| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146 |
- #!/usr/bin/env python3
- import logging
- import argparse
- import os
- import subprocess
- import sys
- import yaml
- logger = logging.getLogger("run-with-preset")
- CLI_ARGS_LLAMA_CLI_PERPLEXITY = [
- "batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
- "export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
- "hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix",
- "interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
- "low-vram", "main-gpu", "memory-f32", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
- "model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
- "np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
- "prompt-cache", "prompt-cache-all", "prompt-cache-ro", "repeat-last-n",
- "repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
- "simple-io", "tensor-split", "threads", "temp", "tfs", "top-k", "top-p", "typical",
- "verbose-prompt"
- ]
- CLI_ARGS_LLAMA_BENCH = [
- "batch-size", "memory-f32", "low-vram", "model", "mul-mat-q", "n-gen", "n-gpu-layers",
- "n-prompt", "output", "repetitions", "tensor-split", "threads", "verbose"
- ]
- CLI_ARGS_LLAMA_SERVER = [
- "alias", "batch-size", "ctx-size", "embedding", "host", "memory-f32", "lora", "lora-base",
- "low-vram", "main-gpu", "mlock", "model", "n-gpu-layers", "n-probs", "no-mmap", "no-mul-mat-q",
- "numa", "path", "port", "rope-freq-base", "timeout", "rope-freq-scale", "tensor-split",
- "threads", "verbose"
- ]
- description = """Run llama.cpp binaries with presets from YAML file(s).
- To specify which binary should be run, specify the "binary" property (llama-cli, llama-perplexity, llama-bench, and llama-server are supported).
- To get a preset file template, run a llama.cpp binary with the "--logdir" CLI argument.
- Formatting considerations:
- - The YAML property names are the same as the CLI argument names of the corresponding binary.
- - Properties must use the long name of their corresponding llama.cpp CLI arguments.
- - Like the llama.cpp binaries the property names do not differentiate between hyphens and underscores.
- - Flags must be defined as "<PROPERTY_NAME>: true" to be effective.
- - To define the logit_bias property, the expected format is "<TOKEN_ID>: <BIAS>" in the "logit_bias" namespace.
- - To define multiple "reverse_prompt" properties simultaneously the expected format is a list of strings.
- - To define a tensor split, pass a list of floats.
- """
- usage = "run-with-preset.py [-h] [yaml_files ...] [--<ARG_NAME> <ARG_VALUE> ...]"
- epilog = (" --<ARG_NAME> specify additional CLI ars to be passed to the binary (override all preset files). "
- "Unknown args will be ignored.")
- parser = argparse.ArgumentParser(
- description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter)
- parser.add_argument("-bin", "--binary", help="The binary to run.")
- parser.add_argument("yaml_files", nargs="*",
- help="Arbitrary number of YAML files from which to read preset values. "
- "If two files specify the same values the later one will be used.")
- parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
- known_args, unknown_args = parser.parse_known_args()
- if not known_args.yaml_files and not unknown_args:
- parser.print_help()
- sys.exit(0)
- logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
- props = dict()
- for yaml_file in known_args.yaml_files:
- with open(yaml_file, "r") as f:
- props.update(yaml.load(f, yaml.SafeLoader))
- props = {prop.replace("_", "-"): val for prop, val in props.items()}
- binary = props.pop("binary", "llama-cli")
- if known_args.binary:
- binary = known_args.binary
- if os.path.exists(f"./{binary}"):
- binary = f"./{binary}"
- if binary.lower().endswith("llama-cli") or binary.lower().endswith("llama-perplexity"):
- cli_args = CLI_ARGS_LLAMA_CLI_PERPLEXITY
- elif binary.lower().endswith("llama-bench"):
- cli_args = CLI_ARGS_LLAMA_BENCH
- elif binary.lower().endswith("llama-server"):
- cli_args = CLI_ARGS_LLAMA_SERVER
- else:
- logger.error(f"Unknown binary: {binary}")
- sys.exit(1)
- command_list = [binary]
- for cli_arg in cli_args:
- value = props.pop(cli_arg, None)
- if not value or value == -1:
- continue
- if cli_arg == "logit-bias":
- for token, bias in value.items():
- command_list.append("--logit-bias")
- command_list.append(f"{token}{bias:+}")
- continue
- if cli_arg == "reverse-prompt" and not isinstance(value, str):
- for rp in value:
- command_list.append("--reverse-prompt")
- command_list.append(str(rp))
- continue
- command_list.append(f"--{cli_arg}")
- if cli_arg == "tensor-split":
- command_list.append(",".join([str(v) for v in value]))
- continue
- value = str(value)
- if value != "True":
- command_list.append(str(value))
- num_unused = len(props)
- if num_unused > 10:
- logger.info(f"The preset file contained a total of {num_unused} unused properties.")
- elif num_unused > 0:
- logger.info("The preset file contained the following unused properties:")
- for prop, value in props.items():
- logger.info(f" {prop}: {value}")
- command_list += unknown_args
- sp = subprocess.Popen(command_list)
- while sp.returncode is None:
- try:
- sp.wait()
- except KeyboardInterrupt:
- pass
- sys.exit(sp.returncode)
|