tensor_mapping.py 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 granite-hybrid
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. ),
  32. # Token type embeddings
  33. MODEL_TENSOR.TOKEN_TYPES: (
  34. "embeddings.token_type_embeddings", # bert nomic-bert
  35. ),
  36. # Normalization of token embeddings
  37. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  38. "word_embeddings_layernorm", # bloom
  39. "embeddings.LayerNorm", # bert
  40. "emb_ln", # nomic-bert
  41. "transformer.norm", # openelm
  42. "rwkv.blocks.0.pre_ln", # rwkv
  43. "rwkv.blocks.0.pre_ln", # rwkv6
  44. "model.pre_ln", # rwkv7
  45. "model.layers.0.pre_norm", # rwkv7
  46. "backbone.norm", # wavtokenizer
  47. "model.embedding_norm", # lfm2
  48. ),
  49. # Position embeddings
  50. MODEL_TENSOR.POS_EMBD: (
  51. "transformer.wpe", # gpt2
  52. "embeddings.position_embeddings", # bert
  53. "wpe", # gpt2
  54. ),
  55. # Output
  56. MODEL_TENSOR.OUTPUT: (
  57. "embed_out", # gptneox
  58. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe
  59. "output", # llama-pth bloom internlm2
  60. "word_embeddings_for_head", # persimmon
  61. "lm_head.linear", # phi2
  62. "output_layer", # chatglm
  63. "head", # rwkv
  64. "head.out", # wavtokenizer
  65. "lm_head", # llama4
  66. ),
  67. # Output norm
  68. MODEL_TENSOR.OUTPUT_NORM: (
  69. "gpt_neox.final_layer_norm", # gptneox
  70. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  71. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe
  72. "norm", # llama-pth
  73. "transformer.norm_f", # mpt dbrx
  74. "ln_f", # refact bloom qwen gpt2
  75. "language_model.encoder.final_layernorm", # persimmon
  76. "model.final_layernorm", # persimmon
  77. "lm_head.ln", # phi2
  78. "model.norm_f", # mamba-qbert
  79. "backbone.norm_f", # mamba
  80. "transformer.rms_norm", # Grok
  81. "encoder.final_layernorm", # chatglm
  82. "transformer.norm", # openelm
  83. "model.norm", # nemotron
  84. "rwkv.ln_out", # rwkv6
  85. "model.ln_out", # rwkv7
  86. "backbone.final_layer_norm", # wavtokenizer
  87. "model.norm", # llama4
  88. ),
  89. # Rope frequencies
  90. MODEL_TENSOR.ROPE_FREQS: (
  91. "rope.freqs", # llama-pth
  92. "rotary_pos_emb.inv_freq", # chatglm
  93. ),
  94. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  95. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  96. MODEL_TENSOR.CONV1D: (
  97. "backbone.embed", # roberta
  98. ),
  99. }
  100. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  101. # Attention norm
  102. MODEL_TENSOR.ATTN_NORM: (
  103. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  104. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  105. "transformer.blocks.{bid}.norm_1", # mpt
  106. "transformer.h.{bid}.input_layernorm", # falcon7b
  107. "h.{bid}.input_layernorm", # bloom
  108. "transformer.h.{bid}.ln_mlp", # falcon40b
  109. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  110. "layers.{bid}.attention_norm", # llama-pth
  111. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  112. "model.layers.{bid}.ln1", # yi
  113. "h.{bid}.ln_1", # gpt2
  114. "transformer.h.{bid}.ln", # phi2
  115. "model.layers.layers.{bid}.norm", # plamo
  116. "model.layers.{bid}.attention_norm", # internlm2
  117. "model.layers.{bid}.norm", # mamba-qbert
  118. "backbone.layers.{bid}.norm", # mamba
  119. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  120. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  121. "encoder.layers.{bid}.input_layernorm", # chatglm
  122. "transformer.layers.{bid}.attn_norm", # openelm
  123. "rwkv.blocks.{bid}.ln1", # rwkv6
  124. "model.layers.{bid}.ln1", # rwkv7
  125. "model.layers.{bid}.input_layernorm", # llama4
  126. "transformer_encoder.{bid}.attention_norm", # neobert
  127. "model.layers.{bid}.operator_norm", # lfm2
  128. ),
  129. # Attention norm 2
  130. MODEL_TENSOR.ATTN_NORM_2: (
  131. "transformer.h.{bid}.ln_attn", # falcon40b
  132. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  133. "rwkv.blocks.{bid}.ln2", # rwkv6
  134. "model.layers.{bid}.ln2", # rwkv7
  135. ),
  136. # Attention query-key-value
  137. MODEL_TENSOR.ATTN_QKV: (
  138. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  139. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  140. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  141. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  142. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  143. "h.{bid}.self_attention.query_key_value", # bloom
  144. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  145. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  146. "h.{bid}.attn.c_attn", # gpt2
  147. "transformer.h.{bid}.mixer.Wqkv", # phi2
  148. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  149. "encoder.layers.{bid}.mixer.Wqkv", # jina
  150. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  151. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  152. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  153. "transformer_encoder.{bid}.qkv", # neobert
  154. ),
  155. # Attention query
  156. MODEL_TENSOR.ATTN_Q: (
  157. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  158. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  159. "layers.{bid}.attention.wq", # llama-pth
  160. "encoder.layer.{bid}.attention.self.query", # bert
  161. "transformer.layer.{bid}.attention.q_lin", # distillbert
  162. "transformer.h.{bid}.attn.q_proj", # gpt-j
  163. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  164. "model.layers.{bid}.attention.wq", # internlm2
  165. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  166. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  167. "model.layers.{bid}.self_attn.q_proj", # llama4
  168. ),
  169. # Attention key
  170. MODEL_TENSOR.ATTN_K: (
  171. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  172. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  173. "layers.{bid}.attention.wk", # llama-pth
  174. "encoder.layer.{bid}.attention.self.key", # bert
  175. "transformer.layer.{bid}.attention.k_lin", # distillbert
  176. "transformer.h.{bid}.attn.k_proj", # gpt-j
  177. "transformer.h.{bid}.attn.k", # refact
  178. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  179. "model.layers.{bid}.attention.wk", # internlm2
  180. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  181. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  182. "model.layers.{bid}.self_attn.k_proj", # llama4
  183. ),
  184. # Attention value
  185. MODEL_TENSOR.ATTN_V: (
  186. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  187. "layers.{bid}.attention.wv", # llama-pth
  188. "encoder.layer.{bid}.attention.self.value", # bert
  189. "transformer.layer.{bid}.attention.v_lin", # distillbert
  190. "transformer.h.{bid}.attn.v_proj", # gpt-j
  191. "transformer.h.{bid}.attn.v", # refact
  192. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  193. "model.layers.{bid}.attention.wv", # internlm2
  194. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  195. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  196. "model.layers.{bid}.self_attn.v_proj", # llama4
  197. ),
  198. # Attention output
  199. MODEL_TENSOR.ATTN_OUT: (
  200. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  201. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  202. "transformer.blocks.{bid}.attn.out_proj", # mpt
  203. "transformer.h.{bid}.self_attention.dense", # falcon
  204. "h.{bid}.self_attention.dense", # bloom
  205. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  206. "model.layers.{bid}.self_attn.out_proj", # lfm2
  207. "model.layers.{bid}.self_attn.linear_attn", # deci
  208. "layers.{bid}.attention.wo", # llama-pth
  209. "encoder.layer.{bid}.attention.output.dense", # bert
  210. "transformer.layer.{bid}.attention.out_lin", # distillbert
  211. "transformer.h.{bid}.attn.out_proj", # gpt-j
  212. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  213. "model.layers.{bid}.self_attn.dense", # persimmon
  214. "h.{bid}.attn.c_proj", # gpt2
  215. "transformer.h.{bid}.mixer.out_proj", # phi2
  216. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  217. "model.layers.{bid}.attention.wo", # internlm2
  218. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  219. "encoder.layers.{bid}.mixer.out_proj", # jina
  220. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  221. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  222. "encoder.layers.{bid}.self_attention.dense", # chatglm
  223. "transformer.layers.{bid}.attn.out_proj", # openelm
  224. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  225. "model.layers.{bid}.self_attn.o_proj", # llama4
  226. "transformer_encoder.{bid}.wo", # neobert
  227. ),
  228. # Attention output norm
  229. MODEL_TENSOR.ATTN_OUT_NORM: (
  230. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  231. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  232. "encoder.layers.{bid}.norm1", # nomic-bert
  233. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  234. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  235. ),
  236. MODEL_TENSOR.ATTN_POST_NORM: (
  237. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  238. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  239. ),
  240. # Rotary embeddings
  241. MODEL_TENSOR.ATTN_ROT_EMBD: (
  242. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  243. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  244. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  245. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  246. ),
  247. # Feed-forward norm
  248. MODEL_TENSOR.FFN_NORM: (
  249. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  250. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  251. "h.{bid}.post_attention_layernorm", # bloom
  252. "transformer.blocks.{bid}.norm_2", # mpt
  253. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  254. "layers.{bid}.ffn_norm", # llama-pth
  255. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  256. "model.layers.{bid}.ln2", # yi
  257. "h.{bid}.ln_2", # gpt2
  258. "model.layers.{bid}.ffn_norm", # internlm2
  259. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  260. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  261. "transformer.layers.{bid}.ffn_norm", # openelm
  262. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  263. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  264. "model.layers.{bid}.post_attention_layernorm", # llama4
  265. "transformer_encoder.{bid}.ffn_norm", # neobert
  266. ),
  267. # Post feed-forward norm
  268. MODEL_TENSOR.FFN_PRE_NORM: (
  269. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  270. "model.layers.{bid}.pre_ff_layernorm.weight",
  271. ),
  272. # Post feed-forward norm
  273. MODEL_TENSOR.FFN_POST_NORM: (
  274. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  275. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  276. "model.layers.{bid}.feed_forward.up_proj",
  277. ),
  278. MODEL_TENSOR.FFN_GATE_INP: (
  279. "layers.{bid}.feed_forward.gate", # mixtral
  280. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  281. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  282. "transformer.decoder_layer.{bid}.router", # Grok
  283. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  284. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  285. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  286. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  287. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  288. ),
  289. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  290. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  291. ),
  292. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  293. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  294. ),
  295. # Feed-forward up
  296. MODEL_TENSOR.FFN_UP: (
  297. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  298. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  299. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  300. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  301. "h.{bid}.mlp.dense_h_to_4h", # bloom
  302. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  303. "layers.{bid}.feed_forward.w3", # llama-pth
  304. "encoder.layer.{bid}.intermediate.dense", # bert
  305. "transformer.layer.{bid}.ffn.lin1", # distillbert
  306. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  307. "transformer.h.{bid}.mlp.linear_3", # refact
  308. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  309. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  310. "transformer.h.{bid}.mlp.w1", # qwen
  311. "h.{bid}.mlp.c_fc", # gpt2
  312. "transformer.h.{bid}.mlp.fc1", # phi2
  313. "model.layers.{bid}.mlp.fc1", # phi2
  314. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  315. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  316. "model.layers.{bid}.feed_forward.w3", # internlm2
  317. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  318. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  319. "model.layers.{bid}.mlp.c_fc", # starcoder2
  320. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  321. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  322. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  323. "model.layers.{bid}.residual_mlp.w3", # arctic
  324. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  325. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  326. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  327. "transformer_encoder.{bid}.ffn.w12", # neobert
  328. ),
  329. MODEL_TENSOR.FFN_UP_EXP: (
  330. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  331. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  332. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  333. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  334. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  335. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  336. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  337. ),
  338. MODEL_TENSOR.FFN_UP_SHEXP: (
  339. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  340. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  341. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  342. "model.layers.{bid}.feed_forward.down_proj",
  343. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  344. ),
  345. # AWQ-activation gate
  346. MODEL_TENSOR.FFN_ACT: (
  347. "transformer.blocks.{bid}.ffn.act", # mpt
  348. ),
  349. # Feed-forward gate
  350. MODEL_TENSOR.FFN_GATE: (
  351. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  352. "layers.{bid}.feed_forward.w1", # llama-pth
  353. "transformer.h.{bid}.mlp.w2", # qwen
  354. "transformer.h.{bid}.mlp.c_fc2", # jais
  355. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  356. "model.layers.{bid}.feed_forward.w1", # internlm2
  357. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  358. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  359. "transformer.h.{bid}.mlp.linear_1", # refact
  360. "model.layers.{bid}.residual_mlp.w1", # arctic
  361. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  362. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  363. ),
  364. MODEL_TENSOR.FFN_GATE_EXP: (
  365. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  366. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  367. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  368. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  369. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  370. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  371. ),
  372. MODEL_TENSOR.FFN_GATE_SHEXP: (
  373. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  374. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  375. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  376. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  377. ),
  378. # Feed-forward down
  379. MODEL_TENSOR.FFN_DOWN: (
  380. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  381. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  382. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  383. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  384. "h.{bid}.mlp.dense_4h_to_h", # bloom
  385. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  386. "layers.{bid}.feed_forward.w2", # llama-pth
  387. "encoder.layer.{bid}.output.dense", # bert
  388. "transformer.layer.{bid}.ffn.lin2", # distillbert
  389. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  390. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  391. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  392. "h.{bid}.mlp.c_proj", # gpt2
  393. "transformer.h.{bid}.mlp.fc2", # phi2
  394. "model.layers.{bid}.mlp.fc2", # phi2
  395. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  396. "model.layers.{bid}.feed_forward.w2", # internlm2
  397. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  398. "model.layers.{bid}.mlp.c_proj", # starcoder2
  399. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  400. "transformer.layers.{bid}.ffn.proj_2", # openelm
  401. "model.layers.{bid}.residual_mlp.w2", # arctic
  402. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  403. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  404. "model.layers.h.{bid}.mlp.c_proj", # exaone
  405. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  406. "transformer_encoder.{bid}.ffn.w3", # neobert
  407. ),
  408. MODEL_TENSOR.FFN_DOWN_EXP: (
  409. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  410. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  411. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  412. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  413. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  414. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  415. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  416. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  417. ),
  418. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  419. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  420. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  421. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  422. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  423. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  424. ),
  425. MODEL_TENSOR.ATTN_Q_NORM: (
  426. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  427. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  428. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  429. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  430. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  431. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  432. "transformer.layers.{bid}.attn.q_norm", # openelm
  433. ),
  434. MODEL_TENSOR.ATTN_K_NORM: (
  435. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  436. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  437. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  438. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  439. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  440. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  441. "transformer.layers.{bid}.attn.k_norm", # openelm
  442. ),
  443. MODEL_TENSOR.ROPE_FREQS: (
  444. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  445. ),
  446. MODEL_TENSOR.LAYER_OUT_NORM: (
  447. "encoder.layer.{bid}.output.LayerNorm", # bert
  448. "transformer.layer.{bid}.output_layer_norm", # distillbert
  449. "encoder.layers.{bid}.norm2", # nomic-bert
  450. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  451. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  452. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  453. ),
  454. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  455. "model.embed_tokens_per_layer", # gemma3n
  456. ),
  457. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  458. "model.per_layer_model_projection", # gemma3n
  459. ),
  460. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  461. "model.per_layer_projection_norm", # gemma3n
  462. ),
  463. MODEL_TENSOR.ALTUP_PROJ: (
  464. "model.altup_projections", # gemma3n
  465. ),
  466. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  467. "model.altup_unembed_projections", # gemma3n
  468. ),
  469. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  470. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  471. ),
  472. MODEL_TENSOR.PER_LAYER_PROJ: (
  473. "model.layers.{bid}.per_layer_projection", # gemma3n
  474. ),
  475. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  476. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  477. ),
  478. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  479. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  480. ),
  481. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  482. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  483. ),
  484. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  485. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  486. ),
  487. MODEL_TENSOR.ALTUP_ROUTER: (
  488. "model.layers.{bid}.altup.modality_router", # gemma3n
  489. ),
  490. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  491. "model.layers.{bid}.altup.router_norm", # gemma3n
  492. ),
  493. MODEL_TENSOR.LAUREL_L: (
  494. "model.layers.{bid}.laurel.linear_left", # gemma3n
  495. ),
  496. MODEL_TENSOR.LAUREL_R: (
  497. "model.layers.{bid}.laurel.linear_right", # gemma3n
  498. ),
  499. MODEL_TENSOR.LAUREL_POST_NORM: (
  500. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  501. ),
  502. MODEL_TENSOR.SSM_IN: (
  503. "model.layers.{bid}.in_proj", # mamba-hf
  504. "backbone.layers.{bid}.mixer.in_proj", # mamba
  505. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  506. ),
  507. MODEL_TENSOR.SSM_CONV1D: (
  508. "model.layers.{bid}.conv1d", # mamba-hf
  509. "backbone.layers.{bid}.mixer.conv1d", # mamba
  510. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  511. ),
  512. MODEL_TENSOR.SSM_X: (
  513. "model.layers.{bid}.x_proj", # mamba-hf
  514. "backbone.layers.{bid}.mixer.x_proj", # mamba
  515. "model.layers.{bid}.mamba.x_proj", # jamba
  516. ),
  517. MODEL_TENSOR.SSM_DT: (
  518. "model.layers.{bid}.dt_proj", # mamba-hf
  519. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  520. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  521. ),
  522. MODEL_TENSOR.SSM_DT_NORM: (
  523. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  524. ),
  525. MODEL_TENSOR.SSM_A: (
  526. "model.layers.{bid}.A_log", # mamba-hf
  527. "backbone.layers.{bid}.mixer.A_log", # mamba
  528. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  529. ),
  530. MODEL_TENSOR.SSM_B_NORM: (
  531. "model.layers.{bid}.mamba.b_layernorm", # jamba
  532. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  533. ),
  534. MODEL_TENSOR.SSM_C_NORM: (
  535. "model.layers.{bid}.mamba.c_layernorm", # jamba
  536. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  537. ),
  538. MODEL_TENSOR.SSM_D: (
  539. "model.layers.{bid}.D", # mamba-hf
  540. "backbone.layers.{bid}.mixer.D", # mamba
  541. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  542. ),
  543. MODEL_TENSOR.SSM_NORM: (
  544. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  545. "backbone.layers.{bid}.mixer.norm", # mamba2
  546. ),
  547. MODEL_TENSOR.SSM_OUT: (
  548. "model.layers.{bid}.out_proj", # mamba-hf
  549. "backbone.layers.{bid}.mixer.out_proj", # mamba
  550. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  551. ),
  552. MODEL_TENSOR.TIME_MIX_W0: (
  553. "model.layers.{bid}.attention.w0", # rwkv7
  554. ),
  555. MODEL_TENSOR.TIME_MIX_W1: (
  556. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  557. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  558. "model.layers.{bid}.attention.w1", # rwkv7
  559. ),
  560. MODEL_TENSOR.TIME_MIX_W2: (
  561. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  562. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  563. "model.layers.{bid}.attention.w2", # rwkv7
  564. ),
  565. MODEL_TENSOR.TIME_MIX_A0: (
  566. "model.layers.{bid}.attention.a0", # rwkv7
  567. ),
  568. MODEL_TENSOR.TIME_MIX_A1: (
  569. "model.layers.{bid}.attention.a1", # rwkv7
  570. ),
  571. MODEL_TENSOR.TIME_MIX_A2: (
  572. "model.layers.{bid}.attention.a2", # rwkv7
  573. ),
  574. MODEL_TENSOR.TIME_MIX_V0: (
  575. "model.layers.{bid}.attention.v0", # rwkv7
  576. ),
  577. MODEL_TENSOR.TIME_MIX_V1: (
  578. "model.layers.{bid}.attention.v1", # rwkv7
  579. ),
  580. MODEL_TENSOR.TIME_MIX_V2: (
  581. "model.layers.{bid}.attention.v2", # rwkv7
  582. ),
  583. MODEL_TENSOR.TIME_MIX_G1: (
  584. "model.layers.{bid}.attention.g1", # rwkv7
  585. ),
  586. MODEL_TENSOR.TIME_MIX_G2: (
  587. "model.layers.{bid}.attention.g2", # rwkv7
  588. ),
  589. MODEL_TENSOR.TIME_MIX_K_K: (
  590. "model.layers.{bid}.attention.k_k", # rwkv7
  591. ),
  592. MODEL_TENSOR.TIME_MIX_K_A: (
  593. "model.layers.{bid}.attention.k_a", # rwkv7
  594. ),
  595. MODEL_TENSOR.TIME_MIX_R_K: (
  596. "model.layers.{bid}.attention.r_k", # rwkv7
  597. ),
  598. MODEL_TENSOR.TIME_MIX_LERP_X: (
  599. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  600. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  601. ),
  602. MODEL_TENSOR.TIME_MIX_LERP_K: (
  603. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  604. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  605. ),
  606. MODEL_TENSOR.TIME_MIX_LERP_V: (
  607. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  608. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  609. ),
  610. MODEL_TENSOR.TIME_MIX_LERP_R: (
  611. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  612. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  613. ),
  614. MODEL_TENSOR.TIME_MIX_LERP_G: (
  615. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  616. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  617. ),
  618. MODEL_TENSOR.TIME_MIX_LERP_W: (
  619. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  620. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  621. ),
  622. MODEL_TENSOR.TIME_MIX_FIRST: (
  623. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  624. ),
  625. MODEL_TENSOR.TIME_MIX_DECAY: (
  626. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  627. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  628. ),
  629. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  630. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  631. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  632. ),
  633. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  634. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  635. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  636. ),
  637. MODEL_TENSOR.TIME_MIX_KEY: (
  638. "rwkv.blocks.{bid}.attention.key", # rwkv6
  639. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  640. "model.layers.{bid}.attention.key", # rwkv7
  641. "model.layers.{bid}.attention.k_proj", # rwkv7
  642. ),
  643. MODEL_TENSOR.TIME_MIX_VALUE: (
  644. "rwkv.blocks.{bid}.attention.value", # rwkv6
  645. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  646. "model.layers.{bid}.attention.value", # rwkv7
  647. "model.layers.{bid}.attention.v_proj", # rwkv7
  648. ),
  649. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  650. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  651. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  652. "model.layers.{bid}.attention.receptance", # rwkv7
  653. "model.layers.{bid}.attention.r_proj", # rwkv7
  654. ),
  655. MODEL_TENSOR.TIME_MIX_GATE: (
  656. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  657. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  658. ),
  659. MODEL_TENSOR.TIME_MIX_LN: (
  660. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  661. "model.layers.{bid}.attention.ln_x" # rwkv7
  662. ),
  663. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  664. "rwkv.blocks.{bid}.attention.output", # rwkv6
  665. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  666. "model.layers.{bid}.attention.output", # rwkv7
  667. "model.layers.{bid}.attention.o_proj", # rwkv7
  668. ),
  669. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  670. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  671. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  672. ),
  673. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  674. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  675. ),
  676. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  677. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  678. "model.layers.{bid}.feed_forward.key", # rwkv7
  679. ),
  680. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  681. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  682. ),
  683. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  684. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  685. "model.layers.{bid}.feed_forward.value", # rwkv7
  686. ),
  687. MODEL_TENSOR.ATTN_Q_A: (
  688. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  689. ),
  690. MODEL_TENSOR.ATTN_Q_B: (
  691. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  692. ),
  693. MODEL_TENSOR.ATTN_KV_A_MQA: (
  694. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  695. ),
  696. MODEL_TENSOR.ATTN_KV_B: (
  697. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  698. ),
  699. MODEL_TENSOR.ATTN_K_B: (
  700. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  701. ),
  702. MODEL_TENSOR.ATTN_V_B: (
  703. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  704. ),
  705. MODEL_TENSOR.ATTN_Q_A_NORM: (
  706. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  707. ),
  708. MODEL_TENSOR.ATTN_KV_A_NORM: (
  709. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  710. ),
  711. MODEL_TENSOR.ATTN_SUB_NORM: (
  712. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  713. ),
  714. MODEL_TENSOR.FFN_SUB_NORM: (
  715. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  716. ),
  717. MODEL_TENSOR.DEC_ATTN_NORM: (
  718. "decoder.block.{bid}.layer.0.layer_norm", # t5
  719. ),
  720. MODEL_TENSOR.DEC_ATTN_Q: (
  721. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  722. ),
  723. MODEL_TENSOR.DEC_ATTN_K: (
  724. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  725. ),
  726. MODEL_TENSOR.DEC_ATTN_V: (
  727. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  728. ),
  729. MODEL_TENSOR.DEC_ATTN_OUT: (
  730. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  731. ),
  732. MODEL_TENSOR.DEC_ATTN_REL_B: (
  733. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  734. ),
  735. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  736. "decoder.block.{bid}.layer.1.layer_norm", # t5
  737. ),
  738. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  739. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  740. ),
  741. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  742. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  743. ),
  744. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  745. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  746. ),
  747. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  748. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  749. ),
  750. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  751. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  752. ),
  753. MODEL_TENSOR.DEC_FFN_NORM: (
  754. "decoder.block.{bid}.layer.2.layer_norm", # t5
  755. ),
  756. MODEL_TENSOR.DEC_FFN_GATE: (
  757. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  758. ),
  759. MODEL_TENSOR.DEC_FFN_UP: (
  760. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  761. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  762. ),
  763. MODEL_TENSOR.DEC_FFN_DOWN: (
  764. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  765. ),
  766. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  767. "decoder.final_layer_norm", # t5
  768. ),
  769. MODEL_TENSOR.ENC_ATTN_NORM: (
  770. "encoder.block.{bid}.layer.0.layer_norm", # t5
  771. ),
  772. MODEL_TENSOR.ENC_ATTN_Q: (
  773. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  774. ),
  775. MODEL_TENSOR.ENC_ATTN_K: (
  776. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  777. ),
  778. MODEL_TENSOR.ENC_ATTN_V: (
  779. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  780. ),
  781. MODEL_TENSOR.ENC_ATTN_OUT: (
  782. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  783. ),
  784. MODEL_TENSOR.ENC_ATTN_REL_B: (
  785. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  786. ),
  787. MODEL_TENSOR.ENC_FFN_NORM: (
  788. "encoder.block.{bid}.layer.1.layer_norm", # t5
  789. ),
  790. MODEL_TENSOR.ENC_FFN_GATE: (
  791. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  792. ),
  793. MODEL_TENSOR.ENC_FFN_UP: (
  794. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  795. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  796. ),
  797. MODEL_TENSOR.ENC_FFN_DOWN: (
  798. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  799. ),
  800. ############################################################################
  801. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  802. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  803. "encoder.final_layer_norm", # t5
  804. "layer_norm", # neobert
  805. ),
  806. MODEL_TENSOR.CLS: (
  807. "classifier", # jina
  808. "classifier.dense", # roberta
  809. "pre_classifier", # distillbert
  810. "dense", # neobert
  811. ),
  812. MODEL_TENSOR.CLS_OUT: (
  813. "classifier.out_proj", # roberta
  814. ),
  815. #############################################################################
  816. MODEL_TENSOR.CONVNEXT_DW: (
  817. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  818. ),
  819. MODEL_TENSOR.CONVNEXT_NORM: (
  820. "backbone.convnext.{bid}.norm", # wavtokenizer
  821. ),
  822. MODEL_TENSOR.CONVNEXT_PW1: (
  823. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  824. ),
  825. MODEL_TENSOR.CONVNEXT_PW2: (
  826. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  827. ),
  828. MODEL_TENSOR.CONVNEXT_GAMMA: (
  829. "backbone.convnext.{bid}.gamma", # wavtokenizer
  830. ),
  831. MODEL_TENSOR.POSNET_CONV1: (
  832. "backbone.posnet.{bid}.conv1", # wavtokenizer
  833. ),
  834. MODEL_TENSOR.POSNET_CONV2: (
  835. "backbone.posnet.{bid}.conv2", # wavtokenizer
  836. ),
  837. MODEL_TENSOR.POSNET_NORM: (
  838. "backbone.posnet.{bid}.norm", # wavtokenizer
  839. ),
  840. MODEL_TENSOR.POSNET_NORM1: (
  841. "backbone.posnet.{bid}.norm1", # wavtokenizer
  842. ),
  843. MODEL_TENSOR.POSNET_NORM2: (
  844. "backbone.posnet.{bid}.norm2", # wavtokenizer
  845. ),
  846. MODEL_TENSOR.POSNET_ATTN_NORM: (
  847. "backbone.posnet.{bid}.norm", # wavtokenizer
  848. ),
  849. MODEL_TENSOR.POSNET_ATTN_Q: (
  850. "backbone.posnet.{bid}.q", # wavtokenizer
  851. ),
  852. MODEL_TENSOR.POSNET_ATTN_K: (
  853. "backbone.posnet.{bid}.k", # wavtokenizer
  854. ),
  855. MODEL_TENSOR.POSNET_ATTN_V: (
  856. "backbone.posnet.{bid}.v", # wavtokenizer
  857. ),
  858. MODEL_TENSOR.POSNET_ATTN_OUT: (
  859. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  860. ),
  861. MODEL_TENSOR.SHORTCONV_CONV: (
  862. "model.layers.{bid}.conv.conv",
  863. ),
  864. MODEL_TENSOR.SHORTCONV_INPROJ: (
  865. "model.layers.{bid}.conv.in_proj",
  866. ),
  867. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  868. "model.layers.{bid}.conv.out_proj",
  869. ),
  870. #############################################################################
  871. ## Vision encoder
  872. MODEL_TENSOR.V_MMPROJ: (
  873. "multi_modal_projector.linear_{bid}",
  874. "visual.merger.mlp.{bid}", # qwen2vl
  875. ),
  876. MODEL_TENSOR.V_MMPROJ_FC: (
  877. "model.connector.modality_projection.proj", # SmolVLM
  878. ),
  879. MODEL_TENSOR.V_MMPROJ_MLP: (
  880. "model.mm_projector.mlp.mlp.{bid}",
  881. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  882. "mlp1.{bid}", # InternVL
  883. ),
  884. MODEL_TENSOR.V_MMPROJ_PEG: (
  885. "model.mm_projector.peg.peg.{bid}",
  886. ),
  887. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  888. "vision_tower.vision_model.embeddings.class_embedding",
  889. "vision_model.class_embedding", # llama 4
  890. ),
  891. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  892. "vision_tower.vision_model.embeddings.patch_embedding",
  893. "vpm.embeddings.patch_embedding",
  894. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  895. "vision_tower.patch_conv", # pixtral
  896. "vision_model.patch_embedding.linear", # llama 4
  897. "visual.patch_embed.proj", # qwen2vl
  898. ),
  899. MODEL_TENSOR.V_ENC_EMBD_POS: (
  900. "vision_tower.vision_model.embeddings.position_embedding",
  901. "vpm.embeddings.position_embedding",
  902. "model.vision_model.embeddings.position_embedding", # SmolVLM
  903. "vision_model.positional_embedding_vlm", # llama 4
  904. ),
  905. MODEL_TENSOR.V_ENC_ATTN_Q: (
  906. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  907. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  908. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  909. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  910. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  911. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  912. ),
  913. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  914. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  915. ),
  916. MODEL_TENSOR.V_ENC_ATTN_K: (
  917. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  918. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  919. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  920. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  921. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  922. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  923. ),
  924. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  925. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  926. ),
  927. MODEL_TENSOR.V_ENC_ATTN_V: (
  928. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  929. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  930. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  931. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  932. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  933. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  934. ),
  935. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  936. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  937. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  938. "vpm.encoder.layers.{bid}.layer_norm1",
  939. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  940. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  941. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  942. "visual.blocks.{bid}.norm1", # qwen2vl
  943. ),
  944. MODEL_TENSOR.V_ENC_ATTN_O: (
  945. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  946. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  947. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  948. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  949. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  950. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  951. "visual.blocks.{bid}.attn.proj", # qwen2vl
  952. ),
  953. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  954. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  955. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  956. "vpm.encoder.layers.{bid}.layer_norm2",
  957. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  958. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  959. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  960. "visual.blocks.{bid}.norm2", # qwen2vl
  961. ),
  962. MODEL_TENSOR.V_ENC_FFN_UP: (
  963. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  964. "vpm.encoder.layers.{bid}.mlp.fc1",
  965. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  966. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  967. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  968. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  969. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  970. ),
  971. MODEL_TENSOR.V_ENC_FFN_GATE: (
  972. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  973. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  974. ),
  975. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  976. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  977. "vpm.encoder.layers.{bid}.mlp.fc2",
  978. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  979. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  980. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  981. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  982. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  983. ),
  984. MODEL_TENSOR.V_LAYER_SCALE_1: (
  985. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  986. ),
  987. MODEL_TENSOR.V_LAYER_SCALE_2: (
  988. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  989. ),
  990. MODEL_TENSOR.V_PRE_NORM: (
  991. "vision_tower.vision_model.pre_layrnorm",
  992. "vision_tower.ln_pre", # pixtral
  993. "vision_model.layernorm_pre", # llama4
  994. ),
  995. MODEL_TENSOR.V_POST_NORM: (
  996. "vision_tower.vision_model.post_layernorm",
  997. "model.vision_model.post_layernorm", # SmolVLM
  998. "vision_model.layernorm_post", # llama4
  999. "visual.merger.ln_q", # qwen2vl
  1000. ),
  1001. MODEL_TENSOR.V_MM_INP_PROJ: (
  1002. "multi_modal_projector.mm_input_projection",
  1003. ),
  1004. MODEL_TENSOR.V_MM_INP_NORM: (
  1005. "multi_modal_projector.norm",
  1006. ),
  1007. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1008. "multi_modal_projector.mm_soft_emb_norm",
  1009. ),
  1010. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1011. "resampler.pos_embed_k",
  1012. ),
  1013. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1014. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1015. ),
  1016. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1017. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1018. ),
  1019. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1020. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1021. ),
  1022. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1023. "resampler.attn.out_proj",
  1024. ),
  1025. MODEL_TENSOR.V_RESMPL_KV: (
  1026. "resampler.kv_proj",
  1027. ),
  1028. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1029. "resampler.ln_post",
  1030. ),
  1031. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1032. "resampler.ln_kv",
  1033. ),
  1034. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1035. "resampler.ln_q",
  1036. ),
  1037. MODEL_TENSOR.V_RESMPL_PROJ: (
  1038. "resampler.proj",
  1039. ),
  1040. MODEL_TENSOR.V_RESMPL_QUERY: (
  1041. "resampler.query",
  1042. ),
  1043. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1044. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1045. ),
  1046. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1047. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1048. ),
  1049. # audio (mtmd)
  1050. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1051. "audio_tower.embed_positions", # ultravox
  1052. ),
  1053. MODEL_TENSOR.A_ENC_CONV1D: (
  1054. "audio_tower.conv{bid}", # ultravox
  1055. ),
  1056. MODEL_TENSOR.A_PRE_NORM: (),
  1057. MODEL_TENSOR.A_POST_NORM: (
  1058. "audio_tower.layer_norm", # ultravox
  1059. "audio_tower.ln_post", # qwen2omni
  1060. ),
  1061. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1062. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1063. ),
  1064. MODEL_TENSOR.A_ENC_ATTN_K: (
  1065. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1066. ),
  1067. MODEL_TENSOR.A_ENC_ATTN_V: (
  1068. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1069. ),
  1070. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1071. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1072. ),
  1073. MODEL_TENSOR.A_ENC_OUTPUT: (
  1074. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1075. ),
  1076. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1077. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1078. ),
  1079. MODEL_TENSOR.A_ENC_FFN_UP: (
  1080. "audio_tower.layers.{bid}.fc1", # ultravox
  1081. ),
  1082. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1083. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1084. "audio_tower.layers.{bid}.fc2", # ultravox
  1085. ),
  1086. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1087. # this prefix is added in the conversion code in modify_tensors()
  1088. MODEL_TENSOR.A_MMPROJ: (
  1089. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1090. ),
  1091. MODEL_TENSOR.A_MMPROJ_FC: (
  1092. "audio.multi_modal_projector.linear", # qwen2audio
  1093. "audio_tower.proj", # qwen2omni
  1094. ),
  1095. MODEL_TENSOR.A_MM_NORM_PRE: (
  1096. "audio.multi_modal_projector.ln_pre", # ultravox
  1097. ),
  1098. MODEL_TENSOR.A_MM_NORM_MID: (
  1099. "audio.multi_modal_projector.ln_mid", # ultravox
  1100. ),
  1101. }
  1102. # architecture-specific block mappings
  1103. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1104. MODEL_ARCH.ARCTIC: {
  1105. MODEL_TENSOR.FFN_NORM: (
  1106. "model.layers.{bid}.residual_layernorm",
  1107. ),
  1108. MODEL_TENSOR.FFN_NORM_EXP: (
  1109. "model.layers.{bid}.post_attention_layernorm",
  1110. ),
  1111. },
  1112. }
  1113. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1114. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1115. self.mapping = {}
  1116. for tensor, keys in self.mappings_cfg.items():
  1117. if tensor not in MODEL_TENSORS[arch]:
  1118. continue
  1119. tensor_name = TENSOR_NAMES[tensor]
  1120. self.mapping[tensor_name] = (tensor, tensor_name)
  1121. for key in keys:
  1122. self.mapping[key] = (tensor, tensor_name)
  1123. if arch in self.arch_block_mappings_cfg:
  1124. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1125. for bid in range(n_blocks):
  1126. for tensor, keys in self.block_mappings_cfg.items():
  1127. if tensor not in MODEL_TENSORS[arch]:
  1128. continue
  1129. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1130. self.mapping[tensor_name] = (tensor, tensor_name)
  1131. for key in keys:
  1132. key = key.format(bid = bid)
  1133. self.mapping[key] = (tensor, tensor_name)
  1134. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1135. result = self.mapping.get(key)
  1136. if result is not None:
  1137. return result
  1138. for suffix in try_suffixes:
  1139. if key.endswith(suffix):
  1140. result = self.mapping.get(key[:-len(suffix)])
  1141. if result is not None:
  1142. return result[0], result[1] + suffix
  1143. return None
  1144. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1145. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1146. if result is None:
  1147. return None
  1148. return result[1]
  1149. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1150. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1151. if result is None:
  1152. return None
  1153. return result[0]
  1154. def __getitem__(self, key: str) -> str:
  1155. try:
  1156. return self.mapping[key][1]
  1157. except KeyError:
  1158. raise KeyError(key)
  1159. def __contains__(self, key: str) -> bool:
  1160. return key in self.mapping
  1161. def __repr__(self) -> str:
  1162. return repr(self.mapping)
  1163. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1164. return TensorNameMap(arch, n_blocks)