| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- #include <cstdio>
- #include <vector>
- #include <random>
- #include <chrono>
- #include <cstdlib>
- #include <cmath>
- #include <cassert>
- #include <cstring>
- #include <array>
- #include <ggml.h>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- constexpr int kVecSize = 1 << 18;
- static float drawFromGaussianPdf(std::mt19937& rndm) {
- constexpr double kScale = 1./(1. + std::mt19937::max());
- constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale;
- static float lastX;
- static bool haveX = false;
- if (haveX) { haveX = false; return lastX; }
- auto r = sqrt(-2*log(1 - kScale*rndm()));
- auto phi = kTwoPiTimesScale * rndm();
- lastX = r*sin(phi);
- haveX = true;
- return r*cos(phi);
- }
- static void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) {
- for (auto& v : values) v = mean + drawFromGaussianPdf(rndm);
- }
- // Copy-pasted from ggml.c
- #define QK4_0 32
- typedef struct {
- float d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
- #define QK4_1 32
- typedef struct {
- float d; // delta
- float m; // min
- uint8_t qs[QK4_1 / 2]; // nibbles / quants
- } block_q4_1;
- static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
- // Copy-pasted from ggml.c
- #define QK8_0 32
- typedef struct {
- float d; // delta
- int8_t qs[QK8_0]; // quants
- } block_q8_0;
- static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
- // "Scalar" dot product between the quantized vector x and float vector y
- inline double dot(int n, const block_q4_0* x, const float* y) {
- const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f};
- constexpr uint32_t kMask1 = 0x0f0f0f0f;
- uint32_t u1, u2;
- auto q1 = (const uint8_t*)&u1;
- auto q2 = (const uint8_t*)&u2;
- double sum = 0;
- for (int i=0; i<n; ++i) {
- float d = x->d;
- auto u = (const uint32_t*)x->qs;
- float s = 0;
- for (int k=0; k<4; ++k) {
- u1 = u[k] & kMask1;
- u2 = (u[k] >> 4) & kMask1;
- s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] +
- y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] +
- y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] +
- y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]];
- y += 8;
- }
- sum += s*d;
- ++x;
- }
- return sum;
- }
- // Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product),
- // but about the same on X86_64 (Ryzen 7950X CPU).
- inline double dot3(int n, const block_q4_0* x, const float* y) {
- const static std::pair<float,float> kValues[256] = {
- {-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f},
- { 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f},
- {-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f},
- { 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f},
- {-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f},
- { 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f},
- {-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f},
- { 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f},
- {-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f},
- { 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f},
- {-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f},
- { 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f},
- {-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f},
- { 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f},
- {-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f},
- { 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f},
- {-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f},
- { 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f},
- {-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f},
- { 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f},
- {-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f},
- { 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f},
- {-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f},
- { 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f},
- {-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f},
- { 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f},
- {-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f},
- { 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f},
- {-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f},
- { 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f},
- {-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f},
- { 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f}
- };
- double sum = 0;
- for (int i=0; i<n; ++i) {
- float d = x->d;
- auto q = x->qs;
- float s = 0;
- for (int k=0; k<4; ++k) {
- s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second +
- y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second +
- y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second +
- y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second;
- y += 8; q += 4;
- }
- sum += s*d;
- ++x;
- }
- return sum;
- }
- inline double dot41(int n, const block_q4_1* x, const float* y) {
- const static float kValues[16] = {0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f};
- constexpr uint32_t kMask1 = 0x0f0f0f0f;
- uint32_t u1, u2;
- auto q1 = (const uint8_t*)&u1;
- auto q2 = (const uint8_t*)&u2;
- double sum = 0;
- for (int i=0; i<n; ++i) {
- auto u = (const uint32_t*)x->qs;
- float s = 0, s1 = 0;
- for (int k=0; k<4; ++k) {
- u1 = u[k] & kMask1;
- u2 = (u[k] >> 4) & kMask1;
- s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] +
- y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] +
- y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] +
- y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]];
- s1 += y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7];
- y += 8;
- }
- sum += s*x->d + s1*x->m;
- ++x;
- }
- return sum;
- }
- // Copy-pasted from ggml.c
- static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) {
- assert(k % QK8_0 == 0);
- const int nb = k / QK8_0;
- for (int i = 0; i < nb; i++) {
- float amax = 0.0f; // absolute max
- for (int l = 0; l < QK8_0; l++) {
- const float v = x[i*QK8_0 + l];
- amax = std::max(amax, fabsf(v));
- }
- const float d = amax / ((1 << 7) - 1);
- const float id = d ? 1.0f/d : 0.0f;
- y[i].d = d;
- for (int l = 0; l < QK8_0; ++l) {
- const float v = x[i*QK8_0 + l]*id;
- y[i].qs[l] = roundf(v);
- }
- }
- }
- // Copy-pasted from ggml.c
- static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) {
- const int nb = n / QK8_0;
- const block_q4_0* x = (const block_q4_0*)vx;
- const block_q8_0* y = (const block_q8_0*)vy;
- float sumf = 0;
- for (int i = 0; i < nb; i++) {
- const float d0 = x[i].d;
- const float d1 = y[i].d;
- const uint8_t * p0 = x[i].qs;
- const int8_t * p1 = y[i].qs;
- int sumi = 0;
- for (int j = 0; j < QK8_0/2; j++) {
- const uint8_t v0 = p0[j];
- const int i0 = (int8_t) (v0 & 0xf) - 8;
- const int i1 = (int8_t) (v0 >> 4) - 8;
- const int i2 = p1[2*j + 0];
- const int i3 = p1[2*j + 1];
- sumi += i0*i2 + i1*i3;
- }
- sumf += d0*d1*sumi;
- }
- *s = sumf;
- }
- int main(int argc, char** argv) {
- int nloop = argc > 1 ? atoi(argv[1]) : 10;
- bool scalar = argc > 2 ? atoi(argv[2]) : false;
- bool useQ4_1 = argc > 3 ? atoi(argv[3]) : false;
- if (scalar && useQ4_1) {
- printf("It is not possible to use Q4_1 quantization and scalar implementations\n");
- return 1;
- }
- std::mt19937 rndm(1234);
- std::vector<float> x1(kVecSize), y1(kVecSize);
- int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64);
- int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64);
- const auto * funcs = useQ4_1 ? ggml_get_type_traits(GGML_TYPE_Q4_1) : ggml_get_type_traits(GGML_TYPE_Q4_0);
- std::vector<block_q4_0> q40;
- std::vector<block_q4_1> q41;
- if (useQ4_1) q41.resize(n4);
- else q40.resize(n4);
- std::vector<block_q8_0> q8(n8);
- double sumt = 0, sumt2 = 0, maxt = 0;
- double sumqt = 0, sumqt2 = 0, maxqt = 0;
- double sum = 0, sumq = 0, exactSum = 0;
- for (int iloop=0; iloop<nloop; ++iloop) {
- // Fill vector x with random numbers
- fillRandomGaussianFloats(x1, rndm);
- // Fill vector y with random numbers
- fillRandomGaussianFloats(y1, rndm);
- // Compute the exact dot product
- for (int k=0; k<kVecSize; ++k) exactSum += x1[k]*y1[k];
- // quantize x.
- // Note, we do not include this in the timing as in practical application
- // we already have the quantized model weights.
- if (useQ4_1) {
- funcs->from_float(x1.data(), q41.data(), kVecSize);
- } else {
- funcs->from_float(x1.data(), q40.data(), kVecSize);
- }
- // Now measure time the dot product needs using the "scalar" version above
- auto t1 = std::chrono::high_resolution_clock::now();
- if (useQ4_1) sum += dot41(kVecSize / QK4_1, q41.data(), y1.data());
- else sum += dot(kVecSize / QK4_0, q40.data(), y1.data());
- auto t2 = std::chrono::high_resolution_clock::now();
- auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
- sumt += t; sumt2 += t*t; maxt = std::max(maxt, t);
- // And now measure the time needed to quantize y and perform the dot product with the quantized y
- t1 = std::chrono::high_resolution_clock::now();
- float result;
- if (scalar) {
- quantize_row_q8_0_reference(y1.data(), q8.data(), kVecSize);
- dot_q4_q8(kVecSize, &result, q40.data(), q8.data());
- }
- else {
- const auto * vdot = ggml_get_type_traits(funcs->vec_dot_type);
- vdot->from_float(y1.data(), q8.data(), kVecSize);
- if (useQ4_1) funcs->vec_dot(kVecSize, &result, 0, q41.data(), 0, q8.data(), 0, 1);
- else funcs->vec_dot(kVecSize, &result, 0, q40.data(), 0, q8.data(), 0, 1);
- }
- sumq += result;
- t2 = std::chrono::high_resolution_clock::now();
- t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count();
- sumqt += t; sumqt2 += t*t; maxqt = std::max(maxqt, t);
- }
- // Report the time (and the average of the dot products so the compiler does not come up with the idea
- // of optimizing away the function calls after figuring that the result is not used).
- sum /= nloop; sumq /= nloop;
- exactSum /= nloop;
- printf("Exact result: <dot> = %g\n",exactSum);
- printf("<dot> = %g, %g\n",sum,sumq);
- sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt;
- if (sumt2 > 0) sumt2 = sqrt(sumt2);
- printf("time = %g +/- %g us. maxt = %g us\n",sumt,sumt2,maxt);
- sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt;
- if (sumqt2 > 0) sumqt2 = sqrt(sumqt2);
- printf("timeq = %g +/- %g us. maxt = %g us\n",sumqt,sumqt2,maxqt);
- return 0;
- }
|