;
  5832. return result;
  5833. }
  5834. // ggml_pool_*
  5835. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5836. return (ins + 2 * p - ks) / s + 1;
  5837. }
  5838. // ggml_pool_1d
  5839. struct ggml_tensor * ggml_pool_1d(
  5840. struct ggml_context * ctx,
  5841. struct ggml_tensor * a,
  5842. enum ggml_op_pool op,
  5843. int k0,
  5844. int s0,
  5845. int p0) {
  5846. bool is_node = false;
  5847. if (a->grad) {
  5848. GGML_ASSERT(false); // TODO: implement backward
  5849. is_node = true;
  5850. }
  5851. const int64_t ne[3] = {
  5852. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5853. a->ne[1],
  5854. };
  5855. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5856. int32_t params[] = { op, k0, s0, p0 };
  5857. ggml_set_op_params(result, params, sizeof(params));
  5858. result->op = GGML_OP_POOL_1D;
  5859. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5860. result->src[0] = a;
  5861. return result;
  5862. }
  5863. // ggml_pool_2d
  5864. struct ggml_tensor * ggml_pool_2d(
  5865. struct ggml_context * ctx,
  5866. struct ggml_tensor * a,
  5867. enum ggml_op_pool op,
  5868. int k0,
  5869. int k1,
  5870. int s0,
  5871. int s1,
  5872. int p0,
  5873. int p1) {
  5874. bool is_node = false;
  5875. if (a->grad) {
  5876. GGML_ASSERT(false); // TODO: implement backward
  5877. is_node = true;
  5878. }
  5879. const int64_t ne[3] = {
  5880. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5881. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5882. a->ne[2],
  5883. };
  5884. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5885. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5886. ggml_set_op_params(result, params, sizeof(params));
  5887. result->op = GGML_OP_POOL_2D;
  5888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5889. result->src[0] = a;
  5890. return result;
  5891. }
  5892. // ggml_upscale
  5893. static struct ggml_tensor * ggml_upscale_impl(
  5894. struct ggml_context * ctx,
  5895. struct ggml_tensor * a,
  5896. int scale_factor) {
  5897. bool is_node = false;
  5898. if (a->grad) {
  5899. GGML_ASSERT(false); // TODO: implement backward
  5900. is_node = true;
  5901. }
  5902. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5903. a->ne[0] * scale_factor,
  5904. a->ne[1] * scale_factor,
  5905. a->ne[2], a->ne[3]);
  5906. result->op = GGML_OP_UPSCALE;
  5907. result->op_params[0] = scale_factor;
  5908. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5909. result->src[0] = a;
  5910. result->src[1] = NULL;
  5911. return result;
  5912. }
  5913. struct ggml_tensor * ggml_upscale(
  5914. struct ggml_context * ctx,
  5915. struct ggml_tensor * a,
  5916. int scale_factor) {
  5917. return ggml_upscale_impl(ctx, a, scale_factor);
  5918. }
  5919. // ggml_flash_attn
  5920. struct ggml_tensor * ggml_flash_attn(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * q,
  5923. struct ggml_tensor * k,
  5924. struct ggml_tensor * v,
  5925. bool masked) {
  5926. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5927. // TODO: check if vT can be multiplied by (k*qT)
  5928. bool is_node = false;
  5929. if (q->grad || k->grad || v->grad) {
  5930. is_node = true;
  5931. }
  5932. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5933. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5934. int32_t t = masked ? 1 : 0;
  5935. ggml_set_op_params(result, &t, sizeof(t));
  5936. result->op = GGML_OP_FLASH_ATTN;
  5937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5938. result->src[0] = q;
  5939. result->src[1] = k;
  5940. result->src[2] = v;
  5941. return result;
  5942. }
  5943. // ggml_flash_ff
  5944. struct ggml_tensor * ggml_flash_ff(
  5945. struct ggml_context * ctx,
  5946. struct ggml_tensor * a,
  5947. struct ggml_tensor * b0,
  5948. struct ggml_tensor * b1,
  5949. struct ggml_tensor * c0,
  5950. struct ggml_tensor * c1) {
  5951. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5952. // TODO: more checks
  5953. bool is_node = false;
  5954. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5955. is_node = true;
  5956. }
  5957. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5958. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5959. result->op = GGML_OP_FLASH_FF;
  5960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5961. result->src[0] = a;
  5962. result->src[1] = b0;
  5963. result->src[2] = b1;
  5964. result->src[3] = c0;
  5965. result->src[4] = c1;
  5966. return result;
  5967. }
  5968. // ggml_flash_attn_back
  5969. struct ggml_tensor * ggml_flash_attn_back(
  5970. struct ggml_context * ctx,
  5971. struct ggml_tensor * q,
  5972. struct ggml_tensor * k,
  5973. struct ggml_tensor * v,
  5974. struct ggml_tensor * d,
  5975. bool masked) {
  5976. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5977. // TODO: check if vT can be multiplied by (k*qT)
  5978. // d shape [D,N,ne2,ne3]
  5979. // q shape [D,N,ne2,ne3]
  5980. // k shape [D,M,ne2,ne3]
  5981. // v shape [M,D,ne2,ne3]
  5982. const int64_t D = q->ne[0];
  5983. const int64_t N = q->ne[1];
  5984. const int64_t M = k->ne[1];
  5985. const int64_t ne2 = q->ne[2];
  5986. const int64_t ne3 = q->ne[3];
  5987. GGML_ASSERT(k->ne[0] == D);
  5988. GGML_ASSERT(v->ne[0] == M);
  5989. GGML_ASSERT(v->ne[1] == D);
  5990. GGML_ASSERT(d->ne[0] == D);
  5991. GGML_ASSERT(d->ne[1] == N);
  5992. GGML_ASSERT(k->ne[2] == ne2);
  5993. GGML_ASSERT(k->ne[3] == ne3);
  5994. GGML_ASSERT(v->ne[2] == ne2);
  5995. GGML_ASSERT(v->ne[3] == ne3);
  5996. GGML_ASSERT(d->ne[2] == ne2);
  5997. GGML_ASSERT(d->ne[3] == ne3);
  5998. bool is_node = false;
  5999. if (q->grad || k->grad || v->grad) {
  6000. // when using this operation (in backwards pass) these grads are set.
  6001. // we don't want to create (big) grad of our result, so is_node is false.
  6002. is_node = false;
  6003. }
  6004. // store gradients of q, k and v as continuous tensors concatenated in result.
  6005. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  6006. // gradq->data = result->data
  6007. // gradk->data = result->data + nb0*D*N*ne2*ne3
  6008. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  6009. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6010. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  6011. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6012. int32_t masked_i = masked ? 1 : 0;
  6013. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6014. result->op = GGML_OP_FLASH_ATTN_BACK;
  6015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6016. result->src[0] = q;
  6017. result->src[1] = k;
  6018. result->src[2] = v;
  6019. result->src[3] = d;
  6020. return result;
  6021. }
  6022. // ggml_win_part
  6023. struct ggml_tensor * ggml_win_part(
  6024. struct ggml_context * ctx,
  6025. struct ggml_tensor * a,
  6026. int w) {
  6027. GGML_ASSERT(a->ne[3] == 1);
  6028. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6029. bool is_node = false;
  6030. if (a->grad) {
  6031. GGML_ASSERT(false); // TODO: implement backward
  6032. is_node = true;
  6033. }
  6034. // padding
  6035. const int px = (w - a->ne[1]%w)%w;
  6036. const int py = (w - a->ne[2]%w)%w;
  6037. const int npx = (px + a->ne[1])/w;
  6038. const int npy = (py + a->ne[2])/w;
  6039. const int np = npx*npy;
  6040. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6041. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6042. int32_t params[] = { npx, npy, w };
  6043. ggml_set_op_params(result, params, sizeof(params));
  6044. result->op = GGML_OP_WIN_PART;
  6045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6046. result->src[0] = a;
  6047. return result;
  6048. }
  6049. // ggml_win_unpart
  6050. struct ggml_tensor * ggml_win_unpart(
  6051. struct ggml_context * ctx,
  6052. struct ggml_tensor * a,
  6053. int w0,
  6054. int h0,
  6055. int w) {
  6056. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6057. bool is_node = false;
  6058. if (a->grad) {
  6059. GGML_ASSERT(false); // TODO: implement backward
  6060. is_node = true;
  6061. }
  6062. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6063. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6064. int32_t params[] = { w };
  6065. ggml_set_op_params(result, params, sizeof(params));
  6066. result->op = GGML_OP_WIN_UNPART;
  6067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6068. result->src[0] = a;
  6069. return result;
  6070. }
  6071. // ggml_get_rel_pos
  6072. struct ggml_tensor * ggml_get_rel_pos(
  6073. struct ggml_context * ctx,
  6074. struct ggml_tensor * a,
  6075. int qh,
  6076. int kh) {
  6077. GGML_ASSERT(qh == kh);
  6078. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6079. bool is_node = false;
  6080. if (a->grad) {
  6081. GGML_ASSERT(false); // TODO: implement backward
  6082. is_node = true;
  6083. }
  6084. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6085. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6086. result->op = GGML_OP_GET_REL_POS;
  6087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6088. result->src[0] = a;
  6089. result->src[1] = NULL;
  6090. return result;
  6091. }
  6092. // ggml_add_rel_pos
  6093. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6094. struct ggml_context * ctx,
  6095. struct ggml_tensor * a,
  6096. struct ggml_tensor * pw,
  6097. struct ggml_tensor * ph,
  6098. bool inplace) {
  6099. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6100. GGML_ASSERT(ggml_is_contiguous(a));
  6101. GGML_ASSERT(ggml_is_contiguous(pw));
  6102. GGML_ASSERT(ggml_is_contiguous(ph));
  6103. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6104. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6105. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6106. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6107. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6108. bool is_node = false;
  6109. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6110. is_node = true;
  6111. }
  6112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6113. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6114. result->op = GGML_OP_ADD_REL_POS;
  6115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6116. result->src[0] = a;
  6117. result->src[1] = pw;
  6118. result->src[2] = ph;
  6119. return result;
  6120. }
  6121. struct ggml_tensor * ggml_add_rel_pos(
  6122. struct ggml_context * ctx,
  6123. struct ggml_tensor * a,
  6124. struct ggml_tensor * pw,
  6125. struct ggml_tensor * ph) {
  6126. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6127. }
  6128. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6129. struct ggml_context * ctx,
  6130. struct ggml_tensor * a,
  6131. struct ggml_tensor * pw,
  6132. struct ggml_tensor * ph) {
  6133. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6134. }
  6135. // gmml_unary
  6136. static struct ggml_tensor * ggml_unary_impl(
  6137. struct ggml_context * ctx,
  6138. struct ggml_tensor * a,
  6139. enum ggml_unary_op op,
  6140. bool inplace) {
  6141. bool is_node = false;
  6142. if (!inplace && (a->grad)) {
  6143. is_node = true;
  6144. }
  6145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6146. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6147. result->op = GGML_OP_UNARY;
  6148. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6149. result->src[0] = a;
  6150. return result;
  6151. }
  6152. struct ggml_tensor * ggml_unary(
  6153. struct ggml_context * ctx,
  6154. struct ggml_tensor * a,
  6155. enum ggml_unary_op op) {
  6156. return ggml_unary_impl(ctx, a, op, false);
  6157. }
  6158. struct ggml_tensor * ggml_unary_inplace(
  6159. struct ggml_context * ctx,
  6160. struct ggml_tensor * a,
  6161. enum ggml_unary_op op) {
  6162. return ggml_unary_impl(ctx, a, op, true);
  6163. }
  6164. // ggml_map_unary
  6165. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6166. struct ggml_context * ctx,
  6167. struct ggml_tensor * a,
  6168. const ggml_unary_op_f32_t fun,
  6169. bool inplace) {
  6170. bool is_node = false;
  6171. if (!inplace && a->grad) {
  6172. is_node = true;
  6173. }
  6174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6175. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6176. result->op = GGML_OP_MAP_UNARY;
  6177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6178. result->src[0] = a;
  6179. return result;
  6180. }
  6181. struct ggml_tensor * ggml_map_unary_f32(
  6182. struct ggml_context * ctx,
  6183. struct ggml_tensor * a,
  6184. const ggml_unary_op_f32_t fun) {
  6185. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6186. }
  6187. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6188. struct ggml_context * ctx,
  6189. struct ggml_tensor * a,
  6190. const ggml_unary_op_f32_t fun) {
  6191. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6192. }
  6193. // ggml_map_binary
  6194. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * a,
  6197. struct ggml_tensor * b,
  6198. const ggml_binary_op_f32_t fun,
  6199. bool inplace) {
  6200. GGML_ASSERT(ggml_are_same_shape(a, b));
  6201. bool is_node = false;
  6202. if (!inplace && (a->grad || b->grad)) {
  6203. is_node = true;
  6204. }
  6205. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6206. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6207. result->op = GGML_OP_MAP_BINARY;
  6208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6209. result->src[0] = a;
  6210. result->src[1] = b;
  6211. return result;
  6212. }
  6213. struct ggml_tensor * ggml_map_binary_f32(
  6214. struct ggml_context * ctx,
  6215. struct ggml_tensor * a,
  6216. struct ggml_tensor * b,
  6217. const ggml_binary_op_f32_t fun) {
  6218. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6219. }
  6220. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6221. struct ggml_context * ctx,
  6222. struct ggml_tensor * a,
  6223. struct ggml_tensor * b,
  6224. const ggml_binary_op_f32_t fun) {
  6225. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6226. }
  6227. // ggml_map_custom1_f32
  6228. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6229. struct ggml_context * ctx,
  6230. struct ggml_tensor * a,
  6231. const ggml_custom1_op_f32_t fun,
  6232. bool inplace) {
  6233. bool is_node = false;
  6234. if (!inplace && a->grad) {
  6235. is_node = true;
  6236. }
  6237. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6238. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6239. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6241. result->src[0] = a;
  6242. return result;
  6243. }
  6244. struct ggml_tensor * ggml_map_custom1_f32(
  6245. struct ggml_context * ctx,
  6246. struct ggml_tensor * a,
  6247. const ggml_custom1_op_f32_t fun) {
  6248. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6249. }
  6250. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6251. struct ggml_context * ctx,
  6252. struct ggml_tensor * a,
  6253. const ggml_custom1_op_f32_t fun) {
  6254. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6255. }
  6256. // ggml_map_custom2_f32
  6257. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6258. struct ggml_context * ctx,
  6259. struct ggml_tensor * a,
  6260. struct ggml_tensor * b,
  6261. const ggml_custom2_op_f32_t fun,
  6262. bool inplace) {
  6263. bool is_node = false;
  6264. if (!inplace && (a->grad || b->grad)) {
  6265. is_node = true;
  6266. }
  6267. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6268. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6269. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6271. result->src[0] = a;
  6272. result->src[1] = b;
  6273. return result;
  6274. }
  6275. struct ggml_tensor * ggml_map_custom2_f32(
  6276. struct ggml_context * ctx,
  6277. struct ggml_tensor * a,
  6278. struct ggml_tensor * b,
  6279. const ggml_custom2_op_f32_t fun) {
  6280. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6281. }
  6282. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6283. struct ggml_context * ctx,
  6284. struct ggml_tensor * a,
  6285. struct ggml_tensor * b,
  6286. const ggml_custom2_op_f32_t fun) {
  6287. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6288. }
  6289. // ggml_map_custom3_f32
  6290. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6291. struct ggml_context * ctx,
  6292. struct ggml_tensor * a,
  6293. struct ggml_tensor * b,
  6294. struct ggml_tensor * c,
  6295. const ggml_custom3_op_f32_t fun,
  6296. bool inplace) {
  6297. bool is_node = false;
  6298. if (!inplace && (a->grad || b->grad || c->grad)) {
  6299. is_node = true;
  6300. }
  6301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6302. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6303. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6305. result->src[0] = a;
  6306. result->src[1] = b;
  6307. result->src[2] = c;
  6308. return result;
  6309. }
  6310. struct ggml_tensor * ggml_map_custom3_f32(
  6311. struct ggml_context * ctx,
  6312. struct ggml_tensor * a,
  6313. struct ggml_tensor * b,
  6314. struct ggml_tensor * c,
  6315. const ggml_custom3_op_f32_t fun) {
  6316. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6317. }
  6318. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6319. struct ggml_context * ctx,
  6320. struct ggml_tensor * a,
  6321. struct ggml_tensor * b,
  6322. struct ggml_tensor * c,
  6323. const ggml_custom3_op_f32_t fun) {
  6324. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6325. }
  6326. // ggml_map_custom1
  6327. struct ggml_map_custom1_op_params {
  6328. ggml_custom1_op_t fun;
  6329. int n_tasks;
  6330. void * userdata;
  6331. };
  6332. static struct ggml_tensor * ggml_map_custom1_impl(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. const ggml_custom1_op_t fun,
  6336. int n_tasks,
  6337. void * userdata,
  6338. bool inplace) {
  6339. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6340. bool is_node = false;
  6341. if (!inplace && a->grad) {
  6342. is_node = true;
  6343. }
  6344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6345. struct ggml_map_custom1_op_params params = {
  6346. /*.fun =*/ fun,
  6347. /*.n_tasks =*/ n_tasks,
  6348. /*.userdata =*/ userdata
  6349. };
  6350. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6351. result->op = GGML_OP_MAP_CUSTOM1;
  6352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6353. result->src[0] = a;
  6354. return result;
  6355. }
  6356. struct ggml_tensor * ggml_map_custom1(
  6357. struct ggml_context * ctx,
  6358. struct ggml_tensor * a,
  6359. const ggml_custom1_op_t fun,
  6360. int n_tasks,
  6361. void * userdata) {
  6362. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6363. }
  6364. struct ggml_tensor * ggml_map_custom1_inplace(
  6365. struct ggml_context * ctx,
  6366. struct ggml_tensor * a,
  6367. const ggml_custom1_op_t fun,
  6368. int n_tasks,
  6369. void * userdata) {
  6370. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6371. }
  6372. // ggml_map_custom2
  6373. struct ggml_map_custom2_op_params {
  6374. ggml_custom2_op_t fun;
  6375. int n_tasks;
  6376. void * userdata;
  6377. };
  6378. static struct ggml_tensor * ggml_map_custom2_impl(
  6379. struct ggml_context * ctx,
  6380. struct ggml_tensor * a,
  6381. struct ggml_tensor * b,
  6382. const ggml_custom2_op_t fun,
  6383. int n_tasks,
  6384. void * userdata,
  6385. bool inplace) {
  6386. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6387. bool is_node = false;
  6388. if (!inplace && (a->grad || b->grad)) {
  6389. is_node = true;
  6390. }
  6391. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6392. struct ggml_map_custom2_op_params params = {
  6393. /*.fun =*/ fun,
  6394. /*.n_tasks =*/ n_tasks,
  6395. /*.userdata =*/ userdata
  6396. };
  6397. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6398. result->op = GGML_OP_MAP_CUSTOM2;
  6399. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6400. result->src[0] = a;
  6401. result->src[1] = b;
  6402. return result;
  6403. }
  6404. struct ggml_tensor * ggml_map_custom2(
  6405. struct ggml_context * ctx,
  6406. struct ggml_tensor * a,
  6407. struct ggml_tensor * b,
  6408. const ggml_custom2_op_t fun,
  6409. int n_tasks,
  6410. void * userdata) {
  6411. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6412. }
  6413. struct ggml_tensor * ggml_map_custom2_inplace(
  6414. struct ggml_context * ctx,
  6415. struct ggml_tensor * a,
  6416. struct ggml_tensor * b,
  6417. const ggml_custom2_op_t fun,
  6418. int n_tasks,
  6419. void * userdata) {
  6420. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6421. }
  6422. // ggml_map_custom3
  6423. struct ggml_map_custom3_op_params {
  6424. ggml_custom3_op_t fun;
  6425. int n_tasks;
  6426. void * userdata;
  6427. };
  6428. static struct ggml_tensor * ggml_map_custom3_impl(
  6429. struct ggml_context * ctx,
  6430. struct ggml_tensor * a,
  6431. struct ggml_tensor * b,
  6432. struct ggml_tensor * c,
  6433. const ggml_custom3_op_t fun,
  6434. int n_tasks,
  6435. void * userdata,
  6436. bool inplace) {
  6437. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6438. bool is_node = false;
  6439. if (!inplace && (a->grad || b->grad || c->grad)) {
  6440. is_node = true;
  6441. }
  6442. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6443. struct ggml_map_custom3_op_params params = {
  6444. /*.fun =*/ fun,
  6445. /*.n_tasks =*/ n_tasks,
  6446. /*.userdata =*/ userdata
  6447. };
  6448. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6449. result->op = GGML_OP_MAP_CUSTOM3;
  6450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6451. result->src[0] = a;
  6452. result->src[1] = b;
  6453. result->src[2] = c;
  6454. return result;
  6455. }
  6456. struct ggml_tensor * ggml_map_custom3(
  6457. struct ggml_context * ctx,
  6458. struct ggml_tensor * a,
  6459. struct ggml_tensor * b,
  6460. struct ggml_tensor * c,
  6461. const ggml_custom3_op_t fun,
  6462. int n_tasks,
  6463. void * userdata) {
  6464. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6465. }
  6466. struct ggml_tensor * ggml_map_custom3_inplace(
  6467. struct ggml_context * ctx,
  6468. struct ggml_tensor * a,
  6469. struct ggml_tensor * b,
  6470. struct ggml_tensor * c,
  6471. const ggml_custom3_op_t fun,
  6472. int n_tasks,
  6473. void * userdata) {
  6474. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6475. }
  6476. // ggml_cross_entropy_loss
  6477. struct ggml_tensor * ggml_cross_entropy_loss(
  6478. struct ggml_context * ctx,
  6479. struct ggml_tensor * a,
  6480. struct ggml_tensor * b) {
  6481. GGML_ASSERT(ggml_are_same_shape(a, b));
  6482. bool is_node = false;
  6483. if (a->grad || b->grad) {
  6484. is_node = true;
  6485. }
  6486. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6487. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6489. result->src[0] = a;
  6490. result->src[1] = b;
  6491. return result;
  6492. }
  6493. // ggml_cross_entropy_loss_back
  6494. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6495. struct ggml_context * ctx,
  6496. struct ggml_tensor * a,
  6497. struct ggml_tensor * b,
  6498. struct ggml_tensor * c) {
  6499. GGML_ASSERT(ggml_are_same_shape(a, b));
  6500. GGML_ASSERT(ggml_is_scalar(c));
  6501. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6502. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6503. result->grad = NULL;
  6504. result->src[0] = a;
  6505. result->src[1] = b;
  6506. result->src[2] = c;
  6507. return result;
  6508. }
  6509. ////////////////////////////////////////////////////////////////////////////////
  6510. void ggml_set_param(
  6511. struct ggml_context * ctx,
  6512. struct ggml_tensor * tensor) {
  6513. tensor->is_param = true;
  6514. GGML_ASSERT(tensor->grad == NULL);
  6515. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6516. }
  6517. // ggml_compute_forward_dup
  6518. static void ggml_compute_forward_dup_same_cont(
  6519. const struct ggml_compute_params * params,
  6520. const struct ggml_tensor * src0,
  6521. struct ggml_tensor * dst) {
  6522. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6523. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6524. GGML_ASSERT(src0->type == dst->type);
  6525. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6526. return;
  6527. }
  6528. const size_t nb00 = src0->nb[0];
  6529. const size_t nb0 = dst->nb[0];
  6530. const int ith = params->ith; // thread index
  6531. const int nth = params->nth; // number of threads
  6532. // parallelize by elements
  6533. const int ne = ggml_nelements(dst);
  6534. const int dr = (ne + nth - 1) / nth;
  6535. const int ie0 = dr * ith;
  6536. const int ie1 = MIN(ie0 + dr, ne);
  6537. if (ie0 < ie1) {
  6538. memcpy(
  6539. ((char *) dst->data + ie0*nb0),
  6540. ((char *) src0->data + ie0*nb00),
  6541. (ie1 - ie0) * ggml_type_size(src0->type));
  6542. }
  6543. }
  6544. static void ggml_compute_forward_dup_f16(
  6545. const struct ggml_compute_params * params,
  6546. const struct ggml_tensor * src0,
  6547. struct ggml_tensor * dst) {
  6548. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6550. return;
  6551. }
  6552. GGML_TENSOR_UNARY_OP_LOCALS;
  6553. const int ith = params->ith; // thread index
  6554. const int nth = params->nth; // number of threads
  6555. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6556. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6557. return;
  6558. }
  6559. // parallelize by rows
  6560. const int nr = ne01;
  6561. // number of rows per thread
  6562. const int dr = (nr + nth - 1) / nth;
  6563. // row range for this thread
  6564. const int ir0 = dr * ith;
  6565. const int ir1 = MIN(ir0 + dr, nr);
  6566. if (src0->type == dst->type &&
  6567. ne00 == ne0 &&
  6568. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6569. // copy by rows
  6570. const size_t rs = ne00*nb00;
  6571. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6572. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6573. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6574. memcpy(
  6575. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6576. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6577. rs);
  6578. }
  6579. }
  6580. }
  6581. return;
  6582. }
  6583. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6584. if (ggml_is_contiguous(dst)) {
  6585. if (nb00 == sizeof(ggml_fp16_t)) {
  6586. if (dst->type == GGML_TYPE_F16) {
  6587. size_t id = 0;
  6588. const size_t rs = ne00 * nb00;
  6589. char * dst_ptr = (char *) dst->data;
  6590. for (int i03 = 0; i03 < ne03; i03++) {
  6591. for (int i02 = 0; i02 < ne02; i02++) {
  6592. id += rs * ir0;
  6593. for (int i01 = ir0; i01 < ir1; i01++) {
  6594. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6595. memcpy(dst_ptr + id, src0_ptr, rs);
  6596. id += rs;
  6597. }
  6598. id += rs * (ne01 - ir1);
  6599. }
  6600. }
  6601. } else if (dst->type == GGML_TYPE_F32) {
  6602. size_t id = 0;
  6603. float * dst_ptr = (float *) dst->data;
  6604. for (int i03 = 0; i03 < ne03; i03++) {
  6605. for (int i02 = 0; i02 < ne02; i02++) {
  6606. id += ne00 * ir0;
  6607. for (int i01 = ir0; i01 < ir1; i01++) {
  6608. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6609. for (int i00 = 0; i00 < ne00; i00++) {
  6610. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6611. id++;
  6612. }
  6613. }
  6614. id += ne00 * (ne01 - ir1);
  6615. }
  6616. }
  6617. } else if (type_traits[dst->type].from_float) {
  6618. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6619. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6620. size_t id = 0;
  6621. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6622. char * dst_ptr = (char *) dst->data;
  6623. for (int i03 = 0; i03 < ne03; i03++) {
  6624. for (int i02 = 0; i02 < ne02; i02++) {
  6625. id += rs * ir0;
  6626. for (int i01 = ir0; i01 < ir1; i01++) {
  6627. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6628. for (int i00 = 0; i00 < ne00; i00++) {
  6629. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6630. }
  6631. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6632. id += rs;
  6633. }
  6634. id += rs * (ne01 - ir1);
  6635. }
  6636. }
  6637. } else {
  6638. GGML_ASSERT(false); // TODO: implement
  6639. }
  6640. } else {
  6641. //printf("%s: this is not optimal - fix me\n", __func__);
  6642. if (dst->type == GGML_TYPE_F32) {
  6643. size_t id = 0;
  6644. float * dst_ptr = (float *) dst->data;
  6645. for (int i03 = 0; i03 < ne03; i03++) {
  6646. for (int i02 = 0; i02 < ne02; i02++) {
  6647. id += ne00 * ir0;
  6648. for (int i01 = ir0; i01 < ir1; i01++) {
  6649. for (int i00 = 0; i00 < ne00; i00++) {
  6650. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6651. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6652. id++;
  6653. }
  6654. }
  6655. id += ne00 * (ne01 - ir1);
  6656. }
  6657. }
  6658. } else if (dst->type == GGML_TYPE_F16) {
  6659. size_t id = 0;
  6660. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6661. for (int i03 = 0; i03 < ne03; i03++) {
  6662. for (int i02 = 0; i02 < ne02; i02++) {
  6663. id += ne00 * ir0;
  6664. for (int i01 = ir0; i01 < ir1; i01++) {
  6665. for (int i00 = 0; i00 < ne00; i00++) {
  6666. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6667. dst_ptr[id] = *src0_ptr;
  6668. id++;
  6669. }
  6670. }
  6671. id += ne00 * (ne01 - ir1);
  6672. }
  6673. }
  6674. } else {
  6675. GGML_ASSERT(false); // TODO: implement
  6676. }
  6677. }
  6678. return;
  6679. }
  6680. // dst counters
  6681. int64_t i10 = 0;
  6682. int64_t i11 = 0;
  6683. int64_t i12 = 0;
  6684. int64_t i13 = 0;
  6685. if (dst->type == GGML_TYPE_F16) {
  6686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6688. i10 += ne00 * ir0;
  6689. while (i10 >= ne0) {
  6690. i10 -= ne0;
  6691. if (++i11 == ne1) {
  6692. i11 = 0;
  6693. if (++i12 == ne2) {
  6694. i12 = 0;
  6695. if (++i13 == ne3) {
  6696. i13 = 0;
  6697. }
  6698. }
  6699. }
  6700. }
  6701. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6702. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6703. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6704. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6705. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6706. if (++i10 == ne00) {
  6707. i10 = 0;
  6708. if (++i11 == ne01) {
  6709. i11 = 0;
  6710. if (++i12 == ne02) {
  6711. i12 = 0;
  6712. if (++i13 == ne03) {
  6713. i13 = 0;
  6714. }
  6715. }
  6716. }
  6717. }
  6718. }
  6719. }
  6720. i10 += ne00 * (ne01 - ir1);
  6721. while (i10 >= ne0) {
  6722. i10 -= ne0;
  6723. if (++i11 == ne1) {
  6724. i11 = 0;
  6725. if (++i12 == ne2) {
  6726. i12 = 0;
  6727. if (++i13 == ne3) {
  6728. i13 = 0;
  6729. }
  6730. }
  6731. }
  6732. }
  6733. }
  6734. }
  6735. } else if (dst->type == GGML_TYPE_F32) {
  6736. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6737. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6738. i10 += ne00 * ir0;
  6739. while (i10 >= ne0) {
  6740. i10 -= ne0;
  6741. if (++i11 == ne1) {
  6742. i11 = 0;
  6743. if (++i12 == ne2) {
  6744. i12 = 0;
  6745. if (++i13 == ne3) {
  6746. i13 = 0;
  6747. }
  6748. }
  6749. }
  6750. }
  6751. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6752. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6753. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6754. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6755. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6756. if (++i10 == ne0) {
  6757. i10 = 0;
  6758. if (++i11 == ne1) {
  6759. i11 = 0;
  6760. if (++i12 == ne2) {
  6761. i12 = 0;
  6762. if (++i13 == ne3) {
  6763. i13 = 0;
  6764. }
  6765. }
  6766. }
  6767. }
  6768. }
  6769. }
  6770. i10 += ne00 * (ne01 - ir1);
  6771. while (i10 >= ne0) {
  6772. i10 -= ne0;
  6773. if (++i11 == ne1) {
  6774. i11 = 0;
  6775. if (++i12 == ne2) {
  6776. i12 = 0;
  6777. if (++i13 == ne3) {
  6778. i13 = 0;
  6779. }
  6780. }
  6781. }
  6782. }
  6783. }
  6784. }
  6785. } else {
  6786. GGML_ASSERT(false); // TODO: implement
  6787. }
  6788. }
  6789. static void ggml_compute_forward_dup_f32(
  6790. const struct ggml_compute_params * params,
  6791. const struct ggml_tensor * src0,
  6792. struct ggml_tensor * dst) {
  6793. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6795. return;
  6796. }
  6797. GGML_TENSOR_UNARY_OP_LOCALS;
  6798. const int ith = params->ith; // thread index
  6799. const int nth = params->nth; // number of threads
  6800. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6801. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6802. return;
  6803. }
  6804. // parallelize by rows
  6805. const int nr = ne01;
  6806. // number of rows per thread
  6807. const int dr = (nr + nth - 1) / nth;
  6808. // row range for this thread
  6809. const int ir0 = dr * ith;
  6810. const int ir1 = MIN(ir0 + dr, nr);
  6811. if (src0->type == dst->type &&
  6812. ne00 == ne0 &&
  6813. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6814. // copy by rows
  6815. const size_t rs = ne00*nb00;
  6816. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6817. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6818. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6819. memcpy(
  6820. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6821. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6822. rs);
  6823. }
  6824. }
  6825. }
  6826. return;
  6827. }
  6828. if (ggml_is_contiguous(dst)) {
  6829. // TODO: simplify
  6830. if (nb00 == sizeof(float)) {
  6831. if (dst->type == GGML_TYPE_F32) {
  6832. size_t id = 0;
  6833. const size_t rs = ne00 * nb00;
  6834. char * dst_ptr = (char *) dst->data;
  6835. for (int i03 = 0; i03 < ne03; i03++) {
  6836. for (int i02 = 0; i02 < ne02; i02++) {
  6837. id += rs * ir0;
  6838. for (int i01 = ir0; i01 < ir1; i01++) {
  6839. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6840. memcpy(dst_ptr + id, src0_ptr, rs);
  6841. id += rs;
  6842. }
  6843. id += rs * (ne01 - ir1);
  6844. }
  6845. }
  6846. } else if (type_traits[dst->type].from_float) {
  6847. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6848. size_t id = 0;
  6849. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6850. char * dst_ptr = (char *) dst->data;
  6851. for (int i03 = 0; i03 < ne03; i03++) {
  6852. for (int i02 = 0; i02 < ne02; i02++) {
  6853. id += rs * ir0;
  6854. for (int i01 = ir0; i01 < ir1; i01++) {
  6855. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6856. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6857. id += rs;
  6858. }
  6859. id += rs * (ne01 - ir1);
  6860. }
  6861. }
  6862. } else {
  6863. GGML_ASSERT(false); // TODO: implement
  6864. }
  6865. } else {
  6866. //printf("%s: this is not optimal - fix me\n", __func__);
  6867. if (dst->type == GGML_TYPE_F32) {
  6868. size_t id = 0;
  6869. float * dst_ptr = (float *) dst->data;
  6870. for (int i03 = 0; i03 < ne03; i03++) {
  6871. for (int i02 = 0; i02 < ne02; i02++) {
  6872. id += ne00 * ir0;
  6873. for (int i01 = ir0; i01 < ir1; i01++) {
  6874. for (int i00 = 0; i00 < ne00; i00++) {
  6875. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6876. dst_ptr[id] = *src0_ptr;
  6877. id++;
  6878. }
  6879. }
  6880. id += ne00 * (ne01 - ir1);
  6881. }
  6882. }
  6883. } else if (dst->type == GGML_TYPE_F16) {
  6884. size_t id = 0;
  6885. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6886. for (int i03 = 0; i03 < ne03; i03++) {
  6887. for (int i02 = 0; i02 < ne02; i02++) {
  6888. id += ne00 * ir0;
  6889. for (int i01 = ir0; i01 < ir1; i01++) {
  6890. for (int i00 = 0; i00 < ne00; i00++) {
  6891. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6892. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6893. id++;
  6894. }
  6895. }
  6896. id += ne00 * (ne01 - ir1);
  6897. }
  6898. }
  6899. } else {
  6900. GGML_ASSERT(false); // TODO: implement
  6901. }
  6902. }
  6903. return;
  6904. }
  6905. // dst counters
  6906. int64_t i10 = 0;
  6907. int64_t i11 = 0;
  6908. int64_t i12 = 0;
  6909. int64_t i13 = 0;
  6910. if (dst->type == GGML_TYPE_F32) {
  6911. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6912. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6913. i10 += ne00 * ir0;
  6914. while (i10 >= ne0) {
  6915. i10 -= ne0;
  6916. if (++i11 == ne1) {
  6917. i11 = 0;
  6918. if (++i12 == ne2) {
  6919. i12 = 0;
  6920. if (++i13 == ne3) {
  6921. i13 = 0;
  6922. }
  6923. }
  6924. }
  6925. }
  6926. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6927. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6928. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6929. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6930. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6931. if (++i10 == ne0) {
  6932. i10 = 0;
  6933. if (++i11 == ne1) {
  6934. i11 = 0;
  6935. if (++i12 == ne2) {
  6936. i12 = 0;
  6937. if (++i13 == ne3) {
  6938. i13 = 0;
  6939. }
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945. i10 += ne00 * (ne01 - ir1);
  6946. while (i10 >= ne0) {
  6947. i10 -= ne0;
  6948. if (++i11 == ne1) {
  6949. i11 = 0;
  6950. if (++i12 == ne2) {
  6951. i12 = 0;
  6952. if (++i13 == ne3) {
  6953. i13 = 0;
  6954. }
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. } else if (dst->type == GGML_TYPE_F16) {
  6961. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6962. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6963. i10 += ne00 * ir0;
  6964. while (i10 >= ne0) {
  6965. i10 -= ne0;
  6966. if (++i11 == ne1) {
  6967. i11 = 0;
  6968. if (++i12 == ne2) {
  6969. i12 = 0;
  6970. if (++i13 == ne3) {
  6971. i13 = 0;
  6972. }
  6973. }
  6974. }
  6975. }
  6976. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6978. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6979. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6980. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6981. if (++i10 == ne0) {
  6982. i10 = 0;
  6983. if (++i11 == ne1) {
  6984. i11 = 0;
  6985. if (++i12 == ne2) {
  6986. i12 = 0;
  6987. if (++i13 == ne3) {
  6988. i13 = 0;
  6989. }
  6990. }
  6991. }
  6992. }
  6993. }
  6994. }
  6995. i10 += ne00 * (ne01 - ir1);
  6996. while (i10 >= ne0) {
  6997. i10 -= ne0;
  6998. if (++i11 == ne1) {
  6999. i11 = 0;
  7000. if (++i12 == ne2) {
  7001. i12 = 0;
  7002. if (++i13 == ne3) {
  7003. i13 = 0;
  7004. }
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. } else {
  7011. GGML_ASSERT(false); // TODO: implement
  7012. }
  7013. }
  7014. static void ggml_compute_forward_dup(
  7015. const struct ggml_compute_params * params,
  7016. const struct ggml_tensor * src0,
  7017. struct ggml_tensor * dst) {
  7018. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7019. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7020. return;
  7021. }
  7022. switch (src0->type) {
  7023. case GGML_TYPE_F16:
  7024. {
  7025. ggml_compute_forward_dup_f16(params, src0, dst);
  7026. } break;
  7027. case GGML_TYPE_F32:
  7028. {
  7029. ggml_compute_forward_dup_f32(params, src0, dst);
  7030. } break;
  7031. default:
  7032. {
  7033. GGML_ASSERT(false);
  7034. } break;
  7035. }
  7036. }
  7037. // ggml_compute_forward_add
  7038. static void ggml_compute_forward_add_f32(
  7039. const struct ggml_compute_params * params,
  7040. const struct ggml_tensor * src0,
  7041. const struct ggml_tensor * src1,
  7042. struct ggml_tensor * dst) {
  7043. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7045. return;
  7046. }
  7047. const int ith = params->ith;
  7048. const int nth = params->nth;
  7049. const int nr = ggml_nrows(src0);
  7050. GGML_TENSOR_BINARY_OP_LOCALS;
  7051. GGML_ASSERT( nb0 == sizeof(float));
  7052. GGML_ASSERT(nb00 == sizeof(float));
  7053. // rows per thread
  7054. const int dr = (nr + nth - 1)/nth;
  7055. // row range for this thread
  7056. const int ir0 = dr*ith;
  7057. const int ir1 = MIN(ir0 + dr, nr);
  7058. if (nb10 == sizeof(float)) {
  7059. for (int ir = ir0; ir < ir1; ++ir) {
  7060. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7061. const int64_t i03 = ir/(ne02*ne01);
  7062. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7063. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7064. const int64_t i13 = i03 % ne13;
  7065. const int64_t i12 = i02 % ne12;
  7066. const int64_t i11 = i01 % ne11;
  7067. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7068. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7069. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7070. #ifdef GGML_USE_ACCELERATE
  7071. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7072. #else
  7073. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7074. #endif
  7075. // }
  7076. // }
  7077. }
  7078. } else {
  7079. // src1 is not contiguous
  7080. for (int ir = ir0; ir < ir1; ++ir) {
  7081. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7082. const int64_t i03 = ir/(ne02*ne01);
  7083. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7084. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7085. const int64_t i13 = i03 % ne13;
  7086. const int64_t i12 = i02 % ne12;
  7087. const int64_t i11 = i01 % ne11;
  7088. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7089. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7090. for (int i0 = 0; i0 < ne0; i0++) {
  7091. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7092. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7093. }
  7094. }
  7095. }
  7096. }
  7097. static void ggml_compute_forward_add_f16_f32(
  7098. const struct ggml_compute_params * params,
  7099. const struct ggml_tensor * src0,
  7100. const struct ggml_tensor * src1,
  7101. struct ggml_tensor * dst) {
  7102. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7103. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7104. return;
  7105. }
  7106. const int ith = params->ith;
  7107. const int nth = params->nth;
  7108. const int nr = ggml_nrows(src0);
  7109. GGML_TENSOR_BINARY_OP_LOCALS;
  7110. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7111. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7112. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7113. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7114. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7115. // rows per thread
  7116. const int dr = (nr + nth - 1)/nth;
  7117. // row range for this thread
  7118. const int ir0 = dr*ith;
  7119. const int ir1 = MIN(ir0 + dr, nr);
  7120. if (nb10 == sizeof(float)) {
  7121. for (int ir = ir0; ir < ir1; ++ir) {
  7122. // src0, src1 and dst are same shape => same indices
  7123. const int i3 = ir/(ne2*ne1);
  7124. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7125. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7126. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7127. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7128. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7129. for (int i = 0; i < ne0; i++) {
  7130. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7131. }
  7132. }
  7133. }
  7134. else {
  7135. // src1 is not contiguous
  7136. GGML_ASSERT(false);
  7137. }
  7138. }
  7139. static void ggml_compute_forward_add_f16_f16(
  7140. const struct ggml_compute_params * params,
  7141. const struct ggml_tensor * src0,
  7142. const struct ggml_tensor * src1,
  7143. struct ggml_tensor * dst) {
  7144. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7146. return;
  7147. }
  7148. const int ith = params->ith;
  7149. const int nth = params->nth;
  7150. const int nr = ggml_nrows(src0);
  7151. GGML_TENSOR_BINARY_OP_LOCALS;
  7152. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7153. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7154. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7155. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7156. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7157. // rows per thread
  7158. const int dr = (nr + nth - 1)/nth;
  7159. // row range for this thread
  7160. const int ir0 = dr*ith;
  7161. const int ir1 = MIN(ir0 + dr, nr);
  7162. if (nb10 == sizeof(ggml_fp16_t)) {
  7163. for (int ir = ir0; ir < ir1; ++ir) {
  7164. // src0, src1 and dst are same shape => same indices
  7165. const int i3 = ir/(ne2*ne1);
  7166. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7167. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7169. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7170. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7171. for (int i = 0; i < ne0; i++) {
  7172. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7173. }
  7174. }
  7175. }
  7176. else {
  7177. // src1 is not contiguous
  7178. GGML_ASSERT(false);
  7179. }
  7180. }
  7181. static void ggml_compute_forward_add_q_f32(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. const struct ggml_tensor * src1,
  7185. struct ggml_tensor * dst) {
  7186. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7188. return;
  7189. }
  7190. const int nr = ggml_nrows(src0);
  7191. GGML_TENSOR_BINARY_OP_LOCALS;
  7192. const int ith = params->ith;
  7193. const int nth = params->nth;
  7194. const enum ggml_type type = src0->type;
  7195. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7196. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7197. // we don't support permuted src0 or src1
  7198. GGML_ASSERT(nb00 == ggml_type_size(type));
  7199. GGML_ASSERT(nb10 == sizeof(float));
  7200. // dst cannot be transposed or permuted
  7201. GGML_ASSERT(nb0 <= nb1);
  7202. GGML_ASSERT(nb1 <= nb2);
  7203. GGML_ASSERT(nb2 <= nb3);
  7204. GGML_ASSERT(ggml_is_quantized(src0->type));
  7205. GGML_ASSERT(dst->type == src0->type);
  7206. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7207. // rows per thread
  7208. const int dr = (nr + nth - 1)/nth;
  7209. // row range for this thread
  7210. const int ir0 = dr*ith;
  7211. const int ir1 = MIN(ir0 + dr, nr);
  7212. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7213. for (int ir = ir0; ir < ir1; ++ir) {
  7214. // src0 indices
  7215. const int i03 = ir/(ne02*ne01);
  7216. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7217. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7218. // src1 and dst are same shape as src0 => same indices
  7219. const int i13 = i03;
  7220. const int i12 = i02;
  7221. const int i11 = i01;
  7222. const int i3 = i03;
  7223. const int i2 = i02;
  7224. const int i1 = i01;
  7225. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7226. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7227. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7228. assert(ne00 % 32 == 0);
  7229. // unquantize row from src0 to temp buffer
  7230. dequantize_row_q(src0_row, wdata, ne00);
  7231. // add src1
  7232. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7233. // quantize row to dst
  7234. quantize_row_q(wdata, dst_row, ne00);
  7235. }
  7236. }
  7237. static void ggml_compute_forward_add(
  7238. const struct ggml_compute_params * params,
  7239. const struct ggml_tensor * src0,
  7240. const struct ggml_tensor * src1,
  7241. struct ggml_tensor * dst) {
  7242. switch (src0->type) {
  7243. case GGML_TYPE_F32:
  7244. {
  7245. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7246. } break;
  7247. case GGML_TYPE_F16:
  7248. {
  7249. if (src1->type == GGML_TYPE_F16) {
  7250. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7251. }
  7252. else if (src1->type == GGML_TYPE_F32) {
  7253. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7254. }
  7255. else {
  7256. GGML_ASSERT(false);
  7257. }
  7258. } break;
  7259. case GGML_TYPE_Q4_0:
  7260. case GGML_TYPE_Q4_1:
  7261. case GGML_TYPE_Q5_0:
  7262. case GGML_TYPE_Q5_1:
  7263. case GGML_TYPE_Q8_0:
  7264. case GGML_TYPE_Q2_K:
  7265. case GGML_TYPE_Q3_K:
  7266. case GGML_TYPE_Q4_K:
  7267. case GGML_TYPE_Q5_K:
  7268. case GGML_TYPE_Q6_K:
  7269. {
  7270. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7271. } break;
  7272. default:
  7273. {
  7274. GGML_ASSERT(false);
  7275. } break;
  7276. }
  7277. }
  7278. // ggml_compute_forward_add1
  7279. static void ggml_compute_forward_add1_f32(
  7280. const struct ggml_compute_params * params,
  7281. const struct ggml_tensor * src0,
  7282. const struct ggml_tensor * src1,
  7283. struct ggml_tensor * dst) {
  7284. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7285. GGML_ASSERT(ggml_is_scalar(src1));
  7286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7287. return;
  7288. }
  7289. const int ith = params->ith;
  7290. const int nth = params->nth;
  7291. const int nr = ggml_nrows(src0);
  7292. GGML_TENSOR_UNARY_OP_LOCALS;
  7293. GGML_ASSERT( nb0 == sizeof(float));
  7294. GGML_ASSERT(nb00 == sizeof(float));
  7295. // rows per thread
  7296. const int dr = (nr + nth - 1)/nth;
  7297. // row range for this thread
  7298. const int ir0 = dr*ith;
  7299. const int ir1 = MIN(ir0 + dr, nr);
  7300. for (int ir = ir0; ir < ir1; ++ir) {
  7301. // src0 and dst are same shape => same indices
  7302. const int i3 = ir/(ne2*ne1);
  7303. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7304. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7305. #ifdef GGML_USE_ACCELERATE
  7306. UNUSED(ggml_vec_add1_f32);
  7307. vDSP_vadd(
  7308. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7309. (float *) ((char *) src1->data), 0,
  7310. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7311. ne0);
  7312. #else
  7313. ggml_vec_add1_f32(ne0,
  7314. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7315. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7316. *(float *) src1->data);
  7317. #endif
  7318. }
  7319. }
  7320. static void ggml_compute_forward_add1_f16_f32(
  7321. const struct ggml_compute_params * params,
  7322. const struct ggml_tensor * src0,
  7323. const struct ggml_tensor * src1,
  7324. struct ggml_tensor * dst) {
  7325. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7326. GGML_ASSERT(ggml_is_scalar(src1));
  7327. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7328. return;
  7329. }
  7330. // scalar to add
  7331. const float v = *(float *) src1->data;
  7332. const int ith = params->ith;
  7333. const int nth = params->nth;
  7334. const int nr = ggml_nrows(src0);
  7335. GGML_TENSOR_UNARY_OP_LOCALS;
  7336. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7337. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7338. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7339. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7340. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7341. // rows per thread
  7342. const int dr = (nr + nth - 1)/nth;
  7343. // row range for this thread
  7344. const int ir0 = dr*ith;
  7345. const int ir1 = MIN(ir0 + dr, nr);
  7346. for (int ir = ir0; ir < ir1; ++ir) {
  7347. // src0 and dst are same shape => same indices
  7348. const int i3 = ir/(ne2*ne1);
  7349. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7350. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7351. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7352. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7353. for (int i = 0; i < ne0; i++) {
  7354. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7355. }
  7356. }
  7357. }
  7358. static void ggml_compute_forward_add1_f16_f16(
  7359. const struct ggml_compute_params * params,
  7360. const struct ggml_tensor * src0,
  7361. const struct ggml_tensor * src1,
  7362. struct ggml_tensor * dst) {
  7363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7364. GGML_ASSERT(ggml_is_scalar(src1));
  7365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7366. return;
  7367. }
  7368. // scalar to add
  7369. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7370. const int ith = params->ith;
  7371. const int nth = params->nth;
  7372. const int nr = ggml_nrows(src0);
  7373. GGML_TENSOR_UNARY_OP_LOCALS;
  7374. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7375. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7376. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7377. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7378. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7379. // rows per thread
  7380. const int dr = (nr + nth - 1)/nth;
  7381. // row range for this thread
  7382. const int ir0 = dr*ith;
  7383. const int ir1 = MIN(ir0 + dr, nr);
  7384. for (int ir = ir0; ir < ir1; ++ir) {
  7385. // src0 and dst are same shape => same indices
  7386. const int i3 = ir/(ne2*ne1);
  7387. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7388. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7389. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7390. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7391. for (int i = 0; i < ne0; i++) {
  7392. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7393. }
  7394. }
  7395. }
  7396. static void ggml_compute_forward_add1_q_f32(
  7397. const struct ggml_compute_params * params,
  7398. const struct ggml_tensor * src0,
  7399. const struct ggml_tensor * src1,
  7400. struct ggml_tensor * dst) {
  7401. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7402. GGML_ASSERT(ggml_is_scalar(src1));
  7403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7404. return;
  7405. }
  7406. // scalar to add
  7407. const float v = *(float *) src1->data;
  7408. const int ith = params->ith;
  7409. const int nth = params->nth;
  7410. const int nr = ggml_nrows(src0);
  7411. GGML_TENSOR_UNARY_OP_LOCALS;
  7412. const enum ggml_type type = src0->type;
  7413. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7414. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7415. // we don't support permuted src0
  7416. GGML_ASSERT(nb00 == ggml_type_size(type));
  7417. // dst cannot be transposed or permuted
  7418. GGML_ASSERT(nb0 <= nb1);
  7419. GGML_ASSERT(nb1 <= nb2);
  7420. GGML_ASSERT(nb2 <= nb3);
  7421. GGML_ASSERT(ggml_is_quantized(src0->type));
  7422. GGML_ASSERT(dst->type == src0->type);
  7423. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7424. // rows per thread
  7425. const int dr = (nr + nth - 1)/nth;
  7426. // row range for this thread
  7427. const int ir0 = dr*ith;
  7428. const int ir1 = MIN(ir0 + dr, nr);
  7429. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7430. for (int ir = ir0; ir < ir1; ++ir) {
  7431. // src0 and dst are same shape => same indices
  7432. const int i3 = ir/(ne2*ne1);
  7433. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7434. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7435. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7436. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7437. assert(ne0 % 32 == 0);
  7438. // unquantize row from src0 to temp buffer
  7439. dequantize_row_q(src0_row, wdata, ne0);
  7440. // add src1
  7441. ggml_vec_acc1_f32(ne0, wdata, v);
  7442. // quantize row to dst
  7443. quantize_row_q(wdata, dst_row, ne0);
  7444. }
  7445. }
  7446. static void ggml_compute_forward_add1(
  7447. const struct ggml_compute_params * params,
  7448. const struct ggml_tensor * src0,
  7449. const struct ggml_tensor * src1,
  7450. struct ggml_tensor * dst) {
  7451. switch (src0->type) {
  7452. case GGML_TYPE_F32:
  7453. {
  7454. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7455. } break;
  7456. case GGML_TYPE_F16:
  7457. {
  7458. if (src1->type == GGML_TYPE_F16) {
  7459. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7460. }
  7461. else if (src1->type == GGML_TYPE_F32) {
  7462. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7463. }
  7464. else {
  7465. GGML_ASSERT(false);
  7466. }
  7467. } break;
  7468. case GGML_TYPE_Q4_0:
  7469. case GGML_TYPE_Q4_1:
  7470. case GGML_TYPE_Q5_0:
  7471. case GGML_TYPE_Q5_1:
  7472. case GGML_TYPE_Q8_0:
  7473. case GGML_TYPE_Q8_1:
  7474. case GGML_TYPE_Q2_K:
  7475. case GGML_TYPE_Q3_K:
  7476. case GGML_TYPE_Q4_K:
  7477. case GGML_TYPE_Q5_K:
  7478. case GGML_TYPE_Q6_K:
  7479. {
  7480. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7481. } break;
  7482. default:
  7483. {
  7484. GGML_ASSERT(false);
  7485. } break;
  7486. }
  7487. }
  7488. // ggml_compute_forward_acc
  7489. static void ggml_compute_forward_acc_f32(
  7490. const struct ggml_compute_params * params,
  7491. const struct ggml_tensor * src0,
  7492. const struct ggml_tensor * src1,
  7493. struct ggml_tensor * dst) {
  7494. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7495. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7496. // view src0 and dst with these strides and data offset inbytes during acc
  7497. // nb0 is implicitely element_size because src0 and dst are contiguous
  7498. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7499. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7500. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7501. size_t offset = ((int32_t *) dst->op_params)[3];
  7502. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7503. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7504. // memcpy needs to be synchronized across threads to avoid race conditions.
  7505. // => do it in INIT phase
  7506. memcpy(
  7507. ((char *) dst->data),
  7508. ((char *) src0->data),
  7509. ggml_nbytes(dst));
  7510. }
  7511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7512. return;
  7513. }
  7514. const int ith = params->ith;
  7515. const int nth = params->nth;
  7516. const int nr = ggml_nrows(src1);
  7517. const int nc = src1->ne[0];
  7518. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7519. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7520. // src0 and dst as viewed during acc
  7521. const size_t nb0 = ggml_element_size(src0);
  7522. const size_t nb00 = nb0;
  7523. const size_t nb01 = nb1;
  7524. const size_t nb02 = nb2;
  7525. const size_t nb03 = nb3;
  7526. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7527. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7528. GGML_ASSERT(nb10 == sizeof(float));
  7529. // rows per thread
  7530. const int dr = (nr + nth - 1)/nth;
  7531. // row range for this thread
  7532. const int ir0 = dr*ith;
  7533. const int ir1 = MIN(ir0 + dr, nr);
  7534. for (int ir = ir0; ir < ir1; ++ir) {
  7535. // src0 and dst are viewed with shape of src1 and offset
  7536. // => same indices
  7537. const int i3 = ir/(ne12*ne11);
  7538. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7539. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7540. #ifdef GGML_USE_ACCELERATE
  7541. vDSP_vadd(
  7542. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7543. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7544. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7545. #else
  7546. ggml_vec_add_f32(nc,
  7547. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7548. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7549. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7550. #endif
  7551. }
  7552. }
  7553. static void ggml_compute_forward_acc(
  7554. const struct ggml_compute_params * params,
  7555. const struct ggml_tensor * src0,
  7556. const struct ggml_tensor * src1,
  7557. struct ggml_tensor * dst) {
  7558. switch (src0->type) {
  7559. case GGML_TYPE_F32:
  7560. {
  7561. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7562. } break;
  7563. case GGML_TYPE_F16:
  7564. case GGML_TYPE_Q4_0:
  7565. case GGML_TYPE_Q4_1:
  7566. case GGML_TYPE_Q5_0:
  7567. case GGML_TYPE_Q5_1:
  7568. case GGML_TYPE_Q8_0:
  7569. case GGML_TYPE_Q8_1:
  7570. case GGML_TYPE_Q2_K:
  7571. case GGML_TYPE_Q3_K:
  7572. case GGML_TYPE_Q4_K:
  7573. case GGML_TYPE_Q5_K:
  7574. case GGML_TYPE_Q6_K:
  7575. default:
  7576. {
  7577. GGML_ASSERT(false);
  7578. } break;
  7579. }
  7580. }
  7581. // ggml_compute_forward_sub
  7582. static void ggml_compute_forward_sub_f32(
  7583. const struct ggml_compute_params * params,
  7584. const struct ggml_tensor * src0,
  7585. const struct ggml_tensor * src1,
  7586. struct ggml_tensor * dst) {
  7587. assert(params->ith == 0);
  7588. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7590. return;
  7591. }
  7592. const int nr = ggml_nrows(src0);
  7593. GGML_TENSOR_BINARY_OP_LOCALS;
  7594. GGML_ASSERT( nb0 == sizeof(float));
  7595. GGML_ASSERT(nb00 == sizeof(float));
  7596. if (nb10 == sizeof(float)) {
  7597. for (int ir = 0; ir < nr; ++ir) {
  7598. // src0, src1 and dst are same shape => same indices
  7599. const int i3 = ir/(ne2*ne1);
  7600. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7601. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7602. #ifdef GGML_USE_ACCELERATE
  7603. vDSP_vsub(
  7604. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7605. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7606. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7607. ne0);
  7608. #else
  7609. ggml_vec_sub_f32(ne0,
  7610. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7611. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7612. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7613. #endif
  7614. // }
  7615. // }
  7616. }
  7617. } else {
  7618. // src1 is not contiguous
  7619. for (int ir = 0; ir < nr; ++ir) {
  7620. // src0, src1 and dst are same shape => same indices
  7621. const int i3 = ir/(ne2*ne1);
  7622. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7623. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7624. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7625. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7626. for (int i0 = 0; i0 < ne0; i0++) {
  7627. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7628. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7629. }
  7630. }
  7631. }
  7632. }
  7633. static void ggml_compute_forward_sub(
  7634. const struct ggml_compute_params * params,
  7635. const struct ggml_tensor * src0,
  7636. const struct ggml_tensor * src1,
  7637. struct ggml_tensor * dst) {
  7638. switch (src0->type) {
  7639. case GGML_TYPE_F32:
  7640. {
  7641. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7642. } break;
  7643. default:
  7644. {
  7645. GGML_ASSERT(false);
  7646. } break;
  7647. }
  7648. }
  7649. // ggml_compute_forward_mul
  7650. static void ggml_compute_forward_mul_f32(
  7651. const struct ggml_compute_params * params,
  7652. const struct ggml_tensor * src0,
  7653. const struct ggml_tensor * src1,
  7654. struct ggml_tensor * dst) {
  7655. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7657. return;
  7658. }
  7659. const int ith = params->ith;
  7660. const int nth = params->nth;
  7661. #ifdef GGML_USE_CLBLAST
  7662. if (src1->backend == GGML_BACKEND_GPU) {
  7663. if (ith == 0) {
  7664. ggml_cl_mul(src0, src1, dst);
  7665. }
  7666. return;
  7667. }
  7668. #endif
  7669. const int64_t nr = ggml_nrows(src0);
  7670. GGML_TENSOR_BINARY_OP_LOCALS;
  7671. GGML_ASSERT( nb0 == sizeof(float));
  7672. GGML_ASSERT(nb00 == sizeof(float));
  7673. GGML_ASSERT(ne00 == ne10);
  7674. if (nb10 == sizeof(float)) {
  7675. for (int64_t ir = ith; ir < nr; ir += nth) {
  7676. // src0 and dst are same shape => same indices
  7677. const int64_t i03 = ir/(ne02*ne01);
  7678. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7679. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7680. const int64_t i13 = i03 % ne13;
  7681. const int64_t i12 = i02 % ne12;
  7682. const int64_t i11 = i01 % ne11;
  7683. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7684. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7685. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7686. #ifdef GGML_USE_ACCELERATE
  7687. UNUSED(ggml_vec_mul_f32);
  7688. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7689. #else
  7690. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7691. #endif
  7692. // }
  7693. // }
  7694. }
  7695. } else {
  7696. // src1 is not contiguous
  7697. for (int64_t ir = ith; ir < nr; ir += nth) {
  7698. // src0 and dst are same shape => same indices
  7699. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7700. const int64_t i03 = ir/(ne02*ne01);
  7701. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7702. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7703. const int64_t i13 = i03 % ne13;
  7704. const int64_t i12 = i02 % ne12;
  7705. const int64_t i11 = i01 % ne11;
  7706. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7707. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7708. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7709. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7710. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7711. }
  7712. }
  7713. }
  7714. }
  7715. static void ggml_compute_forward_mul(
  7716. const struct ggml_compute_params * params,
  7717. const struct ggml_tensor * src0,
  7718. const struct ggml_tensor * src1,
  7719. struct ggml_tensor * dst) {
  7720. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7721. switch (src0->type) {
  7722. case GGML_TYPE_F32:
  7723. {
  7724. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7725. } break;
  7726. default:
  7727. {
  7728. GGML_ASSERT(false);
  7729. } break;
  7730. }
  7731. }
  7732. // ggml_compute_forward_div
  7733. static void ggml_compute_forward_div_f32(
  7734. const struct ggml_compute_params * params,
  7735. const struct ggml_tensor * src0,
  7736. const struct ggml_tensor * src1,
  7737. struct ggml_tensor * dst) {
  7738. assert(params->ith == 0);
  7739. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7741. return;
  7742. }
  7743. const int nr = ggml_nrows(src0);
  7744. GGML_TENSOR_BINARY_OP_LOCALS;
  7745. GGML_ASSERT( nb0 == sizeof(float));
  7746. GGML_ASSERT(nb00 == sizeof(float));
  7747. if (nb10 == sizeof(float)) {
  7748. for (int ir = 0; ir < nr; ++ir) {
  7749. // src0, src1 and dst are same shape => same indices
  7750. const int i3 = ir/(ne2*ne1);
  7751. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7752. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7753. #ifdef GGML_USE_ACCELERATE
  7754. UNUSED(ggml_vec_div_f32);
  7755. vDSP_vdiv(
  7756. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7757. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7758. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7759. ne0);
  7760. #else
  7761. ggml_vec_div_f32(ne0,
  7762. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7763. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7764. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7765. #endif
  7766. // }
  7767. // }
  7768. }
  7769. } else {
  7770. // src1 is not contiguous
  7771. for (int ir = 0; ir < nr; ++ir) {
  7772. // src0, src1 and dst are same shape => same indices
  7773. const int i3 = ir/(ne2*ne1);
  7774. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7775. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7776. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7777. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7778. for (int i0 = 0; i0 < ne0; i0++) {
  7779. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7780. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7781. }
  7782. }
  7783. }
  7784. }
  7785. static void ggml_compute_forward_div(
  7786. const struct ggml_compute_params * params,
  7787. const struct ggml_tensor * src0,
  7788. const struct ggml_tensor * src1,
  7789. struct ggml_tensor * dst) {
  7790. switch (src0->type) {
  7791. case GGML_TYPE_F32:
  7792. {
  7793. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7794. } break;
  7795. default:
  7796. {
  7797. GGML_ASSERT(false);
  7798. } break;
  7799. }
  7800. }
  7801. // ggml_compute_forward_sqr
  7802. static void ggml_compute_forward_sqr_f32(
  7803. const struct ggml_compute_params * params,
  7804. const struct ggml_tensor * src0,
  7805. struct ggml_tensor * dst) {
  7806. assert(params->ith == 0);
  7807. assert(ggml_are_same_shape(src0, dst));
  7808. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7809. return;
  7810. }
  7811. const int n = ggml_nrows(src0);
  7812. const int nc = src0->ne[0];
  7813. assert( dst->nb[0] == sizeof(float));
  7814. assert(src0->nb[0] == sizeof(float));
  7815. for (int i = 0; i < n; i++) {
  7816. ggml_vec_sqr_f32(nc,
  7817. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7818. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7819. }
  7820. }
  7821. static void ggml_compute_forward_sqr(
  7822. const struct ggml_compute_params * params,
  7823. const struct ggml_tensor * src0,
  7824. struct ggml_tensor * dst) {
  7825. switch (src0->type) {
  7826. case GGML_TYPE_F32:
  7827. {
  7828. ggml_compute_forward_sqr_f32(params, src0, dst);
  7829. } break;
  7830. default:
  7831. {
  7832. GGML_ASSERT(false);
  7833. } break;
  7834. }
  7835. }
  7836. // ggml_compute_forward_sqrt
  7837. static void ggml_compute_forward_sqrt_f32(
  7838. const struct ggml_compute_params * params,
  7839. const struct ggml_tensor * src0,
  7840. struct ggml_tensor * dst) {
  7841. assert(params->ith == 0);
  7842. assert(ggml_are_same_shape(src0, dst));
  7843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7844. return;
  7845. }
  7846. const int n = ggml_nrows(src0);
  7847. const int nc = src0->ne[0];
  7848. assert( dst->nb[0] == sizeof(float));
  7849. assert(src0->nb[0] == sizeof(float));
  7850. for (int i = 0; i < n; i++) {
  7851. ggml_vec_sqrt_f32(nc,
  7852. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7853. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7854. }
  7855. }
  7856. static void ggml_compute_forward_sqrt(
  7857. const struct ggml_compute_params * params,
  7858. const struct ggml_tensor * src0,
  7859. struct ggml_tensor * dst) {
  7860. switch (src0->type) {
  7861. case GGML_TYPE_F32:
  7862. {
  7863. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7864. } break;
  7865. default:
  7866. {
  7867. GGML_ASSERT(false);
  7868. } break;
  7869. }
  7870. }
  7871. // ggml_compute_forward_log
  7872. static void ggml_compute_forward_log_f32(
  7873. const struct ggml_compute_params * params,
  7874. const struct ggml_tensor * src0,
  7875. struct ggml_tensor * dst) {
  7876. GGML_ASSERT(params->ith == 0);
  7877. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7879. return;
  7880. }
  7881. const int n = ggml_nrows(src0);
  7882. const int nc = src0->ne[0];
  7883. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7884. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7885. for (int i = 0; i < n; i++) {
  7886. ggml_vec_log_f32(nc,
  7887. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7888. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7889. }
  7890. }
  7891. static void ggml_compute_forward_log(
  7892. const struct ggml_compute_params * params,
  7893. const struct ggml_tensor * src0,
  7894. struct ggml_tensor * dst) {
  7895. switch (src0->type) {
  7896. case GGML_TYPE_F32:
  7897. {
  7898. ggml_compute_forward_log_f32(params, src0, dst);
  7899. } break;
  7900. default:
  7901. {
  7902. GGML_ASSERT(false);
  7903. } break;
  7904. }
  7905. }
  7906. // ggml_compute_forward_sum
  7907. static void ggml_compute_forward_sum_f32(
  7908. const struct ggml_compute_params * params,
  7909. const struct ggml_tensor * src0,
  7910. struct ggml_tensor * dst) {
  7911. assert(params->ith == 0);
  7912. assert(ggml_is_scalar(dst));
  7913. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7914. return;
  7915. }
  7916. assert(ggml_is_scalar(dst));
  7917. assert(src0->nb[0] == sizeof(float));
  7918. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7919. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7920. ggml_float sum = 0;
  7921. ggml_float row_sum = 0;
  7922. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7923. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7924. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7925. ggml_vec_sum_f32_ggf(ne00,
  7926. &row_sum,
  7927. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7928. sum += row_sum;
  7929. }
  7930. }
  7931. }
  7932. ((float *) dst->data)[0] = sum;
  7933. }
  7934. static void ggml_compute_forward_sum_f16(
  7935. const struct ggml_compute_params * params,
  7936. const struct ggml_tensor * src0,
  7937. struct ggml_tensor * dst) {
  7938. assert(params->ith == 0);
  7939. assert(ggml_is_scalar(dst));
  7940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7941. return;
  7942. }
  7943. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7944. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7945. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7946. float sum = 0;
  7947. float row_sum = 0;
  7948. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7949. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7950. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7951. ggml_vec_sum_f16_ggf(ne00,
  7952. &row_sum,
  7953. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7954. sum += row_sum;
  7955. }
  7956. }
  7957. }
  7958. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7959. }
  7960. static void ggml_compute_forward_sum(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * src0,
  7963. struct ggml_tensor * dst) {
  7964. switch (src0->type) {
  7965. case GGML_TYPE_F32:
  7966. {
  7967. ggml_compute_forward_sum_f32(params, src0, dst);
  7968. } break;
  7969. case GGML_TYPE_F16:
  7970. {
  7971. ggml_compute_forward_sum_f16(params, src0, dst);
  7972. } break;
  7973. default:
  7974. {
  7975. GGML_ASSERT(false);
  7976. } break;
  7977. }
  7978. }
  7979. // ggml_compute_forward_sum_rows
  7980. static void ggml_compute_forward_sum_rows_f32(
  7981. const struct ggml_compute_params * params,
  7982. const struct ggml_tensor * src0,
  7983. struct ggml_tensor * dst) {
  7984. GGML_ASSERT(params->ith == 0);
  7985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7986. return;
  7987. }
  7988. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7989. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7990. GGML_TENSOR_UNARY_OP_LOCALS;
  7991. GGML_ASSERT(ne0 == 1);
  7992. GGML_ASSERT(ne1 == ne01);
  7993. GGML_ASSERT(ne2 == ne02);
  7994. GGML_ASSERT(ne3 == ne03);
  7995. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7996. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7997. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7998. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7999. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8000. float row_sum = 0;
  8001. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8002. dst_row[0] = row_sum;
  8003. }
  8004. }
  8005. }
  8006. }
  8007. static void ggml_compute_forward_sum_rows(
  8008. const struct ggml_compute_params * params,
  8009. const struct ggml_tensor * src0,
  8010. struct ggml_tensor * dst) {
  8011. switch (src0->type) {
  8012. case GGML_TYPE_F32:
  8013. {
  8014. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8015. } break;
  8016. default:
  8017. {
  8018. GGML_ASSERT(false);
  8019. } break;
  8020. }
  8021. }
  8022. // ggml_compute_forward_mean
  8023. static void ggml_compute_forward_mean_f32(
  8024. const struct ggml_compute_params * params,
  8025. const struct ggml_tensor * src0,
  8026. struct ggml_tensor * dst) {
  8027. assert(params->ith == 0);
  8028. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8029. return;
  8030. }
  8031. assert(src0->nb[0] == sizeof(float));
  8032. GGML_TENSOR_UNARY_OP_LOCALS;
  8033. assert(ne0 == 1);
  8034. assert(ne1 == ne01);
  8035. assert(ne2 == ne02);
  8036. assert(ne3 == ne03);
  8037. UNUSED(ne0);
  8038. UNUSED(ne1);
  8039. UNUSED(ne2);
  8040. UNUSED(ne3);
  8041. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8042. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8043. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8044. ggml_vec_sum_f32(ne00,
  8045. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8046. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8047. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8048. }
  8049. }
  8050. }
  8051. }
  8052. static void ggml_compute_forward_mean(
  8053. const struct ggml_compute_params * params,
  8054. const struct ggml_tensor * src0,
  8055. struct ggml_tensor * dst) {
  8056. switch (src0->type) {
  8057. case GGML_TYPE_F32:
  8058. {
  8059. ggml_compute_forward_mean_f32(params, src0, dst);
  8060. } break;
  8061. default:
  8062. {
  8063. GGML_ASSERT(false);
  8064. } break;
  8065. }
  8066. }
  8067. // ggml_compute_forward_argmax
  8068. static void ggml_compute_forward_argmax_f32(
  8069. const struct ggml_compute_params * params,
  8070. const struct ggml_tensor * src0,
  8071. struct ggml_tensor * dst) {
  8072. assert(params->ith == 0);
  8073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8074. return;
  8075. }
  8076. assert(src0->nb[0] == sizeof(float));
  8077. assert(dst->nb[0] == sizeof(float));
  8078. const int64_t ne00 = src0->ne[0];
  8079. const int64_t ne01 = src0->ne[1];
  8080. const size_t nb01 = src0->nb[1];
  8081. const size_t nb0 = dst->nb[0];
  8082. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8083. float * src = (float *) ((char *) src0->data + i1*nb01);
  8084. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8085. int v = 0;
  8086. ggml_vec_argmax_f32(ne00, &v, src);
  8087. dst_[0] = v;
  8088. }
  8089. }
  8090. static void ggml_compute_forward_argmax(
  8091. const struct ggml_compute_params * params,
  8092. const struct ggml_tensor * src0,
  8093. struct ggml_tensor * dst) {
  8094. switch (src0->type) {
  8095. case GGML_TYPE_F32:
  8096. {
  8097. ggml_compute_forward_argmax_f32(params, src0, dst);
  8098. } break;
  8099. default:
  8100. {
  8101. GGML_ASSERT(false);
  8102. } break;
  8103. }
  8104. }
  8105. // ggml_compute_forward_repeat
  8106. static void ggml_compute_forward_repeat_f32(
  8107. const struct ggml_compute_params * params,
  8108. const struct ggml_tensor * src0,
  8109. struct ggml_tensor * dst) {
  8110. GGML_ASSERT(params->ith == 0);
  8111. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8112. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8113. return;
  8114. }
  8115. GGML_TENSOR_UNARY_OP_LOCALS;
  8116. // guaranteed to be an integer due to the check in ggml_can_repeat
  8117. const int nr0 = (int)(ne0/ne00);
  8118. const int nr1 = (int)(ne1/ne01);
  8119. const int nr2 = (int)(ne2/ne02);
  8120. const int nr3 = (int)(ne3/ne03);
  8121. // TODO: support for transposed / permuted tensors
  8122. GGML_ASSERT(nb0 == sizeof(float));
  8123. GGML_ASSERT(nb00 == sizeof(float));
  8124. // TODO: maybe this is not optimal?
  8125. for (int i3 = 0; i3 < nr3; i3++) {
  8126. for (int k3 = 0; k3 < ne03; k3++) {
  8127. for (int i2 = 0; i2 < nr2; i2++) {
  8128. for (int k2 = 0; k2 < ne02; k2++) {
  8129. for (int i1 = 0; i1 < nr1; i1++) {
  8130. for (int k1 = 0; k1 < ne01; k1++) {
  8131. for (int i0 = 0; i0 < nr0; i0++) {
  8132. ggml_vec_cpy_f32(ne00,
  8133. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8134. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8135. }
  8136. }
  8137. }
  8138. }
  8139. }
  8140. }
  8141. }
  8142. }
  8143. static void ggml_compute_forward_repeat(
  8144. const struct ggml_compute_params * params,
  8145. const struct ggml_tensor * src0,
  8146. struct ggml_tensor * dst) {
  8147. switch (src0->type) {
  8148. case GGML_TYPE_F32:
  8149. {
  8150. ggml_compute_forward_repeat_f32(params, src0, dst);
  8151. } break;
  8152. default:
  8153. {
  8154. GGML_ASSERT(false);
  8155. } break;
  8156. }
  8157. }
  8158. // ggml_compute_forward_repeat_back
  8159. static void ggml_compute_forward_repeat_back_f32(
  8160. const struct ggml_compute_params * params,
  8161. const struct ggml_tensor * src0,
  8162. struct ggml_tensor * dst) {
  8163. GGML_ASSERT(params->ith == 0);
  8164. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8166. return;
  8167. }
  8168. GGML_TENSOR_UNARY_OP_LOCALS;
  8169. // guaranteed to be an integer due to the check in ggml_can_repeat
  8170. const int nr0 = (int)(ne00/ne0);
  8171. const int nr1 = (int)(ne01/ne1);
  8172. const int nr2 = (int)(ne02/ne2);
  8173. const int nr3 = (int)(ne03/ne3);
  8174. // TODO: support for transposed / permuted tensors
  8175. GGML_ASSERT(nb0 == sizeof(float));
  8176. GGML_ASSERT(nb00 == sizeof(float));
  8177. if (ggml_is_contiguous(dst)) {
  8178. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8179. } else {
  8180. for (int k3 = 0; k3 < ne3; k3++) {
  8181. for (int k2 = 0; k2 < ne2; k2++) {
  8182. for (int k1 = 0; k1 < ne1; k1++) {
  8183. ggml_vec_set_f32(ne0,
  8184. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8185. 0);
  8186. }
  8187. }
  8188. }
  8189. }
  8190. // TODO: maybe this is not optimal?
  8191. for (int i3 = 0; i3 < nr3; i3++) {
  8192. for (int k3 = 0; k3 < ne3; k3++) {
  8193. for (int i2 = 0; i2 < nr2; i2++) {
  8194. for (int k2 = 0; k2 < ne2; k2++) {
  8195. for (int i1 = 0; i1 < nr1; i1++) {
  8196. for (int k1 = 0; k1 < ne1; k1++) {
  8197. for (int i0 = 0; i0 < nr0; i0++) {
  8198. ggml_vec_acc_f32(ne0,
  8199. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8200. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8201. }
  8202. }
  8203. }
  8204. }
  8205. }
  8206. }
  8207. }
  8208. }
  8209. static void ggml_compute_forward_repeat_back(
  8210. const struct ggml_compute_params * params,
  8211. const struct ggml_tensor * src0,
  8212. struct ggml_tensor * dst) {
  8213. switch (src0->type) {
  8214. case GGML_TYPE_F32:
  8215. {
  8216. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8217. } break;
  8218. default:
  8219. {
  8220. GGML_ASSERT(false);
  8221. } break;
  8222. }
  8223. }
  8224. // ggml_compute_forward_concat
  8225. static void ggml_compute_forward_concat_f32(
  8226. const struct ggml_compute_params * params,
  8227. const struct ggml_tensor * src0,
  8228. const struct ggml_tensor * src1,
  8229. struct ggml_tensor * dst) {
  8230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8231. return;
  8232. }
  8233. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8234. const int ith = params->ith;
  8235. GGML_TENSOR_BINARY_OP_LOCALS;
  8236. // TODO: support for transposed / permuted tensors
  8237. GGML_ASSERT(nb0 == sizeof(float));
  8238. GGML_ASSERT(nb00 == sizeof(float));
  8239. GGML_ASSERT(nb10 == sizeof(float));
  8240. for (int i3 = 0; i3 < ne3; i3++) {
  8241. for (int i2 = ith; i2 < ne2; i2++) {
  8242. if (i2 < ne02) { // src0
  8243. for (int i1 = 0; i1 < ne1; i1++) {
  8244. for (int i0 = 0; i0 < ne0; i0++) {
  8245. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8246. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8247. *y = *x;
  8248. }
  8249. }
  8250. } // src1
  8251. else {
  8252. for (int i1 = 0; i1 < ne1; i1++) {
  8253. for (int i0 = 0; i0 < ne0; i0++) {
  8254. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8255. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8256. *y = *x;
  8257. }
  8258. }
  8259. }
  8260. }
  8261. }
  8262. }
  8263. static void ggml_compute_forward_concat(
  8264. const struct ggml_compute_params* params,
  8265. const struct ggml_tensor* src0,
  8266. const struct ggml_tensor* src1,
  8267. struct ggml_tensor* dst) {
  8268. switch (src0->type) {
  8269. case GGML_TYPE_F32:
  8270. {
  8271. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8272. } break;
  8273. default:
  8274. {
  8275. GGML_ASSERT(false);
  8276. } break;
  8277. }
  8278. }
  8279. // ggml_compute_forward_abs
  8280. static void ggml_compute_forward_abs_f32(
  8281. const struct ggml_compute_params * params,
  8282. const struct ggml_tensor * src0,
  8283. struct ggml_tensor * dst) {
  8284. assert(params->ith == 0);
  8285. assert(ggml_are_same_shape(src0, dst));
  8286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8287. return;
  8288. }
  8289. const int n = ggml_nrows(src0);
  8290. const int nc = src0->ne[0];
  8291. assert(dst->nb[0] == sizeof(float));
  8292. assert(src0->nb[0] == sizeof(float));
  8293. for (int i = 0; i < n; i++) {
  8294. ggml_vec_abs_f32(nc,
  8295. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8296. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8297. }
  8298. }
  8299. static void ggml_compute_forward_abs(
  8300. const struct ggml_compute_params * params,
  8301. const struct ggml_tensor * src0,
  8302. struct ggml_tensor * dst) {
  8303. switch (src0->type) {
  8304. case GGML_TYPE_F32:
  8305. {
  8306. ggml_compute_forward_abs_f32(params, src0, dst);
  8307. } break;
  8308. default:
  8309. {
  8310. GGML_ASSERT(false);
  8311. } break;
  8312. }
  8313. }
  8314. // ggml_compute_forward_sgn
  8315. static void ggml_compute_forward_sgn_f32(
  8316. const struct ggml_compute_params * params,
  8317. const struct ggml_tensor * src0,
  8318. struct ggml_tensor * dst) {
  8319. assert(params->ith == 0);
  8320. assert(ggml_are_same_shape(src0, dst));
  8321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8322. return;
  8323. }
  8324. const int n = ggml_nrows(src0);
  8325. const int nc = src0->ne[0];
  8326. assert(dst->nb[0] == sizeof(float));
  8327. assert(src0->nb[0] == sizeof(float));
  8328. for (int i = 0; i < n; i++) {
  8329. ggml_vec_sgn_f32(nc,
  8330. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8331. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8332. }
  8333. }
  8334. static void ggml_compute_forward_sgn(
  8335. const struct ggml_compute_params * params,
  8336. const struct ggml_tensor * src0,
  8337. struct ggml_tensor * dst) {
  8338. switch (src0->type) {
  8339. case GGML_TYPE_F32:
  8340. {
  8341. ggml_compute_forward_sgn_f32(params, src0, dst);
  8342. } break;
  8343. default:
  8344. {
  8345. GGML_ASSERT(false);
  8346. } break;
  8347. }
  8348. }
  8349. // ggml_compute_forward_neg
  8350. static void ggml_compute_forward_neg_f32(
  8351. const struct ggml_compute_params * params,
  8352. const struct ggml_tensor * src0,
  8353. struct ggml_tensor * dst) {
  8354. assert(params->ith == 0);
  8355. assert(ggml_are_same_shape(src0, dst));
  8356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8357. return;
  8358. }
  8359. const int n = ggml_nrows(src0);
  8360. const int nc = src0->ne[0];
  8361. assert(dst->nb[0] == sizeof(float));
  8362. assert(src0->nb[0] == sizeof(float));
  8363. for (int i = 0; i < n; i++) {
  8364. ggml_vec_neg_f32(nc,
  8365. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8366. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8367. }
  8368. }
  8369. static void ggml_compute_forward_neg(
  8370. const struct ggml_compute_params * params,
  8371. const struct ggml_tensor * src0,
  8372. struct ggml_tensor * dst) {
  8373. switch (src0->type) {
  8374. case GGML_TYPE_F32:
  8375. {
  8376. ggml_compute_forward_neg_f32(params, src0, dst);
  8377. } break;
  8378. default:
  8379. {
  8380. GGML_ASSERT(false);
  8381. } break;
  8382. }
  8383. }
  8384. // ggml_compute_forward_step
  8385. static void ggml_compute_forward_step_f32(
  8386. const struct ggml_compute_params * params,
  8387. const struct ggml_tensor * src0,
  8388. struct ggml_tensor * dst) {
  8389. assert(params->ith == 0);
  8390. assert(ggml_are_same_shape(src0, dst));
  8391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8392. return;
  8393. }
  8394. const int n = ggml_nrows(src0);
  8395. const int nc = src0->ne[0];
  8396. assert(dst->nb[0] == sizeof(float));
  8397. assert(src0->nb[0] == sizeof(float));
  8398. for (int i = 0; i < n; i++) {
  8399. ggml_vec_step_f32(nc,
  8400. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8401. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8402. }
  8403. }
  8404. static void ggml_compute_forward_step(
  8405. const struct ggml_compute_params * params,
  8406. const struct ggml_tensor * src0,
  8407. struct ggml_tensor * dst) {
  8408. switch (src0->type) {
  8409. case GGML_TYPE_F32:
  8410. {
  8411. ggml_compute_forward_step_f32(params, src0, dst);
  8412. } break;
  8413. default:
  8414. {
  8415. GGML_ASSERT(false);
  8416. } break;
  8417. }
  8418. }
  8419. // ggml_compute_forward_tanh
  8420. static void ggml_compute_forward_tanh_f32(
  8421. const struct ggml_compute_params * params,
  8422. const struct ggml_tensor * src0,
  8423. struct ggml_tensor * dst) {
  8424. assert(params->ith == 0);
  8425. assert(ggml_are_same_shape(src0, dst));
  8426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8427. return;
  8428. }
  8429. const int n = ggml_nrows(src0);
  8430. const int nc = src0->ne[0];
  8431. assert(dst->nb[0] == sizeof(float));
  8432. assert(src0->nb[0] == sizeof(float));
  8433. for (int i = 0; i < n; i++) {
  8434. ggml_vec_tanh_f32(nc,
  8435. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8436. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8437. }
  8438. }
  8439. static void ggml_compute_forward_tanh(
  8440. const struct ggml_compute_params * params,
  8441. const struct ggml_tensor * src0,
  8442. struct ggml_tensor * dst) {
  8443. switch (src0->type) {
  8444. case GGML_TYPE_F32:
  8445. {
  8446. ggml_compute_forward_tanh_f32(params, src0, dst);
  8447. } break;
  8448. default:
  8449. {
  8450. GGML_ASSERT(false);
  8451. } break;
  8452. }
  8453. }
  8454. // ggml_compute_forward_elu
  8455. static void ggml_compute_forward_elu_f32(
  8456. const struct ggml_compute_params * params,
  8457. const struct ggml_tensor * src0,
  8458. struct ggml_tensor * dst) {
  8459. assert(params->ith == 0);
  8460. assert(ggml_are_same_shape(src0, dst));
  8461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8462. return;
  8463. }
  8464. const int n = ggml_nrows(src0);
  8465. const int nc = src0->ne[0];
  8466. assert(dst->nb[0] == sizeof(float));
  8467. assert(src0->nb[0] == sizeof(float));
  8468. for (int i = 0; i < n; i++) {
  8469. ggml_vec_elu_f32(nc,
  8470. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8471. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8472. }
  8473. }
  8474. static void ggml_compute_forward_elu(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * src0,
  8477. struct ggml_tensor * dst) {
  8478. switch (src0->type) {
  8479. case GGML_TYPE_F32:
  8480. {
  8481. ggml_compute_forward_elu_f32(params, src0, dst);
  8482. } break;
  8483. default:
  8484. {
  8485. GGML_ASSERT(false);
  8486. } break;
  8487. }
  8488. }
  8489. // ggml_compute_forward_relu
  8490. static void ggml_compute_forward_relu_f32(
  8491. const struct ggml_compute_params * params,
  8492. const struct ggml_tensor * src0,
  8493. struct ggml_tensor * dst) {
  8494. assert(params->ith == 0);
  8495. assert(ggml_are_same_shape(src0, dst));
  8496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8497. return;
  8498. }
  8499. const int n = ggml_nrows(src0);
  8500. const int nc = src0->ne[0];
  8501. assert(dst->nb[0] == sizeof(float));
  8502. assert(src0->nb[0] == sizeof(float));
  8503. for (int i = 0; i < n; i++) {
  8504. ggml_vec_relu_f32(nc,
  8505. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8506. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8507. }
  8508. }
  8509. static void ggml_compute_forward_relu(
  8510. const struct ggml_compute_params * params,
  8511. const struct ggml_tensor * src0,
  8512. struct ggml_tensor * dst) {
  8513. switch (src0->type) {
  8514. case GGML_TYPE_F32:
  8515. {
  8516. ggml_compute_forward_relu_f32(params, src0, dst);
  8517. } break;
  8518. default:
  8519. {
  8520. GGML_ASSERT(false);
  8521. } break;
  8522. }
  8523. }
  8524. // ggml_compute_forward_gelu
  8525. static void ggml_compute_forward_gelu_f32(
  8526. const struct ggml_compute_params * params,
  8527. const struct ggml_tensor * src0,
  8528. struct ggml_tensor * dst) {
  8529. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8530. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8531. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8533. return;
  8534. }
  8535. const int ith = params->ith;
  8536. const int nth = params->nth;
  8537. const int nc = src0->ne[0];
  8538. const int nr = ggml_nrows(src0);
  8539. // rows per thread
  8540. const int dr = (nr + nth - 1)/nth;
  8541. // row range for this thread
  8542. const int ir0 = dr*ith;
  8543. const int ir1 = MIN(ir0 + dr, nr);
  8544. for (int i1 = ir0; i1 < ir1; i1++) {
  8545. ggml_vec_gelu_f32(nc,
  8546. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8547. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8548. #ifndef NDEBUG
  8549. for (int k = 0; k < nc; k++) {
  8550. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8551. UNUSED(x);
  8552. assert(!isnan(x));
  8553. assert(!isinf(x));
  8554. }
  8555. #endif
  8556. }
  8557. }
  8558. static void ggml_compute_forward_gelu(
  8559. const struct ggml_compute_params * params,
  8560. const struct ggml_tensor * src0,
  8561. struct ggml_tensor * dst) {
  8562. switch (src0->type) {
  8563. case GGML_TYPE_F32:
  8564. {
  8565. ggml_compute_forward_gelu_f32(params, src0, dst);
  8566. } break;
  8567. default:
  8568. {
  8569. GGML_ASSERT(false);
  8570. } break;
  8571. }
  8572. }
  8573. // ggml_compute_forward_gelu_quick
  8574. static void ggml_compute_forward_gelu_quick_f32(
  8575. const struct ggml_compute_params * params,
  8576. const struct ggml_tensor * src0,
  8577. struct ggml_tensor * dst) {
  8578. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8579. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8580. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8582. return;
  8583. }
  8584. const int ith = params->ith;
  8585. const int nth = params->nth;
  8586. const int nc = src0->ne[0];
  8587. const int nr = ggml_nrows(src0);
  8588. // rows per thread
  8589. const int dr = (nr + nth - 1)/nth;
  8590. // row range for this thread
  8591. const int ir0 = dr*ith;
  8592. const int ir1 = MIN(ir0 + dr, nr);
  8593. for (int i1 = ir0; i1 < ir1; i1++) {
  8594. ggml_vec_gelu_quick_f32(nc,
  8595. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8596. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8597. #ifndef NDEBUG
  8598. for (int k = 0; k < nc; k++) {
  8599. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8600. UNUSED(x);
  8601. assert(!isnan(x));
  8602. assert(!isinf(x));
  8603. }
  8604. #endif
  8605. }
  8606. }
  8607. static void ggml_compute_forward_gelu_quick(
  8608. const struct ggml_compute_params * params,
  8609. const struct ggml_tensor * src0,
  8610. struct ggml_tensor * dst) {
  8611. switch (src0->type) {
  8612. case GGML_TYPE_F32:
  8613. {
  8614. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8615. } break;
  8616. default:
  8617. {
  8618. GGML_ASSERT(false);
  8619. } break;
  8620. }
  8621. }
  8622. // ggml_compute_forward_silu
  8623. static void ggml_compute_forward_silu_f32(
  8624. const struct ggml_compute_params * params,
  8625. const struct ggml_tensor * src0,
  8626. struct ggml_tensor * dst) {
  8627. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8628. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8629. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8630. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8631. return;
  8632. }
  8633. const int ith = params->ith;
  8634. const int nth = params->nth;
  8635. const int nc = src0->ne[0];
  8636. const int nr = ggml_nrows(src0);
  8637. // rows per thread
  8638. const int dr = (nr + nth - 1)/nth;
  8639. // row range for this thread
  8640. const int ir0 = dr*ith;
  8641. const int ir1 = MIN(ir0 + dr, nr);
  8642. for (int i1 = ir0; i1 < ir1; i1++) {
  8643. ggml_vec_silu_f32(nc,
  8644. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8645. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8646. #ifndef NDEBUG
  8647. for (int k = 0; k < nc; k++) {
  8648. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8649. UNUSED(x);
  8650. assert(!isnan(x));
  8651. assert(!isinf(x));
  8652. }
  8653. #endif
  8654. }
  8655. }
  8656. static void ggml_compute_forward_silu(
  8657. const struct ggml_compute_params * params,
  8658. const struct ggml_tensor * src0,
  8659. struct ggml_tensor * dst) {
  8660. switch (src0->type) {
  8661. case GGML_TYPE_F32:
  8662. {
  8663. ggml_compute_forward_silu_f32(params, src0, dst);
  8664. } break;
  8665. default:
  8666. {
  8667. GGML_ASSERT(false);
  8668. } break;
  8669. }
  8670. }
  8671. // ggml_compute_forward_silu_back
  8672. static void ggml_compute_forward_silu_back_f32(
  8673. const struct ggml_compute_params * params,
  8674. const struct ggml_tensor * src0,
  8675. const struct ggml_tensor * grad,
  8676. struct ggml_tensor * dst) {
  8677. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8678. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8679. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8680. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8681. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8683. return;
  8684. }
  8685. const int ith = params->ith;
  8686. const int nth = params->nth;
  8687. const int nc = src0->ne[0];
  8688. const int nr = ggml_nrows(src0);
  8689. // rows per thread
  8690. const int dr = (nr + nth - 1)/nth;
  8691. // row range for this thread
  8692. const int ir0 = dr*ith;
  8693. const int ir1 = MIN(ir0 + dr, nr);
  8694. for (int i1 = ir0; i1 < ir1; i1++) {
  8695. ggml_vec_silu_backward_f32(nc,
  8696. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8697. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8698. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8699. #ifndef NDEBUG
  8700. for (int k = 0; k < nc; k++) {
  8701. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8702. UNUSED(x);
  8703. assert(!isnan(x));
  8704. assert(!isinf(x));
  8705. }
  8706. #endif
  8707. }
  8708. }
  8709. static void ggml_compute_forward_silu_back(
  8710. const struct ggml_compute_params * params,
  8711. const struct ggml_tensor * src0,
  8712. const struct ggml_tensor * grad,
  8713. struct ggml_tensor * dst) {
  8714. switch (src0->type) {
  8715. case GGML_TYPE_F32:
  8716. {
  8717. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8718. } break;
  8719. default:
  8720. {
  8721. GGML_ASSERT(false);
  8722. } break;
  8723. }
  8724. }
  8725. // ggml_compute_forward_norm
  8726. static void ggml_compute_forward_norm_f32(
  8727. const struct ggml_compute_params * params,
  8728. const struct ggml_tensor * src0,
  8729. struct ggml_tensor * dst) {
  8730. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8732. return;
  8733. }
  8734. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8735. const int ith = params->ith;
  8736. const int nth = params->nth;
  8737. GGML_TENSOR_UNARY_OP_LOCALS;
  8738. float eps;
  8739. memcpy(&eps, dst->op_params, sizeof(float));
  8740. // TODO: optimize
  8741. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8742. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8743. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8744. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8745. ggml_float sum = 0.0;
  8746. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8747. sum += (ggml_float)x[i00];
  8748. }
  8749. float mean = sum/ne00;
  8750. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8751. ggml_float sum2 = 0.0;
  8752. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8753. float v = x[i00] - mean;
  8754. y[i00] = v;
  8755. sum2 += (ggml_float)(v*v);
  8756. }
  8757. float variance = sum2/ne00;
  8758. const float scale = 1.0f/sqrtf(variance + eps);
  8759. ggml_vec_scale_f32(ne00, y, scale);
  8760. }
  8761. }
  8762. }
  8763. }
  8764. static void ggml_compute_forward_norm(
  8765. const struct ggml_compute_params * params,
  8766. const struct ggml_tensor * src0,
  8767. struct ggml_tensor * dst) {
  8768. switch (src0->type) {
  8769. case GGML_TYPE_F32:
  8770. {
  8771. ggml_compute_forward_norm_f32(params, src0, dst);
  8772. } break;
  8773. default:
  8774. {
  8775. GGML_ASSERT(false);
  8776. } break;
  8777. }
  8778. }
  8779. // ggml_compute_forward_group_rms_norm
  8780. static void ggml_compute_forward_rms_norm_f32(
  8781. const struct ggml_compute_params * params,
  8782. const struct ggml_tensor * src0,
  8783. struct ggml_tensor * dst) {
  8784. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8786. return;
  8787. }
  8788. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8789. const int ith = params->ith;
  8790. const int nth = params->nth;
  8791. GGML_TENSOR_UNARY_OP_LOCALS;
  8792. float eps;
  8793. memcpy(&eps, dst->op_params, sizeof(float));
  8794. // TODO: optimize
  8795. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8796. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8797. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8798. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8799. ggml_float sum = 0.0;
  8800. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8801. sum += (ggml_float)(x[i00] * x[i00]);
  8802. }
  8803. const float mean = sum/ne00;
  8804. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8805. memcpy(y, x, ne00 * sizeof(float));
  8806. // for (int i00 = 0; i00 < ne00; i00++) {
  8807. // y[i00] = x[i00];
  8808. // }
  8809. const float scale = 1.0f/sqrtf(mean + eps);
  8810. ggml_vec_scale_f32(ne00, y, scale);
  8811. }
  8812. }
  8813. }
  8814. }
  8815. static void ggml_compute_forward_rms_norm(
  8816. const struct ggml_compute_params * params,
  8817. const struct ggml_tensor * src0,
  8818. struct ggml_tensor * dst) {
  8819. switch (src0->type) {
  8820. case GGML_TYPE_F32:
  8821. {
  8822. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8823. } break;
  8824. default:
  8825. {
  8826. GGML_ASSERT(false);
  8827. } break;
  8828. }
  8829. }
  8830. static void ggml_compute_forward_rms_norm_back_f32(
  8831. const struct ggml_compute_params * params,
  8832. const struct ggml_tensor * src0,
  8833. const struct ggml_tensor * src1,
  8834. struct ggml_tensor * dst) {
  8835. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8837. return;
  8838. }
  8839. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8840. const int ith = params->ith;
  8841. const int nth = params->nth;
  8842. GGML_TENSOR_BINARY_OP_LOCALS;
  8843. float eps;
  8844. memcpy(&eps, dst->op_params, sizeof(float));
  8845. // TODO: optimize
  8846. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8847. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8848. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8849. // src1 is same shape as src0 => same indices
  8850. const int64_t i11 = i01;
  8851. const int64_t i12 = i02;
  8852. const int64_t i13 = i03;
  8853. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8854. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8855. ggml_float sum_xx = 0.0;
  8856. ggml_float sum_xdz = 0.0;
  8857. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8858. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8859. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8860. }
  8861. //const float mean = (float)(sum_xx)/ne00;
  8862. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8863. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8864. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8865. // we could cache rms from forward pass to improve performance.
  8866. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8867. //const float rms = sqrtf(mean_eps);
  8868. const float rrms = 1.0f / sqrtf(mean_eps);
  8869. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8870. {
  8871. // z = rms_norm(x)
  8872. //
  8873. // rms_norm(src0) =
  8874. // scale(
  8875. // src0,
  8876. // div(
  8877. // 1,
  8878. // sqrt(
  8879. // add(
  8880. // scale(
  8881. // sum(
  8882. // sqr(
  8883. // src0)),
  8884. // (1.0/N)),
  8885. // eps))));
  8886. // postorder:
  8887. // ## op args grad
  8888. // 00 param src0 grad[#00]
  8889. // 01 const 1
  8890. // 02 sqr (#00) grad[#02]
  8891. // 03 sum (#02) grad[#03]
  8892. // 04 const 1/N
  8893. // 05 scale (#03, #04) grad[#05]
  8894. // 06 const eps
  8895. // 07 add (#05, #06) grad[#07]
  8896. // 08 sqrt (#07) grad[#08]
  8897. // 09 div (#01,#08) grad[#09]
  8898. // 10 scale (#00,#09) grad[#10]
  8899. //
  8900. // backward pass, given grad[#10]
  8901. // #10: scale
  8902. // grad[#00] += scale(grad[#10],#09)
  8903. // grad[#09] += sum(mul(grad[#10],#00))
  8904. // #09: div
  8905. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8906. // #08: sqrt
  8907. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8908. // #07: add
  8909. // grad[#05] += grad[#07]
  8910. // #05: scale
  8911. // grad[#03] += scale(grad[#05],#04)
  8912. // #03: sum
  8913. // grad[#02] += repeat(grad[#03], #02)
  8914. // #02:
  8915. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8916. //
  8917. // substitute and simplify:
  8918. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8919. // grad[#02] = repeat(grad[#03], #02)
  8920. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8921. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8922. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8923. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8924. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8925. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8926. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8927. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8928. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8929. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8930. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8931. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8932. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8933. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8934. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8935. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8936. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8937. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8938. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8939. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8940. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8941. // a = b*c + d*e
  8942. // a = b*c*f/f + d*e*f/f
  8943. // a = (b*c*f + d*e*f)*(1/f)
  8944. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8945. // a = (b + d*e/c)*c
  8946. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8947. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8948. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8949. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8950. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8951. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8952. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8953. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8954. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8955. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8956. }
  8957. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8958. // post-order:
  8959. // dx := x
  8960. // dx := scale(dx,-mean_xdz/mean_eps)
  8961. // dx := add(dx, dz)
  8962. // dx := scale(dx, rrms)
  8963. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8964. ggml_vec_cpy_f32 (ne00, dx, x);
  8965. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8966. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8967. ggml_vec_acc_f32 (ne00, dx, dz);
  8968. ggml_vec_scale_f32(ne00, dx, rrms);
  8969. }
  8970. }
  8971. }
  8972. }
  8973. static void ggml_compute_forward_rms_norm_back(
  8974. const struct ggml_compute_params * params,
  8975. const struct ggml_tensor * src0,
  8976. const struct ggml_tensor * src1,
  8977. struct ggml_tensor * dst) {
  8978. switch (src0->type) {
  8979. case GGML_TYPE_F32:
  8980. {
  8981. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8982. } break;
  8983. default:
  8984. {
  8985. GGML_ASSERT(false);
  8986. } break;
  8987. }
  8988. }
  8989. // ggml_compute_forward_group_norm
  8990. static void ggml_compute_forward_group_norm_f32(
  8991. const struct ggml_compute_params * params,
  8992. const struct ggml_tensor * src0,
  8993. struct ggml_tensor * dst) {
  8994. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8996. return;
  8997. }
  8998. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8999. const int ith = params->ith;
  9000. const int nth = params->nth;
  9001. GGML_TENSOR_UNARY_OP_LOCALS;
  9002. const float eps = 1e-6f; // TODO: make this a parameter
  9003. // TODO: optimize
  9004. int n_channels = src0->ne[2];
  9005. int n_groups = dst->op_params[0];
  9006. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9007. for (int i = ith; i < n_groups; i+=nth) {
  9008. int start = i * n_channels_per_group;
  9009. int end = start + n_channels_per_group;
  9010. if (end > n_channels) {
  9011. end = n_channels;
  9012. }
  9013. int step = end - start;
  9014. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9015. ggml_float sum = 0.0;
  9016. for (int64_t i02 = start; i02 < end; i02++) {
  9017. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9018. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9019. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9020. sum += (ggml_float)x[i00];
  9021. }
  9022. }
  9023. }
  9024. float mean = sum / (ne00 * ne01 * step);
  9025. ggml_float sum2 = 0.0;
  9026. for (int64_t i02 = start; i02 < end; i02++) {
  9027. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9028. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9029. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9030. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9031. float v = x[i00] - mean;
  9032. y[i00] = v;
  9033. sum2 += (ggml_float)(v * v);
  9034. }
  9035. }
  9036. }
  9037. float variance = sum2 / (ne00 * ne01 * step);
  9038. const float scale = 1.0f / sqrtf(variance + eps);
  9039. for (int64_t i02 = start; i02 < end; i02++) {
  9040. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9041. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9042. ggml_vec_scale_f32(ne00, y, scale);
  9043. }
  9044. }
  9045. }
  9046. }
  9047. }
  9048. static void ggml_compute_forward_group_norm(
  9049. const struct ggml_compute_params * params,
  9050. const struct ggml_tensor * src0,
  9051. struct ggml_tensor * dst) {
  9052. switch (src0->type) {
  9053. case GGML_TYPE_F32:
  9054. {
  9055. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9056. } break;
  9057. default:
  9058. {
  9059. GGML_ASSERT(false);
  9060. } break;
  9061. }
  9062. }
  9063. // ggml_compute_forward_mul_mat
  9064. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9065. // helper function to determine if it is better to use BLAS or not
  9066. // for large matrices, BLAS is faster
  9067. static bool ggml_compute_forward_mul_mat_use_blas(
  9068. const struct ggml_tensor * src0,
  9069. const struct ggml_tensor * src1,
  9070. struct ggml_tensor * dst) {
  9071. //const int64_t ne00 = src0->ne[0];
  9072. //const int64_t ne01 = src0->ne[1];
  9073. const int64_t ne10 = src1->ne[0];
  9074. const int64_t ne0 = dst->ne[0];
  9075. const int64_t ne1 = dst->ne[1];
  9076. // TODO: find the optimal values for these
  9077. if (ggml_is_contiguous(src0) &&
  9078. ggml_is_contiguous(src1) &&
  9079. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9080. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9081. return true;
  9082. }
  9083. return false;
  9084. }
  9085. #endif
  9086. static void ggml_compute_forward_mul_mat(
  9087. const struct ggml_compute_params * params,
  9088. const struct ggml_tensor * src0,
  9089. const struct ggml_tensor * src1,
  9090. struct ggml_tensor * dst) {
  9091. int64_t t0 = ggml_perf_time_us();
  9092. UNUSED(t0);
  9093. GGML_TENSOR_BINARY_OP_LOCALS;
  9094. const int ith = params->ith;
  9095. const int nth = params->nth;
  9096. const enum ggml_type type = src0->type;
  9097. const bool src1_cont = ggml_is_contiguous(src1);
  9098. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9099. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9100. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9101. GGML_ASSERT(ne0 == ne01);
  9102. GGML_ASSERT(ne1 == ne11);
  9103. GGML_ASSERT(ne2 == ne12);
  9104. GGML_ASSERT(ne3 == ne13);
  9105. // we don't support permuted src0 or src1
  9106. GGML_ASSERT(nb00 == ggml_type_size(type));
  9107. GGML_ASSERT(nb10 == sizeof(float));
  9108. // dst cannot be transposed or permuted
  9109. GGML_ASSERT(nb0 == sizeof(float));
  9110. GGML_ASSERT(nb0 <= nb1);
  9111. GGML_ASSERT(nb1 <= nb2);
  9112. GGML_ASSERT(nb2 <= nb3);
  9113. // broadcast factors
  9114. const int64_t r2 = ne12/ne02;
  9115. const int64_t r3 = ne13/ne03;
  9116. // nb01 >= nb00 - src0 is not transposed
  9117. // compute by src0 rows
  9118. #if defined(GGML_USE_CLBLAST)
  9119. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9120. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9121. // ref: https://github.com/ggerganov/ggml/pull/224
  9122. GGML_ASSERT(ne02 == ne12);
  9123. GGML_ASSERT(ne03 == ne13);
  9124. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9125. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9126. }
  9127. return;
  9128. }
  9129. #endif
  9130. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9131. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9132. if (params->ith != 0) {
  9133. return;
  9134. }
  9135. if (params->type == GGML_TASK_INIT) {
  9136. return;
  9137. }
  9138. if (params->type == GGML_TASK_FINALIZE) {
  9139. return;
  9140. }
  9141. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9142. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9143. // broadcast src0 into src1 across 2nd,3rd dimension
  9144. const int64_t i03 = i13/r3;
  9145. const int64_t i02 = i12/r2;
  9146. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9147. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9148. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9149. if (type != GGML_TYPE_F32) {
  9150. float * const wdata = params->wdata;
  9151. ggml_to_float_t const to_float = type_traits[type].to_float;
  9152. size_t id = 0;
  9153. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9154. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9155. id += ne00;
  9156. }
  9157. assert(id*sizeof(float) <= params->wsize);
  9158. x = wdata;
  9159. }
  9160. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9161. ne11, ne01, ne10,
  9162. 1.0f, y, ne10,
  9163. x, ne00,
  9164. 0.0f, d, ne01);
  9165. }
  9166. }
  9167. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9168. return;
  9169. }
  9170. #endif
  9171. if (params->type == GGML_TASK_INIT) {
  9172. if (src1->type != vec_dot_type) {
  9173. char * wdata = params->wdata;
  9174. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9175. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9176. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9177. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9178. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9179. wdata += row_size;
  9180. }
  9181. }
  9182. }
  9183. }
  9184. return;
  9185. }
  9186. if (params->type == GGML_TASK_FINALIZE) {
  9187. return;
  9188. }
  9189. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9190. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9191. const int64_t nr0 = ne01; // src0 rows
  9192. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9193. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9194. // distribute the thread work across the inner or outer loop based on which one is larger
  9195. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9196. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9197. const int64_t ith0 = ith % nth0;
  9198. const int64_t ith1 = ith / nth0;
  9199. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9200. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9201. const int64_t ir010 = dr0*ith0;
  9202. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9203. const int64_t ir110 = dr1*ith1;
  9204. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9205. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9206. // threads with no work simply yield (not sure if it helps)
  9207. if (ir010 >= ir011 || ir110 >= ir111) {
  9208. sched_yield();
  9209. return;
  9210. }
  9211. assert(ne12 % ne02 == 0);
  9212. assert(ne13 % ne03 == 0);
  9213. // block-tiling attempt
  9214. const int64_t blck_0 = 16;
  9215. const int64_t blck_1 = 16;
  9216. // attempt to reduce false-sharing (does not seem to make a difference)
  9217. float tmp[16];
  9218. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9219. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9220. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9221. const int64_t i13 = (ir1/(ne12*ne11));
  9222. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9223. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9224. // broadcast src0 into src1
  9225. const int64_t i03 = i13/r3;
  9226. const int64_t i02 = i12/r2;
  9227. const int64_t i1 = i11;
  9228. const int64_t i2 = i12;
  9229. const int64_t i3 = i13;
  9230. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9231. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9232. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9233. // the original src1 data pointer, so we should index using the indices directly
  9234. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9235. const char * src1_col = (const char *) wdata +
  9236. (src1_cont || src1->type != vec_dot_type
  9237. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9238. : (i11*nb11 + i12*nb12 + i13*nb13));
  9239. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9240. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9241. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9242. //}
  9243. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9244. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9245. }
  9246. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9247. }
  9248. }
  9249. }
  9250. }
  9251. // ggml_compute_forward_out_prod
  9252. static void ggml_compute_forward_out_prod_f32(
  9253. const struct ggml_compute_params * params,
  9254. const struct ggml_tensor * src0,
  9255. const struct ggml_tensor * src1,
  9256. struct ggml_tensor * dst) {
  9257. int64_t t0 = ggml_perf_time_us();
  9258. UNUSED(t0);
  9259. GGML_TENSOR_BINARY_OP_LOCALS;
  9260. const int ith = params->ith;
  9261. const int nth = params->nth;
  9262. GGML_ASSERT(ne02 == ne12);
  9263. GGML_ASSERT(ne03 == ne13);
  9264. GGML_ASSERT(ne2 == ne12);
  9265. GGML_ASSERT(ne3 == ne13);
  9266. // we don't support permuted src0 or src1
  9267. GGML_ASSERT(nb00 == sizeof(float));
  9268. // dst cannot be transposed or permuted
  9269. GGML_ASSERT(nb0 == sizeof(float));
  9270. // GGML_ASSERT(nb0 <= nb1);
  9271. // GGML_ASSERT(nb1 <= nb2);
  9272. // GGML_ASSERT(nb2 <= nb3);
  9273. GGML_ASSERT(ne0 == ne00);
  9274. GGML_ASSERT(ne1 == ne10);
  9275. GGML_ASSERT(ne2 == ne02);
  9276. GGML_ASSERT(ne3 == ne03);
  9277. // nb01 >= nb00 - src0 is not transposed
  9278. // compute by src0 rows
  9279. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9280. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9281. if (params->type == GGML_TASK_INIT) {
  9282. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9283. return;
  9284. }
  9285. if (params->type == GGML_TASK_FINALIZE) {
  9286. return;
  9287. }
  9288. // parallelize by last three dimensions
  9289. // total rows in dst
  9290. const int64_t nr = ne1*ne2*ne3;
  9291. // rows per thread
  9292. const int64_t dr = (nr + nth - 1)/nth;
  9293. // row range for this thread
  9294. const int64_t ir0 = dr*ith;
  9295. const int64_t ir1 = MIN(ir0 + dr, nr);
  9296. // dst[:,:,:,:] = 0
  9297. // for i2,i3:
  9298. // for i1:
  9299. // for i01:
  9300. // for i0:
  9301. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9302. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9303. // dst indices
  9304. const int64_t i3 = ir/(ne2*ne1);
  9305. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9306. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9307. const int64_t i02 = i2;
  9308. const int64_t i03 = i3;
  9309. //const int64_t i10 = i1;
  9310. const int64_t i12 = i2;
  9311. const int64_t i13 = i3;
  9312. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9313. const int64_t i11 = i01;
  9314. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9315. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9316. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9317. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9318. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9319. // d[i0] += s0[i0] * s1[i1];
  9320. // }
  9321. }
  9322. }
  9323. //int64_t t1 = ggml_perf_time_us();
  9324. //static int64_t acc = 0;
  9325. //acc += t1 - t0;
  9326. //if (t1 - t0 > 10) {
  9327. // printf("\n");
  9328. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9329. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9330. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9331. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9332. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9333. //}
  9334. }
  9335. static void ggml_compute_forward_out_prod(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. const struct ggml_tensor * src1,
  9339. struct ggml_tensor * dst) {
  9340. switch (src0->type) {
  9341. case GGML_TYPE_Q4_0:
  9342. case GGML_TYPE_Q4_1:
  9343. case GGML_TYPE_Q5_0:
  9344. case GGML_TYPE_Q5_1:
  9345. case GGML_TYPE_Q8_0:
  9346. case GGML_TYPE_Q8_1:
  9347. {
  9348. GGML_ASSERT(false); // todo
  9349. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9350. } break;
  9351. case GGML_TYPE_F16:
  9352. {
  9353. GGML_ASSERT(false); // todo
  9354. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9355. } break;
  9356. case GGML_TYPE_F32:
  9357. {
  9358. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9359. } break;
  9360. default:
  9361. {
  9362. GGML_ASSERT(false);
  9363. } break;
  9364. }
  9365. }
  9366. // ggml_compute_forward_scale
  9367. static void ggml_compute_forward_scale_f32(
  9368. const struct ggml_compute_params * params,
  9369. const struct ggml_tensor * src0,
  9370. const struct ggml_tensor * src1,
  9371. struct ggml_tensor * dst) {
  9372. GGML_ASSERT(ggml_is_contiguous(src0));
  9373. GGML_ASSERT(ggml_is_contiguous(dst));
  9374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9375. GGML_ASSERT(ggml_is_scalar(src1));
  9376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9377. return;
  9378. }
  9379. // scale factor
  9380. const float v = *(float *) src1->data;
  9381. const int ith = params->ith;
  9382. const int nth = params->nth;
  9383. const int nc = src0->ne[0];
  9384. const int nr = ggml_nrows(src0);
  9385. // rows per thread
  9386. const int dr = (nr + nth - 1)/nth;
  9387. // row range for this thread
  9388. const int ir0 = dr*ith;
  9389. const int ir1 = MIN(ir0 + dr, nr);
  9390. const size_t nb01 = src0->nb[1];
  9391. const size_t nb1 = dst->nb[1];
  9392. for (int i1 = ir0; i1 < ir1; i1++) {
  9393. if (dst->data != src0->data) {
  9394. // src0 is same shape as dst => same indices
  9395. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9396. }
  9397. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9398. }
  9399. }
  9400. static void ggml_compute_forward_scale(
  9401. const struct ggml_compute_params * params,
  9402. const struct ggml_tensor * src0,
  9403. const struct ggml_tensor * src1,
  9404. struct ggml_tensor * dst) {
  9405. switch (src0->type) {
  9406. case GGML_TYPE_F32:
  9407. {
  9408. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9409. } break;
  9410. default:
  9411. {
  9412. GGML_ASSERT(false);
  9413. } break;
  9414. }
  9415. }
  9416. // ggml_compute_forward_set
  9417. static void ggml_compute_forward_set_f32(
  9418. const struct ggml_compute_params * params,
  9419. const struct ggml_tensor * src0,
  9420. const struct ggml_tensor * src1,
  9421. struct ggml_tensor * dst) {
  9422. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9423. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9424. // view src0 and dst with these strides and data offset inbytes during set
  9425. // nb0 is implicitely element_size because src0 and dst are contiguous
  9426. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9427. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9428. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9429. size_t offset = ((int32_t *) dst->op_params)[3];
  9430. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9431. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9432. // memcpy needs to be synchronized across threads to avoid race conditions.
  9433. // => do it in INIT phase
  9434. memcpy(
  9435. ((char *) dst->data),
  9436. ((char *) src0->data),
  9437. ggml_nbytes(dst));
  9438. }
  9439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9440. return;
  9441. }
  9442. const int ith = params->ith;
  9443. const int nth = params->nth;
  9444. const int nr = ggml_nrows(src1);
  9445. const int nc = src1->ne[0];
  9446. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9447. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9448. // src0 and dst as viewed during set
  9449. const size_t nb0 = ggml_element_size(src0);
  9450. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9451. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9452. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9453. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9454. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9455. GGML_ASSERT(nb10 == sizeof(float));
  9456. // rows per thread
  9457. const int dr = (nr + nth - 1)/nth;
  9458. // row range for this thread
  9459. const int ir0 = dr*ith;
  9460. const int ir1 = MIN(ir0 + dr, nr);
  9461. for (int ir = ir0; ir < ir1; ++ir) {
  9462. // src0 and dst are viewed with shape of src1 and offset
  9463. // => same indices
  9464. const int i3 = ir/(ne12*ne11);
  9465. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9466. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9467. ggml_vec_cpy_f32(nc,
  9468. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9469. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9470. }
  9471. }
  9472. static void ggml_compute_forward_set(
  9473. const struct ggml_compute_params * params,
  9474. const struct ggml_tensor * src0,
  9475. const struct ggml_tensor * src1,
  9476. struct ggml_tensor * dst) {
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9481. } break;
  9482. case GGML_TYPE_F16:
  9483. case GGML_TYPE_Q4_0:
  9484. case GGML_TYPE_Q4_1:
  9485. case GGML_TYPE_Q5_0:
  9486. case GGML_TYPE_Q5_1:
  9487. case GGML_TYPE_Q8_0:
  9488. case GGML_TYPE_Q8_1:
  9489. case GGML_TYPE_Q2_K:
  9490. case GGML_TYPE_Q3_K:
  9491. case GGML_TYPE_Q4_K:
  9492. case GGML_TYPE_Q5_K:
  9493. case GGML_TYPE_Q6_K:
  9494. default:
  9495. {
  9496. GGML_ASSERT(false);
  9497. } break;
  9498. }
  9499. }
  9500. // ggml_compute_forward_cpy
  9501. static void ggml_compute_forward_cpy(
  9502. const struct ggml_compute_params * params,
  9503. const struct ggml_tensor * src0,
  9504. struct ggml_tensor * dst) {
  9505. ggml_compute_forward_dup(params, src0, dst);
  9506. }
  9507. // ggml_compute_forward_cont
  9508. static void ggml_compute_forward_cont(
  9509. const struct ggml_compute_params * params,
  9510. const struct ggml_tensor * src0,
  9511. struct ggml_tensor * dst) {
  9512. ggml_compute_forward_dup(params, src0, dst);
  9513. }
  9514. // ggml_compute_forward_reshape
  9515. static void ggml_compute_forward_reshape(
  9516. const struct ggml_compute_params * params,
  9517. const struct ggml_tensor * src0,
  9518. struct ggml_tensor * dst) {
  9519. // NOP
  9520. UNUSED(params);
  9521. UNUSED(src0);
  9522. UNUSED(dst);
  9523. }
  9524. // ggml_compute_forward_view
  9525. static void ggml_compute_forward_view(
  9526. const struct ggml_compute_params * params,
  9527. const struct ggml_tensor * src0) {
  9528. // NOP
  9529. UNUSED(params);
  9530. UNUSED(src0);
  9531. }
  9532. // ggml_compute_forward_permute
  9533. static void ggml_compute_forward_permute(
  9534. const struct ggml_compute_params * params,
  9535. const struct ggml_tensor * src0) {
  9536. // NOP
  9537. UNUSED(params);
  9538. UNUSED(src0);
  9539. }
  9540. // ggml_compute_forward_transpose
  9541. static void ggml_compute_forward_transpose(
  9542. const struct ggml_compute_params * params,
  9543. const struct ggml_tensor * src0) {
  9544. // NOP
  9545. UNUSED(params);
  9546. UNUSED(src0);
  9547. }
  9548. // ggml_compute_forward_get_rows
  9549. static void ggml_compute_forward_get_rows_q(
  9550. const struct ggml_compute_params * params,
  9551. const struct ggml_tensor * src0,
  9552. const struct ggml_tensor * src1,
  9553. struct ggml_tensor * dst) {
  9554. assert(params->ith == 0);
  9555. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9556. return;
  9557. }
  9558. const int nc = src0->ne[0];
  9559. const int nr = ggml_nelements(src1);
  9560. const enum ggml_type type = src0->type;
  9561. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9562. assert( dst->ne[0] == nc);
  9563. assert( dst->ne[1] == nr);
  9564. assert(src0->nb[0] == ggml_type_size(type));
  9565. for (int i = 0; i < nr; ++i) {
  9566. const int r = ((int32_t *) src1->data)[i];
  9567. dequantize_row_q(
  9568. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9569. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9570. }
  9571. }
  9572. static void ggml_compute_forward_get_rows_f16(
  9573. const struct ggml_compute_params * params,
  9574. const struct ggml_tensor * src0,
  9575. const struct ggml_tensor * src1,
  9576. struct ggml_tensor * dst) {
  9577. assert(params->ith == 0);
  9578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9579. return;
  9580. }
  9581. const int nc = src0->ne[0];
  9582. const int nr = ggml_nelements(src1);
  9583. assert( dst->ne[0] == nc);
  9584. assert( dst->ne[1] == nr);
  9585. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9586. for (int i = 0; i < nr; ++i) {
  9587. const int r = ((int32_t *) src1->data)[i];
  9588. for (int j = 0; j < nc; ++j) {
  9589. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9590. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9591. }
  9592. }
  9593. }
  9594. static void ggml_compute_forward_get_rows_f32(
  9595. const struct ggml_compute_params * params,
  9596. const struct ggml_tensor * src0,
  9597. const struct ggml_tensor * src1,
  9598. struct ggml_tensor * dst) {
  9599. assert(params->ith == 0);
  9600. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9601. return;
  9602. }
  9603. const int nc = src0->ne[0];
  9604. const int nr = ggml_nelements(src1);
  9605. assert( dst->ne[0] == nc);
  9606. assert( dst->ne[1] == nr);
  9607. assert(src0->nb[0] == sizeof(float));
  9608. for (int i = 0; i < nr; ++i) {
  9609. const int r = ((int32_t *) src1->data)[i];
  9610. ggml_vec_cpy_f32(nc,
  9611. (float *) ((char *) dst->data + i*dst->nb[1]),
  9612. (float *) ((char *) src0->data + r*src0->nb[1]));
  9613. }
  9614. }
  9615. static void ggml_compute_forward_get_rows(
  9616. const struct ggml_compute_params * params,
  9617. const struct ggml_tensor * src0,
  9618. const struct ggml_tensor * src1,
  9619. struct ggml_tensor * dst) {
  9620. switch (src0->type) {
  9621. case GGML_TYPE_Q4_0:
  9622. case GGML_TYPE_Q4_1:
  9623. case GGML_TYPE_Q5_0:
  9624. case GGML_TYPE_Q5_1:
  9625. case GGML_TYPE_Q8_0:
  9626. case GGML_TYPE_Q8_1:
  9627. case GGML_TYPE_Q2_K:
  9628. case GGML_TYPE_Q3_K:
  9629. case GGML_TYPE_Q4_K:
  9630. case GGML_TYPE_Q5_K:
  9631. case GGML_TYPE_Q6_K:
  9632. {
  9633. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9634. } break;
  9635. case GGML_TYPE_F16:
  9636. {
  9637. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9638. } break;
  9639. case GGML_TYPE_F32:
  9640. {
  9641. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9642. } break;
  9643. default:
  9644. {
  9645. GGML_ASSERT(false);
  9646. } break;
  9647. }
  9648. //static bool first = true;
  9649. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9650. //if (first) {
  9651. // first = false;
  9652. //} else {
  9653. // for (int k = 0; k < dst->ne[1]; ++k) {
  9654. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9655. // for (int i = 0; i < 16; ++i) {
  9656. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9657. // }
  9658. // printf("\n");
  9659. // }
  9660. // printf("\n");
  9661. // }
  9662. // printf("\n");
  9663. // exit(0);
  9664. //}
  9665. }
  9666. // ggml_compute_forward_get_rows_back
  9667. static void ggml_compute_forward_get_rows_back_f32_f16(
  9668. const struct ggml_compute_params * params,
  9669. const struct ggml_tensor * src0,
  9670. const struct ggml_tensor * src1,
  9671. const struct ggml_tensor * opt0,
  9672. struct ggml_tensor * dst) {
  9673. GGML_ASSERT(params->ith == 0);
  9674. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9675. GGML_ASSERT(ggml_is_contiguous(opt0));
  9676. GGML_ASSERT(ggml_is_contiguous(dst));
  9677. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9679. return;
  9680. }
  9681. const int nc = src0->ne[0];
  9682. const int nr = ggml_nelements(src1);
  9683. GGML_ASSERT( dst->ne[0] == nc);
  9684. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9685. for (int i = 0; i < nr; ++i) {
  9686. const int r = ((int32_t *) src1->data)[i];
  9687. for (int j = 0; j < nc; ++j) {
  9688. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9689. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9690. }
  9691. }
  9692. }
  9693. static void ggml_compute_forward_get_rows_back_f32(
  9694. const struct ggml_compute_params * params,
  9695. const struct ggml_tensor * src0,
  9696. const struct ggml_tensor * src1,
  9697. const struct ggml_tensor * opt0,
  9698. struct ggml_tensor * dst) {
  9699. GGML_ASSERT(params->ith == 0);
  9700. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9701. GGML_ASSERT(ggml_is_contiguous(opt0));
  9702. GGML_ASSERT(ggml_is_contiguous(dst));
  9703. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9704. if (params->type == GGML_TASK_INIT) {
  9705. memset(dst->data, 0, ggml_nbytes(dst));
  9706. }
  9707. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9708. return;
  9709. }
  9710. const int nc = src0->ne[0];
  9711. const int nr = ggml_nelements(src1);
  9712. GGML_ASSERT( dst->ne[0] == nc);
  9713. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9714. for (int i = 0; i < nr; ++i) {
  9715. const int r = ((int32_t *) src1->data)[i];
  9716. ggml_vec_add_f32(nc,
  9717. (float *) ((char *) dst->data + r*dst->nb[1]),
  9718. (float *) ((char *) dst->data + r*dst->nb[1]),
  9719. (float *) ((char *) src0->data + i*src0->nb[1]));
  9720. }
  9721. }
  9722. static void ggml_compute_forward_get_rows_back(
  9723. const struct ggml_compute_params * params,
  9724. const struct ggml_tensor * src0,
  9725. const struct ggml_tensor * src1,
  9726. const struct ggml_tensor * opt0,
  9727. struct ggml_tensor * dst) {
  9728. switch (src0->type) {
  9729. case GGML_TYPE_F16:
  9730. {
  9731. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9732. } break;
  9733. case GGML_TYPE_F32:
  9734. {
  9735. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9736. } break;
  9737. default:
  9738. {
  9739. GGML_ASSERT(false);
  9740. } break;
  9741. }
  9742. //static bool first = true;
  9743. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9744. //if (first) {
  9745. // first = false;
  9746. //} else {
  9747. // for (int k = 0; k < dst->ne[1]; ++k) {
  9748. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9749. // for (int i = 0; i < 16; ++i) {
  9750. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9751. // }
  9752. // printf("\n");
  9753. // }
  9754. // printf("\n");
  9755. // }
  9756. // printf("\n");
  9757. // exit(0);
  9758. //}
  9759. }
  9760. // ggml_compute_forward_diag
  9761. static void ggml_compute_forward_diag_f32(
  9762. const struct ggml_compute_params * params,
  9763. const struct ggml_tensor * src0,
  9764. struct ggml_tensor * dst) {
  9765. GGML_ASSERT(params->ith == 0);
  9766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9767. return;
  9768. }
  9769. // TODO: handle transposed/permuted matrices
  9770. GGML_TENSOR_UNARY_OP_LOCALS;
  9771. GGML_ASSERT(ne00 == ne0);
  9772. GGML_ASSERT(ne00 == ne1);
  9773. GGML_ASSERT(ne01 == 1);
  9774. GGML_ASSERT(ne02 == ne2);
  9775. GGML_ASSERT(ne03 == ne3);
  9776. GGML_ASSERT(nb00 == sizeof(float));
  9777. GGML_ASSERT(nb0 == sizeof(float));
  9778. for (int i3 = 0; i3 < ne3; i3++) {
  9779. for (int i2 = 0; i2 < ne2; i2++) {
  9780. for (int i1 = 0; i1 < ne1; i1++) {
  9781. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9782. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9783. for (int i0 = 0; i0 < i1; i0++) {
  9784. d[i0] = 0;
  9785. }
  9786. d[i1] = s[i1];
  9787. for (int i0 = i1+1; i0 < ne0; i0++) {
  9788. d[i0] = 0;
  9789. }
  9790. }
  9791. }
  9792. }
  9793. }
  9794. static void ggml_compute_forward_diag(
  9795. const struct ggml_compute_params * params,
  9796. const struct ggml_tensor * src0,
  9797. struct ggml_tensor * dst) {
  9798. switch (src0->type) {
  9799. case GGML_TYPE_F32:
  9800. {
  9801. ggml_compute_forward_diag_f32(params, src0, dst);
  9802. } break;
  9803. default:
  9804. {
  9805. GGML_ASSERT(false);
  9806. } break;
  9807. }
  9808. }
  9809. // ggml_compute_forward_diag_mask_inf
  9810. static void ggml_compute_forward_diag_mask_f32(
  9811. const struct ggml_compute_params * params,
  9812. const struct ggml_tensor * src0,
  9813. struct ggml_tensor * dst,
  9814. const float value) {
  9815. const int ith = params->ith;
  9816. const int nth = params->nth;
  9817. const int n_past = ((int32_t *) dst->op_params)[0];
  9818. const bool inplace = src0->data == dst->data;
  9819. GGML_ASSERT(n_past >= 0);
  9820. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9821. // memcpy needs to be synchronized across threads to avoid race conditions.
  9822. // => do it in INIT phase
  9823. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9824. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9825. memcpy(
  9826. ((char *) dst->data),
  9827. ((char *) src0->data),
  9828. ggml_nbytes(dst));
  9829. }
  9830. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9831. return;
  9832. }
  9833. // TODO: handle transposed/permuted matrices
  9834. const int n = ggml_nrows(src0);
  9835. const int nc = src0->ne[0];
  9836. const int nr = src0->ne[1];
  9837. const int nz = n/nr;
  9838. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9839. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9840. for (int k = 0; k < nz; k++) {
  9841. for (int j = ith; j < nr; j += nth) {
  9842. for (int i = n_past; i < nc; i++) {
  9843. if (i > n_past + j) {
  9844. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9845. }
  9846. }
  9847. }
  9848. }
  9849. }
  9850. static void ggml_compute_forward_diag_mask_inf(
  9851. const struct ggml_compute_params * params,
  9852. const struct ggml_tensor * src0,
  9853. struct ggml_tensor * dst) {
  9854. switch (src0->type) {
  9855. case GGML_TYPE_F32:
  9856. {
  9857. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9858. } break;
  9859. default:
  9860. {
  9861. GGML_ASSERT(false);
  9862. } break;
  9863. }
  9864. }
  9865. static void ggml_compute_forward_diag_mask_zero(
  9866. const struct ggml_compute_params * params,
  9867. const struct ggml_tensor * src0,
  9868. struct ggml_tensor * dst) {
  9869. switch (src0->type) {
  9870. case GGML_TYPE_F32:
  9871. {
  9872. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9873. } break;
  9874. default:
  9875. {
  9876. GGML_ASSERT(false);
  9877. } break;
  9878. }
  9879. }
  9880. // ggml_compute_forward_soft_max
  9881. static void ggml_compute_forward_soft_max_f32(
  9882. const struct ggml_compute_params * params,
  9883. const struct ggml_tensor * src0,
  9884. struct ggml_tensor * dst) {
  9885. GGML_ASSERT(ggml_is_contiguous(src0));
  9886. GGML_ASSERT(ggml_is_contiguous(dst));
  9887. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9888. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9889. return;
  9890. }
  9891. // TODO: handle transposed/permuted matrices
  9892. const int ith = params->ith;
  9893. const int nth = params->nth;
  9894. const int nc = src0->ne[0];
  9895. const int nr = ggml_nrows(src0);
  9896. // rows per thread
  9897. const int dr = (nr + nth - 1)/nth;
  9898. // row range for this thread
  9899. const int ir0 = dr*ith;
  9900. const int ir1 = MIN(ir0 + dr, nr);
  9901. for (int i1 = ir0; i1 < ir1; i1++) {
  9902. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9903. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9904. #ifndef NDEBUG
  9905. for (int i = 0; i < nc; ++i) {
  9906. //printf("p[%d] = %f\n", i, p[i]);
  9907. assert(!isnan(sp[i]));
  9908. }
  9909. #endif
  9910. float max = -INFINITY;
  9911. ggml_vec_max_f32(nc, &max, sp);
  9912. ggml_float sum = 0.0;
  9913. uint16_t scvt;
  9914. for (int i = 0; i < nc; i++) {
  9915. if (sp[i] == -INFINITY) {
  9916. dp[i] = 0.0f;
  9917. } else {
  9918. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9919. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9920. memcpy(&scvt, &s, sizeof(scvt));
  9921. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9922. sum += (ggml_float)val;
  9923. dp[i] = val;
  9924. }
  9925. }
  9926. assert(sum > 0.0);
  9927. sum = 1.0/sum;
  9928. ggml_vec_scale_f32(nc, dp, sum);
  9929. #ifndef NDEBUG
  9930. for (int i = 0; i < nc; ++i) {
  9931. assert(!isnan(dp[i]));
  9932. assert(!isinf(dp[i]));
  9933. }
  9934. #endif
  9935. }
  9936. }
  9937. static void ggml_compute_forward_soft_max(
  9938. const struct ggml_compute_params * params,
  9939. const struct ggml_tensor * src0,
  9940. struct ggml_tensor * dst) {
  9941. switch (src0->type) {
  9942. case GGML_TYPE_F32:
  9943. {
  9944. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9945. } break;
  9946. default:
  9947. {
  9948. GGML_ASSERT(false);
  9949. } break;
  9950. }
  9951. }
  9952. // ggml_compute_forward_soft_max_back
  9953. static void ggml_compute_forward_soft_max_back_f32(
  9954. const struct ggml_compute_params * params,
  9955. const struct ggml_tensor * src0,
  9956. const struct ggml_tensor * src1,
  9957. struct ggml_tensor * dst) {
  9958. GGML_ASSERT(ggml_is_contiguous(src0));
  9959. GGML_ASSERT(ggml_is_contiguous(src1));
  9960. GGML_ASSERT(ggml_is_contiguous(dst));
  9961. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9962. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9963. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9964. return;
  9965. }
  9966. // TODO: handle transposed/permuted matrices
  9967. const int ith = params->ith;
  9968. const int nth = params->nth;
  9969. const int nc = src0->ne[0];
  9970. const int nr = ggml_nrows(src0);
  9971. // rows per thread
  9972. const int dr = (nr + nth - 1)/nth;
  9973. // row range for this thread
  9974. const int ir0 = dr*ith;
  9975. const int ir1 = MIN(ir0 + dr, nr);
  9976. for (int i1 = ir0; i1 < ir1; i1++) {
  9977. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9978. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9979. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9980. #ifndef NDEBUG
  9981. for (int i = 0; i < nc; ++i) {
  9982. //printf("p[%d] = %f\n", i, p[i]);
  9983. assert(!isnan(dy[i]));
  9984. assert(!isnan(y[i]));
  9985. }
  9986. #endif
  9987. // Jii = yi - yi*yi
  9988. // Jij = -yi*yj
  9989. // J = diag(y)-y.T*y
  9990. // dx = J * dy
  9991. // dxk = sum_i(Jki * dyi)
  9992. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9993. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9994. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9995. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9996. // dxk = -yk * dot(y, dy) + yk*dyk
  9997. // dxk = yk * (- dot(y, dy) + dyk)
  9998. // dxk = yk * (dyk - dot(y, dy))
  9999. //
  10000. // post-order:
  10001. // dot_y_dy := dot(y, dy)
  10002. // dx := dy
  10003. // dx := dx - dot_y_dy
  10004. // dx := dx * y
  10005. // linear runtime, no additional memory
  10006. float dot_y_dy = 0;
  10007. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10008. ggml_vec_cpy_f32 (nc, dx, dy);
  10009. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10010. ggml_vec_mul_f32 (nc, dx, dx, y);
  10011. #ifndef NDEBUG
  10012. for (int i = 0; i < nc; ++i) {
  10013. assert(!isnan(dx[i]));
  10014. assert(!isinf(dx[i]));
  10015. }
  10016. #endif
  10017. }
  10018. }
  10019. static void ggml_compute_forward_soft_max_back(
  10020. const struct ggml_compute_params * params,
  10021. const struct ggml_tensor * src0,
  10022. const struct ggml_tensor * src1,
  10023. struct ggml_tensor * dst) {
  10024. switch (src0->type) {
  10025. case GGML_TYPE_F32:
  10026. {
  10027. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10028. } break;
  10029. default:
  10030. {
  10031. GGML_ASSERT(false);
  10032. } break;
  10033. }
  10034. }
  10035. // ggml_compute_forward_alibi
  10036. static void ggml_compute_forward_alibi_f32(
  10037. const struct ggml_compute_params * params,
  10038. const struct ggml_tensor * src0,
  10039. struct ggml_tensor * dst) {
  10040. assert(params->ith == 0);
  10041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10042. return;
  10043. }
  10044. const int n_past = ((int32_t *) dst->op_params)[0];
  10045. const int n_head = ((int32_t *) dst->op_params)[1];
  10046. float max_bias;
  10047. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10048. assert(n_past >= 0);
  10049. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10050. const int ne1 = src0->ne[1]; // seq_len_without_past
  10051. const int ne2 = src0->ne[2]; // n_head -> this is k
  10052. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10053. const int n = ggml_nrows(src0);
  10054. const int ne2_ne3 = n/ne1; // ne2*ne3
  10055. const int nb0 = src0->nb[0];
  10056. const int nb1 = src0->nb[1];
  10057. const int nb2 = src0->nb[2];
  10058. //const int nb3 = src0->nb[3];
  10059. GGML_ASSERT(nb0 == sizeof(float));
  10060. GGML_ASSERT(ne1 + n_past == ne0);
  10061. GGML_ASSERT(n_head == ne2);
  10062. // add alibi to src0 (KQ_scaled)
  10063. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10064. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10065. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10066. for (int i = 0; i < ne0; i++) {
  10067. for (int j = 0; j < ne1; j++) {
  10068. for (int k = 0; k < ne2_ne3; k++) {
  10069. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10070. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10071. // TODO: k*nb2 or k*nb3
  10072. float m_k;
  10073. if (k < n_heads_log2_floor) {
  10074. m_k = powf(m0, k + 1);
  10075. } else {
  10076. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10077. }
  10078. pdst[0] = i * m_k + src[0];
  10079. }
  10080. }
  10081. }
  10082. }
  10083. static void ggml_compute_forward_alibi_f16(
  10084. const struct ggml_compute_params * params,
  10085. const struct ggml_tensor * src0,
  10086. struct ggml_tensor * dst) {
  10087. assert(params->ith == 0);
  10088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10089. return;
  10090. }
  10091. const int n_past = ((int32_t *) dst->op_params)[0];
  10092. const int n_head = ((int32_t *) dst->op_params)[1];
  10093. float max_bias;
  10094. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10095. assert(n_past >= 0);
  10096. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10097. const int ne1 = src0->ne[1]; // seq_len_without_past
  10098. const int ne2 = src0->ne[2]; // n_head -> this is k
  10099. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10100. const int n = ggml_nrows(src0);
  10101. const int ne2_ne3 = n/ne1; // ne2*ne3
  10102. const int nb0 = src0->nb[0];
  10103. const int nb1 = src0->nb[1];
  10104. const int nb2 = src0->nb[2];
  10105. //const int nb3 = src0->nb[3];
  10106. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10107. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10108. GGML_ASSERT(n_head == ne2);
  10109. // add alibi to src0 (KQ_scaled)
  10110. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10111. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10112. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10113. for (int i = 0; i < ne0; i++) {
  10114. for (int j = 0; j < ne1; j++) {
  10115. for (int k = 0; k < ne2_ne3; k++) {
  10116. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10117. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10118. // TODO: k*nb2 or k*nb3
  10119. float m_k;
  10120. if (k < n_heads_log2_floor) {
  10121. m_k = powf(m0, k + 1);
  10122. } else {
  10123. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10124. }
  10125. // we return F32
  10126. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10127. }
  10128. }
  10129. }
  10130. }
  10131. static void ggml_compute_forward_alibi(
  10132. const struct ggml_compute_params * params,
  10133. const struct ggml_tensor * src0,
  10134. struct ggml_tensor * dst) {
  10135. switch (src0->type) {
  10136. case GGML_TYPE_F16:
  10137. {
  10138. ggml_compute_forward_alibi_f16(params, src0, dst);
  10139. } break;
  10140. case GGML_TYPE_F32:
  10141. {
  10142. ggml_compute_forward_alibi_f32(params, src0, dst);
  10143. } break;
  10144. case GGML_TYPE_Q4_0:
  10145. case GGML_TYPE_Q4_1:
  10146. case GGML_TYPE_Q5_0:
  10147. case GGML_TYPE_Q5_1:
  10148. case GGML_TYPE_Q8_0:
  10149. case GGML_TYPE_Q8_1:
  10150. case GGML_TYPE_Q2_K:
  10151. case GGML_TYPE_Q3_K:
  10152. case GGML_TYPE_Q4_K:
  10153. case GGML_TYPE_Q5_K:
  10154. case GGML_TYPE_Q6_K:
  10155. case GGML_TYPE_Q8_K:
  10156. case GGML_TYPE_I8:
  10157. case GGML_TYPE_I16:
  10158. case GGML_TYPE_I32:
  10159. case GGML_TYPE_COUNT:
  10160. {
  10161. GGML_ASSERT(false);
  10162. } break;
  10163. }
  10164. }
  10165. // ggml_compute_forward_clamp
  10166. static void ggml_compute_forward_clamp_f32(
  10167. const struct ggml_compute_params * params,
  10168. const struct ggml_tensor * src0,
  10169. struct ggml_tensor * dst) {
  10170. assert(params->ith == 0);
  10171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10172. return;
  10173. }
  10174. float min;
  10175. float max;
  10176. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10177. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10178. const int ith = params->ith;
  10179. const int nth = params->nth;
  10180. const int n = ggml_nrows(src0);
  10181. const int nc = src0->ne[0];
  10182. const size_t nb00 = src0->nb[0];
  10183. const size_t nb01 = src0->nb[1];
  10184. const size_t nb0 = dst->nb[0];
  10185. const size_t nb1 = dst->nb[1];
  10186. GGML_ASSERT( nb0 == sizeof(float));
  10187. GGML_ASSERT(nb00 == sizeof(float));
  10188. for (int j = ith; j < n; j += nth) {
  10189. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10190. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10191. for (int i = 0; i < nc; i++) {
  10192. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10193. }
  10194. }
  10195. }
  10196. static void ggml_compute_forward_clamp(
  10197. const struct ggml_compute_params * params,
  10198. const struct ggml_tensor * src0,
  10199. struct ggml_tensor * dst) {
  10200. switch (src0->type) {
  10201. case GGML_TYPE_F32:
  10202. {
  10203. ggml_compute_forward_clamp_f32(params, src0, dst);
  10204. } break;
  10205. case GGML_TYPE_F16:
  10206. case GGML_TYPE_Q4_0:
  10207. case GGML_TYPE_Q4_1:
  10208. case GGML_TYPE_Q5_0:
  10209. case GGML_TYPE_Q5_1:
  10210. case GGML_TYPE_Q8_0:
  10211. case GGML_TYPE_Q8_1:
  10212. case GGML_TYPE_Q2_K:
  10213. case GGML_TYPE_Q3_K:
  10214. case GGML_TYPE_Q4_K:
  10215. case GGML_TYPE_Q5_K:
  10216. case GGML_TYPE_Q6_K:
  10217. case GGML_TYPE_Q8_K:
  10218. case GGML_TYPE_I8:
  10219. case GGML_TYPE_I16:
  10220. case GGML_TYPE_I32:
  10221. case GGML_TYPE_COUNT:
  10222. {
  10223. GGML_ASSERT(false);
  10224. } break;
  10225. }
  10226. }
  10227. // ggml_compute_forward_rope
  10228. static void ggml_compute_forward_rope_f32(
  10229. const struct ggml_compute_params * params,
  10230. const struct ggml_tensor * src0,
  10231. struct ggml_tensor * dst) {
  10232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10233. return;
  10234. }
  10235. float freq_base;
  10236. float freq_scale;
  10237. // these two only relevant for xPos RoPE:
  10238. float xpos_base;
  10239. bool xpos_down;
  10240. const int n_past = ((int32_t *) dst->op_params)[0];
  10241. const int n_dims = ((int32_t *) dst->op_params)[1];
  10242. const int mode = ((int32_t *) dst->op_params)[2];
  10243. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10244. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10245. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10246. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10247. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10248. assert(n_past >= 0);
  10249. GGML_TENSOR_UNARY_OP_LOCALS;
  10250. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10251. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10252. GGML_ASSERT(nb00 == sizeof(float));
  10253. const int ith = params->ith;
  10254. const int nth = params->nth;
  10255. const int nr = ggml_nrows(dst);
  10256. GGML_ASSERT(n_dims <= ne0);
  10257. GGML_ASSERT(n_dims % 2 == 0);
  10258. // rows per thread
  10259. const int dr = (nr + nth - 1)/nth;
  10260. // row range for this thread
  10261. const int ir0 = dr*ith;
  10262. const int ir1 = MIN(ir0 + dr, nr);
  10263. // row index used to determine which thread to use
  10264. int ir = 0;
  10265. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10266. const bool is_neox = mode & 2;
  10267. const bool is_glm = mode & 4;
  10268. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10269. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10270. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10271. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10272. if (ir++ < ir0) continue;
  10273. if (ir > ir1) break;
  10274. float theta = freq_scale * (float)p;
  10275. if (is_glm) {
  10276. theta = MIN(p, n_ctx - 2);
  10277. float block_theta = MAX(p - (n_ctx - 2), 0);
  10278. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10279. const float cos_theta = cosf(theta);
  10280. const float sin_theta = sinf(theta);
  10281. const float cos_block_theta = cosf(block_theta);
  10282. const float sin_block_theta = sinf(block_theta);
  10283. theta *= theta_scale;
  10284. block_theta *= theta_scale;
  10285. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10286. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10287. const float x0 = src[0];
  10288. const float x1 = src[n_dims/2];
  10289. const float x2 = src[n_dims];
  10290. const float x3 = src[n_dims/2*3];
  10291. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10292. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10293. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10294. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10295. }
  10296. } else if (!is_neox) {
  10297. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10298. const float cos_theta = cosf(theta);
  10299. const float sin_theta = sinf(theta);
  10300. // zeta scaling for xPos only:
  10301. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10302. if (xpos_down) zeta = 1.0f / zeta;
  10303. theta *= theta_scale;
  10304. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10305. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10306. const float x0 = src[0];
  10307. const float x1 = src[1];
  10308. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10309. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10310. }
  10311. } else {
  10312. // TODO: this might be wrong for ne0 != n_dims - need double check
  10313. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10314. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10315. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10316. const float cos_theta = cosf(theta);
  10317. const float sin_theta = sinf(theta);
  10318. theta *= theta_scale;
  10319. const int64_t i0 = ib*n_dims + ic/2;
  10320. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10321. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10322. const float x0 = src[0];
  10323. const float x1 = src[n_dims/2];
  10324. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10325. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10326. }
  10327. }
  10328. }
  10329. }
  10330. }
  10331. }
  10332. }
  10333. static void ggml_compute_forward_rope_f16(
  10334. const struct ggml_compute_params * params,
  10335. const struct ggml_tensor * src0,
  10336. struct ggml_tensor * dst) {
  10337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10338. return;
  10339. }
  10340. float freq_base;
  10341. float freq_scale;
  10342. const int n_past = ((int32_t *) dst->op_params)[0];
  10343. const int n_dims = ((int32_t *) dst->op_params)[1];
  10344. const int mode = ((int32_t *) dst->op_params)[2];
  10345. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10346. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10347. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10348. assert(n_past >= 0);
  10349. GGML_TENSOR_UNARY_OP_LOCALS;
  10350. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10351. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10352. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10353. const int ith = params->ith;
  10354. const int nth = params->nth;
  10355. const int nr = ggml_nrows(dst);
  10356. GGML_ASSERT(n_dims <= ne0);
  10357. GGML_ASSERT(n_dims % 2 == 0);
  10358. // rows per thread
  10359. const int dr = (nr + nth - 1)/nth;
  10360. // row range for this thread
  10361. const int ir0 = dr*ith;
  10362. const int ir1 = MIN(ir0 + dr, nr);
  10363. // row index used to determine which thread to use
  10364. int ir = 0;
  10365. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10366. const bool is_neox = mode & 2;
  10367. const bool is_glm = mode & 4;
  10368. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10369. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10370. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10371. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10372. if (ir++ < ir0) continue;
  10373. if (ir > ir1) break;
  10374. float theta = freq_scale * (float)p;
  10375. if (is_glm) {
  10376. theta = MIN(p, n_ctx - 2);
  10377. float block_theta = MAX(p - (n_ctx - 2), 0);
  10378. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10379. const float cos_theta = cosf(theta);
  10380. const float sin_theta = sinf(theta);
  10381. const float cos_block_theta = cosf(block_theta);
  10382. const float sin_block_theta = sinf(block_theta);
  10383. theta *= theta_scale;
  10384. block_theta *= theta_scale;
  10385. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10386. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10387. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10388. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10389. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10390. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10391. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10392. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10393. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10394. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10395. }
  10396. } if (!is_neox) {
  10397. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10398. const float cos_theta = cosf(theta);
  10399. const float sin_theta = sinf(theta);
  10400. theta *= theta_scale;
  10401. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10402. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10403. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10404. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10405. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10406. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10407. }
  10408. } else {
  10409. // TODO: this might be wrong for ne0 != n_dims - need double check
  10410. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10411. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10412. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10413. const float cos_theta = cosf(theta);
  10414. const float sin_theta = sinf(theta);
  10415. theta *= theta_scale;
  10416. const int64_t i0 = ib*n_dims + ic/2;
  10417. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10418. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10419. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10420. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10421. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10422. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10423. }
  10424. }
  10425. }
  10426. }
  10427. }
  10428. }
  10429. }
  10430. static void ggml_compute_forward_rope(
  10431. const struct ggml_compute_params * params,
  10432. const struct ggml_tensor * src0,
  10433. struct ggml_tensor * dst) {
  10434. switch (src0->type) {
  10435. case GGML_TYPE_F16:
  10436. {
  10437. ggml_compute_forward_rope_f16(params, src0, dst);
  10438. } break;
  10439. case GGML_TYPE_F32:
  10440. {
  10441. ggml_compute_forward_rope_f32(params, src0, dst);
  10442. } break;
  10443. default:
  10444. {
  10445. GGML_ASSERT(false);
  10446. } break;
  10447. }
  10448. }
  10449. // ggml_compute_forward_rope_back
  10450. static void ggml_compute_forward_rope_back_f32(
  10451. const struct ggml_compute_params * params,
  10452. const struct ggml_tensor * src0,
  10453. struct ggml_tensor * dst) {
  10454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10455. return;
  10456. }
  10457. // y = rope(x, src1)
  10458. // dx = rope_back(dy, src1)
  10459. // src0 is dy, src1 contains options
  10460. float freq_base;
  10461. float freq_scale;
  10462. // these two only relevant for xPos RoPE:
  10463. float xpos_base;
  10464. bool xpos_down;
  10465. const int n_past = ((int32_t *) dst->op_params)[0];
  10466. const int n_dims = ((int32_t *) dst->op_params)[1];
  10467. const int mode = ((int32_t *) dst->op_params)[2];
  10468. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10469. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10470. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10471. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10472. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10473. assert(n_past >= 0);
  10474. GGML_TENSOR_UNARY_OP_LOCALS;
  10475. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10476. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10477. assert(nb0 == sizeof(float));
  10478. const int ith = params->ith;
  10479. const int nth = params->nth;
  10480. const int nr = ggml_nrows(dst);
  10481. // rows per thread
  10482. const int dr = (nr + nth - 1)/nth;
  10483. // row range for this thread
  10484. const int ir0 = dr*ith;
  10485. const int ir1 = MIN(ir0 + dr, nr);
  10486. // row index used to determine which thread to use
  10487. int ir = 0;
  10488. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10489. const bool is_neox = mode & 2;
  10490. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10491. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10492. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10493. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10494. if (ir++ < ir0) continue;
  10495. if (ir > ir1) break;
  10496. float theta = freq_scale * (float)p;
  10497. if (!is_neox) {
  10498. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10499. const float cos_theta = cosf(theta);
  10500. const float sin_theta = sinf(theta);
  10501. // zeta scaling for xPos only:
  10502. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10503. if (xpos_down) zeta = 1.0f / zeta;
  10504. theta *= theta_scale;
  10505. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10506. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10507. const float dy0 = dy[0];
  10508. const float dy1 = dy[1];
  10509. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10510. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10511. }
  10512. } else {
  10513. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10514. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10515. const float cos_theta = cosf(theta);
  10516. const float sin_theta = sinf(theta);
  10517. theta *= theta_scale;
  10518. const int64_t i0 = ib*n_dims + ic/2;
  10519. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10520. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10521. const float dy0 = dy[0];
  10522. const float dy1 = dy[n_dims/2];
  10523. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10524. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10525. }
  10526. }
  10527. }
  10528. }
  10529. }
  10530. }
  10531. }
  10532. static void ggml_compute_forward_rope_back_f16(
  10533. const struct ggml_compute_params * params,
  10534. const struct ggml_tensor * src0,
  10535. struct ggml_tensor * dst) {
  10536. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10537. return;
  10538. }
  10539. // y = rope(x, src1)
  10540. // dx = rope_back(dy, src1)
  10541. // src0 is dy, src1 contains options
  10542. const int n_past = ((int32_t *) dst->op_params)[0];
  10543. const int n_dims = ((int32_t *) dst->op_params)[1];
  10544. const int mode = ((int32_t *) dst->op_params)[2];
  10545. assert(n_past >= 0);
  10546. GGML_TENSOR_UNARY_OP_LOCALS;
  10547. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10548. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10549. assert(nb0 == sizeof(ggml_fp16_t));
  10550. const int ith = params->ith;
  10551. const int nth = params->nth;
  10552. const int nr = ggml_nrows(dst);
  10553. // rows per thread
  10554. const int dr = (nr + nth - 1)/nth;
  10555. // row range for this thread
  10556. const int ir0 = dr*ith;
  10557. const int ir1 = MIN(ir0 + dr, nr);
  10558. // row index used to determine which thread to use
  10559. int ir = 0;
  10560. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10561. const bool is_neox = mode & 2;
  10562. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10563. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10564. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10565. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10566. if (ir++ < ir0) continue;
  10567. if (ir > ir1) break;
  10568. float theta = (float)p;
  10569. if (!is_neox) {
  10570. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10571. const float cos_theta = cosf(theta);
  10572. const float sin_theta = sinf(theta);
  10573. theta *= theta_scale;
  10574. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10575. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10576. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10577. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10578. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10579. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10580. }
  10581. } else {
  10582. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10583. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10584. const float cos_theta = cosf(theta);
  10585. const float sin_theta = sinf(theta);
  10586. theta *= theta_scale;
  10587. const int64_t i0 = ib*n_dims + ic/2;
  10588. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10589. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10590. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10591. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10592. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10593. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10594. }
  10595. }
  10596. }
  10597. }
  10598. }
  10599. }
  10600. }
  10601. static void ggml_compute_forward_rope_back(
  10602. const struct ggml_compute_params * params,
  10603. const struct ggml_tensor * src0,
  10604. struct ggml_tensor * dst) {
  10605. switch (src0->type) {
  10606. case GGML_TYPE_F16:
  10607. {
  10608. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10609. } break;
  10610. case GGML_TYPE_F32:
  10611. {
  10612. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10613. } break;
  10614. default:
  10615. {
  10616. GGML_ASSERT(false);
  10617. } break;
  10618. }
  10619. }
  10620. // ggml_compute_forward_conv_1d
  10621. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10622. const struct ggml_compute_params * params,
  10623. const struct ggml_tensor * src0,
  10624. const struct ggml_tensor * src1,
  10625. struct ggml_tensor * dst) {
  10626. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10627. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10628. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10629. int64_t t0 = ggml_perf_time_us();
  10630. UNUSED(t0);
  10631. GGML_TENSOR_BINARY_OP_LOCALS;
  10632. const int ith = params->ith;
  10633. const int nth = params->nth;
  10634. const int nk = ne00;
  10635. const int nh = nk/2;
  10636. const int ew0 = ggml_up32(ne01);
  10637. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10638. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10639. GGML_ASSERT(nb10 == sizeof(float));
  10640. if (params->type == GGML_TASK_INIT) {
  10641. // TODO: fix this memset (wsize is overestimated)
  10642. memset(params->wdata, 0, params->wsize);
  10643. // prepare kernel data (src0)
  10644. {
  10645. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10646. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10647. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10648. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10649. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10650. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10651. dst_data[i00*ew0 + i01] = src[i00];
  10652. }
  10653. }
  10654. }
  10655. }
  10656. // prepare source data (src1)
  10657. {
  10658. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10659. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10660. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10661. ggml_fp16_t * dst_data = wdata;
  10662. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10663. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10664. }
  10665. }
  10666. }
  10667. return;
  10668. }
  10669. if (params->type == GGML_TASK_FINALIZE) {
  10670. return;
  10671. }
  10672. // total rows in dst
  10673. const int nr = ne02;
  10674. // rows per thread
  10675. const int dr = (nr + nth - 1)/nth;
  10676. // row range for this thread
  10677. const int ir0 = dr*ith;
  10678. const int ir1 = MIN(ir0 + dr, nr);
  10679. for (int i1 = ir0; i1 < ir1; i1++) {
  10680. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10681. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10682. dst_data[i0] = 0;
  10683. for (int k = -nh; k <= nh; k++) {
  10684. float v = 0.0f;
  10685. ggml_vec_dot_f16(ew0, &v,
  10686. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10687. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10688. dst_data[i0] += v;
  10689. }
  10690. }
  10691. }
  10692. }
  10693. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10694. const struct ggml_compute_params * params,
  10695. const struct ggml_tensor * src0,
  10696. const struct ggml_tensor * src1,
  10697. struct ggml_tensor * dst) {
  10698. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10699. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10700. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10701. int64_t t0 = ggml_perf_time_us();
  10702. UNUSED(t0);
  10703. GGML_TENSOR_BINARY_OP_LOCALS;
  10704. const int ith = params->ith;
  10705. const int nth = params->nth;
  10706. const int nk = ne00;
  10707. const int nh = nk/2;
  10708. const int ew0 = ggml_up32(ne01);
  10709. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10710. GGML_ASSERT(nb00 == sizeof(float));
  10711. GGML_ASSERT(nb10 == sizeof(float));
  10712. if (params->type == GGML_TASK_INIT) {
  10713. // TODO: fix this memset (wsize is overestimated)
  10714. memset(params->wdata, 0, params->wsize);
  10715. // prepare kernel data (src0)
  10716. {
  10717. float * const wdata = (float *) params->wdata + 0;
  10718. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10719. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10720. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10721. float * dst_data = wdata + i02*ew0*ne00;
  10722. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10723. dst_data[i00*ew0 + i01] = src[i00];
  10724. }
  10725. }
  10726. }
  10727. }
  10728. // prepare source data (src1)
  10729. {
  10730. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10731. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10732. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10733. float * dst_data = wdata;
  10734. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10735. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10736. }
  10737. }
  10738. }
  10739. return;
  10740. }
  10741. if (params->type == GGML_TASK_FINALIZE) {
  10742. return;
  10743. }
  10744. // total rows in dst
  10745. const int nr = ne02;
  10746. // rows per thread
  10747. const int dr = (nr + nth - 1)/nth;
  10748. // row range for this thread
  10749. const int ir0 = dr*ith;
  10750. const int ir1 = MIN(ir0 + dr, nr);
  10751. for (int i1 = ir0; i1 < ir1; i1++) {
  10752. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10753. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10754. dst_data[i0] = 0;
  10755. for (int k = -nh; k <= nh; k++) {
  10756. float v = 0.0f;
  10757. ggml_vec_dot_f32(ew0, &v,
  10758. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10759. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10760. dst_data[i0] += v;
  10761. }
  10762. }
  10763. }
  10764. }
  10765. static void ggml_compute_forward_conv_1d_s1_ph(
  10766. const struct ggml_compute_params * params,
  10767. const struct ggml_tensor * src0,
  10768. const struct ggml_tensor * src1,
  10769. struct ggml_tensor * dst) {
  10770. switch (src0->type) {
  10771. case GGML_TYPE_F16:
  10772. {
  10773. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10774. } break;
  10775. case GGML_TYPE_F32:
  10776. {
  10777. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10778. } break;
  10779. default:
  10780. {
  10781. GGML_ASSERT(false);
  10782. } break;
  10783. }
  10784. }
  10785. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10786. const struct ggml_compute_params * params,
  10787. const struct ggml_tensor * src0,
  10788. const struct ggml_tensor * src1,
  10789. struct ggml_tensor * dst) {
  10790. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10791. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10792. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10793. int64_t t0 = ggml_perf_time_us();
  10794. UNUSED(t0);
  10795. GGML_TENSOR_BINARY_OP_LOCALS;
  10796. const int ith = params->ith;
  10797. const int nth = params->nth;
  10798. const int nk = ne00;
  10799. const int nh = nk/2;
  10800. const int ew0 = ggml_up32(ne01);
  10801. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10802. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10803. GGML_ASSERT(nb10 == sizeof(float));
  10804. if (params->type == GGML_TASK_INIT) {
  10805. // TODO: fix this memset (wsize is overestimated)
  10806. memset(params->wdata, 0, params->wsize);
  10807. // prepare kernel data (src0)
  10808. {
  10809. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10811. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10812. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10813. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10814. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10815. dst_data[i00*ew0 + i01] = src[i00];
  10816. }
  10817. }
  10818. }
  10819. }
  10820. // prepare source data (src1)
  10821. {
  10822. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10823. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10824. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10825. ggml_fp16_t * dst_data = wdata;
  10826. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10827. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10828. }
  10829. }
  10830. }
  10831. return;
  10832. }
  10833. if (params->type == GGML_TASK_FINALIZE) {
  10834. return;
  10835. }
  10836. // total rows in dst
  10837. const int nr = ne02;
  10838. // rows per thread
  10839. const int dr = (nr + nth - 1)/nth;
  10840. // row range for this thread
  10841. const int ir0 = dr*ith;
  10842. const int ir1 = MIN(ir0 + dr, nr);
  10843. for (int i1 = ir0; i1 < ir1; i1++) {
  10844. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10845. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10846. dst_data[i0/2] = 0;
  10847. for (int k = -nh; k <= nh; k++) {
  10848. float v = 0.0f;
  10849. ggml_vec_dot_f16(ew0, &v,
  10850. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10851. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10852. dst_data[i0/2] += v;
  10853. }
  10854. }
  10855. }
  10856. }
  10857. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10858. const struct ggml_compute_params * params,
  10859. const struct ggml_tensor * src0,
  10860. const struct ggml_tensor * src1,
  10861. struct ggml_tensor * dst) {
  10862. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10863. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10864. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10865. int64_t t0 = ggml_perf_time_us();
  10866. UNUSED(t0);
  10867. GGML_TENSOR_BINARY_OP_LOCALS;
  10868. const int ith = params->ith;
  10869. const int nth = params->nth;
  10870. const int nk = ne00;
  10871. const int nh = nk/2;
  10872. const int ew0 = ggml_up32(ne01);
  10873. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10874. GGML_ASSERT(nb00 == sizeof(float));
  10875. GGML_ASSERT(nb10 == sizeof(float));
  10876. if (params->type == GGML_TASK_INIT) {
  10877. // TODO: fix this memset (wsize is overestimated)
  10878. memset(params->wdata, 0, params->wsize);
  10879. // prepare kernel data (src0)
  10880. {
  10881. float * const wdata = (float *) params->wdata + 0;
  10882. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10883. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10884. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10885. float * dst_data = wdata + i02*ew0*ne00;
  10886. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10887. dst_data[i00*ew0 + i01] = src[i00];
  10888. }
  10889. }
  10890. }
  10891. }
  10892. // prepare source data (src1)
  10893. {
  10894. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10895. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10896. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10897. float * dst_data = wdata;
  10898. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10899. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10900. }
  10901. }
  10902. }
  10903. return;
  10904. }
  10905. if (params->type == GGML_TASK_FINALIZE) {
  10906. return;
  10907. }
  10908. // total rows in dst
  10909. const int nr = ne02;
  10910. // rows per thread
  10911. const int dr = (nr + nth - 1)/nth;
  10912. // row range for this thread
  10913. const int ir0 = dr*ith;
  10914. const int ir1 = MIN(ir0 + dr, nr);
  10915. for (int i1 = ir0; i1 < ir1; i1++) {
  10916. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10917. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10918. dst_data[i0/2] = 0;
  10919. for (int k = -nh; k <= nh; k++) {
  10920. float v = 0.0f;
  10921. ggml_vec_dot_f32(ew0, &v,
  10922. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10923. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10924. dst_data[i0/2] += v;
  10925. }
  10926. }
  10927. }
  10928. }
  10929. static void ggml_compute_forward_conv_1d_s2_ph(
  10930. const struct ggml_compute_params * params,
  10931. const struct ggml_tensor * src0,
  10932. const struct ggml_tensor * src1,
  10933. struct ggml_tensor * dst) {
  10934. switch (src0->type) {
  10935. case GGML_TYPE_F16:
  10936. {
  10937. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10938. } break;
  10939. case GGML_TYPE_F32:
  10940. {
  10941. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10942. } break;
  10943. default:
  10944. {
  10945. GGML_ASSERT(false);
  10946. } break;
  10947. }
  10948. }
  10949. // ggml_compute_forward_conv_1d
  10950. static void ggml_compute_forward_conv_1d(
  10951. const struct ggml_compute_params * params,
  10952. const struct ggml_tensor * src0,
  10953. const struct ggml_tensor * src1,
  10954. struct ggml_tensor * dst) {
  10955. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10956. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10957. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10958. GGML_ASSERT(d0 == 1); // dilation not supported
  10959. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10960. if (s0 == 1) {
  10961. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10962. } else if (s0 == 2) {
  10963. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10964. } else {
  10965. GGML_ASSERT(false); // only stride 1 and 2 supported
  10966. };
  10967. }
  10968. // ggml_compute_forward_conv_2d
  10969. static void ggml_compute_forward_conv_2d_f16_f32(
  10970. const struct ggml_compute_params * params,
  10971. const struct ggml_tensor * src0,
  10972. const struct ggml_tensor * src1,
  10973. struct ggml_tensor * dst) {
  10974. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10975. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10976. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10977. int64_t t0 = ggml_perf_time_us();
  10978. UNUSED(t0);
  10979. GGML_TENSOR_BINARY_OP_LOCALS;
  10980. const int ith = params->ith;
  10981. const int nth = params->nth;
  10982. const int nk0 = ne00;
  10983. const int nk1 = ne01;
  10984. // size of the convolution row - the kernel size unrolled across all channels
  10985. const int ew0 = nk0*nk1*ne02;
  10986. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10987. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10988. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10989. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10990. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10991. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10992. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10993. GGML_ASSERT(nb10 == sizeof(float));
  10994. if (params->type == GGML_TASK_INIT) {
  10995. memset(params->wdata, 0, params->wsize);
  10996. // prepare source data (src1)
  10997. {
  10998. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10999. for (int i12 = 0; i12 < ne12; i12++) {
  11000. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11001. ggml_fp16_t * dst_data = wdata;
  11002. for (int i1 = 0; i1 < ne1; i1++) {
  11003. for (int i0 = 0; i0 < ne0; i0++) {
  11004. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11005. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11006. const int idx0 = i0*s0 + ik0*d0 - p0;
  11007. const int idx1 = i1*s1 + ik1*d1 - p1;
  11008. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11009. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11010. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11011. }
  11012. }
  11013. }
  11014. }
  11015. }
  11016. }
  11017. }
  11018. return;
  11019. }
  11020. if (params->type == GGML_TASK_FINALIZE) {
  11021. return;
  11022. }
  11023. // total patches in dst
  11024. const int np = ne2;
  11025. // patches per thread
  11026. const int dp = (np + nth - 1)/nth;
  11027. // patch range for this thread
  11028. const int ip0 = dp*ith;
  11029. const int ip1 = MIN(ip0 + dp, np);
  11030. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11031. for (int i3 = 0; i3 < ne3; i3++) {
  11032. for (int i2 = ip0; i2 < ip1; i2++) {
  11033. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11034. for (int i1 = 0; i1 < ne1; ++i1) {
  11035. for (int i0 = 0; i0 < ne0; ++i0) {
  11036. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11037. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11038. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11039. }
  11040. }
  11041. }
  11042. }
  11043. }
  11044. static void ggml_compute_forward_conv_2d(
  11045. const struct ggml_compute_params * params,
  11046. const struct ggml_tensor * src0,
  11047. const struct ggml_tensor * src1,
  11048. struct ggml_tensor * dst) {
  11049. switch (src0->type) {
  11050. case GGML_TYPE_F16:
  11051. {
  11052. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11053. } break;
  11054. case GGML_TYPE_F32:
  11055. {
  11056. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11057. GGML_ASSERT(false);
  11058. } break;
  11059. default:
  11060. {
  11061. GGML_ASSERT(false);
  11062. } break;
  11063. }
  11064. }
  11065. // ggml_compute_forward_conv_transpose_2d
  11066. static void ggml_compute_forward_conv_transpose_2d(
  11067. const struct ggml_compute_params * params,
  11068. const struct ggml_tensor * src0,
  11069. const struct ggml_tensor * src1,
  11070. struct ggml_tensor * dst) {
  11071. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11072. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11073. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11074. int64_t t0 = ggml_perf_time_us();
  11075. UNUSED(t0);
  11076. GGML_TENSOR_BINARY_OP_LOCALS;
  11077. const int ith = params->ith;
  11078. const int nth = params->nth;
  11079. const int nk = ne00*ne01*ne02*ne03;
  11080. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11081. GGML_ASSERT(nb10 == sizeof(float));
  11082. if (params->type == GGML_TASK_INIT) {
  11083. memset(params->wdata, 0, params->wsize);
  11084. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11085. {
  11086. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11087. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11088. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11089. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11090. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11091. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11092. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11093. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11094. }
  11095. }
  11096. }
  11097. }
  11098. }
  11099. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11100. {
  11101. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11102. for (int i12 = 0; i12 < ne12; i12++) {
  11103. for (int i11 = 0; i11 < ne11; i11++) {
  11104. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11105. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11106. for (int i10 = 0; i10 < ne10; i10++) {
  11107. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11108. }
  11109. }
  11110. }
  11111. }
  11112. return;
  11113. }
  11114. if (params->type == GGML_TASK_FINALIZE) {
  11115. return;
  11116. }
  11117. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11118. // total patches in dst
  11119. const int np = ne2;
  11120. // patches per thread
  11121. const int dp = (np + nth - 1)/nth;
  11122. // patch range for this thread
  11123. const int ip0 = dp*ith;
  11124. const int ip1 = MIN(ip0 + dp, np);
  11125. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11126. ggml_fp16_t * const wdata_src = wdata + nk;
  11127. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11128. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11129. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11130. for (int i11 = 0; i11 < ne11; i11++) {
  11131. for (int i10 = 0; i10 < ne10; i10++) {
  11132. const int i1n = i11*ne10*ne12 + i10*ne12;
  11133. for (int i01 = 0; i01 < ne01; i01++) {
  11134. for (int i00 = 0; i00 < ne00; i00++) {
  11135. float v = 0;
  11136. ggml_vec_dot_f16(ne03, &v,
  11137. wdata_src + i1n,
  11138. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11139. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11140. }
  11141. }
  11142. }
  11143. }
  11144. }
  11145. }
  11146. // ggml_compute_forward_pool_1d_sk_p0
  11147. static void ggml_compute_forward_pool_1d_sk_p0(
  11148. const struct ggml_compute_params * params,
  11149. const enum ggml_op_pool op,
  11150. const struct ggml_tensor * src,
  11151. const int k,
  11152. struct ggml_tensor * dst) {
  11153. assert(src->type == GGML_TYPE_F32);
  11154. assert(params->ith == 0);
  11155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11156. return;
  11157. }
  11158. const char * cdata = (const char *)src->data;
  11159. const char * const data_end = cdata + ggml_nbytes(src);
  11160. float * drow = (float *)dst->data;
  11161. const int64_t rs = dst->ne[0];
  11162. while (cdata < data_end) {
  11163. const float * const srow = (const float *)cdata;
  11164. int j = 0;
  11165. for (int64_t i = 0; i < rs; ++i) {
  11166. switch (op) {
  11167. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11168. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11169. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11170. }
  11171. for (int ki = 0; ki < k; ++ki) {
  11172. switch (op) {
  11173. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11174. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11175. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11176. }
  11177. ++j;
  11178. }
  11179. switch (op) {
  11180. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11181. case GGML_OP_POOL_MAX: break;
  11182. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11183. }
  11184. }
  11185. cdata += src->nb[1];
  11186. drow += rs;
  11187. }
  11188. }
  11189. // ggml_compute_forward_pool_1d
  11190. static void ggml_compute_forward_pool_1d(
  11191. const struct ggml_compute_params * params,
  11192. const struct ggml_tensor * src0,
  11193. struct ggml_tensor * dst) {
  11194. const int32_t * opts = (const int32_t *)dst->op_params;
  11195. enum ggml_op_pool op = opts[0];
  11196. const int k0 = opts[1];
  11197. const int s0 = opts[2];
  11198. const int p0 = opts[3];
  11199. GGML_ASSERT(p0 == 0); // padding not supported
  11200. GGML_ASSERT(k0 == s0); // only s = k supported
  11201. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11202. }
  11203. // ggml_compute_forward_pool_2d_sk_p0
  11204. static void ggml_compute_forward_pool_2d_sk_p0(
  11205. const struct ggml_compute_params * params,
  11206. const enum ggml_op_pool op,
  11207. const struct ggml_tensor * src,
  11208. const int k0,
  11209. const int k1,
  11210. struct ggml_tensor * dst) {
  11211. assert(src->type == GGML_TYPE_F32);
  11212. assert(params->ith == 0);
  11213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11214. return;
  11215. }
  11216. const char * cdata = (const char*)src->data;
  11217. const char * const data_end = cdata + ggml_nbytes(src);
  11218. const int64_t px = dst->ne[0];
  11219. const int64_t py = dst->ne[1];
  11220. const int64_t pa = px * py;
  11221. float * dplane = (float *)dst->data;
  11222. const int ka = k0 * k1;
  11223. while (cdata < data_end) {
  11224. for (int oy = 0; oy < py; ++oy) {
  11225. float * const drow = dplane + oy * px;
  11226. for (int ox = 0; ox < px; ++ox) {
  11227. float * const out = drow + ox;
  11228. switch (op) {
  11229. case GGML_OP_POOL_AVG: *out = 0; break;
  11230. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11231. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11232. }
  11233. const int ix = ox * k0;
  11234. const int iy = oy * k1;
  11235. for (int ky = 0; ky < k1; ++ky) {
  11236. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11237. for (int kx = 0; kx < k0; ++kx) {
  11238. int j = ix + kx;
  11239. switch (op) {
  11240. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11241. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11242. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11243. }
  11244. }
  11245. }
  11246. switch (op) {
  11247. case GGML_OP_POOL_AVG: *out /= ka; break;
  11248. case GGML_OP_POOL_MAX: break;
  11249. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11250. }
  11251. }
  11252. }
  11253. cdata += src->nb[2];
  11254. dplane += pa;
  11255. }
  11256. }
  11257. // ggml_compute_forward_pool_2d
  11258. static void ggml_compute_forward_pool_2d(
  11259. const struct ggml_compute_params * params,
  11260. const struct ggml_tensor * src0,
  11261. struct ggml_tensor * dst) {
  11262. const int32_t * opts = (const int32_t *)dst->op_params;
  11263. enum ggml_op_pool op = opts[0];
  11264. const int k0 = opts[1];
  11265. const int k1 = opts[2];
  11266. const int s0 = opts[3];
  11267. const int s1 = opts[4];
  11268. const int p0 = opts[5];
  11269. const int p1 = opts[6];
  11270. GGML_ASSERT(p0 == 0);
  11271. GGML_ASSERT(p1 == 0); // padding not supported
  11272. GGML_ASSERT(k0 == s0);
  11273. GGML_ASSERT(k1 == s1); // only s = k supported
  11274. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11275. }
  11276. // ggml_compute_forward_upscale
  11277. static void ggml_compute_forward_upscale_f32(
  11278. const struct ggml_compute_params * params,
  11279. const struct ggml_tensor * src0,
  11280. struct ggml_tensor * dst) {
  11281. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11282. return;
  11283. }
  11284. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11285. const int ith = params->ith;
  11286. GGML_TENSOR_UNARY_OP_LOCALS;
  11287. const int scale_factor = dst->op_params[0];
  11288. // TODO: optimize
  11289. for (int i03 = 0; i03 < ne03; i03++) {
  11290. for (int i02 = ith; i02 < ne02; i02++) {
  11291. for (int m = 0; m < dst->ne[1]; m++) {
  11292. int i01 = m / scale_factor;
  11293. for (int n = 0; n < dst->ne[0]; n++) {
  11294. int i00 = n / scale_factor;
  11295. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11296. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11297. *y = *x;
  11298. }
  11299. }
  11300. }
  11301. }
  11302. }
  11303. static void ggml_compute_forward_upscale(
  11304. const struct ggml_compute_params * params,
  11305. const struct ggml_tensor * src0,
  11306. struct ggml_tensor * dst) {
  11307. switch (src0->type) {
  11308. case GGML_TYPE_F32:
  11309. {
  11310. ggml_compute_forward_upscale_f32(params, src0, dst);
  11311. } break;
  11312. default:
  11313. {
  11314. GGML_ASSERT(false);
  11315. } break;
  11316. }
  11317. }
  11318. // ggml_compute_forward_flash_attn
  11319. static void ggml_compute_forward_flash_attn_f32(
  11320. const struct ggml_compute_params * params,
  11321. const struct ggml_tensor * q,
  11322. const struct ggml_tensor * k,
  11323. const struct ggml_tensor * v,
  11324. const bool masked,
  11325. struct ggml_tensor * dst) {
  11326. int64_t t0 = ggml_perf_time_us();
  11327. UNUSED(t0);
  11328. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11329. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11330. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11331. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11332. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11333. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11334. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11335. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11336. const int ith = params->ith;
  11337. const int nth = params->nth;
  11338. const int64_t D = neq0;
  11339. const int64_t N = neq1;
  11340. const int64_t P = nek1 - N;
  11341. const int64_t M = P + N;
  11342. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11343. GGML_ASSERT(ne0 == D);
  11344. GGML_ASSERT(ne1 == N);
  11345. GGML_ASSERT(P >= 0);
  11346. GGML_ASSERT(nbq0 == sizeof(float));
  11347. GGML_ASSERT(nbk0 == sizeof(float));
  11348. GGML_ASSERT(nbv0 == sizeof(float));
  11349. GGML_ASSERT(neq0 == D);
  11350. GGML_ASSERT(nek0 == D);
  11351. GGML_ASSERT(nev1 == D);
  11352. GGML_ASSERT(neq1 == N);
  11353. GGML_ASSERT(nek1 == N + P);
  11354. GGML_ASSERT(nev1 == D);
  11355. // dst cannot be transposed or permuted
  11356. GGML_ASSERT(nb0 == sizeof(float));
  11357. GGML_ASSERT(nb0 <= nb1);
  11358. GGML_ASSERT(nb1 <= nb2);
  11359. GGML_ASSERT(nb2 <= nb3);
  11360. if (params->type == GGML_TASK_INIT) {
  11361. return;
  11362. }
  11363. if (params->type == GGML_TASK_FINALIZE) {
  11364. return;
  11365. }
  11366. // parallelize by q rows using ggml_vec_dot_f32
  11367. // total rows in q
  11368. const int nr = neq1*neq2*neq3;
  11369. // rows per thread
  11370. const int dr = (nr + nth - 1)/nth;
  11371. // row range for this thread
  11372. const int ir0 = dr*ith;
  11373. const int ir1 = MIN(ir0 + dr, nr);
  11374. const float scale = 1.0f/sqrtf(D);
  11375. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11376. for (int ir = ir0; ir < ir1; ++ir) {
  11377. // q indices
  11378. const int iq3 = ir/(neq2*neq1);
  11379. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11380. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11381. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11382. for (int i = M; i < Mup; ++i) {
  11383. S[i] = -INFINITY;
  11384. }
  11385. for (int64_t ic = 0; ic < nek1; ++ic) {
  11386. // k indices
  11387. const int ik3 = iq3;
  11388. const int ik2 = iq2;
  11389. const int ik1 = ic;
  11390. // S indices
  11391. const int i1 = ik1;
  11392. ggml_vec_dot_f32(neq0,
  11393. S + i1,
  11394. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11395. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11396. }
  11397. // scale
  11398. ggml_vec_scale_f32(nek1, S, scale);
  11399. if (masked) {
  11400. for (int64_t i = P; i < M; i++) {
  11401. if (i > P + iq1) {
  11402. S[i] = -INFINITY;
  11403. }
  11404. }
  11405. }
  11406. // softmax
  11407. {
  11408. float max = -INFINITY;
  11409. ggml_vec_max_f32(M, &max, S);
  11410. ggml_float sum = 0.0;
  11411. {
  11412. #ifdef GGML_SOFT_MAX_ACCELERATE
  11413. max = -max;
  11414. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11415. vvexpf(S, S, &Mup);
  11416. ggml_vec_sum_f32(Mup, &sum, S);
  11417. #else
  11418. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11419. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11420. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11421. float * SS = S + i;
  11422. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11423. if (SS[j] == -INFINITY) {
  11424. SS[j] = 0.0f;
  11425. } else {
  11426. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11427. const float val = expf(SS[j] - max);
  11428. #else
  11429. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11430. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11431. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11432. #endif
  11433. sump[j] += (ggml_float)val;
  11434. SS[j] = val;
  11435. }
  11436. }
  11437. }
  11438. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11439. sum += sump[i];
  11440. }
  11441. #endif
  11442. }
  11443. assert(sum > 0.0);
  11444. sum = 1.0/sum;
  11445. ggml_vec_scale_f32(M, S, sum);
  11446. #ifndef NDEBUG
  11447. for (int i = 0; i < M; ++i) {
  11448. assert(!isnan(S[i]));
  11449. assert(!isinf(S[i]));
  11450. }
  11451. #endif
  11452. }
  11453. for (int64_t ic = 0; ic < nev1; ++ic) {
  11454. // dst indices
  11455. const int i1 = iq1;
  11456. const int i2 = iq2;
  11457. const int i3 = iq3;
  11458. ggml_vec_dot_f32(nek1,
  11459. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11460. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11461. S);
  11462. }
  11463. }
  11464. }
  11465. static void ggml_compute_forward_flash_attn_f16(
  11466. const struct ggml_compute_params * params,
  11467. const struct ggml_tensor * q,
  11468. const struct ggml_tensor * k,
  11469. const struct ggml_tensor * v,
  11470. const bool masked,
  11471. struct ggml_tensor * dst) {
  11472. int64_t t0 = ggml_perf_time_us();
  11473. UNUSED(t0);
  11474. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11475. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11476. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11477. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11478. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11479. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11480. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11481. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11482. const int ith = params->ith;
  11483. const int nth = params->nth;
  11484. const int64_t D = neq0;
  11485. const int64_t N = neq1;
  11486. const int64_t P = nek1 - N;
  11487. const int64_t M = P + N;
  11488. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11489. GGML_ASSERT(ne0 == D);
  11490. GGML_ASSERT(ne1 == N);
  11491. GGML_ASSERT(P >= 0);
  11492. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11493. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11494. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11495. GGML_ASSERT(neq0 == D);
  11496. GGML_ASSERT(nek0 == D);
  11497. GGML_ASSERT(nev1 == D);
  11498. GGML_ASSERT(neq1 == N);
  11499. GGML_ASSERT(nek1 == N + P);
  11500. GGML_ASSERT(nev1 == D);
  11501. // dst cannot be transposed or permuted
  11502. GGML_ASSERT(nb0 == sizeof(float));
  11503. GGML_ASSERT(nb0 <= nb1);
  11504. GGML_ASSERT(nb1 <= nb2);
  11505. GGML_ASSERT(nb2 <= nb3);
  11506. if (params->type == GGML_TASK_INIT) {
  11507. return;
  11508. }
  11509. if (params->type == GGML_TASK_FINALIZE) {
  11510. return;
  11511. }
  11512. // parallelize by q rows using ggml_vec_dot_f32
  11513. // total rows in q
  11514. const int nr = neq1*neq2*neq3;
  11515. // rows per thread
  11516. const int dr = (nr + nth - 1)/nth;
  11517. // row range for this thread
  11518. const int ir0 = dr*ith;
  11519. const int ir1 = MIN(ir0 + dr, nr);
  11520. const float scale = 1.0f/sqrtf(D);
  11521. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11522. for (int ir = ir0; ir < ir1; ++ir) {
  11523. // q indices
  11524. const int iq3 = ir/(neq2*neq1);
  11525. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11526. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11527. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11528. for (int i = M; i < Mup; ++i) {
  11529. S[i] = -INFINITY;
  11530. }
  11531. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11532. for (int64_t ic = 0; ic < nek1; ++ic) {
  11533. // k indices
  11534. const int ik3 = iq3;
  11535. const int ik2 = iq2;
  11536. const int ik1 = ic;
  11537. // S indices
  11538. const int i1 = ik1;
  11539. ggml_vec_dot_f16(neq0,
  11540. S + i1,
  11541. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11542. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11543. }
  11544. } else {
  11545. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11546. // k indices
  11547. const int ik3 = iq3;
  11548. const int ik2 = iq2;
  11549. const int ik1 = ic;
  11550. // S indices
  11551. const int i1 = ik1;
  11552. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11553. S + i1,
  11554. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11555. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11556. }
  11557. }
  11558. // scale
  11559. ggml_vec_scale_f32(nek1, S, scale);
  11560. if (masked) {
  11561. for (int64_t i = P; i < M; i++) {
  11562. if (i > P + iq1) {
  11563. S[i] = -INFINITY;
  11564. }
  11565. }
  11566. }
  11567. // softmax
  11568. {
  11569. float max = -INFINITY;
  11570. ggml_vec_max_f32(M, &max, S);
  11571. ggml_float sum = 0.0;
  11572. {
  11573. #ifdef GGML_SOFT_MAX_ACCELERATE
  11574. max = -max;
  11575. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11576. vvexpf(S, S, &Mup);
  11577. ggml_vec_sum_f32(Mup, &sum, S);
  11578. #else
  11579. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11580. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11581. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11582. float * SS = S + i;
  11583. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11584. if (SS[j] == -INFINITY) {
  11585. SS[j] = 0.0f;
  11586. } else {
  11587. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11588. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11589. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11590. sump[j] += (ggml_float)val;
  11591. SS[j] = val;
  11592. }
  11593. }
  11594. }
  11595. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11596. sum += sump[i];
  11597. }
  11598. #endif
  11599. }
  11600. assert(sum > 0.0);
  11601. sum = 1.0/sum;
  11602. ggml_vec_scale_f32(M, S, sum);
  11603. #ifndef NDEBUG
  11604. for (int i = 0; i < M; ++i) {
  11605. assert(!isnan(S[i]));
  11606. assert(!isinf(S[i]));
  11607. }
  11608. #endif
  11609. }
  11610. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11611. for (int64_t i = 0; i < M; i++) {
  11612. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11613. }
  11614. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11615. for (int64_t ic = 0; ic < nev1; ++ic) {
  11616. // dst indices
  11617. const int i1 = iq1;
  11618. const int i2 = iq2;
  11619. const int i3 = iq3;
  11620. ggml_vec_dot_f16(nek1,
  11621. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11622. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11623. S16);
  11624. }
  11625. } else {
  11626. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11627. // dst indices
  11628. const int i1 = iq1;
  11629. const int i2 = iq2;
  11630. const int i3 = iq3;
  11631. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11632. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11633. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11634. S16);
  11635. }
  11636. }
  11637. }
  11638. }
  11639. static void ggml_compute_forward_flash_attn(
  11640. const struct ggml_compute_params * params,
  11641. const struct ggml_tensor * q,
  11642. const struct ggml_tensor * k,
  11643. const struct ggml_tensor * v,
  11644. const bool masked,
  11645. struct ggml_tensor * dst) {
  11646. switch (q->type) {
  11647. case GGML_TYPE_F16:
  11648. {
  11649. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11650. } break;
  11651. case GGML_TYPE_F32:
  11652. {
  11653. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11654. } break;
  11655. default:
  11656. {
  11657. GGML_ASSERT(false);
  11658. } break;
  11659. }
  11660. }
  11661. // ggml_compute_forward_flash_ff
  11662. static void ggml_compute_forward_flash_ff_f16(
  11663. const struct ggml_compute_params * params,
  11664. const struct ggml_tensor * a, // F16
  11665. const struct ggml_tensor * b0, // F16 fc_w
  11666. const struct ggml_tensor * b1, // F32 fc_b
  11667. const struct ggml_tensor * c0, // F16 proj_w
  11668. const struct ggml_tensor * c1, // F32 proj_b
  11669. struct ggml_tensor * dst) {
  11670. int64_t t0 = ggml_perf_time_us();
  11671. UNUSED(t0);
  11672. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11673. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11674. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11675. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11676. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11677. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11678. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11679. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11680. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11681. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11682. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11683. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11684. const int ith = params->ith;
  11685. const int nth = params->nth;
  11686. const int64_t D = nea0;
  11687. //const int64_t N = nea1;
  11688. const int64_t M = neb01;
  11689. GGML_ASSERT(ne0 == nea0);
  11690. GGML_ASSERT(ne1 == nea1);
  11691. GGML_ASSERT(ne2 == nea2);
  11692. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11693. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11694. GGML_ASSERT(nbb10 == sizeof(float));
  11695. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11696. GGML_ASSERT(nbc10 == sizeof(float));
  11697. GGML_ASSERT(neb00 == D);
  11698. GGML_ASSERT(neb01 == M);
  11699. GGML_ASSERT(neb10 == M);
  11700. GGML_ASSERT(neb11 == 1);
  11701. GGML_ASSERT(nec00 == M);
  11702. GGML_ASSERT(nec01 == D);
  11703. GGML_ASSERT(nec10 == D);
  11704. GGML_ASSERT(nec11 == 1);
  11705. // dst cannot be transposed or permuted
  11706. GGML_ASSERT(nb0 == sizeof(float));
  11707. GGML_ASSERT(nb0 <= nb1);
  11708. GGML_ASSERT(nb1 <= nb2);
  11709. GGML_ASSERT(nb2 <= nb3);
  11710. if (params->type == GGML_TASK_INIT) {
  11711. return;
  11712. }
  11713. if (params->type == GGML_TASK_FINALIZE) {
  11714. return;
  11715. }
  11716. // parallelize by a rows using ggml_vec_dot_f32
  11717. // total rows in a
  11718. const int nr = nea1*nea2*nea3;
  11719. // rows per thread
  11720. const int dr = (nr + nth - 1)/nth;
  11721. // row range for this thread
  11722. const int ir0 = dr*ith;
  11723. const int ir1 = MIN(ir0 + dr, nr);
  11724. for (int ir = ir0; ir < ir1; ++ir) {
  11725. // a indices
  11726. const int ia3 = ir/(nea2*nea1);
  11727. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11728. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11729. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11730. for (int64_t ic = 0; ic < neb01; ++ic) {
  11731. // b0 indices
  11732. const int ib03 = ia3;
  11733. const int ib02 = ia2;
  11734. const int ib01 = ic;
  11735. // S indices
  11736. const int i1 = ib01;
  11737. ggml_vec_dot_f16(nea0,
  11738. S + i1,
  11739. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11740. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11741. }
  11742. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11743. //ggml_vec_gelu_f32(neb01, S, S);
  11744. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11745. for (int64_t i = 0; i < M; i++) {
  11746. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11747. }
  11748. ggml_vec_gelu_f16(neb01, S16, S16);
  11749. {
  11750. // dst indices
  11751. const int i1 = ia1;
  11752. const int i2 = ia2;
  11753. const int i3 = ia3;
  11754. for (int64_t ic = 0; ic < nec01; ++ic) {
  11755. ggml_vec_dot_f16(neb01,
  11756. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11757. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11758. S16);
  11759. }
  11760. ggml_vec_add_f32(nec01,
  11761. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11762. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11763. (float *) c1->data);
  11764. }
  11765. }
  11766. }
  11767. static void ggml_compute_forward_flash_ff(
  11768. const struct ggml_compute_params * params,
  11769. const struct ggml_tensor * a,
  11770. const struct ggml_tensor * b0,
  11771. const struct ggml_tensor * b1,
  11772. const struct ggml_tensor * c0,
  11773. const struct ggml_tensor * c1,
  11774. struct ggml_tensor * dst) {
  11775. switch (b0->type) {
  11776. case GGML_TYPE_F16:
  11777. {
  11778. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11779. } break;
  11780. case GGML_TYPE_F32:
  11781. {
  11782. GGML_ASSERT(false); // TODO
  11783. } break;
  11784. default:
  11785. {
  11786. GGML_ASSERT(false);
  11787. } break;
  11788. }
  11789. }
  11790. // ggml_compute_forward_flash_attn_back
  11791. static void ggml_compute_forward_flash_attn_back_f32(
  11792. const struct ggml_compute_params * params,
  11793. const struct ggml_tensor * q,
  11794. const struct ggml_tensor * k,
  11795. const struct ggml_tensor * v,
  11796. const struct ggml_tensor * d,
  11797. const bool masked,
  11798. struct ggml_tensor * dst) {
  11799. int64_t t0 = ggml_perf_time_us();
  11800. UNUSED(t0);
  11801. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11802. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11803. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11804. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11805. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11806. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11807. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11808. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11809. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11810. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11811. const int ith = params->ith;
  11812. const int nth = params->nth;
  11813. const int64_t D = neq0;
  11814. const int64_t N = neq1;
  11815. const int64_t P = nek1 - N;
  11816. const int64_t M = P + N;
  11817. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11818. const int mxDM = MAX(D, Mup);
  11819. // GGML_ASSERT(ne0 == D);
  11820. // GGML_ASSERT(ne1 == N);
  11821. GGML_ASSERT(P >= 0);
  11822. GGML_ASSERT(nbq0 == sizeof(float));
  11823. GGML_ASSERT(nbk0 == sizeof(float));
  11824. GGML_ASSERT(nbv0 == sizeof(float));
  11825. GGML_ASSERT(neq0 == D);
  11826. GGML_ASSERT(nek0 == D);
  11827. GGML_ASSERT(nev1 == D);
  11828. GGML_ASSERT(ned0 == D);
  11829. GGML_ASSERT(neq1 == N);
  11830. GGML_ASSERT(nek1 == N + P);
  11831. GGML_ASSERT(nev1 == D);
  11832. GGML_ASSERT(ned1 == N);
  11833. // dst cannot be transposed or permuted
  11834. GGML_ASSERT(nb0 == sizeof(float));
  11835. GGML_ASSERT(nb0 <= nb1);
  11836. GGML_ASSERT(nb1 <= nb2);
  11837. GGML_ASSERT(nb2 <= nb3);
  11838. if (params->type == GGML_TASK_INIT) {
  11839. if (ith == 0) {
  11840. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11841. }
  11842. return;
  11843. }
  11844. if (params->type == GGML_TASK_FINALIZE) {
  11845. return;
  11846. }
  11847. // parallelize by q rows using ggml_vec_dot_f32
  11848. // total rows in q
  11849. const int nr = neq2*neq3;
  11850. // rows per thread
  11851. const int dr = (nr + nth - 1)/nth;
  11852. // row range for this thread
  11853. const int ir0 = dr*ith;
  11854. const int ir1 = MIN(ir0 + dr, nr);
  11855. const float scale = 1.0f/sqrtf(D);
  11856. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11857. for (int ir = ir0; ir < ir1; ++ir) {
  11858. // q indices
  11859. const int iq3 = ir/(neq2);
  11860. const int iq2 = ir - iq3*neq2;
  11861. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11862. // not sure about CACHE_LINE_SIZE_F32..
  11863. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11864. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11865. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11866. for (int i = M; i < Mup; ++i) {
  11867. S[i] = -INFINITY;
  11868. }
  11869. for (int64_t ic = 0; ic < nek1; ++ic) {
  11870. // k indices
  11871. const int ik3 = iq3;
  11872. const int ik2 = iq2;
  11873. const int ik1 = ic;
  11874. // S indices
  11875. const int i1 = ik1;
  11876. ggml_vec_dot_f32(neq0,
  11877. S + i1,
  11878. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11879. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11880. }
  11881. // scale
  11882. ggml_vec_scale_f32(nek1, S, scale);
  11883. if (masked) {
  11884. for (int64_t i = P; i < M; i++) {
  11885. if (i > P + iq1) {
  11886. S[i] = -INFINITY;
  11887. }
  11888. }
  11889. }
  11890. // softmax
  11891. {
  11892. float max = -INFINITY;
  11893. ggml_vec_max_f32(M, &max, S);
  11894. ggml_float sum = 0.0;
  11895. {
  11896. #ifdef GGML_SOFT_MAX_ACCELERATE
  11897. max = -max;
  11898. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11899. vvexpf(SM, SM, &Mup);
  11900. ggml_vec_sum_f32(Mup, &sum, SM);
  11901. #else
  11902. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11903. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11904. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11905. float * SR = S + i;
  11906. float * SW = SM + i;
  11907. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11908. if (SR[j] == -INFINITY) {
  11909. SW[j] = 0.0f;
  11910. } else {
  11911. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11912. const float val = expf(SR[j] - max);
  11913. #else
  11914. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11915. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11916. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11917. #endif
  11918. sump[j] += (ggml_float)val;
  11919. SW[j] = val;
  11920. }
  11921. }
  11922. }
  11923. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11924. sum += sump[i];
  11925. }
  11926. #endif
  11927. }
  11928. assert(sum > 0.0);
  11929. sum = 1.0/sum;
  11930. ggml_vec_scale_f32(M, SM, sum);
  11931. }
  11932. // step-by-step explanation
  11933. {
  11934. // forward-process shape grads from backward process
  11935. // parallel_for iq2,iq3:
  11936. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11937. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11938. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11939. // for iq1:
  11940. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11941. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11942. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11943. // S0 = -Inf [D,1,1,1]
  11944. // ~S1[i] = dot(kcur[:D,i], qcur)
  11945. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11946. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11947. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11948. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11949. // ~S5[i] = dot(vcur[:,i], S4)
  11950. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11951. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11952. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11953. // dst backward-/ grad[dst] = d
  11954. //
  11955. // output gradients with their dependencies:
  11956. //
  11957. // grad[kcur] = grad[S1].T @ qcur
  11958. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11959. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11960. // grad[S4] = grad[S5] @ vcur
  11961. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11962. // grad[qcur] = grad[S1] @ kcur
  11963. // grad[vcur] = grad[S5].T @ S4
  11964. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11965. //
  11966. // in post-order:
  11967. //
  11968. // S1 = qcur @ kcur.T
  11969. // S2 = S1 * scale
  11970. // S3 = diag_mask_inf(S2, P)
  11971. // S4 = softmax(S3)
  11972. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11973. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11974. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11975. // grad[qcur] = grad[S1] @ kcur
  11976. // grad[kcur] = grad[S1].T @ qcur
  11977. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11978. //
  11979. // using less variables (SM=S4):
  11980. //
  11981. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11982. // SM = softmax(S)
  11983. // S = d[:D,iq1,iq2,iq3] @ vcur
  11984. // dot_SM_gradSM = dot(SM, S)
  11985. // S = SM * (S - dot(SM, S))
  11986. // S = diag_mask_zero(S, P) * scale
  11987. //
  11988. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11989. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11990. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11991. }
  11992. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11993. // S = d[:D,iq1,iq2,iq3] @ vcur
  11994. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11995. ggml_vec_set_f32(M, S, 0);
  11996. for (int64_t ic = 0; ic < D; ++ic) {
  11997. // dst indices
  11998. const int i1 = iq1;
  11999. const int i2 = iq2;
  12000. const int i3 = iq3;
  12001. ggml_vec_mad_f32(M,
  12002. S,
  12003. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  12004. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12005. }
  12006. // S = SM * (S - dot(SM, S))
  12007. float dot_SM_gradSM = 0;
  12008. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  12009. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12010. ggml_vec_mul_f32 (M, S, S, SM);
  12011. // S = diag_mask_zero(S, P) * scale
  12012. if (masked) {
  12013. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  12014. // S[i] = 0;
  12015. // }
  12016. for (int64_t i = P; i < M; i++) {
  12017. if (i > P + iq1) {
  12018. S[i] = 0;
  12019. }
  12020. }
  12021. }
  12022. ggml_vec_scale_f32(M, S, scale);
  12023. void * grad_q = (char *) dst->data;
  12024. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  12025. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  12026. const size_t nbgq1 = nb0*neq0;
  12027. const size_t nbgq2 = nb0*neq0*neq1;
  12028. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12029. const size_t nbgk1 = nb0*nek0;
  12030. const size_t nbgk2 = nb0*nek0*nek1;
  12031. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12032. const size_t nbgv1 = nb0*nev0;
  12033. const size_t nbgv2 = nb0*nev0*nev1;
  12034. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12035. // S shape [M,1]
  12036. // SM shape [M,1]
  12037. // kcur shape [D,M]
  12038. // qcur shape [D,1]
  12039. // vcur shape [M,D]
  12040. //
  12041. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12042. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12043. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  12044. //
  12045. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  12046. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  12047. for (int64_t ic = 0; ic < M; ++ic) {
  12048. // dst indices
  12049. const int i1 = iq1;
  12050. const int i2 = iq2;
  12051. const int i3 = iq3;
  12052. ggml_vec_mad_f32(D,
  12053. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  12054. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  12055. S[ic]);
  12056. }
  12057. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12058. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12059. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12060. for (int64_t ic = 0; ic < M; ++ic) {
  12061. // dst indices
  12062. const int i1 = iq1;
  12063. const int i2 = iq2;
  12064. const int i3 = iq3;
  12065. // ggml_vec_set_f32(D,
  12066. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12067. // 0);
  12068. ggml_vec_mad_f32(D,
  12069. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12070. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  12071. S[ic]);
  12072. }
  12073. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12074. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  12075. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  12076. for (int64_t ic = 0; ic < D; ++ic) {
  12077. // dst indices
  12078. const int i1 = iq1;
  12079. const int i2 = iq2;
  12080. const int i3 = iq3;
  12081. // ggml_vec_set_f32(M,
  12082. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12083. // 0);
  12084. ggml_vec_mad_f32(M,
  12085. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12086. SM,
  12087. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12088. }
  12089. }
  12090. }
  12091. }
  12092. static void ggml_compute_forward_flash_attn_back(
  12093. const struct ggml_compute_params * params,
  12094. const struct ggml_tensor * q,
  12095. const struct ggml_tensor * k,
  12096. const struct ggml_tensor * v,
  12097. const struct ggml_tensor * d,
  12098. const bool masked,
  12099. struct ggml_tensor * dst) {
  12100. switch (q->type) {
  12101. case GGML_TYPE_F32:
  12102. {
  12103. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12104. } break;
  12105. default:
  12106. {
  12107. GGML_ASSERT(false);
  12108. } break;
  12109. }
  12110. }
  12111. // ggml_compute_forward_win_part
  12112. static void ggml_compute_forward_win_part_f32(
  12113. const struct ggml_compute_params * params,
  12114. const struct ggml_tensor * src0,
  12115. struct ggml_tensor * dst) {
  12116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12117. return;
  12118. }
  12119. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12120. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12121. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12122. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12123. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12124. assert(ne00 == ne0);
  12125. assert(ne3 == nep0*nep1);
  12126. // TODO: optimize / multi-thread
  12127. for (int py = 0; py < nep1; ++py) {
  12128. for (int px = 0; px < nep0; ++px) {
  12129. const int64_t i3 = py*nep0 + px;
  12130. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12131. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12132. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12133. const int64_t i02 = py*w + i2;
  12134. const int64_t i01 = px*w + i1;
  12135. const int64_t i00 = i0;
  12136. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12137. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12138. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12139. ((float *) dst->data)[i] = 0.0f;
  12140. } else {
  12141. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12142. }
  12143. }
  12144. }
  12145. }
  12146. }
  12147. }
  12148. }
  12149. static void ggml_compute_forward_win_part(
  12150. const struct ggml_compute_params * params,
  12151. const struct ggml_tensor * src0,
  12152. struct ggml_tensor * dst) {
  12153. switch (src0->type) {
  12154. case GGML_TYPE_F32:
  12155. {
  12156. ggml_compute_forward_win_part_f32(params, src0, dst);
  12157. } break;
  12158. default:
  12159. {
  12160. GGML_ASSERT(false);
  12161. } break;
  12162. }
  12163. }
  12164. // ggml_compute_forward_win_unpart
  12165. static void ggml_compute_forward_win_unpart_f32(
  12166. const struct ggml_compute_params * params,
  12167. const struct ggml_tensor * src0,
  12168. struct ggml_tensor * dst) {
  12169. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12170. return;
  12171. }
  12172. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12173. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12174. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12175. // padding
  12176. const int px = (w - ne1%w)%w;
  12177. //const int py = (w - ne2%w)%w;
  12178. const int npx = (px + ne1)/w;
  12179. //const int npy = (py + ne2)/w;
  12180. assert(ne0 == ne00);
  12181. // TODO: optimize / multi-thread
  12182. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12183. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12184. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12185. const int ip2 = i2/w;
  12186. const int ip1 = i1/w;
  12187. const int64_t i02 = i2%w;
  12188. const int64_t i01 = i1%w;
  12189. const int64_t i00 = i0;
  12190. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12191. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12192. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12193. }
  12194. }
  12195. }
  12196. }
  12197. static void ggml_compute_forward_win_unpart(
  12198. const struct ggml_compute_params * params,
  12199. const struct ggml_tensor * src0,
  12200. struct ggml_tensor * dst) {
  12201. switch (src0->type) {
  12202. case GGML_TYPE_F32:
  12203. {
  12204. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12205. } break;
  12206. default:
  12207. {
  12208. GGML_ASSERT(false);
  12209. } break;
  12210. }
  12211. }
  12212. //gmml_compute_forward_unary
  12213. static void ggml_compute_forward_unary(
  12214. const struct ggml_compute_params * params,
  12215. const struct ggml_tensor * src0,
  12216. struct ggml_tensor * dst) {
  12217. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12218. switch (op) {
  12219. case GGML_UNARY_OP_ABS:
  12220. {
  12221. ggml_compute_forward_abs(params, src0, dst);
  12222. } break;
  12223. case GGML_UNARY_OP_SGN:
  12224. {
  12225. ggml_compute_forward_sgn(params, src0, dst);
  12226. } break;
  12227. case GGML_UNARY_OP_NEG:
  12228. {
  12229. ggml_compute_forward_neg(params, src0, dst);
  12230. } break;
  12231. case GGML_UNARY_OP_STEP:
  12232. {
  12233. ggml_compute_forward_step(params, src0, dst);
  12234. } break;
  12235. case GGML_UNARY_OP_TANH:
  12236. {
  12237. ggml_compute_forward_tanh(params, src0, dst);
  12238. } break;
  12239. case GGML_UNARY_OP_ELU:
  12240. {
  12241. ggml_compute_forward_elu(params, src0, dst);
  12242. } break;
  12243. case GGML_UNARY_OP_RELU:
  12244. {
  12245. ggml_compute_forward_relu(params, src0, dst);
  12246. } break;
  12247. case GGML_UNARY_OP_GELU:
  12248. {
  12249. ggml_compute_forward_gelu(params, src0, dst);
  12250. } break;
  12251. case GGML_UNARY_OP_GELU_QUICK:
  12252. {
  12253. ggml_compute_forward_gelu_quick(params, src0, dst);
  12254. } break;
  12255. case GGML_UNARY_OP_SILU:
  12256. {
  12257. ggml_compute_forward_silu(params, src0, dst);
  12258. } break;
  12259. default:
  12260. {
  12261. GGML_ASSERT(false);
  12262. } break;
  12263. }
  12264. }
  12265. // ggml_compute_forward_get_rel_pos
  12266. static void ggml_compute_forward_get_rel_pos_f16(
  12267. const struct ggml_compute_params * params,
  12268. const struct ggml_tensor * src0,
  12269. struct ggml_tensor * dst) {
  12270. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12271. return;
  12272. }
  12273. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12274. GGML_TENSOR_UNARY_OP_LOCALS;
  12275. const int64_t w = ne1;
  12276. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12277. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12278. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12279. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12280. const int64_t pos = (w - i1 - 1) + i2;
  12281. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12282. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12283. }
  12284. }
  12285. }
  12286. }
  12287. static void ggml_compute_forward_get_rel_pos(
  12288. const struct ggml_compute_params * params,
  12289. const struct ggml_tensor * src0,
  12290. struct ggml_tensor * dst) {
  12291. switch (src0->type) {
  12292. case GGML_TYPE_F16:
  12293. {
  12294. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12295. } break;
  12296. default:
  12297. {
  12298. GGML_ASSERT(false);
  12299. } break;
  12300. }
  12301. }
  12302. // ggml_compute_forward_add_rel_pos
  12303. static void ggml_compute_forward_add_rel_pos_f32(
  12304. const struct ggml_compute_params * params,
  12305. const struct ggml_tensor * src0,
  12306. const struct ggml_tensor * src1,
  12307. const struct ggml_tensor * src2,
  12308. struct ggml_tensor * dst) {
  12309. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12310. if (!inplace && params->type == GGML_TASK_INIT) {
  12311. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12312. return;
  12313. }
  12314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12315. return;
  12316. }
  12317. int64_t t0 = ggml_perf_time_us();
  12318. UNUSED(t0);
  12319. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12320. float * src1_data = (float *) src1->data;
  12321. float * src2_data = (float *) src2->data;
  12322. float * dst_data = (float *) dst->data;
  12323. const int64_t ne10 = src1->ne[0];
  12324. const int64_t ne11 = src1->ne[1];
  12325. const int64_t ne12 = src1->ne[2];
  12326. const int64_t ne13 = src1->ne[3];
  12327. const int ith = params->ith;
  12328. const int nth = params->nth;
  12329. // total patches in dst
  12330. const int np = ne13;
  12331. // patches per thread
  12332. const int dp = (np + nth - 1)/nth;
  12333. // patch range for this thread
  12334. const int ip0 = dp*ith;
  12335. const int ip1 = MIN(ip0 + dp, np);
  12336. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12337. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12338. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12339. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12340. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12341. const int64_t jp0 = jp1 + i10;
  12342. const float src1_e = src1_data[jp0];
  12343. const float src2_e = src2_data[jp0];
  12344. const int64_t jdh = jp0 * ne10;
  12345. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12346. for (int64_t j = 0; j < ne10; ++j) {
  12347. dst_data[jdh + j ] += src2_e;
  12348. dst_data[jdw + j*ne10] += src1_e;
  12349. }
  12350. }
  12351. }
  12352. }
  12353. }
  12354. }
  12355. static void ggml_compute_forward_add_rel_pos(
  12356. const struct ggml_compute_params * params,
  12357. const struct ggml_tensor * src0,
  12358. const struct ggml_tensor * src1,
  12359. const struct ggml_tensor * src2,
  12360. struct ggml_tensor * dst) {
  12361. switch (src0->type) {
  12362. case GGML_TYPE_F32:
  12363. {
  12364. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12365. } break;
  12366. default:
  12367. {
  12368. GGML_ASSERT(false);
  12369. } break;
  12370. }
  12371. }
  12372. // ggml_compute_forward_map_unary
  12373. static void ggml_compute_forward_map_unary_f32(
  12374. const struct ggml_compute_params * params,
  12375. const struct ggml_tensor * src0,
  12376. struct ggml_tensor * dst,
  12377. const ggml_unary_op_f32_t fun) {
  12378. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12380. return;
  12381. }
  12382. const int n = ggml_nrows(src0);
  12383. const int nc = src0->ne[0];
  12384. assert( dst->nb[0] == sizeof(float));
  12385. assert(src0->nb[0] == sizeof(float));
  12386. for (int i = 0; i < n; i++) {
  12387. fun(nc,
  12388. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12389. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12390. }
  12391. }
  12392. static void ggml_compute_forward_map_unary(
  12393. const struct ggml_compute_params * params,
  12394. const struct ggml_tensor * src0,
  12395. struct ggml_tensor * dst,
  12396. const ggml_unary_op_f32_t fun) {
  12397. switch (src0->type) {
  12398. case GGML_TYPE_F32:
  12399. {
  12400. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12401. } break;
  12402. default:
  12403. {
  12404. GGML_ASSERT(false);
  12405. } break;
  12406. }
  12407. }
  12408. // ggml_compute_forward_map_binary
  12409. static void ggml_compute_forward_map_binary_f32(
  12410. const struct ggml_compute_params * params,
  12411. const struct ggml_tensor * src0,
  12412. const struct ggml_tensor * src1,
  12413. struct ggml_tensor * dst,
  12414. const ggml_binary_op_f32_t fun) {
  12415. assert(params->ith == 0);
  12416. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12418. return;
  12419. }
  12420. const int n = ggml_nrows(src0);
  12421. const int nc = src0->ne[0];
  12422. assert( dst->nb[0] == sizeof(float));
  12423. assert(src0->nb[0] == sizeof(float));
  12424. assert(src1->nb[0] == sizeof(float));
  12425. for (int i = 0; i < n; i++) {
  12426. fun(nc,
  12427. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12428. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12429. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12430. }
  12431. }
  12432. static void ggml_compute_forward_map_binary(
  12433. const struct ggml_compute_params * params,
  12434. const struct ggml_tensor * src0,
  12435. const struct ggml_tensor * src1,
  12436. struct ggml_tensor * dst,
  12437. const ggml_binary_op_f32_t fun) {
  12438. switch (src0->type) {
  12439. case GGML_TYPE_F32:
  12440. {
  12441. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12442. } break;
  12443. default:
  12444. {
  12445. GGML_ASSERT(false);
  12446. } break;
  12447. }
  12448. }
  12449. // ggml_compute_forward_map_custom1
  12450. static void ggml_compute_forward_map_custom1_f32(
  12451. const struct ggml_compute_params * params,
  12452. const struct ggml_tensor * a,
  12453. struct ggml_tensor * dst,
  12454. const ggml_custom1_op_f32_t fun) {
  12455. assert(params->ith == 0);
  12456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12457. return;
  12458. }
  12459. fun(dst, a);
  12460. }
  12461. // ggml_compute_forward_map_custom2
  12462. static void ggml_compute_forward_map_custom2_f32(
  12463. const struct ggml_compute_params * params,
  12464. const struct ggml_tensor * a,
  12465. const struct ggml_tensor * b,
  12466. struct ggml_tensor * dst,
  12467. const ggml_custom2_op_f32_t fun) {
  12468. assert(params->ith == 0);
  12469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12470. return;
  12471. }
  12472. fun(dst, a, b);
  12473. }
  12474. // ggml_compute_forward_map_custom3
  12475. static void ggml_compute_forward_map_custom3_f32(
  12476. const struct ggml_compute_params * params,
  12477. const struct ggml_tensor * a,
  12478. const struct ggml_tensor * b,
  12479. const struct ggml_tensor * c,
  12480. struct ggml_tensor * dst,
  12481. const ggml_custom3_op_f32_t fun) {
  12482. assert(params->ith == 0);
  12483. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12484. return;
  12485. }
  12486. fun(dst, a, b, c);
  12487. }
  12488. // ggml_compute_forward_map_custom1
  12489. static void ggml_compute_forward_map_custom1(
  12490. const struct ggml_compute_params * params,
  12491. const struct ggml_tensor * a,
  12492. struct ggml_tensor * dst) {
  12493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12494. return;
  12495. }
  12496. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12497. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12498. }
  12499. // ggml_compute_forward_map_custom2
  12500. static void ggml_compute_forward_map_custom2(
  12501. const struct ggml_compute_params * params,
  12502. const struct ggml_tensor * a,
  12503. const struct ggml_tensor * b,
  12504. struct ggml_tensor * dst) {
  12505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12506. return;
  12507. }
  12508. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12509. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12510. }
  12511. // ggml_compute_forward_map_custom3
  12512. static void ggml_compute_forward_map_custom3(
  12513. const struct ggml_compute_params * params,
  12514. const struct ggml_tensor * a,
  12515. const struct ggml_tensor * b,
  12516. const struct ggml_tensor * c,
  12517. struct ggml_tensor * dst) {
  12518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12519. return;
  12520. }
  12521. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12522. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12523. }
  12524. // ggml_compute_forward_cross_entropy_loss
  12525. static void ggml_compute_forward_cross_entropy_loss_f32(
  12526. const struct ggml_compute_params * params,
  12527. const struct ggml_tensor * src0,
  12528. const struct ggml_tensor * src1,
  12529. struct ggml_tensor * dst) {
  12530. GGML_ASSERT(ggml_is_contiguous(src0));
  12531. GGML_ASSERT(ggml_is_contiguous(src1));
  12532. GGML_ASSERT(ggml_is_scalar(dst));
  12533. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12534. const int ith = params->ith;
  12535. const int nth = params->nth;
  12536. float * sums = (float *) params->wdata;
  12537. // TODO: handle transposed/permuted matrices
  12538. const int nc = src0->ne[0];
  12539. const int nr = ggml_nrows(src0);
  12540. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12541. if (params->type == GGML_TASK_INIT) {
  12542. if (ith == 0) {
  12543. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12544. }
  12545. return;
  12546. }
  12547. if (params->type == GGML_TASK_FINALIZE) {
  12548. if (ith == 0) {
  12549. float * dp = (float *) dst->data;
  12550. ggml_vec_sum_f32(nth, dp, sums);
  12551. dp[0] *= -1.0f / (float) nr;
  12552. }
  12553. return;
  12554. }
  12555. const double eps = 1e-9;
  12556. // rows per thread
  12557. const int dr = (nr + nth - 1)/nth;
  12558. // row range for this thread
  12559. const int ir0 = dr*ith;
  12560. const int ir1 = MIN(ir0 + dr, nr);
  12561. for (int i1 = ir0; i1 < ir1; i1++) {
  12562. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12563. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12564. float * st = ((float *) params->wdata) + nth + ith*nc;
  12565. #ifndef NDEBUG
  12566. for (int i = 0; i < nc; ++i) {
  12567. //printf("p[%d] = %f\n", i, p[i]);
  12568. assert(!isnan(s0[i]));
  12569. assert(!isnan(s1[i]));
  12570. }
  12571. #endif
  12572. // soft_max
  12573. ggml_float sum = 0.0;
  12574. {
  12575. float max = -INFINITY;
  12576. ggml_vec_max_f32(nc, &max, s0);
  12577. uint16_t scvt; UNUSED(scvt);
  12578. for (int i = 0; i < nc; i++) {
  12579. if (s0[i] == -INFINITY) {
  12580. st[i] = 0.0f;
  12581. } else {
  12582. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12583. const float s = s0[i] - max;
  12584. const float val = expf(s);
  12585. #else
  12586. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12587. memcpy(&scvt, &s, sizeof(scvt));
  12588. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12589. #endif
  12590. sum += (ggml_float)val;
  12591. st[i] = val;
  12592. }
  12593. }
  12594. assert(sum > 0.0);
  12595. // sum = 1.0/sum;
  12596. }
  12597. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12598. sum = (1.0 - eps) / sum;
  12599. ggml_vec_scale_f32(nc, st, sum);
  12600. ggml_vec_add1_f32(nc, st, st, eps);
  12601. ggml_vec_log_f32(nc, st, st);
  12602. ggml_vec_mul_f32(nc, st, st, s1);
  12603. float st_sum = 0;
  12604. ggml_vec_sum_f32(nc, &st_sum, st);
  12605. sums[ith] += st_sum;
  12606. #ifndef NDEBUG
  12607. for (int i = 0; i < nc; ++i) {
  12608. assert(!isnan(st[i]));
  12609. assert(!isinf(st[i]));
  12610. }
  12611. #endif
  12612. }
  12613. }
  12614. static void ggml_compute_forward_cross_entropy_loss(
  12615. const struct ggml_compute_params * params,
  12616. const struct ggml_tensor * src0,
  12617. const struct ggml_tensor * src1,
  12618. struct ggml_tensor * dst) {
  12619. switch (src0->type) {
  12620. case GGML_TYPE_F32:
  12621. {
  12622. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12623. } break;
  12624. default:
  12625. {
  12626. GGML_ASSERT(false);
  12627. } break;
  12628. }
  12629. }
  12630. // ggml_compute_forward_cross_entropy_loss_back
  12631. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12632. const struct ggml_compute_params * params,
  12633. const struct ggml_tensor * src0,
  12634. const struct ggml_tensor * src1,
  12635. const struct ggml_tensor * opt0,
  12636. struct ggml_tensor * dst) {
  12637. GGML_ASSERT(ggml_is_contiguous(dst));
  12638. GGML_ASSERT(ggml_is_contiguous(src0));
  12639. GGML_ASSERT(ggml_is_contiguous(src1));
  12640. GGML_ASSERT(ggml_is_contiguous(opt0));
  12641. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12642. const int64_t ith = params->ith;
  12643. const int64_t nth = params->nth;
  12644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12645. return;
  12646. }
  12647. const double eps = 1e-9;
  12648. // TODO: handle transposed/permuted matrices
  12649. const int64_t nc = src0->ne[0];
  12650. const int64_t nr = ggml_nrows(src0);
  12651. // rows per thread
  12652. const int64_t dr = (nr + nth - 1)/nth;
  12653. // row range for this thread
  12654. const int64_t ir0 = dr*ith;
  12655. const int64_t ir1 = MIN(ir0 + dr, nr);
  12656. float * d = (float *) opt0->data;
  12657. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12658. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12659. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12660. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12661. #ifndef NDEBUG
  12662. for (int i = 0; i < nc; ++i) {
  12663. //printf("p[%d] = %f\n", i, p[i]);
  12664. assert(!isnan(s0[i]));
  12665. assert(!isnan(s1[i]));
  12666. }
  12667. #endif
  12668. // soft_max
  12669. ggml_float sum = 0.0;
  12670. {
  12671. float max = -INFINITY;
  12672. ggml_vec_max_f32(nc, &max, s0);
  12673. uint16_t scvt; UNUSED(scvt);
  12674. for (int i = 0; i < nc; i++) {
  12675. if (s0[i] == -INFINITY) {
  12676. ds0[i] = 0.0f;
  12677. } else {
  12678. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12679. const float s = s0[i] - max;
  12680. const float val = expf(s);
  12681. #else
  12682. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12683. memcpy(&scvt, &s, sizeof(scvt));
  12684. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12685. #endif
  12686. sum += (ggml_float)val;
  12687. ds0[i] = val;
  12688. }
  12689. }
  12690. assert(sum > 0.0);
  12691. sum = (1.0 - eps)/sum;
  12692. }
  12693. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12694. ggml_vec_scale_f32(nc, ds0, sum);
  12695. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12696. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12697. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12698. #ifndef NDEBUG
  12699. for (int i = 0; i < nc; ++i) {
  12700. assert(!isnan(ds0[i]));
  12701. assert(!isinf(ds0[i]));
  12702. }
  12703. #endif
  12704. }
  12705. }
  12706. static void ggml_compute_forward_cross_entropy_loss_back(
  12707. const struct ggml_compute_params * params,
  12708. const struct ggml_tensor * src0,
  12709. const struct ggml_tensor * src1,
  12710. const struct ggml_tensor * opt0,
  12711. struct ggml_tensor * dst) {
  12712. switch (src0->type) {
  12713. case GGML_TYPE_F32:
  12714. {
  12715. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12716. } break;
  12717. default:
  12718. {
  12719. GGML_ASSERT(false);
  12720. } break;
  12721. }
  12722. }
  12723. /////////////////////////////////
  12724. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12725. GGML_ASSERT(params);
  12726. #ifdef GGML_USE_CUBLAS
  12727. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12728. if (skip_cpu) {
  12729. return;
  12730. }
  12731. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12732. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12733. #endif // GGML_USE_CUBLAS
  12734. switch (tensor->op) {
  12735. case GGML_OP_DUP:
  12736. {
  12737. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12738. } break;
  12739. case GGML_OP_ADD:
  12740. {
  12741. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12742. } break;
  12743. case GGML_OP_ADD1:
  12744. {
  12745. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12746. } break;
  12747. case GGML_OP_ACC:
  12748. {
  12749. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12750. } break;
  12751. case GGML_OP_SUB:
  12752. {
  12753. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12754. } break;
  12755. case GGML_OP_MUL:
  12756. {
  12757. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12758. } break;
  12759. case GGML_OP_DIV:
  12760. {
  12761. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12762. } break;
  12763. case GGML_OP_SQR:
  12764. {
  12765. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12766. } break;
  12767. case GGML_OP_SQRT:
  12768. {
  12769. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12770. } break;
  12771. case GGML_OP_LOG:
  12772. {
  12773. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12774. } break;
  12775. case GGML_OP_SUM:
  12776. {
  12777. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12778. } break;
  12779. case GGML_OP_SUM_ROWS:
  12780. {
  12781. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12782. } break;
  12783. case GGML_OP_MEAN:
  12784. {
  12785. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12786. } break;
  12787. case GGML_OP_ARGMAX:
  12788. {
  12789. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12790. } break;
  12791. case GGML_OP_REPEAT:
  12792. {
  12793. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12794. } break;
  12795. case GGML_OP_REPEAT_BACK:
  12796. {
  12797. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12798. } break;
  12799. case GGML_OP_CONCAT:
  12800. {
  12801. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12802. } break;
  12803. case GGML_OP_SILU_BACK:
  12804. {
  12805. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12806. } break;
  12807. case GGML_OP_NORM:
  12808. {
  12809. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12810. } break;
  12811. case GGML_OP_RMS_NORM:
  12812. {
  12813. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12814. } break;
  12815. case GGML_OP_RMS_NORM_BACK:
  12816. {
  12817. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12818. } break;
  12819. case GGML_OP_GROUP_NORM:
  12820. {
  12821. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12822. } break;
  12823. case GGML_OP_MUL_MAT:
  12824. {
  12825. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12826. } break;
  12827. case GGML_OP_OUT_PROD:
  12828. {
  12829. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12830. } break;
  12831. case GGML_OP_SCALE:
  12832. {
  12833. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12834. } break;
  12835. case GGML_OP_SET:
  12836. {
  12837. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12838. } break;
  12839. case GGML_OP_CPY:
  12840. {
  12841. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12842. } break;
  12843. case GGML_OP_CONT:
  12844. {
  12845. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12846. } break;
  12847. case GGML_OP_RESHAPE:
  12848. {
  12849. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12850. } break;
  12851. case GGML_OP_VIEW:
  12852. {
  12853. ggml_compute_forward_view(params, tensor->src[0]);
  12854. } break;
  12855. case GGML_OP_PERMUTE:
  12856. {
  12857. ggml_compute_forward_permute(params, tensor->src[0]);
  12858. } break;
  12859. case GGML_OP_TRANSPOSE:
  12860. {
  12861. ggml_compute_forward_transpose(params, tensor->src[0]);
  12862. } break;
  12863. case GGML_OP_GET_ROWS:
  12864. {
  12865. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12866. } break;
  12867. case GGML_OP_GET_ROWS_BACK:
  12868. {
  12869. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12870. } break;
  12871. case GGML_OP_DIAG:
  12872. {
  12873. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12874. } break;
  12875. case GGML_OP_DIAG_MASK_INF:
  12876. {
  12877. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12878. } break;
  12879. case GGML_OP_DIAG_MASK_ZERO:
  12880. {
  12881. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12882. } break;
  12883. case GGML_OP_SOFT_MAX:
  12884. {
  12885. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12886. } break;
  12887. case GGML_OP_SOFT_MAX_BACK:
  12888. {
  12889. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12890. } break;
  12891. case GGML_OP_ROPE:
  12892. {
  12893. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12894. } break;
  12895. case GGML_OP_ROPE_BACK:
  12896. {
  12897. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12898. } break;
  12899. case GGML_OP_ALIBI:
  12900. {
  12901. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12902. } break;
  12903. case GGML_OP_CLAMP:
  12904. {
  12905. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12906. } break;
  12907. case GGML_OP_CONV_1D:
  12908. {
  12909. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12910. } break;
  12911. case GGML_OP_CONV_2D:
  12912. {
  12913. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12914. } break;
  12915. case GGML_OP_CONV_TRANSPOSE_2D:
  12916. {
  12917. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12918. } break;
  12919. case GGML_OP_POOL_1D:
  12920. {
  12921. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12922. } break;
  12923. case GGML_OP_POOL_2D:
  12924. {
  12925. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12926. } break;
  12927. case GGML_OP_UPSCALE:
  12928. {
  12929. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12930. } break;
  12931. case GGML_OP_FLASH_ATTN:
  12932. {
  12933. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12934. GGML_ASSERT(t == 0 || t == 1);
  12935. const bool masked = t != 0;
  12936. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12937. } break;
  12938. case GGML_OP_FLASH_FF:
  12939. {
  12940. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12941. } break;
  12942. case GGML_OP_FLASH_ATTN_BACK:
  12943. {
  12944. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12945. GGML_ASSERT(t == 0 || t == 1);
  12946. bool masked = t != 0;
  12947. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12948. } break;
  12949. case GGML_OP_WIN_PART:
  12950. {
  12951. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12952. } break;
  12953. case GGML_OP_WIN_UNPART:
  12954. {
  12955. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12956. } break;
  12957. case GGML_OP_UNARY:
  12958. {
  12959. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12960. } break;
  12961. case GGML_OP_GET_REL_POS:
  12962. {
  12963. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12964. } break;
  12965. case GGML_OP_ADD_REL_POS:
  12966. {
  12967. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12968. } break;
  12969. case GGML_OP_MAP_UNARY:
  12970. {
  12971. ggml_unary_op_f32_t fun;
  12972. memcpy(&fun, tensor->op_params, sizeof(fun));
  12973. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12974. }
  12975. break;
  12976. case GGML_OP_MAP_BINARY:
  12977. {
  12978. ggml_binary_op_f32_t fun;
  12979. memcpy(&fun, tensor->op_params, sizeof(fun));
  12980. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12981. }
  12982. break;
  12983. case GGML_OP_MAP_CUSTOM1_F32:
  12984. {
  12985. ggml_custom1_op_f32_t fun;
  12986. memcpy(&fun, tensor->op_params, sizeof(fun));
  12987. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12988. }
  12989. break;
  12990. case GGML_OP_MAP_CUSTOM2_F32:
  12991. {
  12992. ggml_custom2_op_f32_t fun;
  12993. memcpy(&fun, tensor->op_params, sizeof(fun));
  12994. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12995. }
  12996. break;
  12997. case GGML_OP_MAP_CUSTOM3_F32:
  12998. {
  12999. ggml_custom3_op_f32_t fun;
  13000. memcpy(&fun, tensor->op_params, sizeof(fun));
  13001. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13002. }
  13003. break;
  13004. case GGML_OP_MAP_CUSTOM1:
  13005. {
  13006. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13007. }
  13008. break;
  13009. case GGML_OP_MAP_CUSTOM2:
  13010. {
  13011. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13012. }
  13013. break;
  13014. case GGML_OP_MAP_CUSTOM3:
  13015. {
  13016. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13017. }
  13018. break;
  13019. case GGML_OP_CROSS_ENTROPY_LOSS:
  13020. {
  13021. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13022. }
  13023. break;
  13024. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13025. {
  13026. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13027. }
  13028. break;
  13029. case GGML_OP_NONE:
  13030. {
  13031. // nop
  13032. } break;
  13033. case GGML_OP_COUNT:
  13034. {
  13035. GGML_ASSERT(false);
  13036. } break;
  13037. }
  13038. }
  13039. ////////////////////////////////////////////////////////////////////////////////
  13040. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  13041. struct ggml_tensor * src0 = tensor->src[0];
  13042. struct ggml_tensor * src1 = tensor->src[1];
  13043. switch (tensor->op) {
  13044. case GGML_OP_DUP:
  13045. {
  13046. if (src0->grad) {
  13047. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13048. }
  13049. } break;
  13050. case GGML_OP_ADD:
  13051. {
  13052. if (src0->grad) {
  13053. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13054. }
  13055. if (src1->grad) {
  13056. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  13057. }
  13058. } break;
  13059. case GGML_OP_ADD1:
  13060. {
  13061. if (src0->grad) {
  13062. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13063. }
  13064. if (src1->grad) {
  13065. src1->grad = ggml_add_impl(ctx,
  13066. src1->grad,
  13067. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13068. inplace);
  13069. }
  13070. } break;
  13071. case GGML_OP_ACC:
  13072. {
  13073. if (src0->grad) {
  13074. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13075. }
  13076. if (src1->grad) {
  13077. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13078. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13079. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13080. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13081. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13082. tensor->grad,
  13083. src1->grad->ne[0],
  13084. src1->grad->ne[1],
  13085. src1->grad->ne[2],
  13086. src1->grad->ne[3],
  13087. nb1, nb2, nb3, offset);
  13088. src1->grad =
  13089. ggml_add_impl(ctx,
  13090. src1->grad,
  13091. ggml_reshape(ctx,
  13092. ggml_cont(ctx, tensor_grad_view),
  13093. src1->grad),
  13094. inplace);
  13095. }
  13096. } break;
  13097. case GGML_OP_SUB:
  13098. {
  13099. if (src0->grad) {
  13100. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13101. }
  13102. if (src1->grad) {
  13103. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13104. }
  13105. } break;
  13106. case GGML_OP_MUL:
  13107. {
  13108. if (src0->grad) {
  13109. src0->grad =
  13110. ggml_add_impl(ctx,
  13111. src0->grad,
  13112. ggml_mul(ctx, src1, tensor->grad),
  13113. inplace);
  13114. }
  13115. if (src1->grad) {
  13116. src1->grad =
  13117. ggml_add_impl(ctx,
  13118. src1->grad,
  13119. ggml_mul(ctx, src0, tensor->grad),
  13120. inplace);
  13121. }
  13122. } break;
  13123. case GGML_OP_DIV:
  13124. {
  13125. if (src0->grad) {
  13126. src0->grad =
  13127. ggml_add_impl(ctx,
  13128. src0->grad,
  13129. ggml_div(ctx, tensor->grad, src1),
  13130. inplace);
  13131. }
  13132. if (src1->grad) {
  13133. src1->grad =
  13134. ggml_sub_impl(ctx,
  13135. src1->grad,
  13136. ggml_mul(ctx,
  13137. tensor->grad,
  13138. ggml_div(ctx, tensor, src1)),
  13139. inplace);
  13140. }
  13141. } break;
  13142. case GGML_OP_SQR:
  13143. {
  13144. if (src0->grad) {
  13145. src0->grad =
  13146. ggml_add_impl(ctx,
  13147. src0->grad,
  13148. ggml_scale(ctx,
  13149. ggml_mul(ctx, src0, tensor->grad),
  13150. ggml_new_f32(ctx, 2.0f)),
  13151. inplace);
  13152. }
  13153. } break;
  13154. case GGML_OP_SQRT:
  13155. {
  13156. if (src0->grad) {
  13157. src0->grad =
  13158. ggml_add_impl(ctx,
  13159. src0->grad,
  13160. ggml_scale(ctx,
  13161. ggml_div(ctx,
  13162. tensor->grad,
  13163. tensor),
  13164. ggml_new_f32(ctx, 0.5f)),
  13165. inplace);
  13166. }
  13167. } break;
  13168. case GGML_OP_LOG:
  13169. {
  13170. if (src0->grad) {
  13171. src0->grad =
  13172. ggml_add_impl(ctx,
  13173. src0->grad,
  13174. ggml_div(ctx,
  13175. tensor->grad,
  13176. src0),
  13177. inplace);
  13178. }
  13179. } break;
  13180. case GGML_OP_SUM:
  13181. {
  13182. if (src0->grad) {
  13183. src0->grad =
  13184. ggml_add1_impl(ctx,
  13185. src0->grad,
  13186. tensor->grad,
  13187. inplace);
  13188. }
  13189. } break;
  13190. case GGML_OP_SUM_ROWS:
  13191. {
  13192. if (src0->grad) {
  13193. src0->grad =
  13194. ggml_add_impl(ctx,
  13195. src0->grad,
  13196. ggml_repeat(ctx,
  13197. tensor->grad,
  13198. src0->grad),
  13199. inplace);
  13200. }
  13201. } break;
  13202. case GGML_OP_MEAN:
  13203. case GGML_OP_ARGMAX:
  13204. {
  13205. GGML_ASSERT(false); // TODO: implement
  13206. } break;
  13207. case GGML_OP_REPEAT:
  13208. {
  13209. // necessary for llama
  13210. if (src0->grad) {
  13211. src0->grad = ggml_add_impl(ctx,
  13212. src0->grad,
  13213. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13214. inplace);
  13215. }
  13216. } break;
  13217. case GGML_OP_REPEAT_BACK:
  13218. {
  13219. if (src0->grad) {
  13220. // TODO: test this
  13221. src0->grad = ggml_add_impl(ctx,
  13222. src0->grad,
  13223. ggml_repeat(ctx, tensor->grad, src0->grad),
  13224. inplace);
  13225. }
  13226. } break;
  13227. case GGML_OP_CONCAT:
  13228. {
  13229. GGML_ASSERT(false); // TODO: implement
  13230. } break;
  13231. case GGML_OP_SILU_BACK:
  13232. {
  13233. GGML_ASSERT(false); // TODO: not implemented
  13234. } break;
  13235. case GGML_OP_NORM:
  13236. {
  13237. GGML_ASSERT(false); // TODO: not implemented
  13238. } break;
  13239. case GGML_OP_RMS_NORM:
  13240. {
  13241. // necessary for llama
  13242. if (src0->grad) {
  13243. float eps;
  13244. memcpy(&eps, tensor->op_params, sizeof(float));
  13245. src0->grad = ggml_add_impl(ctx,
  13246. src0->grad,
  13247. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13248. inplace);
  13249. }
  13250. } break;
  13251. case GGML_OP_RMS_NORM_BACK:
  13252. {
  13253. GGML_ASSERT(false); // TODO: not implemented
  13254. } break;
  13255. case GGML_OP_GROUP_NORM:
  13256. {
  13257. GGML_ASSERT(false); // TODO: not implemented
  13258. } break;
  13259. case GGML_OP_MUL_MAT:
  13260. {
  13261. // https://cs231n.github.io/optimization-2/#staged
  13262. // # forward pass
  13263. // s0 = np.random.randn(5, 10)
  13264. // s1 = np.random.randn(10, 3)
  13265. // t = s0.dot(s1)
  13266. // # now suppose we had the gradient on t from above in the circuit
  13267. // dt = np.random.randn(*t.shape) # same shape as t
  13268. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13269. // ds1 = t.T.dot(dt)
  13270. // tensor.shape [m,p]
  13271. // src0.shape [n,m]
  13272. // src1.shape [n,p]
  13273. // necessary for llama
  13274. if (src0->grad) {
  13275. src0->grad =
  13276. ggml_add_impl(ctx,
  13277. src0->grad,
  13278. ggml_out_prod(ctx, // [n,m]
  13279. src1, // [n,p]
  13280. tensor->grad), // [m,p]
  13281. inplace);
  13282. }
  13283. if (src1->grad) {
  13284. src1->grad =
  13285. ggml_add_impl(ctx,
  13286. src1->grad,
  13287. // ggml_mul_mat(ctx, // [n,p]
  13288. // ggml_cont(ctx, // [m,n]
  13289. // ggml_transpose(ctx, src0)), // [m,n]
  13290. // tensor->grad), // [m,p]
  13291. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13292. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13293. // // and then use ggml_out_prod
  13294. ggml_out_prod(ctx, // [n,p]
  13295. src0, // [n,m]
  13296. ggml_transpose(ctx, // [p,m]
  13297. tensor->grad)), // [m,p]
  13298. inplace);
  13299. }
  13300. } break;
  13301. case GGML_OP_OUT_PROD:
  13302. {
  13303. GGML_ASSERT(false); // TODO: not implemented
  13304. } break;
  13305. case GGML_OP_SCALE:
  13306. {
  13307. // necessary for llama
  13308. if (src0->grad) {
  13309. src0->grad =
  13310. ggml_add_impl(ctx,
  13311. src0->grad,
  13312. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13313. inplace);
  13314. }
  13315. if (src1->grad) {
  13316. src1->grad =
  13317. ggml_add_impl(ctx,
  13318. src1->grad,
  13319. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13320. inplace);
  13321. }
  13322. } break;
  13323. case GGML_OP_SET:
  13324. {
  13325. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13326. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13327. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13328. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13329. struct ggml_tensor * tensor_grad_view = NULL;
  13330. if (src0->grad || src1->grad) {
  13331. GGML_ASSERT(src0->type == tensor->type);
  13332. GGML_ASSERT(tensor->grad->type == tensor->type);
  13333. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13334. tensor_grad_view = ggml_view_4d(ctx,
  13335. tensor->grad,
  13336. src1->grad->ne[0],
  13337. src1->grad->ne[1],
  13338. src1->grad->ne[2],
  13339. src1->grad->ne[3],
  13340. nb1, nb2, nb3, offset);
  13341. }
  13342. if (src0->grad) {
  13343. src0->grad = ggml_add_impl(ctx,
  13344. src0->grad,
  13345. ggml_acc_impl(ctx,
  13346. tensor->grad,
  13347. ggml_neg(ctx, tensor_grad_view),
  13348. nb1, nb2, nb3, offset, false),
  13349. inplace);
  13350. }
  13351. if (src1->grad) {
  13352. src1->grad =
  13353. ggml_add_impl(ctx,
  13354. src1->grad,
  13355. ggml_reshape(ctx,
  13356. ggml_cont(ctx, tensor_grad_view),
  13357. src1->grad),
  13358. inplace);
  13359. }
  13360. } break;
  13361. case GGML_OP_CPY:
  13362. {
  13363. // necessary for llama
  13364. // cpy overwrites value of src1 by src0 and returns view(src1)
  13365. // the overwriting is mathematically equivalent to:
  13366. // tensor = src0 * 1 + src1 * 0
  13367. if (src0->grad) {
  13368. // dsrc0 = dtensor * 1
  13369. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13370. }
  13371. if (src1->grad) {
  13372. // dsrc1 = dtensor * 0 -> noop
  13373. }
  13374. } break;
  13375. case GGML_OP_CONT:
  13376. {
  13377. // same as cpy
  13378. if (src0->grad) {
  13379. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13380. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13381. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13382. }
  13383. } break;
  13384. case GGML_OP_RESHAPE:
  13385. {
  13386. // necessary for llama
  13387. if (src0->grad) {
  13388. src0->grad =
  13389. ggml_add_impl(ctx, src0->grad,
  13390. ggml_reshape(ctx, tensor->grad, src0->grad),
  13391. inplace);
  13392. }
  13393. } break;
  13394. case GGML_OP_VIEW:
  13395. {
  13396. // necessary for llama
  13397. if (src0->grad) {
  13398. size_t offset;
  13399. memcpy(&offset, tensor->op_params, sizeof(offset));
  13400. size_t nb1 = tensor->nb[1];
  13401. size_t nb2 = tensor->nb[2];
  13402. size_t nb3 = tensor->nb[3];
  13403. if (src0->type != src0->grad->type) {
  13404. // gradient is typically F32, but src0 could be other type
  13405. size_t ng = ggml_element_size(src0->grad);
  13406. size_t n0 = ggml_element_size(src0);
  13407. GGML_ASSERT(offset % n0 == 0);
  13408. GGML_ASSERT(nb1 % n0 == 0);
  13409. GGML_ASSERT(nb2 % n0 == 0);
  13410. GGML_ASSERT(nb3 % n0 == 0);
  13411. offset = (offset / n0) * ng;
  13412. nb1 = (nb1 / n0) * ng;
  13413. nb2 = (nb2 / n0) * ng;
  13414. nb3 = (nb3 / n0) * ng;
  13415. }
  13416. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13417. }
  13418. } break;
  13419. case GGML_OP_PERMUTE:
  13420. {
  13421. // necessary for llama
  13422. if (src0->grad) {
  13423. int32_t * axes = (int32_t *) tensor->op_params;
  13424. int axis0 = axes[0] & 0x3;
  13425. int axis1 = axes[1] & 0x3;
  13426. int axis2 = axes[2] & 0x3;
  13427. int axis3 = axes[3] & 0x3;
  13428. int axes_backward[4] = {0,0,0,0};
  13429. axes_backward[axis0] = 0;
  13430. axes_backward[axis1] = 1;
  13431. axes_backward[axis2] = 2;
  13432. axes_backward[axis3] = 3;
  13433. src0->grad =
  13434. ggml_add_impl(ctx, src0->grad,
  13435. ggml_permute(ctx,
  13436. tensor->grad,
  13437. axes_backward[0],
  13438. axes_backward[1],
  13439. axes_backward[2],
  13440. axes_backward[3]),
  13441. inplace);
  13442. }
  13443. } break;
  13444. case GGML_OP_TRANSPOSE:
  13445. {
  13446. // necessary for llama
  13447. if (src0->grad) {
  13448. src0->grad =
  13449. ggml_add_impl(ctx, src0->grad,
  13450. ggml_transpose(ctx, tensor->grad),
  13451. inplace);
  13452. }
  13453. } break;
  13454. case GGML_OP_GET_ROWS:
  13455. {
  13456. // necessary for llama (only for tokenizer)
  13457. if (src0->grad) {
  13458. src0->grad =
  13459. ggml_add_impl(ctx, src0->grad,
  13460. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13461. inplace);
  13462. }
  13463. if (src1->grad) {
  13464. // noop
  13465. }
  13466. } break;
  13467. case GGML_OP_GET_ROWS_BACK:
  13468. {
  13469. GGML_ASSERT(false); // TODO: not implemented
  13470. } break;
  13471. case GGML_OP_DIAG:
  13472. {
  13473. GGML_ASSERT(false); // TODO: not implemented
  13474. } break;
  13475. case GGML_OP_DIAG_MASK_INF:
  13476. {
  13477. // necessary for llama
  13478. if (src0->grad) {
  13479. const int n_past = ((int32_t *) tensor->op_params)[0];
  13480. src0->grad =
  13481. ggml_add_impl(ctx, src0->grad,
  13482. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13483. inplace);
  13484. }
  13485. } break;
  13486. case GGML_OP_DIAG_MASK_ZERO:
  13487. {
  13488. // necessary for llama
  13489. if (src0->grad) {
  13490. const int n_past = ((int32_t *) tensor->op_params)[0];
  13491. src0->grad =
  13492. ggml_add_impl(ctx, src0->grad,
  13493. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13494. inplace);
  13495. }
  13496. } break;
  13497. case GGML_OP_SOFT_MAX:
  13498. {
  13499. // necessary for llama
  13500. if (src0->grad) {
  13501. src0->grad =
  13502. ggml_add_impl(ctx, src0->grad,
  13503. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13504. inplace);
  13505. }
  13506. } break;
  13507. case GGML_OP_SOFT_MAX_BACK:
  13508. {
  13509. GGML_ASSERT(false); // TODO: not implemented
  13510. } break;
  13511. case GGML_OP_ROPE:
  13512. {
  13513. // necessary for llama
  13514. if (src0->grad) {
  13515. const int n_past = ((int32_t *) tensor->op_params)[0];
  13516. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13517. const int mode = ((int32_t *) tensor->op_params)[2];
  13518. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13519. float freq_base;
  13520. float freq_scale;
  13521. float xpos_base;
  13522. bool xpos_down;
  13523. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13524. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13525. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13526. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13527. src0->grad = ggml_add_impl(ctx,
  13528. src0->grad,
  13529. ggml_rope_back(ctx,
  13530. tensor->grad,
  13531. n_past,
  13532. n_dims,
  13533. mode,
  13534. n_ctx,
  13535. freq_base,
  13536. freq_scale,
  13537. xpos_base,
  13538. xpos_down),
  13539. inplace);
  13540. }
  13541. } break;
  13542. case GGML_OP_ROPE_BACK:
  13543. {
  13544. if (src0->grad) {
  13545. const int n_past = ((int32_t *) tensor->op_params)[0];
  13546. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13547. const int mode = ((int32_t *) tensor->op_params)[2];
  13548. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13549. float freq_base;
  13550. float freq_scale;
  13551. float xpos_base;
  13552. bool xpos_down;
  13553. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13554. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13555. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13556. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13557. src0->grad = ggml_add_impl(ctx,
  13558. src0->grad,
  13559. ggml_rope_impl(ctx,
  13560. tensor->grad,
  13561. n_past,
  13562. n_dims,
  13563. mode,
  13564. n_ctx,
  13565. freq_base,
  13566. freq_scale,
  13567. xpos_base,
  13568. xpos_down,
  13569. false),
  13570. inplace);
  13571. }
  13572. } break;
  13573. case GGML_OP_ALIBI:
  13574. {
  13575. GGML_ASSERT(false); // TODO: not implemented
  13576. } break;
  13577. case GGML_OP_CLAMP:
  13578. {
  13579. GGML_ASSERT(false); // TODO: not implemented
  13580. } break;
  13581. case GGML_OP_CONV_1D:
  13582. {
  13583. GGML_ASSERT(false); // TODO: not implemented
  13584. } break;
  13585. case GGML_OP_CONV_2D:
  13586. {
  13587. GGML_ASSERT(false); // TODO: not implemented
  13588. } break;
  13589. case GGML_OP_CONV_TRANSPOSE_2D:
  13590. {
  13591. GGML_ASSERT(false); // TODO: not implemented
  13592. } break;
  13593. case GGML_OP_POOL_1D:
  13594. {
  13595. GGML_ASSERT(false); // TODO: not implemented
  13596. } break;
  13597. case GGML_OP_POOL_2D:
  13598. {
  13599. GGML_ASSERT(false); // TODO: not implemented
  13600. } break;
  13601. case GGML_OP_UPSCALE:
  13602. {
  13603. GGML_ASSERT(false); // TODO: not implemented
  13604. } break;
  13605. case GGML_OP_FLASH_ATTN:
  13606. {
  13607. struct ggml_tensor * flash_grad = NULL;
  13608. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13609. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13610. GGML_ASSERT(t == 0 || t == 1);
  13611. bool masked = t != 0;
  13612. flash_grad =
  13613. ggml_flash_attn_back(ctx,
  13614. src0,
  13615. src1,
  13616. tensor->src[2],
  13617. tensor->grad,
  13618. masked);
  13619. }
  13620. if (src0->grad) {
  13621. struct ggml_tensor * grad_q = NULL;
  13622. const size_t nb0 = flash_grad->nb[0];
  13623. const size_t offset = 0;
  13624. switch(src0->n_dims) {
  13625. case 2:
  13626. {
  13627. grad_q = ggml_view_2d(ctx,
  13628. flash_grad,
  13629. src0->ne[0],
  13630. src0->ne[1],
  13631. nb0*src0->ne[0],
  13632. offset);
  13633. } break;
  13634. case 3:
  13635. {
  13636. grad_q = ggml_view_3d(ctx,
  13637. flash_grad,
  13638. src0->ne[0],
  13639. src0->ne[1],
  13640. src0->ne[2],
  13641. nb0*src0->ne[0],
  13642. nb0*src0->ne[0]*src0->ne[1],
  13643. offset);
  13644. } break;
  13645. case 4:
  13646. {
  13647. grad_q = ggml_view_4d(ctx,
  13648. flash_grad,
  13649. src0->ne[0],
  13650. src0->ne[1],
  13651. src0->ne[2],
  13652. src0->ne[3],
  13653. nb0*src0->ne[0],
  13654. nb0*src0->ne[0]*src0->ne[1],
  13655. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13656. offset);
  13657. } break;
  13658. }
  13659. src0->grad = ggml_add_impl(ctx,
  13660. src0->grad,
  13661. grad_q,
  13662. inplace);
  13663. }
  13664. if (src1->grad) {
  13665. struct ggml_tensor * grad_k = NULL;
  13666. const size_t nb0 = flash_grad->nb[0];
  13667. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13668. switch(src1->n_dims) {
  13669. case 2:
  13670. {
  13671. grad_k = ggml_view_2d(ctx,
  13672. flash_grad,
  13673. src1->ne[0],
  13674. src1->ne[1],
  13675. nb0*src1->ne[0],
  13676. offset);
  13677. } break;
  13678. case 3:
  13679. {
  13680. grad_k = ggml_view_3d(ctx,
  13681. flash_grad,
  13682. src1->ne[0],
  13683. src1->ne[1],
  13684. src1->ne[2],
  13685. nb0*src1->ne[0],
  13686. nb0*src1->ne[0]*src1->ne[1],
  13687. offset);
  13688. } break;
  13689. case 4:
  13690. {
  13691. grad_k = ggml_view_4d(ctx,
  13692. flash_grad,
  13693. src1->ne[0],
  13694. src1->ne[1],
  13695. src1->ne[2],
  13696. src1->ne[3],
  13697. nb0*src1->ne[0],
  13698. nb0*src1->ne[0]*src1->ne[1],
  13699. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13700. offset);
  13701. } break;
  13702. }
  13703. src1->grad = ggml_add_impl(ctx,
  13704. src1->grad,
  13705. grad_k,
  13706. inplace);
  13707. }
  13708. struct ggml_tensor * opt0 = tensor->src[2];
  13709. if (opt0->grad) {
  13710. struct ggml_tensor * grad_v = NULL;
  13711. const size_t nb0 = flash_grad->nb[0];
  13712. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13713. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13714. switch(opt0->n_dims) {
  13715. case 2:
  13716. {
  13717. grad_v = ggml_view_2d(ctx,
  13718. flash_grad,
  13719. opt0->ne[0],
  13720. opt0->ne[1],
  13721. nb0*opt0->ne[0],
  13722. offset);
  13723. } break;
  13724. case 3:
  13725. {
  13726. grad_v = ggml_view_3d(ctx,
  13727. flash_grad,
  13728. opt0->ne[0],
  13729. opt0->ne[1],
  13730. opt0->ne[2],
  13731. nb0*opt0->ne[0],
  13732. nb0*opt0->ne[0]*opt0->ne[1],
  13733. offset);
  13734. } break;
  13735. case 4:
  13736. {
  13737. grad_v = ggml_view_4d(ctx,
  13738. flash_grad,
  13739. opt0->ne[0],
  13740. opt0->ne[1],
  13741. opt0->ne[2],
  13742. opt0->ne[3],
  13743. nb0*opt0->ne[0],
  13744. nb0*opt0->ne[0]*opt0->ne[1],
  13745. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13746. offset);
  13747. } break;
  13748. }
  13749. opt0->grad = ggml_add_impl(ctx,
  13750. opt0->grad,
  13751. grad_v,
  13752. inplace);
  13753. }
  13754. } break;
  13755. case GGML_OP_FLASH_FF:
  13756. {
  13757. GGML_ASSERT(false); // not supported
  13758. } break;
  13759. case GGML_OP_FLASH_ATTN_BACK:
  13760. {
  13761. GGML_ASSERT(false); // not supported
  13762. } break;
  13763. case GGML_OP_WIN_PART:
  13764. case GGML_OP_WIN_UNPART:
  13765. case GGML_OP_UNARY:
  13766. {
  13767. switch (ggml_get_unary_op(tensor)) {
  13768. case GGML_UNARY_OP_ABS:
  13769. {
  13770. if (src0->grad) {
  13771. src0->grad =
  13772. ggml_add_impl(ctx,
  13773. src0->grad,
  13774. ggml_mul(ctx,
  13775. ggml_sgn(ctx, src0),
  13776. tensor->grad),
  13777. inplace);
  13778. }
  13779. } break;
  13780. case GGML_UNARY_OP_SGN:
  13781. {
  13782. if (src0->grad) {
  13783. // noop
  13784. }
  13785. } break;
  13786. case GGML_UNARY_OP_NEG:
  13787. {
  13788. if (src0->grad) {
  13789. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13790. }
  13791. } break;
  13792. case GGML_UNARY_OP_STEP:
  13793. {
  13794. if (src0->grad) {
  13795. // noop
  13796. }
  13797. } break;
  13798. case GGML_UNARY_OP_TANH:
  13799. {
  13800. GGML_ASSERT(false); // TODO: not implemented
  13801. } break;
  13802. case GGML_UNARY_OP_ELU:
  13803. {
  13804. GGML_ASSERT(false); // TODO: not implemented
  13805. } break;
  13806. case GGML_UNARY_OP_RELU:
  13807. {
  13808. if (src0->grad) {
  13809. src0->grad = ggml_add_impl(ctx,
  13810. src0->grad,
  13811. ggml_mul(ctx,
  13812. ggml_step(ctx, src0),
  13813. tensor->grad),
  13814. inplace);
  13815. }
  13816. } break;
  13817. case GGML_UNARY_OP_GELU:
  13818. {
  13819. GGML_ASSERT(false); // TODO: not implemented
  13820. } break;
  13821. case GGML_UNARY_OP_GELU_QUICK:
  13822. {
  13823. GGML_ASSERT(false); // TODO: not implemented
  13824. } break;
  13825. case GGML_UNARY_OP_SILU:
  13826. {
  13827. // necessary for llama
  13828. if (src0->grad) {
  13829. src0->grad = ggml_add_impl(ctx,
  13830. src0->grad,
  13831. ggml_silu_back(ctx, src0, tensor->grad),
  13832. inplace);
  13833. }
  13834. } break;
  13835. default:
  13836. GGML_ASSERT(false);
  13837. }
  13838. } break;
  13839. case GGML_OP_GET_REL_POS:
  13840. case GGML_OP_ADD_REL_POS:
  13841. case GGML_OP_MAP_UNARY:
  13842. case GGML_OP_MAP_BINARY:
  13843. case GGML_OP_MAP_CUSTOM1_F32:
  13844. case GGML_OP_MAP_CUSTOM2_F32:
  13845. case GGML_OP_MAP_CUSTOM3_F32:
  13846. case GGML_OP_MAP_CUSTOM1:
  13847. case GGML_OP_MAP_CUSTOM2:
  13848. case GGML_OP_MAP_CUSTOM3:
  13849. {
  13850. GGML_ASSERT(false); // not supported
  13851. } break;
  13852. case GGML_OP_CROSS_ENTROPY_LOSS:
  13853. {
  13854. if (src0->grad) {
  13855. src0->grad = ggml_add_impl(ctx,
  13856. src0->grad,
  13857. ggml_cross_entropy_loss_back(ctx,
  13858. src0,
  13859. src1,
  13860. tensor->grad),
  13861. inplace);
  13862. }
  13863. } break;
  13864. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13865. {
  13866. GGML_ASSERT(false); // not supported
  13867. } break;
  13868. case GGML_OP_NONE:
  13869. {
  13870. // nop
  13871. } break;
  13872. case GGML_OP_COUNT:
  13873. {
  13874. GGML_ASSERT(false);
  13875. } break;
  13876. }
  13877. }
  13878. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13879. static size_t hash(void * p) {
  13880. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13881. }
  13882. static bool hash_insert(void * hash_table[], void * p) {
  13883. size_t h = hash(p);
  13884. // linear probing
  13885. size_t i = h;
  13886. while (hash_table[i] != NULL && hash_table[i] != p) {
  13887. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13888. if (i == h) {
  13889. // hash table is full
  13890. GGML_ASSERT(false);
  13891. }
  13892. }
  13893. if (hash_table[i] == p) {
  13894. return true;
  13895. }
  13896. // insert
  13897. hash_table[i] = p;
  13898. return false;
  13899. }
  13900. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13901. if (node->grad == NULL) {
  13902. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13903. // it can also happen during forward pass, if the user performs computations with constants
  13904. if (node->op != GGML_OP_NONE) {
  13905. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13906. }
  13907. }
  13908. // check if already visited
  13909. if (hash_insert(cgraph->visited_hash_table, node)) {
  13910. return;
  13911. }
  13912. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13913. if (node->src[i]) {
  13914. ggml_visit_parents(cgraph, node->src[i]);
  13915. }
  13916. }
  13917. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13918. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13919. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13920. if (strlen(node->name) == 0) {
  13921. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13922. }
  13923. cgraph->leafs[cgraph->n_leafs] = node;
  13924. cgraph->n_leafs++;
  13925. } else {
  13926. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13927. if (strlen(node->name) == 0) {
  13928. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13929. }
  13930. cgraph->nodes[cgraph->n_nodes] = node;
  13931. cgraph->grads[cgraph->n_nodes] = node->grad;
  13932. cgraph->n_nodes++;
  13933. }
  13934. }
  13935. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13936. if (!expand) {
  13937. cgraph->n_nodes = 0;
  13938. cgraph->n_leafs = 0;
  13939. }
  13940. const int n0 = cgraph->n_nodes;
  13941. UNUSED(n0);
  13942. ggml_visit_parents(cgraph, tensor);
  13943. const int n_new = cgraph->n_nodes - n0;
  13944. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13945. if (n_new > 0) {
  13946. // the last added node should always be starting point
  13947. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13948. }
  13949. }
  13950. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13951. ggml_build_forward_impl(cgraph, tensor, true);
  13952. }
  13953. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13954. struct ggml_cgraph result = {
  13955. /*.n_nodes =*/ 0,
  13956. /*.n_leafs =*/ 0,
  13957. /*.nodes =*/ { NULL },
  13958. /*.grads =*/ { NULL },
  13959. /*.leafs =*/ { NULL },
  13960. /*.hash_table =*/ { NULL },
  13961. /*.perf_runs =*/ 0,
  13962. /*.perf_cycles =*/ 0,
  13963. /*.perf_time_us =*/ 0,
  13964. };
  13965. ggml_build_forward_impl(&result, tensor, false);
  13966. return result;
  13967. }
  13968. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13969. GGML_ASSERT(gf->n_nodes > 0);
  13970. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13971. if (keep) {
  13972. for (int i = 0; i < gf->n_nodes; i++) {
  13973. struct ggml_tensor * node = gf->nodes[i];
  13974. if (node->grad) {
  13975. node->grad = ggml_dup_tensor(ctx, node);
  13976. gf->grads[i] = node->grad;
  13977. }
  13978. }
  13979. }
  13980. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13981. struct ggml_tensor * node = gf->nodes[i];
  13982. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13983. if (node->grad) {
  13984. ggml_compute_backward(ctx, node, keep);
  13985. }
  13986. }
  13987. for (int i = 0; i < gf->n_nodes; i++) {
  13988. struct ggml_tensor * node = gf->nodes[i];
  13989. if (node->is_param) {
  13990. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13991. ggml_build_forward_expand(gb, node->grad);
  13992. }
  13993. }
  13994. }
  13995. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13996. struct ggml_cgraph result = *gf;
  13997. ggml_build_backward_expand(ctx, gf, &result, keep);
  13998. return result;
  13999. }
  14000. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14001. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14002. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14003. *cgraph = (struct ggml_cgraph) {
  14004. /*.n_nodes =*/ 0,
  14005. /*.n_leafs =*/ 0,
  14006. /*.nodes =*/ { NULL },
  14007. /*.grads =*/ { NULL },
  14008. /*.leafs =*/ { NULL },
  14009. /*.hash_table =*/ { NULL },
  14010. /*.perf_runs =*/ 0,
  14011. /*.perf_cycles =*/ 0,
  14012. /*.perf_time_us =*/ 0,
  14013. };
  14014. return cgraph;
  14015. }
  14016. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14017. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14018. ggml_build_forward_impl(cgraph, tensor, false);
  14019. return cgraph;
  14020. }
  14021. size_t ggml_graph_overhead(void) {
  14022. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14023. }
  14024. //
  14025. // thread data
  14026. //
  14027. // synchronization is done via busy loops
  14028. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14029. //
  14030. #ifdef __APPLE__
  14031. //#include <os/lock.h>
  14032. //
  14033. //typedef os_unfair_lock ggml_lock_t;
  14034. //
  14035. //#define ggml_lock_init(x) UNUSED(x)
  14036. //#define ggml_lock_destroy(x) UNUSED(x)
  14037. //#define ggml_lock_lock os_unfair_lock_lock
  14038. //#define ggml_lock_unlock os_unfair_lock_unlock
  14039. //
  14040. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14041. typedef int ggml_lock_t;
  14042. #define ggml_lock_init(x) UNUSED(x)
  14043. #define ggml_lock_destroy(x) UNUSED(x)
  14044. #define ggml_lock_lock(x) UNUSED(x)
  14045. #define ggml_lock_unlock(x) UNUSED(x)
  14046. #define GGML_LOCK_INITIALIZER 0
  14047. typedef pthread_t ggml_thread_t;
  14048. #define ggml_thread_create pthread_create
  14049. #define ggml_thread_join pthread_join
  14050. #else
  14051. //typedef pthread_spinlock_t ggml_lock_t;
  14052. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14053. //#define ggml_lock_destroy pthread_spin_destroy
  14054. //#define ggml_lock_lock pthread_spin_lock
  14055. //#define ggml_lock_unlock pthread_spin_unlock
  14056. typedef int ggml_lock_t;
  14057. #define ggml_lock_init(x) UNUSED(x)
  14058. #define ggml_lock_destroy(x) UNUSED(x)
  14059. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14060. #define ggml_lock_lock(x) _mm_pause()
  14061. #else
  14062. #define ggml_lock_lock(x) UNUSED(x)
  14063. #endif
  14064. #define ggml_lock_unlock(x) UNUSED(x)
  14065. #define GGML_LOCK_INITIALIZER 0
  14066. typedef pthread_t ggml_thread_t;
  14067. #define ggml_thread_create pthread_create
  14068. #define ggml_thread_join pthread_join
  14069. #endif
  14070. // Android's libc implementation "bionic" does not support setting affinity
  14071. #if defined(__linux__) && !defined(__BIONIC__)
  14072. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14073. if (!ggml_is_numa()) {
  14074. return;
  14075. }
  14076. // run thread on node_num thread_n / (threads per node)
  14077. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14078. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14079. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14080. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14081. CPU_ZERO_S(setsize, cpus);
  14082. for (size_t i = 0; i < node->n_cpus; ++i) {
  14083. CPU_SET_S(node->cpus[i], setsize, cpus);
  14084. }
  14085. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14086. if (rv) {
  14087. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14088. strerror(rv));
  14089. }
  14090. CPU_FREE(cpus);
  14091. }
  14092. static void clear_numa_thread_affinity(void) {
  14093. if (!ggml_is_numa()) {
  14094. return;
  14095. }
  14096. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14097. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14098. CPU_ZERO_S(setsize, cpus);
  14099. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14100. CPU_SET_S(i, setsize, cpus);
  14101. }
  14102. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14103. if (rv) {
  14104. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14105. strerror(rv));
  14106. }
  14107. CPU_FREE(cpus);
  14108. }
  14109. #else
  14110. // TODO: Windows etc.
  14111. // (the linux implementation may also work on BSD, someone should test)
  14112. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14113. static void clear_numa_thread_affinity(void) {}
  14114. #endif
  14115. struct ggml_compute_state_shared {
  14116. const struct ggml_cgraph * cgraph;
  14117. const struct ggml_cplan * cplan;
  14118. int64_t perf_node_start_cycles;
  14119. int64_t perf_node_start_time_us;
  14120. const int n_threads;
  14121. // synchronization primitives
  14122. atomic_int n_active; // num active threads
  14123. atomic_int node_n; // active graph node
  14124. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14125. void * abort_callback_data;
  14126. };
  14127. struct ggml_compute_state {
  14128. ggml_thread_t thrd;
  14129. int ith;
  14130. struct ggml_compute_state_shared * shared;
  14131. };
  14132. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14133. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14134. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14135. node->perf_runs++;
  14136. node->perf_cycles += cycles_cur;
  14137. node->perf_time_us += time_us_cur;
  14138. }
  14139. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14140. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14141. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14142. const struct ggml_cplan * cplan = state->shared->cplan;
  14143. const int * n_tasks_arr = cplan->n_tasks;
  14144. const int n_threads = state->shared->n_threads;
  14145. set_numa_thread_affinity(state->ith, n_threads);
  14146. int node_n = -1;
  14147. while (true) {
  14148. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14149. state->shared->node_n += 1;
  14150. return (thread_ret_t) GGML_EXIT_ABORTED;
  14151. }
  14152. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14153. // all other threads are finished and spinning
  14154. // do finalize and init here so we don't have synchronize again
  14155. struct ggml_compute_params params = {
  14156. /*.type =*/ GGML_TASK_FINALIZE,
  14157. /*.ith =*/ 0,
  14158. /*.nth =*/ 0,
  14159. /*.wsize =*/ cplan->work_size,
  14160. /*.wdata =*/ cplan->work_data,
  14161. };
  14162. if (node_n != -1) {
  14163. /* FINALIZE */
  14164. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14165. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14166. params.nth = n_tasks_arr[node_n];
  14167. ggml_compute_forward(&params, node);
  14168. }
  14169. ggml_graph_compute_perf_stats_node(node, state->shared);
  14170. }
  14171. // distribute new work or execute it direct if 1T
  14172. while (++node_n < cgraph->n_nodes) {
  14173. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14174. struct ggml_tensor * node = cgraph->nodes[node_n];
  14175. const int n_tasks = n_tasks_arr[node_n];
  14176. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14177. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14178. params.nth = n_tasks;
  14179. /* INIT */
  14180. if (GGML_OP_HAS_INIT[node->op]) {
  14181. params.type = GGML_TASK_INIT;
  14182. ggml_compute_forward(&params, node);
  14183. }
  14184. if (n_tasks == 1) {
  14185. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14186. // they do something more efficient than spinning (?)
  14187. params.type = GGML_TASK_COMPUTE;
  14188. ggml_compute_forward(&params, node);
  14189. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14190. params.type = GGML_TASK_FINALIZE;
  14191. ggml_compute_forward(&params, node);
  14192. }
  14193. ggml_graph_compute_perf_stats_node(node, state->shared);
  14194. } else {
  14195. break;
  14196. }
  14197. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14198. break;
  14199. }
  14200. }
  14201. atomic_store(&state->shared->n_active, n_threads);
  14202. atomic_store(&state->shared->node_n, node_n);
  14203. } else {
  14204. // wait for other threads to finish
  14205. const int last = node_n;
  14206. while (true) {
  14207. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14208. // depending on the workload and the operating system.
  14209. // since it is not clear what is the best approach, it should potentially become user-configurable
  14210. // ref: https://github.com/ggerganov/ggml/issues/291
  14211. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14212. sched_yield();
  14213. #endif
  14214. node_n = atomic_load(&state->shared->node_n);
  14215. if (node_n != last) break;
  14216. };
  14217. }
  14218. // check if we should stop
  14219. if (node_n >= cgraph->n_nodes) break;
  14220. /* COMPUTE */
  14221. struct ggml_tensor * node = cgraph->nodes[node_n];
  14222. const int n_tasks = n_tasks_arr[node_n];
  14223. struct ggml_compute_params params = {
  14224. /*.type =*/ GGML_TASK_COMPUTE,
  14225. /*.ith =*/ state->ith,
  14226. /*.nth =*/ n_tasks,
  14227. /*.wsize =*/ cplan->work_size,
  14228. /*.wdata =*/ cplan->work_data,
  14229. };
  14230. if (state->ith < n_tasks) {
  14231. ggml_compute_forward(&params, node);
  14232. }
  14233. }
  14234. return GGML_EXIT_SUCCESS;
  14235. }
  14236. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14237. if (n_threads <= 0) {
  14238. n_threads = GGML_DEFAULT_N_THREADS;
  14239. }
  14240. size_t work_size = 0;
  14241. struct ggml_cplan cplan;
  14242. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14243. // thread scheduling for the different operations + work buffer size estimation
  14244. for (int i = 0; i < cgraph->n_nodes; i++) {
  14245. int n_tasks = 1;
  14246. struct ggml_tensor * node = cgraph->nodes[i];
  14247. switch (node->op) {
  14248. case GGML_OP_CPY:
  14249. case GGML_OP_DUP:
  14250. {
  14251. n_tasks = n_threads;
  14252. size_t cur = 0;
  14253. if (ggml_is_quantized(node->type)) {
  14254. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14255. }
  14256. work_size = MAX(work_size, cur);
  14257. } break;
  14258. case GGML_OP_ADD:
  14259. case GGML_OP_ADD1:
  14260. {
  14261. n_tasks = n_threads;
  14262. size_t cur = 0;
  14263. if (ggml_is_quantized(node->src[0]->type)) {
  14264. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14265. }
  14266. work_size = MAX(work_size, cur);
  14267. } break;
  14268. case GGML_OP_ACC:
  14269. {
  14270. n_tasks = n_threads;
  14271. size_t cur = 0;
  14272. if (ggml_is_quantized(node->src[0]->type)) {
  14273. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14274. }
  14275. work_size = MAX(work_size, cur);
  14276. } break;
  14277. case GGML_OP_SUB:
  14278. case GGML_OP_DIV:
  14279. case GGML_OP_SQR:
  14280. case GGML_OP_SQRT:
  14281. case GGML_OP_LOG:
  14282. case GGML_OP_SUM:
  14283. case GGML_OP_SUM_ROWS:
  14284. case GGML_OP_MEAN:
  14285. case GGML_OP_ARGMAX:
  14286. case GGML_OP_REPEAT:
  14287. case GGML_OP_REPEAT_BACK:
  14288. {
  14289. n_tasks = 1;
  14290. } break;
  14291. case GGML_OP_UNARY:
  14292. {
  14293. switch (ggml_get_unary_op(node)) {
  14294. case GGML_UNARY_OP_ABS:
  14295. case GGML_UNARY_OP_SGN:
  14296. case GGML_UNARY_OP_NEG:
  14297. case GGML_UNARY_OP_STEP:
  14298. case GGML_UNARY_OP_TANH:
  14299. case GGML_UNARY_OP_ELU:
  14300. case GGML_UNARY_OP_RELU:
  14301. {
  14302. n_tasks = 1;
  14303. } break;
  14304. case GGML_UNARY_OP_GELU:
  14305. case GGML_UNARY_OP_GELU_QUICK:
  14306. case GGML_UNARY_OP_SILU:
  14307. {
  14308. n_tasks = n_threads;
  14309. } break;
  14310. }
  14311. } break;
  14312. case GGML_OP_SILU_BACK:
  14313. case GGML_OP_MUL:
  14314. case GGML_OP_NORM:
  14315. case GGML_OP_RMS_NORM:
  14316. case GGML_OP_RMS_NORM_BACK:
  14317. case GGML_OP_GROUP_NORM:
  14318. {
  14319. n_tasks = n_threads;
  14320. } break;
  14321. case GGML_OP_CONCAT:
  14322. case GGML_OP_MUL_MAT:
  14323. case GGML_OP_OUT_PROD:
  14324. {
  14325. n_tasks = n_threads;
  14326. // TODO: use different scheduling for different matrix sizes
  14327. //const int nr0 = ggml_nrows(node->src[0]);
  14328. //const int nr1 = ggml_nrows(node->src[1]);
  14329. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14330. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14331. size_t cur = 0;
  14332. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14333. #if defined(GGML_USE_CUBLAS)
  14334. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14335. n_tasks = 1; // TODO: this actually is doing nothing
  14336. // the threads are still spinning
  14337. } else
  14338. #elif defined(GGML_USE_CLBLAST)
  14339. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14340. n_tasks = 1; // TODO: this actually is doing nothing
  14341. // the threads are still spinning
  14342. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14343. } else
  14344. #endif
  14345. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14346. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14347. n_tasks = 1; // TODO: this actually is doing nothing
  14348. // the threads are still spinning
  14349. if (node->src[0]->type != GGML_TYPE_F32) {
  14350. // here we need memory just for single 2D matrix from src0
  14351. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14352. }
  14353. } else
  14354. #endif
  14355. if (node->src[1]->type != vec_dot_type) {
  14356. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14357. } else {
  14358. cur = 0;
  14359. }
  14360. work_size = MAX(work_size, cur);
  14361. } break;
  14362. case GGML_OP_SCALE:
  14363. {
  14364. n_tasks = 1;
  14365. } break;
  14366. case GGML_OP_SET:
  14367. case GGML_OP_CONT:
  14368. case GGML_OP_RESHAPE:
  14369. case GGML_OP_VIEW:
  14370. case GGML_OP_PERMUTE:
  14371. case GGML_OP_TRANSPOSE:
  14372. case GGML_OP_GET_ROWS:
  14373. case GGML_OP_GET_ROWS_BACK:
  14374. case GGML_OP_DIAG:
  14375. {
  14376. n_tasks = 1;
  14377. } break;
  14378. case GGML_OP_DIAG_MASK_ZERO:
  14379. case GGML_OP_DIAG_MASK_INF:
  14380. case GGML_OP_SOFT_MAX:
  14381. case GGML_OP_SOFT_MAX_BACK:
  14382. case GGML_OP_ROPE:
  14383. case GGML_OP_ROPE_BACK:
  14384. case GGML_OP_ADD_REL_POS:
  14385. {
  14386. n_tasks = n_threads;
  14387. } break;
  14388. case GGML_OP_ALIBI:
  14389. {
  14390. n_tasks = 1; //TODO
  14391. } break;
  14392. case GGML_OP_CLAMP:
  14393. {
  14394. n_tasks = 1; //TODO
  14395. } break;
  14396. case GGML_OP_CONV_1D:
  14397. {
  14398. n_tasks = n_threads;
  14399. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14400. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14401. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14402. size_t cur = 0;
  14403. const int nk = node->src[0]->ne[0];
  14404. if (node->src[0]->type == GGML_TYPE_F16 &&
  14405. node->src[1]->type == GGML_TYPE_F32) {
  14406. cur = sizeof(ggml_fp16_t)*(
  14407. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14408. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14409. );
  14410. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14411. node->src[1]->type == GGML_TYPE_F32) {
  14412. cur = sizeof(float)*(
  14413. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14414. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14415. );
  14416. } else {
  14417. GGML_ASSERT(false);
  14418. }
  14419. work_size = MAX(work_size, cur);
  14420. } break;
  14421. case GGML_OP_CONV_2D:
  14422. {
  14423. n_tasks = n_threads;
  14424. const int64_t ne00 = node->src[0]->ne[0]; // W
  14425. const int64_t ne01 = node->src[0]->ne[1]; // H
  14426. const int64_t ne02 = node->src[0]->ne[2]; // C
  14427. const int64_t ne03 = node->src[0]->ne[3]; // N
  14428. const int64_t ne10 = node->src[1]->ne[0]; // W
  14429. const int64_t ne11 = node->src[1]->ne[1]; // H
  14430. const int64_t ne12 = node->src[1]->ne[2]; // C
  14431. const int64_t ne0 = node->ne[0];
  14432. const int64_t ne1 = node->ne[1];
  14433. const int64_t ne2 = node->ne[2];
  14434. const int64_t nk = ne00*ne01;
  14435. const int64_t ew0 = nk * ne02;
  14436. UNUSED(ne03);
  14437. UNUSED(ne2);
  14438. size_t cur = 0;
  14439. if (node->src[0]->type == GGML_TYPE_F16 &&
  14440. node->src[1]->type == GGML_TYPE_F32) {
  14441. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14442. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14443. node->src[1]->type == GGML_TYPE_F32) {
  14444. cur = sizeof(float)* (ne10*ne11*ne12);
  14445. } else {
  14446. GGML_ASSERT(false);
  14447. }
  14448. work_size = MAX(work_size, cur);
  14449. } break;
  14450. case GGML_OP_CONV_TRANSPOSE_2D:
  14451. {
  14452. n_tasks = n_threads;
  14453. const int64_t ne00 = node->src[0]->ne[0]; // W
  14454. const int64_t ne01 = node->src[0]->ne[1]; // H
  14455. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14456. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14457. const int64_t ne10 = node->src[1]->ne[0]; // W
  14458. const int64_t ne11 = node->src[1]->ne[1]; // H
  14459. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14460. size_t cur = 0;
  14461. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14462. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14463. work_size = MAX(work_size, cur);
  14464. } break;
  14465. case GGML_OP_POOL_1D:
  14466. case GGML_OP_POOL_2D:
  14467. {
  14468. n_tasks = 1;
  14469. } break;
  14470. case GGML_OP_UPSCALE:
  14471. {
  14472. n_tasks = n_threads;
  14473. } break;
  14474. case GGML_OP_FLASH_ATTN:
  14475. {
  14476. n_tasks = n_threads;
  14477. size_t cur = 0;
  14478. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14479. if (node->src[1]->type == GGML_TYPE_F32) {
  14480. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14481. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14482. }
  14483. if (node->src[1]->type == GGML_TYPE_F16) {
  14484. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14485. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14486. }
  14487. work_size = MAX(work_size, cur);
  14488. } break;
  14489. case GGML_OP_FLASH_FF:
  14490. {
  14491. n_tasks = n_threads;
  14492. size_t cur = 0;
  14493. if (node->src[1]->type == GGML_TYPE_F32) {
  14494. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14495. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14496. }
  14497. if (node->src[1]->type == GGML_TYPE_F16) {
  14498. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14499. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14500. }
  14501. work_size = MAX(work_size, cur);
  14502. } break;
  14503. case GGML_OP_FLASH_ATTN_BACK:
  14504. {
  14505. n_tasks = n_threads;
  14506. size_t cur = 0;
  14507. const int64_t D = node->src[0]->ne[0];
  14508. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14509. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14510. if (node->src[1]->type == GGML_TYPE_F32) {
  14511. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14512. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14513. }
  14514. if (node->src[1]->type == GGML_TYPE_F16) {
  14515. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14516. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14517. }
  14518. work_size = MAX(work_size, cur);
  14519. } break;
  14520. case GGML_OP_WIN_PART:
  14521. case GGML_OP_WIN_UNPART:
  14522. case GGML_OP_GET_REL_POS:
  14523. case GGML_OP_MAP_UNARY:
  14524. case GGML_OP_MAP_BINARY:
  14525. case GGML_OP_MAP_CUSTOM1_F32:
  14526. case GGML_OP_MAP_CUSTOM2_F32:
  14527. case GGML_OP_MAP_CUSTOM3_F32:
  14528. {
  14529. n_tasks = 1;
  14530. } break;
  14531. case GGML_OP_MAP_CUSTOM1:
  14532. {
  14533. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14534. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14535. n_tasks = n_threads;
  14536. } else {
  14537. n_tasks = MIN(p->n_tasks, n_threads);
  14538. }
  14539. } break;
  14540. case GGML_OP_MAP_CUSTOM2:
  14541. {
  14542. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14543. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14544. n_tasks = n_threads;
  14545. } else {
  14546. n_tasks = MIN(p->n_tasks, n_threads);
  14547. }
  14548. } break;
  14549. case GGML_OP_MAP_CUSTOM3:
  14550. {
  14551. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14552. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14553. n_tasks = n_threads;
  14554. } else {
  14555. n_tasks = MIN(p->n_tasks, n_threads);
  14556. }
  14557. } break;
  14558. case GGML_OP_CROSS_ENTROPY_LOSS:
  14559. {
  14560. n_tasks = n_threads;
  14561. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14562. work_size = MAX(work_size, cur);
  14563. } break;
  14564. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14565. {
  14566. n_tasks = n_threads;
  14567. } break;
  14568. case GGML_OP_NONE:
  14569. {
  14570. n_tasks = 1;
  14571. } break;
  14572. case GGML_OP_COUNT:
  14573. {
  14574. GGML_ASSERT(false);
  14575. } break;
  14576. }
  14577. cplan.n_tasks[i] = n_tasks;
  14578. }
  14579. if (work_size > 0) {
  14580. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14581. }
  14582. cplan.n_threads = n_threads;
  14583. cplan.work_size = work_size;
  14584. cplan.work_data = NULL;
  14585. return cplan;
  14586. }
  14587. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14588. {
  14589. GGML_ASSERT(cplan);
  14590. GGML_ASSERT(cplan->n_threads > 0);
  14591. if (cplan->work_size > 0) {
  14592. GGML_ASSERT(cplan->work_data);
  14593. }
  14594. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14595. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14596. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14597. }
  14598. }
  14599. }
  14600. const int n_threads = cplan->n_threads;
  14601. struct ggml_compute_state_shared state_shared = {
  14602. /*.cgraph =*/ cgraph,
  14603. /*.cgraph_plan =*/ cplan,
  14604. /*.perf_node_start_cycles =*/ 0,
  14605. /*.perf_node_start_time_us =*/ 0,
  14606. /*.n_threads =*/ n_threads,
  14607. /*.n_active =*/ n_threads,
  14608. /*.node_n =*/ -1,
  14609. /*.abort_callback =*/ NULL,
  14610. /*.abort_callback_data =*/ NULL,
  14611. };
  14612. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14613. // create thread pool
  14614. if (n_threads > 1) {
  14615. for (int j = 1; j < n_threads; ++j) {
  14616. workers[j] = (struct ggml_compute_state) {
  14617. .thrd = 0,
  14618. .ith = j,
  14619. .shared = &state_shared,
  14620. };
  14621. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14622. GGML_ASSERT(rc == 0);
  14623. UNUSED(rc);
  14624. }
  14625. }
  14626. workers[0].ith = 0;
  14627. workers[0].shared = &state_shared;
  14628. const int64_t perf_start_cycles = ggml_perf_cycles();
  14629. const int64_t perf_start_time_us = ggml_perf_time_us();
  14630. // this is a work thread too
  14631. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14632. // don't leave affinity set on the main thread
  14633. clear_numa_thread_affinity();
  14634. // join or kill thread pool
  14635. if (n_threads > 1) {
  14636. for (int j = 1; j < n_threads; j++) {
  14637. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14638. GGML_ASSERT(rc == 0);
  14639. }
  14640. }
  14641. // performance stats (graph)
  14642. {
  14643. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14644. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14645. cgraph->perf_runs++;
  14646. cgraph->perf_cycles += perf_cycles_cur;
  14647. cgraph->perf_time_us += perf_time_us_cur;
  14648. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14649. __func__, cgraph->perf_runs,
  14650. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14651. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14652. (double) perf_time_us_cur / 1000.0,
  14653. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14654. }
  14655. return compute_status;
  14656. }
  14657. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14658. for (int i = 0; i < cgraph->n_nodes; i++) {
  14659. struct ggml_tensor * grad = cgraph->grads[i];
  14660. if (grad) {
  14661. ggml_set_zero(grad);
  14662. }
  14663. }
  14664. }
  14665. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14666. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14667. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14668. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14669. ggml_graph_compute(cgraph, &cplan);
  14670. }
  14671. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14672. for (int i = 0; i < cgraph->n_leafs; i++) {
  14673. struct ggml_tensor * leaf = cgraph->leafs[i];
  14674. if (strcmp(leaf->name, name) == 0) {
  14675. return leaf;
  14676. }
  14677. }
  14678. for (int i = 0; i < cgraph->n_nodes; i++) {
  14679. struct ggml_tensor * node = cgraph->nodes[i];
  14680. if (strcmp(node->name, name) == 0) {
  14681. return node;
  14682. }
  14683. }
  14684. return NULL;
  14685. }
  14686. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14687. const int64_t * ne = tensor->ne;
  14688. const size_t * nb = tensor->nb;
  14689. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14690. ggml_type_name(tensor->type),
  14691. ggml_op_name (tensor->op),
  14692. tensor->n_dims,
  14693. ne[0], ne[1], ne[2], ne[3],
  14694. nb[0], nb[1], nb[2], nb[3],
  14695. tensor->data,
  14696. tensor->name);
  14697. }
  14698. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14699. const int64_t * ne = tensor->ne;
  14700. const size_t * nb = tensor->nb;
  14701. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14702. arg,
  14703. ggml_type_name(tensor->type),
  14704. ggml_op_name (tensor->op),
  14705. tensor->n_dims,
  14706. ne[0], ne[1], ne[2], ne[3],
  14707. nb[0], nb[1], nb[2], nb[3],
  14708. tensor->data,
  14709. tensor->name);
  14710. }
  14711. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14712. uint64_t size_eval = 0;
  14713. // compute size of intermediate results
  14714. // TODO: does not take into account scratch buffers !!!!
  14715. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14716. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14717. }
  14718. // print
  14719. {
  14720. FILE * fout = stdout;
  14721. fprintf(fout, "\n");
  14722. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14723. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14724. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14725. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14726. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14727. // header
  14728. fprintf(fout, "\n");
  14729. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14730. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14731. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14732. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14733. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14734. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14735. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14736. }
  14737. // header
  14738. fprintf(fout, "\n");
  14739. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14740. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14741. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14742. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14743. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14744. if (cgraph->nodes[i]->src[j]) {
  14745. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14746. }
  14747. }
  14748. fprintf(fout, "\n");
  14749. }
  14750. fprintf(fout, "\n");
  14751. }
  14752. // write binary data
  14753. {
  14754. FILE * fout = fopen(fname, "wb");
  14755. if (!fout) {
  14756. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14757. return;
  14758. }
  14759. // header
  14760. {
  14761. const uint32_t magic = GGML_FILE_MAGIC;
  14762. const uint32_t version = GGML_FILE_VERSION;
  14763. const uint32_t n_leafs = cgraph->n_leafs;
  14764. const uint32_t nodes = cgraph->n_nodes;
  14765. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14766. fwrite(&version, sizeof(uint32_t), 1, fout);
  14767. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14768. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14769. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14770. }
  14771. // leafs
  14772. {
  14773. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14774. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14775. const uint32_t type = tensor->type;
  14776. const uint32_t op = tensor->op;
  14777. const uint32_t n_dims = tensor->n_dims;
  14778. fwrite(&type, sizeof(uint32_t), 1, fout);
  14779. fwrite(&op, sizeof(uint32_t), 1, fout);
  14780. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14781. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14782. const uint64_t ne = tensor->ne[j];
  14783. const uint64_t nb = tensor->nb[j];
  14784. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14785. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14786. }
  14787. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14788. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14789. // dump the data
  14790. // TODO: pad this to 32 byte boundary
  14791. {
  14792. const size_t size = ggml_nbytes(tensor);
  14793. fwrite(tensor->data, sizeof(char), size, fout);
  14794. }
  14795. }
  14796. }
  14797. // nodes
  14798. {
  14799. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14800. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14801. const uint32_t type = tensor->type;
  14802. const uint32_t op = tensor->op;
  14803. const uint32_t n_dims = tensor->n_dims;
  14804. fwrite(&type, sizeof(uint32_t), 1, fout);
  14805. fwrite(&op, sizeof(uint32_t), 1, fout);
  14806. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14807. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14808. const uint64_t ne = tensor->ne[j];
  14809. const uint64_t nb = tensor->nb[j];
  14810. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14811. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14812. }
  14813. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14814. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14815. // output the op arguments
  14816. {
  14817. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14818. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14819. args[j] = tensor->src[j];
  14820. }
  14821. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14822. if (args[j]) {
  14823. int32_t idx = -1;
  14824. // check if leaf
  14825. {
  14826. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14827. if (args[j] == cgraph->leafs[k]) {
  14828. idx = k;
  14829. break;
  14830. }
  14831. }
  14832. }
  14833. // check if node
  14834. if (idx == -1) {
  14835. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14836. if (args[j] == cgraph->nodes[k]) {
  14837. idx = GGML_MAX_NODES + k;
  14838. break;
  14839. }
  14840. }
  14841. }
  14842. if (idx == -1) {
  14843. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14844. return;
  14845. }
  14846. fwrite(&idx, sizeof(int32_t), 1, fout);
  14847. } else {
  14848. const int32_t nul = -1;
  14849. fwrite(&nul, sizeof(int32_t), 1, fout);
  14850. }
  14851. }
  14852. }
  14853. }
  14854. }
  14855. fclose(fout);
  14856. }
  14857. }
  14858. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14859. assert(*ctx_data == NULL);
  14860. assert(*ctx_eval == NULL);
  14861. struct ggml_cgraph result = { 0 };
  14862. struct ggml_tensor * data = NULL;
  14863. // read file into data
  14864. {
  14865. FILE * fin = fopen(fname, "rb");
  14866. if (!fin) {
  14867. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14868. return result;
  14869. }
  14870. size_t fsize = 0;
  14871. fseek(fin, 0, SEEK_END);
  14872. fsize = ftell(fin);
  14873. fseek(fin, 0, SEEK_SET);
  14874. // create the data context
  14875. {
  14876. const size_t overhead = 1*ggml_tensor_overhead();
  14877. struct ggml_init_params params = {
  14878. .mem_size = fsize + overhead,
  14879. .mem_buffer = NULL,
  14880. .no_alloc = false,
  14881. };
  14882. *ctx_data = ggml_init(params);
  14883. if (!*ctx_data) {
  14884. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14885. fclose(fin);
  14886. return result;
  14887. }
  14888. }
  14889. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14890. {
  14891. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14892. if (ret != fsize) {
  14893. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14894. fclose(fin);
  14895. return result;
  14896. }
  14897. }
  14898. fclose(fin);
  14899. }
  14900. // populate result
  14901. {
  14902. char * ptr = (char *) data->data;
  14903. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14904. if (magic != GGML_FILE_MAGIC) {
  14905. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14906. return result;
  14907. }
  14908. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14909. if (version != GGML_FILE_VERSION) {
  14910. fprintf(stderr, "%s: invalid version number\n", __func__);
  14911. return result;
  14912. }
  14913. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14914. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14915. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14916. result.n_leafs = n_leafs;
  14917. result.n_nodes = n_nodes;
  14918. // create the data context
  14919. {
  14920. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14921. struct ggml_init_params params = {
  14922. .mem_size = size_eval + overhead,
  14923. .mem_buffer = NULL,
  14924. .no_alloc = true,
  14925. };
  14926. *ctx_eval = ggml_init(params);
  14927. if (!*ctx_eval) {
  14928. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14929. return result;
  14930. }
  14931. }
  14932. // leafs
  14933. {
  14934. uint32_t type;
  14935. uint32_t op;
  14936. uint32_t n_dims;
  14937. for (uint32_t i = 0; i < n_leafs; ++i) {
  14938. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14939. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14940. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14941. int64_t ne[GGML_MAX_DIMS];
  14942. size_t nb[GGML_MAX_DIMS];
  14943. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14944. uint64_t ne_cur;
  14945. uint64_t nb_cur;
  14946. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14947. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14948. ne[j] = ne_cur;
  14949. nb[j] = nb_cur;
  14950. }
  14951. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14952. tensor->op = (enum ggml_op) op;
  14953. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14954. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14955. tensor->data = (void *) ptr;
  14956. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14957. tensor->nb[j] = nb[j];
  14958. }
  14959. result.leafs[i] = tensor;
  14960. ptr += ggml_nbytes(tensor);
  14961. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14962. }
  14963. }
  14964. ggml_set_no_alloc(*ctx_eval, false);
  14965. // nodes
  14966. {
  14967. uint32_t type;
  14968. uint32_t op;
  14969. uint32_t n_dims;
  14970. for (uint32_t i = 0; i < n_nodes; ++i) {
  14971. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14972. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14973. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14974. enum ggml_op eop = (enum ggml_op) op;
  14975. int64_t ne[GGML_MAX_DIMS];
  14976. size_t nb[GGML_MAX_DIMS];
  14977. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14978. uint64_t ne_cur;
  14979. uint64_t nb_cur;
  14980. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14981. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14982. ne[j] = ne_cur;
  14983. nb[j] = nb_cur;
  14984. }
  14985. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14986. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14987. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14988. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14989. // parse args
  14990. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14991. const int32_t arg_idx = ptr_arg_idx[j];
  14992. if (arg_idx == -1) {
  14993. continue;
  14994. }
  14995. if (arg_idx < GGML_MAX_NODES) {
  14996. args[j] = result.leafs[arg_idx];
  14997. } else {
  14998. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14999. }
  15000. }
  15001. // create the tensor
  15002. // "view" operations are handled differently
  15003. // TODO: handle inplace ops - currently a copy is always made
  15004. struct ggml_tensor * tensor = NULL;
  15005. switch (eop) {
  15006. // TODO: implement other view ops
  15007. case GGML_OP_RESHAPE:
  15008. {
  15009. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15010. } break;
  15011. case GGML_OP_VIEW:
  15012. {
  15013. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15014. size_t offs;
  15015. memcpy(&offs, ptr_op_params, sizeof(offs));
  15016. tensor->data = ((char *) tensor->data) + offs;
  15017. } break;
  15018. case GGML_OP_TRANSPOSE:
  15019. {
  15020. tensor = ggml_transpose(*ctx_eval, args[0]);
  15021. } break;
  15022. case GGML_OP_PERMUTE:
  15023. {
  15024. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15025. } break;
  15026. default:
  15027. {
  15028. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15029. tensor->op = eop;
  15030. } break;
  15031. }
  15032. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15033. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15034. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15035. tensor->nb[j] = nb[j];
  15036. }
  15037. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15038. tensor->src[j] = args[j];
  15039. }
  15040. result.nodes[i] = tensor;
  15041. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15042. }
  15043. }
  15044. }
  15045. return result;
  15046. }
  15047. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15048. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15049. GGML_PRINT("=== GRAPH ===\n");
  15050. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15051. for (int i = 0; i < cgraph->n_nodes; i++) {
  15052. struct ggml_tensor * node = cgraph->nodes[i];
  15053. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15054. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15055. i,
  15056. node->ne[0], node->ne[1], node->ne[2],
  15057. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15058. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15059. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15060. (double) node->perf_time_us / 1000.0,
  15061. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15062. }
  15063. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15064. for (int i = 0; i < cgraph->n_leafs; i++) {
  15065. struct ggml_tensor * node = cgraph->leafs[i];
  15066. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15067. i,
  15068. node->ne[0], node->ne[1],
  15069. ggml_op_name(node->op),
  15070. ggml_get_name(node));
  15071. }
  15072. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15073. if (perf_total_per_op_us[i] == 0) {
  15074. continue;
  15075. }
  15076. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15077. }
  15078. GGML_PRINT("========================================\n");
  15079. }
  15080. // check if node is part of the graph
  15081. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15082. if (cgraph == NULL) {
  15083. return true;
  15084. }
  15085. for (int i = 0; i < cgraph->n_nodes; i++) {
  15086. if (cgraph->nodes[i] == node) {
  15087. return true;
  15088. }
  15089. }
  15090. return false;
  15091. }
  15092. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15093. for (int i = 0; i < cgraph->n_nodes; i++) {
  15094. struct ggml_tensor * parent = cgraph->nodes[i];
  15095. if (parent->grad == node) {
  15096. return parent;
  15097. }
  15098. }
  15099. return NULL;
  15100. }
  15101. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15102. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15103. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15104. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15105. gparent0 ? (void *) gparent0 : (void *) parent,
  15106. gparent0 ? "g" : "x",
  15107. gparent ? (void *) gparent : (void *) node,
  15108. gparent ? "g" : "x",
  15109. gparent ? "empty" : "vee",
  15110. gparent ? "dashed" : "solid",
  15111. label);
  15112. }
  15113. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15114. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15115. (void *) parent, "x",
  15116. (void *) node, "x",
  15117. label);
  15118. }
  15119. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15120. char color[16];
  15121. FILE * fp = fopen(filename, "w");
  15122. GGML_ASSERT(fp);
  15123. fprintf(fp, "digraph G {\n");
  15124. fprintf(fp, " newrank = true;\n");
  15125. fprintf(fp, " rankdir = LR;\n");
  15126. for (int i = 0; i < gb->n_nodes; i++) {
  15127. struct ggml_tensor * node = gb->nodes[i];
  15128. if (ggml_graph_get_parent(gb, node) != NULL) {
  15129. continue;
  15130. }
  15131. if (node->is_param) {
  15132. snprintf(color, sizeof(color), "yellow");
  15133. } else if (node->grad) {
  15134. if (ggml_graph_find(gf, node)) {
  15135. snprintf(color, sizeof(color), "green");
  15136. } else {
  15137. snprintf(color, sizeof(color), "lightblue");
  15138. }
  15139. } else {
  15140. snprintf(color, sizeof(color), "white");
  15141. }
  15142. fprintf(fp, " \"%p\" [ "
  15143. "style = filled; fillcolor = %s; shape = record; "
  15144. "label=\"",
  15145. (void *) node, color);
  15146. if (strlen(node->name) > 0) {
  15147. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15148. } else {
  15149. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15150. }
  15151. if (node->n_dims == 2) {
  15152. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15153. } else {
  15154. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15155. }
  15156. if (node->grad) {
  15157. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15158. } else {
  15159. fprintf(fp, "\"; ]\n");
  15160. }
  15161. }
  15162. for (int i = 0; i < gb->n_leafs; i++) {
  15163. struct ggml_tensor * node = gb->leafs[i];
  15164. snprintf(color, sizeof(color), "pink");
  15165. fprintf(fp, " \"%p\" [ "
  15166. "style = filled; fillcolor = %s; shape = record; "
  15167. "label=\"<x>",
  15168. (void *) node, color);
  15169. if (strlen(node->name) > 0) {
  15170. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15171. } else {
  15172. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15173. }
  15174. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15175. if (ggml_nelements(node) < 5) {
  15176. fprintf(fp, " | (");
  15177. for (int j = 0; j < ggml_nelements(node); j++) {
  15178. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15179. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15180. }
  15181. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15182. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15183. }
  15184. else {
  15185. fprintf(fp, "#");
  15186. }
  15187. if (j < ggml_nelements(node) - 1) {
  15188. fprintf(fp, ", ");
  15189. }
  15190. }
  15191. fprintf(fp, ")");
  15192. }
  15193. fprintf(fp, "\"; ]\n");
  15194. }
  15195. for (int i = 0; i < gb->n_nodes; i++) {
  15196. struct ggml_tensor * node = gb->nodes[i];
  15197. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15198. if (node->src[j]) {
  15199. char label[16];
  15200. snprintf(label, sizeof(label), "src %d", j);
  15201. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15202. }
  15203. }
  15204. }
  15205. for (int i = 0; i < gb->n_leafs; i++) {
  15206. struct ggml_tensor * node = gb->leafs[i];
  15207. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15208. if (node->src[j]) {
  15209. char label[16];
  15210. snprintf(label, sizeof(label), "src %d", j);
  15211. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15212. }
  15213. }
  15214. }
  15215. fprintf(fp, "}\n");
  15216. fclose(fp);
  15217. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15218. }
  15219. ////////////////////////////////////////////////////////////////////////////////
  15220. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15221. int i = 0;
  15222. for (int p = 0; p < np; ++p) {
  15223. const int64_t ne = ggml_nelements(ps[p]) ;
  15224. // TODO: add function to set tensor from array
  15225. for (int64_t j = 0; j < ne; ++j) {
  15226. ggml_set_f32_1d(ps[p], j, x[i++]);
  15227. }
  15228. }
  15229. }
  15230. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15231. int i = 0;
  15232. for (int p = 0; p < np; ++p) {
  15233. const int64_t ne = ggml_nelements(ps[p]) ;
  15234. // TODO: add function to get all elements at once
  15235. for (int64_t j = 0; j < ne; ++j) {
  15236. x[i++] = ggml_get_f32_1d(ps[p], j);
  15237. }
  15238. }
  15239. }
  15240. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15241. int i = 0;
  15242. for (int p = 0; p < np; ++p) {
  15243. const int64_t ne = ggml_nelements(ps[p]) ;
  15244. // TODO: add function to get all elements at once
  15245. for (int64_t j = 0; j < ne; ++j) {
  15246. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15247. }
  15248. }
  15249. }
  15250. //
  15251. // ADAM
  15252. //
  15253. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15254. //
  15255. static enum ggml_opt_result ggml_opt_adam(
  15256. struct ggml_context * ctx,
  15257. struct ggml_opt_context * opt,
  15258. struct ggml_opt_params params,
  15259. struct ggml_tensor * f,
  15260. struct ggml_cgraph * gf,
  15261. struct ggml_cgraph * gb,
  15262. ggml_opt_callback callback,
  15263. void * callback_data) {
  15264. GGML_ASSERT(ggml_is_scalar(f));
  15265. // these will store the parameters we want to optimize
  15266. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15267. int np = 0;
  15268. int64_t nx = 0;
  15269. for (int i = 0; i < gf->n_nodes; ++i) {
  15270. if (gf->nodes[i]->is_param) {
  15271. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15272. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15273. ps[np++] = gf->nodes[i];
  15274. nx += ggml_nelements(gf->nodes[i]);
  15275. }
  15276. }
  15277. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15278. int iter = opt->iter;
  15279. ggml_opt_init(opt->ctx, opt, params, nx);
  15280. opt->iter = iter;
  15281. }
  15282. // constants
  15283. float sched = params.adam.sched;
  15284. const float alpha = params.adam.alpha;
  15285. const float decay = params.adam.decay * alpha;
  15286. const float beta1 = params.adam.beta1;
  15287. const float beta2 = params.adam.beta2;
  15288. const float eps = params.adam.eps;
  15289. const float gclip = params.adam.gclip;
  15290. const int decay_min_ndim = params.adam.decay_min_ndim;
  15291. float * m = opt->adam.m->data; // first moment
  15292. float * v = opt->adam.v->data; // second moment
  15293. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15294. if (callback) {
  15295. callback(callback_data, &sched);
  15296. }
  15297. // compute the function value
  15298. ggml_graph_reset (gf);
  15299. ggml_set_f32 (f->grad, 1.0f);
  15300. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15301. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15302. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15303. ggml_graph_compute(gb, &cplan);
  15304. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15305. opt->adam.fx_best = opt->adam.fx_prev;
  15306. if (pf) {
  15307. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15308. }
  15309. opt->loss_before = opt->adam.fx_prev;
  15310. opt->loss_after = opt->adam.fx_prev;
  15311. // initialize
  15312. if (opt->just_initialized) {
  15313. opt->adam.n_no_improvement = 0;
  15314. opt->just_initialized = false;
  15315. }
  15316. float * fx_best = &opt->adam.fx_best;
  15317. float * fx_prev = &opt->adam.fx_prev;
  15318. int * n_no_improvement = &opt->adam.n_no_improvement;
  15319. int iter0 = opt->iter;
  15320. // run the optimizer
  15321. for (int t = 0; t < params.adam.n_iter; ++t) {
  15322. opt->iter = iter0 + t + 1;
  15323. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15324. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15325. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15326. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15327. for (int i = 0; i < np; ++i) {
  15328. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15329. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15330. }
  15331. const int64_t t_start_wall = ggml_time_us();
  15332. const int64_t t_start_cpu = ggml_cycles();
  15333. UNUSED(t_start_wall);
  15334. UNUSED(t_start_cpu);
  15335. {
  15336. float gnorm = 1.0f;
  15337. if (gclip > 0.0f) {
  15338. // gradient clipping
  15339. ggml_float sum = 0.0;
  15340. for (int p = 0; p < np; ++p) {
  15341. const int64_t ne = ggml_nelements(ps[p]);
  15342. for (int64_t j = 0; j < ne; ++j) {
  15343. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15344. sum += (ggml_float)(g*g);
  15345. }
  15346. }
  15347. ggml_float norm = sqrt(sum);
  15348. if (norm > (ggml_float) gclip) {
  15349. gnorm = (float) ((ggml_float) gclip / norm);
  15350. }
  15351. }
  15352. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15353. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15354. int64_t i = 0;
  15355. for (int p = 0; p < np; ++p) {
  15356. const int64_t ne = ggml_nelements(ps[p]);
  15357. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15358. for (int64_t j = 0; j < ne; ++j) {
  15359. float x = ggml_get_f32_1d(ps[p], j);
  15360. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15361. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15362. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15363. float mh = m[i]*beta1h;
  15364. float vh = v[i]*beta2h;
  15365. vh = sqrtf(vh) + eps;
  15366. x = x*(1.0f - p_decay) - mh/vh;
  15367. ggml_set_f32_1d(ps[p], j, x);
  15368. ++i;
  15369. }
  15370. }
  15371. }
  15372. if (callback) {
  15373. callback(callback_data, &sched);
  15374. }
  15375. ggml_graph_reset (gf);
  15376. ggml_set_f32 (f->grad, 1.0f);
  15377. ggml_graph_compute(gb, &cplan);
  15378. const float fx = ggml_get_f32_1d(f, 0);
  15379. opt->loss_after = fx;
  15380. // check convergence
  15381. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15382. GGML_PRINT_DEBUG("converged\n");
  15383. return GGML_OPT_OK;
  15384. }
  15385. // delta-based convergence test
  15386. if (pf != NULL) {
  15387. // need at least params.past iterations to start checking for convergence
  15388. if (params.past <= iter0 + t) {
  15389. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15390. if (fabsf(rate) < params.delta) {
  15391. return GGML_OPT_OK;
  15392. }
  15393. }
  15394. pf[(iter0 + t)%params.past] = fx;
  15395. }
  15396. // check for improvement
  15397. if (params.max_no_improvement > 0) {
  15398. if (fx_best[0] > fx) {
  15399. fx_best[0] = fx;
  15400. n_no_improvement[0] = 0;
  15401. } else {
  15402. ++n_no_improvement[0];
  15403. if (n_no_improvement[0] >= params.max_no_improvement) {
  15404. return GGML_OPT_OK;
  15405. }
  15406. }
  15407. }
  15408. fx_prev[0] = fx;
  15409. {
  15410. const int64_t t_end_cpu = ggml_cycles();
  15411. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15412. UNUSED(t_end_cpu);
  15413. const int64_t t_end_wall = ggml_time_us();
  15414. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15415. UNUSED(t_end_wall);
  15416. }
  15417. }
  15418. return GGML_OPT_DID_NOT_CONVERGE;
  15419. }
  15420. //
  15421. // L-BFGS
  15422. //
  15423. // the L-BFGS implementation below is based on the following implementation:
  15424. //
  15425. // https://github.com/chokkan/liblbfgs
  15426. //
  15427. struct ggml_lbfgs_iteration_data {
  15428. float alpha;
  15429. float ys;
  15430. float * s;
  15431. float * y;
  15432. };
  15433. static enum ggml_opt_result linesearch_backtracking(
  15434. const struct ggml_opt_params * params,
  15435. int nx,
  15436. float * x,
  15437. float * fx,
  15438. float * g,
  15439. float * d,
  15440. float * step,
  15441. const float * xp,
  15442. struct ggml_tensor * f,
  15443. struct ggml_cgraph * gf,
  15444. struct ggml_cgraph * gb,
  15445. struct ggml_cplan * cplan,
  15446. const int np,
  15447. struct ggml_tensor * ps[],
  15448. ggml_opt_callback callback,
  15449. void * callback_data) {
  15450. int count = 0;
  15451. float width = 0.0f;
  15452. float dg = 0.0f;
  15453. float finit = 0.0f;
  15454. float dginit = 0.0f;
  15455. float dgtest = 0.0f;
  15456. const float dec = 0.5f;
  15457. const float inc = 2.1f;
  15458. if (*step <= 0.f) {
  15459. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15460. }
  15461. // compute the initial gradient in the search direction
  15462. ggml_vec_dot_f32(nx, &dginit, g, d);
  15463. // make sure that d points to a descent direction
  15464. if (0 < dginit) {
  15465. return GGML_LINESEARCH_FAIL;
  15466. }
  15467. // initialize local variables
  15468. finit = *fx;
  15469. dgtest = params->lbfgs.ftol*dginit;
  15470. while (true) {
  15471. if (callback) {
  15472. // LBFG-S does not support learning rate -> ignore learning schedule
  15473. float sched = 0;
  15474. callback(callback_data, &sched);
  15475. }
  15476. ggml_vec_cpy_f32(nx, x, xp);
  15477. ggml_vec_mad_f32(nx, x, d, *step);
  15478. // evaluate the function and gradient values
  15479. {
  15480. ggml_opt_set_params(np, ps, x);
  15481. ggml_graph_reset (gf);
  15482. ggml_set_f32 (f->grad, 1.0f);
  15483. ggml_graph_compute(gb, cplan);
  15484. ggml_opt_get_grad(np, ps, g);
  15485. *fx = ggml_get_f32_1d(f, 0);
  15486. }
  15487. ++count;
  15488. if (*fx > finit + (*step)*dgtest) {
  15489. width = dec;
  15490. } else {
  15491. // Armijo condition is satisfied
  15492. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15493. return count;
  15494. }
  15495. ggml_vec_dot_f32(nx, &dg, g, d);
  15496. // check the Wolfe condition
  15497. if (dg < params->lbfgs.wolfe * dginit) {
  15498. width = inc;
  15499. } else {
  15500. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15501. // regular Wolfe conditions
  15502. return count;
  15503. }
  15504. if(dg > -params->lbfgs.wolfe*dginit) {
  15505. width = dec;
  15506. } else {
  15507. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15508. return count;
  15509. }
  15510. }
  15511. }
  15512. if (*step < params->lbfgs.min_step) {
  15513. return GGML_LINESEARCH_MINIMUM_STEP;
  15514. }
  15515. if (*step > params->lbfgs.max_step) {
  15516. return GGML_LINESEARCH_MAXIMUM_STEP;
  15517. }
  15518. if (params->lbfgs.max_linesearch <= count) {
  15519. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15520. }
  15521. (*step) *= width;
  15522. }
  15523. return GGML_LINESEARCH_FAIL;
  15524. }
  15525. static enum ggml_opt_result ggml_opt_lbfgs(
  15526. struct ggml_context * ctx,
  15527. struct ggml_opt_context * opt,
  15528. struct ggml_opt_params params,
  15529. struct ggml_tensor * f,
  15530. struct ggml_cgraph * gf,
  15531. struct ggml_cgraph * gb,
  15532. ggml_opt_callback callback,
  15533. void * callback_data) {
  15534. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15535. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15536. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15537. return GGML_OPT_INVALID_WOLFE;
  15538. }
  15539. }
  15540. const int m = params.lbfgs.m;
  15541. // these will store the parameters we want to optimize
  15542. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15543. int np = 0;
  15544. int nx = 0;
  15545. for (int i = 0; i < gf->n_nodes; ++i) {
  15546. if (gf->nodes[i]->is_param) {
  15547. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15548. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15549. ps[np++] = gf->nodes[i];
  15550. nx += ggml_nelements(gf->nodes[i]);
  15551. }
  15552. }
  15553. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15554. int iter = opt->iter;
  15555. ggml_opt_init(ctx, opt, params, nx);
  15556. opt->iter = iter;
  15557. }
  15558. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15559. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15560. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15561. float * x = opt->lbfgs.x->data; // current parameters
  15562. float * xp = opt->lbfgs.xp->data; // previous parameters
  15563. float * g = opt->lbfgs.g->data; // current gradient
  15564. float * gp = opt->lbfgs.gp->data; // previous gradient
  15565. float * d = opt->lbfgs.d->data; // search direction
  15566. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15567. float fx = 0.0f; // cost function value
  15568. float xnorm = 0.0f; // ||x||
  15569. float gnorm = 0.0f; // ||g||
  15570. // initialize x from the graph nodes
  15571. ggml_opt_get_params(np, ps, x);
  15572. // the L-BFGS memory
  15573. float * lm_alpha = opt->lbfgs.lmal->data;
  15574. float * lm_ys = opt->lbfgs.lmys->data;
  15575. float * lm_s = opt->lbfgs.lms->data;
  15576. float * lm_y = opt->lbfgs.lmy->data;
  15577. if (callback) {
  15578. // LBFG-S does not support learning rate -> ignore learning schedule
  15579. float sched = 0;
  15580. callback(callback_data, &sched);
  15581. }
  15582. // evaluate the function value and its gradient
  15583. {
  15584. ggml_opt_set_params(np, ps, x);
  15585. ggml_graph_reset (gf);
  15586. ggml_set_f32 (f->grad, 1.0f);
  15587. ggml_graph_compute(gb, &cplan);
  15588. ggml_opt_get_grad(np, ps, g);
  15589. fx = ggml_get_f32_1d(f, 0);
  15590. opt->loss_before = fx;
  15591. opt->loss_after = fx;
  15592. }
  15593. // search direction = -gradient
  15594. ggml_vec_neg_f32(nx, d, g);
  15595. // ||x||, ||g||
  15596. ggml_vec_norm_f32(nx, &xnorm, x);
  15597. ggml_vec_norm_f32(nx, &gnorm, g);
  15598. if (xnorm < 1.0f) {
  15599. xnorm = 1.0f;
  15600. }
  15601. // already optimized
  15602. if (gnorm/xnorm <= params.lbfgs.eps) {
  15603. return GGML_OPT_OK;
  15604. }
  15605. if (opt->just_initialized) {
  15606. if (pf) {
  15607. pf[0] = fx;
  15608. }
  15609. opt->lbfgs.fx_best = fx;
  15610. // initial step
  15611. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15612. opt->lbfgs.j = 0;
  15613. opt->lbfgs.k = 1;
  15614. opt->lbfgs.end = 0;
  15615. opt->lbfgs.n_no_improvement = 0;
  15616. opt->just_initialized = false;
  15617. }
  15618. float * fx_best = &opt->lbfgs.fx_best;
  15619. float * step = &opt->lbfgs.step;
  15620. int * j = &opt->lbfgs.j;
  15621. int * k = &opt->lbfgs.k;
  15622. int * end = &opt->lbfgs.end;
  15623. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15624. int ls = 0;
  15625. int bound = 0;
  15626. float ys = 0.0f;
  15627. float yy = 0.0f;
  15628. float beta = 0.0f;
  15629. int it = 0;
  15630. while (true) {
  15631. // store the current position and gradient vectors
  15632. ggml_vec_cpy_f32(nx, xp, x);
  15633. ggml_vec_cpy_f32(nx, gp, g);
  15634. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15635. if (ls < 0) {
  15636. // linesearch failed - go back to the previous point and return
  15637. ggml_vec_cpy_f32(nx, x, xp);
  15638. ggml_vec_cpy_f32(nx, g, gp);
  15639. return ls;
  15640. }
  15641. opt->loss_after = fx;
  15642. ggml_vec_norm_f32(nx, &xnorm, x);
  15643. ggml_vec_norm_f32(nx, &gnorm, g);
  15644. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15645. if (xnorm < 1.0f) {
  15646. xnorm = 1.0f;
  15647. }
  15648. if (gnorm/xnorm <= params.lbfgs.eps) {
  15649. // converged
  15650. return GGML_OPT_OK;
  15651. }
  15652. // delta-based convergence test
  15653. if (pf != NULL) {
  15654. // need at least params.past iterations to start checking for convergence
  15655. if (params.past <= k[0]) {
  15656. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15657. if (fabsf(rate) < params.delta) {
  15658. return GGML_OPT_OK;
  15659. }
  15660. }
  15661. pf[k[0]%params.past] = fx;
  15662. }
  15663. // check for improvement
  15664. if (params.max_no_improvement > 0) {
  15665. if (fx < fx_best[0]) {
  15666. fx_best[0] = fx;
  15667. n_no_improvement[0] = 0;
  15668. } else {
  15669. n_no_improvement[0]++;
  15670. if (n_no_improvement[0] >= params.max_no_improvement) {
  15671. return GGML_OPT_OK;
  15672. }
  15673. }
  15674. }
  15675. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15676. // reached the maximum number of iterations
  15677. return GGML_OPT_DID_NOT_CONVERGE;
  15678. }
  15679. // update vectors s and y:
  15680. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15681. // y_{k+1} = g_{k+1} - g_{k}.
  15682. //
  15683. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15684. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15685. // compute scalars ys and yy:
  15686. // ys = y^t \cdot s -> 1 / \rho.
  15687. // yy = y^t \cdot y.
  15688. //
  15689. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15690. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15691. lm_ys[end[0]] = ys;
  15692. // find new search direction
  15693. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15694. bound = (m <= k[0]) ? m : k[0];
  15695. k[0]++;
  15696. it++;
  15697. end[0] = (end[0] + 1)%m;
  15698. // initialize search direction with -g
  15699. ggml_vec_neg_f32(nx, d, g);
  15700. j[0] = end[0];
  15701. for (int i = 0; i < bound; ++i) {
  15702. j[0] = (j[0] + m - 1) % m;
  15703. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15704. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15705. lm_alpha[j[0]] /= lm_ys[j[0]];
  15706. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15707. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15708. }
  15709. ggml_vec_scale_f32(nx, d, ys/yy);
  15710. for (int i = 0; i < bound; ++i) {
  15711. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15712. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15713. beta /= lm_ys[j[0]];
  15714. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15715. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15716. j[0] = (j[0] + 1)%m;
  15717. }
  15718. step[0] = 1.0;
  15719. }
  15720. return GGML_OPT_DID_NOT_CONVERGE;
  15721. }
  15722. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15723. struct ggml_opt_params result;
  15724. switch (type) {
  15725. case GGML_OPT_ADAM:
  15726. {
  15727. result = (struct ggml_opt_params) {
  15728. .type = GGML_OPT_ADAM,
  15729. .n_threads = 1,
  15730. .past = 0,
  15731. .delta = 1e-5f,
  15732. .max_no_improvement = 100,
  15733. .print_forward_graph = true,
  15734. .print_backward_graph = true,
  15735. .adam = {
  15736. .n_iter = 10000,
  15737. .sched = 1.000f,
  15738. .decay = 0.0f,
  15739. .decay_min_ndim = 2,
  15740. .alpha = 0.001f,
  15741. .beta1 = 0.9f,
  15742. .beta2 = 0.999f,
  15743. .eps = 1e-8f,
  15744. .eps_f = 1e-5f,
  15745. .eps_g = 1e-3f,
  15746. .gclip = 0.0f,
  15747. },
  15748. };
  15749. } break;
  15750. case GGML_OPT_LBFGS:
  15751. {
  15752. result = (struct ggml_opt_params) {
  15753. .type = GGML_OPT_LBFGS,
  15754. .n_threads = 1,
  15755. .past = 0,
  15756. .delta = 1e-5f,
  15757. .max_no_improvement = 0,
  15758. .print_forward_graph = true,
  15759. .print_backward_graph = true,
  15760. .lbfgs = {
  15761. .m = 6,
  15762. .n_iter = 100,
  15763. .max_linesearch = 20,
  15764. .eps = 1e-5f,
  15765. .ftol = 1e-4f,
  15766. .wolfe = 0.9f,
  15767. .min_step = 1e-20f,
  15768. .max_step = 1e+20f,
  15769. .linesearch = GGML_LINESEARCH_DEFAULT,
  15770. },
  15771. };
  15772. } break;
  15773. }
  15774. return result;
  15775. }
  15776. GGML_API void ggml_opt_init(
  15777. struct ggml_context * ctx,
  15778. struct ggml_opt_context * opt,
  15779. struct ggml_opt_params params,
  15780. int64_t nx) {
  15781. opt->ctx = ctx;
  15782. opt->params = params;
  15783. opt->iter = 0;
  15784. opt->nx = nx;
  15785. opt->just_initialized = true;
  15786. switch (opt->params.type) {
  15787. case GGML_OPT_ADAM:
  15788. {
  15789. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15790. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15791. opt->adam.pf = params.past > 0
  15792. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15793. : NULL;
  15794. ggml_set_zero(opt->adam.m);
  15795. ggml_set_zero(opt->adam.v);
  15796. if (opt->adam.pf) {
  15797. ggml_set_zero(opt->adam.pf);
  15798. }
  15799. } break;
  15800. case GGML_OPT_LBFGS:
  15801. {
  15802. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15803. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15804. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15805. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15806. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15807. opt->lbfgs.pf = params.past > 0
  15808. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15809. : NULL;
  15810. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15811. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15812. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15813. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15814. ggml_set_zero(opt->lbfgs.x);
  15815. ggml_set_zero(opt->lbfgs.xp);
  15816. ggml_set_zero(opt->lbfgs.g);
  15817. ggml_set_zero(opt->lbfgs.gp);
  15818. ggml_set_zero(opt->lbfgs.d);
  15819. if (opt->lbfgs.pf) {
  15820. ggml_set_zero(opt->lbfgs.pf);
  15821. }
  15822. ggml_set_zero(opt->lbfgs.lmal);
  15823. ggml_set_zero(opt->lbfgs.lmys);
  15824. ggml_set_zero(opt->lbfgs.lms);
  15825. ggml_set_zero(opt->lbfgs.lmy);
  15826. } break;
  15827. }
  15828. }
  15829. enum ggml_opt_result ggml_opt(
  15830. struct ggml_context * ctx,
  15831. struct ggml_opt_params params,
  15832. struct ggml_tensor * f) {
  15833. bool free_ctx = false;
  15834. if (ctx == NULL) {
  15835. struct ggml_init_params params_ctx = {
  15836. .mem_size = 16*1024*1024,
  15837. .mem_buffer = NULL,
  15838. .no_alloc = false,
  15839. };
  15840. ctx = ggml_init(params_ctx);
  15841. if (ctx == NULL) {
  15842. return GGML_OPT_NO_CONTEXT;
  15843. }
  15844. free_ctx = true;
  15845. }
  15846. enum ggml_opt_result result = GGML_OPT_OK;
  15847. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15848. ggml_opt_init(ctx, opt, params, 0);
  15849. result = ggml_opt_resume(ctx, opt, f);
  15850. if (free_ctx) {
  15851. ggml_free(ctx);
  15852. }
  15853. return result;
  15854. }
  15855. enum ggml_opt_result ggml_opt_resume(
  15856. struct ggml_context * ctx,
  15857. struct ggml_opt_context * opt,
  15858. struct ggml_tensor * f) {
  15859. // build forward + backward compute graphs
  15860. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15861. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15862. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15863. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15864. *gf = ggml_build_forward (f);
  15865. *gb = ggml_build_backward(ctx, gf, true);
  15866. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15867. }
  15868. enum ggml_opt_result ggml_opt_resume_g(
  15869. struct ggml_context * ctx,
  15870. struct ggml_opt_context * opt,
  15871. struct ggml_tensor * f,
  15872. struct ggml_cgraph * gf,
  15873. struct ggml_cgraph * gb,
  15874. ggml_opt_callback callback,
  15875. void * callback_data) {
  15876. // build forward + backward compute graphs
  15877. enum ggml_opt_result result = GGML_OPT_OK;
  15878. switch (opt->params.type) {
  15879. case GGML_OPT_ADAM:
  15880. {
  15881. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15882. } break;
  15883. case GGML_OPT_LBFGS:
  15884. {
  15885. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15886. } break;
  15887. }
  15888. if (opt->params.print_forward_graph) {
  15889. ggml_graph_print (gf);
  15890. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15891. }
  15892. if (opt->params.print_backward_graph) {
  15893. ggml_graph_print (gb);
  15894. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15895. }
  15896. return result;
  15897. }
  15898. ////////////////////////////////////////////////////////////////////////////////
  15899. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15900. assert(k % QK4_0 == 0);
  15901. const int nb = k / QK4_0;
  15902. for (int b = 0; b < n; b += k) {
  15903. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15904. quantize_row_q4_0_reference(src + b, y, k);
  15905. for (int i = 0; i < nb; i++) {
  15906. for (int j = 0; j < QK4_0; j += 2) {
  15907. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15908. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15909. hist[vi0]++;
  15910. hist[vi1]++;
  15911. }
  15912. }
  15913. }
  15914. return (n/QK4_0*sizeof(block_q4_0));
  15915. }
  15916. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15917. assert(k % QK4_1 == 0);
  15918. const int nb = k / QK4_1;
  15919. for (int b = 0; b < n; b += k) {
  15920. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15921. quantize_row_q4_1_reference(src + b, y, k);
  15922. for (int i = 0; i < nb; i++) {
  15923. for (int j = 0; j < QK4_1; j += 2) {
  15924. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15925. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15926. hist[vi0]++;
  15927. hist[vi1]++;
  15928. }
  15929. }
  15930. }
  15931. return (n/QK4_1*sizeof(block_q4_1));
  15932. }
  15933. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15934. assert(k % QK5_0 == 0);
  15935. const int nb = k / QK5_0;
  15936. for (int b = 0; b < n; b += k) {
  15937. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15938. quantize_row_q5_0_reference(src + b, y, k);
  15939. for (int i = 0; i < nb; i++) {
  15940. uint32_t qh;
  15941. memcpy(&qh, &y[i].qh, sizeof(qh));
  15942. for (int j = 0; j < QK5_0; j += 2) {
  15943. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15944. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15945. // cast to 16 bins
  15946. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15947. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15948. hist[vi0]++;
  15949. hist[vi1]++;
  15950. }
  15951. }
  15952. }
  15953. return (n/QK5_0*sizeof(block_q5_0));
  15954. }
  15955. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15956. assert(k % QK5_1 == 0);
  15957. const int nb = k / QK5_1;
  15958. for (int b = 0; b < n; b += k) {
  15959. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15960. quantize_row_q5_1_reference(src + b, y, k);
  15961. for (int i = 0; i < nb; i++) {
  15962. uint32_t qh;
  15963. memcpy(&qh, &y[i].qh, sizeof(qh));
  15964. for (int j = 0; j < QK5_1; j += 2) {
  15965. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15966. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15967. // cast to 16 bins
  15968. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15969. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15970. hist[vi0]++;
  15971. hist[vi1]++;
  15972. }
  15973. }
  15974. }
  15975. return (n/QK5_1*sizeof(block_q5_1));
  15976. }
  15977. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15978. assert(k % QK8_0 == 0);
  15979. const int nb = k / QK8_0;
  15980. for (int b = 0; b < n; b += k) {
  15981. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15982. quantize_row_q8_0_reference(src + b, y, k);
  15983. for (int i = 0; i < nb; i++) {
  15984. for (int j = 0; j < QK8_0; ++j) {
  15985. const int8_t vi = y[i].qs[j];
  15986. hist[vi/16 + 8]++;
  15987. }
  15988. }
  15989. }
  15990. return (n/QK8_0*sizeof(block_q8_0));
  15991. }
  15992. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15993. size_t result = 0;
  15994. switch (type) {
  15995. case GGML_TYPE_Q4_0:
  15996. {
  15997. GGML_ASSERT(start % QK4_0 == 0);
  15998. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15999. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16000. } break;
  16001. case GGML_TYPE_Q4_1:
  16002. {
  16003. GGML_ASSERT(start % QK4_1 == 0);
  16004. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16005. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16006. } break;
  16007. case GGML_TYPE_Q5_0:
  16008. {
  16009. GGML_ASSERT(start % QK5_0 == 0);
  16010. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16011. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16012. } break;
  16013. case GGML_TYPE_Q5_1:
  16014. {
  16015. GGML_ASSERT(start % QK5_1 == 0);
  16016. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16017. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16018. } break;
  16019. case GGML_TYPE_Q8_0:
  16020. {
  16021. GGML_ASSERT(start % QK8_0 == 0);
  16022. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16023. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16024. } break;
  16025. #ifdef GGML_USE_K_QUANTS
  16026. case GGML_TYPE_Q2_K:
  16027. {
  16028. GGML_ASSERT(start % QK_K == 0);
  16029. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16030. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16031. } break;
  16032. case GGML_TYPE_Q3_K:
  16033. {
  16034. GGML_ASSERT(start % QK_K == 0);
  16035. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16036. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16037. } break;
  16038. case GGML_TYPE_Q4_K:
  16039. {
  16040. GGML_ASSERT(start % QK_K == 0);
  16041. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16042. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16043. } break;
  16044. case GGML_TYPE_Q5_K:
  16045. {
  16046. GGML_ASSERT(start % QK_K == 0);
  16047. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16048. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16049. } break;
  16050. case GGML_TYPE_Q6_K:
  16051. {
  16052. GGML_ASSERT(start % QK_K == 0);
  16053. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16054. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16055. } break;
  16056. #endif
  16057. case GGML_TYPE_F16:
  16058. {
  16059. int elemsize = sizeof(ggml_fp16_t);
  16060. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16061. result = n * elemsize;
  16062. } break;
  16063. case GGML_TYPE_F32:
  16064. {
  16065. int elemsize = sizeof(float);
  16066. result = n * elemsize;
  16067. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16068. } break;
  16069. default:
  16070. assert(false);
  16071. }
  16072. return result;
  16073. }
  16074. ////////////////////////////////////////////////////////////////////////////////
  16075. struct gguf_str {
  16076. uint64_t n; // GGUFv2
  16077. char * data;
  16078. };
  16079. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16080. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16081. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16082. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16083. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16084. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16085. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16086. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16087. [GGUF_TYPE_BOOL] = sizeof(bool),
  16088. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16089. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16090. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16091. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16092. [GGUF_TYPE_ARRAY] = 0, // undefined
  16093. };
  16094. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16095. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16096. [GGUF_TYPE_UINT8] = "u8",
  16097. [GGUF_TYPE_INT8] = "i8",
  16098. [GGUF_TYPE_UINT16] = "u16",
  16099. [GGUF_TYPE_INT16] = "i16",
  16100. [GGUF_TYPE_UINT32] = "u32",
  16101. [GGUF_TYPE_INT32] = "i32",
  16102. [GGUF_TYPE_FLOAT32] = "f32",
  16103. [GGUF_TYPE_BOOL] = "bool",
  16104. [GGUF_TYPE_STRING] = "str",
  16105. [GGUF_TYPE_ARRAY] = "arr",
  16106. [GGUF_TYPE_UINT64] = "u64",
  16107. [GGUF_TYPE_INT64] = "i64",
  16108. [GGUF_TYPE_FLOAT64] = "f64",
  16109. };
  16110. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16111. union gguf_value {
  16112. uint8_t uint8;
  16113. int8_t int8;
  16114. uint16_t uint16;
  16115. int16_t int16;
  16116. uint32_t uint32;
  16117. int32_t int32;
  16118. float float32;
  16119. uint64_t uint64;
  16120. int64_t int64;
  16121. double float64;
  16122. bool bool_;
  16123. struct gguf_str str;
  16124. struct {
  16125. enum gguf_type type;
  16126. uint64_t n; // GGUFv2
  16127. void * data;
  16128. } arr;
  16129. };
  16130. struct gguf_kv {
  16131. struct gguf_str key;
  16132. enum gguf_type type;
  16133. union gguf_value value;
  16134. };
  16135. struct gguf_header {
  16136. uint32_t magic;
  16137. uint32_t version;
  16138. uint64_t n_tensors; // GGUFv2
  16139. uint64_t n_kv; // GGUFv2
  16140. };
  16141. struct gguf_tensor_info {
  16142. struct gguf_str name;
  16143. uint32_t n_dims;
  16144. uint64_t ne[GGML_MAX_DIMS];
  16145. enum ggml_type type;
  16146. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16147. // for writing API
  16148. const void * data;
  16149. size_t size;
  16150. };
  16151. struct gguf_context {
  16152. struct gguf_header header;
  16153. struct gguf_kv * kv;
  16154. struct gguf_tensor_info * infos;
  16155. size_t alignment;
  16156. size_t offset; // offset of `data` from beginning of file
  16157. size_t size; // size of `data` in bytes
  16158. //uint8_t * padding;
  16159. void * data;
  16160. };
  16161. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16162. const size_t n = fread(dst, 1, size, file);
  16163. *offset += n;
  16164. return n == size;
  16165. }
  16166. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16167. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16168. p->n = 0;
  16169. p->data = NULL;
  16170. bool ok = true;
  16171. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16172. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16173. return ok;
  16174. }
  16175. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16176. p->n = 0;
  16177. p->data = NULL;
  16178. bool ok = true;
  16179. uint32_t n = 0;
  16180. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16181. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16182. return ok;
  16183. }
  16184. struct gguf_context * gguf_init_empty(void) {
  16185. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16186. ctx->header.magic = GGUF_MAGIC;
  16187. ctx->header.version = GGUF_VERSION;
  16188. ctx->header.n_tensors = 0;
  16189. ctx->header.n_kv = 0;
  16190. ctx->kv = NULL;
  16191. ctx->infos = NULL;
  16192. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16193. ctx->offset = 0;
  16194. ctx->size = 0;
  16195. ctx->data = NULL;
  16196. return ctx;
  16197. }
  16198. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16199. FILE * file = fopen(fname, "rb");
  16200. if (!file) {
  16201. return NULL;
  16202. }
  16203. // offset from start of file
  16204. size_t offset = 0;
  16205. uint32_t magic = 0;
  16206. // check the magic before making allocations
  16207. {
  16208. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16209. if (magic != GGUF_MAGIC) {
  16210. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16211. fclose(file);
  16212. return NULL;
  16213. }
  16214. }
  16215. bool ok = true;
  16216. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16217. // read the header
  16218. {
  16219. ctx->header.magic = magic;
  16220. ctx->kv = NULL;
  16221. ctx->infos = NULL;
  16222. ctx->data = NULL;
  16223. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16224. if (ctx->header.version == 1) {
  16225. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16226. uint32_t n_tensors = 0;
  16227. uint32_t n_kv = 0;
  16228. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16229. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16230. ctx->header.n_tensors = n_tensors;
  16231. ctx->header.n_kv = n_kv;
  16232. } else {
  16233. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16234. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16235. }
  16236. if (!ok) {
  16237. fprintf(stderr, "%s: failed to read header\n", __func__);
  16238. fclose(file);
  16239. gguf_free(ctx);
  16240. return NULL;
  16241. }
  16242. }
  16243. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16244. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16245. if (ctx->header.version == 1) {
  16246. gguf_fread_str = gguf_fread_str_v1;
  16247. }
  16248. // read the kv pairs
  16249. {
  16250. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16251. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16252. struct gguf_kv * kv = &ctx->kv[i];
  16253. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16254. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16255. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16256. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16257. switch (kv->type) {
  16258. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16259. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16260. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16261. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16262. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16263. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16264. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16265. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16266. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16267. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16268. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16269. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16270. case GGUF_TYPE_ARRAY:
  16271. {
  16272. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16273. if (ctx->header.version == 1) {
  16274. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16275. uint32_t n = 0;
  16276. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16277. kv->value.arr.n = n;
  16278. } else {
  16279. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16280. }
  16281. switch (kv->value.arr.type) {
  16282. case GGUF_TYPE_UINT8:
  16283. case GGUF_TYPE_INT8:
  16284. case GGUF_TYPE_UINT16:
  16285. case GGUF_TYPE_INT16:
  16286. case GGUF_TYPE_UINT32:
  16287. case GGUF_TYPE_INT32:
  16288. case GGUF_TYPE_FLOAT32:
  16289. case GGUF_TYPE_UINT64:
  16290. case GGUF_TYPE_INT64:
  16291. case GGUF_TYPE_FLOAT64:
  16292. case GGUF_TYPE_BOOL:
  16293. {
  16294. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16295. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16296. } break;
  16297. case GGUF_TYPE_STRING:
  16298. {
  16299. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16300. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16301. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16302. }
  16303. } break;
  16304. case GGUF_TYPE_ARRAY:
  16305. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16306. };
  16307. } break;
  16308. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16309. };
  16310. if (!ok) {
  16311. break;
  16312. }
  16313. }
  16314. if (!ok) {
  16315. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16316. fclose(file);
  16317. gguf_free(ctx);
  16318. return NULL;
  16319. }
  16320. }
  16321. // read the tensor infos
  16322. {
  16323. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16324. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16325. struct gguf_tensor_info * info = &ctx->infos[i];
  16326. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16327. info->ne[j] = 1;
  16328. }
  16329. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16330. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16331. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16332. if (ctx->header.version == 1) {
  16333. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16334. uint32_t t = 0;
  16335. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16336. info->ne[j] = t;
  16337. } else {
  16338. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16339. }
  16340. }
  16341. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16342. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16343. if (!ok) {
  16344. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16345. fclose(file);
  16346. gguf_free(ctx);
  16347. return NULL;
  16348. }
  16349. }
  16350. }
  16351. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16352. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16353. if (alignment_idx != -1) {
  16354. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16355. }
  16356. // we require the data section to be aligned, so take into account any padding
  16357. {
  16358. const size_t offset_pad = offset % ctx->alignment;
  16359. if (offset_pad != 0) {
  16360. offset += ctx->alignment - offset_pad;
  16361. fseek(file, offset, SEEK_SET);
  16362. }
  16363. }
  16364. // store the current file offset - this is where the data section starts
  16365. ctx->offset = offset;
  16366. // compute the total size of the data section, taking into account the alignment
  16367. {
  16368. ctx->size = 0;
  16369. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16370. struct gguf_tensor_info * info = &ctx->infos[i];
  16371. const int64_t ne =
  16372. (int64_t) info->ne[0] *
  16373. (int64_t) info->ne[1] *
  16374. (int64_t) info->ne[2] *
  16375. (int64_t) info->ne[3];
  16376. if (ne % ggml_blck_size(info->type) != 0) {
  16377. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16378. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16379. fclose(file);
  16380. gguf_free(ctx);
  16381. return NULL;
  16382. }
  16383. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16384. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16385. }
  16386. }
  16387. // load the tensor data only if requested
  16388. if (params.ctx != NULL) {
  16389. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16390. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16391. // the ggml_tensor structs to the appropriate locations in the binary blob
  16392. // compute the exact size needed for the new ggml_context
  16393. const size_t mem_size =
  16394. params.no_alloc ?
  16395. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16396. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16397. struct ggml_init_params pdata = {
  16398. .mem_size = mem_size,
  16399. .mem_buffer = NULL,
  16400. .no_alloc = params.no_alloc,
  16401. };
  16402. *params.ctx = ggml_init(pdata);
  16403. struct ggml_context * ctx_data = *params.ctx;
  16404. struct ggml_tensor * data = NULL;
  16405. if (!params.no_alloc) {
  16406. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16407. ok = ok && data != NULL;
  16408. // read the binary blob with the tensor data
  16409. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16410. if (!ok) {
  16411. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16412. fclose(file);
  16413. ggml_free(ctx_data);
  16414. gguf_free(ctx);
  16415. return NULL;
  16416. }
  16417. ctx->data = data->data;
  16418. }
  16419. ggml_set_no_alloc(ctx_data, true);
  16420. // create the tensors
  16421. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16422. const int64_t ne[GGML_MAX_DIMS] = {
  16423. ctx->infos[i].ne[0],
  16424. ctx->infos[i].ne[1],
  16425. ctx->infos[i].ne[2],
  16426. ctx->infos[i].ne[3],
  16427. };
  16428. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16429. ok = ok && cur != NULL;
  16430. ggml_set_name(cur, ctx->infos[i].name.data);
  16431. if (!ok) {
  16432. break;
  16433. }
  16434. // point the data member to the appropriate location in the binary blob using the tensor infos
  16435. if (!params.no_alloc) {
  16436. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16437. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16438. }
  16439. }
  16440. if (!ok) {
  16441. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16442. fclose(file);
  16443. ggml_free(ctx_data);
  16444. gguf_free(ctx);
  16445. return NULL;
  16446. }
  16447. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16448. }
  16449. fclose(file);
  16450. return ctx;
  16451. }
  16452. void gguf_free(struct gguf_context * ctx) {
  16453. if (ctx == NULL) {
  16454. return;
  16455. }
  16456. if (ctx->kv) {
  16457. // free string memory - not great..
  16458. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16459. struct gguf_kv * kv = &ctx->kv[i];
  16460. if (kv->key.data) {
  16461. free(kv->key.data);
  16462. }
  16463. if (kv->type == GGUF_TYPE_STRING) {
  16464. if (kv->value.str.data) {
  16465. free(kv->value.str.data);
  16466. }
  16467. }
  16468. if (kv->type == GGUF_TYPE_ARRAY) {
  16469. if (kv->value.arr.data) {
  16470. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16471. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16472. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16473. if (str->data) {
  16474. free(str->data);
  16475. }
  16476. }
  16477. }
  16478. free(kv->value.arr.data);
  16479. }
  16480. }
  16481. }
  16482. free(ctx->kv);
  16483. }
  16484. if (ctx->infos) {
  16485. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16486. struct gguf_tensor_info * info = &ctx->infos[i];
  16487. if (info->name.data) {
  16488. free(info->name.data);
  16489. }
  16490. }
  16491. free(ctx->infos);
  16492. }
  16493. GGML_ALIGNED_FREE(ctx);
  16494. }
  16495. const char * gguf_type_name(enum gguf_type type) {
  16496. return GGUF_TYPE_NAME[type];
  16497. }
  16498. int gguf_get_version(const struct gguf_context * ctx) {
  16499. return ctx->header.version;
  16500. }
  16501. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16502. return ctx->alignment;
  16503. }
  16504. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16505. return ctx->offset;
  16506. }
  16507. void * gguf_get_data(const struct gguf_context * ctx) {
  16508. return ctx->data;
  16509. }
  16510. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16511. return ctx->header.n_kv;
  16512. }
  16513. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16514. // return -1 if key not found
  16515. int keyfound = -1;
  16516. const int n_kv = gguf_get_n_kv(ctx);
  16517. for (int i = 0; i < n_kv; ++i) {
  16518. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16519. keyfound = i;
  16520. break;
  16521. }
  16522. }
  16523. return keyfound;
  16524. }
  16525. const char * gguf_get_key(const struct gguf_context * ctx, int i) {
  16526. return ctx->kv[i].key.data;
  16527. }
  16528. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int i) {
  16529. return ctx->kv[i].type;
  16530. }
  16531. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i) {
  16532. return ctx->kv[i].value.arr.type;
  16533. }
  16534. const void * gguf_get_arr_data(const struct gguf_context * ctx, int i) {
  16535. return ctx->kv[i].value.arr.data;
  16536. }
  16537. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16538. struct gguf_kv * kv = &ctx->kv[key_id];
  16539. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16540. return str->data;
  16541. }
  16542. int gguf_get_arr_n(const struct gguf_context * ctx, int i) {
  16543. return ctx->kv[i].value.arr.n;
  16544. }
  16545. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int i) {
  16546. return ctx->kv[i].value.uint8;
  16547. }
  16548. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int i) {
  16549. return ctx->kv[i].value.int8;
  16550. }
  16551. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int i) {
  16552. return ctx->kv[i].value.uint16;
  16553. }
  16554. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int i) {
  16555. return ctx->kv[i].value.int16;
  16556. }
  16557. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int i) {
  16558. return ctx->kv[i].value.uint32;
  16559. }
  16560. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int i) {
  16561. return ctx->kv[i].value.int32;
  16562. }
  16563. float gguf_get_val_f32(const struct gguf_context * ctx, int i) {
  16564. return ctx->kv[i].value.float32;
  16565. }
  16566. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int i) {
  16567. return ctx->kv[i].value.uint64;
  16568. }
  16569. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int i) {
  16570. return ctx->kv[i].value.int64;
  16571. }
  16572. double gguf_get_val_f64(const struct gguf_context * ctx, int i) {
  16573. return ctx->kv[i].value.float64;
  16574. }
  16575. bool gguf_get_val_bool(const struct gguf_context * ctx, int i) {
  16576. return ctx->kv[i].value.bool_;
  16577. }
  16578. const char * gguf_get_val_str (const struct gguf_context * ctx, int i) {
  16579. return ctx->kv[i].value.str.data;
  16580. }
  16581. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16582. return ctx->header.n_tensors;
  16583. }
  16584. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16585. // return -1 if tensor not found
  16586. int tensorfound = -1;
  16587. const int n_tensors = gguf_get_n_tensors(ctx);
  16588. for (int i = 0; i < n_tensors; ++i) {
  16589. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16590. tensorfound = i;
  16591. break;
  16592. }
  16593. }
  16594. return tensorfound;
  16595. }
  16596. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16597. return ctx->infos[i].offset;
  16598. }
  16599. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16600. return ctx->infos[i].name.data;
  16601. }
  16602. // returns the index
  16603. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16604. const int idx = gguf_find_key(ctx, key);
  16605. if (idx >= 0) {
  16606. return idx;
  16607. }
  16608. const int n_kv = gguf_get_n_kv(ctx);
  16609. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16610. ctx->kv[n_kv].key.n = strlen(key);
  16611. ctx->kv[n_kv].key.data = strdup(key);
  16612. ctx->header.n_kv++;
  16613. return n_kv;
  16614. }
  16615. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16616. const int idx = gguf_get_or_add_key(ctx, key);
  16617. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16618. ctx->kv[idx].value.uint8 = val;
  16619. }
  16620. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16621. const int idx = gguf_get_or_add_key(ctx, key);
  16622. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16623. ctx->kv[idx].value.int8 = val;
  16624. }
  16625. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16626. const int idx = gguf_get_or_add_key(ctx, key);
  16627. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16628. ctx->kv[idx].value.uint16 = val;
  16629. }
  16630. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16631. const int idx = gguf_get_or_add_key(ctx, key);
  16632. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16633. ctx->kv[idx].value.int16 = val;
  16634. }
  16635. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16636. const int idx = gguf_get_or_add_key(ctx, key);
  16637. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16638. ctx->kv[idx].value.uint32 = val;
  16639. }
  16640. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16641. const int idx = gguf_get_or_add_key(ctx, key);
  16642. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16643. ctx->kv[idx].value.int32 = val;
  16644. }
  16645. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16646. const int idx = gguf_get_or_add_key(ctx, key);
  16647. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16648. ctx->kv[idx].value.float32 = val;
  16649. }
  16650. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16651. const int idx = gguf_get_or_add_key(ctx, key);
  16652. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16653. ctx->kv[idx].value.uint64 = val;
  16654. }
  16655. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16656. const int idx = gguf_get_or_add_key(ctx, key);
  16657. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16658. ctx->kv[idx].value.int64 = val;
  16659. }
  16660. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16661. const int idx = gguf_get_or_add_key(ctx, key);
  16662. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16663. ctx->kv[idx].value.float64 = val;
  16664. }
  16665. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16666. const int idx = gguf_get_or_add_key(ctx, key);
  16667. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16668. ctx->kv[idx].value.bool_ = val;
  16669. }
  16670. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16671. const int idx = gguf_get_or_add_key(ctx, key);
  16672. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16673. ctx->kv[idx].value.str.n = strlen(val);
  16674. ctx->kv[idx].value.str.data = strdup(val);
  16675. }
  16676. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16677. const int idx = gguf_get_or_add_key(ctx, key);
  16678. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16679. ctx->kv[idx].value.arr.type = type;
  16680. ctx->kv[idx].value.arr.n = n;
  16681. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16682. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16683. }
  16684. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16685. const int idx = gguf_get_or_add_key(ctx, key);
  16686. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16687. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16688. ctx->kv[idx].value.arr.n = n;
  16689. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16690. for (int i = 0; i < n; i++) {
  16691. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16692. str->n = strlen(data[i]);
  16693. str->data = strdup(data[i]);
  16694. }
  16695. }
  16696. // set or add KV pairs from another context
  16697. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16698. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16699. switch (src->kv[i].type) {
  16700. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16701. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16702. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16703. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16704. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16705. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16706. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16707. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16708. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16709. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16710. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16711. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16712. case GGUF_TYPE_ARRAY:
  16713. {
  16714. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16715. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16716. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16717. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16718. }
  16719. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16720. free(data);
  16721. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16722. GGML_ASSERT(false && "nested arrays not supported");
  16723. } else {
  16724. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16725. }
  16726. } break;
  16727. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16728. }
  16729. }
  16730. }
  16731. void gguf_add_tensor(
  16732. struct gguf_context * ctx,
  16733. const struct ggml_tensor * tensor) {
  16734. const int idx = ctx->header.n_tensors;
  16735. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16736. ctx->infos[idx].name.n = strlen(tensor->name);
  16737. ctx->infos[idx].name.data = strdup(tensor->name);
  16738. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16739. ctx->infos[idx].ne[i] = 1;
  16740. }
  16741. ctx->infos[idx].n_dims = tensor->n_dims;
  16742. for (int i = 0; i < tensor->n_dims; i++) {
  16743. ctx->infos[idx].ne[i] = tensor->ne[i];
  16744. }
  16745. ctx->infos[idx].type = tensor->type;
  16746. ctx->infos[idx].offset = 0;
  16747. ctx->infos[idx].data = tensor->data;
  16748. ctx->infos[idx].size = ggml_nbytes(tensor);
  16749. if (ctx->header.n_tensors > 0) {
  16750. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16751. }
  16752. ctx->header.n_tensors++;
  16753. }
  16754. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16755. const int idx = gguf_find_tensor(ctx, name);
  16756. if (idx < 0) {
  16757. GGML_ASSERT(false && "tensor not found");
  16758. }
  16759. ctx->infos[idx].type = type;
  16760. }
  16761. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16762. const int idx = gguf_find_tensor(ctx, name);
  16763. if (idx < 0) {
  16764. GGML_ASSERT(false && "tensor not found");
  16765. }
  16766. ctx->infos[idx].data = data;
  16767. ctx->infos[idx].size = size;
  16768. // update offsets
  16769. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16770. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16771. }
  16772. }
  16773. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16774. // fwrite(&val->n, sizeof(val->n), 1, file);
  16775. // fwrite(val->data, sizeof(char), val->n, file);
  16776. //}
  16777. //
  16778. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16779. // fwrite(val, sizeof(char), size, file);
  16780. //}
  16781. struct gguf_buf {
  16782. void * data;
  16783. size_t size;
  16784. size_t offset;
  16785. };
  16786. static struct gguf_buf gguf_buf_init(size_t size) {
  16787. struct gguf_buf buf = {
  16788. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16789. /*buf.size =*/ size,
  16790. /*buf.offset =*/ 0,
  16791. };
  16792. return buf;
  16793. }
  16794. static void gguf_buf_free(struct gguf_buf buf) {
  16795. if (buf.data) {
  16796. free(buf.data);
  16797. }
  16798. }
  16799. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16800. if (buf->offset + size > buf->size) {
  16801. buf->size = 1.5*(buf->offset + size);
  16802. if (buf->data) {
  16803. buf->data = realloc(buf->data, buf->size);
  16804. }
  16805. }
  16806. }
  16807. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16808. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16809. if (buf->data) {
  16810. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16811. }
  16812. buf->offset += sizeof(val->n);
  16813. if (buf->data) {
  16814. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16815. }
  16816. buf->offset += val->n;
  16817. }
  16818. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16819. gguf_buf_grow(buf, el_size);
  16820. if (buf->data) {
  16821. memcpy((char *) buf->data + buf->offset, val, el_size);
  16822. }
  16823. buf->offset += el_size;
  16824. }
  16825. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16826. // write header
  16827. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16828. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16829. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16830. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16831. // write key-value pairs
  16832. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16833. struct gguf_kv * kv = &ctx->kv[i];
  16834. gguf_bwrite_str(buf, &kv->key);
  16835. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16836. switch (kv->type) {
  16837. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16838. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16839. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16840. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16841. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16842. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16843. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16844. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16845. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16846. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16847. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16848. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16849. case GGUF_TYPE_ARRAY:
  16850. {
  16851. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16852. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16853. switch (kv->value.arr.type) {
  16854. case GGUF_TYPE_UINT8:
  16855. case GGUF_TYPE_INT8:
  16856. case GGUF_TYPE_UINT16:
  16857. case GGUF_TYPE_INT16:
  16858. case GGUF_TYPE_UINT32:
  16859. case GGUF_TYPE_INT32:
  16860. case GGUF_TYPE_FLOAT32:
  16861. case GGUF_TYPE_UINT64:
  16862. case GGUF_TYPE_INT64:
  16863. case GGUF_TYPE_FLOAT64:
  16864. case GGUF_TYPE_BOOL:
  16865. {
  16866. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16867. } break;
  16868. case GGUF_TYPE_STRING:
  16869. {
  16870. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16871. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16872. }
  16873. } break;
  16874. case GGUF_TYPE_ARRAY:
  16875. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16876. };
  16877. } break;
  16878. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16879. };
  16880. }
  16881. // write tensor infos
  16882. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16883. struct gguf_tensor_info * info = &ctx->infos[i];
  16884. gguf_bwrite_str(buf, &info->name);
  16885. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16886. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16887. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16888. }
  16889. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16890. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16891. }
  16892. // we require the data section to be aligned, so take into account any padding
  16893. {
  16894. const size_t offset = buf->offset;
  16895. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16896. if (offset_pad != offset) {
  16897. uint8_t pad = 0;
  16898. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16899. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16900. }
  16901. }
  16902. }
  16903. if (only_meta) {
  16904. return;
  16905. }
  16906. size_t offset = 0;
  16907. // write tensor data
  16908. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16909. struct gguf_tensor_info * info = &ctx->infos[i];
  16910. const size_t size = info->size;
  16911. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16912. gguf_bwrite_el(buf, info->data, size);
  16913. if (size_pad != size) {
  16914. uint8_t pad = 0;
  16915. for (size_t j = 0; j < size_pad - size; ++j) {
  16916. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16917. }
  16918. }
  16919. GGML_ASSERT(offset == info->offset);
  16920. offset += size_pad;
  16921. }
  16922. }
  16923. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16924. FILE * file = fopen(fname, "wb");
  16925. if (!file) {
  16926. GGML_ASSERT(false && "failed to open file for writing");
  16927. }
  16928. struct gguf_buf buf = gguf_buf_init(16*1024);
  16929. gguf_write_to_buf(ctx, &buf, only_meta);
  16930. fwrite(buf.data, 1, buf.offset, file);
  16931. gguf_buf_free(buf);
  16932. fclose(file);
  16933. }
  16934. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16935. // no allocs - only compute size
  16936. struct gguf_buf buf = gguf_buf_init(0);
  16937. gguf_write_to_buf(ctx, &buf, true);
  16938. return buf.offset;
  16939. }
  16940. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16941. struct gguf_buf buf = gguf_buf_init(16*1024);
  16942. gguf_write_to_buf(ctx, &buf, true);
  16943. memcpy(data, buf.data, buf.offset);
  16944. gguf_buf_free(buf);
  16945. }
  16946. ////////////////////////////////////////////////////////////////////////////////
  16947. int ggml_cpu_has_avx(void) {
  16948. #if defined(__AVX__)
  16949. return 1;
  16950. #else
  16951. return 0;
  16952. #endif
  16953. }
  16954. int ggml_cpu_has_avx2(void) {
  16955. #if defined(__AVX2__)
  16956. return 1;
  16957. #else
  16958. return 0;
  16959. #endif
  16960. }
  16961. int ggml_cpu_has_avx512(void) {
  16962. #if defined(__AVX512F__)
  16963. return 1;
  16964. #else
  16965. return 0;
  16966. #endif
  16967. }
  16968. int ggml_cpu_has_avx512_vbmi(void) {
  16969. #if defined(__AVX512VBMI__)
  16970. return 1;
  16971. #else
  16972. return 0;
  16973. #endif
  16974. }
  16975. int ggml_cpu_has_avx512_vnni(void) {
  16976. #if defined(__AVX512VNNI__)
  16977. return 1;
  16978. #else
  16979. return 0;
  16980. #endif
  16981. }
  16982. int ggml_cpu_has_fma(void) {
  16983. #if defined(__FMA__)
  16984. return 1;
  16985. #else
  16986. return 0;
  16987. #endif
  16988. }
  16989. int ggml_cpu_has_neon(void) {
  16990. #if defined(__ARM_NEON)
  16991. return 1;
  16992. #else
  16993. return 0;
  16994. #endif
  16995. }
  16996. int ggml_cpu_has_arm_fma(void) {
  16997. #if defined(__ARM_FEATURE_FMA)
  16998. return 1;
  16999. #else
  17000. return 0;
  17001. #endif
  17002. }
  17003. int ggml_cpu_has_metal(void) {
  17004. #if defined(GGML_USE_METAL)
  17005. return 1;
  17006. #else
  17007. return 0;
  17008. #endif
  17009. }
  17010. int ggml_cpu_has_f16c(void) {
  17011. #if defined(__F16C__)
  17012. return 1;
  17013. #else
  17014. return 0;
  17015. #endif
  17016. }
  17017. int ggml_cpu_has_fp16_va(void) {
  17018. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17019. return 1;
  17020. #else
  17021. return 0;
  17022. #endif
  17023. }
  17024. int ggml_cpu_has_wasm_simd(void) {
  17025. #if defined(__wasm_simd128__)
  17026. return 1;
  17027. #else
  17028. return 0;
  17029. #endif
  17030. }
  17031. int ggml_cpu_has_blas(void) {
  17032. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17033. return 1;
  17034. #else
  17035. return 0;
  17036. #endif
  17037. }
  17038. int ggml_cpu_has_cublas(void) {
  17039. #if defined(GGML_USE_CUBLAS)
  17040. return 1;
  17041. #else
  17042. return 0;
  17043. #endif
  17044. }
  17045. int ggml_cpu_has_clblast(void) {
  17046. #if defined(GGML_USE_CLBLAST)
  17047. return 1;
  17048. #else
  17049. return 0;
  17050. #endif
  17051. }
  17052. int ggml_cpu_has_gpublas(void) {
  17053. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17054. }
  17055. int ggml_cpu_has_sse3(void) {
  17056. #if defined(__SSE3__)
  17057. return 1;
  17058. #else
  17059. return 0;
  17060. #endif
  17061. }
  17062. int ggml_cpu_has_ssse3(void) {
  17063. #if defined(__SSSE3__)
  17064. return 1;
  17065. #else
  17066. return 0;
  17067. #endif
  17068. }
  17069. int ggml_cpu_has_vsx(void) {
  17070. #if defined(__POWER9_VECTOR__)
  17071. return 1;
  17072. #else
  17073. return 0;
  17074. #endif
  17075. }
  17076. ////////////////////////////////////////////////////////////////////////////////