test-backend-ops.cpp 87 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475
  1. #include <ggml.h>
  2. #include <ggml-alloc.h>
  3. #include <ggml-backend.h>
  4. #include <ggml-backend-impl.h>
  5. #include <algorithm>
  6. #include <array>
  7. #include <cfloat>
  8. #include <cstring>
  9. #include <functional>
  10. #include <memory>
  11. #include <random>
  12. #include <stdio.h>
  13. #include <stdlib.h>
  14. #include <string>
  15. #include <thread>
  16. #include <vector>
  17. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  18. // static RNG initialization (revisit if n_threads stops being constant)
  19. static const size_t n_threads = std::thread::hardware_concurrency();
  20. static std::vector<std::default_random_engine> generators = []() {
  21. std::random_device rd;
  22. std::vector<std::default_random_engine> vec;
  23. vec.reserve(n_threads);
  24. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  25. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  26. return vec;
  27. }();
  28. size_t size = ggml_nelements(tensor);
  29. std::vector<float> data(size);
  30. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  31. std::uniform_real_distribution<float> distribution(min, max);
  32. for (size_t i = start; i < end; i++) {
  33. data[i] = distribution(generators[ith]);
  34. }
  35. };
  36. std::vector<std::thread> threads;
  37. threads.reserve(n_threads);
  38. for (size_t i = 0; i < n_threads; i++) {
  39. size_t start = i*size/n_threads;
  40. size_t end = (i+1)*size/n_threads;
  41. threads.emplace_back(init_thread, i, start, end);
  42. }
  43. for (auto & t : threads) {
  44. t.join();
  45. }
  46. #if 0
  47. const char * val_str = getenv("GGML_TEST_EPS");
  48. float val = 1e-9f;
  49. if (val_str != nullptr) {
  50. val = std::stof(val_str);
  51. printf("GGML_TEST_EPS=%e\n", val);
  52. }
  53. // test quantization with very small values that may result in nan scales due to division by zero
  54. if (ggml_is_quantized(tensor->type)) {
  55. for (int i = 0; i < 256; i++) {
  56. data[i] = val;
  57. }
  58. }
  59. #endif
  60. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  61. ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
  62. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  63. GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
  64. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
  65. std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
  66. const float * im = imatrix.data();
  67. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  68. // when the imatrix is optional, we want to test both quantization with and without imatrix
  69. // use one of the random numbers to decide
  70. if (data[0] > 0.5f*(min + max)) {
  71. im = nullptr;
  72. }
  73. }
  74. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
  75. GGML_ASSERT(ggml_validate_row_data(tensor->type, dataq.data(), dataq.size()));
  76. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  77. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  78. // This is going to create some weird integers though.
  79. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  80. } else {
  81. GGML_ASSERT(false);
  82. }
  83. }
  84. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  85. std::vector<float> tv;
  86. tv.reserve(ggml_nelements(t));
  87. std::vector<uint8_t> buf(ggml_nbytes(t));
  88. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  89. ggml_type_traits_t tt = ggml_internal_get_type_traits(t->type);
  90. size_t bs = ggml_blck_size(t->type);
  91. std::vector<float> vq(ggml_blck_size(t->type));
  92. bool quantized = ggml_is_quantized(t->type);
  93. // access elements by index to avoid gaps in views
  94. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  95. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  96. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  97. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  98. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  99. if (t->type == GGML_TYPE_F16) {
  100. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  101. } else if (t->type == GGML_TYPE_BF16) {
  102. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  103. } else if (t->type == GGML_TYPE_F32) {
  104. tv.push_back(*(float *) &buf[i]);
  105. } else if (t->type == GGML_TYPE_I32) {
  106. tv.push_back((float)*(int32_t *) &buf[i]);
  107. } else if (t->type == GGML_TYPE_I16) {
  108. tv.push_back((float)*(int16_t *) &buf[i]);
  109. } else if (t->type == GGML_TYPE_I8) {
  110. tv.push_back((float)*(int8_t *) &buf[i]);
  111. } else if (quantized) {
  112. tt.to_float(&buf[i], vq.data(), bs);
  113. tv.insert(tv.end(), vq.begin(), vq.end());
  114. } else {
  115. GGML_ASSERT(false);
  116. }
  117. }
  118. }
  119. }
  120. }
  121. return tv;
  122. }
  123. /*
  124. static double cosine_similarity(const float * v1, const float * v2, size_t n) {
  125. double dot = 0.0;
  126. double mag1 = 0.0;
  127. double mag2 = 0.0;
  128. for (size_t i = 0; i < n; i++) {
  129. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  130. return -1.0f;
  131. }
  132. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  133. continue;
  134. }
  135. dot += v1[i]*v2[i];
  136. mag1 += v1[i]*v1[i];
  137. mag2 += v2[i]*v2[i];
  138. }
  139. return dot/sqrt(mag1*mag2);
  140. }
  141. static float distance(const float * v1, const float * v2, size_t n) {
  142. double d = 0.0;
  143. for (size_t i = 0; i < n; i++) {
  144. if (std::isnan(v1[i]) || std::isnan(v2[i])) {
  145. return INFINITY;
  146. }
  147. if (std::isinf(v1[i]) && std::isinf(v2[i])) {
  148. continue;
  149. }
  150. d += (v1[i] - v2[i])*(v1[i] - v2[i]);
  151. }
  152. return sqrt(d);
  153. }
  154. static float vec_len(const float * v, size_t n) {
  155. double d = 0.0;
  156. for (size_t i = 0; i < n; i++) {
  157. if (std::isnan(v[i])) {
  158. return INFINITY;
  159. }
  160. if (std::isinf(v[i])) {
  161. continue;
  162. }
  163. d += v[i]*v[i];
  164. }
  165. return sqrt(d);
  166. }
  167. */
  168. // normalized mean squared error = mse(a, b) / mse(a, 0)
  169. static double nmse(const float * a, const float * b, size_t n) {
  170. double mse_a_b = 0.0;
  171. double mse_a_0 = 0.0;
  172. for (size_t i = 0; i < n; i++) {
  173. float a_i = a[i];
  174. float b_i = b[i];
  175. mse_a_b += (a_i - b_i) * (a_i - b_i);
  176. mse_a_0 += a_i * a_i;
  177. }
  178. return mse_a_b / mse_a_0;
  179. }
  180. // utils for printing the variables of the test cases
  181. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  182. template<typename T>
  183. static std::string var_to_str(const T & x) {
  184. return std::to_string(x);
  185. }
  186. template<typename T, size_t N>
  187. static std::string var_to_str(const T (&x)[N]) {
  188. std::string s = "[";
  189. for (size_t i = 0; i < N; i++) {
  190. if (i > 0) {
  191. s += ",";
  192. }
  193. s += var_to_str(x[i]);
  194. }
  195. s += "]";
  196. return s;
  197. }
  198. template<typename T, size_t N>
  199. static std::string var_to_str(const std::array<T, N> & x) {
  200. std::string s = "[";
  201. for (size_t i = 0; i < N; i++) {
  202. if (i > 0) {
  203. s += ",";
  204. }
  205. s += var_to_str(x[i]);
  206. }
  207. s += "]";
  208. return s;
  209. }
  210. //static std::string var_to_str(ggml_unary_op unary_op) {
  211. // return ggml_unary_op_name(unary_op);
  212. //}
  213. static std::string var_to_str(ggml_type type) {
  214. return ggml_type_name(type);
  215. }
  216. static std::string var_to_str(ggml_op_pool pool) {
  217. switch (pool) {
  218. case GGML_OP_POOL_AVG: return "avg";
  219. case GGML_OP_POOL_MAX: return "max";
  220. default: return std::to_string(pool);
  221. }
  222. }
  223. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  224. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  225. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  226. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  227. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  228. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  229. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  230. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  231. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  232. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  233. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  234. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  235. #ifdef GGML_USE_SYCL
  236. static bool inline _isinf(float f) {
  237. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  238. }
  239. #else
  240. static bool inline _isinf(float f) { return std::isinf(f); }
  241. #endif
  242. // accept FLT_MAX as infinity
  243. static bool isinf_or_max(float f) {
  244. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  245. }
  246. static bool ggml_is_view_op(enum ggml_op op) {
  247. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  248. }
  249. enum test_mode {
  250. MODE_TEST,
  251. MODE_PERF,
  252. };
  253. struct test_case {
  254. virtual ~test_case() {}
  255. virtual std::string op_desc(ggml_tensor * t) {
  256. return ggml_op_desc(t);
  257. }
  258. virtual std::string vars() {
  259. return "";
  260. }
  261. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  262. virtual double max_nmse_err() {
  263. return 1e-7;
  264. }
  265. virtual void initialize_tensors(ggml_context * ctx) {
  266. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  267. init_tensor_uniform(t);
  268. }
  269. }
  270. virtual size_t op_size(ggml_tensor * t) {
  271. size_t size = ggml_nbytes(t);
  272. // add source tensors
  273. for (int i = 0; i < GGML_MAX_SRC; i++) {
  274. if (t->src[i] != NULL) {
  275. size += ggml_nbytes(t->src[i]);
  276. }
  277. }
  278. return size;
  279. }
  280. ggml_cgraph * gf = nullptr;
  281. static const int sentinel_size = 1024;
  282. test_mode mode;
  283. std::vector<ggml_tensor *> sentinels;
  284. void add_sentinel(ggml_context * ctx) {
  285. if (mode == MODE_PERF) {
  286. return;
  287. }
  288. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  289. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  290. sentinels.push_back(sentinel);
  291. }
  292. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  293. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  294. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  295. add_sentinel(ctx);
  296. return t;
  297. }
  298. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  299. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  300. add_sentinel(ctx);
  301. return t;
  302. }
  303. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  304. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  305. add_sentinel(ctx);
  306. return t;
  307. }
  308. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  309. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  310. add_sentinel(ctx);
  311. return t;
  312. }
  313. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  314. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  315. add_sentinel(ctx);
  316. return t;
  317. }
  318. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  319. mode = MODE_TEST;
  320. ggml_init_params params = {
  321. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  322. /* .mem_base = */ NULL,
  323. /* .no_alloc = */ true,
  324. };
  325. ggml_context * ctx = ggml_init(params);
  326. gf = ggml_new_graph(ctx);
  327. // pre-graph sentinel
  328. add_sentinel(ctx);
  329. ggml_tensor * out = build_graph(ctx);
  330. if (op_name != nullptr && op_desc(out) != op_name) {
  331. //printf(" %s: skipping\n", op_desc(out).c_str());
  332. ggml_free(ctx);
  333. return true;
  334. }
  335. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  336. fflush(stdout);
  337. // check if the backends support the ops
  338. bool supported = true;
  339. for (ggml_backend_t backend : {backend1, backend2}) {
  340. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  341. if (!ggml_backend_supports_op(backend, t)) {
  342. printf("not supported [%s] ", ggml_backend_name(backend));
  343. supported = false;
  344. break;
  345. }
  346. }
  347. }
  348. if (!supported) {
  349. printf("\n");
  350. ggml_free(ctx);
  351. return true;
  352. }
  353. // post-graph sentinel
  354. add_sentinel(ctx);
  355. // allocate
  356. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  357. if (buf == NULL) {
  358. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  359. ggml_free(ctx);
  360. return false;
  361. }
  362. // build graph
  363. ggml_build_forward_expand(gf, out);
  364. // add sentinels as graph nodes so that they are checked in the callback
  365. for (ggml_tensor * sentinel : sentinels) {
  366. gf->nodes[gf->n_nodes++] = sentinel;
  367. }
  368. // randomize tensors
  369. initialize_tensors(ctx);
  370. // compare
  371. struct callback_userdata {
  372. bool ok;
  373. double max_err;
  374. ggml_backend_t backend1;
  375. ggml_backend_t backend2;
  376. };
  377. callback_userdata ud {
  378. true,
  379. max_nmse_err(),
  380. backend1,
  381. backend2
  382. };
  383. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  384. callback_userdata * ud = (callback_userdata *) user_data;
  385. const char * bn1 = ggml_backend_name(ud->backend1);
  386. const char * bn2 = ggml_backend_name(ud->backend2);
  387. if (t1->op == GGML_OP_NONE) {
  388. // sentinels must be unchanged
  389. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  390. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  391. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  392. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  393. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  394. printf("sentinel mismatch: %s ", t1->name);
  395. ud->ok = false;
  396. return true;
  397. }
  398. }
  399. std::vector<float> f1 = tensor_to_float(t1);
  400. std::vector<float> f2 = tensor_to_float(t2);
  401. for (size_t i = 0; i < f1.size(); i++) {
  402. // check for nans
  403. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  404. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  405. ud->ok = false;
  406. return true;
  407. }
  408. // check for infs: both must be inf of the same sign, or both must be finite
  409. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  410. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  411. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  412. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  413. ud->ok = false;
  414. return true;
  415. }
  416. } else {
  417. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  418. ud->ok = false;
  419. return true;
  420. }
  421. }
  422. }
  423. double err = nmse(f1.data(), f2.data(), f1.size());
  424. if (err > ud->max_err) {
  425. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  426. //for (int i = 0; i < (int) f1.size(); i++) {
  427. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  428. //}
  429. //printf("\n");
  430. //exit(1);
  431. ud->ok = false;
  432. }
  433. return true;
  434. GGML_UNUSED(index);
  435. };
  436. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  437. if (!cmp_ok) {
  438. printf("compare failed ");
  439. }
  440. ggml_backend_buffer_free(buf);
  441. ggml_free(ctx);
  442. if (ud.ok && cmp_ok) {
  443. printf("\033[1;32mOK\033[0m\n");
  444. return true;
  445. }
  446. printf("\033[1;31mFAIL\033[0m\n");
  447. return false;
  448. }
  449. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  450. mode = MODE_PERF;
  451. static const size_t graph_nodes = 8192;
  452. ggml_init_params params = {
  453. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  454. /* .mem_base = */ NULL,
  455. /* .no_alloc = */ true,
  456. };
  457. ggml_context * ctx = ggml_init(params);
  458. ggml_tensor * out = build_graph(ctx);
  459. if (op_name != nullptr && op_desc(out) != op_name) {
  460. //printf(" %s: skipping\n", op_desc(out).c_str());
  461. ggml_free(ctx);
  462. return true;
  463. }
  464. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  465. fflush(stdout);
  466. // check if backends support op
  467. if (!ggml_backend_supports_op(backend, out)) {
  468. printf("not supported\n");
  469. ggml_free(ctx);
  470. return true;
  471. }
  472. // align while also leaving some margin for variations in parameters
  473. int align = 20;
  474. int last = (len + align - 1) / align * align;
  475. if (last - len < 5) {
  476. last += align;
  477. }
  478. last = std::max(last, 60);
  479. printf("%*s", last - len, "");
  480. // allocate
  481. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
  482. if (buf == NULL) {
  483. printf("failed to allocate tensors\n");
  484. ggml_free(ctx);
  485. return false;
  486. }
  487. // randomize tensors
  488. initialize_tensors(ctx);
  489. // build graph
  490. ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
  491. ggml_build_forward_expand(gf, out);
  492. // warmup run
  493. ggml_backend_graph_compute(backend, gf);
  494. // duplicate the op
  495. size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU
  496. int n_runs = std::min((size_t)gf->size - gf->n_nodes, target_size / op_size(out)) + 1;
  497. for (int i = 1; i < n_runs; i++) {
  498. gf->nodes[gf->n_nodes++] = out;
  499. }
  500. // calculate memory
  501. size_t mem = n_runs * op_size(out);
  502. auto tensor_op_size = [](ggml_tensor * t) {
  503. size_t size = ggml_nbytes(t);
  504. // add source tensors
  505. for (int i = 0; i < GGML_MAX_SRC; i++) {
  506. if (t->src[i] != NULL) {
  507. size += ggml_nbytes(t->src[i]);
  508. }
  509. }
  510. return size;
  511. };
  512. for (int i = 0; i < gf->n_nodes; i++) {
  513. if (ggml_is_view_op(gf->nodes[i]->op) || gf->nodes[i] == out) {
  514. continue;
  515. }
  516. mem += tensor_op_size(gf->nodes[i]);
  517. }
  518. // run
  519. ggml_backend_synchronize(backend);
  520. int64_t start_time = ggml_time_us();
  521. ggml_backend_graph_compute(backend, gf);
  522. ggml_backend_synchronize(backend);
  523. int64_t end_time = ggml_time_us();
  524. double time_us = end_time - start_time;
  525. printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n",
  526. n_runs,
  527. time_us / n_runs,
  528. op_size(out) / 1024,
  529. mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0);
  530. ggml_backend_buffer_free(buf);
  531. ggml_free(ctx);
  532. return true;
  533. }
  534. };
  535. // GGML_OP_UNARY
  536. struct test_unary : public test_case {
  537. const ggml_unary_op op;
  538. const ggml_type type;
  539. const std::array<int64_t, 4> ne_a;
  540. int v; // view (1 : non-contiguous a)
  541. std::string vars() override {
  542. return VARS_TO_STR3(type, ne_a, v);
  543. }
  544. test_unary(ggml_unary_op op,
  545. ggml_type type = GGML_TYPE_F32,
  546. std::array<int64_t, 4> ne_a = {128, 10, 10, 10},
  547. int v = 0)
  548. : op(op), type(type), ne_a(ne_a), v(v) {}
  549. ggml_tensor * build_graph(ggml_context * ctx) override {
  550. ggml_tensor * a;
  551. if (v & 1) {
  552. auto ne = ne_a; ne[0] *= 3;
  553. a = ggml_new_tensor(ctx, type, 4, ne.data());
  554. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  555. } else {
  556. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  557. }
  558. ggml_tensor * out = ggml_unary(ctx, a, op);
  559. return out;
  560. }
  561. void initialize_tensors(ggml_context * ctx) override {
  562. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  563. // test extended range of values to check for NaNs in GELU
  564. init_tensor_uniform(t, -150.f, 150.f);
  565. }
  566. }
  567. };
  568. // GGML_OP_GET_ROWS
  569. struct test_get_rows : public test_case {
  570. const ggml_type type;
  571. const int n; // cols
  572. const int m; // rows
  573. const int r; // rows to get
  574. const int b; // batch size
  575. const bool v; // view (non-contiguous src1)
  576. std::string vars() override {
  577. return VARS_TO_STR6(type, n, m, r, b, v);
  578. }
  579. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  580. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  581. ggml_tensor * build_graph(ggml_context * ctx) override {
  582. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  583. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  584. if (v) {
  585. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  586. }
  587. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  588. return out;
  589. }
  590. void initialize_tensors(ggml_context * ctx) override {
  591. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  592. if (t->type == GGML_TYPE_I32) {
  593. if (ggml_is_view_op(t->op)) { continue; }
  594. // rows
  595. std::vector<int> data(r*b);
  596. for (int i = 0; i < r*b; i++) {
  597. data[i] = rand() % m;
  598. }
  599. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  600. } else {
  601. init_tensor_uniform(t);
  602. }
  603. }
  604. }
  605. };
  606. // GGML_OP_REPEAT
  607. struct test_repeat : public test_case {
  608. const ggml_type type;
  609. const std::array<int64_t, 4> ne;
  610. const std::array<int, 4> nr;
  611. std::string vars() override {
  612. return VARS_TO_STR3(type, ne, nr);
  613. }
  614. size_t op_size(ggml_tensor * t) override {
  615. return ggml_nbytes(t) * 2;
  616. }
  617. test_repeat(ggml_type type = GGML_TYPE_F32,
  618. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  619. std::array<int, 4> nr = {2, 2, 2, 2})
  620. : type(type), ne(ne), nr(nr) {}
  621. ggml_tensor * build_graph(ggml_context * ctx) override {
  622. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  623. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  624. ggml_tensor * out = ggml_repeat(ctx, src, target);
  625. return out;
  626. }
  627. };
  628. // GGML_OP_DUP
  629. struct test_dup : public test_case {
  630. const ggml_type type;
  631. const std::array<int64_t, 4> ne;
  632. const std::array<int64_t, 4> permute;
  633. bool _use_permute;
  634. std::string vars() override {
  635. std::string v = VARS_TO_STR2(type, ne);
  636. if (_use_permute) v += "," + VAR_TO_STR(permute);
  637. return v;
  638. }
  639. test_dup(ggml_type type = GGML_TYPE_F32,
  640. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  641. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  642. : type(type), ne(ne), permute(permute),
  643. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  644. ggml_tensor * build_graph(ggml_context * ctx) override {
  645. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  646. if (_use_permute) {
  647. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  648. }
  649. ggml_tensor * out = ggml_dup(ctx, src);
  650. return out;
  651. }
  652. };
  653. // GGML_OP_CPY
  654. struct test_cpy : public test_case {
  655. const ggml_type type_src;
  656. const ggml_type type_dst;
  657. const std::array<int64_t, 4> ne;
  658. std::string vars() override {
  659. return VARS_TO_STR3(type_src, type_dst, ne);
  660. }
  661. double max_nmse_err() override {
  662. return 1e-6;
  663. }
  664. size_t op_size(ggml_tensor * t) override {
  665. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  666. }
  667. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  668. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  669. : type_src(type_src), type_dst(type_dst), ne(ne) {}
  670. ggml_tensor * build_graph(ggml_context * ctx) override {
  671. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  672. ggml_tensor * dst = ggml_new_tensor(ctx, type_dst, 4, ne.data());
  673. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  674. return out;
  675. }
  676. };
  677. // GGML_OP_CONT
  678. struct test_cont : public test_case {
  679. const ggml_type type;
  680. const std::array<int64_t, 4> ne;
  681. std::string vars() override {
  682. return VARS_TO_STR2(type, ne);
  683. }
  684. test_cont(ggml_type type = GGML_TYPE_F32,
  685. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  686. : type(type), ne(ne) {}
  687. ggml_tensor * build_graph(ggml_context * ctx) override {
  688. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  689. src = ggml_transpose(ctx, src);
  690. ggml_tensor * out = ggml_cont(ctx, src);
  691. return out;
  692. }
  693. };
  694. // GGML_OP_ADD
  695. // GGML_OP_MUL
  696. // GGML_OP_DIV
  697. struct test_bin_bcast : public test_case {
  698. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  699. op_t op;
  700. const ggml_type type;
  701. const std::array<int64_t, 4> ne;
  702. const std::array<int, 4> nr;
  703. std::string vars() override {
  704. return VARS_TO_STR3(type, ne, nr);
  705. }
  706. size_t op_size(ggml_tensor * t) override {
  707. return ggml_nbytes(t) * 3;
  708. }
  709. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  710. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  711. std::array<int, 4> nr = {1, 2, 1, 1})
  712. : op(op), type(type), ne(ne), nr(nr) {}
  713. ggml_tensor * build_graph(ggml_context * ctx) override {
  714. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  715. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  716. ggml_tensor * out = op(ctx, a, b);
  717. return out;
  718. }
  719. void initialize_tensors(ggml_context * ctx) override {
  720. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  721. if (op == ggml_div) {
  722. // avoid division by zero
  723. init_tensor_uniform(t, 1.0f, 2.0f);
  724. } else {
  725. init_tensor_uniform(t);
  726. }
  727. }
  728. }
  729. };
  730. // GGML_OP_SCALE
  731. struct test_scale : public test_case {
  732. const ggml_type type;
  733. const std::array<int64_t, 4> ne;
  734. float scale;
  735. std::string vars() override {
  736. return VARS_TO_STR3(type, ne, scale);
  737. }
  738. test_scale(ggml_type type = GGML_TYPE_F32,
  739. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  740. float scale = 2.0f)
  741. : type(type), ne(ne), scale(scale) {}
  742. ggml_tensor * build_graph(ggml_context * ctx) override {
  743. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  744. ggml_tensor * out = ggml_scale(ctx, a, scale);
  745. return out;
  746. }
  747. };
  748. // GGML_OP_NORM
  749. struct test_norm : public test_case {
  750. const ggml_type type;
  751. const std::array<int64_t, 4> ne;
  752. float eps;
  753. std::string vars() override {
  754. return VARS_TO_STR3(type, ne, eps);
  755. }
  756. test_norm(ggml_type type = GGML_TYPE_F32,
  757. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  758. float eps = 1e-6f)
  759. : type(type), ne(ne), eps(eps) {}
  760. ggml_tensor * build_graph(ggml_context * ctx) override {
  761. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  762. ggml_tensor * out = ggml_norm(ctx, a, eps);
  763. return out;
  764. }
  765. };
  766. // GGML_OP_RMS_NORM
  767. struct test_rms_norm : public test_case {
  768. const ggml_type type;
  769. const std::array<int64_t, 4> ne;
  770. float eps;
  771. std::string vars() override {
  772. return VARS_TO_STR3(type, ne, eps);
  773. }
  774. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  775. std::array<int64_t, 4> ne = {64, 10, 10, 10},
  776. float eps = 1e-6f)
  777. : type(type), ne(ne), eps(eps) {}
  778. ggml_tensor * build_graph(ggml_context * ctx) override {
  779. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  780. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  781. return out;
  782. }
  783. };
  784. // GGML_OP_MUL_MAT
  785. struct test_mul_mat : public test_case {
  786. const ggml_type type_a;
  787. const ggml_type type_b;
  788. const int64_t m;
  789. const int64_t n;
  790. const int64_t k;
  791. const std::array<int64_t, 2> bs; // dims 3 and 4
  792. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  793. std::string vars() override {
  794. return VARS_TO_STR7(type_a, type_b, m, n, k, bs, nr);
  795. }
  796. double max_nmse_err() override {
  797. return 5e-4;
  798. }
  799. size_t op_size(ggml_tensor * t) override {
  800. size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1];
  801. size_t b = ggml_nbytes(t->src[1]) * m;
  802. size_t c = ggml_nbytes(t);
  803. return a + b + c;
  804. GGML_UNUSED(t);
  805. }
  806. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  807. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  808. std::array<int64_t, 2> bs = {10, 10},
  809. std::array<int64_t, 2> nr = {2, 2})
  810. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr) {}
  811. ggml_tensor * build_graph(ggml_context * ctx) override {
  812. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  813. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0] , bs[1]);
  814. ggml_tensor * b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  815. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  816. return out;
  817. }
  818. };
  819. // GGML_OP_MUL_MAT_ID
  820. struct test_mul_mat_id : public test_case {
  821. const ggml_type type_a;
  822. const ggml_type type_b;
  823. const int n_mats;
  824. const int n_used;
  825. const bool b; // brodcast b matrix
  826. const int64_t m;
  827. const int64_t n;
  828. const int64_t k;
  829. std::string vars() override {
  830. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  831. }
  832. double max_nmse_err() override {
  833. return 5e-4;
  834. }
  835. size_t op_size(ggml_tensor * t) override {
  836. size_t a = ggml_nbytes(t->src[2]) * n;
  837. size_t b = ggml_nbytes(t->src[1]) * m;
  838. size_t c = ggml_nbytes(t);
  839. return a + b + c;
  840. GGML_UNUSED(t);
  841. }
  842. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  843. int n_mats = 8, int n_used = 2, bool b = false,
  844. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  845. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  846. m(m), n(n), k(k) {
  847. GGML_ASSERT(n_used <= n_mats);
  848. }
  849. ggml_tensor * build_graph(ggml_context * ctx) override {
  850. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  851. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  852. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  853. if (n_used != n_mats) {
  854. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  855. }
  856. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  857. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  858. return out;
  859. }
  860. void initialize_tensors(ggml_context * ctx) override {
  861. std::random_device rd;
  862. std::default_random_engine rng(rd());
  863. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  864. if (t->type == GGML_TYPE_I32) {
  865. if (ggml_is_view_op(t->op)) { continue; }
  866. // ids
  867. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  868. std::vector<int32_t> data(t->ne[0]);
  869. for (int i = 0; i < t->ne[0]; i++) {
  870. data[i] = i % n_mats;
  871. }
  872. std::shuffle(data.begin(), data.end(), rng);
  873. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  874. }
  875. } else {
  876. init_tensor_uniform(t);
  877. }
  878. }
  879. }
  880. };
  881. // GGML_OP_SQR
  882. struct test_sqr : public test_case {
  883. const ggml_type type;
  884. const std::array<int64_t, 4> ne;
  885. std::string vars() override {
  886. return VARS_TO_STR2(type, ne);
  887. }
  888. test_sqr(ggml_type type = GGML_TYPE_F32,
  889. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  890. : type(type), ne(ne) {}
  891. ggml_tensor * build_graph(ggml_context * ctx) override {
  892. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  893. ggml_tensor * out = ggml_sqr(ctx, a);
  894. return out;
  895. }
  896. };
  897. // GGML_OP_SQRT
  898. struct test_sqrt : public test_case {
  899. const ggml_type type;
  900. const std::array<int64_t, 4> ne;
  901. std::string vars() override {
  902. return VARS_TO_STR2(type, ne);
  903. }
  904. test_sqrt(ggml_type type = GGML_TYPE_F32,
  905. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  906. : type(type), ne(ne) {}
  907. ggml_tensor * build_graph(ggml_context * ctx) override {
  908. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  909. ggml_tensor * out = ggml_sqrt(ctx, a);
  910. return out;
  911. }
  912. void initialize_tensors(ggml_context * ctx) override {
  913. // fill with positive values
  914. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  915. init_tensor_uniform(t, 0.0f, 100.0f);
  916. }
  917. }
  918. };
  919. // GGML_OP_CLAMP
  920. struct test_clamp : public test_case {
  921. const ggml_type type;
  922. const std::array<int64_t, 4> ne;
  923. float min;
  924. float max;
  925. std::string vars() override {
  926. return VARS_TO_STR4(type, ne, min, max);
  927. }
  928. test_clamp(ggml_type type = GGML_TYPE_F32,
  929. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  930. float min = -0.5f, float max = 0.5f)
  931. : type(type), ne(ne), min(min), max(max) {}
  932. ggml_tensor * build_graph(ggml_context * ctx) override {
  933. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  934. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  935. return out;
  936. }
  937. };
  938. // GGML_OP_DIAG_MASK_INF
  939. struct test_diag_mask_inf : public test_case {
  940. const ggml_type type;
  941. const std::array<int64_t, 4> ne;
  942. const int n_past;
  943. std::string vars() override {
  944. return VARS_TO_STR3(type, ne, n_past);
  945. }
  946. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  947. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  948. int n_past = 5)
  949. : type(type), ne(ne), n_past(n_past) {}
  950. ggml_tensor * build_graph(ggml_context * ctx) override {
  951. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  952. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  953. return out;
  954. }
  955. };
  956. // GGML_OP_SOFT_MAX
  957. struct test_soft_max : public test_case {
  958. const ggml_type type;
  959. const std::array<int64_t, 4> ne;
  960. const bool mask;
  961. const float scale;
  962. const float max_bias;
  963. std::string vars() override {
  964. return VARS_TO_STR5(type, ne, mask, scale, max_bias);
  965. }
  966. // the 1024 test with bias occasionally fails:
  967. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  968. virtual double max_nmse_err() override {
  969. return 1e-6;
  970. }
  971. test_soft_max(ggml_type type = GGML_TYPE_F32,
  972. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  973. bool mask = false,
  974. float scale = 1.0f,
  975. float max_bias = 0.0f)
  976. : type(type), ne(ne), mask(mask), scale(scale), max_bias(max_bias) {}
  977. ggml_tensor * build_graph(ggml_context * ctx) override {
  978. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  979. ggml_tensor * mask = nullptr;
  980. if (this->mask) {
  981. mask = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, ne[0], ne[1]);
  982. }
  983. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  984. return out;
  985. }
  986. };
  987. // GGML_OP_ROPE
  988. struct test_rope : public test_case {
  989. const ggml_type type;
  990. const std::array<int64_t, 4> ne_a;
  991. int n_dims;
  992. int mode;
  993. int n_ctx; // used to generate positions
  994. float fs; // freq_scale
  995. float ef; // ext_factor
  996. float af; // attn_factor
  997. bool ff;
  998. int v; // view (1 : non-contiguous a)
  999. std::string vars() override {
  1000. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  1001. }
  1002. test_rope(ggml_type type = GGML_TYPE_F32,
  1003. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1004. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f, float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0)
  1005. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v) {}
  1006. ggml_tensor * build_graph(ggml_context * ctx) override {
  1007. ggml_tensor * a;
  1008. if (v & 1) {
  1009. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  1010. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1011. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1012. } else {
  1013. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1014. }
  1015. ggml_tensor * pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  1016. ggml_tensor * freq = ff ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2) : nullptr;
  1017. ggml_tensor * out = ggml_rope_ext(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  1018. return out;
  1019. }
  1020. void initialize_tensors(ggml_context * ctx) override {
  1021. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1022. if (t->type == GGML_TYPE_I32) {
  1023. // pos
  1024. std::vector<int> data(ne_a[2]);
  1025. for (int i = 0; i < ne_a[2]; i++) {
  1026. data[i] = rand() % n_ctx;
  1027. }
  1028. ggml_backend_tensor_set(t, data.data(), 0, ne_a[2] * sizeof(int));
  1029. } else {
  1030. if (t->ne[0] == n_dims/2) {
  1031. // frequency factors in the range [0.9f, 1.1f]
  1032. init_tensor_uniform(t, 0.9f, 1.1f);
  1033. } else {
  1034. init_tensor_uniform(t);
  1035. }
  1036. }
  1037. }
  1038. }
  1039. };
  1040. // GGML_OP_POOL2D
  1041. struct test_pool2d : public test_case {
  1042. enum ggml_op_pool pool_type;
  1043. const ggml_type type_input;
  1044. const std::array<int64_t, 4> ne_input;
  1045. // kernel size
  1046. const int k0;
  1047. const int k1;
  1048. // stride
  1049. const int s0;
  1050. const int s1;
  1051. // padding
  1052. const int p0;
  1053. const int p1;
  1054. std::string vars() override {
  1055. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  1056. }
  1057. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  1058. ggml_type type_input = GGML_TYPE_F32,
  1059. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  1060. int k0 = 3, int k1 = 3,
  1061. int s0 = 1, int s1 = 1,
  1062. int p0 = 1, int p1 = 1)
  1063. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  1064. ggml_tensor * build_graph(ggml_context * ctx) override {
  1065. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1066. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  1067. return out;
  1068. }
  1069. };
  1070. // GGML_OP_IM2COL
  1071. struct test_im2col : public test_case {
  1072. const ggml_type type_input;
  1073. const ggml_type type_kernel;
  1074. const ggml_type dst_type;
  1075. const std::array<int64_t, 4> ne_input;
  1076. const std::array<int64_t, 4> ne_kernel;
  1077. // stride
  1078. const int s0;
  1079. const int s1;
  1080. // padding
  1081. const int p0;
  1082. const int p1;
  1083. // dilatation
  1084. const int d0;
  1085. const int d1;
  1086. // mode
  1087. const bool is_2D;
  1088. std::string vars() override {
  1089. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  1090. }
  1091. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  1092. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  1093. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  1094. int s0 = 1, int s1 = 1,
  1095. int p0 = 1, int p1 = 1,
  1096. int d0 = 1, int d1 = 1,
  1097. bool is_2D = true)
  1098. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  1099. ggml_tensor * build_graph(ggml_context * ctx) override {
  1100. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  1101. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  1102. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  1103. return out;
  1104. }
  1105. };
  1106. // GGML_OP_CONCAT
  1107. struct test_concat : public test_case {
  1108. const ggml_type type;
  1109. const std::array<int64_t, 4> ne_a;
  1110. const int64_t ne_b_d;
  1111. const int dim;
  1112. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  1113. std::string vars() override {
  1114. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  1115. }
  1116. test_concat(ggml_type type = GGML_TYPE_F32,
  1117. std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
  1118. int64_t ne_b_d = 10,
  1119. int dim = 2, int v = 0)
  1120. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  1121. ggml_tensor * build_graph(ggml_context * ctx) override {
  1122. auto ne_b = ne_a;
  1123. ne_b[dim] = ne_b_d;
  1124. ggml_tensor * a;
  1125. if (v & 1) {
  1126. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  1127. a = ggml_new_tensor(ctx, type, 4, ne.data());
  1128. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  1129. } else {
  1130. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1131. }
  1132. ggml_tensor * b;
  1133. if (v & 2) {
  1134. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  1135. b = ggml_new_tensor(ctx, type, 4, ne.data());
  1136. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  1137. } else {
  1138. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1139. }
  1140. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  1141. return out;
  1142. }
  1143. };
  1144. // GGML_OP_ARGSORT
  1145. struct test_argsort : public test_case {
  1146. const ggml_type type;
  1147. const std::array<int64_t, 4> ne;
  1148. ggml_sort_order order;
  1149. std::string vars() override {
  1150. return VARS_TO_STR3(type, ne, order);
  1151. }
  1152. test_argsort(ggml_type type = GGML_TYPE_F32,
  1153. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  1154. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  1155. : type(type), ne(ne), order(order) {}
  1156. ggml_tensor * build_graph(ggml_context * ctx) override {
  1157. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1158. ggml_tensor * out = ggml_argsort(ctx, a, order);
  1159. return out;
  1160. }
  1161. void initialize_tensors(ggml_context * ctx) override {
  1162. std::random_device rd;
  1163. std::default_random_engine rng(rd());
  1164. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1165. if (t->type == GGML_TYPE_I32) {
  1166. // indices
  1167. std::vector<int> data(ggml_nelements(t));
  1168. for (int i = 0; i < ggml_nelements(t); i++) {
  1169. data[i] = rand();
  1170. }
  1171. std::shuffle(data.begin(), data.end(), rng);
  1172. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  1173. } else if (t->type == GGML_TYPE_F32) {
  1174. // initialize with unique values to avoid ties
  1175. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1176. std::vector<float> data(t->ne[0]);
  1177. for (int i = 0; i < t->ne[0]; i++) {
  1178. data[i] = i;
  1179. }
  1180. std::shuffle(data.begin(), data.end(), rng);
  1181. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1182. }
  1183. } else {
  1184. GGML_ASSERT(false);
  1185. }
  1186. }
  1187. }
  1188. };
  1189. // GGML_OP_SUM_ROWS
  1190. struct test_sum_rows : public test_case {
  1191. const ggml_type type;
  1192. const std::array<int64_t, 4> ne;
  1193. std::string vars() override {
  1194. return VARS_TO_STR2(type, ne);
  1195. }
  1196. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  1197. std::array<int64_t, 4> ne = {10, 10, 10, 10})
  1198. : type(type), ne(ne) {}
  1199. ggml_tensor * build_graph(ggml_context * ctx) override {
  1200. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1201. ggml_tensor * out = ggml_sum_rows(ctx, a);
  1202. return out;
  1203. }
  1204. };
  1205. // GGML_OP_UPSCALE
  1206. struct test_upscale : public test_case {
  1207. const ggml_type type;
  1208. const std::array<int64_t, 4> ne;
  1209. const int32_t scale_factor;
  1210. const bool transpose;
  1211. std::string vars() override {
  1212. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  1213. }
  1214. test_upscale(ggml_type type = GGML_TYPE_F32,
  1215. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  1216. int32_t scale_factor = 2, bool transpose = false)
  1217. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  1218. ggml_tensor * build_graph(ggml_context * ctx) override {
  1219. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1220. if (transpose) a = ggml_transpose(ctx, a);
  1221. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  1222. return out;
  1223. }
  1224. };
  1225. // GGML_OP_UPSCALE (ext)
  1226. struct test_upscale_ext : public test_case {
  1227. const ggml_type type;
  1228. const std::array<int64_t, 4> ne;
  1229. const std::array<int64_t, 4> ne_tgt;
  1230. std::string vars() override {
  1231. return VARS_TO_STR3(type, ne, ne_tgt);
  1232. }
  1233. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  1234. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  1235. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  1236. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  1237. ggml_tensor * build_graph(ggml_context * ctx) override {
  1238. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1239. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  1240. return out;
  1241. }
  1242. };
  1243. // GGML_OP_GROUP_NORM
  1244. struct test_group_norm : public test_case {
  1245. const ggml_type type;
  1246. const std::array<int64_t, 4> ne;
  1247. const int32_t num_groups;
  1248. std::string vars() override {
  1249. return VARS_TO_STR3(type, ne, num_groups);
  1250. }
  1251. test_group_norm(ggml_type type = GGML_TYPE_F32,
  1252. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  1253. int32_t num_groups = 32)
  1254. : type(type), ne(ne), num_groups(num_groups) {}
  1255. ggml_tensor * build_graph(ggml_context * ctx) override {
  1256. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1257. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups);
  1258. return out;
  1259. }
  1260. };
  1261. // GGML_OP_ACC
  1262. struct test_acc : public test_case {
  1263. const ggml_type type;
  1264. const std::array<int64_t, 4> ne_a;
  1265. const std::array<int64_t, 4> ne_b;
  1266. std::string vars() override {
  1267. return VARS_TO_STR3(type, ne_a, ne_b);
  1268. }
  1269. test_acc(ggml_type type = GGML_TYPE_F32,
  1270. std::array<int64_t, 4> ne_a = {1024, 577, 1, 1},
  1271. std::array<int64_t, 4> ne_b = {1024, 576, 1, 1})
  1272. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1273. ggml_tensor * build_graph(ggml_context * ctx) override {
  1274. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1275. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1276. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  1277. return out;
  1278. }
  1279. };
  1280. // GGML_OP_PAD
  1281. struct test_pad : public test_case {
  1282. const ggml_type type;
  1283. const std::array<int64_t, 4> ne_a;
  1284. const int pad_0;
  1285. const int pad_1;
  1286. std::string vars() override {
  1287. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  1288. }
  1289. test_pad(ggml_type type = GGML_TYPE_F32,
  1290. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  1291. int pad_0 = 1, int pad_1 = 1)
  1292. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  1293. ggml_tensor * build_graph(ggml_context * ctx) override {
  1294. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1295. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  1296. return out;
  1297. }
  1298. };
  1299. // GGML_OP_ARANGE
  1300. struct test_arange : public test_case {
  1301. const ggml_type type;
  1302. const float start;
  1303. const float stop;
  1304. const float step;
  1305. std::string vars() override {
  1306. return VARS_TO_STR4(type, start, stop, step);
  1307. }
  1308. test_arange(ggml_type type = GGML_TYPE_F32,
  1309. float start = 0.f, float stop = 10.f, float step = 1.f)
  1310. : type(type), start(start), stop(stop), step(step) {}
  1311. ggml_tensor * build_graph(ggml_context * ctx) override {
  1312. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  1313. return out;
  1314. }
  1315. };
  1316. // GGML_OP_TIMESTEP_EMBEDDING
  1317. struct test_timestep_embedding : public test_case {
  1318. const ggml_type type;
  1319. const std::array<int64_t, 4> ne_a;
  1320. const int dim;
  1321. const int max_period;
  1322. std::string vars() override {
  1323. return VARS_TO_STR4(type, ne_a, dim, max_period);
  1324. }
  1325. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  1326. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  1327. int dim = 320, int max_period=10000)
  1328. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  1329. ggml_tensor * build_graph(ggml_context * ctx) override {
  1330. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1331. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  1332. return out;
  1333. }
  1334. };
  1335. // GGML_OP_LEAKY_RELU
  1336. struct test_leaky_relu : public test_case {
  1337. const ggml_type type;
  1338. const std::array<int64_t, 4> ne_a;
  1339. const float negative_slope;
  1340. std::string vars() override {
  1341. return VARS_TO_STR3(type, ne_a, negative_slope);
  1342. }
  1343. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  1344. std::array<int64_t, 4> ne_a = {10, 10, 10, 10},
  1345. float negative_slope = 0.1f)
  1346. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  1347. ggml_tensor * build_graph(ggml_context * ctx) override {
  1348. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1349. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  1350. return out;
  1351. }
  1352. };
  1353. // GGML_OP_FLASH_ATTN_EXT
  1354. struct test_flash_attn_ext : public test_case {
  1355. const int64_t hs; // head size
  1356. const int64_t nh; // num heads
  1357. const int64_t kv; // kv size
  1358. const int64_t nb; // batch size
  1359. const bool mask; // use mask
  1360. const float max_bias; // ALiBi
  1361. const ggml_type type_KV;
  1362. std::string vars() override {
  1363. return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV);
  1364. }
  1365. double max_nmse_err() override {
  1366. return 5e-4;
  1367. }
  1368. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
  1369. : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {}
  1370. ggml_tensor * build_graph(ggml_context * ctx) override {
  1371. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  1372. ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs_padded, nb, nh, 1);
  1373. ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
  1374. ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs_padded, kv, nh, 1);
  1375. ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
  1376. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
  1377. return out;
  1378. }
  1379. };
  1380. enum llm_norm_type {
  1381. LLM_NORM,
  1382. LLM_NORM_RMS,
  1383. };
  1384. struct llama_hparams {
  1385. uint32_t n_vocab;
  1386. uint32_t n_embd;
  1387. uint32_t n_head;
  1388. uint32_t n_head_kv;
  1389. static constexpr uint32_t n_layer = 1;
  1390. uint32_t n_rot;
  1391. uint32_t n_embd_head; // dimension of values (d_v)
  1392. uint32_t n_ff;
  1393. float f_norm_eps;
  1394. float f_norm_rms_eps;
  1395. // cparams
  1396. static constexpr uint32_t n_ctx = 512; // user-specified context size
  1397. static constexpr uint32_t n_ctx_orig = n_ctx;
  1398. // batch
  1399. int32_t n_tokens;
  1400. // llm_build_context
  1401. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  1402. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  1403. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  1404. return n_embd_head * n_head_kv;
  1405. }
  1406. };
  1407. // LLM base class
  1408. struct test_llm : public test_case {
  1409. llama_hparams hp;
  1410. protected:
  1411. test_llm(llama_hparams hp)
  1412. : hp(std::move(hp)) {
  1413. }
  1414. public:
  1415. struct ggml_tensor * llm_build_norm(
  1416. struct ggml_context * ctx,
  1417. struct ggml_tensor * cur,
  1418. struct ggml_tensor * mw,
  1419. struct ggml_tensor * mb,
  1420. llm_norm_type type) {
  1421. switch (type) {
  1422. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  1423. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  1424. }
  1425. cur = ggml_mul(ctx, cur, mw);
  1426. if (mb) {
  1427. cur = ggml_add(ctx, cur, mb);
  1428. }
  1429. return cur;
  1430. }
  1431. void llm_build_kv_store(
  1432. struct ggml_context * ctx,
  1433. struct ggml_tensor * k_l,
  1434. struct ggml_tensor * v_l,
  1435. struct ggml_tensor * k_cur,
  1436. struct ggml_tensor * v_cur) {
  1437. // compute the transposed [n_tokens, n_embd] V matrix
  1438. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  1439. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  1440. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  1441. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  1442. ( hp.n_ctx)*ggml_element_size(v_l),
  1443. (hp.kv_head)*ggml_element_size(v_l));
  1444. // important: storing RoPE-ed version of K in the KV cache!
  1445. ggml_cpy(ctx, k_cur, k_cache_view);
  1446. ggml_cpy(ctx, v_cur_t, v_cache_view);
  1447. }
  1448. struct ggml_tensor * llm_build_kqv(
  1449. struct ggml_context * ctx,
  1450. struct ggml_tensor * k_l,
  1451. struct ggml_tensor * v_l,
  1452. struct ggml_tensor * q_cur,
  1453. struct ggml_tensor * kq_mask,
  1454. float kq_scale) {
  1455. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  1456. struct ggml_tensor * k =
  1457. ggml_view_3d(ctx, k_l,
  1458. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  1459. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  1460. ggml_row_size(k_l->type, hp.n_embd_head),
  1461. 0);
  1462. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  1463. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  1464. // split cached v into n_head heads
  1465. struct ggml_tensor * v =
  1466. ggml_view_3d(ctx, v_l,
  1467. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  1468. ggml_element_size(v_l)*hp.n_ctx,
  1469. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  1470. 0);
  1471. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  1472. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  1473. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  1474. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1475. cur = ggml_mul_mat(ctx, wo, cur);
  1476. return cur;
  1477. }
  1478. void initialize_tensors(ggml_context * ctx) override {
  1479. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1480. if (t->type == GGML_TYPE_I32) {
  1481. // pos
  1482. std::vector<int> data(hp.n_tokens);
  1483. for (int i = 0; i < hp.n_tokens; i++) {
  1484. data[i] = rand() % hp.n_ctx;
  1485. }
  1486. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  1487. } else {
  1488. init_tensor_uniform(t);
  1489. }
  1490. }
  1491. }
  1492. };
  1493. // Llama
  1494. struct test_llama : public test_llm {
  1495. static constexpr float freq_base = 10000.0f;
  1496. static constexpr float freq_scale = 1.0f;
  1497. static constexpr float ext_factor = 0.0f;
  1498. static constexpr float attn_factor = 1.0f;
  1499. static constexpr float beta_fast = 32.0f;
  1500. static constexpr float beta_slow = 1.0f;
  1501. std::string op_desc(ggml_tensor * t) override {
  1502. GGML_UNUSED(t);
  1503. return "LLAMA";
  1504. }
  1505. std::string vars() override {
  1506. auto n_tokens = hp.n_tokens;
  1507. return VARS_TO_STR1(n_tokens);
  1508. }
  1509. double max_nmse_err() override {
  1510. return 2e-3;
  1511. }
  1512. test_llama(int n_tokens = 1)
  1513. : test_llm({
  1514. /*n_vocab =*/ 32000,
  1515. /*n_embd =*/ 3200,
  1516. /*n_head =*/ 32,
  1517. /*n_head_kv =*/ 32,
  1518. /*n_rot =*/ 100,
  1519. /*n_embd_head =*/ 100,
  1520. /*n_ff =*/ 8640,
  1521. /*f_norm_eps =*/ 0.f,
  1522. /*f_norm_rms_eps =*/ 1e-5f,
  1523. /*n_tokens =*/ n_tokens,
  1524. }) {
  1525. }
  1526. ggml_tensor * build_graph(ggml_context * ctx) override {
  1527. struct ggml_tensor * cur;
  1528. struct ggml_tensor * inpL;
  1529. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1530. // inp_pos - contains the positions
  1531. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1532. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1533. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1534. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1535. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1536. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1537. struct ggml_tensor * inpSA = inpL;
  1538. // norm
  1539. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1540. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  1541. // self-attention
  1542. {
  1543. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  1544. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1545. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  1546. // compute Q and K and RoPE them
  1547. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  1548. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  1549. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  1550. Qcur = ggml_rope_ext(
  1551. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  1552. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  1553. ext_factor, attn_factor, beta_fast, beta_slow
  1554. );
  1555. Kcur = ggml_rope_ext(
  1556. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  1557. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  1558. ext_factor, attn_factor, beta_fast, beta_slow
  1559. );
  1560. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1561. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1562. }
  1563. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  1564. // feed-forward network
  1565. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1566. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  1567. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1568. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1569. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1570. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  1571. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  1572. cur = ggml_silu(ctx, cur);
  1573. cur = ggml_mul(ctx, cur, tmp);
  1574. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1575. cur = ggml_add(ctx, cur, ffn_inp);
  1576. // input for next layer
  1577. inpL = cur;
  1578. }
  1579. cur = inpL;
  1580. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1581. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  1582. // lm_head
  1583. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  1584. cur = ggml_mul_mat(ctx, output, cur);
  1585. return cur;
  1586. }
  1587. };
  1588. // Falcon
  1589. struct test_falcon : public test_llm {
  1590. static constexpr float freq_base = 10000.0f;
  1591. static constexpr float freq_scale = 1.0f;
  1592. static constexpr float ext_factor = 0.0f;
  1593. static constexpr float attn_factor = 1.0f;
  1594. static constexpr float beta_fast = 32.0f;
  1595. static constexpr float beta_slow = 1.0f;
  1596. std::string op_desc(ggml_tensor * t) override {
  1597. GGML_UNUSED(t);
  1598. return "FALCON";
  1599. }
  1600. std::string vars() override {
  1601. auto n_tokens = hp.n_tokens;
  1602. return VARS_TO_STR1(n_tokens);
  1603. }
  1604. double max_nmse_err() override {
  1605. return 2e-3;
  1606. }
  1607. test_falcon(int n_tokens = 1)
  1608. : test_llm({
  1609. /*n_vocab =*/ 32000,
  1610. /*n_embd =*/ 3200,
  1611. /*n_head =*/ 50,
  1612. /*n_head_kv =*/ 1,
  1613. /*n_rot =*/ 64,
  1614. /*n_embd_head =*/ 64,
  1615. /*n_ff =*/ 8640,
  1616. /*f_norm_eps =*/ 1e-5f,
  1617. /*f_norm_rms_eps =*/ 0.f,
  1618. /*n_tokens =*/ n_tokens,
  1619. }) {
  1620. }
  1621. ggml_tensor * build_graph(ggml_context * ctx) override {
  1622. struct ggml_tensor * cur;
  1623. struct ggml_tensor * inpL;
  1624. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  1625. // inp_pos - contains the positions
  1626. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  1627. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  1628. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  1629. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1630. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  1631. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  1632. // norm
  1633. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1634. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1635. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  1636. // self-attention
  1637. {
  1638. cur = attn_norm;
  1639. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  1640. cur = ggml_mul_mat(ctx, wqkv, cur);
  1641. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  1642. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  1643. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  1644. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  1645. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  1646. // using mode = 2 for neox mode
  1647. Qcur = ggml_rope_ext(
  1648. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  1649. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1650. );
  1651. Kcur = ggml_rope_ext(
  1652. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  1653. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  1654. );
  1655. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  1656. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  1657. }
  1658. struct ggml_tensor * ffn_inp = cur;
  1659. // feed forward
  1660. {
  1661. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  1662. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  1663. cur = attn_norm;
  1664. cur = ggml_mul_mat(ctx, ffn_up, cur);
  1665. cur = ggml_gelu(ctx, cur);
  1666. cur = ggml_mul_mat(ctx, ffn_down, cur);
  1667. }
  1668. cur = ggml_add(ctx, cur, ffn_inp);
  1669. cur = ggml_add(ctx, cur, inpL);
  1670. // input for next layer
  1671. inpL = cur;
  1672. }
  1673. cur = inpL;
  1674. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1675. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  1676. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  1677. // lm_head
  1678. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  1679. cur = ggml_mul_mat(ctx, output, cur);
  1680. return cur;
  1681. }
  1682. };
  1683. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
  1684. std::vector<std::unique_ptr<test_case>> test_cases;
  1685. std::default_random_engine rng(0);
  1686. const ggml_type all_types[] = {
  1687. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  1688. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  1689. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1690. GGML_TYPE_Q8_0,
  1691. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1692. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  1693. GGML_TYPE_Q6_K,
  1694. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1695. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1696. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1697. };
  1698. const ggml_type base_types[] = {
  1699. GGML_TYPE_F32, GGML_TYPE_F16,
  1700. GGML_TYPE_Q4_0,
  1701. GGML_TYPE_Q4_K,
  1702. GGML_TYPE_IQ2_XXS
  1703. };
  1704. const ggml_type other_types[] = {
  1705. GGML_TYPE_Q4_1,
  1706. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  1707. GGML_TYPE_Q8_0,
  1708. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  1709. GGML_TYPE_Q5_K,
  1710. GGML_TYPE_Q6_K,
  1711. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  1712. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  1713. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  1714. };
  1715. // unary ops
  1716. for (int v : {0, 1}) {
  1717. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  1718. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 128, 10, 10, 10 }, v));
  1719. test_cases.emplace_back(new test_unary((ggml_unary_op) op, GGML_TYPE_F32, { 7, 13, 19, 23 }, v));
  1720. }
  1721. }
  1722. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  1723. for (ggml_type type : all_types) {
  1724. for (int b : {1, 7}) {
  1725. for (bool v : {false, true}) {
  1726. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  1727. }
  1728. }
  1729. }
  1730. for (int b : {1, 7}) {
  1731. for (bool v : {false, true}) {
  1732. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  1733. }
  1734. }
  1735. for (ggml_type type_input : {GGML_TYPE_F32}) {
  1736. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  1737. for (int k0 : {1, 3}) {
  1738. for (int k1 : {1, 3}) {
  1739. for (int s0 : {1, 2}) {
  1740. for (int s1 : {1, 2}) {
  1741. for (int p0 : {0, 1}) {
  1742. for (int p1 : {0, 1}) {
  1743. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  1744. }
  1745. }
  1746. }
  1747. }
  1748. }
  1749. }
  1750. }
  1751. }
  1752. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  1753. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  1754. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
  1755. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1756. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
  1757. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
  1758. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1759. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
  1760. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
  1761. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  1762. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  1763. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  1764. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  1765. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  1766. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  1767. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  1768. for (ggml_type type_dst : all_types) {
  1769. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  1770. }
  1771. }
  1772. test_cases.emplace_back(new test_cont());
  1773. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  1774. for (auto op : {ggml_add, ggml_mul, ggml_div}) {
  1775. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  1776. }
  1777. };
  1778. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 8, 1}, {1, 1, 1, 1});
  1779. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1, 1}, {32, 1, 1, 1});
  1780. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 320, 320}, {1, 1, 1, 1});
  1781. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 1, 1}, {1, 1, 1, 1});
  1782. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 1}, {1, 1, 1, 1});
  1783. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 1});
  1784. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 1, 1, 1});
  1785. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 1, 1});
  1786. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 1});
  1787. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 1, 2});
  1788. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 1, 2, 2});
  1789. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {1, 2, 2, 2});
  1790. add_test_bin_bcast(GGML_TYPE_F32, {16, 10, 10, 10}, {2, 2, 2, 2});
  1791. // stable diffusion
  1792. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 1, 1, 1});
  1793. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 16, 16, 1});
  1794. add_test_bin_bcast(GGML_TYPE_F32, {1280, 16, 16, 1}, {1, 1, 1, 1});
  1795. add_test_bin_bcast(GGML_TYPE_F32, {1280, 1, 1, 1}, {1, 256, 1, 1});
  1796. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {16, 16, 1, 1});
  1797. add_test_bin_bcast(GGML_TYPE_F32, {16, 16, 1280, 1}, {1, 1, 1, 1});
  1798. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {16, 16, 1, 1});
  1799. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 2560, 1}, {16, 16, 1, 1});
  1800. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1280, 1}, {32, 32, 1, 1});
  1801. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 1920, 1}, {32, 32, 1, 1});
  1802. add_test_bin_bcast(GGML_TYPE_F32, {1, 1, 640, 1}, {32, 32, 1, 1});
  1803. add_test_bin_bcast(GGML_TYPE_F32, {5120, 1, 1, 1}, {1, 256, 1, 1});
  1804. add_test_bin_bcast(GGML_TYPE_F32, {640, 1, 1, 1}, {1, 1, 1, 1});
  1805. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  1806. //add_test_bin_bcast(GGML_TYPE_F32, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  1807. test_cases.emplace_back(new test_scale());
  1808. for (float eps : {1e-6f, 1e-5f, 1e-3f, 1e-1f}) {
  1809. test_cases.emplace_back(new test_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1810. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 10, 10, 10}, eps));
  1811. }
  1812. for (ggml_type type_a : base_types) {
  1813. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1814. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1815. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {1, 1}));
  1816. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 1}, {2, 1}));
  1817. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 1}));
  1818. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 1}));
  1819. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {1, 2}));
  1820. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {10, 10}, {2, 2}));
  1821. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, { 1, 1}, {1, 1}));
  1822. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {1, 1}));
  1823. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 1}, {2, 1}));
  1824. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 1}));
  1825. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 1}));
  1826. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {1, 2}));
  1827. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2}));
  1828. }
  1829. }
  1830. for (ggml_type type_a : other_types) {
  1831. for (ggml_type type_b : {GGML_TYPE_F32}) {
  1832. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, { 1, 1}, {1, 1}));
  1833. }
  1834. }
  1835. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  1836. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  1837. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  1838. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  1839. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  1840. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  1841. for (ggml_type type_a : base_types) {
  1842. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1843. for (int n_mats : {4, 8}) {
  1844. for (int n_used : {1, 2, 4}) {
  1845. for (bool b : {false, true}) {
  1846. for (int n : {1, 32}) {
  1847. int m = 512;
  1848. int k = 256;
  1849. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1850. }
  1851. }
  1852. }
  1853. }
  1854. }
  1855. }
  1856. for (ggml_type type_a : other_types) {
  1857. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  1858. for (int n_mats : {4}) {
  1859. for (int n_used : {2}) {
  1860. for (bool b : {false}) {
  1861. for (int n : {1}) {
  1862. int m = 512;
  1863. int k = 256;
  1864. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  1865. }
  1866. }
  1867. }
  1868. }
  1869. }
  1870. }
  1871. test_cases.emplace_back(new test_sqr());
  1872. test_cases.emplace_back(new test_sqrt());
  1873. test_cases.emplace_back(new test_clamp());
  1874. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  1875. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 1}, 5));
  1876. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 10, 10}, 5));
  1877. #if 0
  1878. std::uniform_int_distribution<> dist_ne1(1, 50);
  1879. int exponent = 1;
  1880. while (exponent < (1 << 17)) {
  1881. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  1882. for (int n = 0; n < 10; ++n) {
  1883. int64_t ne0 = dist_ne0(rng);
  1884. int64_t ne1 = dist_ne1(rng);
  1885. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  1886. }
  1887. exponent <<= 1;
  1888. }
  1889. #endif
  1890. for (bool mask : {false, true}) {
  1891. for (float max_bias : {0.0f, 8.0f}) {
  1892. if (!mask && max_bias > 0.0f) continue;
  1893. for (float scale : {1.0f, 0.1f}) {
  1894. for (int64_t ne0 : {16, 1024}) {
  1895. for (int64_t ne1 : {16, 1024}) {
  1896. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, scale, max_bias));
  1897. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, scale, max_bias));
  1898. }
  1899. }
  1900. }
  1901. }
  1902. }
  1903. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, 0.1f, 0.0f));
  1904. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 0.0f));
  1905. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, 0.1f, 8.0f));
  1906. {
  1907. bool all = true;
  1908. for (float v : { 0, 1 }) {
  1909. for (float fs : { 1.0f, 1.4245f }) {
  1910. for (float ef : { 0.0f, 0.7465f }) {
  1911. for (float af : { 1.0f, 1.4245f }) {
  1912. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  1913. for (bool ff : {false, true}) { // freq_factors
  1914. test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 7B
  1915. if (all) {
  1916. test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 13B
  1917. test_cases.emplace_back(new test_rope(type, {128, 52, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 30B
  1918. test_cases.emplace_back(new test_rope(type, {128, 64, 10, 1}, 128, 0, 512, fs, ef, af, ff, v)); // llama 65B
  1919. }
  1920. if (all) {
  1921. test_cases.emplace_back(new test_rope(type, { 64, 1, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
  1922. test_cases.emplace_back(new test_rope(type, { 64, 71, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 7B)
  1923. test_cases.emplace_back(new test_rope(type, { 64, 8, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
  1924. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 20, 2, 512, fs, ef, af, ff, v)); // neox (stablelm)
  1925. test_cases.emplace_back(new test_rope(type, { 80, 32, 10, 1}, 32, 2, 512, fs, ef, af, ff, v)); // neox (phi-2)
  1926. }
  1927. test_cases.emplace_back(new test_rope(type, { 64, 128, 10, 1}, 64, 2, 512, fs, ef, af, ff, v)); // neox (falcon 40B)
  1928. }
  1929. }
  1930. all = false;
  1931. }
  1932. }
  1933. }
  1934. }
  1935. }
  1936. for (int v : { 0, 1, 2, 3 }) {
  1937. for (int dim : { 0, 1, 2, 3, }) {
  1938. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  1939. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  1940. }
  1941. }
  1942. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  1943. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  1944. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  1945. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  1946. }
  1947. test_cases.emplace_back(new test_sum_rows());
  1948. test_cases.emplace_back(new test_upscale());
  1949. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  1950. test_cases.emplace_back(new test_upscale_ext());
  1951. test_cases.emplace_back(new test_group_norm());
  1952. test_cases.emplace_back(new test_acc());
  1953. test_cases.emplace_back(new test_pad());
  1954. test_cases.emplace_back(new test_arange());
  1955. test_cases.emplace_back(new test_timestep_embedding());
  1956. test_cases.emplace_back(new test_leaky_relu());
  1957. for (int hs : { 64, 80, 128, 256, }) {
  1958. for (bool mask : { true, false } ) {
  1959. for (float max_bias : { 0.0f, 8.0f }) {
  1960. if (!mask && max_bias > 0.0f) continue;
  1961. for (int nh : { 32, }) {
  1962. for (int kv : { 512, 1024, }) {
  1963. for (int nb : { 1, 2, 4, 8, }) {
  1964. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  1965. test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV));
  1966. }
  1967. }
  1968. }
  1969. }
  1970. }
  1971. }
  1972. }
  1973. // these tests are disabled to save execution time, but they can be handy for debugging
  1974. #if 0
  1975. test_cases.emplace_back(new test_llama(1));
  1976. test_cases.emplace_back(new test_llama(2));
  1977. test_cases.emplace_back(new test_falcon(1));
  1978. test_cases.emplace_back(new test_falcon(2));
  1979. #endif
  1980. // run tests
  1981. if (mode == MODE_TEST) {
  1982. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  1983. size_t n_ok = 0;
  1984. for (auto & test : test_cases) {
  1985. if (test->eval(backend, backend_cpu, op_name)) {
  1986. n_ok++;
  1987. }
  1988. }
  1989. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  1990. ggml_backend_free(backend_cpu);
  1991. return n_ok == test_cases.size();
  1992. }
  1993. if (mode == MODE_PERF) {
  1994. for (auto & test : test_cases) {
  1995. test->eval_perf(backend, op_name);
  1996. }
  1997. return true;
  1998. }
  1999. GGML_ASSERT(false);
  2000. return false;
  2001. }
  2002. static void usage(char ** argv) {
  2003. printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]);
  2004. printf(" valid modes are: test (compare with CPU backend for correctness) or perf (performance evaluation)\n");
  2005. printf(" op names are as given by ggml_op_desc()\n");
  2006. }
  2007. int main(int argc, char ** argv) {
  2008. test_mode mode = MODE_TEST;
  2009. const char * op_name_filter = NULL;
  2010. const char * backend_filter = NULL;
  2011. for (int i = 1; i < argc; i++) {
  2012. if (strcmp(argv[i], "test") == 0) {
  2013. mode = MODE_TEST;
  2014. } else if (strcmp(argv[i], "perf") == 0) {
  2015. mode = MODE_PERF;
  2016. } else if (strcmp(argv[i], "-o") == 0) {
  2017. if (i + 1 < argc) {
  2018. op_name_filter = argv[++i];
  2019. } else {
  2020. usage(argv);
  2021. return 1;
  2022. }
  2023. } else if (strcmp(argv[i], "-b") == 0) {
  2024. if (i + 1 < argc) {
  2025. backend_filter = argv[++i];
  2026. } else {
  2027. usage(argv);
  2028. return 1;
  2029. }
  2030. } else {
  2031. usage(argv);
  2032. return 1;
  2033. }
  2034. }
  2035. // enumerate backends
  2036. printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
  2037. size_t n_ok = 0;
  2038. for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
  2039. printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
  2040. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
  2041. printf(" Skipping\n");
  2042. n_ok++;
  2043. continue;
  2044. }
  2045. ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
  2046. GGML_ASSERT(backend != NULL);
  2047. if (backend_filter == NULL && ggml_backend_is_cpu(backend)) {
  2048. printf(" Skipping CPU backend\n");
  2049. ggml_backend_free(backend);
  2050. n_ok++;
  2051. continue;
  2052. }
  2053. printf(" Backend name: %s\n", ggml_backend_name(backend));
  2054. bool ok = test_backend(backend, mode, op_name_filter);
  2055. printf(" Backend %s: ", ggml_backend_name(backend));
  2056. if (ok) {
  2057. printf("\033[1;32mOK\033[0m\n");
  2058. n_ok++;
  2059. } else {
  2060. printf("\033[1;31mFAIL\033[0m\n");
  2061. }
  2062. printf("\n");
  2063. ggml_backend_free(backend);
  2064. }
  2065. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
  2066. if (n_ok != ggml_backend_reg_get_count()) {
  2067. printf("\033[1;31mFAIL\033[0m\n");
  2068. return 1;
  2069. }
  2070. ggml_quantize_free();
  2071. printf("\033[1;32mOK\033[0m\n");
  2072. return 0;
  2073. }