ggml.c 385 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #define GGML_ASSERT(x) \
  116. do { \
  117. if (!(x)) { \
  118. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  119. abort(); \
  120. } \
  121. } while (0)
  122. #if defined(GGML_USE_ACCELERATE)
  123. #include <Accelerate/Accelerate.h>
  124. #elif defined(GGML_USE_OPENBLAS)
  125. #include <cblas.h>
  126. #elif defined(GGML_USE_CUBLAS)
  127. #include "ggml-cuda.h"
  128. #endif
  129. #undef MIN
  130. #undef MAX
  131. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  132. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  133. // floating point type used to accumulate sums
  134. typedef double ggml_float;
  135. // 16-bit float
  136. // on Arm, we use __fp16
  137. // on x86, we use uint16_t
  138. #ifdef __ARM_NEON
  139. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  140. //
  141. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  142. //
  143. #include <arm_neon.h>
  144. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  146. #define GGML_FP16_TO_FP32(x) ((float) (x))
  147. #define GGML_FP32_TO_FP16(x) (x)
  148. #else
  149. #ifdef __wasm_simd128__
  150. #include <wasm_simd128.h>
  151. #else
  152. #ifdef __POWER9_VECTOR__
  153. #include <altivec.h>
  154. #undef bool
  155. #define bool _Bool
  156. #else
  157. #include <immintrin.h>
  158. #endif
  159. #endif
  160. #ifdef __F16C__
  161. #ifdef _MSC_VER
  162. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  163. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  164. #else
  165. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  166. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  167. #endif
  168. #elif defined(__POWER9_VECTOR__)
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  171. /* the inline asm below is about 12% faster than the lookup method */
  172. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  173. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  174. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  175. register float f;
  176. register double d;
  177. __asm__(
  178. "mtfprd %0,%2\n"
  179. "xscvhpdp %0,%0\n"
  180. "frsp %1,%0\n" :
  181. /* temp */ "=d"(d),
  182. /* out */ "=f"(f):
  183. /* in */ "r"(h));
  184. return f;
  185. }
  186. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  187. register double d;
  188. register ggml_fp16_t r;
  189. __asm__( /* xscvdphp can work on double or single precision */
  190. "xscvdphp %0,%2\n"
  191. "mffprd %1,%0\n" :
  192. /* temp */ "=d"(d),
  193. /* out */ "=r"(r):
  194. /* in */ "f"(f));
  195. return r;
  196. }
  197. #else
  198. // FP16 <-> FP32
  199. // ref: https://github.com/Maratyszcza/FP16
  200. static inline float fp32_from_bits(uint32_t w) {
  201. union {
  202. uint32_t as_bits;
  203. float as_value;
  204. } fp32;
  205. fp32.as_bits = w;
  206. return fp32.as_value;
  207. }
  208. static inline uint32_t fp32_to_bits(float f) {
  209. union {
  210. float as_value;
  211. uint32_t as_bits;
  212. } fp32;
  213. fp32.as_value = f;
  214. return fp32.as_bits;
  215. }
  216. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  217. const uint32_t w = (uint32_t) h << 16;
  218. const uint32_t sign = w & UINT32_C(0x80000000);
  219. const uint32_t two_w = w + w;
  220. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  221. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  222. const float exp_scale = 0x1.0p-112f;
  223. #else
  224. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  225. #endif
  226. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  227. const uint32_t magic_mask = UINT32_C(126) << 23;
  228. const float magic_bias = 0.5f;
  229. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  230. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  231. const uint32_t result = sign |
  232. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  233. return fp32_from_bits(result);
  234. }
  235. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  236. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  237. const float scale_to_inf = 0x1.0p+112f;
  238. const float scale_to_zero = 0x1.0p-110f;
  239. #else
  240. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  241. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  242. #endif
  243. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  244. const uint32_t w = fp32_to_bits(f);
  245. const uint32_t shl1_w = w + w;
  246. const uint32_t sign = w & UINT32_C(0x80000000);
  247. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  248. if (bias < UINT32_C(0x71000000)) {
  249. bias = UINT32_C(0x71000000);
  250. }
  251. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  252. const uint32_t bits = fp32_to_bits(base);
  253. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  254. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  255. const uint32_t nonsign = exp_bits + mantissa_bits;
  256. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  257. }
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  260. #endif // __F16C__
  261. #endif // __ARM_NEON
  262. //
  263. // global data
  264. //
  265. // precomputed gelu table for f16 (128 KB)
  266. static ggml_fp16_t table_gelu_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB)
  272. static float table_f32_f16[1 << 16];
  273. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  274. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  275. // This is also true for POWER9.
  276. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  277. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  278. uint16_t s;
  279. memcpy(&s, &f, sizeof(uint16_t));
  280. return table_f32_f16[s];
  281. }
  282. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. #endif
  285. // note: do not use these inside ggml.c
  286. // these are meant to be used via the ggml.h API
  287. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  288. return (float) GGML_FP16_TO_FP32(x);
  289. }
  290. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  291. return GGML_FP32_TO_FP16(x);
  292. }
  293. //
  294. // timing
  295. //
  296. #if defined(_MSC_VER) || defined(__MINGW32__)
  297. static int64_t timer_freq;
  298. void ggml_time_init(void) {
  299. LARGE_INTEGER frequency;
  300. QueryPerformanceFrequency(&frequency);
  301. timer_freq = frequency.QuadPart;
  302. }
  303. int64_t ggml_time_ms(void) {
  304. LARGE_INTEGER t;
  305. QueryPerformanceCounter(&t);
  306. return (t.QuadPart * 1000) / timer_freq;
  307. }
  308. int64_t ggml_time_us(void) {
  309. LARGE_INTEGER t;
  310. QueryPerformanceCounter(&t);
  311. return (t.QuadPart * 1000000) / timer_freq;
  312. }
  313. #else
  314. void ggml_time_init(void) {}
  315. int64_t ggml_time_ms(void) {
  316. struct timespec ts;
  317. clock_gettime(CLOCK_MONOTONIC, &ts);
  318. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  319. }
  320. int64_t ggml_time_us(void) {
  321. struct timespec ts;
  322. clock_gettime(CLOCK_MONOTONIC, &ts);
  323. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  324. }
  325. #endif
  326. int64_t ggml_cycles(void) {
  327. return clock();
  328. }
  329. int64_t ggml_cycles_per_ms(void) {
  330. return CLOCKS_PER_SEC/1000;
  331. }
  332. #ifdef GGML_PERF
  333. #define ggml_perf_time_ms() ggml_time_ms()
  334. #define ggml_perf_time_us() ggml_time_us()
  335. #define ggml_perf_cycles() ggml_cycles()
  336. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  337. #else
  338. #define ggml_perf_time_ms() 0
  339. #define ggml_perf_time_us() 0
  340. #define ggml_perf_cycles() 0
  341. #define ggml_perf_cycles_per_ms() 0
  342. #endif
  343. //
  344. // cache line
  345. //
  346. #if defined(__cpp_lib_hardware_interference_size)
  347. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  348. #else
  349. #if defined(__POWER9_VECTOR__)
  350. #define CACHE_LINE_SIZE 128
  351. #else
  352. #define CACHE_LINE_SIZE 64
  353. #endif
  354. #endif
  355. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  356. //
  357. // quantization
  358. //
  359. #if __AVX__ || __AVX2__ || __AVX512F__
  360. // Unpack 16 4-bit fields into 16 bytes
  361. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  362. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  363. {
  364. // Load 8 bytes from memory
  365. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  366. // Expand bytes into uint16_t values
  367. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  368. // Unpack values into individual bytes
  369. const __m128i lowMask = _mm_set1_epi8( 0xF );
  370. __m128i high = _mm_andnot_si128( lowMask, bytes );
  371. __m128i low = _mm_and_si128( lowMask, bytes );
  372. high = _mm_slli_epi16( high, 4 );
  373. bytes = _mm_or_si128( low, high );
  374. return bytes;
  375. }
  376. // horizontally add 8 floats
  377. static inline float hsum_float_8(const __m256 x) {
  378. __m128 res = _mm256_extractf128_ps(x, 1);
  379. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  380. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  381. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  382. return _mm_cvtss_f32(res);
  383. }
  384. // horizontally add 8 int32_t
  385. static inline int hsum_i32_8(const __m256i a) {
  386. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  387. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  388. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  389. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  390. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  391. }
  392. // horizontally add 4 int32_t
  393. static inline int hsum_i32_4(const __m128i a) {
  394. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  395. const __m128i sum64 = _mm_add_epi32(hi64, a);
  396. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  397. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  398. }
  399. #if __AVX2__ || __AVX512F__
  400. // Unpack 32 4-bit fields into 32 bytes
  401. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  402. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  403. {
  404. // Load 16 bytes from memory
  405. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  406. // Expand bytes into uint16_t values
  407. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  408. // Unpack values into individual bytes
  409. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  410. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  411. __m256i low = _mm256_and_si256( lowMask, bytes );
  412. high = _mm256_slli_epi16( high, 4 );
  413. bytes = _mm256_or_si256( low, high );
  414. return bytes;
  415. }
  416. // add int16_t pairwise and return as float vector
  417. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  418. const __m256i ones = _mm256_set1_epi16(1);
  419. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  420. return _mm256_cvtepi32_ps(summed_pairs);
  421. }
  422. // multiply int8_t, add results pairwise twice and return as float vector
  423. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  424. // Get absolute values of x vectors
  425. const __m256i ax = _mm256_sign_epi8(x, x);
  426. // Sign the values of the y vectors
  427. const __m256i sy = _mm256_sign_epi8(y, x);
  428. #if __AVXVNNI__
  429. const __m256i zero = _mm256_setzero_si256();
  430. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  431. return _mm256_cvtepi32_ps(summed_pairs);
  432. #else
  433. // Perform multiplication and create 16-bit values
  434. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  435. return sum_i16_pairs_float(dot);
  436. #endif
  437. }
  438. static inline __m128i packNibbles( __m256i bytes )
  439. {
  440. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  441. #if __AVX512F__
  442. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  443. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  444. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  445. #else
  446. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  447. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  448. __m256i low = _mm256_and_si256( lowByte, bytes );
  449. high = _mm256_srli_epi16( high, 4 );
  450. bytes = _mm256_or_si256( low, high );
  451. // Compress uint16_t lanes into bytes
  452. __m128i r0 = _mm256_castsi256_si128( bytes );
  453. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  454. return _mm_packus_epi16( r0, r1 );
  455. #endif
  456. }
  457. #else
  458. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  459. {
  460. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  461. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  462. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  463. __m128i low = _mm_and_si128( lowByte, bytes1 );
  464. high = _mm_srli_epi16( high, 4 );
  465. bytes1 = _mm_or_si128( low, high );
  466. high = _mm_andnot_si128( lowByte, bytes2 );
  467. low = _mm_and_si128( lowByte, bytes2 );
  468. high = _mm_srli_epi16( high, 4 );
  469. bytes2 = _mm_or_si128( low, high );
  470. return _mm_packus_epi16( bytes1, bytes2);
  471. }
  472. #endif
  473. #endif // __AVX__ || __AVX2__ || __AVX512F__
  474. #if __ARM_NEON
  475. #if !defined(__aarch64__)
  476. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  477. return
  478. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  479. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  480. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  481. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  482. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  483. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  484. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  485. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  486. }
  487. inline static int16_t vaddvq_s8(int8x16_t v) {
  488. return
  489. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  490. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  491. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  492. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  493. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  494. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  495. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  496. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  497. }
  498. inline static int32_t vaddvq_s16(int16x8_t v) {
  499. return
  500. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  501. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  502. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  503. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  504. }
  505. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  506. return
  507. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  508. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  509. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  510. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  511. }
  512. inline static int32_t vaddvq_s32(int32x4_t v) {
  513. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  514. }
  515. inline static float vaddvq_f32(float32x4_t v) {
  516. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  517. }
  518. float vminvq_f32(float32x4_t v) {
  519. return
  520. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  521. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  522. }
  523. float vmaxvq_f32(float32x4_t v) {
  524. return
  525. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  526. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  527. }
  528. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  529. return vget_low_s8(vcombine_s8(a, b));
  530. }
  531. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  532. return vget_high_s8(vcombine_s8(a, b));
  533. }
  534. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  535. return vget_low_u8(vcombine_u8(a, b));
  536. }
  537. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  538. return vget_high_u8(vcombine_u8(a, b));
  539. }
  540. #endif
  541. #endif
  542. #define QK4_0 32
  543. typedef struct {
  544. float d; // delta
  545. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  546. } block_q4_0;
  547. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  548. #define QK4_1 32
  549. typedef struct {
  550. float d; // delta
  551. float m; // min
  552. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  553. } block_q4_1;
  554. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  555. #define QK4_2 16
  556. typedef struct {
  557. ggml_fp16_t d; // delta
  558. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  559. } block_q4_2;
  560. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  561. #define QK4_3 16
  562. typedef struct {
  563. ggml_fp16_t d; // delta
  564. ggml_fp16_t m; // min
  565. uint8_t qs[QK4_3 / 2]; // nibbles / quants
  566. } block_q4_3;
  567. static_assert(sizeof(block_q4_3) == 2 * sizeof(ggml_fp16_t) + QK4_3 / 2, "wrong q4_3 block size/padding");
  568. #define QK8_0 32
  569. typedef struct {
  570. float d; // delta
  571. float s0; // d * sum(qs[i]) low
  572. float s1; // d * sum(qs[i]) high
  573. int8_t qs[QK8_0]; // quants
  574. } block_q8_0;
  575. static_assert(sizeof(block_q8_0) == 3*sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  576. // reference implementation for deterministic creation of model files
  577. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  578. assert(k % QK4_0 == 0);
  579. const int nb = k / QK4_0;
  580. uint8_t pp[QK4_0/2];
  581. for (int i = 0; i < nb; i++) {
  582. float amax = 0.0f; // absolute max
  583. float max = 0.0f;
  584. for (int l = 0; l < QK4_0; l++) {
  585. const float v = x[i*QK4_0 + l];
  586. if (amax < fabsf(v)) {
  587. amax = fabsf(v);
  588. max = v;
  589. }
  590. }
  591. const float d = max / -8;
  592. const float id = d ? 1.0f/d : 0.0f;
  593. y[i].d = d;
  594. for (int l = 0; l < QK4_0; l += 2) {
  595. const float v0 = x[i*QK4_0 + l + 0]*id;
  596. const float v1 = x[i*QK4_0 + l + 1]*id;
  597. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  598. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  599. assert(vi0 < 16);
  600. assert(vi1 < 16);
  601. pp[l/2] = vi0 | (vi1 << 4);
  602. }
  603. memcpy(y[i].qs, pp, sizeof(pp));
  604. }
  605. }
  606. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  607. assert(k % QK4_0 == 0);
  608. const int nb = k / QK4_0;
  609. block_q4_0 * restrict y = vy;
  610. #if defined(__POWER9_VECTOR__)
  611. const vector float v85 = vec_splats(8.5f);
  612. const vector signed int v15 = vec_splats(15);
  613. for (int i = 0; i < nb; i++) {
  614. float max = 0.0f;
  615. float min = 0.0f;
  616. vector float srcv [8];
  617. vector float maxv[8];
  618. vector float minv[8];
  619. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  620. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  621. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  622. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  623. maxv[0] = vec_max(maxv[0], maxv[2]);
  624. maxv[4] = vec_max(maxv[4], maxv[6]);
  625. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  626. maxv[0] = vec_max(maxv[0], maxv[4]);
  627. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  628. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  629. minv[0] = vec_min(minv[0], minv[2]);
  630. minv[4] = vec_min(minv[4], minv[6]);
  631. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  632. minv[0] = vec_min(minv[0], minv[4]);
  633. max = MAX(
  634. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  635. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  636. min = MIN(
  637. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  638. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  639. const float magnitude = max >= fabsf(min) ? max : min;
  640. const float d = magnitude / -8;
  641. const float id = d ? 1.0/d : 0.0;
  642. y[i].d = d;
  643. const vector float vid = vec_splats(id);
  644. uint8_t * restrict pb = y[i].qs;
  645. for (int l = 0; l < 8; l++) {
  646. const vector float vf = vec_madd(srcv[l], vid, v85);
  647. const vector signed int vi = vec_signed(vf);
  648. const vector signed int vc = vec_min(vi, v15);
  649. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  650. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  651. }
  652. }
  653. #elif __ARM_NEON
  654. for (int i = 0; i < nb; i++) {
  655. float32x4_t srcv [8];
  656. float32x4_t maxv[8];
  657. float32x4_t minv[8];
  658. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  659. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  660. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  661. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  662. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  663. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  664. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  665. const float max = vmaxvq_f32(maxv[0]);
  666. const float min = vminvq_f32(minv[0]);
  667. const float magnitude = max >= fabsf(min) ? max : min;
  668. const float d = magnitude / -8;
  669. const float id = d ? 1.0f/d : 0.0f;
  670. y[i].d = d;
  671. for (int l = 0; l < 8; l++) {
  672. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  673. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  674. const int32x4_t vi = vcvtq_s32_f32(vf);
  675. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  676. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  677. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  678. }
  679. }
  680. #elif defined(__AVX2__)
  681. for (int i = 0; i < nb; i++) {
  682. // Load elements into 4 AVX vectors
  683. __m256 v0 = _mm256_loadu_ps( x );
  684. __m256 v1 = _mm256_loadu_ps( x + 8 );
  685. __m256 v2 = _mm256_loadu_ps( x + 16 );
  686. __m256 v3 = _mm256_loadu_ps( x + 24 );
  687. x += 32;
  688. // Compute max for the block
  689. __m256 max = _mm256_max_ps( v0, v1 );
  690. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  691. max = _mm256_max_ps( max, maxTmp );
  692. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  693. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  694. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  695. const float maxScalar = _mm_cvtss_f32( max4 );
  696. // Compute min for the block
  697. __m256 min = _mm256_min_ps( v0, v1 );
  698. __m256 minTmp = _mm256_min_ps( v2, v3 );
  699. min = _mm256_min_ps( min, minTmp );
  700. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  701. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  702. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  703. const float minScalar = _mm_cvtss_f32( min4 );
  704. // Quantize these floats
  705. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  706. const float d = magnitude / -8.0f;
  707. y[i].d = d;
  708. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  709. const __m256 mul = _mm256_set1_ps( id );
  710. // Apply the multiplier
  711. v0 = _mm256_mul_ps( v0, mul );
  712. v1 = _mm256_mul_ps( v1, mul );
  713. v2 = _mm256_mul_ps( v2, mul );
  714. v3 = _mm256_mul_ps( v3, mul );
  715. // Round to nearest integer
  716. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  717. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  718. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  719. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  720. // Convert floats to integers
  721. __m256i i0 = _mm256_cvtps_epi32( v0 );
  722. __m256i i1 = _mm256_cvtps_epi32( v1 );
  723. __m256i i2 = _mm256_cvtps_epi32( v2 );
  724. __m256i i3 = _mm256_cvtps_epi32( v3 );
  725. // Convert int32 to int16
  726. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  727. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  728. // Convert int16 to int8
  729. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  730. // We got our precious signed bytes, but the order is now wrong
  731. // These AVX2 pack instructions process 16-byte pieces independently
  732. // The following instruction is fixing the order
  733. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  734. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  735. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  736. const __m256i off = _mm256_set1_epi8( 8 );
  737. i0 = _mm256_add_epi8( i0, off );
  738. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  739. i0 = _mm256_min_epi8( i0, maxNibble );
  740. // Compress the vector into 4 bit/value, and store
  741. __m128i res = packNibbles( i0 );
  742. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  743. }
  744. #elif defined(__AVX__)
  745. for (int i = 0; i < nb; i++) {
  746. // Load elements into 4 AVX vectors
  747. __m256 v0 = _mm256_loadu_ps( x );
  748. __m256 v1 = _mm256_loadu_ps( x + 8 );
  749. __m256 v2 = _mm256_loadu_ps( x + 16 );
  750. __m256 v3 = _mm256_loadu_ps( x + 24 );
  751. x += 32;
  752. // Compute max for the block
  753. __m256 max = _mm256_max_ps( v0, v1 );
  754. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  755. max = _mm256_max_ps( max, maxTmp );
  756. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  757. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  758. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  759. const float maxScalar = _mm_cvtss_f32( max4 );
  760. // Compute min for the block
  761. __m256 min = _mm256_min_ps( v0, v1 );
  762. __m256 minTmp = _mm256_min_ps( v2, v3 );
  763. min = _mm256_min_ps( min, minTmp );
  764. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  765. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  766. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  767. const float minScalar = _mm_cvtss_f32( min4 );
  768. // Quantize these floats
  769. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  770. const float d = magnitude / -8.0f;
  771. y[i].d = d;
  772. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  773. const __m256 mul = _mm256_set1_ps( id );
  774. // Apply the multiplier
  775. v0 = _mm256_mul_ps( v0, mul );
  776. v1 = _mm256_mul_ps( v1, mul );
  777. v2 = _mm256_mul_ps( v2, mul );
  778. v3 = _mm256_mul_ps( v3, mul );
  779. // Round to nearest integer
  780. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  781. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  782. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  783. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  784. // Convert floats to integers
  785. __m256i i0 = _mm256_cvtps_epi32( v0 );
  786. __m256i i1 = _mm256_cvtps_epi32( v1 );
  787. __m256i i2 = _mm256_cvtps_epi32( v2 );
  788. __m256i i3 = _mm256_cvtps_epi32( v3 );
  789. // Since we don't have in AVX some necessary functions,
  790. // we split the registers in half and call AVX2 analogs from SSE
  791. __m128i ni0 = _mm256_castsi256_si128( i0 );
  792. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  793. __m128i ni2 = _mm256_castsi256_si128( i1 );
  794. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  795. __m128i ni4 = _mm256_castsi256_si128( i2 );
  796. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  797. __m128i ni6 = _mm256_castsi256_si128( i3 );
  798. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  799. // Convert int32 to int16
  800. ni0 = _mm_packs_epi32( ni0, ni1 );
  801. ni2 = _mm_packs_epi32( ni2, ni3 );
  802. ni4 = _mm_packs_epi32( ni4, ni5 );
  803. ni6 = _mm_packs_epi32( ni6, ni7 );
  804. // Convert int16 to int8
  805. ni0 = _mm_packs_epi16( ni0, ni2 );
  806. ni4 = _mm_packs_epi16( ni4, ni6 );
  807. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  808. const __m128i off = _mm_set1_epi8( 8 );
  809. ni0 = _mm_add_epi8( ni0, off );
  810. ni4 = _mm_add_epi8( ni4, off );
  811. const __m128i maxNibble = _mm_set1_epi8( 15 );
  812. ni0 = _mm_min_epi8( ni0, maxNibble );
  813. ni4 = _mm_min_epi8( ni4, maxNibble );
  814. // Compress the vector into 4 bit/value, and store
  815. __m128i res = packNibbles( ni0, ni4 );
  816. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  817. }
  818. #elif defined(__wasm_simd128__)
  819. for (int i = 0; i < nb; i++) {
  820. float max = 0.0f;
  821. float min = 0.0f;
  822. v128_t srcv [8];
  823. v128_t maxv[8];
  824. v128_t minv[8];
  825. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  826. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  827. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  828. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  829. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  830. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  831. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  832. max = MAX(
  833. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  834. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  835. min = MIN(
  836. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  837. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  838. const float magnitude = max >= fabsf(min) ? max : min;
  839. const float d = magnitude / -8;
  840. const float id = d ? 1.0/d : 0.0;
  841. y[i].d = d;
  842. for (int l = 0; l < 8; l++) {
  843. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  844. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  845. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  846. const v128_t vc = wasm_i32x4_min_u(vi, wasm_i32x4_splat(15));
  847. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  848. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  849. }
  850. }
  851. #else
  852. // scalar
  853. quantize_row_q4_0_reference(x, y, k);
  854. #endif
  855. }
  856. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  857. assert(k % QK4_1 == 0);
  858. const int nb = k / QK4_1;
  859. block_q4_1 * restrict y = vy;
  860. uint8_t pp[QK4_1/2];
  861. for (int i = 0; i < nb; i++) {
  862. float min = FLT_MAX;
  863. float max = -FLT_MAX;
  864. for (int l = 0; l < QK4_1; l++) {
  865. const float v = x[i*QK4_1 + l];
  866. if (v < min) min = v;
  867. if (v > max) max = v;
  868. }
  869. const float d = (max - min) / ((1 << 4) - 1);
  870. const float id = d ? 1.0f/d : 0.0f;
  871. y[i].d = d;
  872. y[i].m = min;
  873. for (int l = 0; l < QK4_1; l += 2) {
  874. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  875. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  876. const uint8_t vi0 = roundf(v0);
  877. const uint8_t vi1 = roundf(v1);
  878. assert(vi0 < 16);
  879. assert(vi1 < 16);
  880. pp[l/2] = vi0 | (vi1 << 4);
  881. }
  882. memcpy(y[i].qs, pp, sizeof(pp));
  883. }
  884. }
  885. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  886. assert(k % QK4_1 == 0);
  887. const int nb = k / QK4_1;
  888. block_q4_1 * restrict y = vy;
  889. #if defined(__AVX2__)
  890. for (int i = 0; i < nb; i++) {
  891. // Load elements into 4 AVX vectors
  892. __m256 v0 = _mm256_loadu_ps( x );
  893. __m256 v1 = _mm256_loadu_ps( x + 8 );
  894. __m256 v2 = _mm256_loadu_ps( x + 16 );
  895. __m256 v3 = _mm256_loadu_ps( x + 24 );
  896. x += 32;
  897. // Compute max for the block
  898. __m256 vmax;
  899. vmax = _mm256_max_ps( v0, v1 );
  900. vmax = _mm256_max_ps( vmax, v2 );
  901. vmax = _mm256_max_ps( vmax, v3 );
  902. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  903. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  904. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  905. const float maxScalar = _mm_cvtss_f32( max4 );
  906. // Compute min for the block
  907. __m256 vmin;
  908. vmin = _mm256_min_ps( v0, v1 );
  909. vmin = _mm256_min_ps( vmin, v2 );
  910. vmin = _mm256_min_ps( vmin, v3 );
  911. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  912. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  913. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  914. const float minScalar = _mm_cvtss_f32( min4 );
  915. // Quantize these floats
  916. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  917. const float id = d ? 1.0f/d : 0.0f;
  918. y[i].m = minScalar;
  919. y[i].d = d;
  920. // x = (x-min)*id
  921. const __m256 mul = _mm256_set1_ps( id );
  922. const __m256 off = _mm256_set1_ps( minScalar );
  923. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  924. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  925. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  926. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  927. // Round to nearest integer
  928. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  929. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  930. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  931. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  932. // Convert floats to integers
  933. __m256i i0 = _mm256_cvtps_epi32( v0 );
  934. __m256i i1 = _mm256_cvtps_epi32( v1 );
  935. __m256i i2 = _mm256_cvtps_epi32( v2 );
  936. __m256i i3 = _mm256_cvtps_epi32( v3 );
  937. // Convert int32 to int16
  938. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  939. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  940. // Convert int16 to int8
  941. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  942. // We got our precious signed bytes, but the order is now wrong
  943. // These AVX2 pack instructions process 16-byte pieces independently
  944. // The following instruction is fixing the order
  945. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  946. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  947. // Compress the vector into 4 bit/value, and store
  948. __m128i res = packNibbles( i0 );
  949. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  950. }
  951. #elif __ARM_NEON
  952. for (int i = 0; i < nb; i++) {
  953. float32x4_t srcv[8];
  954. float32x4_t minv[8];
  955. float32x4_t maxv[8];
  956. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  957. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  958. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  959. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  960. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  961. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  962. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  963. const float min = vminvq_f32(minv[0]);
  964. const float max = vmaxvq_f32(maxv[0]);
  965. const float d = (max - min) / ((1 << 4) - 1);
  966. const float id = d ? 1.0f/d : 0.0f;
  967. y[i].d = d;
  968. y[i].m = min;
  969. const float32x4_t minv0 = vdupq_n_f32(min);
  970. for (int l = 0; l < 8; l++) {
  971. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  972. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  973. const int32x4_t vi = vcvtq_s32_f32(vf);
  974. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  975. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  976. }
  977. }
  978. #else
  979. // scalar
  980. quantize_row_q4_1_reference(x, vy, k);
  981. #endif
  982. }
  983. // reference implementation for deterministic creation of model files
  984. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  985. assert(k % QK4_2 == 0);
  986. const int nb = k / QK4_2;
  987. for (int i = 0; i < nb; i++) {
  988. float amax = 0.0f; // absolute max
  989. float max = 0.0f;
  990. for (int l = 0; l < QK4_2; l++) {
  991. const float v = x[i*QK4_2 + l];
  992. if (amax < fabsf(v)) {
  993. amax = fabsf(v);
  994. max = v;
  995. }
  996. }
  997. const float d = max / -8;
  998. const float id = d ? 1.0f/d : 0.0f;
  999. y[i].d = GGML_FP32_TO_FP16(d);
  1000. for (int l = 0; l < QK4_2; l += 2) {
  1001. const float v0 = x[i*QK4_2 + l + 0]*id;
  1002. const float v1 = x[i*QK4_2 + l + 1]*id;
  1003. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1004. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1005. assert(vi0 < 16);
  1006. assert(vi1 < 16);
  1007. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1008. }
  1009. }
  1010. }
  1011. static inline int nearest_int(float fval) {
  1012. assert(fval <= 4194303.f);
  1013. float val = fval + 12582912.f;
  1014. int i; memcpy(&i, &val, sizeof(int));
  1015. return (i & 0x007fffff) - 0x00400000;
  1016. }
  1017. static float kquantize_q4_with_bounds(int n, int nmin, int nmax, const float * restrict X, int nCandidates,
  1018. const float * restrict candidates, int8_t * restrict L) {
  1019. assert (nmin >= INT8_MIN);
  1020. assert (nmax <= INT8_MAX);
  1021. float amax = 0;
  1022. for (int i=0; i<n; ++i) amax = MAX(amax, fabsf(X[i]));
  1023. if (!amax) { // all zero
  1024. for (int i=0; i<n; ++i) L[i] = 0;
  1025. return 1.f;
  1026. }
  1027. float best = 0, bestScale = 0;
  1028. for (int si=0; si<nCandidates; ++si) {
  1029. float iscale = candidates[si]/amax;
  1030. float sumlxP = 0; int suml2P = 0;
  1031. float sumlxM = 0; int suml2M = 0;
  1032. for (int i=0; i<n; ++i) {
  1033. int l = nearest_int(iscale*X[i]);
  1034. int lp = MAX(nmin, MIN(nmax, +l));
  1035. int lm = MAX(nmin, MIN(nmax, -l));
  1036. sumlxP += X[i]*lp; suml2P += lp*lp;
  1037. sumlxM += X[i]*lm; suml2M += lm*lm;
  1038. }
  1039. float sumlxP2 = sumlxP*sumlxP;
  1040. float sumlxM2 = sumlxM*sumlxM;
  1041. if (sumlxP2*suml2M > sumlxM2*suml2P) {
  1042. if (sumlxP2 > best*suml2P) {
  1043. best = sumlxP2/suml2P; bestScale = iscale;
  1044. }
  1045. } else {
  1046. if (sumlxM2 > best*suml2M) {
  1047. best = sumlxM2/suml2M; bestScale = -iscale;
  1048. }
  1049. }
  1050. }
  1051. float sumlx = 0; int suml2 = 0;
  1052. for (int i=0; i<n; ++i) {
  1053. int l = nearest_int(bestScale*X[i]);
  1054. l = MAX(nmin, MIN(nmax, l));
  1055. sumlx += X[i]*l; suml2 += l*l;
  1056. L[i] = l;
  1057. }
  1058. float scale = sumlx/suml2;
  1059. return scale;
  1060. }
  1061. static void quantize_row_q4_2_rmse(const float * restrict x, block_q4_2 * restrict y, int k) {
  1062. #define CANDIDATE_COUNT 8
  1063. static const float candidates[CANDIDATE_COUNT] = { +8.7f, +8.3f, +8.1f, +7.8f, +7.3f, +7.0f, +6.3f, +5.7f };
  1064. assert(k % QK4_2 == 0);
  1065. int8_t L[QK4_2];
  1066. const int nb = k / QK4_2;
  1067. for (int i = 0; i < nb; i++) {
  1068. float scale = kquantize_q4_with_bounds(QK4_2, -8, 7, x, CANDIDATE_COUNT, candidates, L);
  1069. y[i].d = GGML_FP32_TO_FP16(scale);
  1070. for (int l = 0; l < QK4_2; l += 2) {
  1071. const uint8_t vi0 = (uint8_t)(L[l+0] + 8);
  1072. const uint8_t vi1 = (uint8_t)(L[l+1] + 8);
  1073. assert(vi0 < 16);
  1074. assert(vi1 < 16);
  1075. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1076. }
  1077. x += QK4_2;
  1078. }
  1079. }
  1080. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1081. assert(k % QK4_2 == 0);
  1082. block_q4_2 * restrict y = vy;
  1083. quantize_row_q4_2_reference(x, y, k);
  1084. }
  1085. static void quantize_row_q4_3_reference(const float * restrict x, block_q4_3 * restrict y, int k) {
  1086. assert(k % QK4_3 == 0);
  1087. const int nb = k / QK4_3;
  1088. for (int i = 0; i < nb; i++) {
  1089. float min = FLT_MAX;
  1090. float max = -FLT_MAX;
  1091. for (int l = 0; l < QK4_3; l++) {
  1092. const float v = x[i*QK4_3 + l];
  1093. if (v < min) min = v;
  1094. if (v > max) max = v;
  1095. }
  1096. const float d = (max - min) / ((1 << 4) - 1);
  1097. const float id = d ? 1.0f/d : 0.0f;
  1098. y[i].d = GGML_FP32_TO_FP16(d);
  1099. y[i].m = GGML_FP32_TO_FP16(min);
  1100. for (int l = 0; l < QK4_3; l += 2) {
  1101. const float v0 = (x[i*QK4_3 + l + 0] - min)*id;
  1102. const float v1 = (x[i*QK4_3 + l + 1] - min)*id;
  1103. const uint8_t vi0 = (int) (v0 + 0.5f);
  1104. const uint8_t vi1 = (int) (v1 + 0.5f);
  1105. assert(vi0 < 16);
  1106. assert(vi1 < 16);
  1107. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1108. }
  1109. }
  1110. }
  1111. static void quantize_row_q4_3(const float * restrict x, void * restrict vy, int k) {
  1112. assert(k % QK4_3 == 0);
  1113. block_q4_3 * restrict y = vy;
  1114. quantize_row_q4_3_reference(x, y, k);
  1115. }
  1116. // reference implementation for deterministic creation of model files
  1117. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1118. assert(k % QK8_0 == 0);
  1119. const int nb = k / QK8_0;
  1120. for (int i = 0; i < nb; i++) {
  1121. float amax = 0.0f; // absolute max
  1122. for (int l = 0; l < QK8_0; l++) {
  1123. const float v = x[i*QK8_0 + l];
  1124. amax = MAX(amax, fabsf(v));
  1125. }
  1126. const float d = amax / ((1 << 7) - 1);
  1127. const float id = d ? 1.0f/d : 0.0f;
  1128. y[i].d = d;
  1129. int sum0 = 0;
  1130. int sum1 = 0;
  1131. for (int l = 0; l < QK8_0/2; ++l) {
  1132. const float v0 = x[i*QK8_0 + l]*id;
  1133. const float v1 = x[i*QK8_0 + QK8_0/2 + l]*id;
  1134. y[i].qs[ l] = roundf(v0);
  1135. y[i].qs[QK8_0/2 + l] = roundf(v1);
  1136. sum0 += y[i].qs[ l];
  1137. sum1 += y[i].qs[QK8_0/2 + l];
  1138. }
  1139. y[i].s0 = d * sum0;
  1140. y[i].s1 = d * sum1;
  1141. }
  1142. }
  1143. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1144. assert(k % QK8_0 == 0);
  1145. const int nb = k / QK8_0;
  1146. block_q8_0 * restrict y = vy;
  1147. #if defined(__ARM_NEON)
  1148. for (int i = 0; i < nb; i++) {
  1149. float32x4_t srcv [8];
  1150. float32x4_t asrcv[8];
  1151. float32x4_t amaxv[8];
  1152. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1153. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1154. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1155. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1156. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1157. const float amax = vmaxvq_f32(amaxv[0]);
  1158. const float d = amax / ((1 << 7) - 1);
  1159. const float id = d ? 1.0f/d : 0.0f;
  1160. y[i].d = d;
  1161. int32x4_t accv0 = vdupq_n_s32(0);
  1162. int32x4_t accv1 = vdupq_n_s32(0);
  1163. // low half
  1164. for (int l = 0; l < 4; l++) {
  1165. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1166. const int32x4_t vi = vcvtnq_s32_f32(v);
  1167. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1168. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1169. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1170. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1171. accv0 = vaddq_s32(accv0, vi);
  1172. }
  1173. // high half
  1174. for (int l = 4; l < 8; l++) {
  1175. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1176. const int32x4_t vi = vcvtnq_s32_f32(v);
  1177. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1178. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1179. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1180. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1181. accv1 = vaddq_s32(accv1, vi);
  1182. }
  1183. const int32_t sum0 = vaddvq_s32(accv0);
  1184. const int32_t sum1 = vaddvq_s32(accv1);
  1185. y[i].s0 = d * sum0;
  1186. y[i].s1 = d * sum1;
  1187. }
  1188. #elif defined(__AVX2__) || defined(__AVX__)
  1189. for (int i = 0; i < nb; i++) {
  1190. // Load elements into 4 AVX vectors
  1191. __m256 v0 = _mm256_loadu_ps( x );
  1192. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1193. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1194. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1195. x += 32;
  1196. // Compute max(abs(e)) for the block
  1197. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1198. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1199. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1200. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1201. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1202. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1203. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1204. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1205. const float maxScalar = _mm_cvtss_f32( max4 );
  1206. // Quantize these floats
  1207. const float d = maxScalar / 127.f;
  1208. y[i].d = d;
  1209. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1210. const __m256 mul = _mm256_set1_ps( id );
  1211. // Apply the multiplier
  1212. v0 = _mm256_mul_ps( v0, mul );
  1213. v1 = _mm256_mul_ps( v1, mul );
  1214. v2 = _mm256_mul_ps( v2, mul );
  1215. v3 = _mm256_mul_ps( v3, mul );
  1216. // Round to nearest integer
  1217. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1218. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1219. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1220. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1221. // Convert floats to integers
  1222. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1223. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1224. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1225. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1226. #if defined(__AVX2__)
  1227. // Compute the sum of the quants and set y[i].s
  1228. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1229. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1230. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1231. // Convert int32 to int16
  1232. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1233. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1234. // Convert int16 to int8
  1235. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1236. // We got our precious signed bytes, but the order is now wrong
  1237. // These AVX2 pack instructions process 16-byte pieces independently
  1238. // The following instruction is fixing the order
  1239. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1240. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1241. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1242. #else
  1243. // Since we don't have in AVX some necessary functions,
  1244. // we split the registers in half and call AVX2 analogs from SSE
  1245. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1246. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1247. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1248. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1249. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1250. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1251. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1252. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1253. // Compute the sum of the quants and set y[i].s
  1254. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1255. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1256. y[i].s0 = d * hsum_i32_4(s0);
  1257. y[i].s1 = d * hsum_i32_4(s1);
  1258. // Convert int32 to int16
  1259. ni0 = _mm_packs_epi32( ni0, ni1 );
  1260. ni2 = _mm_packs_epi32( ni2, ni3 );
  1261. ni4 = _mm_packs_epi32( ni4, ni5 );
  1262. ni6 = _mm_packs_epi32( ni6, ni7 );
  1263. // Convert int16 to int8
  1264. ni0 = _mm_packs_epi16( ni0, ni2 );
  1265. ni4 = _mm_packs_epi16( ni4, ni6 );
  1266. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1267. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1268. #endif
  1269. }
  1270. #else
  1271. // scalar
  1272. quantize_row_q8_0_reference(x, y, k);
  1273. #endif
  1274. }
  1275. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1276. assert(k % QK4_0 == 0);
  1277. const int nb = k / QK4_0;
  1278. const block_q4_0 * restrict x = vx;
  1279. #if defined(__AVX2__)
  1280. for (int i = 0; i < nb; i++) {
  1281. // scale factor
  1282. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1283. const uint8_t * restrict pp = x[i].qs;
  1284. for (int l = 0; l < QK4_0; l += 32) {
  1285. // Load 32x4-bit integers into 32x8-bit integers
  1286. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1287. // Subtract 8 from the integers
  1288. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1289. // Convert to 16-bit int
  1290. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1291. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1292. // Convert to 32-bit int -> float 32
  1293. const __m256 vf[4] = {
  1294. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1295. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1296. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1297. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1298. };
  1299. // Scale and store
  1300. for (int j = 0; j < 4; j++) {
  1301. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1302. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1303. }
  1304. }
  1305. }
  1306. #elif defined(__ARM_NEON)
  1307. for (int i = 0; i < nb; i++) {
  1308. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1309. const uint8_t * restrict pp = x[i].qs;
  1310. for (int l = 0; l < QK4_0; l += 16) {
  1311. // Load 16x4-bit integers into 8x8-bit integers
  1312. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1313. // Expand 4-bit qs to 8-bit bytes
  1314. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1315. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1316. // Convert to signed 8-bit integers
  1317. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1318. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1319. // Subtract 8 from each byte
  1320. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1321. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1322. // Interleave and combine
  1323. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1324. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1325. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1326. // convert to 2x int16x8_t
  1327. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1328. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1329. // convert to 4x float32x4_t
  1330. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1331. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1332. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1333. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1334. // Multiply by d
  1335. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1336. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1337. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1338. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1339. // Store
  1340. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1341. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1342. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1343. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1344. }
  1345. }
  1346. #else
  1347. // scalar
  1348. for (int i = 0; i < nb; i++) {
  1349. const float d = x[i].d;
  1350. const uint8_t * restrict pp = x[i].qs;
  1351. for (int l = 0; l < QK4_0; l += 2) {
  1352. const uint8_t vi = pp[l/2];
  1353. const int8_t vi0 = vi & 0xf;
  1354. const int8_t vi1 = vi >> 4;
  1355. const float v0 = (vi0 - 8)*d;
  1356. const float v1 = (vi1 - 8)*d;
  1357. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1358. y[i*QK4_0 + l + 0] = v0;
  1359. y[i*QK4_0 + l + 1] = v1;
  1360. assert(!isnan(y[i*QK4_0 + l + 0]));
  1361. assert(!isnan(y[i*QK4_0 + l + 1]));
  1362. }
  1363. }
  1364. #endif
  1365. }
  1366. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1367. assert(k % QK4_1 == 0);
  1368. const int nb = k / QK4_1;
  1369. const block_q4_1 * restrict x = vx;
  1370. #if defined(__AVX2__)
  1371. for (int i = 0; i < nb; i++) {
  1372. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1373. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1374. const uint8_t * restrict pp = x[i].qs;
  1375. for (int l = 0; l < QK4_1; l += 32) {
  1376. // Load 32x4-bit integers into 32x8-bit integers
  1377. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1378. // Convert to 16-bit int
  1379. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1380. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1381. // Convert to 32-bit int -> float 32
  1382. const __m256 vf[4] = {
  1383. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1384. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1385. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1386. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1387. };
  1388. // Scale, add m and store
  1389. for (int j = 0; j < 4; j++) {
  1390. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1391. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1392. }
  1393. }
  1394. }
  1395. #elif defined(__ARM_NEON)
  1396. for (int i = 0; i < nb; i++) {
  1397. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1398. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1399. const uint8_t * restrict pp = x[i].qs;
  1400. for (int l = 0; l < QK4_1; l += 16) {
  1401. // Load 16x4-bit integers into 8x8-bit integers
  1402. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1403. // Expand 4-bit qs to 8-bit bytes
  1404. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  1405. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1406. // Interleave and combine
  1407. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1408. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1409. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1410. // convert to 2x uint16x8_t
  1411. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1412. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1413. // convert to 4x float32x4_t
  1414. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1415. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1416. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1417. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1418. // multiply by d and add m
  1419. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1420. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1421. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1422. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1423. // Store
  1424. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1425. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1426. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1427. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1428. }
  1429. }
  1430. #else
  1431. for (int i = 0; i < nb; i++) {
  1432. const float d = x[i].d;
  1433. const float m = x[i].m;
  1434. const uint8_t * restrict pp = x[i].qs;
  1435. for (int l = 0; l < QK4_1; l += 2) {
  1436. const uint8_t vi = pp[l/2];
  1437. const int8_t vi0 = vi & 0xf;
  1438. const int8_t vi1 = vi >> 4;
  1439. const float v0 = vi0*d + m;
  1440. const float v1 = vi1*d + m;
  1441. y[i*QK4_1 + l + 0] = v0;
  1442. y[i*QK4_1 + l + 1] = v1;
  1443. assert(!isnan(y[i*QK4_1 + l + 0]));
  1444. assert(!isnan(y[i*QK4_1 + l + 1]));
  1445. }
  1446. }
  1447. #endif
  1448. }
  1449. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1450. assert(k % QK4_2 == 0);
  1451. const int nb = k / QK4_2;
  1452. const block_q4_2 * restrict x = vx;
  1453. for (int i = 0; i < nb; i++) {
  1454. const float d = GGML_FP16_TO_FP32(x[i].d);
  1455. const uint8_t * restrict pp = x[i].qs;
  1456. for (int l = 0; l < QK4_2; l += 2) {
  1457. const uint8_t vi = pp[l/2];
  1458. const int8_t vi0 = vi & 0xf;
  1459. const int8_t vi1 = vi >> 4;
  1460. const float v0 = (vi0 - 8)*d;
  1461. const float v1 = (vi1 - 8)*d;
  1462. y[i*QK4_2 + l + 0] = v0;
  1463. y[i*QK4_2 + l + 1] = v1;
  1464. assert(!isnan(y[i*QK4_2 + l + 0]));
  1465. assert(!isnan(y[i*QK4_2 + l + 1]));
  1466. }
  1467. }
  1468. }
  1469. static void dequantize_row_q4_3(const void * restrict vx, float * restrict y, int k) {
  1470. assert(k % QK4_3 == 0);
  1471. const int nb = k / QK4_3;
  1472. const block_q4_3 * restrict x = vx;
  1473. for (int i = 0; i < nb; i++) {
  1474. const float d = GGML_FP16_TO_FP32(x[i].d);
  1475. const float m = GGML_FP16_TO_FP32(x[i].m);
  1476. const uint8_t * restrict pp = x[i].qs;
  1477. for (int l = 0; l < QK4_3; l += 2) {
  1478. const uint8_t vi = pp[l/2];
  1479. const int8_t vi0 = vi & 0xf;
  1480. const int8_t vi1 = vi >> 4;
  1481. const float v0 = vi0*d + m;
  1482. const float v1 = vi1*d + m;
  1483. y[i*QK4_3 + l + 0] = v0;
  1484. y[i*QK4_3 + l + 1] = v1;
  1485. assert(!isnan(y[i*QK4_3 + l + 0]));
  1486. assert(!isnan(y[i*QK4_3 + l + 1]));
  1487. }
  1488. }
  1489. }
  1490. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1491. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1492. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1493. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1494. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1495. [GGML_TYPE_Q4_0] = {
  1496. .dequantize_row_q = dequantize_row_q4_0,
  1497. .quantize_row_q = quantize_row_q4_0,
  1498. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1499. .quantize_row_q_dot = quantize_row_q8_0,
  1500. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1501. },
  1502. [GGML_TYPE_Q4_1] = {
  1503. .dequantize_row_q = dequantize_row_q4_1,
  1504. .quantize_row_q = quantize_row_q4_1,
  1505. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1506. .quantize_row_q_dot = quantize_row_q8_0,
  1507. .vec_dot_q = ggml_vec_dot_q4_1_q8_0,
  1508. },
  1509. [GGML_TYPE_Q4_2] = {
  1510. .dequantize_row_q = dequantize_row_q4_2,
  1511. .quantize_row_q = quantize_row_q4_2,
  1512. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1513. .quantize_row_q_dot = quantize_row_q8_0,
  1514. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1515. },
  1516. [GGML_TYPE_Q4_3] = {
  1517. .dequantize_row_q = dequantize_row_q4_3,
  1518. .quantize_row_q = quantize_row_q4_3,
  1519. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_3_reference, // TODO: RMSE optimization
  1520. .quantize_row_q_dot = quantize_row_q8_0,
  1521. .vec_dot_q = ggml_vec_dot_q4_3_q8_0,
  1522. },
  1523. [GGML_TYPE_Q8_0] = {
  1524. .dequantize_row_q = NULL, // TODO
  1525. .quantize_row_q = quantize_row_q8_0,
  1526. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1527. .quantize_row_q_dot = quantize_row_q8_0,
  1528. .vec_dot_q = NULL, // TODO
  1529. },
  1530. };
  1531. // For internal test use
  1532. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1533. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1534. return quantize_fns[i];
  1535. }
  1536. //
  1537. // simd mappings
  1538. //
  1539. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1540. // we then implement the fundamental computation operations below using only these macros
  1541. // adding support for new architectures requires to define the corresponding SIMD macros
  1542. //
  1543. // GGML_F32_STEP / GGML_F16_STEP
  1544. // number of elements to process in a single step
  1545. //
  1546. // GGML_F32_EPR / GGML_F16_EPR
  1547. // number of elements to fit in a single register
  1548. //
  1549. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1550. #define GGML_SIMD
  1551. // F32 NEON
  1552. #define GGML_F32_STEP 16
  1553. #define GGML_F32_EPR 4
  1554. #define GGML_F32x4 float32x4_t
  1555. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1556. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1557. #define GGML_F32x4_LOAD vld1q_f32
  1558. #define GGML_F32x4_STORE vst1q_f32
  1559. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1560. #define GGML_F32x4_ADD vaddq_f32
  1561. #define GGML_F32x4_MUL vmulq_f32
  1562. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1563. #define GGML_F32x4_REDUCE(res, x) \
  1564. { \
  1565. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1566. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1567. } \
  1568. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1569. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1570. } \
  1571. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1572. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1573. } \
  1574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1575. }
  1576. #define GGML_F32_VEC GGML_F32x4
  1577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1585. // F16 NEON
  1586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1587. #define GGML_F16_STEP 32
  1588. #define GGML_F16_EPR 8
  1589. #define GGML_F16x8 float16x8_t
  1590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1592. #define GGML_F16x8_LOAD vld1q_f16
  1593. #define GGML_F16x8_STORE vst1q_f16
  1594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1595. #define GGML_F16x8_ADD vaddq_f16
  1596. #define GGML_F16x8_MUL vmulq_f16
  1597. #define GGML_F16x8_REDUCE(res, x) \
  1598. { \
  1599. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1600. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1601. } \
  1602. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1603. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1604. } \
  1605. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1606. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1607. } \
  1608. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1609. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1610. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1611. }
  1612. #define GGML_F16_VEC GGML_F16x8
  1613. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1614. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1615. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1616. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1617. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1618. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1619. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1620. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1621. #else
  1622. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1623. // and take advantage of the vcvt_ functions to convert to/from FP16
  1624. #define GGML_F16_STEP 16
  1625. #define GGML_F16_EPR 4
  1626. #define GGML_F32Cx4 float32x4_t
  1627. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1628. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1629. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1630. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1631. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1632. #define GGML_F32Cx4_ADD vaddq_f32
  1633. #define GGML_F32Cx4_MUL vmulq_f32
  1634. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1635. #define GGML_F16_VEC GGML_F32Cx4
  1636. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1637. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1638. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1639. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1640. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1641. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1642. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1643. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1644. #endif
  1645. #elif defined(__AVX__)
  1646. #define GGML_SIMD
  1647. // F32 AVX
  1648. #define GGML_F32_STEP 32
  1649. #define GGML_F32_EPR 8
  1650. #define GGML_F32x8 __m256
  1651. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1652. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1653. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1654. #define GGML_F32x8_STORE _mm256_storeu_ps
  1655. #if defined(__FMA__)
  1656. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1657. #else
  1658. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1659. #endif
  1660. #define GGML_F32x8_ADD _mm256_add_ps
  1661. #define GGML_F32x8_MUL _mm256_mul_ps
  1662. #define GGML_F32x8_REDUCE(res, x) \
  1663. { \
  1664. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1665. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1666. } \
  1667. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1668. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1669. } \
  1670. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1671. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1672. } \
  1673. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1674. _mm256_extractf128_ps(x[0], 1)); \
  1675. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1676. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1677. }
  1678. // TODO: is this optimal ?
  1679. #define GGML_F32_VEC GGML_F32x8
  1680. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1681. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1682. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1683. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1684. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1685. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1686. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1687. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1688. // F16 AVX
  1689. #define GGML_F16_STEP 32
  1690. #define GGML_F16_EPR 8
  1691. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1692. #define GGML_F32Cx8 __m256
  1693. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1694. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1695. #if defined(__F16C__)
  1696. // the _mm256_cvt intrinsics require F16C
  1697. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1698. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1699. #else
  1700. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1701. float tmp[8];
  1702. for (int i = 0; i < 8; i++)
  1703. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1704. return _mm256_loadu_ps(tmp);
  1705. }
  1706. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1707. float arr[8];
  1708. _mm256_storeu_ps(arr, y);
  1709. for (int i = 0; i < 8; i++)
  1710. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1711. }
  1712. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1713. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1714. #endif
  1715. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1716. #define GGML_F32Cx8_ADD _mm256_add_ps
  1717. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1718. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1719. #define GGML_F16_VEC GGML_F32Cx8
  1720. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1721. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1722. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1723. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1724. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1725. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1726. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1727. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1728. #elif defined(__POWER9_VECTOR__)
  1729. #define GGML_SIMD
  1730. // F32 POWER9
  1731. #define GGML_F32_STEP 32
  1732. #define GGML_F32_EPR 4
  1733. #define GGML_F32x4 vector float
  1734. #define GGML_F32x4_ZERO 0.0f
  1735. #define GGML_F32x4_SET1 vec_splats
  1736. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1737. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1738. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1739. #define GGML_F32x4_ADD vec_add
  1740. #define GGML_F32x4_MUL vec_mul
  1741. #define GGML_F32x4_REDUCE(res, x) \
  1742. { \
  1743. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1744. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1745. } \
  1746. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1747. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1748. } \
  1749. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1750. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1751. } \
  1752. res = vec_extract(x[0], 0) + \
  1753. vec_extract(x[0], 1) + \
  1754. vec_extract(x[0], 2) + \
  1755. vec_extract(x[0], 3); \
  1756. }
  1757. #define GGML_F32_VEC GGML_F32x4
  1758. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1759. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1760. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1761. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1762. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1763. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1764. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1765. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1766. // F16 POWER9
  1767. #define GGML_F16_STEP GGML_F32_STEP
  1768. #define GGML_F16_EPR GGML_F32_EPR
  1769. #define GGML_F16_VEC GGML_F32x4
  1770. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1771. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1772. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1773. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1774. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1775. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1776. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1777. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1778. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1779. #define GGML_F16_VEC_STORE(p, r, i) \
  1780. if (i & 0x1) \
  1781. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1782. r[i - GGML_ENDIAN_BYTE(0)]), \
  1783. 0, p - GGML_F16_EPR)
  1784. #elif defined(__wasm_simd128__)
  1785. #define GGML_SIMD
  1786. // F32 WASM
  1787. #define GGML_F32_STEP 16
  1788. #define GGML_F32_EPR 4
  1789. #define GGML_F32x4 v128_t
  1790. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1791. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1792. #define GGML_F32x4_LOAD wasm_v128_load
  1793. #define GGML_F32x4_STORE wasm_v128_store
  1794. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1795. #define GGML_F32x4_ADD wasm_f32x4_add
  1796. #define GGML_F32x4_MUL wasm_f32x4_mul
  1797. #define GGML_F32x4_REDUCE(res, x) \
  1798. { \
  1799. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1800. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1801. } \
  1802. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1803. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1804. } \
  1805. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1806. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1807. } \
  1808. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1809. wasm_f32x4_extract_lane(x[0], 1) + \
  1810. wasm_f32x4_extract_lane(x[0], 2) + \
  1811. wasm_f32x4_extract_lane(x[0], 3); \
  1812. }
  1813. #define GGML_F32_VEC GGML_F32x4
  1814. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1815. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1816. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1817. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1818. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1819. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1820. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1821. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1822. // F16 WASM
  1823. #define GGML_F16_STEP 16
  1824. #define GGML_F16_EPR 4
  1825. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1826. float tmp[4];
  1827. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1828. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1829. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1830. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1831. return wasm_v128_load(tmp);
  1832. }
  1833. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1834. float tmp[4];
  1835. wasm_v128_store(tmp, x);
  1836. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1837. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1838. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1839. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1840. }
  1841. #define GGML_F16x4 v128_t
  1842. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1843. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1844. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1845. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1846. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1847. #define GGML_F16x4_ADD wasm_f32x4_add
  1848. #define GGML_F16x4_MUL wasm_f32x4_mul
  1849. #define GGML_F16x4_REDUCE(res, x) \
  1850. { \
  1851. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1852. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1853. } \
  1854. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1855. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1856. } \
  1857. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1858. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1859. } \
  1860. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1861. wasm_f32x4_extract_lane(x[0], 1) + \
  1862. wasm_f32x4_extract_lane(x[0], 2) + \
  1863. wasm_f32x4_extract_lane(x[0], 3); \
  1864. }
  1865. #define GGML_F16_VEC GGML_F16x4
  1866. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1867. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1868. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1869. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1870. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1871. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1872. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1873. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1874. #elif defined(__SSE3__)
  1875. #define GGML_SIMD
  1876. // F32 SSE
  1877. #define GGML_F32_STEP 32
  1878. #define GGML_F32_EPR 4
  1879. #define GGML_F32x4 __m128
  1880. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1881. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1882. #define GGML_F32x4_LOAD _mm_loadu_ps
  1883. #define GGML_F32x4_STORE _mm_storeu_ps
  1884. #if defined(__FMA__)
  1885. // TODO: Does this work?
  1886. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1887. #else
  1888. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1889. #endif
  1890. #define GGML_F32x4_ADD _mm_add_ps
  1891. #define GGML_F32x4_MUL _mm_mul_ps
  1892. #define GGML_F32x4_REDUCE(res, x) \
  1893. { \
  1894. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1895. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1896. } \
  1897. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1898. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1899. } \
  1900. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1901. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1902. } \
  1903. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1904. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1905. }
  1906. // TODO: is this optimal ?
  1907. #define GGML_F32_VEC GGML_F32x4
  1908. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1909. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1910. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1911. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1912. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1913. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1914. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1915. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1916. // F16 SSE
  1917. #define GGML_F16_STEP 32
  1918. #define GGML_F16_EPR 4
  1919. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1920. float tmp[4];
  1921. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1922. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1923. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1924. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1925. return _mm_loadu_ps(tmp);
  1926. }
  1927. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1928. float arr[4];
  1929. _mm_storeu_ps(arr, y);
  1930. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1931. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1932. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1933. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1934. }
  1935. #define GGML_F32Cx4 __m128
  1936. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1937. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1938. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1939. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1940. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1941. #define GGML_F32Cx4_ADD _mm_add_ps
  1942. #define GGML_F32Cx4_MUL _mm_mul_ps
  1943. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1944. #define GGML_F16_VEC GGML_F32Cx4
  1945. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1946. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1947. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1948. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1949. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1950. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1951. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1952. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1953. #endif
  1954. // GGML_F32_ARR / GGML_F16_ARR
  1955. // number of registers to use per step
  1956. #ifdef GGML_SIMD
  1957. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1958. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1959. #endif
  1960. //
  1961. // fundamental operations
  1962. //
  1963. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1964. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1965. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1966. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1967. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1968. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1969. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1970. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1971. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1972. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1973. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1974. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1975. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1976. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1977. #ifdef GGML_SIMD
  1978. float sumf = 0.0f;
  1979. const int np = (n & ~(GGML_F32_STEP - 1));
  1980. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1981. GGML_F32_VEC ax[GGML_F32_ARR];
  1982. GGML_F32_VEC ay[GGML_F32_ARR];
  1983. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1984. for (int j = 0; j < GGML_F32_ARR; j++) {
  1985. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1986. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1987. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1988. }
  1989. }
  1990. // reduce sum0..sum3 to sum0
  1991. GGML_F32_VEC_REDUCE(sumf, sum);
  1992. // leftovers
  1993. for (int i = np; i < n; ++i) {
  1994. sumf += x[i]*y[i];
  1995. }
  1996. #else
  1997. // scalar
  1998. ggml_float sumf = 0.0;
  1999. for (int i = 0; i < n; ++i) {
  2000. sumf += (ggml_float)(x[i]*y[i]);
  2001. }
  2002. #endif
  2003. *s = sumf;
  2004. }
  2005. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2006. ggml_float sumf = 0.0;
  2007. #if defined(GGML_SIMD)
  2008. const int np = (n & ~(GGML_F16_STEP - 1));
  2009. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2010. GGML_F16_VEC ax[GGML_F16_ARR];
  2011. GGML_F16_VEC ay[GGML_F16_ARR];
  2012. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2013. for (int j = 0; j < GGML_F16_ARR; j++) {
  2014. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2015. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2016. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2017. }
  2018. }
  2019. // reduce sum0..sum3 to sum0
  2020. GGML_F16_VEC_REDUCE(sumf, sum);
  2021. // leftovers
  2022. for (int i = np; i < n; ++i) {
  2023. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2024. }
  2025. #else
  2026. for (int i = 0; i < n; ++i) {
  2027. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2028. }
  2029. #endif
  2030. *s = sumf;
  2031. }
  2032. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2033. const int nb = n / QK8_0;
  2034. assert(n % QK8_0 == 0);
  2035. assert(nb % 2 == 0);
  2036. const block_q4_0 * restrict x = vx;
  2037. const block_q8_0 * restrict y = vy;
  2038. #if defined(__ARM_NEON)
  2039. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2040. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2041. float sum8 = 0;
  2042. for (int i = 0; i < nb; i += 2) {
  2043. const block_q4_0 * restrict x0 = &x[i + 0];
  2044. const block_q4_0 * restrict x1 = &x[i + 1];
  2045. const block_q8_0 * restrict y0 = &y[i + 0];
  2046. const block_q8_0 * restrict y1 = &y[i + 1];
  2047. sum8 += x0->d * (y0->s0 + y0->s1) + x1->d * (y1->s0 + y1->s1);
  2048. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2049. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2050. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2051. // 4-bit -> 8-bit
  2052. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2053. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2054. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2055. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2056. // load y
  2057. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2058. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2059. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2060. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2061. // interleave
  2062. const int8x16_t v1_0ls = vuzp1q_s8(v1_0l, v1_0h);
  2063. const int8x16_t v1_0hs = vuzp2q_s8(v1_0l, v1_0h);
  2064. const int8x16_t v1_1ls = vuzp1q_s8(v1_1l, v1_1h);
  2065. const int8x16_t v1_1hs = vuzp2q_s8(v1_1l, v1_1h);
  2066. #if defined(__ARM_FEATURE_DOTPROD)
  2067. // dot product into int32x4_t
  2068. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0ls), v0_0h, v1_0hs);
  2069. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1ls), v0_1h, v1_1hs);
  2070. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2071. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2072. #else
  2073. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0ls));
  2074. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0ls));
  2075. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0hs));
  2076. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0hs));
  2077. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1ls));
  2078. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1ls));
  2079. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1hs));
  2080. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1hs));
  2081. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2082. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2083. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2084. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2085. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2086. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2087. #endif
  2088. }
  2089. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) - 8 * sum8;
  2090. #elif defined(__AVX2__)
  2091. // Initialize accumulator with zeros
  2092. __m256 acc = _mm256_setzero_ps();
  2093. // Main loop
  2094. for (int i = 0; i < nb; ++i) {
  2095. /* Compute combined scale for the block */
  2096. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2097. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2098. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2099. const __m256i off = _mm256_set1_epi8( 8 );
  2100. bx = _mm256_sub_epi8( bx, off );
  2101. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2102. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2103. /* Multiply q with scale and accumulate */
  2104. acc = _mm256_fmadd_ps( d, q, acc );
  2105. }
  2106. *s = hsum_float_8(acc);
  2107. #elif defined(__AVX__)
  2108. // Initialize accumulator with zeros
  2109. __m256 acc = _mm256_setzero_ps();
  2110. // Main loop
  2111. for (int i = 0; i < nb; ++i) {
  2112. // Compute combined scale for the block
  2113. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2114. __m128i i32[2];
  2115. for (int j = 0; j < 2; ++j) {
  2116. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2117. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2118. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2119. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2120. const __m128i off = _mm_set1_epi8( 8 );
  2121. bx = _mm_sub_epi8( bx, off );
  2122. // Get absolute values of x vectors
  2123. const __m128i ax = _mm_sign_epi8(bx, bx);
  2124. // Sign the values of the y vectors
  2125. const __m128i sy = _mm_sign_epi8(by, bx);
  2126. // Perform multiplication and create 16-bit values
  2127. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2128. const __m128i ones = _mm_set1_epi16(1);
  2129. i32[j] = _mm_madd_epi16(ones, dot);
  2130. }
  2131. // Convert int32_t to float
  2132. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2133. // Apply the scale, and accumulate
  2134. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2135. }
  2136. *s = hsum_float_8(acc);
  2137. #else
  2138. // scalar
  2139. float sumf = 0.0;
  2140. for (int i = 0; i < nb; i++) {
  2141. const float d0 = x[i].d;
  2142. const float d1 = y[i].d;
  2143. const uint8_t * restrict p0 = x[i].qs;
  2144. const int8_t * restrict p1 = y[i].qs;
  2145. int sumi = 0;
  2146. for (int j = 0; j < QK8_0/2; j++) {
  2147. const uint8_t v0 = p0[j];
  2148. const int i0 = (int8_t) (v0 & 0xf) - 8;
  2149. const int i1 = (int8_t) (v0 >> 4) - 8;
  2150. const int i2 = p1[2*j + 0];
  2151. const int i3 = p1[2*j + 1];
  2152. sumi += i0*i2 + i1*i3;
  2153. }
  2154. sumf += d0*d1*sumi;
  2155. }
  2156. *s = sumf;
  2157. #endif
  2158. }
  2159. static void ggml_vec_dot_q4_1_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2160. const int nb = n / QK8_0;
  2161. assert(n % QK8_0 == 0);
  2162. assert(nb % 2 == 0);
  2163. const block_q4_1 * restrict x = vx;
  2164. const block_q8_0 * restrict y = vy;
  2165. // TODO: add AVX / WASM SIMD / etc
  2166. #if defined(__ARM_NEON)
  2167. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2168. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2169. float summs = 0;
  2170. for (int i = 0; i < nb; i += 2) {
  2171. const block_q4_1 * restrict x0 = &x[i + 0];
  2172. const block_q4_1 * restrict x1 = &x[i + 1];
  2173. const block_q8_0 * restrict y0 = &y[i + 0];
  2174. const block_q8_0 * restrict y1 = &y[i + 1];
  2175. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2176. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2177. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2178. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2179. // 4-bit -> 8-bit
  2180. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2181. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2182. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2183. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2184. // interleave
  2185. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2186. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2187. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2188. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2189. // load y
  2190. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2191. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2192. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2193. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2194. #if defined(__ARM_FEATURE_DOTPROD)
  2195. // dot product into int32x4_t
  2196. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2197. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2198. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2199. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2200. #else
  2201. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2202. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2203. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2204. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2205. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2206. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2207. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2208. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2209. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2210. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2211. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2212. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2213. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2214. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2215. #endif
  2216. }
  2217. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2218. #elif defined(__AVX2__)
  2219. // Initialize accumulator with zeros
  2220. __m256 acc = _mm256_setzero_ps();
  2221. float summs = 0;
  2222. // Main loop
  2223. for (int i = 0; i < nb; ++i) {
  2224. const float * d0 = &x[i].d;
  2225. const float * d1 = &y[i].d;
  2226. summs += x[i].m * (y[i].s0 + y[i].s1);
  2227. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2228. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2229. // Compute combined scales
  2230. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2231. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2232. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2233. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2234. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2235. // Accumulate d0*d1*x*y
  2236. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2237. }
  2238. *s = hsum_float_8(acc) + summs;
  2239. #else
  2240. // scalar
  2241. float sumf = 0.0;
  2242. for (int i = 0; i < nb; i++) {
  2243. const float d0 = x[i].d;
  2244. const float m0 = x[i].m;
  2245. const float d1 = y[i].d;
  2246. const uint8_t * restrict p0 = x[i].qs;
  2247. const int8_t * restrict p1 = y[i].qs;
  2248. // TODO: this is very slow ..
  2249. for (int j = 0; j < QK8_0/2; j++) {
  2250. const uint8_t v0 = p0[j];
  2251. const float f0 = d0*(v0 & 0xf) + m0;
  2252. const float f1 = d0*(v0 >> 4) + m0;
  2253. const float f2 = d1*p1[2*j + 0];
  2254. const float f3 = d1*p1[2*j + 1];
  2255. sumf += f0*f2 + f1*f3;
  2256. }
  2257. }
  2258. *s = sumf;
  2259. #endif
  2260. }
  2261. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2262. const int nb = n / QK8_0;
  2263. assert(n % QK8_0 == 0);
  2264. assert(nb % 2 == 0);
  2265. assert(QK8_0 == 2*QK4_2);
  2266. const block_q4_2 * restrict x = vx;
  2267. const block_q8_0 * restrict y = vy;
  2268. #if defined(__ARM_NEON)
  2269. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2270. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2271. for (int i = 0; i < nb; i += 2) {
  2272. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2273. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2274. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2275. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2276. const block_q8_0 * restrict y0 = &y[i + 0];
  2277. const block_q8_0 * restrict y1 = &y[i + 1];
  2278. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2279. const int8x16_t s8b = vdupq_n_s8(0x8);
  2280. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2281. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2282. // 4-bit -> 8-bit
  2283. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2284. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2285. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2286. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2287. // sub 8
  2288. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2289. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2290. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2291. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2292. // interleave
  2293. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2294. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2295. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2296. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2297. // load y
  2298. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2299. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2300. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2301. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2302. #if defined(__ARM_FEATURE_DOTPROD)
  2303. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2304. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2305. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2306. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2307. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2308. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2309. #else
  2310. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2311. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2312. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2313. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2314. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2315. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2316. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2317. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2318. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2319. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2320. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2321. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2322. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2323. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2324. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2325. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2326. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2327. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2328. #endif
  2329. }
  2330. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2331. #elif defined(__AVX2__)
  2332. // Initialize accumulator with zeros
  2333. __m256 acc = _mm256_setzero_ps();
  2334. // Main loop
  2335. for (int i = 0; i < nb; i++) {
  2336. /* Compute combined scale for the block */
  2337. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2338. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2339. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2340. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2341. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2342. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2343. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2344. const __m256i off = _mm256_set1_epi8(8);
  2345. bx = _mm256_sub_epi8(bx, off);
  2346. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2347. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2348. /* Multiply q with scale and accumulate */
  2349. acc = _mm256_fmadd_ps(d, q, acc);
  2350. }
  2351. *s = hsum_float_8(acc);
  2352. #else
  2353. // scalar
  2354. float sumf = 0.0;
  2355. for (int i = 0; i < nb; i++) {
  2356. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2357. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2358. const int8_t * restrict y0 = y[i].qs;
  2359. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2360. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2361. int sumi_0 = 0;
  2362. int sumi_1 = 0;
  2363. for (int j = 0; j < QK8_0/4; j++) {
  2364. const uint8_t v0 = x0[j];
  2365. const uint8_t v1 = x1[j];
  2366. const int i0_0 = (int8_t) (v0 & 0xf) - 8;
  2367. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2368. const int i0_1 = (int8_t) (v1 & 0xf) - 8;
  2369. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2370. const int i2_0 = y0[2*j + 0];
  2371. const int i3_0 = y0[2*j + 1];
  2372. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2373. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2374. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2375. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2376. }
  2377. sumf += (d0 * y[i].d) * sumi_0;
  2378. sumf += (d1 * y[i].d) * sumi_1;
  2379. }
  2380. *s = sumf;
  2381. #endif
  2382. }
  2383. static void ggml_vec_dot_q4_3_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2384. const int nb = n / QK8_0;
  2385. assert(n % QK8_0 == 0);
  2386. assert(nb % 2 == 0);
  2387. assert(QK8_0 == 2*QK4_2);
  2388. const block_q4_3 * restrict x = vx;
  2389. const block_q8_0 * restrict y = vy;
  2390. #if defined(__ARM_NEON)
  2391. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2392. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2393. float summs0 = 0.0f;
  2394. float summs1 = 0.0f;
  2395. for (int i = 0; i < nb; ++i) {
  2396. const block_q4_3 * restrict x0_0 = &x[2*(i + 0) + 0];
  2397. const block_q4_3 * restrict x0_1 = &x[2*(i + 0) + 1];
  2398. const block_q8_0 * restrict y0 = &y[i + 0];
  2399. summs0 += GGML_FP16_TO_FP32(x0_0->m) * y0->s0;
  2400. summs1 += GGML_FP16_TO_FP32(x0_1->m) * y0->s1;
  2401. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2402. // 4-bit -> 8-bit
  2403. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, vdupq_n_u8(0xf)));
  2404. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2405. // interleave
  2406. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2407. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2408. // load y
  2409. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2410. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2411. const float x0_0d = GGML_FP16_TO_FP32(x0_0->d);
  2412. const float x0_1d = GGML_FP16_TO_FP32(x0_1->d);
  2413. #if defined(__ARM_FEATURE_DOTPROD)
  2414. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), x0_0d*y0->d);
  2415. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), x0_1d*y0->d);
  2416. #else
  2417. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2418. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2419. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2420. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2421. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2422. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2423. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(pl0), x0_0d*y0->d);
  2424. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(ph0), x0_1d*y0->d);
  2425. #endif
  2426. }
  2427. *s = vaddvq_f32(vaddq_f32(sumv0, sumv1)) + summs0 + summs1;
  2428. #elif defined(__AVX2__)
  2429. // Initialize accumulator with zeros
  2430. __m256 acc = _mm256_setzero_ps();
  2431. float summs = 0.0f;
  2432. // Main loop
  2433. for (int i = 0; i < nb; i++) {
  2434. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2435. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2436. const __m256 dx = _mm256_set_m128(d1, d0);
  2437. summs += GGML_FP16_TO_FP32(x[2*i + 0].m) * y[i].s0
  2438. + GGML_FP16_TO_FP32(x[2*i + 1].m) * y[i].s1;
  2439. const __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2440. const __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2441. const __m256i bx = _mm256_set_m128i(bx1, bx0);
  2442. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2443. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2444. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2445. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2446. }
  2447. *s = hsum_float_8(acc) + summs;
  2448. #else
  2449. // scalar
  2450. float sumf = 0.0;
  2451. for (int i = 0; i < nb; i++) {
  2452. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2453. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2454. const int8_t * restrict y0 = y[i].qs;
  2455. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2456. const float m0 = GGML_FP16_TO_FP32(x[2*i + 0].m);
  2457. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2458. const float m1 = GGML_FP16_TO_FP32(x[2*i + 1].m);
  2459. int sxy_0 = 0;
  2460. int sxy_1 = 0;
  2461. for (int j = 0; j < QK8_0/4; j++) {
  2462. const uint8_t v0 = x0[j];
  2463. const uint8_t v1 = x1[j];
  2464. const int x0_0 = v0 & 0xf;
  2465. const int x1_0 = v0 >> 4;
  2466. const int x0_1 = v1 & 0xf;
  2467. const int x1_1 = v1 >> 4;
  2468. const int y0_0 = y0[2*j + 0];
  2469. const int y1_0 = y0[2*j + 1];
  2470. const int y0_1 = y0[2*(j + QK8_0/4) + 0];
  2471. const int y1_1 = y0[2*(j + QK8_0/4) + 1];
  2472. sxy_0 += x0_0*y0_0 + x1_0*y1_0;
  2473. sxy_1 += x0_1*y0_1 + x1_1*y1_1;
  2474. }
  2475. sumf += (d0*sxy_0 + d1*sxy_1)*y[i].d + m0*y[i].s0 + m1*y[i].s1;
  2476. }
  2477. *s = sumf;
  2478. #endif
  2479. }
  2480. // compute GGML_VEC_DOT_UNROLL dot products at once
  2481. // xs - x row stride in bytes
  2482. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2483. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2484. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2485. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2486. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2487. }
  2488. #if defined(GGML_SIMD)
  2489. const int np = (n & ~(GGML_F16_STEP - 1));
  2490. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2491. GGML_F16_VEC ax[GGML_F16_ARR];
  2492. GGML_F16_VEC ay[GGML_F16_ARR];
  2493. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2494. for (int j = 0; j < GGML_F16_ARR; j++) {
  2495. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2496. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2497. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2498. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2499. }
  2500. }
  2501. }
  2502. // reduce sum0..sum3 to sum0
  2503. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2504. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2505. }
  2506. // leftovers
  2507. for (int i = np; i < n; ++i) {
  2508. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2509. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2510. }
  2511. }
  2512. #else
  2513. for (int i = 0; i < n; ++i) {
  2514. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2515. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2516. }
  2517. }
  2518. #endif
  2519. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2520. s[i] = sumf[i];
  2521. }
  2522. }
  2523. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2524. #if defined(GGML_SIMD)
  2525. const int np = (n & ~(GGML_F32_STEP - 1));
  2526. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2527. GGML_F32_VEC ax[GGML_F32_ARR];
  2528. GGML_F32_VEC ay[GGML_F32_ARR];
  2529. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2530. for (int j = 0; j < GGML_F32_ARR; j++) {
  2531. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2532. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2533. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2534. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2535. }
  2536. }
  2537. // leftovers
  2538. for (int i = np; i < n; ++i) {
  2539. y[i] += x[i]*v;
  2540. }
  2541. #else
  2542. // scalar
  2543. for (int i = 0; i < n; ++i) {
  2544. y[i] += x[i]*v;
  2545. }
  2546. #endif
  2547. }
  2548. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2549. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2550. #if defined(GGML_SIMD)
  2551. const int np = (n & ~(GGML_F32_STEP - 1));
  2552. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2553. GGML_F32_VEC ay[GGML_F32_ARR];
  2554. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2555. for (int j = 0; j < GGML_F32_ARR; j++) {
  2556. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2557. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2558. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2559. }
  2560. }
  2561. // leftovers
  2562. for (int i = np; i < n; ++i) {
  2563. y[i] *= v;
  2564. }
  2565. #else
  2566. // scalar
  2567. for (int i = 0; i < n; ++i) {
  2568. y[i] *= v;
  2569. }
  2570. #endif
  2571. }
  2572. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2573. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2574. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2575. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2576. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2577. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2578. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2579. static const float GELU_COEF_A = 0.044715f;
  2580. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2581. inline static float ggml_gelu_f32(float x) {
  2582. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2583. }
  2584. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2585. const uint16_t * i16 = (const uint16_t *) x;
  2586. for (int i = 0; i < n; ++i) {
  2587. y[i] = table_gelu_f16[i16[i]];
  2588. }
  2589. }
  2590. #ifdef GGML_GELU_FP16
  2591. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2592. uint16_t t;
  2593. for (int i = 0; i < n; ++i) {
  2594. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2595. memcpy(&t, &fp16, sizeof(uint16_t));
  2596. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2597. }
  2598. }
  2599. #else
  2600. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2601. for (int i = 0; i < n; ++i) {
  2602. y[i] = ggml_gelu_f32(x[i]);
  2603. }
  2604. }
  2605. #endif
  2606. // Sigmoid Linear Unit (SiLU) function
  2607. inline static float ggml_silu_f32(float x) {
  2608. return x/(1.0f + expf(-x));
  2609. }
  2610. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2611. const uint16_t * i16 = (const uint16_t *) x;
  2612. for (int i = 0; i < n; ++i) {
  2613. y[i] = table_silu_f16[i16[i]];
  2614. }
  2615. }
  2616. #ifdef GGML_SILU_FP16
  2617. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2618. uint16_t t;
  2619. for (int i = 0; i < n; ++i) {
  2620. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2621. memcpy(&t, &fp16, sizeof(uint16_t));
  2622. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2623. }
  2624. }
  2625. #else
  2626. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2627. for (int i = 0; i < n; ++i) {
  2628. y[i] = ggml_silu_f32(x[i]);
  2629. }
  2630. }
  2631. #endif
  2632. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2633. #ifndef GGML_USE_ACCELERATE
  2634. ggml_float sum = 0.0;
  2635. for (int i = 0; i < n; ++i) {
  2636. sum += (ggml_float)x[i];
  2637. }
  2638. *s = sum;
  2639. #else
  2640. vDSP_sve(x, 1, s, n);
  2641. #endif
  2642. }
  2643. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2644. #ifndef GGML_USE_ACCELERATE
  2645. float max = -INFINITY;
  2646. for (int i = 0; i < n; ++i) {
  2647. max = MAX(max, x[i]);
  2648. }
  2649. *s = max;
  2650. #else
  2651. vDSP_maxv(x, 1, s, n);
  2652. #endif
  2653. }
  2654. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2655. ggml_vec_norm_f32(n, s, x);
  2656. *s = 1.f/(*s);
  2657. }
  2658. //
  2659. // logging
  2660. //
  2661. #if (GGML_DEBUG >= 1)
  2662. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2663. #else
  2664. #define GGML_PRINT_DEBUG(...)
  2665. #endif
  2666. #if (GGML_DEBUG >= 5)
  2667. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2668. #else
  2669. #define GGML_PRINT_DEBUG_5(...)
  2670. #endif
  2671. #if (GGML_DEBUG >= 10)
  2672. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2673. #else
  2674. #define GGML_PRINT_DEBUG_10(...)
  2675. #endif
  2676. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2677. //
  2678. // data types
  2679. //
  2680. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2681. [GGML_TYPE_F32] = 1,
  2682. [GGML_TYPE_F16] = 1,
  2683. [GGML_TYPE_Q4_0] = QK4_0,
  2684. [GGML_TYPE_Q4_1] = QK4_1,
  2685. [GGML_TYPE_Q4_2] = QK4_2,
  2686. [GGML_TYPE_Q4_3] = QK4_3,
  2687. [GGML_TYPE_Q8_0] = QK8_0,
  2688. [GGML_TYPE_I8] = 1,
  2689. [GGML_TYPE_I16] = 1,
  2690. [GGML_TYPE_I32] = 1,
  2691. };
  2692. static_assert(GGML_TYPE_COUNT == 10, "GGML_BLCK_SIZE is outdated");
  2693. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2694. [GGML_TYPE_F32] = sizeof(float),
  2695. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2696. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2697. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2698. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  2699. [GGML_TYPE_Q4_3] = sizeof(block_q4_3),
  2700. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2701. [GGML_TYPE_I8] = sizeof(int8_t),
  2702. [GGML_TYPE_I16] = sizeof(int16_t),
  2703. [GGML_TYPE_I32] = sizeof(int32_t),
  2704. };
  2705. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_SIZE is outdated");
  2706. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2707. [GGML_TYPE_F32] = "f32",
  2708. [GGML_TYPE_F16] = "f16",
  2709. [GGML_TYPE_Q4_0] = "q4_0",
  2710. [GGML_TYPE_Q4_1] = "q4_1",
  2711. [GGML_TYPE_Q4_2] = "q4_2",
  2712. [GGML_TYPE_Q4_3] = "q4_3",
  2713. [GGML_TYPE_Q8_0] = "q8_0",
  2714. [GGML_TYPE_I8] = "i8",
  2715. [GGML_TYPE_I16] = "i16",
  2716. [GGML_TYPE_I32] = "i32",
  2717. };
  2718. static_assert(GGML_TYPE_COUNT == 10, "GGML_TYPE_NAME is outdated");
  2719. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2720. [GGML_TYPE_F32] = false,
  2721. [GGML_TYPE_F16] = false,
  2722. [GGML_TYPE_Q4_0] = true,
  2723. [GGML_TYPE_Q4_1] = true,
  2724. [GGML_TYPE_Q4_2] = true,
  2725. [GGML_TYPE_Q4_3] = true,
  2726. [GGML_TYPE_Q8_0] = true,
  2727. [GGML_TYPE_I8] = false,
  2728. [GGML_TYPE_I16] = false,
  2729. [GGML_TYPE_I32] = false,
  2730. };
  2731. static_assert(GGML_TYPE_COUNT == 10, "GGML_IS_QUANTIZED is outdated");
  2732. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2733. "NONE",
  2734. "DUP",
  2735. "ADD",
  2736. "SUB",
  2737. "MUL",
  2738. "DIV",
  2739. "SQR",
  2740. "SQRT",
  2741. "SUM",
  2742. "MEAN",
  2743. "REPEAT",
  2744. "ABS",
  2745. "SGN",
  2746. "NEG",
  2747. "STEP",
  2748. "RELU",
  2749. "GELU",
  2750. "SILU",
  2751. "NORM",
  2752. "RMS_NORM",
  2753. "MUL_MAT",
  2754. "SCALE",
  2755. "CPY",
  2756. "CONT",
  2757. "RESHAPE",
  2758. "VIEW",
  2759. "PERMUTE",
  2760. "TRANSPOSE",
  2761. "GET_ROWS",
  2762. "DIAG_MASK_INF",
  2763. "SOFT_MAX",
  2764. "ROPE",
  2765. "CONV_1D_1S",
  2766. "CONV_1D_2S",
  2767. "FLASH_ATTN",
  2768. "FLASH_FF",
  2769. "MAP_UNARY",
  2770. "MAP_BINARY",
  2771. };
  2772. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2773. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2774. "none",
  2775. "x",
  2776. "x+y",
  2777. "x-y",
  2778. "x*y",
  2779. "x/y",
  2780. "x^2",
  2781. "√x",
  2782. "Σx",
  2783. "Σx/n",
  2784. "repeat(x)",
  2785. "abs(x)",
  2786. "sgn(x)",
  2787. "-x",
  2788. "step(x)",
  2789. "relu(x)",
  2790. "gelu(x)",
  2791. "silu(x)",
  2792. "norm(x)",
  2793. "rms_norm(x)",
  2794. "X*Y",
  2795. "x*v",
  2796. "x-\\>y",
  2797. "cont(x)",
  2798. "reshape(x)",
  2799. "view(x)",
  2800. "permute(x)",
  2801. "transpose(x)",
  2802. "get_rows(x)",
  2803. "diag_mask_inf(x)",
  2804. "soft_max(x)",
  2805. "rope(x)",
  2806. "conv_1d_1s(x)",
  2807. "conv_1d_2s(x)",
  2808. "flash_attn(x)",
  2809. "flash_ff(x)",
  2810. "f(x)",
  2811. "f(x,y)",
  2812. };
  2813. static_assert(GGML_OP_COUNT == 38, "GGML_OP_COUNT != 38");
  2814. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2815. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2816. //
  2817. // ggml context
  2818. //
  2819. struct ggml_context {
  2820. size_t mem_size;
  2821. void * mem_buffer;
  2822. bool mem_buffer_owned;
  2823. bool no_alloc;
  2824. int n_objects;
  2825. struct ggml_object * objects_begin;
  2826. struct ggml_object * objects_end;
  2827. struct ggml_scratch scratch;
  2828. struct ggml_scratch scratch_save;
  2829. };
  2830. struct ggml_context_container {
  2831. bool used;
  2832. struct ggml_context context;
  2833. };
  2834. //
  2835. // compute types
  2836. //
  2837. enum ggml_task_type {
  2838. GGML_TASK_INIT = 0,
  2839. GGML_TASK_COMPUTE,
  2840. GGML_TASK_FINALIZE,
  2841. };
  2842. struct ggml_compute_params {
  2843. enum ggml_task_type type;
  2844. int ith, nth;
  2845. // work buffer for all threads
  2846. size_t wsize;
  2847. void * wdata;
  2848. };
  2849. //
  2850. // ggml state
  2851. //
  2852. struct ggml_state {
  2853. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2854. };
  2855. // global state
  2856. static struct ggml_state g_state;
  2857. static atomic_int g_state_barrier = 0;
  2858. // barrier via spin lock
  2859. inline static void ggml_critical_section_start(void) {
  2860. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2861. while (processing > 0) {
  2862. // wait for other threads to finish
  2863. atomic_fetch_sub(&g_state_barrier, 1);
  2864. sched_yield(); // TODO: reconsider this
  2865. processing = atomic_fetch_add(&g_state_barrier, 1);
  2866. }
  2867. }
  2868. // TODO: make this somehow automatically executed
  2869. // some sort of "sentry" mechanism
  2870. inline static void ggml_critical_section_end(void) {
  2871. atomic_fetch_sub(&g_state_barrier, 1);
  2872. }
  2873. ////////////////////////////////////////////////////////////////////////////////
  2874. void ggml_print_object(const struct ggml_object * obj) {
  2875. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2876. obj->offs, obj->size, (const void *) obj->next);
  2877. }
  2878. void ggml_print_objects(const struct ggml_context * ctx) {
  2879. struct ggml_object * obj = ctx->objects_begin;
  2880. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2881. while (obj != NULL) {
  2882. ggml_print_object(obj);
  2883. obj = obj->next;
  2884. }
  2885. GGML_PRINT("%s: --- end ---\n", __func__);
  2886. }
  2887. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2888. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2889. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2890. }
  2891. int ggml_nrows(const struct ggml_tensor * tensor) {
  2892. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2893. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2894. }
  2895. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2896. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2897. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2898. }
  2899. int ggml_blck_size(enum ggml_type type) {
  2900. return GGML_BLCK_SIZE[type];
  2901. }
  2902. size_t ggml_type_size(enum ggml_type type) {
  2903. return GGML_TYPE_SIZE[type];
  2904. }
  2905. float ggml_type_sizef(enum ggml_type type) {
  2906. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2907. }
  2908. const char * ggml_type_name(enum ggml_type type) {
  2909. return GGML_TYPE_NAME[type];
  2910. }
  2911. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2912. return GGML_TYPE_SIZE[tensor->type];
  2913. }
  2914. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2915. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2916. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2917. }
  2918. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2919. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2920. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2921. }
  2922. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2923. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2924. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2925. }
  2926. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2927. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2928. return
  2929. (t0->ne[0] == t1->ne[0]) &&
  2930. (t0->ne[2] == t1->ne[2]) &&
  2931. (t0->ne[3] == t1->ne[3]);
  2932. }
  2933. bool ggml_is_quantized(enum ggml_type type) {
  2934. return GGML_IS_QUANTIZED[type];
  2935. }
  2936. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2937. return tensor->nb[0] > tensor->nb[1];
  2938. }
  2939. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2940. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2941. return
  2942. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2943. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2944. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2945. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2946. }
  2947. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2948. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2949. return
  2950. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2951. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2952. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2953. }
  2954. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2955. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2956. return
  2957. (t0->ne[0] == t1->ne[0] ) &&
  2958. (t0->ne[1] == t1->ne[1] ) &&
  2959. (t0->ne[2] == t1->ne[2] ) &&
  2960. (t0->ne[3] == t1->ne[3] );
  2961. }
  2962. // check if t1 can be represented as a repeatition of t0
  2963. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2965. return
  2966. (t1->ne[0]%t0->ne[0] == 0) &&
  2967. (t1->ne[1]%t0->ne[1] == 0) &&
  2968. (t1->ne[2]%t0->ne[2] == 0) &&
  2969. (t1->ne[3]%t0->ne[3] == 0);
  2970. }
  2971. static inline int ggml_up32(int n) {
  2972. return (n + 31) & ~31;
  2973. }
  2974. static inline int ggml_up64(int n) {
  2975. return (n + 63) & ~63;
  2976. }
  2977. static inline int ggml_up(int n, int m) {
  2978. // assert m is a power of 2
  2979. GGML_ASSERT((m & (m - 1)) == 0);
  2980. return (n + m - 1) & ~(m - 1);
  2981. }
  2982. // assert that pointer is aligned to GGML_MEM_ALIGN
  2983. #define ggml_assert_aligned(ptr) \
  2984. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2985. ////////////////////////////////////////////////////////////////////////////////
  2986. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2987. // make this function thread safe
  2988. ggml_critical_section_start();
  2989. static bool is_first_call = true;
  2990. if (is_first_call) {
  2991. // initialize time system (required on Windows)
  2992. ggml_time_init();
  2993. // initialize GELU, SILU and EXP F32 tables
  2994. {
  2995. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2996. ggml_fp16_t ii;
  2997. for (int i = 0; i < (1 << 16); ++i) {
  2998. uint16_t ui = i;
  2999. memcpy(&ii, &ui, sizeof(ii));
  3000. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3001. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3002. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3003. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3004. }
  3005. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3006. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3007. }
  3008. // initialize g_state
  3009. {
  3010. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3011. g_state = (struct ggml_state) {
  3012. /*.contexts =*/ { { 0 } },
  3013. };
  3014. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3015. g_state.contexts[i].used = false;
  3016. }
  3017. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3018. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3019. }
  3020. // initialize cuBLAS
  3021. #if defined(GGML_USE_CUBLAS)
  3022. ggml_init_cublas();
  3023. #endif
  3024. is_first_call = false;
  3025. }
  3026. // find non-used context in g_state
  3027. struct ggml_context * ctx = NULL;
  3028. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3029. if (!g_state.contexts[i].used) {
  3030. g_state.contexts[i].used = true;
  3031. ctx = &g_state.contexts[i].context;
  3032. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3033. break;
  3034. }
  3035. }
  3036. if (ctx == NULL) {
  3037. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3038. ggml_critical_section_end();
  3039. return NULL;
  3040. }
  3041. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3042. *ctx = (struct ggml_context) {
  3043. /*.mem_size =*/ mem_size,
  3044. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3045. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3046. /*.no_alloc =*/ params.no_alloc,
  3047. /*.n_objects =*/ 0,
  3048. /*.objects_begin =*/ NULL,
  3049. /*.objects_end =*/ NULL,
  3050. /*.scratch =*/ { 0, 0, NULL, },
  3051. /*.scratch_save =*/ { 0, 0, NULL, },
  3052. };
  3053. GGML_ASSERT(ctx->mem_buffer != NULL);
  3054. ggml_assert_aligned(ctx->mem_buffer);
  3055. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3056. ggml_critical_section_end();
  3057. return ctx;
  3058. }
  3059. void ggml_free(struct ggml_context * ctx) {
  3060. // make this function thread safe
  3061. ggml_critical_section_start();
  3062. bool found = false;
  3063. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3064. if (&g_state.contexts[i].context == ctx) {
  3065. g_state.contexts[i].used = false;
  3066. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3067. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3068. if (ctx->mem_buffer_owned) {
  3069. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3070. }
  3071. found = true;
  3072. break;
  3073. }
  3074. }
  3075. if (!found) {
  3076. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3077. }
  3078. ggml_critical_section_end();
  3079. }
  3080. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3081. return ctx->objects_end->offs + ctx->objects_end->size;
  3082. }
  3083. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3084. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3085. ctx->scratch = scratch;
  3086. return result;
  3087. }
  3088. ////////////////////////////////////////////////////////////////////////////////
  3089. struct ggml_tensor * ggml_new_tensor_impl(
  3090. struct ggml_context * ctx,
  3091. enum ggml_type type,
  3092. int n_dims,
  3093. const int64_t* ne,
  3094. void* data) {
  3095. // always insert objects at the end of the context's memory pool
  3096. struct ggml_object * obj_cur = ctx->objects_end;
  3097. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3098. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3099. const size_t cur_end = cur_offs + cur_size;
  3100. size_t size_needed = 0;
  3101. if (data == NULL && !ctx->no_alloc) {
  3102. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3103. for (int i = 1; i < n_dims; i++) {
  3104. size_needed *= ne[i];
  3105. }
  3106. // align to GGML_MEM_ALIGN
  3107. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3108. }
  3109. char * const mem_buffer = ctx->mem_buffer;
  3110. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3111. if (ctx->scratch.data == NULL || data != NULL) {
  3112. size_needed += sizeof(struct ggml_tensor);
  3113. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3114. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3115. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3116. assert(false);
  3117. return NULL;
  3118. }
  3119. *obj_new = (struct ggml_object) {
  3120. .offs = cur_end + GGML_OBJECT_SIZE,
  3121. .size = size_needed,
  3122. .next = NULL,
  3123. };
  3124. } else {
  3125. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3126. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3127. assert(false);
  3128. return NULL;
  3129. }
  3130. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3131. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3132. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3133. assert(false);
  3134. return NULL;
  3135. }
  3136. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3137. *obj_new = (struct ggml_object) {
  3138. .offs = cur_end + GGML_OBJECT_SIZE,
  3139. .size = sizeof(struct ggml_tensor),
  3140. .next = NULL,
  3141. };
  3142. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3143. ctx->scratch.offs += size_needed;
  3144. }
  3145. if (obj_cur != NULL) {
  3146. obj_cur->next = obj_new;
  3147. } else {
  3148. // this is the first object in this context
  3149. ctx->objects_begin = obj_new;
  3150. }
  3151. ctx->objects_end = obj_new;
  3152. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3153. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3154. ggml_assert_aligned(result);
  3155. *result = (struct ggml_tensor) {
  3156. /*.type =*/ type,
  3157. /*.n_dims =*/ n_dims,
  3158. /*.ne =*/ { 1, 1, 1, 1 },
  3159. /*.nb =*/ { 0, 0, 0, 0 },
  3160. /*.op =*/ GGML_OP_NONE,
  3161. /*.is_param =*/ false,
  3162. /*.grad =*/ NULL,
  3163. /*.src0 =*/ NULL,
  3164. /*.src1 =*/ NULL,
  3165. /*.opt =*/ { NULL },
  3166. /*.n_tasks =*/ 0,
  3167. /*.perf_runs =*/ 0,
  3168. /*.perf_cycles =*/ 0,
  3169. /*.perf_time_us =*/ 0,
  3170. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3171. /*.pad =*/ { 0 },
  3172. };
  3173. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3174. //ggml_assert_aligned(result->data);
  3175. for (int i = 0; i < n_dims; i++) {
  3176. result->ne[i] = ne[i];
  3177. }
  3178. result->nb[0] = GGML_TYPE_SIZE[type];
  3179. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3180. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3181. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3182. }
  3183. ctx->n_objects++;
  3184. return result;
  3185. }
  3186. struct ggml_tensor * ggml_new_tensor(
  3187. struct ggml_context * ctx,
  3188. enum ggml_type type,
  3189. int n_dims,
  3190. const int64_t * ne) {
  3191. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3192. }
  3193. struct ggml_tensor * ggml_new_tensor_1d(
  3194. struct ggml_context * ctx,
  3195. enum ggml_type type,
  3196. int64_t ne0) {
  3197. return ggml_new_tensor(ctx, type, 1, &ne0);
  3198. }
  3199. struct ggml_tensor * ggml_new_tensor_2d(
  3200. struct ggml_context * ctx,
  3201. enum ggml_type type,
  3202. int64_t ne0,
  3203. int64_t ne1) {
  3204. const int64_t ne[2] = { ne0, ne1 };
  3205. return ggml_new_tensor(ctx, type, 2, ne);
  3206. }
  3207. struct ggml_tensor * ggml_new_tensor_3d(
  3208. struct ggml_context * ctx,
  3209. enum ggml_type type,
  3210. int64_t ne0,
  3211. int64_t ne1,
  3212. int64_t ne2) {
  3213. const int64_t ne[3] = { ne0, ne1, ne2 };
  3214. return ggml_new_tensor(ctx, type, 3, ne);
  3215. }
  3216. struct ggml_tensor * ggml_new_tensor_4d(
  3217. struct ggml_context * ctx,
  3218. enum ggml_type type,
  3219. int64_t ne0,
  3220. int64_t ne1,
  3221. int64_t ne2,
  3222. int64_t ne3) {
  3223. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3224. return ggml_new_tensor(ctx, type, 4, ne);
  3225. }
  3226. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3227. ctx->scratch_save = ctx->scratch;
  3228. ctx->scratch.data = NULL;
  3229. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3230. ctx->scratch = ctx->scratch_save;
  3231. ggml_set_i32(result, value);
  3232. return result;
  3233. }
  3234. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3235. ctx->scratch_save = ctx->scratch;
  3236. ctx->scratch.data = NULL;
  3237. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3238. ctx->scratch = ctx->scratch_save;
  3239. ggml_set_f32(result, value);
  3240. return result;
  3241. }
  3242. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3243. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3244. }
  3245. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3246. memset(tensor->data, 0, ggml_nbytes(tensor));
  3247. return tensor;
  3248. }
  3249. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3250. const int n = ggml_nrows(tensor);
  3251. const int nc = tensor->ne[0];
  3252. const size_t n1 = tensor->nb[1];
  3253. char * const data = tensor->data;
  3254. switch (tensor->type) {
  3255. case GGML_TYPE_I8:
  3256. {
  3257. assert(tensor->nb[0] == sizeof(int8_t));
  3258. for (int i = 0; i < n; i++) {
  3259. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3260. }
  3261. } break;
  3262. case GGML_TYPE_I16:
  3263. {
  3264. assert(tensor->nb[0] == sizeof(int16_t));
  3265. for (int i = 0; i < n; i++) {
  3266. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3267. }
  3268. } break;
  3269. case GGML_TYPE_I32:
  3270. {
  3271. assert(tensor->nb[0] == sizeof(int32_t));
  3272. for (int i = 0; i < n; i++) {
  3273. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3274. }
  3275. } break;
  3276. case GGML_TYPE_F16:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_F32:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(float));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. default:
  3291. {
  3292. GGML_ASSERT(false);
  3293. } break;
  3294. }
  3295. return tensor;
  3296. }
  3297. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3298. const int n = ggml_nrows(tensor);
  3299. const int nc = tensor->ne[0];
  3300. const size_t n1 = tensor->nb[1];
  3301. char * const data = tensor->data;
  3302. switch (tensor->type) {
  3303. case GGML_TYPE_I8:
  3304. {
  3305. assert(tensor->nb[0] == sizeof(int8_t));
  3306. for (int i = 0; i < n; i++) {
  3307. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3308. }
  3309. } break;
  3310. case GGML_TYPE_I16:
  3311. {
  3312. assert(tensor->nb[0] == sizeof(int16_t));
  3313. for (int i = 0; i < n; i++) {
  3314. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3315. }
  3316. } break;
  3317. case GGML_TYPE_I32:
  3318. {
  3319. assert(tensor->nb[0] == sizeof(int32_t));
  3320. for (int i = 0; i < n; i++) {
  3321. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3322. }
  3323. } break;
  3324. case GGML_TYPE_F16:
  3325. {
  3326. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3327. for (int i = 0; i < n; i++) {
  3328. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3329. }
  3330. } break;
  3331. case GGML_TYPE_F32:
  3332. {
  3333. assert(tensor->nb[0] == sizeof(float));
  3334. for (int i = 0; i < n; i++) {
  3335. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3336. }
  3337. } break;
  3338. default:
  3339. {
  3340. GGML_ASSERT(false);
  3341. } break;
  3342. }
  3343. return tensor;
  3344. }
  3345. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3346. switch (tensor->type) {
  3347. case GGML_TYPE_I8:
  3348. {
  3349. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3350. return ((int8_t *)(tensor->data))[i];
  3351. } break;
  3352. case GGML_TYPE_I16:
  3353. {
  3354. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3355. return ((int16_t *)(tensor->data))[i];
  3356. } break;
  3357. case GGML_TYPE_I32:
  3358. {
  3359. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3360. return ((int32_t *)(tensor->data))[i];
  3361. } break;
  3362. case GGML_TYPE_F16:
  3363. {
  3364. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3365. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3366. } break;
  3367. case GGML_TYPE_F32:
  3368. {
  3369. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3370. return ((float *)(tensor->data))[i];
  3371. } break;
  3372. default:
  3373. {
  3374. GGML_ASSERT(false);
  3375. } break;
  3376. }
  3377. return 0.0f;
  3378. }
  3379. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3380. switch (tensor->type) {
  3381. case GGML_TYPE_I8:
  3382. {
  3383. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3384. ((int8_t *)(tensor->data))[i] = value;
  3385. } break;
  3386. case GGML_TYPE_I16:
  3387. {
  3388. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3389. ((int16_t *)(tensor->data))[i] = value;
  3390. } break;
  3391. case GGML_TYPE_I32:
  3392. {
  3393. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3394. ((int32_t *)(tensor->data))[i] = value;
  3395. } break;
  3396. case GGML_TYPE_F16:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3399. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3400. } break;
  3401. case GGML_TYPE_F32:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3404. ((float *)(tensor->data))[i] = value;
  3405. } break;
  3406. default:
  3407. {
  3408. GGML_ASSERT(false);
  3409. } break;
  3410. }
  3411. }
  3412. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3413. switch (tensor->type) {
  3414. case GGML_TYPE_I8:
  3415. {
  3416. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3417. return ((int8_t *)(tensor->data))[i];
  3418. } break;
  3419. case GGML_TYPE_I16:
  3420. {
  3421. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3422. return ((int16_t *)(tensor->data))[i];
  3423. } break;
  3424. case GGML_TYPE_I32:
  3425. {
  3426. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3427. return ((int32_t *)(tensor->data))[i];
  3428. } break;
  3429. case GGML_TYPE_F16:
  3430. {
  3431. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3432. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3433. } break;
  3434. case GGML_TYPE_F32:
  3435. {
  3436. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3437. return ((float *)(tensor->data))[i];
  3438. } break;
  3439. default:
  3440. {
  3441. GGML_ASSERT(false);
  3442. } break;
  3443. }
  3444. return 0.0f;
  3445. }
  3446. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3447. switch (tensor->type) {
  3448. case GGML_TYPE_I8:
  3449. {
  3450. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3451. ((int8_t *)(tensor->data))[i] = value;
  3452. } break;
  3453. case GGML_TYPE_I16:
  3454. {
  3455. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3456. ((int16_t *)(tensor->data))[i] = value;
  3457. } break;
  3458. case GGML_TYPE_I32:
  3459. {
  3460. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3461. ((int32_t *)(tensor->data))[i] = value;
  3462. } break;
  3463. case GGML_TYPE_F16:
  3464. {
  3465. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3466. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3467. } break;
  3468. case GGML_TYPE_F32:
  3469. {
  3470. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3471. ((float *)(tensor->data))[i] = value;
  3472. } break;
  3473. default:
  3474. {
  3475. GGML_ASSERT(false);
  3476. } break;
  3477. }
  3478. }
  3479. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3480. return tensor->data;
  3481. }
  3482. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3483. assert(tensor->type == GGML_TYPE_F32);
  3484. return (float *)(tensor->data);
  3485. }
  3486. struct ggml_tensor * ggml_view_tensor(
  3487. struct ggml_context * ctx,
  3488. const struct ggml_tensor * src) {
  3489. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3490. result->nb[0] = src->nb[0];
  3491. result->nb[1] = src->nb[1];
  3492. result->nb[2] = src->nb[2];
  3493. result->nb[3] = src->nb[3];
  3494. return result;
  3495. }
  3496. ////////////////////////////////////////////////////////////////////////////////
  3497. // ggml_dup
  3498. struct ggml_tensor * ggml_dup_impl(
  3499. struct ggml_context * ctx,
  3500. struct ggml_tensor * a,
  3501. bool inplace) {
  3502. bool is_node = false;
  3503. if (!inplace && (a->grad)) {
  3504. is_node = true;
  3505. }
  3506. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3507. result->op = GGML_OP_DUP;
  3508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3509. result->src0 = a;
  3510. result->src1 = NULL;
  3511. return result;
  3512. }
  3513. struct ggml_tensor * ggml_dup(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a) {
  3516. return ggml_dup_impl(ctx, a, false);
  3517. }
  3518. struct ggml_tensor * ggml_dup_inplace(
  3519. struct ggml_context * ctx,
  3520. struct ggml_tensor * a) {
  3521. return ggml_dup_impl(ctx, a, true);
  3522. }
  3523. // ggml_add
  3524. struct ggml_tensor * ggml_add_impl(
  3525. struct ggml_context * ctx,
  3526. struct ggml_tensor * a,
  3527. struct ggml_tensor * b,
  3528. bool inplace) {
  3529. GGML_ASSERT(ggml_are_same_shape(a, b));
  3530. bool is_node = false;
  3531. if (!inplace && (a->grad || b->grad)) {
  3532. is_node = true;
  3533. }
  3534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3535. result->op = GGML_OP_ADD;
  3536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3537. result->src0 = a;
  3538. result->src1 = b;
  3539. return result;
  3540. }
  3541. struct ggml_tensor * ggml_add(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. struct ggml_tensor * b) {
  3545. return ggml_add_impl(ctx, a, b, false);
  3546. }
  3547. struct ggml_tensor * ggml_add_inplace(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. struct ggml_tensor * b) {
  3551. return ggml_add_impl(ctx, a, b, true);
  3552. }
  3553. // ggml_sub
  3554. struct ggml_tensor * ggml_sub_impl(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a,
  3557. struct ggml_tensor * b,
  3558. bool inplace) {
  3559. GGML_ASSERT(ggml_are_same_shape(a, b));
  3560. bool is_node = false;
  3561. if (!inplace && (a->grad || b->grad)) {
  3562. is_node = true;
  3563. }
  3564. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3565. result->op = GGML_OP_SUB;
  3566. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3567. result->src0 = a;
  3568. result->src1 = b;
  3569. return result;
  3570. }
  3571. struct ggml_tensor * ggml_sub(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. struct ggml_tensor * b) {
  3575. return ggml_sub_impl(ctx, a, b, false);
  3576. }
  3577. struct ggml_tensor * ggml_sub_inplace(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b) {
  3581. return ggml_sub_impl(ctx, a, b, true);
  3582. }
  3583. // ggml_mul
  3584. struct ggml_tensor * ggml_mul_impl(
  3585. struct ggml_context * ctx,
  3586. struct ggml_tensor * a,
  3587. struct ggml_tensor * b,
  3588. bool inplace) {
  3589. GGML_ASSERT(ggml_are_same_shape(a, b));
  3590. bool is_node = false;
  3591. if (!inplace && (a->grad || b->grad)) {
  3592. is_node = true;
  3593. }
  3594. if (inplace) {
  3595. GGML_ASSERT(is_node == false);
  3596. }
  3597. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3598. result->op = GGML_OP_MUL;
  3599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3600. result->src0 = a;
  3601. result->src1 = b;
  3602. return result;
  3603. }
  3604. struct ggml_tensor * ggml_mul(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a,
  3607. struct ggml_tensor * b) {
  3608. return ggml_mul_impl(ctx, a, b, false);
  3609. }
  3610. struct ggml_tensor * ggml_mul_inplace(
  3611. struct ggml_context * ctx,
  3612. struct ggml_tensor * a,
  3613. struct ggml_tensor * b) {
  3614. return ggml_mul_impl(ctx, a, b, true);
  3615. }
  3616. // ggml_div
  3617. struct ggml_tensor * ggml_div_impl(
  3618. struct ggml_context * ctx,
  3619. struct ggml_tensor * a,
  3620. struct ggml_tensor * b,
  3621. bool inplace) {
  3622. GGML_ASSERT(ggml_are_same_shape(a, b));
  3623. bool is_node = false;
  3624. if (!inplace && (a->grad || b->grad)) {
  3625. is_node = true;
  3626. }
  3627. if (inplace) {
  3628. GGML_ASSERT(is_node == false);
  3629. }
  3630. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3631. result->op = GGML_OP_DIV;
  3632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3633. result->src0 = a;
  3634. result->src1 = b;
  3635. return result;
  3636. }
  3637. struct ggml_tensor * ggml_div(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a,
  3640. struct ggml_tensor * b) {
  3641. return ggml_div_impl(ctx, a, b, false);
  3642. }
  3643. struct ggml_tensor * ggml_div_inplace(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. struct ggml_tensor * b) {
  3647. return ggml_div_impl(ctx, a, b, true);
  3648. }
  3649. // ggml_sqr
  3650. struct ggml_tensor * ggml_sqr_impl(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. bool inplace) {
  3654. bool is_node = false;
  3655. if (!inplace && (a->grad)) {
  3656. is_node = true;
  3657. }
  3658. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3659. result->op = GGML_OP_SQR;
  3660. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3661. result->src0 = a;
  3662. result->src1 = NULL;
  3663. return result;
  3664. }
  3665. struct ggml_tensor * ggml_sqr(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a) {
  3668. return ggml_sqr_impl(ctx, a, false);
  3669. }
  3670. struct ggml_tensor * ggml_sqr_inplace(
  3671. struct ggml_context * ctx,
  3672. struct ggml_tensor * a) {
  3673. return ggml_sqr_impl(ctx, a, true);
  3674. }
  3675. // ggml_sqrt
  3676. struct ggml_tensor * ggml_sqrt_impl(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. bool inplace) {
  3680. bool is_node = false;
  3681. if (!inplace && (a->grad)) {
  3682. is_node = true;
  3683. }
  3684. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3685. result->op = GGML_OP_SQRT;
  3686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3687. result->src0 = a;
  3688. result->src1 = NULL;
  3689. return result;
  3690. }
  3691. struct ggml_tensor * ggml_sqrt(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a) {
  3694. return ggml_sqrt_impl(ctx, a, false);
  3695. }
  3696. struct ggml_tensor * ggml_sqrt_inplace(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a) {
  3699. return ggml_sqrt_impl(ctx, a, true);
  3700. }
  3701. // ggml_sum
  3702. struct ggml_tensor * ggml_sum(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a) {
  3705. bool is_node = false;
  3706. if (a->grad) {
  3707. is_node = true;
  3708. }
  3709. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3710. result->op = GGML_OP_SUM;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src0 = a;
  3713. result->src1 = NULL;
  3714. return result;
  3715. }
  3716. // ggml_mean
  3717. struct ggml_tensor * ggml_mean(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a) {
  3720. bool is_node = false;
  3721. if (a->grad) {
  3722. GGML_ASSERT(false); // TODO: implement
  3723. is_node = true;
  3724. }
  3725. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3726. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3727. result->op = GGML_OP_MEAN;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src0 = a;
  3730. result->src1 = NULL;
  3731. return result;
  3732. }
  3733. // ggml_repeat
  3734. struct ggml_tensor * ggml_repeat(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. struct ggml_tensor * b) {
  3738. GGML_ASSERT(ggml_can_repeat(a, b));
  3739. bool is_node = false;
  3740. if (a->grad) {
  3741. is_node = true;
  3742. }
  3743. if (ggml_are_same_shape(a, b) && !is_node) {
  3744. return a;
  3745. }
  3746. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3747. result->op = GGML_OP_REPEAT;
  3748. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3749. result->src0 = a;
  3750. result->src1 = b;
  3751. return result;
  3752. }
  3753. // ggml_abs
  3754. struct ggml_tensor * ggml_abs_impl(
  3755. struct ggml_context * ctx,
  3756. struct ggml_tensor * a,
  3757. bool inplace) {
  3758. bool is_node = false;
  3759. if (!inplace && (a->grad)) {
  3760. is_node = true;
  3761. }
  3762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3763. result->op = GGML_OP_ABS;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src0 = a;
  3766. result->src1 = NULL;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_abs(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a) {
  3772. return ggml_abs_impl(ctx, a, false);
  3773. }
  3774. struct ggml_tensor * ggml_abs_inplace(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a) {
  3777. return ggml_abs_impl(ctx, a, true);
  3778. }
  3779. // ggml_sgn
  3780. struct ggml_tensor * ggml_sgn_impl(
  3781. struct ggml_context * ctx,
  3782. struct ggml_tensor * a,
  3783. bool inplace) {
  3784. bool is_node = false;
  3785. if (!inplace && (a->grad)) {
  3786. is_node = true;
  3787. }
  3788. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3789. result->op = GGML_OP_SGN;
  3790. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3791. result->src0 = a;
  3792. result->src1 = NULL;
  3793. return result;
  3794. }
  3795. struct ggml_tensor * ggml_sgn(
  3796. struct ggml_context * ctx,
  3797. struct ggml_tensor * a) {
  3798. return ggml_sgn_impl(ctx, a, false);
  3799. }
  3800. struct ggml_tensor * ggml_sgn_inplace(
  3801. struct ggml_context * ctx,
  3802. struct ggml_tensor * a) {
  3803. return ggml_sgn_impl(ctx, a, true);
  3804. }
  3805. // ggml_neg
  3806. struct ggml_tensor * ggml_neg_impl(
  3807. struct ggml_context * ctx,
  3808. struct ggml_tensor * a,
  3809. bool inplace) {
  3810. bool is_node = false;
  3811. if (!inplace && (a->grad)) {
  3812. is_node = true;
  3813. }
  3814. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3815. result->op = GGML_OP_NEG;
  3816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3817. result->src0 = a;
  3818. result->src1 = NULL;
  3819. return result;
  3820. }
  3821. struct ggml_tensor * ggml_neg(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a) {
  3824. return ggml_neg_impl(ctx, a, false);
  3825. }
  3826. struct ggml_tensor * ggml_neg_inplace(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a) {
  3829. return ggml_neg_impl(ctx, a, true);
  3830. }
  3831. // ggml_step
  3832. struct ggml_tensor * ggml_step_impl(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a,
  3835. bool inplace) {
  3836. bool is_node = false;
  3837. if (!inplace && (a->grad)) {
  3838. is_node = true;
  3839. }
  3840. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3841. result->op = GGML_OP_STEP;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src0 = a;
  3844. result->src1 = NULL;
  3845. return result;
  3846. }
  3847. struct ggml_tensor * ggml_step(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a) {
  3850. return ggml_step_impl(ctx, a, false);
  3851. }
  3852. struct ggml_tensor * ggml_step_inplace(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a) {
  3855. return ggml_step_impl(ctx, a, true);
  3856. }
  3857. // ggml_relu
  3858. struct ggml_tensor * ggml_relu_impl(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a,
  3861. bool inplace) {
  3862. bool is_node = false;
  3863. if (!inplace && (a->grad)) {
  3864. is_node = true;
  3865. }
  3866. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3867. result->op = GGML_OP_RELU;
  3868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3869. result->src0 = a;
  3870. result->src1 = NULL;
  3871. return result;
  3872. }
  3873. struct ggml_tensor * ggml_relu(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a) {
  3876. return ggml_relu_impl(ctx, a, false);
  3877. }
  3878. struct ggml_tensor * ggml_relu_inplace(
  3879. struct ggml_context * ctx,
  3880. struct ggml_tensor * a) {
  3881. return ggml_relu_impl(ctx, a, true);
  3882. }
  3883. // ggml_gelu
  3884. struct ggml_tensor * ggml_gelu_impl(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a,
  3887. bool inplace) {
  3888. bool is_node = false;
  3889. if (!inplace && (a->grad)) {
  3890. is_node = true;
  3891. }
  3892. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3893. result->op = GGML_OP_GELU;
  3894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3895. result->src0 = a;
  3896. result->src1 = NULL;
  3897. return result;
  3898. }
  3899. struct ggml_tensor * ggml_gelu(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a) {
  3902. return ggml_gelu_impl(ctx, a, false);
  3903. }
  3904. struct ggml_tensor * ggml_gelu_inplace(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a) {
  3907. return ggml_gelu_impl(ctx, a, true);
  3908. }
  3909. // ggml_silu
  3910. struct ggml_tensor * ggml_silu_impl(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. bool inplace) {
  3914. bool is_node = false;
  3915. if (!inplace && (a->grad)) {
  3916. is_node = true;
  3917. }
  3918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3919. result->op = GGML_OP_SILU;
  3920. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3921. result->src0 = a;
  3922. result->src1 = NULL;
  3923. return result;
  3924. }
  3925. struct ggml_tensor * ggml_silu(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a) {
  3928. return ggml_silu_impl(ctx, a, false);
  3929. }
  3930. struct ggml_tensor * ggml_silu_inplace(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a) {
  3933. return ggml_silu_impl(ctx, a, true);
  3934. }
  3935. // ggml_norm
  3936. struct ggml_tensor * ggml_norm_impl(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. bool inplace) {
  3940. bool is_node = false;
  3941. if (!inplace && (a->grad)) {
  3942. GGML_ASSERT(false); // TODO: implement backward
  3943. is_node = true;
  3944. }
  3945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3946. result->op = GGML_OP_NORM;
  3947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3948. result->src0 = a;
  3949. result->src1 = NULL; // TODO: maybe store epsilon here?
  3950. return result;
  3951. }
  3952. struct ggml_tensor * ggml_norm(
  3953. struct ggml_context * ctx,
  3954. struct ggml_tensor * a) {
  3955. return ggml_norm_impl(ctx, a, false);
  3956. }
  3957. struct ggml_tensor * ggml_norm_inplace(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. return ggml_norm_impl(ctx, a, true);
  3961. }
  3962. struct ggml_tensor * ggml_rms_norm_impl(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. bool inplace) {
  3966. bool is_node = false;
  3967. if (!inplace && (a->grad)) {
  3968. GGML_ASSERT(false); // TODO: implement backward
  3969. is_node = true;
  3970. }
  3971. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3972. result->op = GGML_OP_RMS_NORM;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src0 = a;
  3975. result->src1 = NULL; // TODO: maybe store epsilon here?
  3976. return result;
  3977. }
  3978. struct ggml_tensor * ggml_rms_norm(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a) {
  3981. return ggml_rms_norm_impl(ctx, a, false);
  3982. }
  3983. struct ggml_tensor * ggml_rms_norm_inplace(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a) {
  3986. return ggml_rms_norm_impl(ctx, a, true);
  3987. }
  3988. // ggml_mul_mat
  3989. struct ggml_tensor * ggml_mul_mat(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. struct ggml_tensor * b) {
  3993. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3994. GGML_ASSERT(!ggml_is_transposed(a));
  3995. bool is_node = false;
  3996. if (a->grad || b->grad) {
  3997. is_node = true;
  3998. }
  3999. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4000. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4001. result->op = GGML_OP_MUL_MAT;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src0 = a;
  4004. result->src1 = b;
  4005. return result;
  4006. }
  4007. // ggml_scale
  4008. struct ggml_tensor * ggml_scale_impl(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * b,
  4012. bool inplace) {
  4013. GGML_ASSERT(ggml_is_scalar(b));
  4014. GGML_ASSERT(ggml_is_padded_1d(a));
  4015. bool is_node = false;
  4016. if (!inplace && (a->grad || b->grad)) {
  4017. GGML_ASSERT(false); // TODO: implement backward
  4018. is_node = true;
  4019. }
  4020. // TODO: when implement backward, fix this:
  4021. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4022. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4023. result->op = GGML_OP_SCALE;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = b;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_scale(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a,
  4032. struct ggml_tensor * b) {
  4033. return ggml_scale_impl(ctx, a, b, false);
  4034. }
  4035. struct ggml_tensor * ggml_scale_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a,
  4038. struct ggml_tensor * b) {
  4039. return ggml_scale_impl(ctx, a, b, true);
  4040. }
  4041. // ggml_cpy
  4042. struct ggml_tensor * ggml_cpy_impl(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. struct ggml_tensor * b,
  4046. bool inplace) {
  4047. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4048. bool is_node = false;
  4049. if (!inplace && (a->grad || b->grad)) {
  4050. GGML_ASSERT(false); // TODO: implement backward
  4051. is_node = true;
  4052. }
  4053. // make a view of the destination
  4054. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4055. result->op = GGML_OP_CPY;
  4056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4057. result->src0 = a;
  4058. result->src1 = b;
  4059. return result;
  4060. }
  4061. struct ggml_tensor * ggml_cpy(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. struct ggml_tensor * b) {
  4065. return ggml_cpy_impl(ctx, a, b, false);
  4066. }
  4067. struct ggml_tensor * ggml_cpy_inplace(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. struct ggml_tensor * b) {
  4071. return ggml_cpy_impl(ctx, a, b, true);
  4072. }
  4073. // ggml_cont
  4074. struct ggml_tensor * ggml_cont_impl(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. bool inplace) {
  4078. bool is_node = false;
  4079. if (!inplace && a->grad) {
  4080. GGML_ASSERT(false); // TODO: implement backward
  4081. is_node = true;
  4082. }
  4083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4084. result->op = GGML_OP_CONT;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src0 = a;
  4087. result->src1 = NULL;
  4088. return result;
  4089. }
  4090. struct ggml_tensor * ggml_cont(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. return ggml_cont_impl(ctx, a, false);
  4094. }
  4095. struct ggml_tensor * ggml_cont_inplace(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a) {
  4098. return ggml_cont_impl(ctx, a, true);
  4099. }
  4100. // ggml_reshape
  4101. struct ggml_tensor * ggml_reshape(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. GGML_ASSERT(ggml_is_contiguous(a));
  4106. GGML_ASSERT(ggml_is_contiguous(b));
  4107. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4108. bool is_node = false;
  4109. if (a->grad || b->grad) {
  4110. GGML_ASSERT(false); // TODO: implement backward
  4111. is_node = true;
  4112. }
  4113. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4114. result->op = GGML_OP_RESHAPE;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src0 = a;
  4117. result->src1 = NULL;
  4118. return result;
  4119. }
  4120. struct ggml_tensor * ggml_reshape_2d(
  4121. struct ggml_context * ctx,
  4122. struct ggml_tensor * a,
  4123. int64_t ne0,
  4124. int64_t ne1) {
  4125. GGML_ASSERT(ggml_is_contiguous(a));
  4126. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4127. bool is_node = false;
  4128. if (a->grad) {
  4129. GGML_ASSERT(false); // TODO: implement backward
  4130. is_node = true;
  4131. }
  4132. const int64_t ne[2] = { ne0, ne1 };
  4133. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4134. result->op = GGML_OP_RESHAPE;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src0 = a;
  4137. result->src1 = NULL;
  4138. return result;
  4139. }
  4140. struct ggml_tensor * ggml_reshape_3d(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. int64_t ne0,
  4144. int64_t ne1,
  4145. int64_t ne2) {
  4146. GGML_ASSERT(ggml_is_contiguous(a));
  4147. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4148. bool is_node = false;
  4149. if (a->grad) {
  4150. GGML_ASSERT(false); // TODO: implement backward
  4151. is_node = true;
  4152. }
  4153. const int64_t ne[3] = { ne0, ne1, ne2 };
  4154. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4155. result->op = GGML_OP_RESHAPE;
  4156. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4157. result->src0 = a;
  4158. result->src1 = NULL;
  4159. return result;
  4160. }
  4161. // ggml_view_1d
  4162. struct ggml_tensor * ggml_view_1d(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. int64_t ne0,
  4166. size_t offset) {
  4167. if (a->grad) {
  4168. GGML_ASSERT(false); // gradient propagation is not supported
  4169. }
  4170. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4171. result->op = GGML_OP_VIEW;
  4172. result->grad = NULL;
  4173. result->src0 = a;
  4174. result->src1 = NULL; // TODO: maybe store the offset here?
  4175. return result;
  4176. }
  4177. // ggml_view_2d
  4178. struct ggml_tensor * ggml_view_2d(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. int64_t ne0,
  4182. int64_t ne1,
  4183. size_t nb1,
  4184. size_t offset) {
  4185. if (a->grad) {
  4186. GGML_ASSERT(false); // gradient propagation is not supported
  4187. }
  4188. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4189. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4190. result->nb[1] = nb1;
  4191. result->nb[2] = result->nb[1]*ne1;
  4192. result->nb[3] = result->nb[2];
  4193. result->op = GGML_OP_VIEW;
  4194. result->grad = NULL;
  4195. result->src0 = a;
  4196. result->src1 = NULL; // TODO: maybe store the offset here?
  4197. return result;
  4198. }
  4199. // ggml_view_3d
  4200. struct ggml_tensor * ggml_view_3d(
  4201. struct ggml_context * ctx,
  4202. struct ggml_tensor * a,
  4203. int64_t ne0,
  4204. int64_t ne1,
  4205. int64_t ne2,
  4206. size_t nb1,
  4207. size_t nb2,
  4208. size_t offset) {
  4209. if (a->grad) {
  4210. GGML_ASSERT(false); // gradient propagation is not supported
  4211. }
  4212. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4213. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4214. result->nb[1] = nb1;
  4215. result->nb[2] = nb2;
  4216. result->nb[3] = result->nb[2]*ne2;
  4217. result->op = GGML_OP_VIEW;
  4218. result->grad = NULL;
  4219. result->src0 = a;
  4220. result->src1 = NULL; // TODO: maybe store the offset here?
  4221. return result;
  4222. }
  4223. // ggml_permute
  4224. struct ggml_tensor * ggml_permute(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. int axis0,
  4228. int axis1,
  4229. int axis2,
  4230. int axis3) {
  4231. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4232. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4233. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4234. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4235. GGML_ASSERT(axis0 != axis1);
  4236. GGML_ASSERT(axis0 != axis2);
  4237. GGML_ASSERT(axis0 != axis3);
  4238. GGML_ASSERT(axis1 != axis2);
  4239. GGML_ASSERT(axis1 != axis3);
  4240. GGML_ASSERT(axis2 != axis3);
  4241. bool is_node = false;
  4242. if (a->grad) {
  4243. GGML_ASSERT(false); // TODO: implement backward
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4247. int ne[GGML_MAX_DIMS];
  4248. int nb[GGML_MAX_DIMS];
  4249. ne[axis0] = a->ne[0];
  4250. ne[axis1] = a->ne[1];
  4251. ne[axis2] = a->ne[2];
  4252. ne[axis3] = a->ne[3];
  4253. nb[axis0] = a->nb[0];
  4254. nb[axis1] = a->nb[1];
  4255. nb[axis2] = a->nb[2];
  4256. nb[axis3] = a->nb[3];
  4257. result->ne[0] = ne[0];
  4258. result->ne[1] = ne[1];
  4259. result->ne[2] = ne[2];
  4260. result->ne[3] = ne[3];
  4261. result->nb[0] = nb[0];
  4262. result->nb[1] = nb[1];
  4263. result->nb[2] = nb[2];
  4264. result->nb[3] = nb[3];
  4265. result->op = GGML_OP_PERMUTE;
  4266. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4267. result->src0 = a;
  4268. result->src1 = NULL; // TODO: maybe store the permutation here?
  4269. return result;
  4270. }
  4271. // ggml_transpose
  4272. struct ggml_tensor * ggml_transpose(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. bool is_node = false;
  4276. if (a->grad) {
  4277. GGML_ASSERT(false); // TODO: implement backward
  4278. is_node = true;
  4279. }
  4280. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4281. result->ne[0] = a->ne[1];
  4282. result->ne[1] = a->ne[0];
  4283. result->nb[0] = a->nb[1];
  4284. result->nb[1] = a->nb[0];
  4285. result->op = GGML_OP_TRANSPOSE;
  4286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4287. result->src0 = a;
  4288. result->src1 = NULL;
  4289. return result;
  4290. }
  4291. // ggml_get_rows
  4292. struct ggml_tensor * ggml_get_rows(
  4293. struct ggml_context * ctx,
  4294. struct ggml_tensor * a,
  4295. struct ggml_tensor * b) {
  4296. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4297. bool is_node = false;
  4298. if (a->grad || b->grad) {
  4299. GGML_ASSERT(false); // TODO: implement backward
  4300. is_node = true;
  4301. }
  4302. // TODO: implement non F32 return
  4303. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4304. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4305. result->op = GGML_OP_GET_ROWS;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src0 = a;
  4308. result->src1 = b;
  4309. return result;
  4310. }
  4311. // ggml_diag_mask_inf
  4312. struct ggml_tensor * ggml_diag_mask_inf(
  4313. struct ggml_context * ctx,
  4314. struct ggml_tensor * a,
  4315. int n_past) {
  4316. bool is_node = false;
  4317. if (a->grad) {
  4318. GGML_ASSERT(false); // TODO: implement backward
  4319. is_node = true;
  4320. }
  4321. // TODO: when implement backward, fix this:
  4322. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4323. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4324. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4325. result->op = GGML_OP_DIAG_MASK_INF;
  4326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4327. result->src0 = a;
  4328. result->src1 = b;
  4329. return result;
  4330. }
  4331. // ggml_soft_max
  4332. struct ggml_tensor * ggml_soft_max(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. bool is_node = false;
  4336. if (a->grad) {
  4337. GGML_ASSERT(false); // TODO: implement backward
  4338. is_node = true;
  4339. }
  4340. // TODO: when implement backward, fix this:
  4341. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4342. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4343. result->op = GGML_OP_SOFT_MAX;
  4344. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4345. result->src0 = a;
  4346. result->src1 = NULL;
  4347. return result;
  4348. }
  4349. // ggml_rope
  4350. struct ggml_tensor * ggml_rope(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. int n_past,
  4354. int n_dims,
  4355. int mode) {
  4356. GGML_ASSERT(n_past >= 0);
  4357. bool is_node = false;
  4358. if (a->grad) {
  4359. GGML_ASSERT(false); // TODO: implement backward
  4360. is_node = true;
  4361. }
  4362. // TODO: when implement backward, fix this:
  4363. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4364. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4365. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4366. ((int32_t *) b->data)[0] = n_past;
  4367. ((int32_t *) b->data)[1] = n_dims;
  4368. ((int32_t *) b->data)[2] = mode;
  4369. result->op = GGML_OP_ROPE;
  4370. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4371. result->src0 = a;
  4372. result->src1 = b;
  4373. return result;
  4374. }
  4375. // ggml_conv_1d_1s
  4376. struct ggml_tensor * ggml_conv_1d_1s(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b) {
  4380. GGML_ASSERT(ggml_is_matrix(b));
  4381. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4382. GGML_ASSERT(a->ne[3] == 1);
  4383. bool is_node = false;
  4384. if (a->grad || b->grad) {
  4385. GGML_ASSERT(false); // TODO: implement backward
  4386. is_node = true;
  4387. }
  4388. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4389. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4390. result->op = GGML_OP_CONV_1D_1S;
  4391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4392. result->src0 = a;
  4393. result->src1 = b;
  4394. return result;
  4395. }
  4396. // ggml_conv_1d_2s
  4397. struct ggml_tensor * ggml_conv_1d_2s(
  4398. struct ggml_context * ctx,
  4399. struct ggml_tensor * a,
  4400. struct ggml_tensor * b) {
  4401. GGML_ASSERT(ggml_is_matrix(b));
  4402. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4403. GGML_ASSERT(a->ne[3] == 1);
  4404. bool is_node = false;
  4405. if (a->grad || b->grad) {
  4406. GGML_ASSERT(false); // TODO: implement backward
  4407. is_node = true;
  4408. }
  4409. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4410. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4411. result->op = GGML_OP_CONV_1D_2S;
  4412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4413. result->src0 = a;
  4414. result->src1 = b;
  4415. return result;
  4416. }
  4417. // ggml_flash_attn
  4418. struct ggml_tensor * ggml_flash_attn(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * q,
  4421. struct ggml_tensor * k,
  4422. struct ggml_tensor * v,
  4423. bool masked) {
  4424. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4425. // TODO: check if vT can be multiplied by (k*qT)
  4426. bool is_node = false;
  4427. if (q->grad || k->grad || v->grad) {
  4428. GGML_ASSERT(false); // TODO: implement backward
  4429. is_node = true;
  4430. }
  4431. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4432. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4433. result->op = GGML_OP_FLASH_ATTN;
  4434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4435. result->src0 = q;
  4436. result->src1 = k;
  4437. result->opt[0] = v;
  4438. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4439. return result;
  4440. }
  4441. // ggml_flash_ff
  4442. struct ggml_tensor * ggml_flash_ff(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a,
  4445. struct ggml_tensor * b0,
  4446. struct ggml_tensor * b1,
  4447. struct ggml_tensor * c0,
  4448. struct ggml_tensor * c1) {
  4449. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4450. // TODO: more checks
  4451. bool is_node = false;
  4452. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4453. GGML_ASSERT(false); // TODO: implement backward
  4454. is_node = true;
  4455. }
  4456. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4458. result->op = GGML_OP_FLASH_FF;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src0 = a;
  4461. result->src1 = b0;
  4462. result->opt[0] = b1;
  4463. result->opt[1] = c0;
  4464. result->opt[2] = c1;
  4465. return result;
  4466. }
  4467. // ggml_map_unary
  4468. struct ggml_tensor * ggml_map_unary_impl_f32(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. const ggml_unary_op_f32_t fun,
  4472. bool inplace) {
  4473. bool is_node = false;
  4474. if (!inplace && a->grad) {
  4475. is_node = true;
  4476. }
  4477. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4478. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4479. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4480. result->op = GGML_OP_MAP_UNARY;
  4481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4482. result->src0 = a;
  4483. result->opt[0] = addr_tensor;
  4484. return result;
  4485. }
  4486. struct ggml_tensor * ggml_map_unary_f32(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. const ggml_unary_op_f32_t fun) {
  4490. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4491. }
  4492. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * a,
  4495. const ggml_unary_op_f32_t fun) {
  4496. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4497. }
  4498. // ggml_map_binary
  4499. struct ggml_tensor * ggml_map_binary_impl_f32(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. struct ggml_tensor * b,
  4503. const ggml_binary_op_f32_t fun,
  4504. bool inplace) {
  4505. GGML_ASSERT(ggml_are_same_shape(a, b));
  4506. bool is_node = false;
  4507. if (!inplace && (a->grad || b->grad)) {
  4508. is_node = true;
  4509. }
  4510. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4511. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4512. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4513. result->op = GGML_OP_MAP_BINARY;
  4514. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4515. result->src0 = a;
  4516. result->src1 = b;
  4517. result->opt[0] = addr_tensor;
  4518. return result;
  4519. }
  4520. struct ggml_tensor * ggml_map_binary_f32(
  4521. struct ggml_context * ctx,
  4522. struct ggml_tensor * a,
  4523. struct ggml_tensor * b,
  4524. const ggml_binary_op_f32_t fun) {
  4525. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4526. }
  4527. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. struct ggml_tensor * b,
  4531. const ggml_binary_op_f32_t fun) {
  4532. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4533. }
  4534. ////////////////////////////////////////////////////////////////////////////////
  4535. void ggml_set_param(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * tensor) {
  4538. tensor->is_param = true;
  4539. GGML_ASSERT(tensor->grad == NULL);
  4540. tensor->grad = ggml_dup_tensor(ctx, tensor);
  4541. }
  4542. // ggml_compute_forward_dup
  4543. static void ggml_compute_forward_dup_f16(
  4544. const struct ggml_compute_params * params,
  4545. const struct ggml_tensor * src0,
  4546. struct ggml_tensor * dst) {
  4547. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4549. return;
  4550. }
  4551. const int64_t ne00 = src0->ne[0];
  4552. const int64_t ne01 = src0->ne[1];
  4553. const int64_t ne02 = src0->ne[2];
  4554. const int64_t ne03 = src0->ne[3];
  4555. const int64_t ne0 = dst->ne[0];
  4556. const int64_t ne1 = dst->ne[1];
  4557. const int64_t ne2 = dst->ne[2];
  4558. const int64_t ne3 = dst->ne[3];
  4559. const size_t nb00 = src0->nb[0];
  4560. const size_t nb01 = src0->nb[1];
  4561. const size_t nb02 = src0->nb[2];
  4562. const size_t nb03 = src0->nb[3];
  4563. const size_t nb0 = dst->nb[0];
  4564. const size_t nb1 = dst->nb[1];
  4565. const size_t nb2 = dst->nb[2];
  4566. const size_t nb3 = dst->nb[3];
  4567. const int ith = params->ith; // thread index
  4568. const int nth = params->nth; // number of threads
  4569. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4570. // parallelize by elements
  4571. const int ne = ggml_nelements(dst);
  4572. const int dr = (ne + nth - 1) / nth;
  4573. const int ie0 = dr * ith;
  4574. const int ie1 = MIN(ie0 + dr, ne);
  4575. memcpy(
  4576. ((char *) dst->data + ie0*nb0),
  4577. ((char *) src0->data + ie0*nb00),
  4578. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4579. return;
  4580. }
  4581. // parallelize by rows
  4582. const int nr = ne01;
  4583. // number of rows per thread
  4584. const int dr = (nr + nth - 1) / nth;
  4585. // row range for this thread
  4586. const int ir0 = dr * ith;
  4587. const int ir1 = MIN(ir0 + dr, nr);
  4588. if (src0->type == dst->type &&
  4589. ne00 == ne0 &&
  4590. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4591. // copy by rows
  4592. const size_t rs = ne00*nb00;
  4593. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4594. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4595. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4596. memcpy(
  4597. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4598. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4599. rs);
  4600. }
  4601. }
  4602. }
  4603. return;
  4604. }
  4605. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  4606. if (ggml_is_contiguous(dst)) {
  4607. if (nb00 == sizeof(ggml_fp16_t)) {
  4608. if (dst->type == GGML_TYPE_F16) {
  4609. size_t id = 0;
  4610. const size_t rs = ne00 * nb00;
  4611. char * dst_ptr = (char *) dst->data;
  4612. for (int i03 = 0; i03 < ne03; i03++) {
  4613. for (int i02 = 0; i02 < ne02; i02++) {
  4614. id += rs * ir0;
  4615. for (int i01 = ir0; i01 < ir1; i01++) {
  4616. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4617. memcpy(dst_ptr + id, src0_ptr, rs);
  4618. id += rs;
  4619. }
  4620. id += rs * (ne01 - ir1);
  4621. }
  4622. }
  4623. } else if (dst->type == GGML_TYPE_F32) {
  4624. size_t id = 0;
  4625. float * dst_ptr = (float *) dst->data;
  4626. for (int i03 = 0; i03 < ne03; i03++) {
  4627. for (int i02 = 0; i02 < ne02; i02++) {
  4628. id += ne00 * ir0;
  4629. for (int i01 = ir0; i01 < ir1; i01++) {
  4630. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4631. for (int i00 = 0; i00 < ne00; i00++) {
  4632. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4633. id++;
  4634. }
  4635. }
  4636. id += ne00 * (ne01 - ir1);
  4637. }
  4638. }
  4639. } else if (ggml_is_quantized(dst->type)) {
  4640. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4641. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  4642. size_t id = 0;
  4643. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4644. char * dst_ptr = (char *) dst->data;
  4645. for (int i03 = 0; i03 < ne03; i03++) {
  4646. for (int i02 = 0; i02 < ne02; i02++) {
  4647. id += rs * ir0;
  4648. for (int i01 = ir0; i01 < ir1; i01++) {
  4649. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4650. for (int i00 = 0; i00 < ne00; i00++) {
  4651. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  4652. }
  4653. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  4654. id += rs;
  4655. }
  4656. id += rs * (ne01 - ir1);
  4657. }
  4658. }
  4659. } else {
  4660. GGML_ASSERT(false); // TODO: implement
  4661. }
  4662. } else {
  4663. //printf("%s: this is not optimal - fix me\n", __func__);
  4664. if (dst->type == GGML_TYPE_F32) {
  4665. size_t id = 0;
  4666. float * dst_ptr = (float *) dst->data;
  4667. for (int i03 = 0; i03 < ne03; i03++) {
  4668. for (int i02 = 0; i02 < ne02; i02++) {
  4669. id += ne00 * ir0;
  4670. for (int i01 = ir0; i01 < ir1; i01++) {
  4671. for (int i00 = 0; i00 < ne00; i00++) {
  4672. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4673. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  4674. id++;
  4675. }
  4676. }
  4677. id += ne00 * (ne01 - ir1);
  4678. }
  4679. }
  4680. } else if (dst->type == GGML_TYPE_F16) {
  4681. size_t id = 0;
  4682. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4683. for (int i03 = 0; i03 < ne03; i03++) {
  4684. for (int i02 = 0; i02 < ne02; i02++) {
  4685. id += ne00 * ir0;
  4686. for (int i01 = ir0; i01 < ir1; i01++) {
  4687. for (int i00 = 0; i00 < ne00; i00++) {
  4688. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4689. dst_ptr[id] = *src0_ptr;
  4690. id++;
  4691. }
  4692. }
  4693. id += ne00 * (ne01 - ir1);
  4694. }
  4695. }
  4696. } else {
  4697. GGML_ASSERT(false); // TODO: implement
  4698. }
  4699. }
  4700. return;
  4701. }
  4702. // dst counters
  4703. int64_t i10 = 0;
  4704. int64_t i11 = 0;
  4705. int64_t i12 = 0;
  4706. int64_t i13 = 0;
  4707. if (dst->type == GGML_TYPE_F16) {
  4708. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4709. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4710. i10 += ne00 * ir0;
  4711. while (i10 >= ne0) {
  4712. i10 -= ne0;
  4713. if (++i11 == ne1) {
  4714. i11 = 0;
  4715. if (++i12 == ne2) {
  4716. i12 = 0;
  4717. if (++i13 == ne3) {
  4718. i13 = 0;
  4719. }
  4720. }
  4721. }
  4722. }
  4723. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4724. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4725. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4726. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4727. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  4728. if (++i10 == ne00) {
  4729. i10 = 0;
  4730. if (++i11 == ne01) {
  4731. i11 = 0;
  4732. if (++i12 == ne02) {
  4733. i12 = 0;
  4734. if (++i13 == ne03) {
  4735. i13 = 0;
  4736. }
  4737. }
  4738. }
  4739. }
  4740. }
  4741. }
  4742. i10 += ne00 * (ne01 - ir1);
  4743. while (i10 >= ne0) {
  4744. i10 -= ne0;
  4745. if (++i11 == ne1) {
  4746. i11 = 0;
  4747. if (++i12 == ne2) {
  4748. i12 = 0;
  4749. if (++i13 == ne3) {
  4750. i13 = 0;
  4751. }
  4752. }
  4753. }
  4754. }
  4755. }
  4756. }
  4757. } else if (dst->type == GGML_TYPE_F32) {
  4758. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4759. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4760. i10 += ne00 * ir0;
  4761. while (i10 >= ne0) {
  4762. i10 -= ne0;
  4763. if (++i11 == ne1) {
  4764. i11 = 0;
  4765. if (++i12 == ne2) {
  4766. i12 = 0;
  4767. if (++i13 == ne3) {
  4768. i13 = 0;
  4769. }
  4770. }
  4771. }
  4772. }
  4773. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4774. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4775. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4776. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4777. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  4778. if (++i10 == ne0) {
  4779. i10 = 0;
  4780. if (++i11 == ne1) {
  4781. i11 = 0;
  4782. if (++i12 == ne2) {
  4783. i12 = 0;
  4784. if (++i13 == ne3) {
  4785. i13 = 0;
  4786. }
  4787. }
  4788. }
  4789. }
  4790. }
  4791. }
  4792. i10 += ne00 * (ne01 - ir1);
  4793. while (i10 >= ne0) {
  4794. i10 -= ne0;
  4795. if (++i11 == ne1) {
  4796. i11 = 0;
  4797. if (++i12 == ne2) {
  4798. i12 = 0;
  4799. if (++i13 == ne3) {
  4800. i13 = 0;
  4801. }
  4802. }
  4803. }
  4804. }
  4805. }
  4806. }
  4807. } else {
  4808. GGML_ASSERT(false); // TODO: implement
  4809. }
  4810. }
  4811. static void ggml_compute_forward_dup_f32(
  4812. const struct ggml_compute_params * params,
  4813. const struct ggml_tensor * src0,
  4814. struct ggml_tensor * dst) {
  4815. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  4816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4817. return;
  4818. }
  4819. const int64_t ne00 = src0->ne[0];
  4820. const int64_t ne01 = src0->ne[1];
  4821. const int64_t ne02 = src0->ne[2];
  4822. const int64_t ne03 = src0->ne[3];
  4823. const int64_t ne0 = dst->ne[0];
  4824. const int64_t ne1 = dst->ne[1];
  4825. const int64_t ne2 = dst->ne[2];
  4826. const int64_t ne3 = dst->ne[3];
  4827. const size_t nb00 = src0->nb[0];
  4828. const size_t nb01 = src0->nb[1];
  4829. const size_t nb02 = src0->nb[2];
  4830. const size_t nb03 = src0->nb[3];
  4831. const size_t nb0 = dst->nb[0];
  4832. const size_t nb1 = dst->nb[1];
  4833. const size_t nb2 = dst->nb[2];
  4834. const size_t nb3 = dst->nb[3];
  4835. const int ith = params->ith; // thread index
  4836. const int nth = params->nth; // number of threads
  4837. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  4838. // parallelize by elements
  4839. const int ne = ggml_nelements(dst);
  4840. const int dr = (ne + nth - 1) / nth;
  4841. const int ie0 = dr * ith;
  4842. const int ie1 = MIN(ie0 + dr, ne);
  4843. memcpy(
  4844. ((char *) dst->data + ie0*nb0),
  4845. ((char *) src0->data + ie0*nb00),
  4846. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  4847. return;
  4848. }
  4849. // parallelize by rows
  4850. const int nr = ne01;
  4851. // number of rows per thread
  4852. const int dr = (nr + nth - 1) / nth;
  4853. // row range for this thread
  4854. const int ir0 = dr * ith;
  4855. const int ir1 = MIN(ir0 + dr, nr);
  4856. if (src0->type == dst->type &&
  4857. ne00 == ne0 &&
  4858. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  4859. // copy by rows
  4860. const size_t rs = ne00*nb00;
  4861. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4862. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4863. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4864. memcpy(
  4865. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4866. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  4867. rs);
  4868. }
  4869. }
  4870. }
  4871. return;
  4872. }
  4873. if (ggml_is_contiguous(dst)) {
  4874. // TODO: simplify
  4875. if (nb00 == sizeof(float)) {
  4876. if (dst->type == GGML_TYPE_F32) {
  4877. size_t id = 0;
  4878. const size_t rs = ne00 * nb00;
  4879. char * dst_ptr = (char *) dst->data;
  4880. for (int i03 = 0; i03 < ne03; i03++) {
  4881. for (int i02 = 0; i02 < ne02; i02++) {
  4882. id += rs * ir0;
  4883. for (int i01 = ir0; i01 < ir1; i01++) {
  4884. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  4885. memcpy(dst_ptr + id, src0_ptr, rs);
  4886. id += rs;
  4887. }
  4888. id += rs * (ne01 - ir1);
  4889. }
  4890. }
  4891. } else if (dst->type == GGML_TYPE_F16) {
  4892. size_t id = 0;
  4893. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4894. for (int i03 = 0; i03 < ne03; i03++) {
  4895. for (int i02 = 0; i02 < ne02; i02++) {
  4896. id += ne00 * ir0;
  4897. for (int i01 = ir0; i01 < ir1; i01++) {
  4898. for (int i00 = 0; i00 < ne00; i00++) {
  4899. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4900. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4901. id++;
  4902. }
  4903. }
  4904. id += ne00 * (ne01 - ir1);
  4905. }
  4906. }
  4907. } else if (ggml_is_quantized(dst->type)) {
  4908. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  4909. size_t id = 0;
  4910. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  4911. char * dst_ptr = (char *) dst->data;
  4912. for (int i03 = 0; i03 < ne03; i03++) {
  4913. for (int i02 = 0; i02 < ne02; i02++) {
  4914. id += rs * ir0;
  4915. for (int i01 = ir0; i01 < ir1; i01++) {
  4916. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4917. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  4918. id += rs;
  4919. }
  4920. id += rs * (ne01 - ir1);
  4921. }
  4922. }
  4923. } else {
  4924. GGML_ASSERT(false); // TODO: implement
  4925. }
  4926. } else {
  4927. //printf("%s: this is not optimal - fix me\n", __func__);
  4928. if (dst->type == GGML_TYPE_F32) {
  4929. size_t id = 0;
  4930. float * dst_ptr = (float *) dst->data;
  4931. for (int i03 = 0; i03 < ne03; i03++) {
  4932. for (int i02 = 0; i02 < ne02; i02++) {
  4933. id += ne00 * ir0;
  4934. for (int i01 = ir0; i01 < ir1; i01++) {
  4935. for (int i00 = 0; i00 < ne00; i00++) {
  4936. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4937. dst_ptr[id] = *src0_ptr;
  4938. id++;
  4939. }
  4940. }
  4941. id += ne00 * (ne01 - ir1);
  4942. }
  4943. }
  4944. } else if (dst->type == GGML_TYPE_F16) {
  4945. size_t id = 0;
  4946. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4947. for (int i03 = 0; i03 < ne03; i03++) {
  4948. for (int i02 = 0; i02 < ne02; i02++) {
  4949. id += ne00 * ir0;
  4950. for (int i01 = ir0; i01 < ir1; i01++) {
  4951. for (int i00 = 0; i00 < ne00; i00++) {
  4952. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4953. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4954. id++;
  4955. }
  4956. }
  4957. id += ne00 * (ne01 - ir1);
  4958. }
  4959. }
  4960. } else {
  4961. GGML_ASSERT(false); // TODO: implement
  4962. }
  4963. }
  4964. return;
  4965. }
  4966. // dst counters
  4967. int64_t i10 = 0;
  4968. int64_t i11 = 0;
  4969. int64_t i12 = 0;
  4970. int64_t i13 = 0;
  4971. if (dst->type == GGML_TYPE_F32) {
  4972. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4973. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4974. i10 += ne00 * ir0;
  4975. while (i10 >= ne0) {
  4976. i10 -= ne0;
  4977. if (++i11 == ne1) {
  4978. i11 = 0;
  4979. if (++i12 == ne2) {
  4980. i12 = 0;
  4981. if (++i13 == ne3) {
  4982. i13 = 0;
  4983. }
  4984. }
  4985. }
  4986. }
  4987. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  4988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4989. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4990. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  4991. memcpy(dst_ptr, src0_ptr, sizeof(float));
  4992. if (++i10 == ne0) {
  4993. i10 = 0;
  4994. if (++i11 == ne1) {
  4995. i11 = 0;
  4996. if (++i12 == ne2) {
  4997. i12 = 0;
  4998. if (++i13 == ne3) {
  4999. i13 = 0;
  5000. }
  5001. }
  5002. }
  5003. }
  5004. }
  5005. }
  5006. i10 += ne00 * (ne01 - ir1);
  5007. while (i10 >= ne0) {
  5008. i10 -= ne0;
  5009. if (++i11 == ne1) {
  5010. i11 = 0;
  5011. if (++i12 == ne2) {
  5012. i12 = 0;
  5013. if (++i13 == ne3) {
  5014. i13 = 0;
  5015. }
  5016. }
  5017. }
  5018. }
  5019. }
  5020. }
  5021. } else if (dst->type == GGML_TYPE_F16) {
  5022. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5023. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5024. i10 += ne00 * ir0;
  5025. while (i10 >= ne0) {
  5026. i10 -= ne0;
  5027. if (++i11 == ne1) {
  5028. i11 = 0;
  5029. if (++i12 == ne2) {
  5030. i12 = 0;
  5031. if (++i13 == ne3) {
  5032. i13 = 0;
  5033. }
  5034. }
  5035. }
  5036. }
  5037. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5038. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5039. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5040. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5041. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5042. if (++i10 == ne0) {
  5043. i10 = 0;
  5044. if (++i11 == ne1) {
  5045. i11 = 0;
  5046. if (++i12 == ne2) {
  5047. i12 = 0;
  5048. if (++i13 == ne3) {
  5049. i13 = 0;
  5050. }
  5051. }
  5052. }
  5053. }
  5054. }
  5055. }
  5056. i10 += ne00 * (ne01 - ir1);
  5057. while (i10 >= ne0) {
  5058. i10 -= ne0;
  5059. if (++i11 == ne1) {
  5060. i11 = 0;
  5061. if (++i12 == ne2) {
  5062. i12 = 0;
  5063. if (++i13 == ne3) {
  5064. i13 = 0;
  5065. }
  5066. }
  5067. }
  5068. }
  5069. }
  5070. }
  5071. } else {
  5072. GGML_ASSERT(false); // TODO: implement
  5073. }
  5074. }
  5075. static void ggml_compute_forward_dup(
  5076. const struct ggml_compute_params * params,
  5077. const struct ggml_tensor * src0,
  5078. struct ggml_tensor * dst) {
  5079. switch (src0->type) {
  5080. case GGML_TYPE_F16:
  5081. {
  5082. ggml_compute_forward_dup_f16(params, src0, dst);
  5083. } break;
  5084. case GGML_TYPE_F32:
  5085. {
  5086. ggml_compute_forward_dup_f32(params, src0, dst);
  5087. } break;
  5088. default:
  5089. {
  5090. GGML_ASSERT(false);
  5091. } break;
  5092. }
  5093. }
  5094. // ggml_compute_forward_add
  5095. static void ggml_compute_forward_add_f32(
  5096. const struct ggml_compute_params * params,
  5097. const struct ggml_tensor * src0,
  5098. const struct ggml_tensor * src1,
  5099. struct ggml_tensor * dst) {
  5100. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5102. return;
  5103. }
  5104. const int ith = params->ith;
  5105. const int nth = params->nth;
  5106. const int n = ggml_nrows(src0);
  5107. const int nc = src0->ne[0];
  5108. const size_t nb00 = src0->nb[0];
  5109. const size_t nb01 = src0->nb[1];
  5110. const size_t nb10 = src1->nb[0];
  5111. const size_t nb11 = src1->nb[1];
  5112. const size_t nb0 = dst->nb[0];
  5113. const size_t nb1 = dst->nb[1];
  5114. GGML_ASSERT( nb0 == sizeof(float));
  5115. GGML_ASSERT(nb00 == sizeof(float));
  5116. if (nb10 == sizeof(float)) {
  5117. for (int j = ith; j < n; j += nth) {
  5118. #ifdef GGML_USE_ACCELERATE
  5119. vDSP_vadd(
  5120. (float *) ((char *) src0->data + j*nb01), 1,
  5121. (float *) ((char *) src1->data + j*nb11), 1,
  5122. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5123. #else
  5124. ggml_vec_add_f32(nc,
  5125. (float *) ((char *) dst->data + j*nb1),
  5126. (float *) ((char *) src0->data + j*nb01),
  5127. (float *) ((char *) src1->data + j*nb11));
  5128. #endif
  5129. }
  5130. } else {
  5131. // src1 is not contiguous
  5132. for (int j = ith; j < n; j += nth) {
  5133. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5134. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5135. for (int i = 0; i < nc; i++) {
  5136. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5137. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5138. }
  5139. }
  5140. }
  5141. }
  5142. static void ggml_compute_forward_add_f16_f32(
  5143. const struct ggml_compute_params * params,
  5144. const struct ggml_tensor * src0,
  5145. const struct ggml_tensor * src1,
  5146. struct ggml_tensor * dst) {
  5147. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5149. return;
  5150. }
  5151. const int ith = params->ith;
  5152. const int nth = params->nth;
  5153. const int n = ggml_nrows(src0);
  5154. const int nc = src0->ne[0];
  5155. const size_t nb00 = src0->nb[0];
  5156. const size_t nb01 = src0->nb[1];
  5157. const size_t nb10 = src1->nb[0];
  5158. const size_t nb11 = src1->nb[1];
  5159. const size_t nb0 = dst->nb[0];
  5160. const size_t nb1 = dst->nb[1];
  5161. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5162. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5163. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5164. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5165. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5166. if (nb10 == sizeof(float)) {
  5167. for (int j = ith; j < n; j += nth) {
  5168. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5169. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5170. for (int i = 0; i < nc; i++) {
  5171. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5172. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5173. }
  5174. }
  5175. }
  5176. else {
  5177. // src1 is not contiguous
  5178. GGML_ASSERT(false);
  5179. }
  5180. }
  5181. static void ggml_compute_forward_add_f16_f16(
  5182. const struct ggml_compute_params * params,
  5183. const struct ggml_tensor * src0,
  5184. const struct ggml_tensor * src1,
  5185. struct ggml_tensor * dst) {
  5186. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5187. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5188. return;
  5189. }
  5190. const int ith = params->ith;
  5191. const int nth = params->nth;
  5192. const int n = ggml_nrows(src0);
  5193. const int nc = src0->ne[0];
  5194. const size_t nb00 = src0->nb[0];
  5195. const size_t nb01 = src0->nb[1];
  5196. const size_t nb10 = src1->nb[0];
  5197. const size_t nb11 = src1->nb[1];
  5198. const size_t nb0 = dst->nb[0];
  5199. const size_t nb1 = dst->nb[1];
  5200. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5201. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5202. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5203. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5204. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5205. if (nb10 == sizeof(ggml_fp16_t)) {
  5206. for (int j = ith; j < n; j += nth) {
  5207. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5208. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5209. for (int i = 0; i < nc; i++) {
  5210. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5211. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5212. }
  5213. }
  5214. }
  5215. else {
  5216. // src1 is not contiguous
  5217. GGML_ASSERT(false);
  5218. }
  5219. }
  5220. static void ggml_compute_forward_add_q_f32(
  5221. const struct ggml_compute_params * params,
  5222. const struct ggml_tensor * src0,
  5223. const struct ggml_tensor * src1,
  5224. struct ggml_tensor * dst) {
  5225. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5227. return;
  5228. }
  5229. const int64_t ne00 = src0->ne[0];
  5230. const int64_t ne01 = src0->ne[1];
  5231. const int64_t ne02 = src0->ne[2];
  5232. const int64_t ne03 = src0->ne[3];
  5233. //const int64_t ne10 = src1->ne[0];
  5234. //const int64_t ne11 = src1->ne[1];
  5235. const int64_t ne12 = src1->ne[2];
  5236. const int64_t ne13 = src1->ne[3];
  5237. //const int64_t ne0 = dst->ne[0];
  5238. //const int64_t ne1 = dst->ne[1];
  5239. const int64_t ne2 = dst->ne[2];
  5240. const int64_t ne3 = dst->ne[3];
  5241. const int nb00 = src0->nb[0];
  5242. const int nb01 = src0->nb[1];
  5243. const int nb02 = src0->nb[2];
  5244. const int nb03 = src0->nb[3];
  5245. const int nb10 = src1->nb[0];
  5246. const int nb11 = src1->nb[1];
  5247. const int nb12 = src1->nb[2];
  5248. const int nb13 = src1->nb[3];
  5249. const int nb0 = dst->nb[0];
  5250. const int nb1 = dst->nb[1];
  5251. const int nb2 = dst->nb[2];
  5252. const int nb3 = dst->nb[3];
  5253. const int ith = params->ith;
  5254. const int nth = params->nth;
  5255. GGML_ASSERT(ne02 == ne12);
  5256. GGML_ASSERT(ne03 == ne13);
  5257. GGML_ASSERT(ne2 == ne12);
  5258. GGML_ASSERT(ne3 == ne13);
  5259. const enum ggml_type type = src0->type;
  5260. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5261. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5262. // we don't support permuted src0 or src1
  5263. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5264. GGML_ASSERT(nb10 == sizeof(float));
  5265. // dst cannot be transposed or permuted
  5266. GGML_ASSERT(nb0 <= nb1);
  5267. GGML_ASSERT(nb1 <= nb2);
  5268. GGML_ASSERT(nb2 <= nb3);
  5269. GGML_ASSERT(ggml_is_quantized(src0->type));
  5270. GGML_ASSERT(dst->type == src0->type);
  5271. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5272. // total rows in src0
  5273. const int nr = ne01*ne02*ne03;
  5274. // rows per thread
  5275. const int dr = (nr + nth - 1)/nth;
  5276. // row range for this thread
  5277. const int ir0 = dr*ith;
  5278. const int ir1 = MIN(ir0 + dr, nr);
  5279. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5280. for (int ir = ir0; ir < ir1; ++ir) {
  5281. // src0 indices
  5282. const int i03 = ir/(ne02*ne01);
  5283. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5284. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5285. // src1 and dst are same shape as src0 => same indices
  5286. const int i13 = i03;
  5287. const int i12 = i02;
  5288. const int i11 = i01;
  5289. const int i3 = i03;
  5290. const int i2 = i02;
  5291. const int i1 = i01;
  5292. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5293. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5294. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5295. assert(ne00 % 32 == 0);
  5296. // unquantize row from src0 to temp buffer
  5297. dequantize_row_q(src0_row, wdata, ne00);
  5298. // add src1
  5299. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5300. // quantize row to dst
  5301. quantize_row_q(wdata, dst_row, ne00);
  5302. }
  5303. }
  5304. static void ggml_compute_forward_add(
  5305. const struct ggml_compute_params * params,
  5306. const struct ggml_tensor * src0,
  5307. const struct ggml_tensor * src1,
  5308. struct ggml_tensor * dst) {
  5309. switch (src0->type) {
  5310. case GGML_TYPE_F32:
  5311. {
  5312. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5313. } break;
  5314. case GGML_TYPE_F16:
  5315. {
  5316. if (src1->type == GGML_TYPE_F16) {
  5317. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5318. }
  5319. else if (src1->type == GGML_TYPE_F32) {
  5320. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5321. }
  5322. else {
  5323. GGML_ASSERT(false);
  5324. }
  5325. } break;
  5326. case GGML_TYPE_Q4_0:
  5327. case GGML_TYPE_Q4_1:
  5328. case GGML_TYPE_Q4_2:
  5329. case GGML_TYPE_Q4_3:
  5330. {
  5331. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5332. } break;
  5333. default:
  5334. {
  5335. GGML_ASSERT(false);
  5336. } break;
  5337. }
  5338. }
  5339. // ggml_compute_forward_sub
  5340. static void ggml_compute_forward_sub_f32(
  5341. const struct ggml_compute_params * params,
  5342. const struct ggml_tensor * src0,
  5343. const struct ggml_tensor * src1,
  5344. struct ggml_tensor * dst) {
  5345. assert(params->ith == 0);
  5346. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5347. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5348. return;
  5349. }
  5350. const int n = ggml_nrows(src0);
  5351. const int nc = src0->ne[0];
  5352. assert( dst->nb[0] == sizeof(float));
  5353. assert(src0->nb[0] == sizeof(float));
  5354. assert(src1->nb[0] == sizeof(float));
  5355. for (int i = 0; i < n; i++) {
  5356. ggml_vec_sub_f32(nc,
  5357. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5358. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5359. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5360. }
  5361. }
  5362. static void ggml_compute_forward_sub(
  5363. const struct ggml_compute_params * params,
  5364. const struct ggml_tensor * src0,
  5365. const struct ggml_tensor * src1,
  5366. struct ggml_tensor * dst) {
  5367. switch (src0->type) {
  5368. case GGML_TYPE_F32:
  5369. {
  5370. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5371. } break;
  5372. default:
  5373. {
  5374. GGML_ASSERT(false);
  5375. } break;
  5376. }
  5377. }
  5378. // ggml_compute_forward_mul
  5379. static void ggml_compute_forward_mul_f32(
  5380. const struct ggml_compute_params * params,
  5381. const struct ggml_tensor * src0,
  5382. const struct ggml_tensor * src1,
  5383. struct ggml_tensor * dst) {
  5384. assert(params->ith == 0);
  5385. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5387. return;
  5388. }
  5389. const int n = ggml_nrows(src0);
  5390. const int nc = src0->ne[0];
  5391. assert( dst->nb[0] == sizeof(float));
  5392. assert(src0->nb[0] == sizeof(float));
  5393. assert(src1->nb[0] == sizeof(float));
  5394. for (int i = 0; i < n; i++) {
  5395. ggml_vec_mul_f32(nc,
  5396. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5397. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5398. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5399. }
  5400. }
  5401. static void ggml_compute_forward_mul(
  5402. const struct ggml_compute_params * params,
  5403. const struct ggml_tensor * src0,
  5404. const struct ggml_tensor * src1,
  5405. struct ggml_tensor * dst) {
  5406. switch (src0->type) {
  5407. case GGML_TYPE_F32:
  5408. {
  5409. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5410. } break;
  5411. default:
  5412. {
  5413. GGML_ASSERT(false);
  5414. } break;
  5415. }
  5416. }
  5417. // ggml_compute_forward_div
  5418. static void ggml_compute_forward_div_f32(
  5419. const struct ggml_compute_params * params,
  5420. const struct ggml_tensor * src0,
  5421. const struct ggml_tensor * src1,
  5422. struct ggml_tensor * dst) {
  5423. assert(params->ith == 0);
  5424. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5426. return;
  5427. }
  5428. const int n = ggml_nrows(src0);
  5429. const int nc = src0->ne[0];
  5430. assert( dst->nb[0] == sizeof(float));
  5431. assert(src0->nb[0] == sizeof(float));
  5432. assert(src1->nb[0] == sizeof(float));
  5433. for (int i = 0; i < n; i++) {
  5434. ggml_vec_div_f32(nc,
  5435. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5436. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5437. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5438. }
  5439. }
  5440. static void ggml_compute_forward_div(
  5441. const struct ggml_compute_params * params,
  5442. const struct ggml_tensor * src0,
  5443. const struct ggml_tensor * src1,
  5444. struct ggml_tensor * dst) {
  5445. switch (src0->type) {
  5446. case GGML_TYPE_F32:
  5447. {
  5448. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5449. } break;
  5450. default:
  5451. {
  5452. GGML_ASSERT(false);
  5453. } break;
  5454. }
  5455. }
  5456. // ggml_compute_forward_sqr
  5457. static void ggml_compute_forward_sqr_f32(
  5458. const struct ggml_compute_params * params,
  5459. const struct ggml_tensor * src0,
  5460. struct ggml_tensor * dst) {
  5461. assert(params->ith == 0);
  5462. assert(ggml_are_same_shape(src0, dst));
  5463. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5464. return;
  5465. }
  5466. const int n = ggml_nrows(src0);
  5467. const int nc = src0->ne[0];
  5468. assert( dst->nb[0] == sizeof(float));
  5469. assert(src0->nb[0] == sizeof(float));
  5470. for (int i = 0; i < n; i++) {
  5471. ggml_vec_sqr_f32(nc,
  5472. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5473. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5474. }
  5475. }
  5476. static void ggml_compute_forward_sqr(
  5477. const struct ggml_compute_params * params,
  5478. const struct ggml_tensor * src0,
  5479. struct ggml_tensor * dst) {
  5480. switch (src0->type) {
  5481. case GGML_TYPE_F32:
  5482. {
  5483. ggml_compute_forward_sqr_f32(params, src0, dst);
  5484. } break;
  5485. default:
  5486. {
  5487. GGML_ASSERT(false);
  5488. } break;
  5489. }
  5490. }
  5491. // ggml_compute_forward_sqrt
  5492. static void ggml_compute_forward_sqrt_f32(
  5493. const struct ggml_compute_params * params,
  5494. const struct ggml_tensor * src0,
  5495. struct ggml_tensor * dst) {
  5496. assert(params->ith == 0);
  5497. assert(ggml_are_same_shape(src0, dst));
  5498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5499. return;
  5500. }
  5501. const int n = ggml_nrows(src0);
  5502. const int nc = src0->ne[0];
  5503. assert( dst->nb[0] == sizeof(float));
  5504. assert(src0->nb[0] == sizeof(float));
  5505. for (int i = 0; i < n; i++) {
  5506. ggml_vec_sqrt_f32(nc,
  5507. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5508. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5509. }
  5510. }
  5511. static void ggml_compute_forward_sqrt(
  5512. const struct ggml_compute_params * params,
  5513. const struct ggml_tensor * src0,
  5514. struct ggml_tensor * dst) {
  5515. switch (src0->type) {
  5516. case GGML_TYPE_F32:
  5517. {
  5518. ggml_compute_forward_sqrt_f32(params, src0, dst);
  5519. } break;
  5520. default:
  5521. {
  5522. GGML_ASSERT(false);
  5523. } break;
  5524. }
  5525. }
  5526. // ggml_compute_forward_sum
  5527. static void ggml_compute_forward_sum_f32(
  5528. const struct ggml_compute_params * params,
  5529. const struct ggml_tensor * src0,
  5530. struct ggml_tensor * dst) {
  5531. assert(params->ith == 0);
  5532. assert(ggml_is_scalar(dst));
  5533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5534. return;
  5535. }
  5536. assert(ggml_is_scalar(dst));
  5537. assert(src0->nb[0] == sizeof(float));
  5538. const int64_t ne00 = src0->ne[0];
  5539. const int64_t ne01 = src0->ne[1];
  5540. const int64_t ne02 = src0->ne[2];
  5541. const int64_t ne03 = src0->ne[3];
  5542. const size_t nb01 = src0->nb[1];
  5543. const size_t nb02 = src0->nb[2];
  5544. const size_t nb03 = src0->nb[3];
  5545. ggml_float sum = 0;
  5546. float row_sum = 0;
  5547. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5548. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5549. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5550. ggml_vec_sum_f32(ne00,
  5551. &row_sum,
  5552. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5553. sum += row_sum;
  5554. }
  5555. }
  5556. }
  5557. ((float *) dst->data)[0] = sum;
  5558. }
  5559. static void ggml_compute_forward_sum(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0,
  5562. struct ggml_tensor * dst) {
  5563. switch (src0->type) {
  5564. case GGML_TYPE_F32:
  5565. {
  5566. ggml_compute_forward_sum_f32(params, src0, dst);
  5567. } break;
  5568. default:
  5569. {
  5570. GGML_ASSERT(false);
  5571. } break;
  5572. }
  5573. }
  5574. // ggml_compute_forward_mean
  5575. static void ggml_compute_forward_mean_f32(
  5576. const struct ggml_compute_params * params,
  5577. const struct ggml_tensor * src0,
  5578. struct ggml_tensor * dst) {
  5579. assert(params->ith == 0);
  5580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5581. return;
  5582. }
  5583. assert(src0->nb[0] == sizeof(float));
  5584. const int64_t ne00 = src0->ne[0];
  5585. const int64_t ne01 = src0->ne[1];
  5586. const int64_t ne02 = src0->ne[2];
  5587. const int64_t ne03 = src0->ne[3];
  5588. const size_t nb01 = src0->nb[1];
  5589. const size_t nb02 = src0->nb[2];
  5590. const size_t nb03 = src0->nb[3];
  5591. const int64_t ne0 = dst->ne[0];
  5592. const int64_t ne1 = dst->ne[1];
  5593. const int64_t ne2 = dst->ne[2];
  5594. const int64_t ne3 = dst->ne[3];
  5595. assert(ne0 == 1);
  5596. assert(ne1 == ne01);
  5597. assert(ne2 == ne02);
  5598. assert(ne3 == ne03);
  5599. UNUSED(ne0);
  5600. UNUSED(ne1);
  5601. UNUSED(ne2);
  5602. UNUSED(ne3);
  5603. const size_t nb1 = dst->nb[1];
  5604. const size_t nb2 = dst->nb[2];
  5605. const size_t nb3 = dst->nb[3];
  5606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5608. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5609. ggml_vec_sum_f32(ne00,
  5610. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5611. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  5612. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  5613. }
  5614. }
  5615. }
  5616. }
  5617. static void ggml_compute_forward_mean(
  5618. const struct ggml_compute_params * params,
  5619. const struct ggml_tensor * src0,
  5620. struct ggml_tensor * dst) {
  5621. switch (src0->type) {
  5622. case GGML_TYPE_F32:
  5623. {
  5624. ggml_compute_forward_mean_f32(params, src0, dst);
  5625. } break;
  5626. default:
  5627. {
  5628. GGML_ASSERT(false);
  5629. } break;
  5630. }
  5631. }
  5632. // ggml_compute_forward_repeat
  5633. static void ggml_compute_forward_repeat_f32(
  5634. const struct ggml_compute_params * params,
  5635. const struct ggml_tensor * src0,
  5636. struct ggml_tensor * dst) {
  5637. assert(params->ith == 0);
  5638. assert(ggml_can_repeat(src0, dst));
  5639. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5640. return;
  5641. }
  5642. // TODO: implement support for rank > 2 tensors
  5643. assert(src0->ne[2] == 1);
  5644. assert(src0->ne[3] == 1);
  5645. assert( dst->ne[2] == 1);
  5646. assert( dst->ne[3] == 1);
  5647. const int nc = dst->ne[0];
  5648. const int nr = dst->ne[1];
  5649. const int nc0 = src0->ne[0];
  5650. const int nr0 = src0->ne[1];
  5651. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5652. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  5653. // TODO: support for transposed / permuted tensors
  5654. assert( dst->nb[0] == sizeof(float));
  5655. assert(src0->nb[0] == sizeof(float));
  5656. // TODO: maybe this is not optimal?
  5657. for (int i = 0; i < nrr; i++) {
  5658. for (int j = 0; j < ncr; j++) {
  5659. for (int k = 0; k < nr0; k++) {
  5660. ggml_vec_cpy_f32(nc0,
  5661. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  5662. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  5663. }
  5664. }
  5665. }
  5666. }
  5667. static void ggml_compute_forward_repeat(
  5668. const struct ggml_compute_params * params,
  5669. const struct ggml_tensor * src0,
  5670. struct ggml_tensor * dst) {
  5671. switch (src0->type) {
  5672. case GGML_TYPE_F32:
  5673. {
  5674. ggml_compute_forward_repeat_f32(params, src0, dst);
  5675. } break;
  5676. default:
  5677. {
  5678. GGML_ASSERT(false);
  5679. } break;
  5680. }
  5681. }
  5682. // ggml_compute_forward_abs
  5683. static void ggml_compute_forward_abs_f32(
  5684. const struct ggml_compute_params * params,
  5685. const struct ggml_tensor * src0,
  5686. struct ggml_tensor * dst) {
  5687. assert(params->ith == 0);
  5688. assert(ggml_are_same_shape(src0, dst));
  5689. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5690. return;
  5691. }
  5692. const int n = ggml_nrows(src0);
  5693. const int nc = src0->ne[0];
  5694. assert(dst->nb[0] == sizeof(float));
  5695. assert(src0->nb[0] == sizeof(float));
  5696. for (int i = 0; i < n; i++) {
  5697. ggml_vec_abs_f32(nc,
  5698. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5699. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5700. }
  5701. }
  5702. static void ggml_compute_forward_abs(
  5703. const struct ggml_compute_params * params,
  5704. const struct ggml_tensor * src0,
  5705. struct ggml_tensor * dst) {
  5706. switch (src0->type) {
  5707. case GGML_TYPE_F32:
  5708. {
  5709. ggml_compute_forward_abs_f32(params, src0, dst);
  5710. } break;
  5711. default:
  5712. {
  5713. GGML_ASSERT(false);
  5714. } break;
  5715. }
  5716. }
  5717. // ggml_compute_forward_sgn
  5718. static void ggml_compute_forward_sgn_f32(
  5719. const struct ggml_compute_params * params,
  5720. const struct ggml_tensor * src0,
  5721. struct ggml_tensor * dst) {
  5722. assert(params->ith == 0);
  5723. assert(ggml_are_same_shape(src0, dst));
  5724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5725. return;
  5726. }
  5727. const int n = ggml_nrows(src0);
  5728. const int nc = src0->ne[0];
  5729. assert(dst->nb[0] == sizeof(float));
  5730. assert(src0->nb[0] == sizeof(float));
  5731. for (int i = 0; i < n; i++) {
  5732. ggml_vec_sgn_f32(nc,
  5733. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5734. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5735. }
  5736. }
  5737. static void ggml_compute_forward_sgn(
  5738. const struct ggml_compute_params * params,
  5739. const struct ggml_tensor * src0,
  5740. struct ggml_tensor * dst) {
  5741. switch (src0->type) {
  5742. case GGML_TYPE_F32:
  5743. {
  5744. ggml_compute_forward_sgn_f32(params, src0, dst);
  5745. } break;
  5746. default:
  5747. {
  5748. GGML_ASSERT(false);
  5749. } break;
  5750. }
  5751. }
  5752. // ggml_compute_forward_neg
  5753. static void ggml_compute_forward_neg_f32(
  5754. const struct ggml_compute_params * params,
  5755. const struct ggml_tensor * src0,
  5756. struct ggml_tensor * dst) {
  5757. assert(params->ith == 0);
  5758. assert(ggml_are_same_shape(src0, dst));
  5759. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5760. return;
  5761. }
  5762. const int n = ggml_nrows(src0);
  5763. const int nc = src0->ne[0];
  5764. assert(dst->nb[0] == sizeof(float));
  5765. assert(src0->nb[0] == sizeof(float));
  5766. for (int i = 0; i < n; i++) {
  5767. ggml_vec_neg_f32(nc,
  5768. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5769. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5770. }
  5771. }
  5772. static void ggml_compute_forward_neg(
  5773. const struct ggml_compute_params * params,
  5774. const struct ggml_tensor * src0,
  5775. struct ggml_tensor * dst) {
  5776. switch (src0->type) {
  5777. case GGML_TYPE_F32:
  5778. {
  5779. ggml_compute_forward_neg_f32(params, src0, dst);
  5780. } break;
  5781. default:
  5782. {
  5783. GGML_ASSERT(false);
  5784. } break;
  5785. }
  5786. }
  5787. // ggml_compute_forward_step
  5788. static void ggml_compute_forward_step_f32(
  5789. const struct ggml_compute_params * params,
  5790. const struct ggml_tensor * src0,
  5791. struct ggml_tensor * dst) {
  5792. assert(params->ith == 0);
  5793. assert(ggml_are_same_shape(src0, dst));
  5794. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5795. return;
  5796. }
  5797. const int n = ggml_nrows(src0);
  5798. const int nc = src0->ne[0];
  5799. assert(dst->nb[0] == sizeof(float));
  5800. assert(src0->nb[0] == sizeof(float));
  5801. for (int i = 0; i < n; i++) {
  5802. ggml_vec_step_f32(nc,
  5803. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5804. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5805. }
  5806. }
  5807. static void ggml_compute_forward_step(
  5808. const struct ggml_compute_params * params,
  5809. const struct ggml_tensor * src0,
  5810. struct ggml_tensor * dst) {
  5811. switch (src0->type) {
  5812. case GGML_TYPE_F32:
  5813. {
  5814. ggml_compute_forward_step_f32(params, src0, dst);
  5815. } break;
  5816. default:
  5817. {
  5818. GGML_ASSERT(false);
  5819. } break;
  5820. }
  5821. }
  5822. // ggml_compute_forward_relu
  5823. static void ggml_compute_forward_relu_f32(
  5824. const struct ggml_compute_params * params,
  5825. const struct ggml_tensor * src0,
  5826. struct ggml_tensor * dst) {
  5827. assert(params->ith == 0);
  5828. assert(ggml_are_same_shape(src0, dst));
  5829. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5830. return;
  5831. }
  5832. const int n = ggml_nrows(src0);
  5833. const int nc = src0->ne[0];
  5834. assert(dst->nb[0] == sizeof(float));
  5835. assert(src0->nb[0] == sizeof(float));
  5836. for (int i = 0; i < n; i++) {
  5837. ggml_vec_relu_f32(nc,
  5838. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5839. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5840. }
  5841. }
  5842. static void ggml_compute_forward_relu(
  5843. const struct ggml_compute_params * params,
  5844. const struct ggml_tensor * src0,
  5845. struct ggml_tensor * dst) {
  5846. switch (src0->type) {
  5847. case GGML_TYPE_F32:
  5848. {
  5849. ggml_compute_forward_relu_f32(params, src0, dst);
  5850. } break;
  5851. default:
  5852. {
  5853. GGML_ASSERT(false);
  5854. } break;
  5855. }
  5856. }
  5857. // ggml_compute_forward_gelu
  5858. static void ggml_compute_forward_gelu_f32(
  5859. const struct ggml_compute_params * params,
  5860. const struct ggml_tensor * src0,
  5861. struct ggml_tensor * dst) {
  5862. GGML_ASSERT(ggml_is_contiguous(src0));
  5863. GGML_ASSERT(ggml_is_contiguous(dst));
  5864. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5865. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5866. return;
  5867. }
  5868. const int ith = params->ith;
  5869. const int nth = params->nth;
  5870. const int nc = src0->ne[0];
  5871. const int nr = ggml_nrows(src0);
  5872. // rows per thread
  5873. const int dr = (nr + nth - 1)/nth;
  5874. // row range for this thread
  5875. const int ir0 = dr*ith;
  5876. const int ir1 = MIN(ir0 + dr, nr);
  5877. for (int i1 = ir0; i1 < ir1; i1++) {
  5878. ggml_vec_gelu_f32(nc,
  5879. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5880. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5881. #ifndef NDEBUG
  5882. for (int k = 0; k < nc; k++) {
  5883. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5884. UNUSED(x);
  5885. assert(!isnan(x));
  5886. assert(!isinf(x));
  5887. }
  5888. #endif
  5889. }
  5890. }
  5891. static void ggml_compute_forward_gelu(
  5892. const struct ggml_compute_params * params,
  5893. const struct ggml_tensor * src0,
  5894. struct ggml_tensor * dst) {
  5895. switch (src0->type) {
  5896. case GGML_TYPE_F32:
  5897. {
  5898. ggml_compute_forward_gelu_f32(params, src0, dst);
  5899. } break;
  5900. default:
  5901. {
  5902. GGML_ASSERT(false);
  5903. } break;
  5904. }
  5905. //printf("XXXXXXXX gelu\n");
  5906. }
  5907. // ggml_compute_forward_silu
  5908. static void ggml_compute_forward_silu_f32(
  5909. const struct ggml_compute_params * params,
  5910. const struct ggml_tensor * src0,
  5911. struct ggml_tensor * dst) {
  5912. GGML_ASSERT(ggml_is_contiguous(src0));
  5913. GGML_ASSERT(ggml_is_contiguous(dst));
  5914. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5916. return;
  5917. }
  5918. const int ith = params->ith;
  5919. const int nth = params->nth;
  5920. const int nc = src0->ne[0];
  5921. const int nr = ggml_nrows(src0);
  5922. // rows per thread
  5923. const int dr = (nr + nth - 1)/nth;
  5924. // row range for this thread
  5925. const int ir0 = dr*ith;
  5926. const int ir1 = MIN(ir0 + dr, nr);
  5927. for (int i1 = ir0; i1 < ir1; i1++) {
  5928. ggml_vec_silu_f32(nc,
  5929. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  5930. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  5931. #ifndef NDEBUG
  5932. for (int k = 0; k < nc; k++) {
  5933. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  5934. UNUSED(x);
  5935. assert(!isnan(x));
  5936. assert(!isinf(x));
  5937. }
  5938. #endif
  5939. }
  5940. }
  5941. static void ggml_compute_forward_silu(
  5942. const struct ggml_compute_params * params,
  5943. const struct ggml_tensor * src0,
  5944. struct ggml_tensor * dst) {
  5945. switch (src0->type) {
  5946. case GGML_TYPE_F32:
  5947. {
  5948. ggml_compute_forward_silu_f32(params, src0, dst);
  5949. } break;
  5950. default:
  5951. {
  5952. GGML_ASSERT(false);
  5953. } break;
  5954. }
  5955. }
  5956. // ggml_compute_forward_norm
  5957. static void ggml_compute_forward_norm_f32(
  5958. const struct ggml_compute_params * params,
  5959. const struct ggml_tensor * src0,
  5960. struct ggml_tensor * dst) {
  5961. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5962. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5963. return;
  5964. }
  5965. GGML_ASSERT(src0->nb[0] == sizeof(float));
  5966. const int ith = params->ith;
  5967. const int nth = params->nth;
  5968. const int64_t ne00 = src0->ne[0];
  5969. const int64_t ne01 = src0->ne[1];
  5970. const int64_t ne02 = src0->ne[2];
  5971. const int64_t ne03 = src0->ne[3];
  5972. const size_t nb01 = src0->nb[1];
  5973. const size_t nb02 = src0->nb[2];
  5974. const size_t nb03 = src0->nb[3];
  5975. const size_t nb1 = dst->nb[1];
  5976. const size_t nb2 = dst->nb[2];
  5977. const size_t nb3 = dst->nb[3];
  5978. const float eps = 1e-5f; // TODO: make this a parameter
  5979. // TODO: optimize
  5980. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5981. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5982. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  5983. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5984. ggml_float sum = 0.0;
  5985. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5986. sum += (ggml_float)x[i00];
  5987. }
  5988. float mean = sum/ne00;
  5989. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  5990. ggml_float sum2 = 0.0;
  5991. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5992. float v = x[i00] - mean;
  5993. y[i00] = v;
  5994. sum2 += (ggml_float)(v*v);
  5995. }
  5996. float variance = sum2/ne00;
  5997. const float scale = 1.0f/sqrtf(variance + eps);
  5998. ggml_vec_scale_f32(ne00, y, scale);
  5999. }
  6000. }
  6001. }
  6002. }
  6003. static void ggml_compute_forward_norm(
  6004. const struct ggml_compute_params * params,
  6005. const struct ggml_tensor * src0,
  6006. struct ggml_tensor * dst) {
  6007. switch (src0->type) {
  6008. case GGML_TYPE_F32:
  6009. {
  6010. ggml_compute_forward_norm_f32(params, src0, dst);
  6011. } break;
  6012. default:
  6013. {
  6014. GGML_ASSERT(false);
  6015. } break;
  6016. }
  6017. }
  6018. static void ggml_compute_forward_rms_norm_f32(
  6019. const struct ggml_compute_params * params,
  6020. const struct ggml_tensor * src0,
  6021. struct ggml_tensor * dst) {
  6022. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6024. return;
  6025. }
  6026. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6027. const int ith = params->ith;
  6028. const int nth = params->nth;
  6029. const int64_t ne00 = src0->ne[0];
  6030. const int64_t ne01 = src0->ne[1];
  6031. const int64_t ne02 = src0->ne[2];
  6032. const int64_t ne03 = src0->ne[3];
  6033. const size_t nb01 = src0->nb[1];
  6034. const size_t nb02 = src0->nb[2];
  6035. const size_t nb03 = src0->nb[3];
  6036. const size_t nb1 = dst->nb[1];
  6037. const size_t nb2 = dst->nb[2];
  6038. const size_t nb3 = dst->nb[3];
  6039. const float eps = 1e-6f; // TODO: make this a parameter
  6040. // TODO: optimize
  6041. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6042. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6043. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6044. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6045. ggml_float sum = 0.0;
  6046. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6047. sum += (ggml_float)(x[i00] * x[i00]);
  6048. }
  6049. float mean = sum/ne00;
  6050. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6051. memcpy(y, x, ne00 * sizeof(float));
  6052. // for (int i00 = 0; i00 < ne00; i00++) {
  6053. // y[i00] = x[i00];
  6054. // }
  6055. const float scale = 1.0f/sqrtf(mean + eps);
  6056. ggml_vec_scale_f32(ne00, y, scale);
  6057. }
  6058. }
  6059. }
  6060. }
  6061. static void ggml_compute_forward_rms_norm(
  6062. const struct ggml_compute_params * params,
  6063. const struct ggml_tensor * src0,
  6064. struct ggml_tensor * dst) {
  6065. switch (src0->type) {
  6066. case GGML_TYPE_F32:
  6067. {
  6068. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6069. } break;
  6070. default:
  6071. {
  6072. GGML_ASSERT(false);
  6073. } break;
  6074. }
  6075. }
  6076. // ggml_compute_forward_mul_mat
  6077. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6078. // helper function to determine if it is better to use BLAS or not
  6079. // for large matrices, BLAS is faster
  6080. static bool ggml_compute_forward_mul_mat_use_blas(
  6081. const struct ggml_tensor * src0,
  6082. const struct ggml_tensor * src1,
  6083. struct ggml_tensor * dst) {
  6084. //const int64_t ne00 = src0->ne[0];
  6085. //const int64_t ne01 = src0->ne[1];
  6086. const int64_t ne10 = src1->ne[0];
  6087. const int64_t ne0 = dst->ne[0];
  6088. const int64_t ne1 = dst->ne[1];
  6089. // TODO: find the optimal values for these
  6090. if (ggml_is_contiguous(src0) &&
  6091. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  6092. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6093. return true;
  6094. }
  6095. return false;
  6096. }
  6097. #endif
  6098. static void ggml_compute_forward_mul_mat_f32(
  6099. const struct ggml_compute_params * params,
  6100. const struct ggml_tensor * src0,
  6101. const struct ggml_tensor * src1,
  6102. struct ggml_tensor * dst) {
  6103. int64_t t0 = ggml_perf_time_us();
  6104. UNUSED(t0);
  6105. const int64_t ne00 = src0->ne[0];
  6106. const int64_t ne01 = src0->ne[1];
  6107. const int64_t ne02 = src0->ne[2];
  6108. const int64_t ne03 = src0->ne[3];
  6109. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6110. const int64_t ne10 = src1->ne[0];
  6111. #endif
  6112. const int64_t ne11 = src1->ne[1];
  6113. #ifndef NDEBUG
  6114. const int64_t ne12 = src1->ne[2];
  6115. const int64_t ne13 = src1->ne[3];
  6116. const int64_t ne0 = dst->ne[0];
  6117. const int64_t ne1 = dst->ne[1];
  6118. const int64_t ne2 = dst->ne[2];
  6119. const int64_t ne3 = dst->ne[3];
  6120. const int nb00 = src0->nb[0];
  6121. #endif
  6122. const int nb01 = src0->nb[1];
  6123. const int nb02 = src0->nb[2];
  6124. const int nb03 = src0->nb[3];
  6125. #ifndef NDEBUG
  6126. const int nb10 = src1->nb[0];
  6127. #endif
  6128. const int nb11 = src1->nb[1];
  6129. const int nb12 = src1->nb[2];
  6130. const int nb13 = src1->nb[3];
  6131. const int nb0 = dst->nb[0];
  6132. const int nb1 = dst->nb[1];
  6133. const int nb2 = dst->nb[2];
  6134. const int nb3 = dst->nb[3];
  6135. const int ith = params->ith;
  6136. const int nth = params->nth;
  6137. assert(ne02 == ne12);
  6138. assert(ne03 == ne13);
  6139. assert(ne2 == ne12);
  6140. assert(ne3 == ne13);
  6141. // we don't support permuted src0 or src1
  6142. assert(nb00 == sizeof(float));
  6143. assert(nb10 == sizeof(float));
  6144. // dst cannot be transposed or permuted
  6145. assert(nb0 == sizeof(float));
  6146. assert(nb0 <= nb1);
  6147. assert(nb1 <= nb2);
  6148. assert(nb2 <= nb3);
  6149. assert(ne0 == ne01);
  6150. assert(ne1 == ne11);
  6151. assert(ne2 == ne02);
  6152. assert(ne3 == ne03);
  6153. // nb01 >= nb00 - src0 is not transposed
  6154. // compute by src0 rows
  6155. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6156. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6157. if (params->ith != 0) {
  6158. return;
  6159. }
  6160. if (params->type == GGML_TASK_INIT) {
  6161. return;
  6162. }
  6163. if (params->type == GGML_TASK_FINALIZE) {
  6164. return;
  6165. }
  6166. #if defined(GGML_USE_CUBLAS)
  6167. const float alpha = 1.0f;
  6168. const float beta = 0.0f;
  6169. const int x_ne = ne01 * ne10;
  6170. const int y_ne = ne11 * ne10;
  6171. const int d_ne = ne11 * ne01;
  6172. size_t x_size, y_size, d_size;
  6173. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6174. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6175. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6176. #endif
  6177. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6178. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6179. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6180. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6181. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6182. #if defined(GGML_USE_CUBLAS)
  6183. // copy data to device
  6184. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(float) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6185. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6186. // compute
  6187. CUBLAS_CHECK(
  6188. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6189. ne01, ne11, ne10,
  6190. &alpha, d_X, ne00,
  6191. d_Y, ne10,
  6192. &beta, d_D, ne01));
  6193. // copy data to host
  6194. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6195. #else
  6196. // zT = y * xT
  6197. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6198. ne11, ne01, ne10,
  6199. 1.0f, y, ne10,
  6200. x, ne00,
  6201. 0.0f, d, ne01);
  6202. #endif
  6203. }
  6204. }
  6205. #if defined(GGML_USE_CUBLAS)
  6206. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6207. ggml_cuda_pool_free(d_X, x_size);
  6208. ggml_cuda_pool_free(d_Y, y_size);
  6209. ggml_cuda_pool_free(d_D, d_size);
  6210. #endif
  6211. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6212. return;
  6213. }
  6214. #endif
  6215. if (params->type == GGML_TASK_INIT) {
  6216. return;
  6217. }
  6218. if (params->type == GGML_TASK_FINALIZE) {
  6219. return;
  6220. }
  6221. // parallelize by src0 rows using ggml_vec_dot_f32
  6222. // total rows in src0
  6223. const int nr = ne01*ne02*ne03;
  6224. // rows per thread
  6225. const int dr = (nr + nth - 1)/nth;
  6226. // row range for this thread
  6227. const int ir0 = dr*ith;
  6228. const int ir1 = MIN(ir0 + dr, nr);
  6229. for (int ir = ir0; ir < ir1; ++ir) {
  6230. // src0 indices
  6231. const int i03 = ir/(ne02*ne01);
  6232. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6233. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6234. for (int64_t ic = 0; ic < ne11; ++ic) {
  6235. // src1 indices
  6236. const int i13 = i03;
  6237. const int i12 = i02;
  6238. const int i11 = ic;
  6239. // dst indices
  6240. const int i0 = i01;
  6241. const int i1 = i11;
  6242. const int i2 = i02;
  6243. const int i3 = i03;
  6244. ggml_vec_dot_f32(ne00,
  6245. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6246. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6247. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6248. }
  6249. }
  6250. //int64_t t1 = ggml_perf_time_us();
  6251. //static int64_t acc = 0;
  6252. //acc += t1 - t0;
  6253. //if (t1 - t0 > 10) {
  6254. // printf("\n");
  6255. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6256. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6257. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6258. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6259. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6260. //}
  6261. }
  6262. static void ggml_compute_forward_mul_mat_f16_f32(
  6263. const struct ggml_compute_params * params,
  6264. const struct ggml_tensor * src0,
  6265. const struct ggml_tensor * src1,
  6266. struct ggml_tensor * dst) {
  6267. int64_t t0 = ggml_perf_time_us();
  6268. UNUSED(t0);
  6269. const int64_t ne00 = src0->ne[0];
  6270. const int64_t ne01 = src0->ne[1];
  6271. const int64_t ne02 = src0->ne[2];
  6272. const int64_t ne03 = src0->ne[3];
  6273. const int64_t ne10 = src1->ne[0];
  6274. const int64_t ne11 = src1->ne[1];
  6275. const int64_t ne12 = src1->ne[2];
  6276. const int64_t ne13 = src1->ne[3];
  6277. const int64_t ne0 = dst->ne[0];
  6278. const int64_t ne1 = dst->ne[1];
  6279. const int64_t ne2 = dst->ne[2];
  6280. const int64_t ne3 = dst->ne[3];
  6281. //const int64_t ne = ne0*ne1*ne2*ne3;
  6282. const int nb00 = src0->nb[0];
  6283. const int nb01 = src0->nb[1];
  6284. const int nb02 = src0->nb[2];
  6285. const int nb03 = src0->nb[3];
  6286. const int nb10 = src1->nb[0];
  6287. const int nb11 = src1->nb[1];
  6288. const int nb12 = src1->nb[2];
  6289. const int nb13 = src1->nb[3];
  6290. const int nb0 = dst->nb[0];
  6291. const int nb1 = dst->nb[1];
  6292. const int nb2 = dst->nb[2];
  6293. const int nb3 = dst->nb[3];
  6294. const int ith = params->ith;
  6295. const int nth = params->nth;
  6296. GGML_ASSERT(ne02 == ne12);
  6297. GGML_ASSERT(ne03 == ne13);
  6298. GGML_ASSERT(ne2 == ne12);
  6299. GGML_ASSERT(ne3 == ne13);
  6300. // TODO: we don't support permuted src0
  6301. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6302. // dst cannot be transposed or permuted
  6303. GGML_ASSERT(nb0 == sizeof(float));
  6304. GGML_ASSERT(nb0 <= nb1);
  6305. GGML_ASSERT(nb1 <= nb2);
  6306. GGML_ASSERT(nb2 <= nb3);
  6307. GGML_ASSERT(ne0 == ne01);
  6308. GGML_ASSERT(ne1 == ne11);
  6309. GGML_ASSERT(ne2 == ne02);
  6310. GGML_ASSERT(ne3 == ne03);
  6311. // nb01 >= nb00 - src0 is not transposed
  6312. // compute by src0 rows
  6313. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6314. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6315. GGML_ASSERT(nb10 == sizeof(float));
  6316. if (params->ith != 0) {
  6317. return;
  6318. }
  6319. if (params->type == GGML_TASK_INIT) {
  6320. return;
  6321. }
  6322. if (params->type == GGML_TASK_FINALIZE) {
  6323. return;
  6324. }
  6325. #if defined(GGML_USE_CUBLAS)
  6326. ggml_fp16_t * const wdata = params->wdata;
  6327. const float alpha = 1.0f;
  6328. const float beta = 0.0f;
  6329. const int x_ne = ne01 * ne10;
  6330. const int y_ne = ne11 * ne10;
  6331. const int d_ne = ne11 * ne01;
  6332. size_t x_size, y_size, d_size;
  6333. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6334. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6335. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6336. #else
  6337. float * const wdata = params->wdata;
  6338. #endif
  6339. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6340. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6341. #if defined(GGML_USE_CUBLAS)
  6342. // with cuBlAS, instead of converting src0 to fp32, we convert src1 to fp16
  6343. {
  6344. size_t id = 0;
  6345. for (int64_t i01 = 0; i01 < ne11; ++i01) {
  6346. for (int64_t i00 = 0; i00 < ne10; ++i00) {
  6347. wdata[id++] = GGML_FP32_TO_FP16(*(float *) ((char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11 + i00*nb10));
  6348. }
  6349. }
  6350. }
  6351. #else
  6352. {
  6353. size_t id = 0;
  6354. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6355. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6356. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6357. }
  6358. }
  6359. }
  6360. #endif
  6361. #if defined(GGML_USE_CUBLAS)
  6362. const ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6363. const ggml_fp16_t * y = (ggml_fp16_t *) wdata;
  6364. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6365. // copy data to device
  6366. CUDA_CHECK(cudaMemcpyAsync(d_X, x, sizeof(ggml_fp16_t) * x_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6367. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(ggml_fp16_t) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6368. // compute
  6369. CUBLAS_CHECK(
  6370. cublasGemmEx(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6371. ne01, ne11, ne10,
  6372. &alpha, d_X, CUDA_R_16F, ne00,
  6373. d_Y, CUDA_R_16F, ne10,
  6374. &beta, d_D, CUDA_R_32F, ne01,
  6375. CUBLAS_COMPUTE_32F,
  6376. CUBLAS_GEMM_DEFAULT));
  6377. // copy data to host
  6378. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6379. #else
  6380. const float * x = wdata;
  6381. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6382. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6383. // zT = y * xT
  6384. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6385. ne11, ne01, ne10,
  6386. 1.0f, y, ne10,
  6387. x, ne00,
  6388. 0.0f, d, ne01);
  6389. #endif
  6390. }
  6391. }
  6392. #if defined(GGML_USE_CUBLAS)
  6393. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6394. ggml_cuda_pool_free(d_X, x_size);
  6395. ggml_cuda_pool_free(d_Y, y_size);
  6396. ggml_cuda_pool_free(d_D, d_size);
  6397. #endif
  6398. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6399. return;
  6400. }
  6401. #endif
  6402. if (params->type == GGML_TASK_INIT) {
  6403. ggml_fp16_t * const wdata = params->wdata;
  6404. size_t id = 0;
  6405. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6406. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6407. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6408. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6409. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6410. }
  6411. }
  6412. }
  6413. }
  6414. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6415. return;
  6416. }
  6417. if (params->type == GGML_TASK_FINALIZE) {
  6418. return;
  6419. }
  6420. // fp16 -> half the size, so divide by 2
  6421. // TODO: do not support transposed src1
  6422. assert(nb10/2 == sizeof(ggml_fp16_t));
  6423. // parallelize by src0 rows using ggml_vec_dot_f16
  6424. // total rows in src0
  6425. const int nr = ne01*ne02*ne03;
  6426. // rows per thread
  6427. const int dr = (nr + nth - 1)/nth;
  6428. // row range for this thread
  6429. const int ir0 = dr*ith;
  6430. const int ir1 = MIN(ir0 + dr, nr);
  6431. ggml_fp16_t * wdata = params->wdata;
  6432. for (int ir = ir0; ir < ir1; ++ir) {
  6433. // src0 indices
  6434. const int i03 = ir/(ne02*ne01);
  6435. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6436. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6437. const int i13 = i03;
  6438. const int i12 = i02;
  6439. const int i0 = i01;
  6440. const int i2 = i02;
  6441. const int i3 = i03;
  6442. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6443. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6444. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6445. for (int64_t ic = 0; ic < ne11; ++ic) {
  6446. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6447. }
  6448. }
  6449. //int64_t t1 = ggml_time_us();
  6450. //static int64_t acc = 0;
  6451. //acc += t1 - t0;
  6452. //if (t1 - t0 > 10) {
  6453. // printf("\n");
  6454. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6455. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6456. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6457. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6458. //}
  6459. }
  6460. static void ggml_compute_forward_mul_mat_q_f32(
  6461. const struct ggml_compute_params * params,
  6462. const struct ggml_tensor * src0,
  6463. const struct ggml_tensor * src1,
  6464. struct ggml_tensor * dst) {
  6465. int64_t t0 = ggml_perf_time_us();
  6466. UNUSED(t0);
  6467. const int64_t ne00 = src0->ne[0];
  6468. const int64_t ne01 = src0->ne[1];
  6469. const int64_t ne02 = src0->ne[2];
  6470. const int64_t ne03 = src0->ne[3];
  6471. const int64_t ne10 = src1->ne[0];
  6472. const int64_t ne11 = src1->ne[1];
  6473. const int64_t ne12 = src1->ne[2];
  6474. const int64_t ne13 = src1->ne[3];
  6475. const int64_t ne0 = dst->ne[0];
  6476. const int64_t ne1 = dst->ne[1];
  6477. const int64_t ne2 = dst->ne[2];
  6478. const int64_t ne3 = dst->ne[3];
  6479. const int nb00 = src0->nb[0];
  6480. const int nb01 = src0->nb[1];
  6481. const int nb02 = src0->nb[2];
  6482. const int nb03 = src0->nb[3];
  6483. const int nb10 = src1->nb[0];
  6484. const int nb11 = src1->nb[1];
  6485. const int nb12 = src1->nb[2];
  6486. const int nb13 = src1->nb[3];
  6487. const int nb0 = dst->nb[0];
  6488. const int nb1 = dst->nb[1];
  6489. const int nb2 = dst->nb[2];
  6490. const int nb3 = dst->nb[3];
  6491. const int ith = params->ith;
  6492. const int nth = params->nth;
  6493. GGML_ASSERT(ne02 == ne12);
  6494. GGML_ASSERT(ne03 == ne13);
  6495. GGML_ASSERT(ne2 == ne12);
  6496. GGML_ASSERT(ne3 == ne13);
  6497. const enum ggml_type type = src0->type;
  6498. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6499. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6500. // we don't support permuted src0 or src1
  6501. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6502. GGML_ASSERT(nb10 == sizeof(float));
  6503. // dst cannot be transposed or permuted
  6504. GGML_ASSERT(nb0 == sizeof(float));
  6505. GGML_ASSERT(nb0 <= nb1);
  6506. GGML_ASSERT(nb1 <= nb2);
  6507. GGML_ASSERT(nb2 <= nb3);
  6508. GGML_ASSERT(ne0 == ne01);
  6509. GGML_ASSERT(ne1 == ne11);
  6510. GGML_ASSERT(ne2 == ne02);
  6511. GGML_ASSERT(ne3 == ne03);
  6512. // nb01 >= nb00 - src0 is not transposed
  6513. // compute by src0 rows
  6514. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  6515. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6516. if (params->ith != 0) {
  6517. return;
  6518. }
  6519. if (params->type == GGML_TASK_INIT) {
  6520. return;
  6521. }
  6522. if (params->type == GGML_TASK_FINALIZE) {
  6523. return;
  6524. }
  6525. #if defined(GGML_USE_CUBLAS)
  6526. const float alpha = 1.0f;
  6527. const float beta = 0.0f;
  6528. const int x_ne = ne01 * ne10;
  6529. const int y_ne = ne11 * ne10;
  6530. const int d_ne = ne11 * ne01;
  6531. size_t x_size, y_size, d_size, q_size;
  6532. float *d_X = ggml_cuda_pool_malloc(sizeof(float) * x_ne, &x_size);
  6533. float *d_Y = ggml_cuda_pool_malloc(sizeof(float) * y_ne, &y_size);
  6534. float *d_D = ggml_cuda_pool_malloc(sizeof(float) * d_ne, &d_size);
  6535. float *d_Q = ggml_cuda_pool_malloc(GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], &q_size);
  6536. void (*dequantize_row_q_cuda)(const void * x, float * y, int k, cudaStream_t stream) = NULL;
  6537. if (type == GGML_TYPE_Q4_0) {
  6538. dequantize_row_q_cuda = dequantize_row_q4_0_cuda;
  6539. }
  6540. else if (type == GGML_TYPE_Q4_1) {
  6541. dequantize_row_q_cuda = dequantize_row_q4_1_cuda;
  6542. }
  6543. else if (type == GGML_TYPE_Q4_2) {
  6544. dequantize_row_q_cuda = dequantize_row_q4_2_cuda;
  6545. }
  6546. else if (type == GGML_TYPE_Q4_3) {
  6547. dequantize_row_q_cuda = dequantize_row_q4_3_cuda;
  6548. }
  6549. else {
  6550. GGML_ASSERT(false);
  6551. }
  6552. #else
  6553. float * const wdata = params->wdata;
  6554. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6555. #endif
  6556. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6557. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6558. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6559. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6560. #if defined(GGML_USE_CUBLAS)
  6561. // copy and dequantize on device
  6562. CUDA_CHECK(
  6563. cudaMemcpyAsync(d_Q, (char *) src0->data + i03*nb03 + i02*nb02,
  6564. GGML_TYPE_SIZE[type] * x_ne / GGML_BLCK_SIZE[type], cudaMemcpyHostToDevice, g_cudaStream));
  6565. dequantize_row_q_cuda(d_Q, d_X, ne01 * ne00, g_cudaStream);
  6566. CUDA_CHECK(cudaGetLastError());
  6567. #else
  6568. {
  6569. size_t id = 0;
  6570. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6571. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6572. id += ne00;
  6573. }
  6574. }
  6575. const float * x = wdata;
  6576. #endif
  6577. #if defined(GGML_USE_CUBLAS)
  6578. // copy data to device
  6579. CUDA_CHECK(cudaMemcpyAsync(d_Y, y, sizeof(float) * y_ne, cudaMemcpyHostToDevice, g_cudaStream));
  6580. // compute
  6581. CUBLAS_CHECK(
  6582. cublasSgemm(g_cublasH, CUBLAS_OP_T, CUBLAS_OP_N,
  6583. ne01, ne11, ne10,
  6584. &alpha, d_X, ne00,
  6585. d_Y, ne10,
  6586. &beta, d_D, ne01));
  6587. // copy data to host
  6588. CUDA_CHECK(cudaMemcpyAsync(d, d_D, sizeof(float) * d_ne, cudaMemcpyDeviceToHost, g_cudaStream));
  6589. #else
  6590. // zT = y * xT
  6591. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6592. ne11, ne01, ne10,
  6593. 1.0f, y, ne10,
  6594. x, ne00,
  6595. 0.0f, d, ne01);
  6596. #endif
  6597. }
  6598. }
  6599. #if defined(GGML_USE_CUBLAS)
  6600. CUDA_CHECK(cudaStreamSynchronize(g_cudaStream));
  6601. ggml_cuda_pool_free(d_X, x_size);
  6602. ggml_cuda_pool_free(d_Y, y_size);
  6603. ggml_cuda_pool_free(d_D, d_size);
  6604. ggml_cuda_pool_free(d_Q, q_size);
  6605. #endif
  6606. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6607. return;
  6608. }
  6609. #endif
  6610. if (params->type == GGML_TASK_INIT) {
  6611. char * wdata = params->wdata;
  6612. const size_t row_size = ne10*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6613. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6614. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6615. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6616. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  6617. wdata += row_size;
  6618. }
  6619. }
  6620. }
  6621. return;
  6622. }
  6623. if (params->type == GGML_TASK_FINALIZE) {
  6624. return;
  6625. }
  6626. // parallelize by src0 rows using ggml_vec_dot_q
  6627. // total rows in src0
  6628. const int nr = ne01*ne02*ne03;
  6629. // rows per thread
  6630. const int dr = (nr + nth - 1)/nth;
  6631. // row range for this thread
  6632. const int ir0 = dr*ith;
  6633. const int ir1 = MIN(ir0 + dr, nr);
  6634. void * wdata = params->wdata;
  6635. const size_t row_size = ne00*GGML_TYPE_SIZE[GGML_TYPE_Q8_0]/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  6636. for (int ir = ir0; ir < ir1; ++ir) {
  6637. // src0 indices
  6638. const int i03 = ir/(ne02*ne01);
  6639. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6640. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6641. const int i13 = i03;
  6642. const int i12 = i02;
  6643. const int i0 = i01;
  6644. const int i2 = i02;
  6645. const int i3 = i03;
  6646. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6647. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  6648. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6649. assert(ne00 % 32 == 0);
  6650. for (int64_t ic = 0; ic < ne11; ++ic) {
  6651. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  6652. }
  6653. }
  6654. //int64_t t1 = ggml_time_us();
  6655. //static int64_t acc = 0;
  6656. //acc += t1 - t0;
  6657. //if (t1 - t0 > 10) {
  6658. // printf("\n");
  6659. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6660. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6661. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6662. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6663. //}
  6664. }
  6665. static void ggml_compute_forward_mul_mat(
  6666. const struct ggml_compute_params * params,
  6667. const struct ggml_tensor * src0,
  6668. const struct ggml_tensor * src1,
  6669. struct ggml_tensor * dst) {
  6670. switch (src0->type) {
  6671. case GGML_TYPE_Q4_0:
  6672. case GGML_TYPE_Q4_1:
  6673. case GGML_TYPE_Q4_2:
  6674. case GGML_TYPE_Q4_3:
  6675. case GGML_TYPE_Q8_0:
  6676. {
  6677. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  6678. } break;
  6679. case GGML_TYPE_F16:
  6680. {
  6681. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  6682. } break;
  6683. case GGML_TYPE_F32:
  6684. {
  6685. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  6686. } break;
  6687. default:
  6688. {
  6689. GGML_ASSERT(false);
  6690. } break;
  6691. }
  6692. }
  6693. // ggml_compute_forward_scale
  6694. static void ggml_compute_forward_scale_f32(
  6695. const struct ggml_compute_params * params,
  6696. const struct ggml_tensor * src0,
  6697. const struct ggml_tensor * src1,
  6698. struct ggml_tensor * dst) {
  6699. GGML_ASSERT(ggml_is_contiguous(src0));
  6700. GGML_ASSERT(ggml_is_contiguous(dst));
  6701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6702. GGML_ASSERT(ggml_is_scalar(src1));
  6703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6704. return;
  6705. }
  6706. // scale factor
  6707. const float v = *(float *) src1->data;
  6708. const int ith = params->ith;
  6709. const int nth = params->nth;
  6710. const int nc = src0->ne[0];
  6711. const int nr = ggml_nrows(src0);
  6712. // rows per thread
  6713. const int dr = (nr + nth - 1)/nth;
  6714. // row range for this thread
  6715. const int ir0 = dr*ith;
  6716. const int ir1 = MIN(ir0 + dr, nr);
  6717. for (int i1 = ir0; i1 < ir1; i1++) {
  6718. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  6719. }
  6720. }
  6721. static void ggml_compute_forward_scale(
  6722. const struct ggml_compute_params * params,
  6723. const struct ggml_tensor * src0,
  6724. const struct ggml_tensor * src1,
  6725. struct ggml_tensor * dst) {
  6726. switch (src0->type) {
  6727. case GGML_TYPE_F32:
  6728. {
  6729. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  6730. } break;
  6731. default:
  6732. {
  6733. GGML_ASSERT(false);
  6734. } break;
  6735. }
  6736. }
  6737. // ggml_compute_forward_cpy
  6738. static void ggml_compute_forward_cpy(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. struct ggml_tensor * dst) {
  6742. ggml_compute_forward_dup(params, src0, dst);
  6743. }
  6744. // ggml_compute_forward_cont
  6745. static void ggml_compute_forward_cont(
  6746. const struct ggml_compute_params * params,
  6747. const struct ggml_tensor * src0,
  6748. struct ggml_tensor * dst) {
  6749. ggml_compute_forward_dup(params, src0, dst);
  6750. }
  6751. // ggml_compute_forward_reshape
  6752. static void ggml_compute_forward_reshape(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0,
  6755. struct ggml_tensor * dst) {
  6756. // NOP
  6757. UNUSED(params);
  6758. UNUSED(src0);
  6759. UNUSED(dst);
  6760. }
  6761. // ggml_compute_forward_view
  6762. static void ggml_compute_forward_view(
  6763. const struct ggml_compute_params * params,
  6764. const struct ggml_tensor * src0) {
  6765. // NOP
  6766. UNUSED(params);
  6767. UNUSED(src0);
  6768. }
  6769. // ggml_compute_forward_permute
  6770. static void ggml_compute_forward_permute(
  6771. const struct ggml_compute_params * params,
  6772. const struct ggml_tensor * src0) {
  6773. // NOP
  6774. UNUSED(params);
  6775. UNUSED(src0);
  6776. }
  6777. // ggml_compute_forward_transpose
  6778. static void ggml_compute_forward_transpose(
  6779. const struct ggml_compute_params * params,
  6780. const struct ggml_tensor * src0) {
  6781. // NOP
  6782. UNUSED(params);
  6783. UNUSED(src0);
  6784. }
  6785. // ggml_compute_forward_get_rows
  6786. static void ggml_compute_forward_get_rows_q(
  6787. const struct ggml_compute_params * params,
  6788. const struct ggml_tensor * src0,
  6789. const struct ggml_tensor * src1,
  6790. struct ggml_tensor * dst) {
  6791. assert(params->ith == 0);
  6792. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6793. return;
  6794. }
  6795. const int nc = src0->ne[0];
  6796. const int nr = ggml_nelements(src1);
  6797. const enum ggml_type type = src0->type;
  6798. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6799. assert( dst->ne[0] == nc);
  6800. assert( dst->ne[1] == nr);
  6801. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  6802. for (int i = 0; i < nr; ++i) {
  6803. const int r = ((int32_t *) src1->data)[i];
  6804. dequantize_row_q(
  6805. (const void *) ((char *) src0->data + r*src0->nb[1]),
  6806. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  6807. }
  6808. }
  6809. static void ggml_compute_forward_get_rows_f16(
  6810. const struct ggml_compute_params * params,
  6811. const struct ggml_tensor * src0,
  6812. const struct ggml_tensor * src1,
  6813. struct ggml_tensor * dst) {
  6814. assert(params->ith == 0);
  6815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6816. return;
  6817. }
  6818. const int nc = src0->ne[0];
  6819. const int nr = ggml_nelements(src1);
  6820. assert( dst->ne[0] == nc);
  6821. assert( dst->ne[1] == nr);
  6822. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6823. for (int i = 0; i < nr; ++i) {
  6824. const int r = ((int32_t *) src1->data)[i];
  6825. for (int j = 0; j < nc; ++j) {
  6826. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  6827. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  6828. }
  6829. }
  6830. }
  6831. static void ggml_compute_forward_get_rows_f32(
  6832. const struct ggml_compute_params * params,
  6833. const struct ggml_tensor * src0,
  6834. const struct ggml_tensor * src1,
  6835. struct ggml_tensor * dst) {
  6836. assert(params->ith == 0);
  6837. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6838. return;
  6839. }
  6840. const int nc = src0->ne[0];
  6841. const int nr = ggml_nelements(src1);
  6842. assert( dst->ne[0] == nc);
  6843. assert( dst->ne[1] == nr);
  6844. assert(src0->nb[0] == sizeof(float));
  6845. for (int i = 0; i < nr; ++i) {
  6846. const int r = ((int32_t *) src1->data)[i];
  6847. ggml_vec_cpy_f32(nc,
  6848. (float *) ((char *) dst->data + i*dst->nb[1]),
  6849. (float *) ((char *) src0->data + r*src0->nb[1]));
  6850. }
  6851. }
  6852. static void ggml_compute_forward_get_rows(
  6853. const struct ggml_compute_params * params,
  6854. const struct ggml_tensor * src0,
  6855. const struct ggml_tensor * src1,
  6856. struct ggml_tensor * dst) {
  6857. switch (src0->type) {
  6858. case GGML_TYPE_Q4_0:
  6859. case GGML_TYPE_Q4_1:
  6860. case GGML_TYPE_Q4_2:
  6861. case GGML_TYPE_Q4_3:
  6862. case GGML_TYPE_Q8_0:
  6863. {
  6864. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  6865. } break;
  6866. case GGML_TYPE_F16:
  6867. {
  6868. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  6869. } break;
  6870. case GGML_TYPE_F32:
  6871. {
  6872. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  6873. } break;
  6874. default:
  6875. {
  6876. GGML_ASSERT(false);
  6877. } break;
  6878. }
  6879. //static bool first = true;
  6880. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  6881. //if (first) {
  6882. // first = false;
  6883. //} else {
  6884. // for (int k = 0; k < dst->ne[1]; ++k) {
  6885. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  6886. // for (int i = 0; i < 16; ++i) {
  6887. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  6888. // }
  6889. // printf("\n");
  6890. // }
  6891. // printf("\n");
  6892. // }
  6893. // printf("\n");
  6894. // exit(0);
  6895. //}
  6896. }
  6897. // ggml_compute_forward_diag_mask_inf
  6898. static void ggml_compute_forward_diag_mask_inf_f32(
  6899. const struct ggml_compute_params * params,
  6900. const struct ggml_tensor * src0,
  6901. const struct ggml_tensor * src1,
  6902. struct ggml_tensor * dst) {
  6903. assert(params->ith == 0);
  6904. assert(src1->type == GGML_TYPE_I32);
  6905. assert(ggml_nelements(src1) == 1);
  6906. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6907. return;
  6908. }
  6909. const int n_past = ((int32_t *) src1->data)[0];
  6910. // TODO: handle transposed/permuted matrices
  6911. const int n = ggml_nrows(src0);
  6912. const int nc = src0->ne[0];
  6913. const int nr = src0->ne[1];
  6914. const int nz = n/nr;
  6915. assert( dst->nb[0] == sizeof(float));
  6916. assert(src0->nb[0] == sizeof(float));
  6917. for (int k = 0; k < nz; k++) {
  6918. for (int j = 0; j < nr; j++) {
  6919. for (int i = n_past; i < nc; i++) {
  6920. if (i > n_past + j) {
  6921. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  6922. }
  6923. }
  6924. }
  6925. }
  6926. }
  6927. static void ggml_compute_forward_diag_mask_inf(
  6928. const struct ggml_compute_params * params,
  6929. const struct ggml_tensor * src0,
  6930. const struct ggml_tensor * src1,
  6931. struct ggml_tensor * dst) {
  6932. switch (src0->type) {
  6933. case GGML_TYPE_F32:
  6934. {
  6935. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  6936. } break;
  6937. default:
  6938. {
  6939. GGML_ASSERT(false);
  6940. } break;
  6941. }
  6942. }
  6943. // ggml_compute_forward_soft_max
  6944. static void ggml_compute_forward_soft_max_f32(
  6945. const struct ggml_compute_params * params,
  6946. const struct ggml_tensor * src0,
  6947. struct ggml_tensor * dst) {
  6948. GGML_ASSERT(ggml_is_contiguous(src0));
  6949. GGML_ASSERT(ggml_is_contiguous(dst));
  6950. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6951. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6952. return;
  6953. }
  6954. // TODO: handle transposed/permuted matrices
  6955. const int ith = params->ith;
  6956. const int nth = params->nth;
  6957. const int nc = src0->ne[0];
  6958. const int nr = ggml_nrows(src0);
  6959. // rows per thread
  6960. const int dr = (nr + nth - 1)/nth;
  6961. // row range for this thread
  6962. const int ir0 = dr*ith;
  6963. const int ir1 = MIN(ir0 + dr, nr);
  6964. for (int i1 = ir0; i1 < ir1; i1++) {
  6965. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  6966. #ifndef NDEBUG
  6967. for (int i = 0; i < nc; ++i) {
  6968. //printf("p[%d] = %f\n", i, p[i]);
  6969. assert(!isnan(p[i]));
  6970. }
  6971. #endif
  6972. float max = -INFINITY;
  6973. ggml_vec_max_f32(nc, &max, p);
  6974. ggml_float sum = 0.0;
  6975. uint16_t scvt;
  6976. for (int i = 0; i < nc; i++) {
  6977. if (p[i] == -INFINITY) {
  6978. p[i] = 0.0f;
  6979. } else {
  6980. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  6981. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  6982. memcpy(&scvt, &s, sizeof(scvt));
  6983. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  6984. sum += (ggml_float)val;
  6985. p[i] = val;
  6986. }
  6987. }
  6988. assert(sum > 0.0);
  6989. sum = 1.0/sum;
  6990. ggml_vec_scale_f32(nc, p, sum);
  6991. #ifndef NDEBUG
  6992. for (int i = 0; i < nc; ++i) {
  6993. assert(!isnan(p[i]));
  6994. assert(!isinf(p[i]));
  6995. }
  6996. #endif
  6997. }
  6998. }
  6999. static void ggml_compute_forward_soft_max(
  7000. const struct ggml_compute_params * params,
  7001. const struct ggml_tensor * src0,
  7002. struct ggml_tensor * dst) {
  7003. switch (src0->type) {
  7004. case GGML_TYPE_F32:
  7005. {
  7006. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7007. } break;
  7008. default:
  7009. {
  7010. GGML_ASSERT(false);
  7011. } break;
  7012. }
  7013. }
  7014. // ggml_compute_forward_rope
  7015. static void ggml_compute_forward_rope_f32(
  7016. const struct ggml_compute_params * params,
  7017. const struct ggml_tensor * src0,
  7018. const struct ggml_tensor * src1,
  7019. struct ggml_tensor * dst) {
  7020. assert(src1->type == GGML_TYPE_I32);
  7021. assert(ggml_nelements(src1) == 3);
  7022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7023. return;
  7024. }
  7025. const int n_past = ((int32_t *) src1->data)[0];
  7026. const int n_dims = ((int32_t *) src1->data)[1];
  7027. const int mode = ((int32_t *) src1->data)[2];
  7028. //const int64_t ne0 = src0->ne[0];
  7029. const int64_t ne1 = src0->ne[1];
  7030. const int64_t ne2 = src0->ne[2];
  7031. const int64_t ne3 = src0->ne[3];
  7032. const int nb0 = src0->nb[0];
  7033. const int nb1 = src0->nb[1];
  7034. const int nb2 = src0->nb[2];
  7035. const int nb3 = src0->nb[3];
  7036. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7037. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7038. assert(nb0 == sizeof(float));
  7039. const int ith = params->ith;
  7040. const int nth = params->nth;
  7041. const int nr = ggml_nrows(src0);
  7042. // rows per thread
  7043. const int dr = (nr + nth - 1)/nth;
  7044. // row range for this thread
  7045. const int ir0 = dr*ith;
  7046. const int ir1 = MIN(ir0 + dr, nr);
  7047. // row index used to determine which thread to use
  7048. int ir = 0;
  7049. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7050. const bool is_neox = mode & 2;
  7051. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7052. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7053. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7054. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7055. if (ir++ < ir0) continue;
  7056. if (ir > ir1) break;
  7057. float theta = (float)p;
  7058. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7059. const float cos_theta = cosf(theta);
  7060. const float sin_theta = sinf(theta);
  7061. theta *= theta_scale;
  7062. if (!is_neox) {
  7063. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7064. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7065. const float x0 = src[0];
  7066. const float x1 = src[1];
  7067. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7068. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7069. } else {
  7070. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7071. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7072. const float x0 = src[0];
  7073. const float x1 = src[n_dims/2];
  7074. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7075. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. static void ggml_compute_forward_rope_f16(
  7083. const struct ggml_compute_params * params,
  7084. const struct ggml_tensor * src0,
  7085. const struct ggml_tensor * src1,
  7086. struct ggml_tensor * dst) {
  7087. assert(src1->type == GGML_TYPE_I32);
  7088. assert(ggml_nelements(src1) == 3);
  7089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7090. return;
  7091. }
  7092. const int n_past = ((int32_t *) src1->data)[0];
  7093. const int n_dims = ((int32_t *) src1->data)[1];
  7094. const int mode = ((int32_t *) src1->data)[2];
  7095. //const int64_t ne0 = src0->ne[0];
  7096. const int64_t ne1 = src0->ne[1];
  7097. const int64_t ne2 = src0->ne[2];
  7098. const int64_t ne3 = src0->ne[3];
  7099. const int nb0 = src0->nb[0];
  7100. const int nb1 = src0->nb[1];
  7101. const int nb2 = src0->nb[2];
  7102. const int nb3 = src0->nb[3];
  7103. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7104. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7105. assert(nb0 == sizeof(ggml_fp16_t));
  7106. const int ith = params->ith;
  7107. const int nth = params->nth;
  7108. const int nr = ggml_nrows(src0);
  7109. // rows per thread
  7110. const int dr = (nr + nth - 1)/nth;
  7111. // row range for this thread
  7112. const int ir0 = dr*ith;
  7113. const int ir1 = MIN(ir0 + dr, nr);
  7114. // row index used to determine which thread to use
  7115. int ir = 0;
  7116. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7117. const bool is_neox = mode & 2;
  7118. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7119. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7120. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7121. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7122. if (ir++ < ir0) continue;
  7123. if (ir > ir1) break;
  7124. float theta = (float)p;
  7125. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7126. const float cos_theta = cosf(theta);
  7127. const float sin_theta = sinf(theta);
  7128. theta *= theta_scale;
  7129. if (!is_neox) {
  7130. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7131. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7132. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7133. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7134. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7135. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7136. } else {
  7137. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7138. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7139. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7140. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7141. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7142. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7143. }
  7144. }
  7145. }
  7146. }
  7147. }
  7148. }
  7149. static void ggml_compute_forward_rope(
  7150. const struct ggml_compute_params * params,
  7151. const struct ggml_tensor * src0,
  7152. const struct ggml_tensor * src1,
  7153. struct ggml_tensor * dst) {
  7154. switch (src0->type) {
  7155. case GGML_TYPE_F16:
  7156. {
  7157. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7158. } break;
  7159. case GGML_TYPE_F32:
  7160. {
  7161. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7162. } break;
  7163. default:
  7164. {
  7165. GGML_ASSERT(false);
  7166. } break;
  7167. }
  7168. }
  7169. // ggml_compute_forward_conv_1d_1s
  7170. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7171. const struct ggml_compute_params * params,
  7172. const struct ggml_tensor * src0,
  7173. const struct ggml_tensor * src1,
  7174. struct ggml_tensor * dst) {
  7175. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7176. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7177. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7178. int64_t t0 = ggml_perf_time_us();
  7179. UNUSED(t0);
  7180. const int64_t ne00 = src0->ne[0];
  7181. const int64_t ne01 = src0->ne[1];
  7182. const int64_t ne02 = src0->ne[2];
  7183. //const int64_t ne03 = src0->ne[3];
  7184. const int64_t ne10 = src1->ne[0];
  7185. const int64_t ne11 = src1->ne[1];
  7186. //const int64_t ne12 = src1->ne[2];
  7187. //const int64_t ne13 = src1->ne[3];
  7188. //const int64_t ne0 = dst->ne[0];
  7189. //const int64_t ne1 = dst->ne[1];
  7190. //const int64_t ne2 = dst->ne[2];
  7191. //const int64_t ne3 = dst->ne[3];
  7192. //const int64_t ne = ne0*ne1*ne2*ne3;
  7193. const int nb00 = src0->nb[0];
  7194. const int nb01 = src0->nb[1];
  7195. const int nb02 = src0->nb[2];
  7196. //const int nb03 = src0->nb[3];
  7197. const int nb10 = src1->nb[0];
  7198. const int nb11 = src1->nb[1];
  7199. //const int nb12 = src1->nb[2];
  7200. //const int nb13 = src1->nb[3];
  7201. //const int nb0 = dst->nb[0];
  7202. const int nb1 = dst->nb[1];
  7203. //const int nb2 = dst->nb[2];
  7204. //const int nb3 = dst->nb[3];
  7205. const int ith = params->ith;
  7206. const int nth = params->nth;
  7207. const int nk = ne00;
  7208. const int nh = nk/2;
  7209. const int ew0 = ggml_up32(ne01);
  7210. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7211. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7212. GGML_ASSERT(nb10 == sizeof(float));
  7213. if (params->type == GGML_TASK_INIT) {
  7214. // TODO: fix this memset (wsize is overestimated)
  7215. memset(params->wdata, 0, params->wsize);
  7216. // prepare kernel data (src0)
  7217. {
  7218. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7219. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7220. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7221. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7222. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7223. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7224. dst_data[i00*ew0 + i01] = src[i00];
  7225. }
  7226. }
  7227. }
  7228. }
  7229. // prepare source data (src1)
  7230. {
  7231. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7232. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7233. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7234. ggml_fp16_t * dst_data = wdata;
  7235. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7236. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7237. }
  7238. }
  7239. }
  7240. return;
  7241. }
  7242. if (params->type == GGML_TASK_FINALIZE) {
  7243. return;
  7244. }
  7245. // total rows in dst
  7246. const int nr = ne02;
  7247. // rows per thread
  7248. const int dr = (nr + nth - 1)/nth;
  7249. // row range for this thread
  7250. const int ir0 = dr*ith;
  7251. const int ir1 = MIN(ir0 + dr, nr);
  7252. for (int i1 = ir0; i1 < ir1; i1++) {
  7253. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7254. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7255. dst_data[i0] = 0;
  7256. for (int k = -nh; k <= nh; k++) {
  7257. float v = 0.0f;
  7258. ggml_vec_dot_f16(ew0, &v,
  7259. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7260. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7261. dst_data[i0] += v;
  7262. }
  7263. }
  7264. }
  7265. }
  7266. static void ggml_compute_forward_conv_1d_1s_f32(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. const struct ggml_tensor * src1,
  7270. struct ggml_tensor * dst) {
  7271. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7272. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7273. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7274. int64_t t0 = ggml_perf_time_us();
  7275. UNUSED(t0);
  7276. const int64_t ne00 = src0->ne[0];
  7277. const int64_t ne01 = src0->ne[1];
  7278. const int64_t ne02 = src0->ne[2];
  7279. //const int64_t ne03 = src0->ne[3];
  7280. const int64_t ne10 = src1->ne[0];
  7281. const int64_t ne11 = src1->ne[1];
  7282. //const int64_t ne12 = src1->ne[2];
  7283. //const int64_t ne13 = src1->ne[3];
  7284. //const int64_t ne0 = dst->ne[0];
  7285. //const int64_t ne1 = dst->ne[1];
  7286. //const int64_t ne2 = dst->ne[2];
  7287. //const int64_t ne3 = dst->ne[3];
  7288. //const int64_t ne = ne0*ne1*ne2*ne3;
  7289. const int nb00 = src0->nb[0];
  7290. const int nb01 = src0->nb[1];
  7291. const int nb02 = src0->nb[2];
  7292. //const int nb03 = src0->nb[3];
  7293. const int nb10 = src1->nb[0];
  7294. const int nb11 = src1->nb[1];
  7295. //const int nb12 = src1->nb[2];
  7296. //const int nb13 = src1->nb[3];
  7297. //const int nb0 = dst->nb[0];
  7298. const int nb1 = dst->nb[1];
  7299. //const int nb2 = dst->nb[2];
  7300. //const int nb3 = dst->nb[3];
  7301. const int ith = params->ith;
  7302. const int nth = params->nth;
  7303. const int nk = ne00;
  7304. const int nh = nk/2;
  7305. const int ew0 = ggml_up32(ne01);
  7306. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7307. GGML_ASSERT(nb00 == sizeof(float));
  7308. GGML_ASSERT(nb10 == sizeof(float));
  7309. if (params->type == GGML_TASK_INIT) {
  7310. // TODO: fix this memset (wsize is overestimated)
  7311. memset(params->wdata, 0, params->wsize);
  7312. // prepare kernel data (src0)
  7313. {
  7314. float * const wdata = (float *) params->wdata + 0;
  7315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7316. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7317. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7318. float * dst_data = wdata + i02*ew0*ne00;
  7319. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7320. dst_data[i00*ew0 + i01] = src[i00];
  7321. }
  7322. }
  7323. }
  7324. }
  7325. // prepare source data (src1)
  7326. {
  7327. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7328. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7329. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7330. float * dst_data = wdata;
  7331. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7332. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7333. }
  7334. }
  7335. }
  7336. return;
  7337. }
  7338. if (params->type == GGML_TASK_FINALIZE) {
  7339. return;
  7340. }
  7341. // total rows in dst
  7342. const int nr = ne02;
  7343. // rows per thread
  7344. const int dr = (nr + nth - 1)/nth;
  7345. // row range for this thread
  7346. const int ir0 = dr*ith;
  7347. const int ir1 = MIN(ir0 + dr, nr);
  7348. for (int i1 = ir0; i1 < ir1; i1++) {
  7349. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7350. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7351. dst_data[i0] = 0;
  7352. for (int k = -nh; k <= nh; k++) {
  7353. float v = 0.0f;
  7354. ggml_vec_dot_f32(ew0, &v,
  7355. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7356. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7357. dst_data[i0] += v;
  7358. }
  7359. }
  7360. }
  7361. }
  7362. static void ggml_compute_forward_conv_1d_1s(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. const struct ggml_tensor * src1,
  7366. struct ggml_tensor * dst) {
  7367. switch (src0->type) {
  7368. case GGML_TYPE_F16:
  7369. {
  7370. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7371. } break;
  7372. case GGML_TYPE_F32:
  7373. {
  7374. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7375. } break;
  7376. default:
  7377. {
  7378. GGML_ASSERT(false);
  7379. } break;
  7380. }
  7381. }
  7382. // ggml_compute_forward_conv_1d_2s
  7383. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7384. const struct ggml_compute_params * params,
  7385. const struct ggml_tensor * src0,
  7386. const struct ggml_tensor * src1,
  7387. struct ggml_tensor * dst) {
  7388. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7389. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7390. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7391. int64_t t0 = ggml_perf_time_us();
  7392. UNUSED(t0);
  7393. const int64_t ne00 = src0->ne[0];
  7394. const int64_t ne01 = src0->ne[1];
  7395. const int64_t ne02 = src0->ne[2];
  7396. //const int64_t ne03 = src0->ne[3];
  7397. const int64_t ne10 = src1->ne[0];
  7398. const int64_t ne11 = src1->ne[1];
  7399. //const int64_t ne12 = src1->ne[2];
  7400. //const int64_t ne13 = src1->ne[3];
  7401. //const int64_t ne0 = dst->ne[0];
  7402. //const int64_t ne1 = dst->ne[1];
  7403. //const int64_t ne2 = dst->ne[2];
  7404. //const int64_t ne3 = dst->ne[3];
  7405. //const int64_t ne = ne0*ne1*ne2*ne3;
  7406. const int nb00 = src0->nb[0];
  7407. const int nb01 = src0->nb[1];
  7408. const int nb02 = src0->nb[2];
  7409. //const int nb03 = src0->nb[3];
  7410. const int nb10 = src1->nb[0];
  7411. const int nb11 = src1->nb[1];
  7412. //const int nb12 = src1->nb[2];
  7413. //const int nb13 = src1->nb[3];
  7414. //const int nb0 = dst->nb[0];
  7415. const int nb1 = dst->nb[1];
  7416. //const int nb2 = dst->nb[2];
  7417. //const int nb3 = dst->nb[3];
  7418. const int ith = params->ith;
  7419. const int nth = params->nth;
  7420. const int nk = ne00;
  7421. const int nh = nk/2;
  7422. const int ew0 = ggml_up32(ne01);
  7423. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7424. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7425. GGML_ASSERT(nb10 == sizeof(float));
  7426. if (params->type == GGML_TASK_INIT) {
  7427. // TODO: fix this memset (wsize is overestimated)
  7428. memset(params->wdata, 0, params->wsize);
  7429. // prepare kernel data (src0)
  7430. {
  7431. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7432. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7433. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7434. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7435. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7436. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7437. dst_data[i00*ew0 + i01] = src[i00];
  7438. }
  7439. }
  7440. }
  7441. }
  7442. // prepare source data (src1)
  7443. {
  7444. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7445. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7446. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7447. ggml_fp16_t * dst_data = wdata;
  7448. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7449. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7450. }
  7451. }
  7452. }
  7453. return;
  7454. }
  7455. if (params->type == GGML_TASK_FINALIZE) {
  7456. return;
  7457. }
  7458. // total rows in dst
  7459. const int nr = ne02;
  7460. // rows per thread
  7461. const int dr = (nr + nth - 1)/nth;
  7462. // row range for this thread
  7463. const int ir0 = dr*ith;
  7464. const int ir1 = MIN(ir0 + dr, nr);
  7465. for (int i1 = ir0; i1 < ir1; i1++) {
  7466. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7467. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7468. dst_data[i0/2] = 0;
  7469. for (int k = -nh; k <= nh; k++) {
  7470. float v = 0.0f;
  7471. ggml_vec_dot_f16(ew0, &v,
  7472. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7473. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7474. dst_data[i0/2] += v;
  7475. }
  7476. }
  7477. }
  7478. }
  7479. static void ggml_compute_forward_conv_1d_2s_f32(
  7480. const struct ggml_compute_params * params,
  7481. const struct ggml_tensor * src0,
  7482. const struct ggml_tensor * src1,
  7483. struct ggml_tensor * dst) {
  7484. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7485. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7486. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7487. int64_t t0 = ggml_perf_time_us();
  7488. UNUSED(t0);
  7489. const int64_t ne00 = src0->ne[0];
  7490. const int64_t ne01 = src0->ne[1];
  7491. const int64_t ne02 = src0->ne[2];
  7492. //const int64_t ne03 = src0->ne[3];
  7493. const int64_t ne10 = src1->ne[0];
  7494. const int64_t ne11 = src1->ne[1];
  7495. //const int64_t ne12 = src1->ne[2];
  7496. //const int64_t ne13 = src1->ne[3];
  7497. //const int64_t ne0 = dst->ne[0];
  7498. //const int64_t ne1 = dst->ne[1];
  7499. //const int64_t ne2 = dst->ne[2];
  7500. //const int64_t ne3 = dst->ne[3];
  7501. //const int64_t ne = ne0*ne1*ne2*ne3;
  7502. const int nb00 = src0->nb[0];
  7503. const int nb01 = src0->nb[1];
  7504. const int nb02 = src0->nb[2];
  7505. //const int nb03 = src0->nb[3];
  7506. const int nb10 = src1->nb[0];
  7507. const int nb11 = src1->nb[1];
  7508. //const int nb12 = src1->nb[2];
  7509. //const int nb13 = src1->nb[3];
  7510. //const int nb0 = dst->nb[0];
  7511. const int nb1 = dst->nb[1];
  7512. //const int nb2 = dst->nb[2];
  7513. //const int nb3 = dst->nb[3];
  7514. const int ith = params->ith;
  7515. const int nth = params->nth;
  7516. const int nk = ne00;
  7517. const int nh = nk/2;
  7518. const int ew0 = ggml_up32(ne01);
  7519. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7520. GGML_ASSERT(nb00 == sizeof(float));
  7521. GGML_ASSERT(nb10 == sizeof(float));
  7522. if (params->type == GGML_TASK_INIT) {
  7523. // TODO: fix this memset (wsize is overestimated)
  7524. memset(params->wdata, 0, params->wsize);
  7525. // prepare kernel data (src0)
  7526. {
  7527. float * const wdata = (float *) params->wdata + 0;
  7528. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7529. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7530. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7531. float * dst_data = wdata + i02*ew0*ne00;
  7532. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7533. dst_data[i00*ew0 + i01] = src[i00];
  7534. }
  7535. }
  7536. }
  7537. }
  7538. // prepare source data (src1)
  7539. {
  7540. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7541. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7542. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7543. float * dst_data = wdata;
  7544. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7545. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7546. }
  7547. }
  7548. }
  7549. return;
  7550. }
  7551. if (params->type == GGML_TASK_FINALIZE) {
  7552. return;
  7553. }
  7554. // total rows in dst
  7555. const int nr = ne02;
  7556. // rows per thread
  7557. const int dr = (nr + nth - 1)/nth;
  7558. // row range for this thread
  7559. const int ir0 = dr*ith;
  7560. const int ir1 = MIN(ir0 + dr, nr);
  7561. for (int i1 = ir0; i1 < ir1; i1++) {
  7562. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7563. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  7564. dst_data[i0/2] = 0;
  7565. for (int k = -nh; k <= nh; k++) {
  7566. float v = 0.0f;
  7567. ggml_vec_dot_f32(ew0, &v,
  7568. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7569. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7570. dst_data[i0/2] += v;
  7571. }
  7572. }
  7573. }
  7574. }
  7575. static void ggml_compute_forward_conv_1d_2s(
  7576. const struct ggml_compute_params * params,
  7577. const struct ggml_tensor * src0,
  7578. const struct ggml_tensor * src1,
  7579. struct ggml_tensor * dst) {
  7580. switch (src0->type) {
  7581. case GGML_TYPE_F16:
  7582. {
  7583. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  7584. } break;
  7585. case GGML_TYPE_F32:
  7586. {
  7587. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  7588. } break;
  7589. default:
  7590. {
  7591. GGML_ASSERT(false);
  7592. } break;
  7593. }
  7594. }
  7595. // ggml_compute_forward_flash_attn
  7596. static void ggml_compute_forward_flash_attn_f32(
  7597. const struct ggml_compute_params * params,
  7598. const struct ggml_tensor * q,
  7599. const struct ggml_tensor * k,
  7600. const struct ggml_tensor * v,
  7601. const bool masked,
  7602. struct ggml_tensor * dst) {
  7603. int64_t t0 = ggml_perf_time_us();
  7604. UNUSED(t0);
  7605. const int64_t neq0 = q->ne[0];
  7606. const int64_t neq1 = q->ne[1];
  7607. const int64_t neq2 = q->ne[2];
  7608. const int64_t neq3 = q->ne[3];
  7609. const int64_t nek0 = k->ne[0];
  7610. const int64_t nek1 = k->ne[1];
  7611. //const int64_t nek2 = k->ne[2];
  7612. //const int64_t nek3 = k->ne[3];
  7613. //const int64_t nev0 = v->ne[0];
  7614. const int64_t nev1 = v->ne[1];
  7615. //const int64_t nev2 = v->ne[2];
  7616. //const int64_t nev3 = v->ne[3];
  7617. const int64_t ne0 = dst->ne[0];
  7618. const int64_t ne1 = dst->ne[1];
  7619. //const int64_t ne2 = dst->ne[2];
  7620. //const int64_t ne3 = dst->ne[3];
  7621. const int nbk0 = k->nb[0];
  7622. const int nbk1 = k->nb[1];
  7623. const int nbk2 = k->nb[2];
  7624. const int nbk3 = k->nb[3];
  7625. const int nbq0 = q->nb[0];
  7626. const int nbq1 = q->nb[1];
  7627. const int nbq2 = q->nb[2];
  7628. const int nbq3 = q->nb[3];
  7629. const int nbv0 = v->nb[0];
  7630. const int nbv1 = v->nb[1];
  7631. const int nbv2 = v->nb[2];
  7632. const int nbv3 = v->nb[3];
  7633. const int nb0 = dst->nb[0];
  7634. const int nb1 = dst->nb[1];
  7635. const int nb2 = dst->nb[2];
  7636. const int nb3 = dst->nb[3];
  7637. const int ith = params->ith;
  7638. const int nth = params->nth;
  7639. const int64_t D = neq0;
  7640. const int64_t N = neq1;
  7641. const int64_t P = nek1 - N;
  7642. const int64_t M = P + N;
  7643. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7644. GGML_ASSERT(ne0 == D);
  7645. GGML_ASSERT(ne1 == N);
  7646. GGML_ASSERT(P >= 0);
  7647. GGML_ASSERT(nbq0 == sizeof(float));
  7648. GGML_ASSERT(nbk0 == sizeof(float));
  7649. GGML_ASSERT(nbv0 == sizeof(float));
  7650. GGML_ASSERT(neq0 == D);
  7651. GGML_ASSERT(nek0 == D);
  7652. GGML_ASSERT(nev1 == D);
  7653. GGML_ASSERT(neq1 == N);
  7654. GGML_ASSERT(nek1 == N + P);
  7655. GGML_ASSERT(nev1 == D);
  7656. // dst cannot be transposed or permuted
  7657. GGML_ASSERT(nb0 == sizeof(float));
  7658. GGML_ASSERT(nb0 <= nb1);
  7659. GGML_ASSERT(nb1 <= nb2);
  7660. GGML_ASSERT(nb2 <= nb3);
  7661. if (params->type == GGML_TASK_INIT) {
  7662. return;
  7663. }
  7664. if (params->type == GGML_TASK_FINALIZE) {
  7665. return;
  7666. }
  7667. // parallelize by q rows using ggml_vec_dot_f32
  7668. // total rows in q
  7669. const int nr = neq1*neq2*neq3;
  7670. // rows per thread
  7671. const int dr = (nr + nth - 1)/nth;
  7672. // row range for this thread
  7673. const int ir0 = dr*ith;
  7674. const int ir1 = MIN(ir0 + dr, nr);
  7675. const float scale = 1.0f/sqrtf(D);
  7676. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7677. for (int ir = ir0; ir < ir1; ++ir) {
  7678. // q indices
  7679. const int iq3 = ir/(neq2*neq1);
  7680. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7681. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7682. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  7683. for (int i = M; i < Mup; ++i) {
  7684. S[i] = -INFINITY;
  7685. }
  7686. for (int64_t ic = 0; ic < nek1; ++ic) {
  7687. // k indices
  7688. const int ik3 = iq3;
  7689. const int ik2 = iq2;
  7690. const int ik1 = ic;
  7691. // S indices
  7692. const int i1 = ik1;
  7693. ggml_vec_dot_f32(neq0,
  7694. S + i1,
  7695. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7696. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7697. }
  7698. // scale
  7699. ggml_vec_scale_f32(nek1, S, scale);
  7700. if (masked) {
  7701. for (int64_t i = P; i < M; i++) {
  7702. if (i > P + iq1) {
  7703. S[i] = -INFINITY;
  7704. }
  7705. }
  7706. }
  7707. // softmax
  7708. {
  7709. float max = -INFINITY;
  7710. ggml_vec_max_f32(M, &max, S);
  7711. ggml_float sum = 0.0;
  7712. {
  7713. #ifdef GGML_SOFT_MAX_ACCELERATE
  7714. max = -max;
  7715. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7716. vvexpf(S, S, &Mup);
  7717. ggml_vec_sum_f32(Mup, &sum, S);
  7718. #else
  7719. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7720. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7721. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7722. float * SS = S + i;
  7723. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7724. if (SS[j] == -INFINITY) {
  7725. SS[j] = 0.0f;
  7726. } else {
  7727. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7728. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7729. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7730. sump[j] += (ggml_float)val;
  7731. SS[j] = val;
  7732. }
  7733. }
  7734. }
  7735. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7736. sum += sump[i];
  7737. }
  7738. #endif
  7739. }
  7740. assert(sum > 0.0);
  7741. sum = 1.0/sum;
  7742. ggml_vec_scale_f32(M, S, sum);
  7743. #ifndef NDEBUG
  7744. for (int i = 0; i < M; ++i) {
  7745. assert(!isnan(S[i]));
  7746. assert(!isinf(S[i]));
  7747. }
  7748. #endif
  7749. }
  7750. for (int64_t ic = 0; ic < nev1; ++ic) {
  7751. // dst indices
  7752. const int i1 = iq1;
  7753. const int i2 = iq2;
  7754. const int i3 = iq3;
  7755. ggml_vec_dot_f32(nek1,
  7756. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7757. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7758. S);
  7759. }
  7760. }
  7761. }
  7762. static void ggml_compute_forward_flash_attn_f16(
  7763. const struct ggml_compute_params * params,
  7764. const struct ggml_tensor * q,
  7765. const struct ggml_tensor * k,
  7766. const struct ggml_tensor * v,
  7767. const bool masked,
  7768. struct ggml_tensor * dst) {
  7769. int64_t t0 = ggml_perf_time_us();
  7770. UNUSED(t0);
  7771. const int64_t neq0 = q->ne[0];
  7772. const int64_t neq1 = q->ne[1];
  7773. const int64_t neq2 = q->ne[2];
  7774. const int64_t neq3 = q->ne[3];
  7775. const int64_t nek0 = k->ne[0];
  7776. const int64_t nek1 = k->ne[1];
  7777. //const int64_t nek2 = k->ne[2];
  7778. //const int64_t nek3 = k->ne[3];
  7779. //const int64_t nev0 = v->ne[0];
  7780. const int64_t nev1 = v->ne[1];
  7781. //const int64_t nev2 = v->ne[2];
  7782. //const int64_t nev3 = v->ne[3];
  7783. const int64_t ne0 = dst->ne[0];
  7784. const int64_t ne1 = dst->ne[1];
  7785. //const int64_t ne2 = dst->ne[2];
  7786. //const int64_t ne3 = dst->ne[3];
  7787. const int nbk0 = k->nb[0];
  7788. const int nbk1 = k->nb[1];
  7789. const int nbk2 = k->nb[2];
  7790. const int nbk3 = k->nb[3];
  7791. const int nbq0 = q->nb[0];
  7792. const int nbq1 = q->nb[1];
  7793. const int nbq2 = q->nb[2];
  7794. const int nbq3 = q->nb[3];
  7795. const int nbv0 = v->nb[0];
  7796. const int nbv1 = v->nb[1];
  7797. const int nbv2 = v->nb[2];
  7798. const int nbv3 = v->nb[3];
  7799. const int nb0 = dst->nb[0];
  7800. const int nb1 = dst->nb[1];
  7801. const int nb2 = dst->nb[2];
  7802. const int nb3 = dst->nb[3];
  7803. const int ith = params->ith;
  7804. const int nth = params->nth;
  7805. const int64_t D = neq0;
  7806. const int64_t N = neq1;
  7807. const int64_t P = nek1 - N;
  7808. const int64_t M = P + N;
  7809. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  7810. GGML_ASSERT(ne0 == D);
  7811. GGML_ASSERT(ne1 == N);
  7812. GGML_ASSERT(P >= 0);
  7813. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  7814. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  7815. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  7816. GGML_ASSERT(neq0 == D);
  7817. GGML_ASSERT(nek0 == D);
  7818. GGML_ASSERT(nev1 == D);
  7819. GGML_ASSERT(neq1 == N);
  7820. GGML_ASSERT(nek1 == N + P);
  7821. GGML_ASSERT(nev1 == D);
  7822. // dst cannot be transposed or permuted
  7823. GGML_ASSERT(nb0 == sizeof(float));
  7824. GGML_ASSERT(nb0 <= nb1);
  7825. GGML_ASSERT(nb1 <= nb2);
  7826. GGML_ASSERT(nb2 <= nb3);
  7827. if (params->type == GGML_TASK_INIT) {
  7828. return;
  7829. }
  7830. if (params->type == GGML_TASK_FINALIZE) {
  7831. return;
  7832. }
  7833. // parallelize by q rows using ggml_vec_dot_f32
  7834. // total rows in q
  7835. const int nr = neq1*neq2*neq3;
  7836. // rows per thread
  7837. const int dr = (nr + nth - 1)/nth;
  7838. // row range for this thread
  7839. const int ir0 = dr*ith;
  7840. const int ir1 = MIN(ir0 + dr, nr);
  7841. const float scale = 1.0f/sqrtf(D);
  7842. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  7843. for (int ir = ir0; ir < ir1; ++ir) {
  7844. // q indices
  7845. const int iq3 = ir/(neq2*neq1);
  7846. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  7847. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  7848. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  7849. for (int i = M; i < Mup; ++i) {
  7850. S[i] = -INFINITY;
  7851. }
  7852. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  7853. for (int64_t ic = 0; ic < nek1; ++ic) {
  7854. // k indices
  7855. const int ik3 = iq3;
  7856. const int ik2 = iq2;
  7857. const int ik1 = ic;
  7858. // S indices
  7859. const int i1 = ik1;
  7860. ggml_vec_dot_f16(neq0,
  7861. S + i1,
  7862. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7863. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7864. }
  7865. } else {
  7866. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  7867. // k indices
  7868. const int ik3 = iq3;
  7869. const int ik2 = iq2;
  7870. const int ik1 = ic;
  7871. // S indices
  7872. const int i1 = ik1;
  7873. ggml_vec_dot_f16_unroll(neq0, nbk1,
  7874. S + i1,
  7875. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  7876. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  7877. }
  7878. }
  7879. // scale
  7880. ggml_vec_scale_f32(nek1, S, scale);
  7881. if (masked) {
  7882. for (int64_t i = P; i < M; i++) {
  7883. if (i > P + iq1) {
  7884. S[i] = -INFINITY;
  7885. }
  7886. }
  7887. }
  7888. // softmax
  7889. {
  7890. float max = -INFINITY;
  7891. ggml_vec_max_f32(M, &max, S);
  7892. ggml_float sum = 0.0;
  7893. {
  7894. #ifdef GGML_SOFT_MAX_ACCELERATE
  7895. max = -max;
  7896. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  7897. vvexpf(S, S, &Mup);
  7898. ggml_vec_sum_f32(Mup, &sum, S);
  7899. #else
  7900. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  7901. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  7902. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  7903. float * SS = S + i;
  7904. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  7905. if (SS[j] == -INFINITY) {
  7906. SS[j] = 0.0f;
  7907. } else {
  7908. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  7909. memcpy(&scvt[j], &s, sizeof(uint16_t));
  7910. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  7911. sump[j] += (ggml_float)val;
  7912. SS[j] = val;
  7913. }
  7914. }
  7915. }
  7916. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  7917. sum += sump[i];
  7918. }
  7919. #endif
  7920. }
  7921. assert(sum > 0.0);
  7922. sum = 1.0/sum;
  7923. ggml_vec_scale_f32(M, S, sum);
  7924. #ifndef NDEBUG
  7925. for (int i = 0; i < M; ++i) {
  7926. assert(!isnan(S[i]));
  7927. assert(!isinf(S[i]));
  7928. }
  7929. #endif
  7930. }
  7931. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  7932. for (int64_t i = 0; i < M; i++) {
  7933. S16[i] = GGML_FP32_TO_FP16(S[i]);
  7934. }
  7935. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  7936. for (int64_t ic = 0; ic < nev1; ++ic) {
  7937. // dst indices
  7938. const int i1 = iq1;
  7939. const int i2 = iq2;
  7940. const int i3 = iq3;
  7941. ggml_vec_dot_f16(nek1,
  7942. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7943. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7944. S16);
  7945. }
  7946. } else {
  7947. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  7948. // dst indices
  7949. const int i1 = iq1;
  7950. const int i2 = iq2;
  7951. const int i3 = iq3;
  7952. ggml_vec_dot_f16_unroll(nek1, nbv1,
  7953. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7954. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  7955. S16);
  7956. }
  7957. }
  7958. }
  7959. }
  7960. static void ggml_compute_forward_flash_attn(
  7961. const struct ggml_compute_params * params,
  7962. const struct ggml_tensor * q,
  7963. const struct ggml_tensor * k,
  7964. const struct ggml_tensor * v,
  7965. const bool masked,
  7966. struct ggml_tensor * dst) {
  7967. switch (q->type) {
  7968. case GGML_TYPE_F16:
  7969. {
  7970. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  7971. } break;
  7972. case GGML_TYPE_F32:
  7973. {
  7974. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  7975. } break;
  7976. default:
  7977. {
  7978. GGML_ASSERT(false);
  7979. } break;
  7980. }
  7981. }
  7982. // ggml_compute_forward_flash_ff
  7983. static void ggml_compute_forward_flash_ff_f16(
  7984. const struct ggml_compute_params * params,
  7985. const struct ggml_tensor * a, // F16
  7986. const struct ggml_tensor * b0, // F16 fc_w
  7987. const struct ggml_tensor * b1, // F32 fc_b
  7988. const struct ggml_tensor * c0, // F16 proj_w
  7989. const struct ggml_tensor * c1, // F32 proj_b
  7990. struct ggml_tensor * dst) {
  7991. int64_t t0 = ggml_perf_time_us();
  7992. UNUSED(t0);
  7993. const int64_t nea0 = a->ne[0];
  7994. const int64_t nea1 = a->ne[1];
  7995. const int64_t nea2 = a->ne[2];
  7996. const int64_t nea3 = a->ne[3];
  7997. const int64_t neb00 = b0->ne[0];
  7998. const int64_t neb01 = b0->ne[1];
  7999. //const int64_t neb02 = b0->ne[2];
  8000. //const int64_t neb03 = b0->ne[3];
  8001. const int64_t neb10 = b1->ne[0];
  8002. const int64_t neb11 = b1->ne[1];
  8003. //const int64_t neb12 = b1->ne[2];
  8004. //const int64_t neb13 = b1->ne[3];
  8005. const int64_t nec00 = c0->ne[0];
  8006. const int64_t nec01 = c0->ne[1];
  8007. //const int64_t nec02 = c0->ne[2];
  8008. //const int64_t nec03 = c0->ne[3];
  8009. const int64_t nec10 = c1->ne[0];
  8010. const int64_t nec11 = c1->ne[1];
  8011. //const int64_t nec12 = c1->ne[2];
  8012. //const int64_t nec13 = c1->ne[3];
  8013. const int64_t ne0 = dst->ne[0];
  8014. const int64_t ne1 = dst->ne[1];
  8015. const int64_t ne2 = dst->ne[2];
  8016. //const int64_t ne3 = dst->ne[3];
  8017. const int nba0 = a->nb[0];
  8018. const int nba1 = a->nb[1];
  8019. const int nba2 = a->nb[2];
  8020. const int nba3 = a->nb[3];
  8021. const int nbb00 = b0->nb[0];
  8022. const int nbb01 = b0->nb[1];
  8023. const int nbb02 = b0->nb[2];
  8024. const int nbb03 = b0->nb[3];
  8025. const int nbb10 = b1->nb[0];
  8026. //const int nbb11 = b1->nb[1];
  8027. //const int nbb12 = b1->nb[2];
  8028. //const int nbb13 = b1->nb[3];
  8029. const int nbc00 = c0->nb[0];
  8030. const int nbc01 = c0->nb[1];
  8031. const int nbc02 = c0->nb[2];
  8032. const int nbc03 = c0->nb[3];
  8033. const int nbc10 = c1->nb[0];
  8034. //const int nbc11 = c1->nb[1];
  8035. //const int nbc12 = c1->nb[2];
  8036. //const int nbc13 = c1->nb[3];
  8037. const int nb0 = dst->nb[0];
  8038. const int nb1 = dst->nb[1];
  8039. const int nb2 = dst->nb[2];
  8040. const int nb3 = dst->nb[3];
  8041. const int ith = params->ith;
  8042. const int nth = params->nth;
  8043. const int64_t D = nea0;
  8044. //const int64_t N = nea1;
  8045. const int64_t M = neb01;
  8046. GGML_ASSERT(ne0 == nea0);
  8047. GGML_ASSERT(ne1 == nea1);
  8048. GGML_ASSERT(ne2 == nea2);
  8049. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8050. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8051. GGML_ASSERT(nbb10 == sizeof(float));
  8052. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8053. GGML_ASSERT(nbc10 == sizeof(float));
  8054. GGML_ASSERT(neb00 == D);
  8055. GGML_ASSERT(neb01 == M);
  8056. GGML_ASSERT(neb10 == M);
  8057. GGML_ASSERT(neb11 == 1);
  8058. GGML_ASSERT(nec00 == M);
  8059. GGML_ASSERT(nec01 == D);
  8060. GGML_ASSERT(nec10 == D);
  8061. GGML_ASSERT(nec11 == 1);
  8062. // dst cannot be transposed or permuted
  8063. GGML_ASSERT(nb0 == sizeof(float));
  8064. GGML_ASSERT(nb0 <= nb1);
  8065. GGML_ASSERT(nb1 <= nb2);
  8066. GGML_ASSERT(nb2 <= nb3);
  8067. if (params->type == GGML_TASK_INIT) {
  8068. return;
  8069. }
  8070. if (params->type == GGML_TASK_FINALIZE) {
  8071. return;
  8072. }
  8073. // parallelize by a rows using ggml_vec_dot_f32
  8074. // total rows in a
  8075. const int nr = nea1*nea2*nea3;
  8076. // rows per thread
  8077. const int dr = (nr + nth - 1)/nth;
  8078. // row range for this thread
  8079. const int ir0 = dr*ith;
  8080. const int ir1 = MIN(ir0 + dr, nr);
  8081. for (int ir = ir0; ir < ir1; ++ir) {
  8082. // a indices
  8083. const int ia3 = ir/(nea2*nea1);
  8084. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8085. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8086. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8087. for (int64_t ic = 0; ic < neb01; ++ic) {
  8088. // b0 indices
  8089. const int ib03 = ia3;
  8090. const int ib02 = ia2;
  8091. const int ib01 = ic;
  8092. // S indices
  8093. const int i1 = ib01;
  8094. ggml_vec_dot_f16(nea0,
  8095. S + i1,
  8096. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8097. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8098. }
  8099. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8100. //ggml_vec_gelu_f32(neb01, S, S);
  8101. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8102. for (int64_t i = 0; i < M; i++) {
  8103. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8104. }
  8105. ggml_vec_gelu_f16(neb01, S16, S16);
  8106. {
  8107. // dst indices
  8108. const int i1 = ia1;
  8109. const int i2 = ia2;
  8110. const int i3 = ia3;
  8111. for (int64_t ic = 0; ic < nec01; ++ic) {
  8112. ggml_vec_dot_f16(neb01,
  8113. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8114. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8115. S16);
  8116. }
  8117. ggml_vec_add_f32(nec01,
  8118. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8119. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8120. (float *) c1->data);
  8121. }
  8122. }
  8123. }
  8124. static void ggml_compute_forward_flash_ff(
  8125. const struct ggml_compute_params * params,
  8126. const struct ggml_tensor * a,
  8127. const struct ggml_tensor * b0,
  8128. const struct ggml_tensor * b1,
  8129. const struct ggml_tensor * c0,
  8130. const struct ggml_tensor * c1,
  8131. struct ggml_tensor * dst) {
  8132. switch (b0->type) {
  8133. case GGML_TYPE_F16:
  8134. {
  8135. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8136. } break;
  8137. case GGML_TYPE_F32:
  8138. {
  8139. GGML_ASSERT(false); // TODO
  8140. } break;
  8141. default:
  8142. {
  8143. GGML_ASSERT(false);
  8144. } break;
  8145. }
  8146. }
  8147. // ggml_compute_forward_map_unary
  8148. static void ggml_compute_forward_map_unary_f32(
  8149. const struct ggml_compute_params * params,
  8150. const struct ggml_tensor * src0,
  8151. struct ggml_tensor * dst,
  8152. const ggml_unary_op_f32_t fun) {
  8153. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8155. return;
  8156. }
  8157. const int n = ggml_nrows(src0);
  8158. const int nc = src0->ne[0];
  8159. assert( dst->nb[0] == sizeof(float));
  8160. assert(src0->nb[0] == sizeof(float));
  8161. for (int i = 0; i < n; i++) {
  8162. fun(nc,
  8163. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8164. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8165. }
  8166. }
  8167. static void ggml_compute_forward_map_unary(
  8168. const struct ggml_compute_params * params,
  8169. const struct ggml_tensor * src0,
  8170. struct ggml_tensor * dst,
  8171. const ggml_unary_op_f32_t fun) {
  8172. switch (src0->type) {
  8173. case GGML_TYPE_F32:
  8174. {
  8175. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8176. } break;
  8177. default:
  8178. {
  8179. GGML_ASSERT(false);
  8180. } break;
  8181. }
  8182. }
  8183. // ggml_compute_forward_map_binary
  8184. static void ggml_compute_forward_map_binary_f32(
  8185. const struct ggml_compute_params * params,
  8186. const struct ggml_tensor * src0,
  8187. const struct ggml_tensor * src1,
  8188. struct ggml_tensor * dst,
  8189. const ggml_binary_op_f32_t fun) {
  8190. assert(params->ith == 0);
  8191. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8192. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8193. return;
  8194. }
  8195. const int n = ggml_nrows(src0);
  8196. const int nc = src0->ne[0];
  8197. assert( dst->nb[0] == sizeof(float));
  8198. assert(src0->nb[0] == sizeof(float));
  8199. assert(src1->nb[0] == sizeof(float));
  8200. for (int i = 0; i < n; i++) {
  8201. fun(nc,
  8202. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8203. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8204. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8205. }
  8206. }
  8207. static void ggml_compute_forward_map_binary(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. const struct ggml_tensor * src1,
  8211. struct ggml_tensor * dst,
  8212. const ggml_binary_op_f32_t fun) {
  8213. switch (src0->type) {
  8214. case GGML_TYPE_F32:
  8215. {
  8216. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8217. } break;
  8218. default:
  8219. {
  8220. GGML_ASSERT(false);
  8221. } break;
  8222. }
  8223. }
  8224. /////////////////////////////////
  8225. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8226. GGML_ASSERT(params);
  8227. switch (tensor->op) {
  8228. case GGML_OP_DUP:
  8229. {
  8230. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8231. } break;
  8232. case GGML_OP_ADD:
  8233. {
  8234. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8235. } break;
  8236. case GGML_OP_SUB:
  8237. {
  8238. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8239. } break;
  8240. case GGML_OP_MUL:
  8241. {
  8242. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8243. } break;
  8244. case GGML_OP_DIV:
  8245. {
  8246. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8247. } break;
  8248. case GGML_OP_SQR:
  8249. {
  8250. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8251. } break;
  8252. case GGML_OP_SQRT:
  8253. {
  8254. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8255. } break;
  8256. case GGML_OP_SUM:
  8257. {
  8258. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8259. } break;
  8260. case GGML_OP_MEAN:
  8261. {
  8262. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8263. } break;
  8264. case GGML_OP_REPEAT:
  8265. {
  8266. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8267. } break;
  8268. case GGML_OP_ABS:
  8269. {
  8270. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8271. } break;
  8272. case GGML_OP_SGN:
  8273. {
  8274. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8275. } break;
  8276. case GGML_OP_NEG:
  8277. {
  8278. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8279. } break;
  8280. case GGML_OP_STEP:
  8281. {
  8282. ggml_compute_forward_step(params, tensor->src0, tensor);
  8283. } break;
  8284. case GGML_OP_RELU:
  8285. {
  8286. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8287. } break;
  8288. case GGML_OP_GELU:
  8289. {
  8290. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8291. } break;
  8292. case GGML_OP_SILU:
  8293. {
  8294. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8295. } break;
  8296. case GGML_OP_NORM:
  8297. {
  8298. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8299. } break;
  8300. case GGML_OP_RMS_NORM:
  8301. {
  8302. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8303. } break;
  8304. case GGML_OP_MUL_MAT:
  8305. {
  8306. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8307. } break;
  8308. case GGML_OP_SCALE:
  8309. {
  8310. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8311. } break;
  8312. case GGML_OP_CPY:
  8313. {
  8314. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8315. } break;
  8316. case GGML_OP_CONT:
  8317. {
  8318. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8319. } break;
  8320. case GGML_OP_RESHAPE:
  8321. {
  8322. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8323. } break;
  8324. case GGML_OP_VIEW:
  8325. {
  8326. ggml_compute_forward_view(params, tensor->src0);
  8327. } break;
  8328. case GGML_OP_PERMUTE:
  8329. {
  8330. ggml_compute_forward_permute(params, tensor->src0);
  8331. } break;
  8332. case GGML_OP_TRANSPOSE:
  8333. {
  8334. ggml_compute_forward_transpose(params, tensor->src0);
  8335. } break;
  8336. case GGML_OP_GET_ROWS:
  8337. {
  8338. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8339. } break;
  8340. case GGML_OP_DIAG_MASK_INF:
  8341. {
  8342. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8343. } break;
  8344. case GGML_OP_SOFT_MAX:
  8345. {
  8346. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8347. } break;
  8348. case GGML_OP_ROPE:
  8349. {
  8350. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8351. } break;
  8352. case GGML_OP_CONV_1D_1S:
  8353. {
  8354. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8355. } break;
  8356. case GGML_OP_CONV_1D_2S:
  8357. {
  8358. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8359. } break;
  8360. case GGML_OP_FLASH_ATTN:
  8361. {
  8362. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8363. GGML_ASSERT(t == 0 || t == 1);
  8364. bool masked = t != 0;
  8365. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8366. } break;
  8367. case GGML_OP_FLASH_FF:
  8368. {
  8369. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8370. } break;
  8371. case GGML_OP_MAP_UNARY:
  8372. {
  8373. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8374. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8375. }
  8376. break;
  8377. case GGML_OP_MAP_BINARY:
  8378. {
  8379. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8380. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8381. }
  8382. break;
  8383. case GGML_OP_NONE:
  8384. {
  8385. // nop
  8386. } break;
  8387. case GGML_OP_COUNT:
  8388. {
  8389. GGML_ASSERT(false);
  8390. } break;
  8391. }
  8392. }
  8393. ////////////////////////////////////////////////////////////////////////////////
  8394. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8395. struct ggml_tensor * src0 = tensor->src0;
  8396. struct ggml_tensor * src1 = tensor->src1;
  8397. switch (tensor->op) {
  8398. case GGML_OP_DUP:
  8399. {
  8400. if (src0->grad) {
  8401. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8402. }
  8403. } break;
  8404. case GGML_OP_ADD:
  8405. {
  8406. if (src0->grad) {
  8407. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8408. }
  8409. if (src1->grad) {
  8410. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8411. }
  8412. } break;
  8413. case GGML_OP_SUB:
  8414. {
  8415. if (src0->grad) {
  8416. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8417. }
  8418. if (src1->grad) {
  8419. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8420. }
  8421. } break;
  8422. case GGML_OP_MUL:
  8423. {
  8424. if (src0->grad) {
  8425. src0->grad =
  8426. ggml_add_impl(ctx,
  8427. src0->grad,
  8428. ggml_mul(ctx, src1, tensor->grad),
  8429. inplace);
  8430. }
  8431. if (src1->grad) {
  8432. src1->grad =
  8433. ggml_add_impl(ctx,
  8434. src1->grad,
  8435. ggml_mul(ctx, src0, tensor->grad),
  8436. inplace);
  8437. }
  8438. } break;
  8439. case GGML_OP_DIV:
  8440. {
  8441. if (src0->grad) {
  8442. src0->grad =
  8443. ggml_add_impl(ctx,
  8444. src0->grad,
  8445. ggml_div(ctx, tensor->grad, src1),
  8446. inplace);
  8447. }
  8448. if (src1->grad) {
  8449. src1->grad =
  8450. ggml_sub_impl(ctx,
  8451. src1->grad,
  8452. ggml_mul(ctx,
  8453. tensor->grad,
  8454. ggml_div(ctx, tensor, src1)),
  8455. inplace);
  8456. }
  8457. } break;
  8458. case GGML_OP_SQR:
  8459. {
  8460. if (src0->grad) {
  8461. src0->grad =
  8462. ggml_add_impl(ctx,
  8463. src0->grad,
  8464. ggml_mul(ctx,
  8465. ggml_mul(ctx, src0, tensor->grad),
  8466. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  8467. inplace);
  8468. }
  8469. } break;
  8470. case GGML_OP_SQRT:
  8471. {
  8472. if (src0->grad) {
  8473. src0->grad =
  8474. ggml_add_impl(ctx,
  8475. src0->grad,
  8476. ggml_div(ctx,
  8477. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  8478. tensor),
  8479. inplace);
  8480. }
  8481. } break;
  8482. case GGML_OP_SUM:
  8483. {
  8484. if (src0->grad) {
  8485. src0->grad =
  8486. ggml_add_impl(ctx,
  8487. src0->grad,
  8488. ggml_repeat(ctx, tensor->grad, src0->grad),
  8489. inplace);
  8490. }
  8491. } break;
  8492. case GGML_OP_MEAN:
  8493. {
  8494. GGML_ASSERT(false); // TODO: implement
  8495. } break;
  8496. case GGML_OP_REPEAT:
  8497. {
  8498. if (src0->grad) {
  8499. src0->grad =
  8500. ggml_add_impl(ctx,
  8501. src0->grad,
  8502. ggml_sum(ctx, tensor->grad),
  8503. inplace);
  8504. }
  8505. } break;
  8506. case GGML_OP_ABS:
  8507. {
  8508. if (src0->grad) {
  8509. src0->grad =
  8510. ggml_add_impl(ctx,
  8511. src0->grad,
  8512. ggml_mul(ctx,
  8513. ggml_sgn(ctx, src0),
  8514. tensor->grad),
  8515. inplace);
  8516. }
  8517. } break;
  8518. case GGML_OP_SGN:
  8519. {
  8520. if (src0->grad) {
  8521. // noop
  8522. }
  8523. } break;
  8524. case GGML_OP_NEG:
  8525. {
  8526. if (src0->grad) {
  8527. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  8528. }
  8529. } break;
  8530. case GGML_OP_STEP:
  8531. {
  8532. if (src0->grad) {
  8533. // noop
  8534. }
  8535. } break;
  8536. case GGML_OP_RELU:
  8537. {
  8538. if (src0->grad) {
  8539. src0->grad = ggml_sub_impl(ctx,
  8540. src0->grad,
  8541. ggml_mul(ctx,
  8542. ggml_step(ctx, src0),
  8543. tensor->grad),
  8544. inplace);
  8545. }
  8546. } break;
  8547. case GGML_OP_GELU:
  8548. {
  8549. GGML_ASSERT(false); // TODO: not implemented
  8550. } break;
  8551. case GGML_OP_SILU:
  8552. {
  8553. GGML_ASSERT(false); // TODO: not implemented
  8554. } break;
  8555. case GGML_OP_NORM:
  8556. {
  8557. GGML_ASSERT(false); // TODO: not implemented
  8558. } break;
  8559. case GGML_OP_RMS_NORM:
  8560. {
  8561. GGML_ASSERT(false); // TODO: not implemented
  8562. } break;
  8563. case GGML_OP_MUL_MAT:
  8564. {
  8565. if (src0->grad) {
  8566. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  8567. GGML_ASSERT(false);
  8568. }
  8569. if (src1->grad) {
  8570. src1->grad =
  8571. ggml_add_impl(ctx,
  8572. src1->grad,
  8573. ggml_mul_mat(ctx,
  8574. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  8575. tensor->grad),
  8576. inplace);
  8577. }
  8578. } break;
  8579. case GGML_OP_SCALE:
  8580. {
  8581. GGML_ASSERT(false); // TODO: not implemented
  8582. } break;
  8583. case GGML_OP_CPY:
  8584. {
  8585. GGML_ASSERT(false); // TODO: not implemented
  8586. } break;
  8587. case GGML_OP_CONT:
  8588. {
  8589. GGML_ASSERT(false); // TODO: not implemented
  8590. } break;
  8591. case GGML_OP_RESHAPE:
  8592. {
  8593. GGML_ASSERT(false); // TODO: not implemented
  8594. } break;
  8595. case GGML_OP_VIEW:
  8596. {
  8597. GGML_ASSERT(false); // not supported
  8598. } break;
  8599. case GGML_OP_PERMUTE:
  8600. {
  8601. GGML_ASSERT(false); // TODO: not implemented
  8602. } break;
  8603. case GGML_OP_TRANSPOSE:
  8604. {
  8605. GGML_ASSERT(false); // TODO: not implemented
  8606. } break;
  8607. case GGML_OP_GET_ROWS:
  8608. {
  8609. GGML_ASSERT(false); // TODO: not implemented
  8610. } break;
  8611. case GGML_OP_DIAG_MASK_INF:
  8612. {
  8613. GGML_ASSERT(false); // TODO: not implemented
  8614. } break;
  8615. case GGML_OP_SOFT_MAX:
  8616. {
  8617. GGML_ASSERT(false); // TODO: not implemented
  8618. } break;
  8619. case GGML_OP_ROPE:
  8620. {
  8621. GGML_ASSERT(false); // TODO: not implemented
  8622. } break;
  8623. case GGML_OP_CONV_1D_1S:
  8624. {
  8625. GGML_ASSERT(false); // TODO: not implemented
  8626. } break;
  8627. case GGML_OP_CONV_1D_2S:
  8628. {
  8629. GGML_ASSERT(false); // TODO: not implemented
  8630. } break;
  8631. case GGML_OP_FLASH_ATTN:
  8632. {
  8633. GGML_ASSERT(false); // not supported
  8634. } break;
  8635. case GGML_OP_FLASH_FF:
  8636. {
  8637. GGML_ASSERT(false); // not supported
  8638. } break;
  8639. case GGML_OP_MAP_UNARY:
  8640. case GGML_OP_MAP_BINARY:
  8641. {
  8642. GGML_ASSERT(false); // not supported
  8643. } break;
  8644. case GGML_OP_NONE:
  8645. {
  8646. // nop
  8647. } break;
  8648. case GGML_OP_COUNT:
  8649. {
  8650. GGML_ASSERT(false);
  8651. } break;
  8652. }
  8653. }
  8654. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  8655. if (node->grad == NULL) {
  8656. // this usually happens when we generate intermediate nodes from constants in the backward pass
  8657. // it can also happen during forward pass, if the user performs computations with constants
  8658. if (node->op != GGML_OP_NONE) {
  8659. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  8660. }
  8661. }
  8662. // check if already visited
  8663. for (int i = 0; i < cgraph->n_nodes; i++) {
  8664. if (cgraph->nodes[i] == node) {
  8665. return;
  8666. }
  8667. }
  8668. for (int i = 0; i < cgraph->n_leafs; i++) {
  8669. if (cgraph->leafs[i] == node) {
  8670. return;
  8671. }
  8672. }
  8673. if (node->src0) {
  8674. ggml_visit_parents(cgraph, node->src0);
  8675. }
  8676. if (node->src1) {
  8677. ggml_visit_parents(cgraph, node->src1);
  8678. }
  8679. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  8680. if (node->opt[i]) {
  8681. ggml_visit_parents(cgraph, node->opt[i]);
  8682. }
  8683. }
  8684. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  8685. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  8686. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  8687. cgraph->leafs[cgraph->n_leafs] = node;
  8688. cgraph->n_leafs++;
  8689. } else {
  8690. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  8691. cgraph->nodes[cgraph->n_nodes] = node;
  8692. cgraph->grads[cgraph->n_nodes] = node->grad;
  8693. cgraph->n_nodes++;
  8694. }
  8695. }
  8696. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  8697. if (!expand) {
  8698. cgraph->n_nodes = 0;
  8699. cgraph->n_leafs = 0;
  8700. }
  8701. const int n0 = cgraph->n_nodes;
  8702. UNUSED(n0);
  8703. ggml_visit_parents(cgraph, tensor);
  8704. const int n_new = cgraph->n_nodes - n0;
  8705. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  8706. if (n_new > 0) {
  8707. // the last added node should always be starting point
  8708. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  8709. }
  8710. }
  8711. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  8712. ggml_build_forward_impl(cgraph, tensor, true);
  8713. }
  8714. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  8715. struct ggml_cgraph result = {
  8716. /*.n_nodes =*/ 0,
  8717. /*.n_leafs =*/ 0,
  8718. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  8719. /*.work_size =*/ 0,
  8720. /*.work =*/ NULL,
  8721. /*.nodes =*/ { NULL },
  8722. /*.grads =*/ { NULL },
  8723. /*.leafs =*/ { NULL },
  8724. /*.perf_runs =*/ 0,
  8725. /*.perf_cycles =*/ 0,
  8726. /*.perf_time_us =*/ 0,
  8727. };
  8728. ggml_build_forward_impl(&result, tensor, false);
  8729. return result;
  8730. }
  8731. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  8732. struct ggml_cgraph result = *gf;
  8733. GGML_ASSERT(gf->n_nodes > 0);
  8734. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  8735. if (keep) {
  8736. for (int i = 0; i < gf->n_nodes; i++) {
  8737. struct ggml_tensor * node = gf->nodes[i];
  8738. if (node->grad) {
  8739. node->grad = ggml_dup_tensor(ctx, node);
  8740. gf->grads[i] = node->grad;
  8741. }
  8742. }
  8743. }
  8744. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8745. struct ggml_tensor * node = gf->nodes[i];
  8746. // because we detached the grad nodes from the original graph, we can afford inplace operations
  8747. if (node->grad) {
  8748. ggml_compute_backward(ctx, node, keep);
  8749. }
  8750. }
  8751. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  8752. struct ggml_tensor * node = gf->nodes[i];
  8753. if (node->is_param) {
  8754. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  8755. ggml_build_forward_impl(&result, node->grad, true);
  8756. }
  8757. }
  8758. return result;
  8759. }
  8760. //
  8761. // thread data
  8762. //
  8763. // synchronization is done via busy loops
  8764. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  8765. //
  8766. #ifdef __APPLE__
  8767. //#include <os/lock.h>
  8768. //
  8769. //typedef os_unfair_lock ggml_lock_t;
  8770. //
  8771. //#define ggml_lock_init(x) UNUSED(x)
  8772. //#define ggml_lock_destroy(x) UNUSED(x)
  8773. //#define ggml_lock_lock os_unfair_lock_lock
  8774. //#define ggml_lock_unlock os_unfair_lock_unlock
  8775. //
  8776. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  8777. typedef int ggml_lock_t;
  8778. #define ggml_lock_init(x) UNUSED(x)
  8779. #define ggml_lock_destroy(x) UNUSED(x)
  8780. #define ggml_lock_lock(x) UNUSED(x)
  8781. #define ggml_lock_unlock(x) UNUSED(x)
  8782. #define GGML_LOCK_INITIALIZER 0
  8783. typedef pthread_t ggml_thread_t;
  8784. #define ggml_thread_create pthread_create
  8785. #define ggml_thread_join pthread_join
  8786. #else
  8787. //typedef pthread_spinlock_t ggml_lock_t;
  8788. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  8789. //#define ggml_lock_destroy pthread_spin_destroy
  8790. //#define ggml_lock_lock pthread_spin_lock
  8791. //#define ggml_lock_unlock pthread_spin_unlock
  8792. typedef int ggml_lock_t;
  8793. #define ggml_lock_init(x) UNUSED(x)
  8794. #define ggml_lock_destroy(x) UNUSED(x)
  8795. #define ggml_lock_lock(x) UNUSED(x)
  8796. #define ggml_lock_unlock(x) UNUSED(x)
  8797. #define GGML_LOCK_INITIALIZER 0
  8798. typedef pthread_t ggml_thread_t;
  8799. #define ggml_thread_create pthread_create
  8800. #define ggml_thread_join pthread_join
  8801. #endif
  8802. struct ggml_compute_state_shared {
  8803. ggml_lock_t spin;
  8804. int n_threads;
  8805. // synchronization primitives
  8806. atomic_int n_ready;
  8807. atomic_bool has_work;
  8808. atomic_bool stop; // stop all threads
  8809. };
  8810. struct ggml_compute_state {
  8811. ggml_thread_t thrd;
  8812. struct ggml_compute_params params;
  8813. struct ggml_tensor * node;
  8814. struct ggml_compute_state_shared * shared;
  8815. };
  8816. static thread_ret_t ggml_graph_compute_thread(void * data) {
  8817. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  8818. const int n_threads = state->shared->n_threads;
  8819. while (true) {
  8820. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  8821. atomic_store(&state->shared->has_work, false);
  8822. } else {
  8823. while (atomic_load(&state->shared->has_work)) {
  8824. if (atomic_load(&state->shared->stop)) {
  8825. return 0;
  8826. }
  8827. ggml_lock_lock (&state->shared->spin);
  8828. ggml_lock_unlock(&state->shared->spin);
  8829. }
  8830. }
  8831. atomic_fetch_sub(&state->shared->n_ready, 1);
  8832. // wait for work
  8833. while (!atomic_load(&state->shared->has_work)) {
  8834. if (atomic_load(&state->shared->stop)) {
  8835. return 0;
  8836. }
  8837. ggml_lock_lock (&state->shared->spin);
  8838. ggml_lock_unlock(&state->shared->spin);
  8839. }
  8840. // check if we should stop
  8841. if (atomic_load(&state->shared->stop)) {
  8842. break;
  8843. }
  8844. if (state->node) {
  8845. if (state->params.ith < state->params.nth) {
  8846. ggml_compute_forward(&state->params, state->node);
  8847. }
  8848. state->node = NULL;
  8849. } else {
  8850. break;
  8851. }
  8852. }
  8853. return 0;
  8854. }
  8855. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  8856. const int n_threads = cgraph->n_threads;
  8857. struct ggml_compute_state_shared state_shared = {
  8858. /*.spin =*/ GGML_LOCK_INITIALIZER,
  8859. /*.n_threads =*/ n_threads,
  8860. /*.n_ready =*/ 0,
  8861. /*.has_work =*/ false,
  8862. /*.stop =*/ false,
  8863. };
  8864. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  8865. // create thread pool
  8866. if (n_threads > 1) {
  8867. ggml_lock_init(&state_shared.spin);
  8868. atomic_store(&state_shared.has_work, true);
  8869. for (int j = 0; j < n_threads - 1; j++) {
  8870. workers[j] = (struct ggml_compute_state) {
  8871. .thrd = 0,
  8872. .params = {
  8873. .type = GGML_TASK_COMPUTE,
  8874. .ith = j + 1,
  8875. .nth = n_threads,
  8876. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  8877. .wdata = cgraph->work ? cgraph->work->data : NULL,
  8878. },
  8879. .node = NULL,
  8880. .shared = &state_shared,
  8881. };
  8882. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  8883. GGML_ASSERT(rc == 0);
  8884. UNUSED(rc);
  8885. }
  8886. }
  8887. // initialize tasks + work buffer
  8888. {
  8889. size_t work_size = 0;
  8890. // thread scheduling for the different operations
  8891. for (int i = 0; i < cgraph->n_nodes; i++) {
  8892. struct ggml_tensor * node = cgraph->nodes[i];
  8893. switch (node->op) {
  8894. case GGML_OP_CPY:
  8895. case GGML_OP_DUP:
  8896. {
  8897. node->n_tasks = n_threads;
  8898. size_t cur = 0;
  8899. if (ggml_is_quantized(node->type)) {
  8900. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  8901. }
  8902. work_size = MAX(work_size, cur);
  8903. } break;
  8904. case GGML_OP_ADD:
  8905. {
  8906. node->n_tasks = n_threads;
  8907. size_t cur = 0;
  8908. if (ggml_is_quantized(node->src0->type)) {
  8909. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  8910. }
  8911. work_size = MAX(work_size, cur);
  8912. } break;
  8913. case GGML_OP_SUB:
  8914. case GGML_OP_MUL:
  8915. case GGML_OP_DIV:
  8916. case GGML_OP_SQR:
  8917. case GGML_OP_SQRT:
  8918. case GGML_OP_SUM:
  8919. case GGML_OP_MEAN:
  8920. case GGML_OP_REPEAT:
  8921. case GGML_OP_ABS:
  8922. case GGML_OP_SGN:
  8923. case GGML_OP_NEG:
  8924. case GGML_OP_STEP:
  8925. case GGML_OP_RELU:
  8926. {
  8927. node->n_tasks = 1;
  8928. } break;
  8929. case GGML_OP_GELU:
  8930. {
  8931. node->n_tasks = n_threads;
  8932. } break;
  8933. case GGML_OP_SILU:
  8934. {
  8935. node->n_tasks = n_threads;
  8936. } break;
  8937. case GGML_OP_NORM:
  8938. case GGML_OP_RMS_NORM:
  8939. {
  8940. node->n_tasks = n_threads;
  8941. } break;
  8942. case GGML_OP_MUL_MAT:
  8943. {
  8944. node->n_tasks = n_threads;
  8945. // TODO: use different scheduling for different matrix sizes
  8946. //const int nr0 = ggml_nrows(node->src0);
  8947. //const int nr1 = ggml_nrows(node->src1);
  8948. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  8949. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  8950. size_t cur = 0;
  8951. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  8952. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8953. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8954. node->n_tasks = 1; // TODO: this actually is doing nothing
  8955. // the threads are still spinning
  8956. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8957. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  8958. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  8959. //printf("cur = %zu\n", cur);
  8960. } else {
  8961. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8962. }
  8963. #else
  8964. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  8965. #endif
  8966. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  8967. cur = 0;
  8968. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  8969. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  8970. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  8971. node->n_tasks = 1;
  8972. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  8973. } else
  8974. #endif
  8975. {
  8976. cur = GGML_TYPE_SIZE[GGML_TYPE_Q8_0]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[GGML_TYPE_Q8_0];
  8977. }
  8978. } else {
  8979. GGML_ASSERT(false);
  8980. }
  8981. work_size = MAX(work_size, cur);
  8982. } break;
  8983. case GGML_OP_SCALE:
  8984. {
  8985. node->n_tasks = n_threads;
  8986. } break;
  8987. case GGML_OP_CONT:
  8988. case GGML_OP_RESHAPE:
  8989. case GGML_OP_VIEW:
  8990. case GGML_OP_PERMUTE:
  8991. case GGML_OP_TRANSPOSE:
  8992. case GGML_OP_GET_ROWS:
  8993. case GGML_OP_DIAG_MASK_INF:
  8994. {
  8995. node->n_tasks = 1;
  8996. } break;
  8997. case GGML_OP_SOFT_MAX:
  8998. {
  8999. node->n_tasks = n_threads;
  9000. } break;
  9001. case GGML_OP_ROPE:
  9002. {
  9003. node->n_tasks = n_threads;
  9004. } break;
  9005. case GGML_OP_CONV_1D_1S:
  9006. case GGML_OP_CONV_1D_2S:
  9007. {
  9008. node->n_tasks = n_threads;
  9009. GGML_ASSERT(node->src0->ne[3] == 1);
  9010. GGML_ASSERT(node->src1->ne[2] == 1);
  9011. GGML_ASSERT(node->src1->ne[3] == 1);
  9012. size_t cur = 0;
  9013. const int nk = node->src0->ne[0];
  9014. if (node->src0->type == GGML_TYPE_F16 &&
  9015. node->src1->type == GGML_TYPE_F32) {
  9016. cur = sizeof(ggml_fp16_t)*(
  9017. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9018. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9019. );
  9020. } else if (node->src0->type == GGML_TYPE_F32 &&
  9021. node->src1->type == GGML_TYPE_F32) {
  9022. cur = sizeof(float)*(
  9023. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9024. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9025. );
  9026. } else {
  9027. GGML_ASSERT(false);
  9028. }
  9029. work_size = MAX(work_size, cur);
  9030. } break;
  9031. case GGML_OP_FLASH_ATTN:
  9032. {
  9033. node->n_tasks = n_threads;
  9034. size_t cur = 0;
  9035. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9036. if (node->src1->type == GGML_TYPE_F32) {
  9037. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9038. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9039. }
  9040. if (node->src1->type == GGML_TYPE_F16) {
  9041. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9042. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9043. }
  9044. work_size = MAX(work_size, cur);
  9045. } break;
  9046. case GGML_OP_FLASH_FF:
  9047. {
  9048. node->n_tasks = n_threads;
  9049. size_t cur = 0;
  9050. if (node->src1->type == GGML_TYPE_F32) {
  9051. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9052. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9053. }
  9054. if (node->src1->type == GGML_TYPE_F16) {
  9055. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9056. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9057. }
  9058. work_size = MAX(work_size, cur);
  9059. } break;
  9060. case GGML_OP_MAP_UNARY:
  9061. case GGML_OP_MAP_BINARY:
  9062. {
  9063. node->n_tasks = 1;
  9064. } break;
  9065. case GGML_OP_NONE:
  9066. {
  9067. node->n_tasks = 1;
  9068. } break;
  9069. case GGML_OP_COUNT:
  9070. {
  9071. GGML_ASSERT(false);
  9072. } break;
  9073. }
  9074. }
  9075. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9076. GGML_ASSERT(false); // TODO: better handling
  9077. }
  9078. if (work_size > 0 && cgraph->work == NULL) {
  9079. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9080. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9081. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9082. }
  9083. }
  9084. const int64_t perf_start_cycles = ggml_perf_cycles();
  9085. const int64_t perf_start_time_us = ggml_perf_time_us();
  9086. for (int i = 0; i < cgraph->n_nodes; i++) {
  9087. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9088. struct ggml_tensor * node = cgraph->nodes[i];
  9089. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9090. //if (node->grad == NULL && node->perf_runs > 0) {
  9091. // continue;
  9092. //}
  9093. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9094. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9095. // INIT
  9096. struct ggml_compute_params params = {
  9097. /*.type =*/ GGML_TASK_INIT,
  9098. /*.ith =*/ 0,
  9099. /*.nth =*/ node->n_tasks,
  9100. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9101. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9102. };
  9103. ggml_compute_forward(&params, node);
  9104. // COMPUTE
  9105. if (node->n_tasks > 1) {
  9106. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9107. atomic_store(&state_shared.has_work, false);
  9108. }
  9109. while (atomic_load(&state_shared.has_work)) {
  9110. ggml_lock_lock (&state_shared.spin);
  9111. ggml_lock_unlock(&state_shared.spin);
  9112. }
  9113. // launch thread pool
  9114. for (int j = 0; j < n_threads - 1; j++) {
  9115. workers[j].params = (struct ggml_compute_params) {
  9116. .type = GGML_TASK_COMPUTE,
  9117. .ith = j + 1,
  9118. .nth = node->n_tasks,
  9119. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9120. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9121. };
  9122. workers[j].node = node;
  9123. }
  9124. atomic_fetch_sub(&state_shared.n_ready, 1);
  9125. while (atomic_load(&state_shared.n_ready) > 0) {
  9126. ggml_lock_lock (&state_shared.spin);
  9127. ggml_lock_unlock(&state_shared.spin);
  9128. }
  9129. atomic_store(&state_shared.has_work, true);
  9130. }
  9131. params.type = GGML_TASK_COMPUTE;
  9132. ggml_compute_forward(&params, node);
  9133. // wait for thread pool
  9134. if (node->n_tasks > 1) {
  9135. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9136. atomic_store(&state_shared.has_work, false);
  9137. }
  9138. while (atomic_load(&state_shared.has_work)) {
  9139. ggml_lock_lock (&state_shared.spin);
  9140. ggml_lock_unlock(&state_shared.spin);
  9141. }
  9142. atomic_fetch_sub(&state_shared.n_ready, 1);
  9143. while (atomic_load(&state_shared.n_ready) != 0) {
  9144. ggml_lock_lock (&state_shared.spin);
  9145. ggml_lock_unlock(&state_shared.spin);
  9146. }
  9147. }
  9148. // FINALIZE
  9149. if (node->n_tasks > 1) {
  9150. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9151. atomic_store(&state_shared.has_work, false);
  9152. }
  9153. while (atomic_load(&state_shared.has_work)) {
  9154. ggml_lock_lock (&state_shared.spin);
  9155. ggml_lock_unlock(&state_shared.spin);
  9156. }
  9157. // launch thread pool
  9158. for (int j = 0; j < n_threads - 1; j++) {
  9159. workers[j].params = (struct ggml_compute_params) {
  9160. .type = GGML_TASK_FINALIZE,
  9161. .ith = j + 1,
  9162. .nth = node->n_tasks,
  9163. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9164. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9165. };
  9166. workers[j].node = node;
  9167. }
  9168. atomic_fetch_sub(&state_shared.n_ready, 1);
  9169. while (atomic_load(&state_shared.n_ready) > 0) {
  9170. ggml_lock_lock (&state_shared.spin);
  9171. ggml_lock_unlock(&state_shared.spin);
  9172. }
  9173. atomic_store(&state_shared.has_work, true);
  9174. }
  9175. params.type = GGML_TASK_FINALIZE;
  9176. ggml_compute_forward(&params, node);
  9177. // wait for thread pool
  9178. if (node->n_tasks > 1) {
  9179. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9180. atomic_store(&state_shared.has_work, false);
  9181. }
  9182. while (atomic_load(&state_shared.has_work)) {
  9183. ggml_lock_lock (&state_shared.spin);
  9184. ggml_lock_unlock(&state_shared.spin);
  9185. }
  9186. atomic_fetch_sub(&state_shared.n_ready, 1);
  9187. while (atomic_load(&state_shared.n_ready) != 0) {
  9188. ggml_lock_lock (&state_shared.spin);
  9189. ggml_lock_unlock(&state_shared.spin);
  9190. }
  9191. }
  9192. // performance stats (node)
  9193. {
  9194. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9195. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9196. node->perf_runs++;
  9197. node->perf_cycles += perf_cycles_cur;
  9198. node->perf_time_us += perf_time_us_cur;
  9199. }
  9200. }
  9201. // join thread pool
  9202. if (n_threads > 1) {
  9203. atomic_store(&state_shared.stop, true);
  9204. atomic_store(&state_shared.has_work, true);
  9205. for (int j = 0; j < n_threads - 1; j++) {
  9206. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9207. GGML_ASSERT(rc == 0);
  9208. UNUSED(rc);
  9209. }
  9210. ggml_lock_destroy(&state_shared.spin);
  9211. }
  9212. // performance stats (graph)
  9213. {
  9214. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9215. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9216. cgraph->perf_runs++;
  9217. cgraph->perf_cycles += perf_cycles_cur;
  9218. cgraph->perf_time_us += perf_time_us_cur;
  9219. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9220. __func__, cgraph->perf_runs,
  9221. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9222. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9223. (double) perf_time_us_cur / 1000.0,
  9224. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9225. }
  9226. }
  9227. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9228. for (int i = 0; i < cgraph->n_nodes; i++) {
  9229. struct ggml_tensor * grad = cgraph->grads[i];
  9230. if (grad) {
  9231. ggml_set_zero(grad);
  9232. }
  9233. }
  9234. }
  9235. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9236. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9237. GGML_PRINT("=== GRAPH ===\n");
  9238. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9239. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9240. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9241. for (int i = 0; i < cgraph->n_nodes; i++) {
  9242. struct ggml_tensor * node = cgraph->nodes[i];
  9243. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9244. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9245. i,
  9246. node->ne[0], node->ne[1], node->ne[2],
  9247. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9248. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9249. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9250. (double) node->perf_time_us / 1000.0,
  9251. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9252. }
  9253. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9254. for (int i = 0; i < cgraph->n_leafs; i++) {
  9255. struct ggml_tensor * node = cgraph->leafs[i];
  9256. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9257. i,
  9258. node->ne[0], node->ne[1],
  9259. GGML_OP_LABEL[node->op]);
  9260. }
  9261. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9262. if (perf_total_per_op_us[i] == 0) {
  9263. continue;
  9264. }
  9265. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9266. }
  9267. GGML_PRINT("========================================\n");
  9268. }
  9269. // check if node is part of the graph
  9270. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9271. if (cgraph == NULL) {
  9272. return true;
  9273. }
  9274. for (int i = 0; i < cgraph->n_nodes; i++) {
  9275. if (cgraph->nodes[i] == node) {
  9276. return true;
  9277. }
  9278. }
  9279. return false;
  9280. }
  9281. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9282. for (int i = 0; i < cgraph->n_nodes; i++) {
  9283. struct ggml_tensor * parent = cgraph->nodes[i];
  9284. if (parent->grad == node) {
  9285. return parent;
  9286. }
  9287. }
  9288. return NULL;
  9289. }
  9290. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9291. char color[16];
  9292. FILE * fp = fopen(filename, "w");
  9293. GGML_ASSERT(fp);
  9294. fprintf(fp, "digraph G {\n");
  9295. fprintf(fp, " newrank = true;\n");
  9296. fprintf(fp, " rankdir = LR;\n");
  9297. for (int i = 0; i < gb->n_nodes; i++) {
  9298. struct ggml_tensor * node = gb->nodes[i];
  9299. if (ggml_graph_get_parent(gb, node) != NULL) {
  9300. continue;
  9301. }
  9302. if (node->is_param) {
  9303. snprintf(color, sizeof(color), "yellow");
  9304. } else if (node->grad) {
  9305. if (ggml_graph_find(gf, node)) {
  9306. snprintf(color, sizeof(color), "green");
  9307. } else {
  9308. snprintf(color, sizeof(color), "lightblue");
  9309. }
  9310. } else {
  9311. snprintf(color, sizeof(color), "white");
  9312. }
  9313. fprintf(fp, " \"%p\" [ \
  9314. style = filled; fillcolor = %s; shape = record; \
  9315. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9316. (void *) node, color,
  9317. i, node->ne[0], node->ne[1],
  9318. GGML_OP_SYMBOL[node->op]);
  9319. if (node->grad) {
  9320. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9321. } else {
  9322. fprintf(fp, "\"; ]\n");
  9323. }
  9324. }
  9325. for (int i = 0; i < gb->n_leafs; i++) {
  9326. struct ggml_tensor * node = gb->leafs[i];
  9327. snprintf(color, sizeof(color), "pink");
  9328. if (ggml_nelements(node) == 1) {
  9329. fprintf(fp, " \"%p\" [ \
  9330. style = filled; fillcolor = %s; shape = record; \
  9331. label=\"<x>%.1e\"; ]\n",
  9332. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  9333. } else {
  9334. fprintf(fp, " \"%p\" [ \
  9335. style = filled; fillcolor = %s; shape = record; \
  9336. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  9337. (void *) node, color,
  9338. i, node->ne[0], node->ne[1]);
  9339. }
  9340. }
  9341. for (int i = 0; i < gb->n_nodes; i++) {
  9342. struct ggml_tensor * node = gb->nodes[i];
  9343. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9344. if (node->src0) {
  9345. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9346. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9347. parent0 ? (void *) parent0 : (void *) node->src0,
  9348. parent0 ? "g" : "x",
  9349. parent ? (void *) parent : (void *) node,
  9350. parent ? "g" : "x",
  9351. parent ? "empty" : "vee",
  9352. parent ? "dashed" : "solid");
  9353. }
  9354. if (node->src1) {
  9355. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9356. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9357. parent1 ? (void *) parent1 : (void *) node->src1,
  9358. parent1 ? "g" : "x",
  9359. parent ? (void *) parent : (void *) node,
  9360. parent ? "g" : "x",
  9361. parent ? "empty" : "vee",
  9362. parent ? "dashed" : "solid");
  9363. }
  9364. }
  9365. for (int i = 0; i < gb->n_leafs; i++) {
  9366. struct ggml_tensor * node = gb->leafs[i];
  9367. if (node->src0) {
  9368. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9369. (void *) node->src0, "x",
  9370. (void *) node, "x");
  9371. }
  9372. if (node->src1) {
  9373. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9374. (void *) node->src1, "x",
  9375. (void *) node, "x");
  9376. }
  9377. }
  9378. fprintf(fp, "}\n");
  9379. fclose(fp);
  9380. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9381. }
  9382. ////////////////////////////////////////////////////////////////////////////////
  9383. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9384. int i = 0;
  9385. for (int p = 0; p < np; ++p) {
  9386. const int64_t ne = ggml_nelements(ps[p]) ;
  9387. // TODO: add function to set tensor from array
  9388. for (int64_t j = 0; j < ne; ++j) {
  9389. ggml_set_f32_1d(ps[p], j, x[i++]);
  9390. }
  9391. }
  9392. }
  9393. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9394. int i = 0;
  9395. for (int p = 0; p < np; ++p) {
  9396. const int64_t ne = ggml_nelements(ps[p]) ;
  9397. // TODO: add function to get all elements at once
  9398. for (int64_t j = 0; j < ne; ++j) {
  9399. x[i++] = ggml_get_f32_1d(ps[p], j);
  9400. }
  9401. }
  9402. }
  9403. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9404. int i = 0;
  9405. for (int p = 0; p < np; ++p) {
  9406. const int64_t ne = ggml_nelements(ps[p]) ;
  9407. // TODO: add function to get all elements at once
  9408. for (int64_t j = 0; j < ne; ++j) {
  9409. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9410. }
  9411. }
  9412. }
  9413. //
  9414. // ADAM
  9415. //
  9416. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9417. //
  9418. static enum ggml_opt_result ggml_opt_adam(
  9419. struct ggml_context * ctx,
  9420. struct ggml_opt_params params,
  9421. struct ggml_tensor * f,
  9422. struct ggml_cgraph * gf,
  9423. struct ggml_cgraph * gb) {
  9424. GGML_ASSERT(ggml_is_scalar(f));
  9425. gf->n_threads = params.n_threads;
  9426. gb->n_threads = params.n_threads;
  9427. // these will store the parameters we want to optimize
  9428. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9429. int np = 0;
  9430. int nx = 0;
  9431. for (int i = 0; i < gf->n_nodes; ++i) {
  9432. if (gf->nodes[i]->is_param) {
  9433. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9434. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9435. ps[np++] = gf->nodes[i];
  9436. nx += ggml_nelements(gf->nodes[i]);
  9437. }
  9438. }
  9439. // constants
  9440. const float alpha = params.adam.alpha;
  9441. const float beta1 = params.adam.beta1;
  9442. const float beta2 = params.adam.beta2;
  9443. const float eps = params.adam.eps;
  9444. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  9445. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  9446. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  9447. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  9448. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  9449. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  9450. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  9451. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9452. // initialize
  9453. ggml_vec_set_f32(nx, m, 0.0f);
  9454. ggml_vec_set_f32(nx, v, 0.0f);
  9455. // update view
  9456. ggml_opt_get_params(np, ps, x);
  9457. // compute the function value
  9458. ggml_graph_reset (gf);
  9459. ggml_set_f32 (f->grad, 1.0f);
  9460. ggml_graph_compute(ctx, gb);
  9461. float fx_prev = ggml_get_f32_1d(f, 0);
  9462. if (pf) {
  9463. pf[0] = fx_prev;
  9464. }
  9465. int n_no_improvement = 0;
  9466. float fx_best = fx_prev;
  9467. // run the optimizer
  9468. for (int t = 0; t < params.adam.n_iter; ++t) {
  9469. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  9470. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9471. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  9472. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  9473. for (int i = 0; i < np; ++i) {
  9474. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  9475. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  9476. }
  9477. const int64_t t_start_wall = ggml_time_us();
  9478. const int64_t t_start_cpu = ggml_cycles();
  9479. UNUSED(t_start_wall);
  9480. UNUSED(t_start_cpu);
  9481. {
  9482. // update the gradient
  9483. ggml_opt_get_grad(np, ps, g1);
  9484. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  9485. ggml_vec_scale_f32(nx, m, beta1);
  9486. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  9487. // g2 = g1^2
  9488. ggml_vec_sqr_f32 (nx, g2, g1);
  9489. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  9490. ggml_vec_scale_f32(nx, v, beta2);
  9491. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  9492. // m^hat = m_t / (1 - beta1^t)
  9493. // v^hat = v_t / (1 - beta2^t)
  9494. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  9495. ggml_vec_cpy_f32 (nx, mh, m);
  9496. ggml_vec_cpy_f32 (nx, vh, v);
  9497. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  9498. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  9499. ggml_vec_sqrt_f32 (nx, vh, vh);
  9500. ggml_vec_acc1_f32 (nx, vh, eps);
  9501. ggml_vec_div_f32 (nx, mh, mh, vh);
  9502. ggml_vec_sub_f32 (nx, x, x, mh);
  9503. // update the parameters
  9504. ggml_opt_set_params(np, ps, x);
  9505. }
  9506. ggml_graph_reset (gf);
  9507. ggml_set_f32 (f->grad, 1.0f);
  9508. ggml_graph_compute(ctx, gb);
  9509. const float fx = ggml_get_f32_1d(f, 0);
  9510. // check convergence
  9511. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  9512. GGML_PRINT_DEBUG("converged\n");
  9513. return GGML_OPT_OK;
  9514. }
  9515. // delta-based convergence test
  9516. if (pf != NULL) {
  9517. // need at least params.past iterations to start checking for convergence
  9518. if (params.past <= t) {
  9519. const float rate = (pf[t%params.past] - fx)/fx;
  9520. if (fabsf(rate) < params.delta) {
  9521. return GGML_OPT_OK;
  9522. }
  9523. }
  9524. pf[t%params.past] = fx;
  9525. }
  9526. // check for improvement
  9527. if (params.max_no_improvement > 0) {
  9528. if (fx_best > fx) {
  9529. fx_best = fx;
  9530. n_no_improvement = 0;
  9531. } else {
  9532. ++n_no_improvement;
  9533. if (n_no_improvement >= params.max_no_improvement) {
  9534. return GGML_OPT_OK;
  9535. }
  9536. }
  9537. }
  9538. fx_prev = fx;
  9539. {
  9540. const int64_t t_end_cpu = ggml_cycles();
  9541. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  9542. UNUSED(t_end_cpu);
  9543. const int64_t t_end_wall = ggml_time_us();
  9544. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  9545. UNUSED(t_end_wall);
  9546. }
  9547. }
  9548. return GGML_OPT_DID_NOT_CONVERGE;
  9549. }
  9550. //
  9551. // L-BFGS
  9552. //
  9553. // the L-BFGS implementation below is based on the following implementation:
  9554. //
  9555. // https://github.com/chokkan/liblbfgs
  9556. //
  9557. struct ggml_lbfgs_iteration_data {
  9558. float alpha;
  9559. float ys;
  9560. float * s;
  9561. float * y;
  9562. };
  9563. static enum ggml_opt_result linesearch_backtracking(
  9564. struct ggml_context * ctx,
  9565. const struct ggml_opt_params * params,
  9566. int nx,
  9567. float * x,
  9568. float * fx,
  9569. float * g,
  9570. float * d,
  9571. float * step,
  9572. const float * xp,
  9573. struct ggml_tensor * f,
  9574. struct ggml_cgraph * gf,
  9575. struct ggml_cgraph * gb,
  9576. const int np,
  9577. struct ggml_tensor * ps[]) {
  9578. int count = 0;
  9579. float width = 0.0f;
  9580. float dg = 0.0f;
  9581. float finit = 0.0f;
  9582. float dginit = 0.0f;
  9583. float dgtest = 0.0f;
  9584. const float dec = 0.5f;
  9585. const float inc = 2.1f;
  9586. if (*step <= 0.f) {
  9587. return GGML_LINESEARCH_INVALID_PARAMETERS;
  9588. }
  9589. // compute the initial gradient in the search direction
  9590. ggml_vec_dot_f32(nx, &dginit, g, d);
  9591. // make sure that d points to a descent direction
  9592. if (0 < dginit) {
  9593. return GGML_LINESEARCH_FAIL;
  9594. }
  9595. // initialize local variables
  9596. finit = *fx;
  9597. dgtest = params->lbfgs.ftol*dginit;
  9598. while (true) {
  9599. ggml_vec_cpy_f32(nx, x, xp);
  9600. ggml_vec_mad_f32(nx, x, d, *step);
  9601. // evaluate the function and gradient values
  9602. {
  9603. ggml_opt_set_params(np, ps, x);
  9604. ggml_graph_reset (gf);
  9605. ggml_set_f32 (f->grad, 1.0f);
  9606. ggml_graph_compute(ctx, gb);
  9607. ggml_opt_get_grad(np, ps, g);
  9608. *fx = ggml_get_f32_1d(f, 0);
  9609. }
  9610. ++count;
  9611. if (*fx > finit + (*step)*dgtest) {
  9612. width = dec;
  9613. } else {
  9614. // Armijo condition is satisfied
  9615. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  9616. return count;
  9617. }
  9618. ggml_vec_dot_f32(nx, &dg, g, d);
  9619. // check the Wolfe condition
  9620. if (dg < params->lbfgs.wolfe * dginit) {
  9621. width = inc;
  9622. } else {
  9623. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  9624. // regular Wolfe conditions
  9625. return count;
  9626. }
  9627. if(dg > -params->lbfgs.wolfe*dginit) {
  9628. width = dec;
  9629. } else {
  9630. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  9631. return count;
  9632. }
  9633. return count;
  9634. }
  9635. }
  9636. if (*step < params->lbfgs.min_step) {
  9637. return GGML_LINESEARCH_MINIMUM_STEP;
  9638. }
  9639. if (*step > params->lbfgs.max_step) {
  9640. return GGML_LINESEARCH_MAXIMUM_STEP;
  9641. }
  9642. if (params->lbfgs.max_linesearch <= count) {
  9643. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  9644. }
  9645. (*step) *= width;
  9646. }
  9647. return GGML_LINESEARCH_FAIL;
  9648. }
  9649. static enum ggml_opt_result ggml_opt_lbfgs(
  9650. struct ggml_context * ctx,
  9651. struct ggml_opt_params params,
  9652. struct ggml_tensor * f,
  9653. struct ggml_cgraph * gf,
  9654. struct ggml_cgraph * gb) {
  9655. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  9656. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  9657. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  9658. return GGML_OPT_INVALID_WOLFE;
  9659. }
  9660. }
  9661. gf->n_threads = params.n_threads;
  9662. gb->n_threads = params.n_threads;
  9663. const int m = params.lbfgs.m;
  9664. // these will store the parameters we want to optimize
  9665. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9666. int np = 0;
  9667. int nx = 0;
  9668. for (int i = 0; i < gf->n_nodes; ++i) {
  9669. if (gf->nodes[i]->is_param) {
  9670. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  9671. GGML_ASSERT(np < GGML_MAX_PARAMS);
  9672. ps[np++] = gf->nodes[i];
  9673. nx += ggml_nelements(gf->nodes[i]);
  9674. }
  9675. }
  9676. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  9677. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  9678. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  9679. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  9680. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  9681. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  9682. float fx = 0.0f; // cost function value
  9683. float xnorm = 0.0f; // ||x||
  9684. float gnorm = 0.0f; // ||g||
  9685. float step = 0.0f;
  9686. // initialize x from the graph nodes
  9687. ggml_opt_get_params(np, ps, x);
  9688. // the L-BFGS memory
  9689. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  9690. for (int i = 0; i < m; ++i) {
  9691. lm[i].alpha = 0.0f;
  9692. lm[i].ys = 0.0f;
  9693. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9694. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  9695. }
  9696. // evaluate the function value and its gradient
  9697. {
  9698. ggml_opt_set_params(np, ps, x);
  9699. ggml_graph_reset (gf);
  9700. ggml_set_f32 (f->grad, 1.0f);
  9701. ggml_graph_compute(ctx, gb);
  9702. ggml_opt_get_grad(np, ps, g);
  9703. fx = ggml_get_f32_1d(f, 0);
  9704. }
  9705. if (pf) {
  9706. pf[0] = fx;
  9707. }
  9708. float fx_best = fx;
  9709. // search direction = -gradient
  9710. ggml_vec_neg_f32(nx, d, g);
  9711. // ||x||, ||g||
  9712. ggml_vec_norm_f32(nx, &xnorm, x);
  9713. ggml_vec_norm_f32(nx, &gnorm, g);
  9714. if (xnorm < 1.0f) {
  9715. xnorm = 1.0f;
  9716. }
  9717. // already optimized
  9718. if (gnorm/xnorm <= params.lbfgs.eps) {
  9719. return GGML_OPT_OK;
  9720. }
  9721. // initial step
  9722. ggml_vec_norm_inv_f32(nx, &step, d);
  9723. int j = 0;
  9724. int k = 1;
  9725. int ls = 0;
  9726. int end = 0;
  9727. int bound = 0;
  9728. int n_no_improvement = 0;
  9729. float ys = 0.0f;
  9730. float yy = 0.0f;
  9731. float beta = 0.0f;
  9732. while (true) {
  9733. // store the current position and gradient vectors
  9734. ggml_vec_cpy_f32(nx, xp, x);
  9735. ggml_vec_cpy_f32(nx, gp, g);
  9736. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  9737. if (ls < 0) {
  9738. // linesearch failed - go back to the previous point and return
  9739. ggml_vec_cpy_f32(nx, x, xp);
  9740. ggml_vec_cpy_f32(nx, g, gp);
  9741. return ls;
  9742. }
  9743. ggml_vec_norm_f32(nx, &xnorm, x);
  9744. ggml_vec_norm_f32(nx, &gnorm, g);
  9745. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  9746. if (xnorm < 1.0f) {
  9747. xnorm = 1.0f;
  9748. }
  9749. if (gnorm/xnorm <= params.lbfgs.eps) {
  9750. // converged
  9751. return GGML_OPT_OK;
  9752. }
  9753. // delta-based convergence test
  9754. if (pf != NULL) {
  9755. // need at least params.past iterations to start checking for convergence
  9756. if (params.past <= k) {
  9757. const float rate = (pf[k%params.past] - fx)/fx;
  9758. if (fabsf(rate) < params.delta) {
  9759. return GGML_OPT_OK;
  9760. }
  9761. }
  9762. pf[k%params.past] = fx;
  9763. }
  9764. // check for improvement
  9765. if (params.max_no_improvement > 0) {
  9766. if (fx < fx_best) {
  9767. fx_best = fx;
  9768. n_no_improvement = 0;
  9769. } else {
  9770. n_no_improvement++;
  9771. if (n_no_improvement >= params.max_no_improvement) {
  9772. return GGML_OPT_OK;
  9773. }
  9774. }
  9775. }
  9776. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  9777. // reached the maximum number of iterations
  9778. return GGML_OPT_DID_NOT_CONVERGE;
  9779. }
  9780. // update vectors s and y:
  9781. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  9782. // y_{k+1} = g_{k+1} - g_{k}.
  9783. //
  9784. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  9785. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  9786. // compute scalars ys and yy:
  9787. // ys = y^t \cdot s -> 1 / \rho.
  9788. // yy = y^t \cdot y.
  9789. //
  9790. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  9791. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  9792. lm[end].ys = ys;
  9793. // find new search direction
  9794. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  9795. bound = (m <= k) ? m : k;
  9796. k++;
  9797. end = (end + 1)%m;
  9798. // initialize search direction with -g
  9799. ggml_vec_neg_f32(nx, d, g);
  9800. j = end;
  9801. for (int i = 0; i < bound; ++i) {
  9802. j = (j + m - 1) % m;
  9803. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  9804. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  9805. lm[j].alpha /= lm[j].ys;
  9806. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  9807. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  9808. }
  9809. ggml_vec_scale_f32(nx, d, ys/yy);
  9810. for (int i = 0; i < bound; ++i) {
  9811. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  9812. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  9813. beta /= lm[j].ys;
  9814. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  9815. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  9816. j = (j + 1)%m;
  9817. }
  9818. step = 1.0;
  9819. }
  9820. return GGML_OPT_DID_NOT_CONVERGE;
  9821. }
  9822. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  9823. struct ggml_opt_params result;
  9824. switch (type) {
  9825. case GGML_OPT_ADAM:
  9826. {
  9827. result = (struct ggml_opt_params) {
  9828. .type = GGML_OPT_ADAM,
  9829. .n_threads = 1,
  9830. .past = 0,
  9831. .delta = 1e-5f,
  9832. .max_no_improvement = 100,
  9833. .print_forward_graph = true,
  9834. .print_backward_graph = true,
  9835. .adam = {
  9836. .n_iter = 10000,
  9837. .alpha = 0.001f,
  9838. .beta1 = 0.9f,
  9839. .beta2 = 0.999f,
  9840. .eps = 1e-8f,
  9841. .eps_f = 1e-5f,
  9842. .eps_g = 1e-3f,
  9843. },
  9844. };
  9845. } break;
  9846. case GGML_OPT_LBFGS:
  9847. {
  9848. result = (struct ggml_opt_params) {
  9849. .type = GGML_OPT_LBFGS,
  9850. .n_threads = 1,
  9851. .past = 0,
  9852. .delta = 1e-5f,
  9853. .max_no_improvement = 0,
  9854. .print_forward_graph = true,
  9855. .print_backward_graph = true,
  9856. .lbfgs = {
  9857. .m = 6,
  9858. .n_iter = 100,
  9859. .max_linesearch = 20,
  9860. .eps = 1e-5f,
  9861. .ftol = 1e-4f,
  9862. .wolfe = 0.9f,
  9863. .min_step = 1e-20f,
  9864. .max_step = 1e+20f,
  9865. .linesearch = GGML_LINESEARCH_DEFAULT,
  9866. },
  9867. };
  9868. } break;
  9869. }
  9870. return result;
  9871. }
  9872. enum ggml_opt_result ggml_opt(
  9873. struct ggml_context * ctx,
  9874. struct ggml_opt_params params,
  9875. struct ggml_tensor * f) {
  9876. bool free_ctx = false;
  9877. if (ctx == NULL) {
  9878. struct ggml_init_params params_ctx = {
  9879. .mem_size = 16*1024*1024,
  9880. .mem_buffer = NULL,
  9881. .no_alloc = false,
  9882. };
  9883. ctx = ggml_init(params_ctx);
  9884. if (ctx == NULL) {
  9885. return GGML_OPT_NO_CONTEXT;
  9886. }
  9887. free_ctx = true;
  9888. }
  9889. enum ggml_opt_result result = GGML_OPT_OK;
  9890. // build forward + backward compute graphs
  9891. struct ggml_cgraph gf = ggml_build_forward (f);
  9892. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  9893. switch (params.type) {
  9894. case GGML_OPT_ADAM:
  9895. {
  9896. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  9897. } break;
  9898. case GGML_OPT_LBFGS:
  9899. {
  9900. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  9901. } break;
  9902. }
  9903. if (params.print_forward_graph) {
  9904. ggml_graph_print (&gf);
  9905. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  9906. }
  9907. if (params.print_backward_graph) {
  9908. ggml_graph_print (&gb);
  9909. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  9910. }
  9911. if (free_ctx) {
  9912. ggml_free(ctx);
  9913. }
  9914. return result;
  9915. }
  9916. ////////////////////////////////////////////////////////////////////////////////
  9917. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  9918. assert(k % QK4_0 == 0);
  9919. const int nb = k / QK4_0;
  9920. for (int j = 0; j < n; j += k) {
  9921. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  9922. quantize_row_q4_0_reference(src + j, y, k);
  9923. for (int i = 0; i < nb; i++) {
  9924. for (int l = 0; l < QK4_0; l += 2) {
  9925. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9926. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9927. hist[vi0]++;
  9928. hist[vi1]++;
  9929. }
  9930. }
  9931. }
  9932. return (n/QK4_0*sizeof(block_q4_0));
  9933. }
  9934. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  9935. assert(k % QK4_1 == 0);
  9936. const int nb = k / QK4_1;
  9937. for (int j = 0; j < n; j += k) {
  9938. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  9939. quantize_row_q4_1_reference(src + j, y, k);
  9940. for (int i = 0; i < nb; i++) {
  9941. for (int l = 0; l < QK4_1; l += 2) {
  9942. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9943. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9944. hist[vi0]++;
  9945. hist[vi1]++;
  9946. }
  9947. }
  9948. }
  9949. return (n/QK4_1*sizeof(block_q4_1));
  9950. }
  9951. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  9952. assert(k % QK4_2 == 0);
  9953. const int nb = k / QK4_2;
  9954. for (int j = 0; j < n; j += k) {
  9955. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  9956. quantize_row_q4_2_reference(src + j, y, k);
  9957. for (int i = 0; i < nb; i++) {
  9958. for (int l = 0; l < QK4_2; l += 2) {
  9959. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9960. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9961. hist[vi0]++;
  9962. hist[vi1]++;
  9963. }
  9964. }
  9965. }
  9966. return (n/QK4_2*sizeof(block_q4_2));
  9967. }
  9968. size_t ggml_quantize_q4_3(const float * src, void * dst, int n, int k, int64_t * hist) {
  9969. assert(k % QK4_3 == 0);
  9970. const int nb = k / QK4_3;
  9971. for (int j = 0; j < n; j += k) {
  9972. block_q4_3 * restrict y = (block_q4_3 *)dst + j/QK4_3;
  9973. quantize_row_q4_3_reference(src + j, y, k);
  9974. for (int i = 0; i < nb; i++) {
  9975. for (int l = 0; l < QK4_3; l += 2) {
  9976. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  9977. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  9978. hist[vi0]++;
  9979. hist[vi1]++;
  9980. }
  9981. }
  9982. }
  9983. return (n/QK4_3*sizeof(block_q4_3));
  9984. }
  9985. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  9986. size_t result = 0;
  9987. switch (type) {
  9988. case GGML_TYPE_Q4_0:
  9989. {
  9990. GGML_ASSERT(start % QK4_0 == 0);
  9991. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  9992. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  9993. } break;
  9994. case GGML_TYPE_Q4_1:
  9995. {
  9996. GGML_ASSERT(start % QK4_1 == 0);
  9997. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  9998. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  9999. } break;
  10000. case GGML_TYPE_Q4_2:
  10001. {
  10002. GGML_ASSERT(start % QK4_2 == 0);
  10003. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10004. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10005. } break;
  10006. case GGML_TYPE_Q4_3:
  10007. {
  10008. GGML_ASSERT(start % QK4_3 == 0);
  10009. block_q4_3 * block = (block_q4_3*)dst + start / QK4_3;
  10010. result = ggml_quantize_q4_3(src + start, block, n, n, hist);
  10011. } break;
  10012. default:
  10013. assert(false);
  10014. }
  10015. return result;
  10016. }
  10017. ////////////////////////////////////////////////////////////////////////////////
  10018. int ggml_cpu_has_avx(void) {
  10019. #if defined(__AVX__)
  10020. return 1;
  10021. #else
  10022. return 0;
  10023. #endif
  10024. }
  10025. int ggml_cpu_has_avx2(void) {
  10026. #if defined(__AVX2__)
  10027. return 1;
  10028. #else
  10029. return 0;
  10030. #endif
  10031. }
  10032. int ggml_cpu_has_avx512(void) {
  10033. #if defined(__AVX512F__)
  10034. return 1;
  10035. #else
  10036. return 0;
  10037. #endif
  10038. }
  10039. int ggml_cpu_has_avx512_vbmi(void) {
  10040. #if defined(__AVX512VBMI__)
  10041. return 1;
  10042. #else
  10043. return 0;
  10044. #endif
  10045. }
  10046. int ggml_cpu_has_avx512_vnni(void) {
  10047. #if defined(__AVX512VNNI__)
  10048. return 1;
  10049. #else
  10050. return 0;
  10051. #endif
  10052. }
  10053. int ggml_cpu_has_fma(void) {
  10054. #if defined(__FMA__)
  10055. return 1;
  10056. #else
  10057. return 0;
  10058. #endif
  10059. }
  10060. int ggml_cpu_has_neon(void) {
  10061. #if defined(__ARM_NEON)
  10062. return 1;
  10063. #else
  10064. return 0;
  10065. #endif
  10066. }
  10067. int ggml_cpu_has_arm_fma(void) {
  10068. #if defined(__ARM_FEATURE_FMA)
  10069. return 1;
  10070. #else
  10071. return 0;
  10072. #endif
  10073. }
  10074. int ggml_cpu_has_f16c(void) {
  10075. #if defined(__F16C__)
  10076. return 1;
  10077. #else
  10078. return 0;
  10079. #endif
  10080. }
  10081. int ggml_cpu_has_fp16_va(void) {
  10082. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10083. return 1;
  10084. #else
  10085. return 0;
  10086. #endif
  10087. }
  10088. int ggml_cpu_has_wasm_simd(void) {
  10089. #if defined(__wasm_simd128__)
  10090. return 1;
  10091. #else
  10092. return 0;
  10093. #endif
  10094. }
  10095. int ggml_cpu_has_blas(void) {
  10096. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS)
  10097. return 1;
  10098. #else
  10099. return 0;
  10100. #endif
  10101. }
  10102. int ggml_cpu_has_cublas(void) {
  10103. #if defined(GGML_USE_CUBLAS)
  10104. return 1;
  10105. #else
  10106. return 0;
  10107. #endif
  10108. }
  10109. int ggml_cpu_has_sse3(void) {
  10110. #if defined(__SSE3__)
  10111. return 1;
  10112. #else
  10113. return 0;
  10114. #endif
  10115. }
  10116. int ggml_cpu_has_vsx(void) {
  10117. #if defined(__POWER9_VECTOR__)
  10118. return 1;
  10119. #else
  10120. return 0;
  10121. #endif
  10122. }
  10123. ////////////////////////////////////////////////////////////////////////////////