ggml.c 640 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_IQ2_XXS] = {
  513. .type_name = "iq2_xxs",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_iq2_xxs),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  518. .from_float = quantize_row_iq2_xxs,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference,
  520. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_Q8_K] = {
  524. .type_name = "q8_K",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_q8_K),
  527. .is_quantized = true,
  528. .from_float = quantize_row_q8_K,
  529. }
  530. };
  531. // For internal test use
  532. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  533. GGML_ASSERT(type < GGML_TYPE_COUNT);
  534. return type_traits[type];
  535. }
  536. //
  537. // simd mappings
  538. //
  539. #if defined(__ARM_NEON)
  540. #if !defined(__aarch64__)
  541. // 64-bit compatibility
  542. inline static float vaddvq_f32(float32x4_t v) {
  543. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  544. }
  545. #endif
  546. #endif
  547. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  548. // we then implement the fundamental computation operations below using only these macros
  549. // adding support for new architectures requires to define the corresponding SIMD macros
  550. //
  551. // GGML_F32_STEP / GGML_F16_STEP
  552. // number of elements to process in a single step
  553. //
  554. // GGML_F32_EPR / GGML_F16_EPR
  555. // number of elements to fit in a single register
  556. //
  557. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  558. #define GGML_SIMD
  559. // F32 NEON
  560. #define GGML_F32_STEP 16
  561. #define GGML_F32_EPR 4
  562. #define GGML_F32x4 float32x4_t
  563. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  564. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  565. #define GGML_F32x4_LOAD vld1q_f32
  566. #define GGML_F32x4_STORE vst1q_f32
  567. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  568. #define GGML_F32x4_ADD vaddq_f32
  569. #define GGML_F32x4_MUL vmulq_f32
  570. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  571. #define GGML_F32x4_REDUCE(res, x) \
  572. { \
  573. int offset = GGML_F32_ARR >> 1; \
  574. for (int i = 0; i < offset; ++i) { \
  575. x[i] = vaddq_f32(x[i], x[offset+i]); \
  576. } \
  577. offset >>= 1; \
  578. for (int i = 0; i < offset; ++i) { \
  579. x[i] = vaddq_f32(x[i], x[offset+i]); \
  580. } \
  581. offset >>= 1; \
  582. for (int i = 0; i < offset; ++i) { \
  583. x[i] = vaddq_f32(x[i], x[offset+i]); \
  584. } \
  585. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  586. }
  587. #define GGML_F32_VEC GGML_F32x4
  588. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  589. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  590. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  591. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  592. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  593. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  594. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  595. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  596. // F16 NEON
  597. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  598. #define GGML_F16_STEP 32
  599. #define GGML_F16_EPR 8
  600. #define GGML_F16x8 float16x8_t
  601. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  602. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  603. #define GGML_F16x8_LOAD vld1q_f16
  604. #define GGML_F16x8_STORE vst1q_f16
  605. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  606. #define GGML_F16x8_ADD vaddq_f16
  607. #define GGML_F16x8_MUL vmulq_f16
  608. #define GGML_F16x8_REDUCE(res, x) \
  609. do { \
  610. int offset = GGML_F16_ARR >> 1; \
  611. for (int i = 0; i < offset; ++i) { \
  612. x[i] = vaddq_f16(x[i], x[offset+i]); \
  613. } \
  614. offset >>= 1; \
  615. for (int i = 0; i < offset; ++i) { \
  616. x[i] = vaddq_f16(x[i], x[offset+i]); \
  617. } \
  618. offset >>= 1; \
  619. for (int i = 0; i < offset; ++i) { \
  620. x[i] = vaddq_f16(x[i], x[offset+i]); \
  621. } \
  622. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  623. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  624. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  625. } while (0)
  626. #define GGML_F16_VEC GGML_F16x8
  627. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  628. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  629. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  630. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  631. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  632. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  633. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  634. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  635. #else
  636. // if FP16 vector arithmetic is not supported, we use FP32 instead
  637. // and take advantage of the vcvt_ functions to convert to/from FP16
  638. #define GGML_F16_STEP 16
  639. #define GGML_F16_EPR 4
  640. #define GGML_F32Cx4 float32x4_t
  641. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  642. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  643. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  644. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  645. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  646. #define GGML_F32Cx4_ADD vaddq_f32
  647. #define GGML_F32Cx4_MUL vmulq_f32
  648. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  649. #define GGML_F16_VEC GGML_F32Cx4
  650. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  651. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  652. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  653. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  654. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  655. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  656. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  657. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  658. #endif
  659. #elif defined(__AVX__)
  660. #define GGML_SIMD
  661. // F32 AVX
  662. #define GGML_F32_STEP 32
  663. #define GGML_F32_EPR 8
  664. #define GGML_F32x8 __m256
  665. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  666. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  667. #define GGML_F32x8_LOAD _mm256_loadu_ps
  668. #define GGML_F32x8_STORE _mm256_storeu_ps
  669. #if defined(__FMA__)
  670. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  671. #else
  672. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  673. #endif
  674. #define GGML_F32x8_ADD _mm256_add_ps
  675. #define GGML_F32x8_MUL _mm256_mul_ps
  676. #define GGML_F32x8_REDUCE(res, x) \
  677. do { \
  678. int offset = GGML_F32_ARR >> 1; \
  679. for (int i = 0; i < offset; ++i) { \
  680. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  681. } \
  682. offset >>= 1; \
  683. for (int i = 0; i < offset; ++i) { \
  684. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  685. } \
  686. offset >>= 1; \
  687. for (int i = 0; i < offset; ++i) { \
  688. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  689. } \
  690. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  691. _mm256_extractf128_ps(x[0], 1)); \
  692. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  693. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  694. } while (0)
  695. // TODO: is this optimal ?
  696. #define GGML_F32_VEC GGML_F32x8
  697. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  698. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  699. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  700. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  701. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  702. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  703. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  704. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  705. // F16 AVX
  706. #define GGML_F16_STEP 32
  707. #define GGML_F16_EPR 8
  708. // F16 arithmetic is not supported by AVX, so we use F32 instead
  709. #define GGML_F32Cx8 __m256
  710. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  711. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  712. #if defined(__F16C__)
  713. // the _mm256_cvt intrinsics require F16C
  714. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  715. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  716. #else
  717. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  718. float tmp[8];
  719. for (int i = 0; i < 8; i++) {
  720. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  721. }
  722. return _mm256_loadu_ps(tmp);
  723. }
  724. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  725. float arr[8];
  726. _mm256_storeu_ps(arr, y);
  727. for (int i = 0; i < 8; i++)
  728. x[i] = GGML_FP32_TO_FP16(arr[i]);
  729. }
  730. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  731. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  732. #endif
  733. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  734. #define GGML_F32Cx8_ADD _mm256_add_ps
  735. #define GGML_F32Cx8_MUL _mm256_mul_ps
  736. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  737. #define GGML_F16_VEC GGML_F32Cx8
  738. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  739. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  740. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  741. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  742. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  743. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  744. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  745. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  746. #elif defined(__POWER9_VECTOR__)
  747. #define GGML_SIMD
  748. // F32 POWER9
  749. #define GGML_F32_STEP 32
  750. #define GGML_F32_EPR 4
  751. #define GGML_F32x4 vector float
  752. #define GGML_F32x4_ZERO 0.0f
  753. #define GGML_F32x4_SET1 vec_splats
  754. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  755. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  756. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  757. #define GGML_F32x4_ADD vec_add
  758. #define GGML_F32x4_MUL vec_mul
  759. #define GGML_F32x4_REDUCE(res, x) \
  760. { \
  761. int offset = GGML_F32_ARR >> 1; \
  762. for (int i = 0; i < offset; ++i) { \
  763. x[i] = vec_add(x[i], x[offset+i]); \
  764. } \
  765. offset >>= 1; \
  766. for (int i = 0; i < offset; ++i) { \
  767. x[i] = vec_add(x[i], x[offset+i]); \
  768. } \
  769. offset >>= 1; \
  770. for (int i = 0; i < offset; ++i) { \
  771. x[i] = vec_add(x[i], x[offset+i]); \
  772. } \
  773. res = vec_extract(x[0], 0) + \
  774. vec_extract(x[0], 1) + \
  775. vec_extract(x[0], 2) + \
  776. vec_extract(x[0], 3); \
  777. }
  778. #define GGML_F32_VEC GGML_F32x4
  779. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  780. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  781. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  782. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  783. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  784. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  785. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  786. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  787. // F16 POWER9
  788. #define GGML_F16_STEP GGML_F32_STEP
  789. #define GGML_F16_EPR GGML_F32_EPR
  790. #define GGML_F16_VEC GGML_F32x4
  791. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  792. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  793. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  794. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  795. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  796. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  797. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  798. vec_extract_fp32_from_shortl(vec_xl(0, p))
  799. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  800. #define GGML_F16_VEC_STORE(p, r, i) \
  801. if (i & 0x1) \
  802. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  803. r[i - GGML_ENDIAN_BYTE(0)]), \
  804. 0, p - GGML_F16_EPR)
  805. #elif defined(__wasm_simd128__)
  806. #define GGML_SIMD
  807. // F32 WASM
  808. #define GGML_F32_STEP 16
  809. #define GGML_F32_EPR 4
  810. #define GGML_F32x4 v128_t
  811. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  812. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  813. #define GGML_F32x4_LOAD wasm_v128_load
  814. #define GGML_F32x4_STORE wasm_v128_store
  815. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  816. #define GGML_F32x4_ADD wasm_f32x4_add
  817. #define GGML_F32x4_MUL wasm_f32x4_mul
  818. #define GGML_F32x4_REDUCE(res, x) \
  819. { \
  820. int offset = GGML_F32_ARR >> 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  823. } \
  824. offset >>= 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  827. } \
  828. offset >>= 1; \
  829. for (int i = 0; i < offset; ++i) { \
  830. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  831. } \
  832. res = wasm_f32x4_extract_lane(x[0], 0) + \
  833. wasm_f32x4_extract_lane(x[0], 1) + \
  834. wasm_f32x4_extract_lane(x[0], 2) + \
  835. wasm_f32x4_extract_lane(x[0], 3); \
  836. }
  837. #define GGML_F32_VEC GGML_F32x4
  838. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  839. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  840. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  841. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  842. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  843. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  844. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  845. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  846. // F16 WASM
  847. #define GGML_F16_STEP 16
  848. #define GGML_F16_EPR 4
  849. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  850. float tmp[4];
  851. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  852. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  853. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  854. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  855. return wasm_v128_load(tmp);
  856. }
  857. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  858. float tmp[4];
  859. wasm_v128_store(tmp, x);
  860. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  861. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  862. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  863. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  864. }
  865. #define GGML_F16x4 v128_t
  866. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  867. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  868. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  869. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  870. #define GGML_F16x4_FMA GGML_F32x4_FMA
  871. #define GGML_F16x4_ADD wasm_f32x4_add
  872. #define GGML_F16x4_MUL wasm_f32x4_mul
  873. #define GGML_F16x4_REDUCE(res, x) \
  874. { \
  875. int offset = GGML_F16_ARR >> 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  878. } \
  879. offset >>= 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. res = wasm_f32x4_extract_lane(x[0], 0) + \
  888. wasm_f32x4_extract_lane(x[0], 1) + \
  889. wasm_f32x4_extract_lane(x[0], 2) + \
  890. wasm_f32x4_extract_lane(x[0], 3); \
  891. }
  892. #define GGML_F16_VEC GGML_F16x4
  893. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  894. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  895. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  896. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  897. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  898. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  899. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  900. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  901. #elif defined(__SSE3__)
  902. #define GGML_SIMD
  903. // F32 SSE
  904. #define GGML_F32_STEP 32
  905. #define GGML_F32_EPR 4
  906. #define GGML_F32x4 __m128
  907. #define GGML_F32x4_ZERO _mm_setzero_ps()
  908. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  909. #define GGML_F32x4_LOAD _mm_loadu_ps
  910. #define GGML_F32x4_STORE _mm_storeu_ps
  911. #if defined(__FMA__)
  912. // TODO: Does this work?
  913. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  914. #else
  915. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  916. #endif
  917. #define GGML_F32x4_ADD _mm_add_ps
  918. #define GGML_F32x4_MUL _mm_mul_ps
  919. #define GGML_F32x4_REDUCE(res, x) \
  920. { \
  921. int offset = GGML_F32_ARR >> 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  924. } \
  925. offset >>= 1; \
  926. for (int i = 0; i < offset; ++i) { \
  927. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  928. } \
  929. offset >>= 1; \
  930. for (int i = 0; i < offset; ++i) { \
  931. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  932. } \
  933. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  934. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  935. }
  936. // TODO: is this optimal ?
  937. #define GGML_F32_VEC GGML_F32x4
  938. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  939. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  940. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  941. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  942. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  943. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  944. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  945. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  946. // F16 SSE
  947. #define GGML_F16_STEP 32
  948. #define GGML_F16_EPR 4
  949. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  950. float tmp[4];
  951. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  952. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  953. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  954. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  955. return _mm_loadu_ps(tmp);
  956. }
  957. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  958. float arr[4];
  959. _mm_storeu_ps(arr, y);
  960. x[0] = GGML_FP32_TO_FP16(arr[0]);
  961. x[1] = GGML_FP32_TO_FP16(arr[1]);
  962. x[2] = GGML_FP32_TO_FP16(arr[2]);
  963. x[3] = GGML_FP32_TO_FP16(arr[3]);
  964. }
  965. #define GGML_F32Cx4 __m128
  966. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  967. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  968. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  969. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  970. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  971. #define GGML_F32Cx4_ADD _mm_add_ps
  972. #define GGML_F32Cx4_MUL _mm_mul_ps
  973. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  974. #define GGML_F16_VEC GGML_F32Cx4
  975. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  976. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  977. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  978. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  979. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  980. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  981. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  982. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  983. #endif
  984. // GGML_F32_ARR / GGML_F16_ARR
  985. // number of registers to use per step
  986. #ifdef GGML_SIMD
  987. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  988. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  989. #endif
  990. //
  991. // fundamental operations
  992. //
  993. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  994. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  995. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  996. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  997. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  998. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  999. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1000. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1001. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1002. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1003. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1004. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1005. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1006. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1007. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1008. #ifdef GGML_SIMD
  1009. float sumf = 0.0f;
  1010. const int np = (n & ~(GGML_F32_STEP - 1));
  1011. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1012. GGML_F32_VEC ax[GGML_F32_ARR];
  1013. GGML_F32_VEC ay[GGML_F32_ARR];
  1014. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1015. for (int j = 0; j < GGML_F32_ARR; j++) {
  1016. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1017. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1018. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1019. }
  1020. }
  1021. // reduce sum0..sum3 to sum0
  1022. GGML_F32_VEC_REDUCE(sumf, sum);
  1023. // leftovers
  1024. for (int i = np; i < n; ++i) {
  1025. sumf += x[i]*y[i];
  1026. }
  1027. #else
  1028. // scalar
  1029. ggml_float sumf = 0.0;
  1030. for (int i = 0; i < n; ++i) {
  1031. sumf += (ggml_float)(x[i]*y[i]);
  1032. }
  1033. #endif
  1034. *s = sumf;
  1035. }
  1036. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1037. ggml_float sumf = 0.0;
  1038. #if defined(GGML_SIMD)
  1039. const int np = (n & ~(GGML_F16_STEP - 1));
  1040. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1041. GGML_F16_VEC ax[GGML_F16_ARR];
  1042. GGML_F16_VEC ay[GGML_F16_ARR];
  1043. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1044. for (int j = 0; j < GGML_F16_ARR; j++) {
  1045. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1046. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1047. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1048. }
  1049. }
  1050. // reduce sum0..sum3 to sum0
  1051. GGML_F16_VEC_REDUCE(sumf, sum);
  1052. // leftovers
  1053. for (int i = np; i < n; ++i) {
  1054. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1055. }
  1056. #else
  1057. for (int i = 0; i < n; ++i) {
  1058. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1059. }
  1060. #endif
  1061. *s = sumf;
  1062. }
  1063. // compute GGML_VEC_DOT_UNROLL dot products at once
  1064. // xs - x row stride in bytes
  1065. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1066. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1067. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1068. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1069. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1070. }
  1071. #if defined(GGML_SIMD)
  1072. const int np = (n & ~(GGML_F16_STEP - 1));
  1073. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1074. GGML_F16_VEC ax[GGML_F16_ARR];
  1075. GGML_F16_VEC ay[GGML_F16_ARR];
  1076. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1077. for (int j = 0; j < GGML_F16_ARR; j++) {
  1078. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1079. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1080. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1081. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1082. }
  1083. }
  1084. }
  1085. // reduce sum0..sum3 to sum0
  1086. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1087. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1088. }
  1089. // leftovers
  1090. for (int i = np; i < n; ++i) {
  1091. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1092. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1093. }
  1094. }
  1095. #else
  1096. for (int i = 0; i < n; ++i) {
  1097. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1098. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1099. }
  1100. }
  1101. #endif
  1102. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1103. s[i] = sumf[i];
  1104. }
  1105. }
  1106. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1107. #if defined(GGML_SIMD)
  1108. const int np = (n & ~(GGML_F32_STEP - 1));
  1109. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1110. GGML_F32_VEC ax[GGML_F32_ARR];
  1111. GGML_F32_VEC ay[GGML_F32_ARR];
  1112. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1113. for (int j = 0; j < GGML_F32_ARR; j++) {
  1114. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1115. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1116. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1117. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1118. }
  1119. }
  1120. // leftovers
  1121. for (int i = np; i < n; ++i) {
  1122. y[i] += x[i]*v;
  1123. }
  1124. #else
  1125. // scalar
  1126. for (int i = 0; i < n; ++i) {
  1127. y[i] += x[i]*v;
  1128. }
  1129. #endif
  1130. }
  1131. // xs and vs are byte strides of x and v
  1132. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1133. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1134. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1135. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1136. x[i] = (const float *) ((const char *) xv + i*xs);
  1137. v[i] = (const float *) ((const char *) vv + i*vs);
  1138. }
  1139. #if defined(GGML_SIMD)
  1140. const int np = (n & ~(GGML_F32_STEP - 1));
  1141. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1142. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1143. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1144. }
  1145. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1146. GGML_F32_VEC ay[GGML_F32_ARR];
  1147. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1148. for (int j = 0; j < GGML_F32_ARR; j++) {
  1149. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1150. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1151. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1152. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1153. }
  1154. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1155. }
  1156. }
  1157. // leftovers
  1158. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1159. for (int i = np; i < n; ++i) {
  1160. y[i] += x[k][i]*v[k][0];
  1161. }
  1162. }
  1163. #else
  1164. // scalar
  1165. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1166. for (int i = 0; i < n; ++i) {
  1167. y[i] += x[k][i]*v[k][0];
  1168. }
  1169. }
  1170. #endif
  1171. }
  1172. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1173. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1174. #if defined(GGML_USE_ACCELERATE)
  1175. vDSP_vsmul(y, 1, &v, y, 1, n);
  1176. #elif defined(GGML_SIMD)
  1177. const int np = (n & ~(GGML_F32_STEP - 1));
  1178. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1179. GGML_F32_VEC ay[GGML_F32_ARR];
  1180. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1181. for (int j = 0; j < GGML_F32_ARR; j++) {
  1182. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1183. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1184. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1185. }
  1186. }
  1187. // leftovers
  1188. for (int i = np; i < n; ++i) {
  1189. y[i] *= v;
  1190. }
  1191. #else
  1192. // scalar
  1193. for (int i = 0; i < n; ++i) {
  1194. y[i] *= v;
  1195. }
  1196. #endif
  1197. }
  1198. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1199. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1200. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1201. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1202. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1203. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1204. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1205. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1206. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1207. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1208. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1209. static const float GELU_COEF_A = 0.044715f;
  1210. static const float GELU_QUICK_COEF = -1.702f;
  1211. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1212. inline static float ggml_gelu_f32(float x) {
  1213. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1214. }
  1215. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1216. const uint16_t * i16 = (const uint16_t *) x;
  1217. for (int i = 0; i < n; ++i) {
  1218. y[i] = ggml_table_gelu_f16[i16[i]];
  1219. }
  1220. }
  1221. #ifdef GGML_GELU_FP16
  1222. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1223. uint16_t t;
  1224. for (int i = 0; i < n; ++i) {
  1225. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1226. memcpy(&t, &fp16, sizeof(uint16_t));
  1227. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1228. }
  1229. }
  1230. #else
  1231. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1232. for (int i = 0; i < n; ++i) {
  1233. y[i] = ggml_gelu_f32(x[i]);
  1234. }
  1235. }
  1236. #endif
  1237. inline static float ggml_gelu_quick_f32(float x) {
  1238. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1239. }
  1240. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1241. // const uint16_t * i16 = (const uint16_t *) x;
  1242. // for (int i = 0; i < n; ++i) {
  1243. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1244. // }
  1245. //}
  1246. #ifdef GGML_GELU_QUICK_FP16
  1247. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1248. uint16_t t;
  1249. for (int i = 0; i < n; ++i) {
  1250. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1251. memcpy(&t, &fp16, sizeof(uint16_t));
  1252. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1253. }
  1254. }
  1255. #else
  1256. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1257. for (int i = 0; i < n; ++i) {
  1258. y[i] = ggml_gelu_quick_f32(x[i]);
  1259. }
  1260. }
  1261. #endif
  1262. // Sigmoid Linear Unit (SiLU) function
  1263. inline static float ggml_silu_f32(float x) {
  1264. return x/(1.0f + expf(-x));
  1265. }
  1266. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1267. // const uint16_t * i16 = (const uint16_t *) x;
  1268. // for (int i = 0; i < n; ++i) {
  1269. // y[i] = ggml_table_silu_f16[i16[i]];
  1270. // }
  1271. //}
  1272. #ifdef GGML_SILU_FP16
  1273. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1274. uint16_t t;
  1275. for (int i = 0; i < n; ++i) {
  1276. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1277. memcpy(&t, &fp16, sizeof(uint16_t));
  1278. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1279. }
  1280. }
  1281. #else
  1282. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1283. for (int i = 0; i < n; ++i) {
  1284. y[i] = ggml_silu_f32(x[i]);
  1285. }
  1286. }
  1287. #endif
  1288. inline static float ggml_silu_backward_f32(float x, float dy) {
  1289. const float s = 1.0f/(1.0f + expf(-x));
  1290. return dy*s*(1.0f + x*(1.0f - s));
  1291. }
  1292. #ifdef GGML_SILU_FP16
  1293. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1294. for (int i = 0; i < n; ++i) {
  1295. // we did not use x[i] to compute forward silu but its f16 equivalent
  1296. // take derivative at f16 of x[i]:
  1297. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1298. float usedx = GGML_FP16_TO_FP32(fp16);
  1299. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1300. }
  1301. }
  1302. #else
  1303. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1304. for (int i = 0; i < n; ++i) {
  1305. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1306. }
  1307. }
  1308. #endif
  1309. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1310. #ifndef GGML_USE_ACCELERATE
  1311. ggml_float sum = 0.0;
  1312. for (int i = 0; i < n; ++i) {
  1313. sum += (ggml_float)x[i];
  1314. }
  1315. *s = sum;
  1316. #else
  1317. vDSP_sve(x, 1, s, n);
  1318. #endif
  1319. }
  1320. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1321. ggml_float sum = 0.0;
  1322. for (int i = 0; i < n; ++i) {
  1323. sum += (ggml_float)x[i];
  1324. }
  1325. *s = sum;
  1326. }
  1327. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1328. float sum = 0.0f;
  1329. for (int i = 0; i < n; ++i) {
  1330. sum += GGML_FP16_TO_FP32(x[i]);
  1331. }
  1332. *s = sum;
  1333. }
  1334. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1335. #ifndef GGML_USE_ACCELERATE
  1336. float max = -INFINITY;
  1337. for (int i = 0; i < n; ++i) {
  1338. max = MAX(max, x[i]);
  1339. }
  1340. *s = max;
  1341. #else
  1342. vDSP_maxv(x, 1, s, n);
  1343. #endif
  1344. }
  1345. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1346. ggml_vec_norm_f32(n, s, x);
  1347. *s = 1.f/(*s);
  1348. }
  1349. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1350. float max = -INFINITY;
  1351. int idx = 0;
  1352. for (int i = 0; i < n; ++i) {
  1353. max = MAX(max, x[i]);
  1354. if (max == x[i]) { idx = i; }
  1355. }
  1356. *s = idx;
  1357. }
  1358. //
  1359. // data types
  1360. //
  1361. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1362. "NONE",
  1363. "DUP",
  1364. "ADD",
  1365. "ADD1",
  1366. "ACC",
  1367. "SUB",
  1368. "MUL",
  1369. "DIV",
  1370. "SQR",
  1371. "SQRT",
  1372. "LOG",
  1373. "SUM",
  1374. "SUM_ROWS",
  1375. "MEAN",
  1376. "ARGMAX",
  1377. "REPEAT",
  1378. "REPEAT_BACK",
  1379. "CONCAT",
  1380. "SILU_BACK",
  1381. "NORM",
  1382. "RMS_NORM",
  1383. "RMS_NORM_BACK",
  1384. "GROUP_NORM",
  1385. "MUL_MAT",
  1386. "MUL_MAT_ID",
  1387. "OUT_PROD",
  1388. "SCALE",
  1389. "SET",
  1390. "CPY",
  1391. "CONT",
  1392. "RESHAPE",
  1393. "VIEW",
  1394. "PERMUTE",
  1395. "TRANSPOSE",
  1396. "GET_ROWS",
  1397. "GET_ROWS_BACK",
  1398. "DIAG",
  1399. "DIAG_MASK_INF",
  1400. "DIAG_MASK_ZERO",
  1401. "SOFT_MAX",
  1402. "SOFT_MAX_BACK",
  1403. "ROPE",
  1404. "ROPE_BACK",
  1405. "ALIBI",
  1406. "CLAMP",
  1407. "CONV_TRANSPOSE_1D",
  1408. "IM2COL",
  1409. "CONV_TRANSPOSE_2D",
  1410. "POOL_1D",
  1411. "POOL_2D",
  1412. "UPSCALE",
  1413. "PAD",
  1414. "ARGSORT",
  1415. "LEAKY_RELU",
  1416. "FLASH_ATTN",
  1417. "FLASH_FF",
  1418. "FLASH_ATTN_BACK",
  1419. "WIN_PART",
  1420. "WIN_UNPART",
  1421. "GET_REL_POS",
  1422. "ADD_REL_POS",
  1423. "UNARY",
  1424. "MAP_UNARY",
  1425. "MAP_BINARY",
  1426. "MAP_CUSTOM1_F32",
  1427. "MAP_CUSTOM2_F32",
  1428. "MAP_CUSTOM3_F32",
  1429. "MAP_CUSTOM1",
  1430. "MAP_CUSTOM2",
  1431. "MAP_CUSTOM3",
  1432. "CROSS_ENTROPY_LOSS",
  1433. "CROSS_ENTROPY_LOSS_BACK",
  1434. };
  1435. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1436. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1437. "none",
  1438. "x",
  1439. "x+y",
  1440. "x+y",
  1441. "view(x,nb,offset)+=y->x",
  1442. "x-y",
  1443. "x*y",
  1444. "x/y",
  1445. "x^2",
  1446. "√x",
  1447. "log(x)",
  1448. "Σx",
  1449. "Σx_k",
  1450. "Σx/n",
  1451. "argmax(x)",
  1452. "repeat(x)",
  1453. "repeat_back(x)",
  1454. "concat(x, y)",
  1455. "silu_back(x)",
  1456. "norm(x)",
  1457. "rms_norm(x)",
  1458. "rms_norm_back(x)",
  1459. "group_norm(x)",
  1460. "X*Y",
  1461. "X[i]*Y",
  1462. "X*Y",
  1463. "x*v",
  1464. "y-\\>view(x)",
  1465. "x-\\>y",
  1466. "cont(x)",
  1467. "reshape(x)",
  1468. "view(x)",
  1469. "permute(x)",
  1470. "transpose(x)",
  1471. "get_rows(x)",
  1472. "get_rows_back(x)",
  1473. "diag(x)",
  1474. "diag_mask_inf(x)",
  1475. "diag_mask_zero(x)",
  1476. "soft_max(x)",
  1477. "soft_max_back(x)",
  1478. "rope(x)",
  1479. "rope_back(x)",
  1480. "alibi(x)",
  1481. "clamp(x)",
  1482. "conv_transpose_1d(x)",
  1483. "im2col(x)",
  1484. "conv_transpose_2d(x)",
  1485. "pool_1d(x)",
  1486. "pool_2d(x)",
  1487. "upscale(x)",
  1488. "pad(x)",
  1489. "argsort(x)",
  1490. "leaky_relu(x)",
  1491. "flash_attn(x)",
  1492. "flash_ff(x)",
  1493. "flash_attn_back(x)",
  1494. "win_part(x)",
  1495. "win_unpart(x)",
  1496. "get_rel_pos(x)",
  1497. "add_rel_pos(x)",
  1498. "unary(x)",
  1499. "f(x)",
  1500. "f(x,y)",
  1501. "custom_f32(x)",
  1502. "custom_f32(x,y)",
  1503. "custom_f32(x,y,z)",
  1504. "custom(x)",
  1505. "custom(x,y)",
  1506. "custom(x,y,z)",
  1507. "cross_entropy_loss(x,y)",
  1508. "cross_entropy_loss_back(x,y)",
  1509. };
  1510. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1511. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1512. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1513. "ABS",
  1514. "SGN",
  1515. "NEG",
  1516. "STEP",
  1517. "TANH",
  1518. "ELU",
  1519. "RELU",
  1520. "GELU",
  1521. "GELU_QUICK",
  1522. "SILU",
  1523. };
  1524. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1525. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1526. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1527. // WARN:
  1528. // Mis-configuration can lead to problem that's hard to reason about:
  1529. // * At best it crash or talks nosense.
  1530. // * At worst it talks slightly difference but hard to perceive.
  1531. //
  1532. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1533. // Take care about compile options (e.g., GGML_USE_xxx).
  1534. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1535. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1536. static void ggml_setup_op_has_task_pass(void) {
  1537. { // INIT
  1538. bool * p = GGML_OP_HAS_INIT;
  1539. p[GGML_OP_ACC ] = true;
  1540. p[GGML_OP_MUL_MAT ] = true;
  1541. p[GGML_OP_MUL_MAT_ID ] = true;
  1542. p[GGML_OP_OUT_PROD ] = true;
  1543. p[GGML_OP_SET ] = true;
  1544. p[GGML_OP_GET_ROWS_BACK ] = true;
  1545. p[GGML_OP_DIAG_MASK_INF ] = true;
  1546. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1547. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1548. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1549. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1550. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1551. p[GGML_OP_ADD_REL_POS ] = true;
  1552. }
  1553. { // FINALIZE
  1554. bool * p = GGML_OP_HAS_FINALIZE;
  1555. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1556. }
  1557. }
  1558. //
  1559. // ggml context
  1560. //
  1561. struct ggml_context {
  1562. size_t mem_size;
  1563. void * mem_buffer;
  1564. bool mem_buffer_owned;
  1565. bool no_alloc;
  1566. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1567. int n_objects;
  1568. struct ggml_object * objects_begin;
  1569. struct ggml_object * objects_end;
  1570. struct ggml_scratch scratch;
  1571. struct ggml_scratch scratch_save;
  1572. };
  1573. struct ggml_context_container {
  1574. bool used;
  1575. struct ggml_context context;
  1576. };
  1577. //
  1578. // NUMA support
  1579. //
  1580. #define GGML_NUMA_MAX_NODES 8
  1581. #define GGML_NUMA_MAX_CPUS 512
  1582. struct ggml_numa_node {
  1583. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1584. uint32_t n_cpus;
  1585. };
  1586. struct ggml_numa_nodes {
  1587. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1588. uint32_t n_nodes;
  1589. uint32_t total_cpus; // hardware threads on system
  1590. };
  1591. //
  1592. // ggml state
  1593. //
  1594. struct ggml_state {
  1595. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1596. struct ggml_numa_nodes numa;
  1597. };
  1598. // global state
  1599. static struct ggml_state g_state;
  1600. static atomic_int g_state_barrier = 0;
  1601. // barrier via spin lock
  1602. inline static void ggml_critical_section_start(void) {
  1603. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1604. while (processing > 0) {
  1605. // wait for other threads to finish
  1606. atomic_fetch_sub(&g_state_barrier, 1);
  1607. sched_yield(); // TODO: reconsider this
  1608. processing = atomic_fetch_add(&g_state_barrier, 1);
  1609. }
  1610. }
  1611. // TODO: make this somehow automatically executed
  1612. // some sort of "sentry" mechanism
  1613. inline static void ggml_critical_section_end(void) {
  1614. atomic_fetch_sub(&g_state_barrier, 1);
  1615. }
  1616. void ggml_numa_init(void) {
  1617. if (g_state.numa.n_nodes > 0) {
  1618. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1619. return;
  1620. }
  1621. #ifdef __linux__
  1622. struct stat st;
  1623. char path[256];
  1624. int rv;
  1625. // enumerate nodes
  1626. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1627. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1628. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1629. if (stat(path, &st) != 0) { break; }
  1630. ++g_state.numa.n_nodes;
  1631. }
  1632. // enumerate CPUs
  1633. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1634. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1635. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1636. if (stat(path, &st) != 0) { break; }
  1637. ++g_state.numa.total_cpus;
  1638. }
  1639. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1640. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1641. g_state.numa.n_nodes = 0;
  1642. return;
  1643. }
  1644. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1645. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1646. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1647. node->n_cpus = 0;
  1648. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1649. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1650. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1651. if (stat(path, &st) == 0) {
  1652. node->cpus[node->n_cpus++] = c;
  1653. GGML_PRINT_DEBUG(" %u", c);
  1654. }
  1655. }
  1656. GGML_PRINT_DEBUG("\n");
  1657. }
  1658. if (ggml_is_numa()) {
  1659. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1660. if (fptr != NULL) {
  1661. char buf[42];
  1662. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1663. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1664. }
  1665. fclose(fptr);
  1666. }
  1667. }
  1668. #else
  1669. // TODO
  1670. #endif
  1671. }
  1672. bool ggml_is_numa(void) {
  1673. return g_state.numa.n_nodes > 1;
  1674. }
  1675. ////////////////////////////////////////////////////////////////////////////////
  1676. void ggml_print_object(const struct ggml_object * obj) {
  1677. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1678. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1679. }
  1680. void ggml_print_objects(const struct ggml_context * ctx) {
  1681. struct ggml_object * obj = ctx->objects_begin;
  1682. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1683. while (obj != NULL) {
  1684. ggml_print_object(obj);
  1685. obj = obj->next;
  1686. }
  1687. GGML_PRINT("%s: --- end ---\n", __func__);
  1688. }
  1689. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1690. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1691. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1692. }
  1693. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1694. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1695. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1696. }
  1697. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1698. size_t nbytes;
  1699. size_t blck_size = ggml_blck_size(tensor->type);
  1700. if (blck_size == 1) {
  1701. nbytes = ggml_type_size(tensor->type);
  1702. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1703. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1704. }
  1705. }
  1706. else {
  1707. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1708. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1709. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1710. }
  1711. }
  1712. return nbytes;
  1713. }
  1714. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1715. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1716. }
  1717. int ggml_blck_size(enum ggml_type type) {
  1718. return type_traits[type].blck_size;
  1719. }
  1720. size_t ggml_type_size(enum ggml_type type) {
  1721. return type_traits[type].type_size;
  1722. }
  1723. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1724. assert(ne % ggml_blck_size(type) == 0);
  1725. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1726. }
  1727. double ggml_type_sizef(enum ggml_type type) {
  1728. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1729. }
  1730. const char * ggml_type_name(enum ggml_type type) {
  1731. return type_traits[type].type_name;
  1732. }
  1733. bool ggml_is_quantized(enum ggml_type type) {
  1734. return type_traits[type].is_quantized;
  1735. }
  1736. const char * ggml_op_name(enum ggml_op op) {
  1737. return GGML_OP_NAME[op];
  1738. }
  1739. const char * ggml_op_symbol(enum ggml_op op) {
  1740. return GGML_OP_SYMBOL[op];
  1741. }
  1742. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1743. return GGML_UNARY_OP_NAME[op];
  1744. }
  1745. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1746. if (t->op == GGML_OP_UNARY) {
  1747. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1748. return ggml_unary_op_name(uop);
  1749. }
  1750. else {
  1751. return ggml_op_name(t->op);
  1752. }
  1753. }
  1754. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1755. return ggml_type_size(tensor->type);
  1756. }
  1757. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1758. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1759. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1760. }
  1761. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1762. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1763. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1764. }
  1765. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1766. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1767. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1768. }
  1769. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1770. return tensor->ne[3] == 1;
  1771. }
  1772. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1773. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1774. if (tensor->ne[i] > 1) {
  1775. return i + 1;
  1776. }
  1777. }
  1778. return 1;
  1779. }
  1780. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1781. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1782. return (t0->ne[0] == t1->ne[0]) &&
  1783. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1784. (t1->ne[3]%t0->ne[3] == 0);
  1785. }
  1786. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1787. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1788. return (t0->ne[1] == t1->ne[1]) &&
  1789. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1790. (t1->ne[3]%t0->ne[3] == 0);
  1791. }
  1792. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1793. enum ggml_type wtype = GGML_TYPE_COUNT;
  1794. switch (ftype) {
  1795. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1796. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1797. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1798. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1799. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1800. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1801. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1802. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1803. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1804. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1805. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1806. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1807. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1808. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1809. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1810. }
  1811. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1812. return wtype;
  1813. }
  1814. size_t ggml_tensor_overhead(void) {
  1815. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1816. }
  1817. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1818. return tensor->nb[0] > tensor->nb[1];
  1819. }
  1820. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1822. return
  1823. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1824. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1825. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1826. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1827. }
  1828. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1830. return
  1831. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1832. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1833. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1834. }
  1835. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1836. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1837. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1838. }
  1839. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1840. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1841. return
  1842. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1843. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1844. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1845. }
  1846. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1848. return
  1849. (t0->ne[0] == t1->ne[0] ) &&
  1850. (t0->ne[1] == t1->ne[1] ) &&
  1851. (t0->ne[2] == t1->ne[2] ) &&
  1852. (t0->ne[3] == t1->ne[3] );
  1853. }
  1854. // check if t1 can be represented as a repeatition of t0
  1855. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1857. return
  1858. (t1->ne[0]%t0->ne[0] == 0) &&
  1859. (t1->ne[1]%t0->ne[1] == 0) &&
  1860. (t1->ne[2]%t0->ne[2] == 0) &&
  1861. (t1->ne[3]%t0->ne[3] == 0);
  1862. }
  1863. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1864. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1865. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1866. }
  1867. static inline int ggml_up32(int n) {
  1868. return (n + 31) & ~31;
  1869. }
  1870. //static inline int ggml_up64(int n) {
  1871. // return (n + 63) & ~63;
  1872. //}
  1873. static inline int ggml_up(int n, int m) {
  1874. // assert m is a power of 2
  1875. GGML_ASSERT((m & (m - 1)) == 0);
  1876. return (n + m - 1) & ~(m - 1);
  1877. }
  1878. // assert that pointer is aligned to GGML_MEM_ALIGN
  1879. #define ggml_assert_aligned(ptr) \
  1880. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1881. ////////////////////////////////////////////////////////////////////////////////
  1882. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1883. // make this function thread safe
  1884. ggml_critical_section_start();
  1885. static bool is_first_call = true;
  1886. if (is_first_call) {
  1887. // initialize time system (required on Windows)
  1888. ggml_time_init();
  1889. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1890. {
  1891. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1892. ggml_fp16_t ii;
  1893. for (int i = 0; i < (1 << 16); ++i) {
  1894. uint16_t ui = i;
  1895. memcpy(&ii, &ui, sizeof(ii));
  1896. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1897. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1898. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1899. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1900. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1901. }
  1902. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1903. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1904. }
  1905. // initialize g_state
  1906. {
  1907. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1908. g_state = (struct ggml_state) {
  1909. /*.contexts =*/ { { 0 } },
  1910. /*.numa =*/ {
  1911. .n_nodes = 0,
  1912. .total_cpus = 0,
  1913. },
  1914. };
  1915. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1916. g_state.contexts[i].used = false;
  1917. }
  1918. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1919. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1920. }
  1921. #if defined(GGML_USE_CUBLAS)
  1922. ggml_init_cublas();
  1923. #elif defined(GGML_USE_CLBLAST)
  1924. ggml_cl_init();
  1925. #endif
  1926. ggml_setup_op_has_task_pass();
  1927. is_first_call = false;
  1928. }
  1929. // find non-used context in g_state
  1930. struct ggml_context * ctx = NULL;
  1931. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1932. if (!g_state.contexts[i].used) {
  1933. g_state.contexts[i].used = true;
  1934. ctx = &g_state.contexts[i].context;
  1935. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1936. break;
  1937. }
  1938. }
  1939. if (ctx == NULL) {
  1940. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1941. ggml_critical_section_end();
  1942. return NULL;
  1943. }
  1944. // allow to call ggml_init with 0 size
  1945. if (params.mem_size == 0) {
  1946. params.mem_size = GGML_MEM_ALIGN;
  1947. }
  1948. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1949. *ctx = (struct ggml_context) {
  1950. /*.mem_size =*/ mem_size,
  1951. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1952. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1953. /*.no_alloc =*/ params.no_alloc,
  1954. /*.no_alloc_save =*/ params.no_alloc,
  1955. /*.n_objects =*/ 0,
  1956. /*.objects_begin =*/ NULL,
  1957. /*.objects_end =*/ NULL,
  1958. /*.scratch =*/ { 0, 0, NULL, },
  1959. /*.scratch_save =*/ { 0, 0, NULL, },
  1960. };
  1961. GGML_ASSERT(ctx->mem_buffer != NULL);
  1962. ggml_assert_aligned(ctx->mem_buffer);
  1963. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1964. ggml_critical_section_end();
  1965. return ctx;
  1966. }
  1967. void ggml_free(struct ggml_context * ctx) {
  1968. // make this function thread safe
  1969. ggml_critical_section_start();
  1970. bool found = false;
  1971. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1972. if (&g_state.contexts[i].context == ctx) {
  1973. g_state.contexts[i].used = false;
  1974. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1975. __func__, i, ggml_used_mem(ctx));
  1976. if (ctx->mem_buffer_owned) {
  1977. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1978. }
  1979. found = true;
  1980. break;
  1981. }
  1982. }
  1983. if (!found) {
  1984. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1985. }
  1986. ggml_critical_section_end();
  1987. }
  1988. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1989. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1990. }
  1991. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1992. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1993. ctx->scratch = scratch;
  1994. return result;
  1995. }
  1996. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1997. return ctx->no_alloc;
  1998. }
  1999. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2000. ctx->no_alloc = no_alloc;
  2001. }
  2002. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2003. return ctx->mem_buffer;
  2004. }
  2005. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2006. return ctx->mem_size;
  2007. }
  2008. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2009. size_t max_size = 0;
  2010. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2011. max_size = MAX(max_size, ggml_nbytes(tensor));
  2012. }
  2013. return max_size;
  2014. }
  2015. // IMPORTANT:
  2016. // when creating "opt" tensors, always save and load the scratch buffer
  2017. // this is an error prone process, but it is necessary to support inplace
  2018. // operators when using scratch buffers
  2019. // TODO: implement a better way
  2020. static void ggml_scratch_save(struct ggml_context * ctx) {
  2021. // this is needed to allow opt tensors to store their data
  2022. // TODO: again, need to find a better way
  2023. ctx->no_alloc_save = ctx->no_alloc;
  2024. ctx->no_alloc = false;
  2025. ctx->scratch_save = ctx->scratch;
  2026. ctx->scratch.data = NULL;
  2027. }
  2028. static void ggml_scratch_load(struct ggml_context * ctx) {
  2029. ctx->no_alloc = ctx->no_alloc_save;
  2030. ctx->scratch = ctx->scratch_save;
  2031. }
  2032. ////////////////////////////////////////////////////////////////////////////////
  2033. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2034. // always insert objects at the end of the context's memory pool
  2035. struct ggml_object * obj_cur = ctx->objects_end;
  2036. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2037. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2038. const size_t cur_end = cur_offs + cur_size;
  2039. // align to GGML_MEM_ALIGN
  2040. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2041. char * const mem_buffer = ctx->mem_buffer;
  2042. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2043. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2044. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2045. __func__, cur_end + size_needed, ctx->mem_size);
  2046. assert(false);
  2047. return NULL;
  2048. }
  2049. *obj_new = (struct ggml_object) {
  2050. .offs = cur_end + GGML_OBJECT_SIZE,
  2051. .size = size_needed,
  2052. .next = NULL,
  2053. .type = type,
  2054. };
  2055. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2056. if (obj_cur != NULL) {
  2057. obj_cur->next = obj_new;
  2058. } else {
  2059. // this is the first object in this context
  2060. ctx->objects_begin = obj_new;
  2061. }
  2062. ctx->objects_end = obj_new;
  2063. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2064. return obj_new;
  2065. }
  2066. static struct ggml_tensor * ggml_new_tensor_impl(
  2067. struct ggml_context * ctx,
  2068. enum ggml_type type,
  2069. int n_dims,
  2070. const int64_t * ne,
  2071. struct ggml_tensor * view_src,
  2072. size_t view_offs) {
  2073. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2074. // find the base tensor and absolute offset
  2075. if (view_src != NULL && view_src->view_src != NULL) {
  2076. view_offs += view_src->view_offs;
  2077. view_src = view_src->view_src;
  2078. }
  2079. size_t data_size = ggml_row_size(type, ne[0]);
  2080. for (int i = 1; i < n_dims; i++) {
  2081. data_size *= ne[i];
  2082. }
  2083. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2084. void * data = view_src != NULL ? view_src->data : NULL;
  2085. if (data != NULL) {
  2086. data = (char *) data + view_offs;
  2087. }
  2088. size_t obj_alloc_size = 0;
  2089. if (view_src == NULL && !ctx->no_alloc) {
  2090. if (ctx->scratch.data != NULL) {
  2091. // allocate tensor data in the scratch buffer
  2092. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2093. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2094. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2095. assert(false);
  2096. return NULL;
  2097. }
  2098. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2099. ctx->scratch.offs += data_size;
  2100. } else {
  2101. // allocate tensor data in the context's memory pool
  2102. obj_alloc_size = data_size;
  2103. }
  2104. }
  2105. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2106. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2107. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2108. *result = (struct ggml_tensor) {
  2109. /*.type =*/ type,
  2110. /*.backend =*/ GGML_BACKEND_CPU,
  2111. /*.buffer =*/ NULL,
  2112. /*.ne =*/ { 1, 1, 1, 1 },
  2113. /*.nb =*/ { 0, 0, 0, 0 },
  2114. /*.op =*/ GGML_OP_NONE,
  2115. /*.op_params =*/ { 0 },
  2116. /*.is_param =*/ false,
  2117. /*.grad =*/ NULL,
  2118. /*.src =*/ { NULL },
  2119. /*.perf_runs =*/ 0,
  2120. /*.perf_cycles =*/ 0,
  2121. /*.perf_time_us =*/ 0,
  2122. /*.view_src =*/ view_src,
  2123. /*.view_offs =*/ view_offs,
  2124. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2125. /*.name =*/ { 0 },
  2126. /*.extra =*/ NULL,
  2127. /*.padding =*/ { 0 },
  2128. };
  2129. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2130. //ggml_assert_aligned(result->data);
  2131. for (int i = 0; i < n_dims; i++) {
  2132. result->ne[i] = ne[i];
  2133. }
  2134. result->nb[0] = ggml_type_size(type);
  2135. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2136. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2137. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2138. }
  2139. ctx->n_objects++;
  2140. return result;
  2141. }
  2142. struct ggml_tensor * ggml_new_tensor(
  2143. struct ggml_context * ctx,
  2144. enum ggml_type type,
  2145. int n_dims,
  2146. const int64_t * ne) {
  2147. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2148. }
  2149. struct ggml_tensor * ggml_new_tensor_1d(
  2150. struct ggml_context * ctx,
  2151. enum ggml_type type,
  2152. int64_t ne0) {
  2153. return ggml_new_tensor(ctx, type, 1, &ne0);
  2154. }
  2155. struct ggml_tensor * ggml_new_tensor_2d(
  2156. struct ggml_context * ctx,
  2157. enum ggml_type type,
  2158. int64_t ne0,
  2159. int64_t ne1) {
  2160. const int64_t ne[2] = { ne0, ne1 };
  2161. return ggml_new_tensor(ctx, type, 2, ne);
  2162. }
  2163. struct ggml_tensor * ggml_new_tensor_3d(
  2164. struct ggml_context * ctx,
  2165. enum ggml_type type,
  2166. int64_t ne0,
  2167. int64_t ne1,
  2168. int64_t ne2) {
  2169. const int64_t ne[3] = { ne0, ne1, ne2 };
  2170. return ggml_new_tensor(ctx, type, 3, ne);
  2171. }
  2172. struct ggml_tensor * ggml_new_tensor_4d(
  2173. struct ggml_context * ctx,
  2174. enum ggml_type type,
  2175. int64_t ne0,
  2176. int64_t ne1,
  2177. int64_t ne2,
  2178. int64_t ne3) {
  2179. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2180. return ggml_new_tensor(ctx, type, 4, ne);
  2181. }
  2182. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2183. ggml_scratch_save(ctx);
  2184. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2185. ggml_scratch_load(ctx);
  2186. ggml_set_i32(result, value);
  2187. return result;
  2188. }
  2189. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2190. ggml_scratch_save(ctx);
  2191. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2192. ggml_scratch_load(ctx);
  2193. ggml_set_f32(result, value);
  2194. return result;
  2195. }
  2196. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2197. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2198. }
  2199. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2200. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2201. assert(params_size <= GGML_MAX_OP_PARAMS);
  2202. memcpy(tensor->op_params, params, params_size);
  2203. }
  2204. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2205. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2206. return ((const int32_t *)(tensor->op_params))[i];
  2207. }
  2208. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2209. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2210. ((int32_t *)(tensor->op_params))[i] = value;
  2211. }
  2212. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2213. memset(tensor->data, 0, ggml_nbytes(tensor));
  2214. return tensor;
  2215. }
  2216. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2217. const int n = ggml_nrows(tensor);
  2218. const int nc = tensor->ne[0];
  2219. const size_t n1 = tensor->nb[1];
  2220. char * const data = tensor->data;
  2221. switch (tensor->type) {
  2222. case GGML_TYPE_I8:
  2223. {
  2224. assert(tensor->nb[0] == sizeof(int8_t));
  2225. for (int i = 0; i < n; i++) {
  2226. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2227. }
  2228. } break;
  2229. case GGML_TYPE_I16:
  2230. {
  2231. assert(tensor->nb[0] == sizeof(int16_t));
  2232. for (int i = 0; i < n; i++) {
  2233. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2234. }
  2235. } break;
  2236. case GGML_TYPE_I32:
  2237. {
  2238. assert(tensor->nb[0] == sizeof(int32_t));
  2239. for (int i = 0; i < n; i++) {
  2240. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2241. }
  2242. } break;
  2243. case GGML_TYPE_F16:
  2244. {
  2245. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2246. for (int i = 0; i < n; i++) {
  2247. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2248. }
  2249. } break;
  2250. case GGML_TYPE_F32:
  2251. {
  2252. assert(tensor->nb[0] == sizeof(float));
  2253. for (int i = 0; i < n; i++) {
  2254. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2255. }
  2256. } break;
  2257. default:
  2258. {
  2259. GGML_ASSERT(false);
  2260. } break;
  2261. }
  2262. return tensor;
  2263. }
  2264. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2265. const int n = ggml_nrows(tensor);
  2266. const int nc = tensor->ne[0];
  2267. const size_t n1 = tensor->nb[1];
  2268. char * const data = tensor->data;
  2269. switch (tensor->type) {
  2270. case GGML_TYPE_I8:
  2271. {
  2272. assert(tensor->nb[0] == sizeof(int8_t));
  2273. for (int i = 0; i < n; i++) {
  2274. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2275. }
  2276. } break;
  2277. case GGML_TYPE_I16:
  2278. {
  2279. assert(tensor->nb[0] == sizeof(int16_t));
  2280. for (int i = 0; i < n; i++) {
  2281. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2282. }
  2283. } break;
  2284. case GGML_TYPE_I32:
  2285. {
  2286. assert(tensor->nb[0] == sizeof(int32_t));
  2287. for (int i = 0; i < n; i++) {
  2288. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2289. }
  2290. } break;
  2291. case GGML_TYPE_F16:
  2292. {
  2293. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2294. for (int i = 0; i < n; i++) {
  2295. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2296. }
  2297. } break;
  2298. case GGML_TYPE_F32:
  2299. {
  2300. assert(tensor->nb[0] == sizeof(float));
  2301. for (int i = 0; i < n; i++) {
  2302. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2303. }
  2304. } break;
  2305. default:
  2306. {
  2307. GGML_ASSERT(false);
  2308. } break;
  2309. }
  2310. return tensor;
  2311. }
  2312. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2313. const int64_t ne2 = tensor->ne[2];
  2314. const int64_t ne1 = tensor->ne[1];
  2315. const int64_t ne0 = tensor->ne[0];
  2316. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2317. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2318. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2319. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2320. if (i0) {
  2321. * i0 = i0_;
  2322. }
  2323. if (i1) {
  2324. * i1 = i1_;
  2325. }
  2326. if (i2) {
  2327. * i2 = i2_;
  2328. }
  2329. if (i3) {
  2330. * i3 = i3_;
  2331. }
  2332. }
  2333. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2334. if (!ggml_is_contiguous(tensor)) {
  2335. int64_t id[4] = { 0, 0, 0, 0 };
  2336. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2337. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2338. }
  2339. switch (tensor->type) {
  2340. case GGML_TYPE_I8:
  2341. {
  2342. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2343. return ((int8_t *)(tensor->data))[i];
  2344. }
  2345. case GGML_TYPE_I16:
  2346. {
  2347. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2348. return ((int16_t *)(tensor->data))[i];
  2349. }
  2350. case GGML_TYPE_I32:
  2351. {
  2352. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2353. return ((int32_t *)(tensor->data))[i];
  2354. }
  2355. case GGML_TYPE_F16:
  2356. {
  2357. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2358. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2359. }
  2360. case GGML_TYPE_F32:
  2361. {
  2362. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2363. return ((float *)(tensor->data))[i];
  2364. }
  2365. default:
  2366. {
  2367. GGML_ASSERT(false);
  2368. }
  2369. }
  2370. return 0.0f;
  2371. }
  2372. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2373. if (!ggml_is_contiguous(tensor)) {
  2374. int64_t id[4] = { 0, 0, 0, 0 };
  2375. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2376. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2377. return;
  2378. }
  2379. switch (tensor->type) {
  2380. case GGML_TYPE_I8:
  2381. {
  2382. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2383. ((int8_t *)(tensor->data))[i] = value;
  2384. } break;
  2385. case GGML_TYPE_I16:
  2386. {
  2387. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2388. ((int16_t *)(tensor->data))[i] = value;
  2389. } break;
  2390. case GGML_TYPE_I32:
  2391. {
  2392. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2393. ((int32_t *)(tensor->data))[i] = value;
  2394. } break;
  2395. case GGML_TYPE_F16:
  2396. {
  2397. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2398. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2399. } break;
  2400. case GGML_TYPE_F32:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2403. ((float *)(tensor->data))[i] = value;
  2404. } break;
  2405. default:
  2406. {
  2407. GGML_ASSERT(false);
  2408. } break;
  2409. }
  2410. }
  2411. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2412. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2413. switch (tensor->type) {
  2414. case GGML_TYPE_I8:
  2415. return ((int8_t *) data)[0];
  2416. case GGML_TYPE_I16:
  2417. return ((int16_t *) data)[0];
  2418. case GGML_TYPE_I32:
  2419. return ((int32_t *) data)[0];
  2420. case GGML_TYPE_F16:
  2421. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2422. case GGML_TYPE_F32:
  2423. return ((float *) data)[0];
  2424. default:
  2425. GGML_ASSERT(false);
  2426. }
  2427. return 0.0f;
  2428. }
  2429. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2430. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. ((int8_t *)(data))[0] = value;
  2435. } break;
  2436. case GGML_TYPE_I16:
  2437. {
  2438. ((int16_t *)(data))[0] = value;
  2439. } break;
  2440. case GGML_TYPE_I32:
  2441. {
  2442. ((int32_t *)(data))[0] = value;
  2443. } break;
  2444. case GGML_TYPE_F16:
  2445. {
  2446. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2447. } break;
  2448. case GGML_TYPE_F32:
  2449. {
  2450. ((float *)(data))[0] = value;
  2451. } break;
  2452. default:
  2453. {
  2454. GGML_ASSERT(false);
  2455. } break;
  2456. }
  2457. }
  2458. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2459. if (!ggml_is_contiguous(tensor)) {
  2460. int64_t id[4] = { 0, 0, 0, 0 };
  2461. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2462. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2463. }
  2464. switch (tensor->type) {
  2465. case GGML_TYPE_I8:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2468. return ((int8_t *)(tensor->data))[i];
  2469. }
  2470. case GGML_TYPE_I16:
  2471. {
  2472. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2473. return ((int16_t *)(tensor->data))[i];
  2474. }
  2475. case GGML_TYPE_I32:
  2476. {
  2477. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2478. return ((int32_t *)(tensor->data))[i];
  2479. }
  2480. case GGML_TYPE_F16:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2483. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2484. }
  2485. case GGML_TYPE_F32:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2488. return ((float *)(tensor->data))[i];
  2489. }
  2490. default:
  2491. {
  2492. GGML_ASSERT(false);
  2493. }
  2494. }
  2495. return 0.0f;
  2496. }
  2497. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2498. if (!ggml_is_contiguous(tensor)) {
  2499. int64_t id[4] = { 0, 0, 0, 0 };
  2500. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2501. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2502. return;
  2503. }
  2504. switch (tensor->type) {
  2505. case GGML_TYPE_I8:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2508. ((int8_t *)(tensor->data))[i] = value;
  2509. } break;
  2510. case GGML_TYPE_I16:
  2511. {
  2512. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2513. ((int16_t *)(tensor->data))[i] = value;
  2514. } break;
  2515. case GGML_TYPE_I32:
  2516. {
  2517. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2518. ((int32_t *)(tensor->data))[i] = value;
  2519. } break;
  2520. case GGML_TYPE_F16:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2523. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2524. } break;
  2525. case GGML_TYPE_F32:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2528. ((float *)(tensor->data))[i] = value;
  2529. } break;
  2530. default:
  2531. {
  2532. GGML_ASSERT(false);
  2533. } break;
  2534. }
  2535. }
  2536. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2537. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2538. switch (tensor->type) {
  2539. case GGML_TYPE_I8:
  2540. return ((int8_t *) data)[0];
  2541. case GGML_TYPE_I16:
  2542. return ((int16_t *) data)[0];
  2543. case GGML_TYPE_I32:
  2544. return ((int32_t *) data)[0];
  2545. case GGML_TYPE_F16:
  2546. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2547. case GGML_TYPE_F32:
  2548. return ((float *) data)[0];
  2549. default:
  2550. GGML_ASSERT(false);
  2551. }
  2552. return 0.0f;
  2553. }
  2554. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2555. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2556. switch (tensor->type) {
  2557. case GGML_TYPE_I8:
  2558. {
  2559. ((int8_t *)(data))[0] = value;
  2560. } break;
  2561. case GGML_TYPE_I16:
  2562. {
  2563. ((int16_t *)(data))[0] = value;
  2564. } break;
  2565. case GGML_TYPE_I32:
  2566. {
  2567. ((int32_t *)(data))[0] = value;
  2568. } break;
  2569. case GGML_TYPE_F16:
  2570. {
  2571. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2572. } break;
  2573. case GGML_TYPE_F32:
  2574. {
  2575. ((float *)(data))[0] = value;
  2576. } break;
  2577. default:
  2578. {
  2579. GGML_ASSERT(false);
  2580. } break;
  2581. }
  2582. }
  2583. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2584. return tensor->data;
  2585. }
  2586. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2587. assert(tensor->type == GGML_TYPE_F32);
  2588. return (float *)(tensor->data);
  2589. }
  2590. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2591. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2592. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2593. }
  2594. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2595. return tensor->name;
  2596. }
  2597. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2598. strncpy(tensor->name, name, sizeof(tensor->name));
  2599. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2600. return tensor;
  2601. }
  2602. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2603. va_list args;
  2604. va_start(args, fmt);
  2605. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2606. va_end(args);
  2607. return tensor;
  2608. }
  2609. struct ggml_tensor * ggml_view_tensor(
  2610. struct ggml_context * ctx,
  2611. struct ggml_tensor * src) {
  2612. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2613. ggml_format_name(result, "%s (view)", src->name);
  2614. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2615. result->nb[i] = src->nb[i];
  2616. }
  2617. return result;
  2618. }
  2619. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2620. struct ggml_object * obj = ctx->objects_begin;
  2621. char * const mem_buffer = ctx->mem_buffer;
  2622. while (obj != NULL) {
  2623. if (obj->type == GGML_OBJECT_TENSOR) {
  2624. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2625. }
  2626. obj = obj->next;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2631. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2632. obj = obj->next;
  2633. char * const mem_buffer = ctx->mem_buffer;
  2634. while (obj != NULL) {
  2635. if (obj->type == GGML_OBJECT_TENSOR) {
  2636. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2637. }
  2638. obj = obj->next;
  2639. }
  2640. return NULL;
  2641. }
  2642. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2643. struct ggml_object * obj = ctx->objects_begin;
  2644. char * const mem_buffer = ctx->mem_buffer;
  2645. while (obj != NULL) {
  2646. if (obj->type == GGML_OBJECT_TENSOR) {
  2647. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2648. if (strcmp(cur->name, name) == 0) {
  2649. return cur;
  2650. }
  2651. }
  2652. obj = obj->next;
  2653. }
  2654. return NULL;
  2655. }
  2656. ////////////////////////////////////////////////////////////////////////////////
  2657. // ggml_dup
  2658. static struct ggml_tensor * ggml_dup_impl(
  2659. struct ggml_context * ctx,
  2660. struct ggml_tensor * a,
  2661. bool inplace) {
  2662. bool is_node = false;
  2663. if (!inplace && (a->grad)) {
  2664. is_node = true;
  2665. }
  2666. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2667. result->op = GGML_OP_DUP;
  2668. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2669. result->src[0] = a;
  2670. return result;
  2671. }
  2672. struct ggml_tensor * ggml_dup(
  2673. struct ggml_context * ctx,
  2674. struct ggml_tensor * a) {
  2675. return ggml_dup_impl(ctx, a, false);
  2676. }
  2677. struct ggml_tensor * ggml_dup_inplace(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a) {
  2680. return ggml_dup_impl(ctx, a, true);
  2681. }
  2682. // ggml_add
  2683. static struct ggml_tensor * ggml_add_impl(
  2684. struct ggml_context * ctx,
  2685. struct ggml_tensor * a,
  2686. struct ggml_tensor * b,
  2687. bool inplace) {
  2688. GGML_ASSERT(ggml_can_repeat(b, a));
  2689. bool is_node = false;
  2690. if (!inplace && (a->grad || b->grad)) {
  2691. // TODO: support backward pass for broadcasting
  2692. GGML_ASSERT(ggml_are_same_shape(a, b));
  2693. is_node = true;
  2694. }
  2695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2696. result->op = GGML_OP_ADD;
  2697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2698. result->src[0] = a;
  2699. result->src[1] = b;
  2700. return result;
  2701. }
  2702. struct ggml_tensor * ggml_add(
  2703. struct ggml_context * ctx,
  2704. struct ggml_tensor * a,
  2705. struct ggml_tensor * b) {
  2706. return ggml_add_impl(ctx, a, b, false);
  2707. }
  2708. struct ggml_tensor * ggml_add_inplace(
  2709. struct ggml_context * ctx,
  2710. struct ggml_tensor * a,
  2711. struct ggml_tensor * b) {
  2712. return ggml_add_impl(ctx, a, b, true);
  2713. }
  2714. // ggml_add_cast
  2715. static struct ggml_tensor * ggml_add_cast_impl(
  2716. struct ggml_context * ctx,
  2717. struct ggml_tensor * a,
  2718. struct ggml_tensor * b,
  2719. enum ggml_type type) {
  2720. // TODO: support less-strict constraint
  2721. // GGML_ASSERT(ggml_can_repeat(b, a));
  2722. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2723. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2724. bool is_node = false;
  2725. if (a->grad || b->grad) {
  2726. // TODO: support backward pass for broadcasting
  2727. GGML_ASSERT(ggml_are_same_shape(a, b));
  2728. is_node = true;
  2729. }
  2730. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2731. result->op = GGML_OP_ADD;
  2732. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2733. result->src[0] = a;
  2734. result->src[1] = b;
  2735. return result;
  2736. }
  2737. struct ggml_tensor * ggml_add_cast(
  2738. struct ggml_context * ctx,
  2739. struct ggml_tensor * a,
  2740. struct ggml_tensor * b,
  2741. enum ggml_type type) {
  2742. return ggml_add_cast_impl(ctx, a, b, type);
  2743. }
  2744. // ggml_add1
  2745. static struct ggml_tensor * ggml_add1_impl(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b,
  2749. bool inplace) {
  2750. GGML_ASSERT(ggml_is_scalar(b));
  2751. GGML_ASSERT(ggml_is_padded_1d(a));
  2752. bool is_node = false;
  2753. if (a->grad || b->grad) {
  2754. is_node = true;
  2755. }
  2756. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2757. result->op = GGML_OP_ADD1;
  2758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2759. result->src[0] = a;
  2760. result->src[1] = b;
  2761. return result;
  2762. }
  2763. struct ggml_tensor * ggml_add1(
  2764. struct ggml_context * ctx,
  2765. struct ggml_tensor * a,
  2766. struct ggml_tensor * b) {
  2767. return ggml_add1_impl(ctx, a, b, false);
  2768. }
  2769. struct ggml_tensor * ggml_add1_inplace(
  2770. struct ggml_context * ctx,
  2771. struct ggml_tensor * a,
  2772. struct ggml_tensor * b) {
  2773. return ggml_add1_impl(ctx, a, b, true);
  2774. }
  2775. // ggml_acc
  2776. static struct ggml_tensor * ggml_acc_impl(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b,
  2780. size_t nb1,
  2781. size_t nb2,
  2782. size_t nb3,
  2783. size_t offset,
  2784. bool inplace) {
  2785. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2786. GGML_ASSERT(ggml_is_contiguous(a));
  2787. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2788. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2789. bool is_node = false;
  2790. if (!inplace && (a->grad || b->grad)) {
  2791. is_node = true;
  2792. }
  2793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2794. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2795. ggml_set_op_params(result, params, sizeof(params));
  2796. result->op = GGML_OP_ACC;
  2797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2798. result->src[0] = a;
  2799. result->src[1] = b;
  2800. return result;
  2801. }
  2802. struct ggml_tensor * ggml_acc(
  2803. struct ggml_context * ctx,
  2804. struct ggml_tensor * a,
  2805. struct ggml_tensor * b,
  2806. size_t nb1,
  2807. size_t nb2,
  2808. size_t nb3,
  2809. size_t offset) {
  2810. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2811. }
  2812. struct ggml_tensor * ggml_acc_inplace(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a,
  2815. struct ggml_tensor * b,
  2816. size_t nb1,
  2817. size_t nb2,
  2818. size_t nb3,
  2819. size_t offset) {
  2820. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2821. }
  2822. // ggml_sub
  2823. static struct ggml_tensor * ggml_sub_impl(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b,
  2827. bool inplace) {
  2828. GGML_ASSERT(ggml_are_same_shape(a, b));
  2829. bool is_node = false;
  2830. if (!inplace && (a->grad || b->grad)) {
  2831. is_node = true;
  2832. }
  2833. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2834. result->op = GGML_OP_SUB;
  2835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2836. result->src[0] = a;
  2837. result->src[1] = b;
  2838. return result;
  2839. }
  2840. struct ggml_tensor * ggml_sub(
  2841. struct ggml_context * ctx,
  2842. struct ggml_tensor * a,
  2843. struct ggml_tensor * b) {
  2844. return ggml_sub_impl(ctx, a, b, false);
  2845. }
  2846. struct ggml_tensor * ggml_sub_inplace(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_sub_impl(ctx, a, b, true);
  2851. }
  2852. // ggml_mul
  2853. static struct ggml_tensor * ggml_mul_impl(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a,
  2856. struct ggml_tensor * b,
  2857. bool inplace) {
  2858. GGML_ASSERT(ggml_can_repeat(b, a));
  2859. bool is_node = false;
  2860. if (!inplace && (a->grad || b->grad)) {
  2861. // TODO: support backward pass for broadcasting
  2862. GGML_ASSERT(ggml_are_same_shape(a, b));
  2863. is_node = true;
  2864. }
  2865. if (inplace) {
  2866. GGML_ASSERT(!is_node);
  2867. }
  2868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2869. result->op = GGML_OP_MUL;
  2870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2871. result->src[0] = a;
  2872. result->src[1] = b;
  2873. return result;
  2874. }
  2875. struct ggml_tensor * ggml_mul(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a,
  2878. struct ggml_tensor * b) {
  2879. return ggml_mul_impl(ctx, a, b, false);
  2880. }
  2881. struct ggml_tensor * ggml_mul_inplace(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. struct ggml_tensor * b) {
  2885. return ggml_mul_impl(ctx, a, b, true);
  2886. }
  2887. // ggml_div
  2888. static struct ggml_tensor * ggml_div_impl(
  2889. struct ggml_context * ctx,
  2890. struct ggml_tensor * a,
  2891. struct ggml_tensor * b,
  2892. bool inplace) {
  2893. GGML_ASSERT(ggml_can_repeat(b, a));
  2894. bool is_node = false;
  2895. if (!inplace && (a->grad || b->grad)) {
  2896. is_node = true;
  2897. }
  2898. if (inplace) {
  2899. GGML_ASSERT(!is_node);
  2900. }
  2901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2902. result->op = GGML_OP_DIV;
  2903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2904. result->src[0] = a;
  2905. result->src[1] = b;
  2906. return result;
  2907. }
  2908. struct ggml_tensor * ggml_div(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a,
  2911. struct ggml_tensor * b) {
  2912. return ggml_div_impl(ctx, a, b, false);
  2913. }
  2914. struct ggml_tensor * ggml_div_inplace(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a,
  2917. struct ggml_tensor * b) {
  2918. return ggml_div_impl(ctx, a, b, true);
  2919. }
  2920. // ggml_sqr
  2921. static struct ggml_tensor * ggml_sqr_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_SQR;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src[0] = a;
  2933. return result;
  2934. }
  2935. struct ggml_tensor * ggml_sqr(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a) {
  2938. return ggml_sqr_impl(ctx, a, false);
  2939. }
  2940. struct ggml_tensor * ggml_sqr_inplace(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a) {
  2943. return ggml_sqr_impl(ctx, a, true);
  2944. }
  2945. // ggml_sqrt
  2946. static struct ggml_tensor * ggml_sqrt_impl(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a,
  2949. bool inplace) {
  2950. bool is_node = false;
  2951. if (!inplace && (a->grad)) {
  2952. is_node = true;
  2953. }
  2954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2955. result->op = GGML_OP_SQRT;
  2956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2957. result->src[0] = a;
  2958. return result;
  2959. }
  2960. struct ggml_tensor * ggml_sqrt(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_sqrt_impl(ctx, a, false);
  2964. }
  2965. struct ggml_tensor * ggml_sqrt_inplace(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a) {
  2968. return ggml_sqrt_impl(ctx, a, true);
  2969. }
  2970. // ggml_log
  2971. static struct ggml_tensor * ggml_log_impl(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. bool inplace) {
  2975. bool is_node = false;
  2976. if (!inplace && (a->grad)) {
  2977. is_node = true;
  2978. }
  2979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2980. result->op = GGML_OP_LOG;
  2981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2982. result->src[0] = a;
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_log(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_log_impl(ctx, a, false);
  2989. }
  2990. struct ggml_tensor * ggml_log_inplace(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a) {
  2993. return ggml_log_impl(ctx, a, true);
  2994. }
  2995. // ggml_sum
  2996. struct ggml_tensor * ggml_sum(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a) {
  2999. bool is_node = false;
  3000. if (a->grad) {
  3001. is_node = true;
  3002. }
  3003. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3004. result->op = GGML_OP_SUM;
  3005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3006. result->src[0] = a;
  3007. return result;
  3008. }
  3009. // ggml_sum_rows
  3010. struct ggml_tensor * ggml_sum_rows(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. bool is_node = false;
  3014. if (a->grad) {
  3015. is_node = true;
  3016. }
  3017. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3018. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3019. ne[i] = a->ne[i];
  3020. }
  3021. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3022. result->op = GGML_OP_SUM_ROWS;
  3023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3024. result->src[0] = a;
  3025. return result;
  3026. }
  3027. // ggml_mean
  3028. struct ggml_tensor * ggml_mean(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a) {
  3031. bool is_node = false;
  3032. if (a->grad) {
  3033. GGML_ASSERT(false); // TODO: implement
  3034. is_node = true;
  3035. }
  3036. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3038. result->op = GGML_OP_MEAN;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src[0] = a;
  3041. return result;
  3042. }
  3043. // ggml_argmax
  3044. struct ggml_tensor * ggml_argmax(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a) {
  3047. GGML_ASSERT(ggml_is_matrix(a));
  3048. bool is_node = false;
  3049. if (a->grad) {
  3050. GGML_ASSERT(false);
  3051. is_node = true;
  3052. }
  3053. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3054. result->op = GGML_OP_ARGMAX;
  3055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3056. result->src[0] = a;
  3057. return result;
  3058. }
  3059. // ggml_repeat
  3060. struct ggml_tensor * ggml_repeat(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a,
  3063. struct ggml_tensor * b) {
  3064. GGML_ASSERT(ggml_can_repeat(a, b));
  3065. bool is_node = false;
  3066. if (a->grad) {
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3070. result->op = GGML_OP_REPEAT;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. return result;
  3074. }
  3075. // ggml_repeat_back
  3076. struct ggml_tensor * ggml_repeat_back(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. GGML_ASSERT(ggml_can_repeat(b, a));
  3081. bool is_node = false;
  3082. if (a->grad) {
  3083. is_node = true;
  3084. }
  3085. if (ggml_are_same_shape(a, b) && !is_node) {
  3086. return a;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3089. result->op = GGML_OP_REPEAT_BACK;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. return result;
  3093. }
  3094. // ggml_concat
  3095. struct ggml_tensor * ggml_concat(
  3096. struct ggml_context* ctx,
  3097. struct ggml_tensor* a,
  3098. struct ggml_tensor* b) {
  3099. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3100. bool is_node = false;
  3101. if (a->grad || b->grad) {
  3102. is_node = true;
  3103. }
  3104. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3105. result->op = GGML_OP_CONCAT;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. result->src[1] = b;
  3109. return result;
  3110. }
  3111. // ggml_abs
  3112. struct ggml_tensor * ggml_abs(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3116. }
  3117. struct ggml_tensor * ggml_abs_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3121. }
  3122. // ggml_sgn
  3123. struct ggml_tensor * ggml_sgn(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3127. }
  3128. struct ggml_tensor * ggml_sgn_inplace(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3132. }
  3133. // ggml_neg
  3134. struct ggml_tensor * ggml_neg(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3138. }
  3139. struct ggml_tensor * ggml_neg_inplace(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3143. }
  3144. // ggml_step
  3145. struct ggml_tensor * ggml_step(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3149. }
  3150. struct ggml_tensor * ggml_step_inplace(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3154. }
  3155. // ggml_tanh
  3156. struct ggml_tensor * ggml_tanh(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3160. }
  3161. struct ggml_tensor * ggml_tanh_inplace(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3165. }
  3166. // ggml_elu
  3167. struct ggml_tensor * ggml_elu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3171. }
  3172. struct ggml_tensor * ggml_elu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3176. }
  3177. // ggml_relu
  3178. struct ggml_tensor * ggml_relu(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3182. }
  3183. struct ggml_tensor * ggml_relu_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3187. }
  3188. // ggml_leaky_relu
  3189. struct ggml_tensor * ggml_leaky_relu(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3192. bool is_node = false;
  3193. if (!inplace && (a->grad)) {
  3194. is_node = true;
  3195. }
  3196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3197. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3198. result->op = GGML_OP_LEAKY_RELU;
  3199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3200. result->src[0] = a;
  3201. return result;
  3202. }
  3203. // ggml_gelu
  3204. struct ggml_tensor * ggml_gelu(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a) {
  3207. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3208. }
  3209. struct ggml_tensor * ggml_gelu_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3213. }
  3214. // ggml_gelu_quick
  3215. struct ggml_tensor * ggml_gelu_quick(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a) {
  3218. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3219. }
  3220. struct ggml_tensor * ggml_gelu_quick_inplace(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3224. }
  3225. // ggml_silu
  3226. struct ggml_tensor * ggml_silu(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3230. }
  3231. struct ggml_tensor * ggml_silu_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3235. }
  3236. // ggml_silu_back
  3237. struct ggml_tensor * ggml_silu_back(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. struct ggml_tensor * b) {
  3241. bool is_node = false;
  3242. if (a->grad || b->grad) {
  3243. // TODO: implement backward
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SILU_BACK;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src[0] = a;
  3250. result->src[1] = b;
  3251. return result;
  3252. }
  3253. // ggml_norm
  3254. static struct ggml_tensor * ggml_norm_impl(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a,
  3257. float eps,
  3258. bool inplace) {
  3259. bool is_node = false;
  3260. if (!inplace && (a->grad)) {
  3261. GGML_ASSERT(false); // TODO: implement backward
  3262. is_node = true;
  3263. }
  3264. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3265. ggml_set_op_params(result, &eps, sizeof(eps));
  3266. result->op = GGML_OP_NORM;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src[0] = a;
  3269. return result;
  3270. }
  3271. struct ggml_tensor * ggml_norm(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a,
  3274. float eps) {
  3275. return ggml_norm_impl(ctx, a, eps, false);
  3276. }
  3277. struct ggml_tensor * ggml_norm_inplace(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a,
  3280. float eps) {
  3281. return ggml_norm_impl(ctx, a, eps, true);
  3282. }
  3283. // ggml_rms_norm
  3284. static struct ggml_tensor * ggml_rms_norm_impl(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. float eps,
  3288. bool inplace) {
  3289. bool is_node = false;
  3290. if (!inplace && (a->grad)) {
  3291. is_node = true;
  3292. }
  3293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3294. ggml_set_op_params(result, &eps, sizeof(eps));
  3295. result->op = GGML_OP_RMS_NORM;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src[0] = a;
  3298. return result;
  3299. }
  3300. struct ggml_tensor * ggml_rms_norm(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a,
  3303. float eps) {
  3304. return ggml_rms_norm_impl(ctx, a, eps, false);
  3305. }
  3306. struct ggml_tensor * ggml_rms_norm_inplace(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. float eps) {
  3310. return ggml_rms_norm_impl(ctx, a, eps, true);
  3311. }
  3312. // ggml_rms_norm_back
  3313. struct ggml_tensor * ggml_rms_norm_back(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. struct ggml_tensor * b,
  3317. float eps) {
  3318. bool is_node = false;
  3319. if (a->grad) {
  3320. // TODO: implement backward
  3321. is_node = true;
  3322. }
  3323. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3324. ggml_set_op_params(result, &eps, sizeof(eps));
  3325. result->op = GGML_OP_RMS_NORM_BACK;
  3326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3327. result->src[0] = a;
  3328. result->src[1] = b;
  3329. return result;
  3330. }
  3331. // ggml_group_norm
  3332. static struct ggml_tensor * ggml_group_norm_impl(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. int n_groups,
  3336. bool inplace) {
  3337. bool is_node = false;
  3338. if (!inplace && (a->grad)) {
  3339. GGML_ASSERT(false); // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op_params[0] = n_groups;
  3344. result->op = GGML_OP_GROUP_NORM;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src[0] = a;
  3347. return result;
  3348. }
  3349. struct ggml_tensor * ggml_group_norm(
  3350. struct ggml_context * ctx,
  3351. struct ggml_tensor * a,
  3352. int n_groups) {
  3353. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3354. }
  3355. struct ggml_tensor * ggml_group_norm_inplace(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a,
  3358. int n_groups) {
  3359. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3360. }
  3361. // ggml_mul_mat
  3362. struct ggml_tensor * ggml_mul_mat(
  3363. struct ggml_context * ctx,
  3364. struct ggml_tensor * a,
  3365. struct ggml_tensor * b) {
  3366. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3367. GGML_ASSERT(!ggml_is_transposed(a));
  3368. bool is_node = false;
  3369. if (a->grad || b->grad) {
  3370. is_node = true;
  3371. }
  3372. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3374. result->op = GGML_OP_MUL_MAT;
  3375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3376. result->src[0] = a;
  3377. result->src[1] = b;
  3378. return result;
  3379. }
  3380. void ggml_mul_mat_set_prec(
  3381. struct ggml_tensor * a,
  3382. enum ggml_prec prec) {
  3383. const int32_t prec_i32 = (int32_t) prec;
  3384. ggml_set_op_params_i32(a, 0, prec_i32);
  3385. }
  3386. // ggml_mul_mat_id
  3387. struct ggml_tensor * ggml_mul_mat_id(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * const as[],
  3390. int n_as,
  3391. struct ggml_tensor * ids,
  3392. int id,
  3393. struct ggml_tensor * b) {
  3394. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3395. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3396. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3397. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3398. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3399. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3400. bool is_node = false;
  3401. if (as[0]->grad || b->grad) {
  3402. is_node = true;
  3403. }
  3404. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3405. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3406. ggml_set_op_params_i32(result, 0, id);
  3407. ggml_set_op_params_i32(result, 1, n_as);
  3408. result->op = GGML_OP_MUL_MAT_ID;
  3409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3410. result->src[0] = ids;
  3411. result->src[1] = b;
  3412. for (int i = 0; i < n_as; i++) {
  3413. struct ggml_tensor * a = as[i];
  3414. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3415. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3416. GGML_ASSERT(!ggml_is_transposed(a));
  3417. result->src[i + 2] = a;
  3418. }
  3419. return result;
  3420. }
  3421. // ggml_out_prod
  3422. struct ggml_tensor * ggml_out_prod(
  3423. struct ggml_context * ctx,
  3424. struct ggml_tensor * a,
  3425. struct ggml_tensor * b) {
  3426. GGML_ASSERT(ggml_can_out_prod(a, b));
  3427. GGML_ASSERT(!ggml_is_transposed(a));
  3428. bool is_node = false;
  3429. if (a->grad || b->grad) {
  3430. is_node = true;
  3431. }
  3432. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3433. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3434. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3435. result->op = GGML_OP_OUT_PROD;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src[0] = a;
  3438. result->src[1] = b;
  3439. return result;
  3440. }
  3441. // ggml_scale
  3442. static struct ggml_tensor * ggml_scale_impl(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a,
  3445. float s,
  3446. bool inplace) {
  3447. GGML_ASSERT(ggml_is_padded_1d(a));
  3448. bool is_node = false;
  3449. if (a->grad) {
  3450. is_node = true;
  3451. }
  3452. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3453. ggml_set_op_params(result, &s, sizeof(s));
  3454. result->op = GGML_OP_SCALE;
  3455. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3456. result->src[0] = a;
  3457. return result;
  3458. }
  3459. struct ggml_tensor * ggml_scale(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a,
  3462. float s) {
  3463. return ggml_scale_impl(ctx, a, s, false);
  3464. }
  3465. struct ggml_tensor * ggml_scale_inplace(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. float s) {
  3469. return ggml_scale_impl(ctx, a, s, true);
  3470. }
  3471. // ggml_set
  3472. static struct ggml_tensor * ggml_set_impl(
  3473. struct ggml_context * ctx,
  3474. struct ggml_tensor * a,
  3475. struct ggml_tensor * b,
  3476. size_t nb1,
  3477. size_t nb2,
  3478. size_t nb3,
  3479. size_t offset,
  3480. bool inplace) {
  3481. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3482. bool is_node = false;
  3483. if (a->grad || b->grad) {
  3484. is_node = true;
  3485. }
  3486. // make a view of the destination
  3487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3488. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3489. ggml_set_op_params(result, params, sizeof(params));
  3490. result->op = GGML_OP_SET;
  3491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3492. result->src[0] = a;
  3493. result->src[1] = b;
  3494. return result;
  3495. }
  3496. struct ggml_tensor * ggml_set(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b,
  3500. size_t nb1,
  3501. size_t nb2,
  3502. size_t nb3,
  3503. size_t offset) {
  3504. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3505. }
  3506. struct ggml_tensor * ggml_set_inplace(
  3507. struct ggml_context * ctx,
  3508. struct ggml_tensor * a,
  3509. struct ggml_tensor * b,
  3510. size_t nb1,
  3511. size_t nb2,
  3512. size_t nb3,
  3513. size_t offset) {
  3514. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3515. }
  3516. struct ggml_tensor * ggml_set_1d(
  3517. struct ggml_context * ctx,
  3518. struct ggml_tensor * a,
  3519. struct ggml_tensor * b,
  3520. size_t offset) {
  3521. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3522. }
  3523. struct ggml_tensor * ggml_set_1d_inplace(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. struct ggml_tensor * b,
  3527. size_t offset) {
  3528. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3529. }
  3530. struct ggml_tensor * ggml_set_2d(
  3531. struct ggml_context * ctx,
  3532. struct ggml_tensor * a,
  3533. struct ggml_tensor * b,
  3534. size_t nb1,
  3535. size_t offset) {
  3536. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3537. }
  3538. struct ggml_tensor * ggml_set_2d_inplace(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a,
  3541. struct ggml_tensor * b,
  3542. size_t nb1,
  3543. size_t offset) {
  3544. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3545. }
  3546. // ggml_cpy
  3547. static struct ggml_tensor * ggml_cpy_impl(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. struct ggml_tensor * b,
  3551. bool inplace) {
  3552. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3553. bool is_node = false;
  3554. if (!inplace && (a->grad || b->grad)) {
  3555. is_node = true;
  3556. }
  3557. // make a view of the destination
  3558. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3559. if (strlen(b->name) > 0) {
  3560. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3561. } else {
  3562. ggml_format_name(result, "%s (copy)", a->name);
  3563. }
  3564. result->op = GGML_OP_CPY;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src[0] = a;
  3567. result->src[1] = b;
  3568. return result;
  3569. }
  3570. struct ggml_tensor * ggml_cpy(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. struct ggml_tensor * b) {
  3574. return ggml_cpy_impl(ctx, a, b, false);
  3575. }
  3576. struct ggml_tensor * ggml_cpy_inplace(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a,
  3579. struct ggml_tensor * b) {
  3580. return ggml_cpy_impl(ctx, a, b, true);
  3581. }
  3582. // ggml_cont
  3583. static struct ggml_tensor * ggml_cont_impl(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. bool inplace) {
  3587. bool is_node = false;
  3588. if (!inplace && a->grad) {
  3589. is_node = true;
  3590. }
  3591. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3592. ggml_format_name(result, "%s (cont)", a->name);
  3593. result->op = GGML_OP_CONT;
  3594. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3595. result->src[0] = a;
  3596. return result;
  3597. }
  3598. struct ggml_tensor * ggml_cont(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a) {
  3601. return ggml_cont_impl(ctx, a, false);
  3602. }
  3603. struct ggml_tensor * ggml_cont_inplace(
  3604. struct ggml_context * ctx,
  3605. struct ggml_tensor * a) {
  3606. return ggml_cont_impl(ctx, a, true);
  3607. }
  3608. // make contiguous, with new shape
  3609. GGML_API struct ggml_tensor * ggml_cont_1d(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. int64_t ne0) {
  3613. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3614. }
  3615. GGML_API struct ggml_tensor * ggml_cont_2d(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * a,
  3618. int64_t ne0,
  3619. int64_t ne1) {
  3620. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3621. }
  3622. GGML_API struct ggml_tensor * ggml_cont_3d(
  3623. struct ggml_context * ctx,
  3624. struct ggml_tensor * a,
  3625. int64_t ne0,
  3626. int64_t ne1,
  3627. int64_t ne2) {
  3628. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3629. }
  3630. struct ggml_tensor * ggml_cont_4d(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a,
  3633. int64_t ne0,
  3634. int64_t ne1,
  3635. int64_t ne2,
  3636. int64_t ne3) {
  3637. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3638. bool is_node = false;
  3639. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3640. ggml_format_name(result, "%s (cont)", a->name);
  3641. result->op = GGML_OP_CONT;
  3642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3643. result->src[0] = a;
  3644. return result;
  3645. }
  3646. // ggml_reshape
  3647. struct ggml_tensor * ggml_reshape(
  3648. struct ggml_context * ctx,
  3649. struct ggml_tensor * a,
  3650. struct ggml_tensor * b) {
  3651. GGML_ASSERT(ggml_is_contiguous(a));
  3652. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3653. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3654. bool is_node = false;
  3655. if (a->grad) {
  3656. is_node = true;
  3657. }
  3658. if (b->grad) {
  3659. // gradient propagation is not supported
  3660. //GGML_ASSERT(false);
  3661. }
  3662. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3663. ggml_format_name(result, "%s (reshaped)", a->name);
  3664. result->op = GGML_OP_RESHAPE;
  3665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3666. result->src[0] = a;
  3667. return result;
  3668. }
  3669. struct ggml_tensor * ggml_reshape_1d(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a,
  3672. int64_t ne0) {
  3673. GGML_ASSERT(ggml_is_contiguous(a));
  3674. GGML_ASSERT(ggml_nelements(a) == ne0);
  3675. bool is_node = false;
  3676. if (a->grad) {
  3677. is_node = true;
  3678. }
  3679. const int64_t ne[1] = { ne0 };
  3680. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3681. ggml_format_name(result, "%s (reshaped)", a->name);
  3682. result->op = GGML_OP_RESHAPE;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src[0] = a;
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_reshape_2d(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. int64_t ne0,
  3691. int64_t ne1) {
  3692. GGML_ASSERT(ggml_is_contiguous(a));
  3693. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3694. bool is_node = false;
  3695. if (a->grad) {
  3696. is_node = true;
  3697. }
  3698. const int64_t ne[2] = { ne0, ne1 };
  3699. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3700. ggml_format_name(result, "%s (reshaped)", a->name);
  3701. result->op = GGML_OP_RESHAPE;
  3702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3703. result->src[0] = a;
  3704. return result;
  3705. }
  3706. struct ggml_tensor * ggml_reshape_3d(
  3707. struct ggml_context * ctx,
  3708. struct ggml_tensor * a,
  3709. int64_t ne0,
  3710. int64_t ne1,
  3711. int64_t ne2) {
  3712. GGML_ASSERT(ggml_is_contiguous(a));
  3713. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3714. bool is_node = false;
  3715. if (a->grad) {
  3716. is_node = true;
  3717. }
  3718. const int64_t ne[3] = { ne0, ne1, ne2 };
  3719. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3720. ggml_format_name(result, "%s (reshaped)", a->name);
  3721. result->op = GGML_OP_RESHAPE;
  3722. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3723. result->src[0] = a;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_reshape_4d(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. int64_t ne0,
  3730. int64_t ne1,
  3731. int64_t ne2,
  3732. int64_t ne3) {
  3733. GGML_ASSERT(ggml_is_contiguous(a));
  3734. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3735. bool is_node = false;
  3736. if (a->grad) {
  3737. is_node = true;
  3738. }
  3739. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3740. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3741. ggml_format_name(result, "%s (reshaped)", a->name);
  3742. result->op = GGML_OP_RESHAPE;
  3743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3744. result->src[0] = a;
  3745. return result;
  3746. }
  3747. static struct ggml_tensor * ggml_view_impl(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. int n_dims,
  3751. const int64_t * ne,
  3752. size_t offset) {
  3753. bool is_node = false;
  3754. if (a->grad) {
  3755. is_node = true;
  3756. }
  3757. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3758. ggml_format_name(result, "%s (view)", a->name);
  3759. ggml_set_op_params(result, &offset, sizeof(offset));
  3760. result->op = GGML_OP_VIEW;
  3761. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3762. result->src[0] = a;
  3763. return result;
  3764. }
  3765. // ggml_view_1d
  3766. struct ggml_tensor * ggml_view_1d(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. int64_t ne0,
  3770. size_t offset) {
  3771. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3772. return result;
  3773. }
  3774. // ggml_view_2d
  3775. struct ggml_tensor * ggml_view_2d(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. int64_t ne0,
  3779. int64_t ne1,
  3780. size_t nb1,
  3781. size_t offset) {
  3782. const int64_t ne[2] = { ne0, ne1 };
  3783. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3784. result->nb[1] = nb1;
  3785. result->nb[2] = result->nb[1]*ne1;
  3786. result->nb[3] = result->nb[2];
  3787. return result;
  3788. }
  3789. // ggml_view_3d
  3790. struct ggml_tensor * ggml_view_3d(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. int64_t ne0,
  3794. int64_t ne1,
  3795. int64_t ne2,
  3796. size_t nb1,
  3797. size_t nb2,
  3798. size_t offset) {
  3799. const int64_t ne[3] = { ne0, ne1, ne2 };
  3800. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3801. result->nb[1] = nb1;
  3802. result->nb[2] = nb2;
  3803. result->nb[3] = result->nb[2]*ne2;
  3804. return result;
  3805. }
  3806. // ggml_view_4d
  3807. struct ggml_tensor * ggml_view_4d(
  3808. struct ggml_context * ctx,
  3809. struct ggml_tensor * a,
  3810. int64_t ne0,
  3811. int64_t ne1,
  3812. int64_t ne2,
  3813. int64_t ne3,
  3814. size_t nb1,
  3815. size_t nb2,
  3816. size_t nb3,
  3817. size_t offset) {
  3818. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3819. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3820. result->nb[1] = nb1;
  3821. result->nb[2] = nb2;
  3822. result->nb[3] = nb3;
  3823. return result;
  3824. }
  3825. // ggml_permute
  3826. struct ggml_tensor * ggml_permute(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a,
  3829. int axis0,
  3830. int axis1,
  3831. int axis2,
  3832. int axis3) {
  3833. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3834. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3835. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3836. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3837. GGML_ASSERT(axis0 != axis1);
  3838. GGML_ASSERT(axis0 != axis2);
  3839. GGML_ASSERT(axis0 != axis3);
  3840. GGML_ASSERT(axis1 != axis2);
  3841. GGML_ASSERT(axis1 != axis3);
  3842. GGML_ASSERT(axis2 != axis3);
  3843. bool is_node = false;
  3844. if (a->grad) {
  3845. is_node = true;
  3846. }
  3847. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3848. ggml_format_name(result, "%s (permuted)", a->name);
  3849. int ne[GGML_MAX_DIMS];
  3850. int nb[GGML_MAX_DIMS];
  3851. ne[axis0] = a->ne[0];
  3852. ne[axis1] = a->ne[1];
  3853. ne[axis2] = a->ne[2];
  3854. ne[axis3] = a->ne[3];
  3855. nb[axis0] = a->nb[0];
  3856. nb[axis1] = a->nb[1];
  3857. nb[axis2] = a->nb[2];
  3858. nb[axis3] = a->nb[3];
  3859. result->ne[0] = ne[0];
  3860. result->ne[1] = ne[1];
  3861. result->ne[2] = ne[2];
  3862. result->ne[3] = ne[3];
  3863. result->nb[0] = nb[0];
  3864. result->nb[1] = nb[1];
  3865. result->nb[2] = nb[2];
  3866. result->nb[3] = nb[3];
  3867. result->op = GGML_OP_PERMUTE;
  3868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3869. result->src[0] = a;
  3870. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3871. ggml_set_op_params(result, params, sizeof(params));
  3872. return result;
  3873. }
  3874. // ggml_transpose
  3875. struct ggml_tensor * ggml_transpose(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a) {
  3878. bool is_node = false;
  3879. if (a->grad) {
  3880. is_node = true;
  3881. }
  3882. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3883. ggml_format_name(result, "%s (transposed)", a->name);
  3884. result->ne[0] = a->ne[1];
  3885. result->ne[1] = a->ne[0];
  3886. result->nb[0] = a->nb[1];
  3887. result->nb[1] = a->nb[0];
  3888. result->op = GGML_OP_TRANSPOSE;
  3889. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3890. result->src[0] = a;
  3891. return result;
  3892. }
  3893. // ggml_get_rows
  3894. struct ggml_tensor * ggml_get_rows(
  3895. struct ggml_context * ctx,
  3896. struct ggml_tensor * a,
  3897. struct ggml_tensor * b) {
  3898. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3899. GGML_ASSERT(b->ne[3] == 1);
  3900. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3901. bool is_node = false;
  3902. if (a->grad || b->grad) {
  3903. is_node = true;
  3904. }
  3905. // TODO: implement non F32 return
  3906. enum ggml_type type = GGML_TYPE_F32;
  3907. if (a->type == GGML_TYPE_I32) {
  3908. type = a->type;
  3909. }
  3910. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3911. result->op = GGML_OP_GET_ROWS;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src[0] = a;
  3914. result->src[1] = b;
  3915. return result;
  3916. }
  3917. // ggml_get_rows_back
  3918. struct ggml_tensor * ggml_get_rows_back(
  3919. struct ggml_context * ctx,
  3920. struct ggml_tensor * a,
  3921. struct ggml_tensor * b,
  3922. struct ggml_tensor * c) {
  3923. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3924. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3925. bool is_node = false;
  3926. if (a->grad || b->grad) {
  3927. is_node = true;
  3928. }
  3929. // TODO: implement non F32 return
  3930. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3931. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3932. result->op = GGML_OP_GET_ROWS_BACK;
  3933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3934. result->src[0] = a;
  3935. result->src[1] = b;
  3936. return result;
  3937. }
  3938. // ggml_diag
  3939. struct ggml_tensor * ggml_diag(
  3940. struct ggml_context * ctx,
  3941. struct ggml_tensor * a) {
  3942. GGML_ASSERT(a->ne[1] == 1);
  3943. bool is_node = false;
  3944. if (a->grad) {
  3945. is_node = true;
  3946. }
  3947. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3948. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3949. result->op = GGML_OP_DIAG;
  3950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3951. result->src[0] = a;
  3952. return result;
  3953. }
  3954. // ggml_diag_mask_inf
  3955. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a,
  3958. int n_past,
  3959. bool inplace) {
  3960. bool is_node = false;
  3961. if (a->grad) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3965. int32_t params[] = { n_past };
  3966. ggml_set_op_params(result, params, sizeof(params));
  3967. result->op = GGML_OP_DIAG_MASK_INF;
  3968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3969. result->src[0] = a;
  3970. return result;
  3971. }
  3972. struct ggml_tensor * ggml_diag_mask_inf(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. int n_past) {
  3976. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3977. }
  3978. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. int n_past) {
  3982. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3983. }
  3984. // ggml_diag_mask_zero
  3985. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a,
  3988. int n_past,
  3989. bool inplace) {
  3990. bool is_node = false;
  3991. if (a->grad) {
  3992. is_node = true;
  3993. }
  3994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. int32_t params[] = { n_past };
  3996. ggml_set_op_params(result, params, sizeof(params));
  3997. result->op = GGML_OP_DIAG_MASK_ZERO;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src[0] = a;
  4000. return result;
  4001. }
  4002. struct ggml_tensor * ggml_diag_mask_zero(
  4003. struct ggml_context * ctx,
  4004. struct ggml_tensor * a,
  4005. int n_past) {
  4006. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4007. }
  4008. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. int n_past) {
  4012. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4013. }
  4014. // ggml_soft_max
  4015. static struct ggml_tensor * ggml_soft_max_impl(
  4016. struct ggml_context * ctx,
  4017. struct ggml_tensor * a,
  4018. struct ggml_tensor * mask,
  4019. float scale,
  4020. bool inplace) {
  4021. GGML_ASSERT(ggml_is_contiguous(a));
  4022. if (mask) {
  4023. GGML_ASSERT(ggml_is_contiguous(mask));
  4024. GGML_ASSERT(mask->ne[2] == 1);
  4025. GGML_ASSERT(mask->ne[3] == 1);
  4026. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4027. }
  4028. bool is_node = false;
  4029. if (a->grad) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4033. float params[] = { scale };
  4034. ggml_set_op_params(result, params, sizeof(params));
  4035. result->op = GGML_OP_SOFT_MAX;
  4036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4037. result->src[0] = a;
  4038. result->src[1] = mask;
  4039. return result;
  4040. }
  4041. struct ggml_tensor * ggml_soft_max(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a) {
  4044. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4045. }
  4046. struct ggml_tensor * ggml_soft_max_inplace(
  4047. struct ggml_context * ctx,
  4048. struct ggml_tensor * a) {
  4049. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4050. }
  4051. struct ggml_tensor * ggml_soft_max_ext(
  4052. struct ggml_context * ctx,
  4053. struct ggml_tensor * a,
  4054. struct ggml_tensor * mask,
  4055. float scale) {
  4056. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4057. }
  4058. // ggml_soft_max_back
  4059. static struct ggml_tensor * ggml_soft_max_back_impl(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a,
  4062. struct ggml_tensor * b,
  4063. bool inplace) {
  4064. bool is_node = false;
  4065. if (a->grad || b->grad) {
  4066. is_node = true; // TODO : implement backward pass
  4067. }
  4068. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4069. result->op = GGML_OP_SOFT_MAX_BACK;
  4070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4071. result->src[0] = a;
  4072. result->src[1] = b;
  4073. return result;
  4074. }
  4075. struct ggml_tensor * ggml_soft_max_back(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b) {
  4079. return ggml_soft_max_back_impl(ctx, a, b, false);
  4080. }
  4081. struct ggml_tensor * ggml_soft_max_back_inplace(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. struct ggml_tensor * b) {
  4085. return ggml_soft_max_back_impl(ctx, a, b, true);
  4086. }
  4087. // ggml_rope
  4088. static struct ggml_tensor * ggml_rope_impl(
  4089. struct ggml_context * ctx,
  4090. struct ggml_tensor * a,
  4091. struct ggml_tensor * b,
  4092. int n_dims,
  4093. int mode,
  4094. int n_ctx,
  4095. int n_orig_ctx,
  4096. float freq_base,
  4097. float freq_scale,
  4098. float ext_factor,
  4099. float attn_factor,
  4100. float beta_fast,
  4101. float beta_slow,
  4102. float xpos_base,
  4103. bool xpos_down,
  4104. bool inplace) {
  4105. GGML_ASSERT(ggml_is_vector(b));
  4106. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4107. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4108. bool is_node = false;
  4109. if (a->grad) {
  4110. is_node = true;
  4111. }
  4112. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4113. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4114. memcpy(params + 5, &freq_base, sizeof(float));
  4115. memcpy(params + 6, &freq_scale, sizeof(float));
  4116. memcpy(params + 7, &ext_factor, sizeof(float));
  4117. memcpy(params + 8, &attn_factor, sizeof(float));
  4118. memcpy(params + 9, &beta_fast, sizeof(float));
  4119. memcpy(params + 10, &beta_slow, sizeof(float));
  4120. memcpy(params + 11, &xpos_base, sizeof(float));
  4121. memcpy(params + 12, &xpos_down, sizeof(bool));
  4122. ggml_set_op_params(result, params, sizeof(params));
  4123. result->op = GGML_OP_ROPE;
  4124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4125. result->src[0] = a;
  4126. result->src[1] = b;
  4127. return result;
  4128. }
  4129. struct ggml_tensor * ggml_rope(
  4130. struct ggml_context * ctx,
  4131. struct ggml_tensor * a,
  4132. struct ggml_tensor * b,
  4133. int n_dims,
  4134. int mode,
  4135. int n_ctx) {
  4136. return ggml_rope_impl(
  4137. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4138. );
  4139. }
  4140. struct ggml_tensor * ggml_rope_inplace(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. struct ggml_tensor * b,
  4144. int n_dims,
  4145. int mode,
  4146. int n_ctx) {
  4147. return ggml_rope_impl(
  4148. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4149. );
  4150. }
  4151. struct ggml_tensor * ggml_rope_custom(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b,
  4155. int n_dims,
  4156. int mode,
  4157. int n_ctx,
  4158. int n_orig_ctx,
  4159. float freq_base,
  4160. float freq_scale,
  4161. float ext_factor,
  4162. float attn_factor,
  4163. float beta_fast,
  4164. float beta_slow) {
  4165. return ggml_rope_impl(
  4166. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4167. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4168. );
  4169. }
  4170. struct ggml_tensor * ggml_rope_custom_inplace(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. int n_dims,
  4175. int mode,
  4176. int n_ctx,
  4177. int n_orig_ctx,
  4178. float freq_base,
  4179. float freq_scale,
  4180. float ext_factor,
  4181. float attn_factor,
  4182. float beta_fast,
  4183. float beta_slow) {
  4184. return ggml_rope_impl(
  4185. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4186. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4187. );
  4188. }
  4189. struct ggml_tensor * ggml_rope_xpos_inplace(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. struct ggml_tensor * b,
  4193. int n_dims,
  4194. float base,
  4195. bool down) {
  4196. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4197. }
  4198. // ggml_rope_back
  4199. struct ggml_tensor * ggml_rope_back(
  4200. struct ggml_context * ctx,
  4201. struct ggml_tensor * a,
  4202. struct ggml_tensor * b,
  4203. int n_dims,
  4204. int mode,
  4205. int n_ctx,
  4206. int n_orig_ctx,
  4207. float freq_base,
  4208. float freq_scale,
  4209. float ext_factor,
  4210. float attn_factor,
  4211. float beta_fast,
  4212. float beta_slow,
  4213. float xpos_base,
  4214. bool xpos_down) {
  4215. GGML_ASSERT(ggml_is_vector(b));
  4216. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4217. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4218. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4219. bool is_node = false;
  4220. if (a->grad) {
  4221. is_node = false; // TODO: implement backward
  4222. }
  4223. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4224. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4225. memcpy(params + 5, &freq_base, sizeof(float));
  4226. memcpy(params + 6, &freq_scale, sizeof(float));
  4227. memcpy(params + 7, &ext_factor, sizeof(float));
  4228. memcpy(params + 8, &attn_factor, sizeof(float));
  4229. memcpy(params + 9, &beta_fast, sizeof(float));
  4230. memcpy(params + 10, &beta_slow, sizeof(float));
  4231. memcpy(params + 11, &xpos_base, sizeof(float));
  4232. memcpy(params + 12, &xpos_down, sizeof(bool));
  4233. ggml_set_op_params(result, params, sizeof(params));
  4234. result->op = GGML_OP_ROPE_BACK;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. result->src[1] = b;
  4238. return result;
  4239. }
  4240. // ggml_alibi
  4241. struct ggml_tensor * ggml_alibi(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. int n_past,
  4245. int n_head,
  4246. float bias_max) {
  4247. GGML_ASSERT(n_past >= 0);
  4248. bool is_node = false;
  4249. if (a->grad) {
  4250. GGML_ASSERT(false); // TODO: implement backward
  4251. is_node = true;
  4252. }
  4253. // TODO: when implement backward, fix this:
  4254. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4255. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4256. int32_t op_params[3] = { n_past, n_head };
  4257. memcpy(op_params + 2, &bias_max, sizeof(float));
  4258. ggml_set_op_params(result, op_params, sizeof(op_params));
  4259. result->op = GGML_OP_ALIBI;
  4260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4261. result->src[0] = a;
  4262. return result;
  4263. }
  4264. // ggml_clamp
  4265. struct ggml_tensor * ggml_clamp(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a,
  4268. float min,
  4269. float max) {
  4270. bool is_node = false;
  4271. if (a->grad) {
  4272. GGML_ASSERT(false); // TODO: implement backward
  4273. is_node = true;
  4274. }
  4275. // TODO: when implement backward, fix this:
  4276. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4277. float params[] = { min, max };
  4278. ggml_set_op_params(result, params, sizeof(params));
  4279. result->op = GGML_OP_CLAMP;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src[0] = a;
  4282. return result;
  4283. }
  4284. // ggml_conv_1d
  4285. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4286. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4287. }
  4288. GGML_API struct ggml_tensor * ggml_conv_1d(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b,
  4292. int s0,
  4293. int p0,
  4294. int d0) {
  4295. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4296. struct ggml_tensor * result =
  4297. ggml_mul_mat(ctx,
  4298. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4299. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4300. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4301. return result;
  4302. }
  4303. // ggml_conv_1d_ph
  4304. struct ggml_tensor* ggml_conv_1d_ph(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b,
  4308. int s,
  4309. int d) {
  4310. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4311. }
  4312. // ggml_conv_transpose_1d
  4313. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4314. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4315. }
  4316. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. int s0,
  4321. int p0,
  4322. int d0) {
  4323. GGML_ASSERT(ggml_is_matrix(b));
  4324. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4325. GGML_ASSERT(a->ne[3] == 1);
  4326. GGML_ASSERT(p0 == 0);
  4327. GGML_ASSERT(d0 == 1);
  4328. bool is_node = false;
  4329. if (a->grad || b->grad) {
  4330. GGML_ASSERT(false); // TODO: implement backward
  4331. is_node = true;
  4332. }
  4333. const int64_t ne[4] = {
  4334. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4335. a->ne[1], b->ne[2], 1,
  4336. };
  4337. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4338. int32_t params[] = { s0, p0, d0 };
  4339. ggml_set_op_params(result, params, sizeof(params));
  4340. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4342. result->src[0] = a;
  4343. result->src[1] = b;
  4344. return result;
  4345. }
  4346. // ggml_conv_2d
  4347. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4348. // a: [OC,IC, KH, KW]
  4349. // b: [N, IC, IH, IW]
  4350. // result: [N, OH, OW, IC*KH*KW]
  4351. struct ggml_tensor * ggml_im2col(
  4352. struct ggml_context * ctx,
  4353. struct ggml_tensor * a,
  4354. struct ggml_tensor * b,
  4355. int s0,
  4356. int s1,
  4357. int p0,
  4358. int p1,
  4359. int d0,
  4360. int d1,
  4361. bool is_2D) {
  4362. if(is_2D) {
  4363. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4364. } else {
  4365. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4366. }
  4367. bool is_node = false;
  4368. if (a->grad || b->grad) {
  4369. GGML_ASSERT(false); // TODO: implement backward
  4370. is_node = true;
  4371. }
  4372. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4373. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4374. const int64_t ne[4] = {
  4375. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4376. OW,
  4377. is_2D ? OH : b->ne[2],
  4378. is_2D ? b->ne[3] : 1,
  4379. };
  4380. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4381. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4382. ggml_set_op_params(result, params, sizeof(params));
  4383. result->op = GGML_OP_IM2COL;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src[0] = a;
  4386. result->src[1] = b;
  4387. return result;
  4388. }
  4389. // a: [OC,IC, KH, KW]
  4390. // b: [N, IC, IH, IW]
  4391. // result: [N, OC, OH, OW]
  4392. struct ggml_tensor * ggml_conv_2d(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. struct ggml_tensor * b,
  4396. int s0,
  4397. int s1,
  4398. int p0,
  4399. int p1,
  4400. int d0,
  4401. int d1) {
  4402. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4403. struct ggml_tensor * result =
  4404. ggml_mul_mat(ctx,
  4405. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4406. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4407. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4408. return result;
  4409. }
  4410. // ggml_conv_2d_sk_p0
  4411. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. struct ggml_tensor * b) {
  4415. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4416. }
  4417. // ggml_conv_2d_s1_ph
  4418. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. struct ggml_tensor * b) {
  4422. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4423. }
  4424. // ggml_conv_transpose_2d_p0
  4425. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4426. return (ins - 1) * s - 2 * p + ks;
  4427. }
  4428. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. struct ggml_tensor * b,
  4432. int stride) {
  4433. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4434. bool is_node = false;
  4435. if (a->grad || b->grad) {
  4436. GGML_ASSERT(false); // TODO: implement backward
  4437. is_node = true;
  4438. }
  4439. const int64_t ne[4] = {
  4440. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4441. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4442. a->ne[2], b->ne[3],
  4443. };
  4444. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4445. ggml_set_op_params_i32(result, 0, stride);
  4446. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4448. result->src[0] = a;
  4449. result->src[1] = b;
  4450. return result;
  4451. }
  4452. // ggml_pool_*
  4453. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4454. return (ins + 2 * p - ks) / s + 1;
  4455. }
  4456. // ggml_pool_1d
  4457. struct ggml_tensor * ggml_pool_1d(
  4458. struct ggml_context * ctx,
  4459. struct ggml_tensor * a,
  4460. enum ggml_op_pool op,
  4461. int k0,
  4462. int s0,
  4463. int p0) {
  4464. bool is_node = false;
  4465. if (a->grad) {
  4466. GGML_ASSERT(false); // TODO: implement backward
  4467. is_node = true;
  4468. }
  4469. const int64_t ne[2] = {
  4470. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4471. a->ne[1],
  4472. };
  4473. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4474. int32_t params[] = { op, k0, s0, p0 };
  4475. ggml_set_op_params(result, params, sizeof(params));
  4476. result->op = GGML_OP_POOL_1D;
  4477. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4478. result->src[0] = a;
  4479. return result;
  4480. }
  4481. // ggml_pool_2d
  4482. struct ggml_tensor * ggml_pool_2d(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. enum ggml_op_pool op,
  4486. int k0,
  4487. int k1,
  4488. int s0,
  4489. int s1,
  4490. float p0,
  4491. float p1) {
  4492. bool is_node = false;
  4493. if (a->grad) {
  4494. GGML_ASSERT(false); // TODO: implement backward
  4495. is_node = true;
  4496. }
  4497. const int64_t ne[3] = {
  4498. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4499. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4500. a->ne[2],
  4501. };
  4502. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4503. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4504. ggml_set_op_params(result, params, sizeof(params));
  4505. result->op = GGML_OP_POOL_2D;
  4506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4507. result->src[0] = a;
  4508. return result;
  4509. }
  4510. // ggml_upscale
  4511. static struct ggml_tensor * ggml_upscale_impl(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. int scale_factor) {
  4515. bool is_node = false;
  4516. if (a->grad) {
  4517. GGML_ASSERT(false); // TODO: implement backward
  4518. is_node = true;
  4519. }
  4520. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4521. a->ne[0] * scale_factor,
  4522. a->ne[1] * scale_factor,
  4523. a->ne[2], a->ne[3]);
  4524. result->op = GGML_OP_UPSCALE;
  4525. result->op_params[0] = scale_factor;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. return result;
  4529. }
  4530. struct ggml_tensor * ggml_pad(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. int p0, int p1, int p2, int p3) {
  4534. bool is_node = false;
  4535. if (a->grad) {
  4536. GGML_ASSERT(false); // TODO: implement backward
  4537. is_node = true;
  4538. }
  4539. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4540. a->ne[0] + p0,
  4541. a->ne[1] + p1,
  4542. a->ne[2] + p2,
  4543. a->ne[3] + p3);
  4544. result->op = GGML_OP_PAD;
  4545. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4546. result->src[0] = a;
  4547. return result;
  4548. }
  4549. struct ggml_tensor * ggml_upscale(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. int scale_factor) {
  4553. return ggml_upscale_impl(ctx, a, scale_factor);
  4554. }
  4555. // ggml_argsort
  4556. struct ggml_tensor * ggml_argsort(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a,
  4559. enum ggml_sort_order order) {
  4560. bool is_node = false;
  4561. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4562. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4563. result->op = GGML_OP_ARGSORT;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src[0] = a;
  4566. return result;
  4567. }
  4568. // ggml_top_k
  4569. struct ggml_tensor * ggml_top_k(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int k) {
  4573. GGML_ASSERT(a->ne[0] >= k);
  4574. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4575. result = ggml_view_4d(ctx, result,
  4576. k, result->ne[1], result->ne[2], result->ne[3],
  4577. result->nb[1], result->nb[2], result->nb[3],
  4578. 0);
  4579. return result;
  4580. }
  4581. // ggml_flash_attn
  4582. struct ggml_tensor * ggml_flash_attn(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * q,
  4585. struct ggml_tensor * k,
  4586. struct ggml_tensor * v,
  4587. bool masked) {
  4588. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4589. // TODO: check if vT can be multiplied by (k*qT)
  4590. bool is_node = false;
  4591. if (q->grad || k->grad || v->grad) {
  4592. is_node = true;
  4593. }
  4594. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4595. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4596. int32_t t = masked ? 1 : 0;
  4597. ggml_set_op_params(result, &t, sizeof(t));
  4598. result->op = GGML_OP_FLASH_ATTN;
  4599. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4600. result->src[0] = q;
  4601. result->src[1] = k;
  4602. result->src[2] = v;
  4603. return result;
  4604. }
  4605. // ggml_flash_ff
  4606. struct ggml_tensor * ggml_flash_ff(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a,
  4609. struct ggml_tensor * b0,
  4610. struct ggml_tensor * b1,
  4611. struct ggml_tensor * c0,
  4612. struct ggml_tensor * c1) {
  4613. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4614. // TODO: more checks
  4615. bool is_node = false;
  4616. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4617. is_node = true;
  4618. }
  4619. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4620. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4621. result->op = GGML_OP_FLASH_FF;
  4622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4623. result->src[0] = a;
  4624. result->src[1] = b0;
  4625. result->src[2] = b1;
  4626. result->src[3] = c0;
  4627. result->src[4] = c1;
  4628. return result;
  4629. }
  4630. // ggml_flash_attn_back
  4631. struct ggml_tensor * ggml_flash_attn_back(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * q,
  4634. struct ggml_tensor * k,
  4635. struct ggml_tensor * v,
  4636. struct ggml_tensor * d,
  4637. bool masked) {
  4638. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4639. // TODO: check if vT can be multiplied by (k*qT)
  4640. // d shape [D,N,ne2,ne3]
  4641. // q shape [D,N,ne2,ne3]
  4642. // k shape [D,M,kvne2,ne3]
  4643. // v shape [M,D,kvne2,ne3]
  4644. const int64_t D = q->ne[0];
  4645. const int64_t N = q->ne[1];
  4646. const int64_t M = k->ne[1];
  4647. const int64_t ne2 = q->ne[2];
  4648. const int64_t ne3 = q->ne[3];
  4649. const int64_t kvne2 = k->ne[2];
  4650. GGML_ASSERT(k->ne[0] == D);
  4651. GGML_ASSERT(v->ne[0] == M);
  4652. GGML_ASSERT(v->ne[1] == D);
  4653. GGML_ASSERT(d->ne[0] == D);
  4654. GGML_ASSERT(d->ne[1] == N);
  4655. GGML_ASSERT(k->ne[2] == kvne2);
  4656. GGML_ASSERT(k->ne[3] == ne3);
  4657. GGML_ASSERT(v->ne[2] == kvne2);
  4658. GGML_ASSERT(v->ne[3] == ne3);
  4659. GGML_ASSERT(d->ne[2] == ne2);
  4660. GGML_ASSERT(d->ne[3] == ne3);
  4661. GGML_ASSERT(ne2 % kvne2 == 0);
  4662. bool is_node = false;
  4663. if (q->grad || k->grad || v->grad) {
  4664. // when using this operation (in backwards pass) these grads are set.
  4665. // we don't want to create (big) grad of our result, so is_node is false.
  4666. is_node = false;
  4667. }
  4668. // store gradients of q, k and v as continuous tensors concatenated in result.
  4669. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4670. const int64_t elem_q = ggml_nelements(q);
  4671. const int64_t elem_k = ggml_nelements(k);
  4672. const int64_t elem_v = ggml_nelements(v);
  4673. enum ggml_type result_type = GGML_TYPE_F32;
  4674. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4675. const size_t tsize = ggml_type_size(result_type);
  4676. const size_t offs_q = 0;
  4677. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4678. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4679. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4680. const size_t nelements = (end + tsize - 1)/tsize;
  4681. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4682. int32_t masked_i = masked ? 1 : 0;
  4683. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4684. result->op = GGML_OP_FLASH_ATTN_BACK;
  4685. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4686. result->src[0] = q;
  4687. result->src[1] = k;
  4688. result->src[2] = v;
  4689. result->src[3] = d;
  4690. return result;
  4691. }
  4692. // ggml_win_part
  4693. struct ggml_tensor * ggml_win_part(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. int w) {
  4697. GGML_ASSERT(a->ne[3] == 1);
  4698. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4699. bool is_node = false;
  4700. if (a->grad) {
  4701. GGML_ASSERT(false); // TODO: implement backward
  4702. is_node = true;
  4703. }
  4704. // padding
  4705. const int px = (w - a->ne[1]%w)%w;
  4706. const int py = (w - a->ne[2]%w)%w;
  4707. const int npx = (px + a->ne[1])/w;
  4708. const int npy = (py + a->ne[2])/w;
  4709. const int np = npx*npy;
  4710. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4711. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4712. int32_t params[] = { npx, npy, w };
  4713. ggml_set_op_params(result, params, sizeof(params));
  4714. result->op = GGML_OP_WIN_PART;
  4715. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4716. result->src[0] = a;
  4717. return result;
  4718. }
  4719. // ggml_win_unpart
  4720. struct ggml_tensor * ggml_win_unpart(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. int w0,
  4724. int h0,
  4725. int w) {
  4726. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. GGML_ASSERT(false); // TODO: implement backward
  4730. is_node = true;
  4731. }
  4732. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4733. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4734. int32_t params[] = { w };
  4735. ggml_set_op_params(result, params, sizeof(params));
  4736. result->op = GGML_OP_WIN_UNPART;
  4737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4738. result->src[0] = a;
  4739. return result;
  4740. }
  4741. // ggml_get_rel_pos
  4742. struct ggml_tensor * ggml_get_rel_pos(
  4743. struct ggml_context * ctx,
  4744. struct ggml_tensor * a,
  4745. int qh,
  4746. int kh) {
  4747. GGML_ASSERT(qh == kh);
  4748. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4749. bool is_node = false;
  4750. if (a->grad) {
  4751. GGML_ASSERT(false); // TODO: implement backward
  4752. is_node = true;
  4753. }
  4754. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4755. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4756. result->op = GGML_OP_GET_REL_POS;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src[0] = a;
  4759. return result;
  4760. }
  4761. // ggml_add_rel_pos
  4762. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a,
  4765. struct ggml_tensor * pw,
  4766. struct ggml_tensor * ph,
  4767. bool inplace) {
  4768. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4769. GGML_ASSERT(ggml_is_contiguous(a));
  4770. GGML_ASSERT(ggml_is_contiguous(pw));
  4771. GGML_ASSERT(ggml_is_contiguous(ph));
  4772. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4773. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4774. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4775. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4776. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4777. bool is_node = false;
  4778. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4779. is_node = true;
  4780. }
  4781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4782. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4783. result->op = GGML_OP_ADD_REL_POS;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. result->src[1] = pw;
  4787. result->src[2] = ph;
  4788. return result;
  4789. }
  4790. struct ggml_tensor * ggml_add_rel_pos(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. struct ggml_tensor * pw,
  4794. struct ggml_tensor * ph) {
  4795. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4796. }
  4797. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. struct ggml_tensor * pw,
  4801. struct ggml_tensor * ph) {
  4802. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4803. }
  4804. // gmml_unary
  4805. static struct ggml_tensor * ggml_unary_impl(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. enum ggml_unary_op op,
  4809. bool inplace) {
  4810. bool is_node = false;
  4811. if (!inplace && (a->grad)) {
  4812. is_node = true;
  4813. }
  4814. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4815. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4816. result->op = GGML_OP_UNARY;
  4817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4818. result->src[0] = a;
  4819. return result;
  4820. }
  4821. struct ggml_tensor * ggml_unary(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. enum ggml_unary_op op) {
  4825. return ggml_unary_impl(ctx, a, op, false);
  4826. }
  4827. struct ggml_tensor * ggml_unary_inplace(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a,
  4830. enum ggml_unary_op op) {
  4831. return ggml_unary_impl(ctx, a, op, true);
  4832. }
  4833. // ggml_map_unary
  4834. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. const ggml_unary_op_f32_t fun,
  4838. bool inplace) {
  4839. bool is_node = false;
  4840. if (!inplace && a->grad) {
  4841. is_node = true;
  4842. }
  4843. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4844. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4845. result->op = GGML_OP_MAP_UNARY;
  4846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4847. result->src[0] = a;
  4848. return result;
  4849. }
  4850. struct ggml_tensor * ggml_map_unary_f32(
  4851. struct ggml_context * ctx,
  4852. struct ggml_tensor * a,
  4853. const ggml_unary_op_f32_t fun) {
  4854. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4855. }
  4856. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. const ggml_unary_op_f32_t fun) {
  4860. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4861. }
  4862. // ggml_map_binary
  4863. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b,
  4867. const ggml_binary_op_f32_t fun,
  4868. bool inplace) {
  4869. GGML_ASSERT(ggml_are_same_shape(a, b));
  4870. bool is_node = false;
  4871. if (!inplace && (a->grad || b->grad)) {
  4872. is_node = true;
  4873. }
  4874. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4875. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4876. result->op = GGML_OP_MAP_BINARY;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src[0] = a;
  4879. result->src[1] = b;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_map_binary_f32(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. struct ggml_tensor * b,
  4886. const ggml_binary_op_f32_t fun) {
  4887. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4888. }
  4889. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. struct ggml_tensor * b,
  4893. const ggml_binary_op_f32_t fun) {
  4894. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4895. }
  4896. // ggml_map_custom1_f32
  4897. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. const ggml_custom1_op_f32_t fun,
  4901. bool inplace) {
  4902. bool is_node = false;
  4903. if (!inplace && a->grad) {
  4904. is_node = true;
  4905. }
  4906. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4907. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4908. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src[0] = a;
  4911. return result;
  4912. }
  4913. struct ggml_tensor * ggml_map_custom1_f32(
  4914. struct ggml_context * ctx,
  4915. struct ggml_tensor * a,
  4916. const ggml_custom1_op_f32_t fun) {
  4917. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4918. }
  4919. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4920. struct ggml_context * ctx,
  4921. struct ggml_tensor * a,
  4922. const ggml_custom1_op_f32_t fun) {
  4923. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4924. }
  4925. // ggml_map_custom2_f32
  4926. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4927. struct ggml_context * ctx,
  4928. struct ggml_tensor * a,
  4929. struct ggml_tensor * b,
  4930. const ggml_custom2_op_f32_t fun,
  4931. bool inplace) {
  4932. bool is_node = false;
  4933. if (!inplace && (a->grad || b->grad)) {
  4934. is_node = true;
  4935. }
  4936. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4937. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4938. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4940. result->src[0] = a;
  4941. result->src[1] = b;
  4942. return result;
  4943. }
  4944. struct ggml_tensor * ggml_map_custom2_f32(
  4945. struct ggml_context * ctx,
  4946. struct ggml_tensor * a,
  4947. struct ggml_tensor * b,
  4948. const ggml_custom2_op_f32_t fun) {
  4949. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4950. }
  4951. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. struct ggml_tensor * b,
  4955. const ggml_custom2_op_f32_t fun) {
  4956. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4957. }
  4958. // ggml_map_custom3_f32
  4959. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4960. struct ggml_context * ctx,
  4961. struct ggml_tensor * a,
  4962. struct ggml_tensor * b,
  4963. struct ggml_tensor * c,
  4964. const ggml_custom3_op_f32_t fun,
  4965. bool inplace) {
  4966. bool is_node = false;
  4967. if (!inplace && (a->grad || b->grad || c->grad)) {
  4968. is_node = true;
  4969. }
  4970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4971. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4972. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4974. result->src[0] = a;
  4975. result->src[1] = b;
  4976. result->src[2] = c;
  4977. return result;
  4978. }
  4979. struct ggml_tensor * ggml_map_custom3_f32(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. struct ggml_tensor * b,
  4983. struct ggml_tensor * c,
  4984. const ggml_custom3_op_f32_t fun) {
  4985. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4986. }
  4987. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4988. struct ggml_context * ctx,
  4989. struct ggml_tensor * a,
  4990. struct ggml_tensor * b,
  4991. struct ggml_tensor * c,
  4992. const ggml_custom3_op_f32_t fun) {
  4993. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4994. }
  4995. // ggml_map_custom1
  4996. struct ggml_map_custom1_op_params {
  4997. ggml_custom1_op_t fun;
  4998. int n_tasks;
  4999. void * userdata;
  5000. };
  5001. static struct ggml_tensor * ggml_map_custom1_impl(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. const ggml_custom1_op_t fun,
  5005. int n_tasks,
  5006. void * userdata,
  5007. bool inplace) {
  5008. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5009. bool is_node = false;
  5010. if (!inplace && a->grad) {
  5011. is_node = true;
  5012. }
  5013. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5014. struct ggml_map_custom1_op_params params = {
  5015. /*.fun =*/ fun,
  5016. /*.n_tasks =*/ n_tasks,
  5017. /*.userdata =*/ userdata
  5018. };
  5019. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5020. result->op = GGML_OP_MAP_CUSTOM1;
  5021. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5022. result->src[0] = a;
  5023. return result;
  5024. }
  5025. struct ggml_tensor * ggml_map_custom1(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a,
  5028. const ggml_custom1_op_t fun,
  5029. int n_tasks,
  5030. void * userdata) {
  5031. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5032. }
  5033. struct ggml_tensor * ggml_map_custom1_inplace(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. const ggml_custom1_op_t fun,
  5037. int n_tasks,
  5038. void * userdata) {
  5039. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5040. }
  5041. // ggml_map_custom2
  5042. struct ggml_map_custom2_op_params {
  5043. ggml_custom2_op_t fun;
  5044. int n_tasks;
  5045. void * userdata;
  5046. };
  5047. static struct ggml_tensor * ggml_map_custom2_impl(
  5048. struct ggml_context * ctx,
  5049. struct ggml_tensor * a,
  5050. struct ggml_tensor * b,
  5051. const ggml_custom2_op_t fun,
  5052. int n_tasks,
  5053. void * userdata,
  5054. bool inplace) {
  5055. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5056. bool is_node = false;
  5057. if (!inplace && (a->grad || b->grad)) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. struct ggml_map_custom2_op_params params = {
  5062. /*.fun =*/ fun,
  5063. /*.n_tasks =*/ n_tasks,
  5064. /*.userdata =*/ userdata
  5065. };
  5066. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5067. result->op = GGML_OP_MAP_CUSTOM2;
  5068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5069. result->src[0] = a;
  5070. result->src[1] = b;
  5071. return result;
  5072. }
  5073. struct ggml_tensor * ggml_map_custom2(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. struct ggml_tensor * b,
  5077. const ggml_custom2_op_t fun,
  5078. int n_tasks,
  5079. void * userdata) {
  5080. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5081. }
  5082. struct ggml_tensor * ggml_map_custom2_inplace(
  5083. struct ggml_context * ctx,
  5084. struct ggml_tensor * a,
  5085. struct ggml_tensor * b,
  5086. const ggml_custom2_op_t fun,
  5087. int n_tasks,
  5088. void * userdata) {
  5089. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5090. }
  5091. // ggml_map_custom3
  5092. struct ggml_map_custom3_op_params {
  5093. ggml_custom3_op_t fun;
  5094. int n_tasks;
  5095. void * userdata;
  5096. };
  5097. static struct ggml_tensor * ggml_map_custom3_impl(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b,
  5101. struct ggml_tensor * c,
  5102. const ggml_custom3_op_t fun,
  5103. int n_tasks,
  5104. void * userdata,
  5105. bool inplace) {
  5106. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5107. bool is_node = false;
  5108. if (!inplace && (a->grad || b->grad || c->grad)) {
  5109. is_node = true;
  5110. }
  5111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5112. struct ggml_map_custom3_op_params params = {
  5113. /*.fun =*/ fun,
  5114. /*.n_tasks =*/ n_tasks,
  5115. /*.userdata =*/ userdata
  5116. };
  5117. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5118. result->op = GGML_OP_MAP_CUSTOM3;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src[0] = a;
  5121. result->src[1] = b;
  5122. result->src[2] = c;
  5123. return result;
  5124. }
  5125. struct ggml_tensor * ggml_map_custom3(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. struct ggml_tensor * b,
  5129. struct ggml_tensor * c,
  5130. const ggml_custom3_op_t fun,
  5131. int n_tasks,
  5132. void * userdata) {
  5133. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5134. }
  5135. struct ggml_tensor * ggml_map_custom3_inplace(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. struct ggml_tensor * b,
  5139. struct ggml_tensor * c,
  5140. const ggml_custom3_op_t fun,
  5141. int n_tasks,
  5142. void * userdata) {
  5143. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5144. }
  5145. // ggml_cross_entropy_loss
  5146. struct ggml_tensor * ggml_cross_entropy_loss(
  5147. struct ggml_context * ctx,
  5148. struct ggml_tensor * a,
  5149. struct ggml_tensor * b) {
  5150. GGML_ASSERT(ggml_are_same_shape(a, b));
  5151. bool is_node = false;
  5152. if (a->grad || b->grad) {
  5153. is_node = true;
  5154. }
  5155. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5156. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5158. result->src[0] = a;
  5159. result->src[1] = b;
  5160. return result;
  5161. }
  5162. // ggml_cross_entropy_loss_back
  5163. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. struct ggml_tensor * b,
  5167. struct ggml_tensor * c) {
  5168. GGML_ASSERT(ggml_are_same_shape(a, b));
  5169. GGML_ASSERT(ggml_is_scalar(c));
  5170. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5171. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5172. result->grad = NULL;
  5173. result->src[0] = a;
  5174. result->src[1] = b;
  5175. result->src[2] = c;
  5176. return result;
  5177. }
  5178. ////////////////////////////////////////////////////////////////////////////////
  5179. void ggml_set_param(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * tensor) {
  5182. tensor->is_param = true;
  5183. GGML_ASSERT(tensor->grad == NULL);
  5184. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5185. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5186. }
  5187. // ggml_compute_forward_dup
  5188. static void ggml_compute_forward_dup_same_cont(
  5189. const struct ggml_compute_params * params,
  5190. const struct ggml_tensor * src0,
  5191. struct ggml_tensor * dst) {
  5192. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5193. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5194. GGML_ASSERT(src0->type == dst->type);
  5195. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5196. return;
  5197. }
  5198. const size_t nb00 = src0->nb[0];
  5199. const size_t nb0 = dst->nb[0];
  5200. const int ith = params->ith; // thread index
  5201. const int nth = params->nth; // number of threads
  5202. // parallelize by elements
  5203. const int ne = ggml_nelements(dst);
  5204. const int dr = (ne + nth - 1) / nth;
  5205. const int ie0 = dr * ith;
  5206. const int ie1 = MIN(ie0 + dr, ne);
  5207. if (ie0 < ie1) {
  5208. memcpy(
  5209. ((char *) dst->data + ie0*nb0),
  5210. ((char *) src0->data + ie0*nb00),
  5211. (ie1 - ie0) * ggml_type_size(src0->type));
  5212. }
  5213. }
  5214. static void ggml_compute_forward_dup_f16(
  5215. const struct ggml_compute_params * params,
  5216. const struct ggml_tensor * src0,
  5217. struct ggml_tensor * dst) {
  5218. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5219. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5220. return;
  5221. }
  5222. GGML_TENSOR_UNARY_OP_LOCALS
  5223. const int ith = params->ith; // thread index
  5224. const int nth = params->nth; // number of threads
  5225. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5226. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5227. return;
  5228. }
  5229. // parallelize by rows
  5230. const int nr = ne01;
  5231. // number of rows per thread
  5232. const int dr = (nr + nth - 1) / nth;
  5233. // row range for this thread
  5234. const int ir0 = dr * ith;
  5235. const int ir1 = MIN(ir0 + dr, nr);
  5236. if (src0->type == dst->type &&
  5237. ne00 == ne0 &&
  5238. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5239. // copy by rows
  5240. const size_t rs = ne00*nb00;
  5241. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5243. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5244. memcpy(
  5245. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5246. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5247. rs);
  5248. }
  5249. }
  5250. }
  5251. return;
  5252. }
  5253. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5254. if (ggml_is_contiguous(dst)) {
  5255. if (nb00 == sizeof(ggml_fp16_t)) {
  5256. if (dst->type == GGML_TYPE_F16) {
  5257. size_t id = 0;
  5258. const size_t rs = ne00 * nb00;
  5259. char * dst_ptr = (char *) dst->data;
  5260. for (int i03 = 0; i03 < ne03; i03++) {
  5261. for (int i02 = 0; i02 < ne02; i02++) {
  5262. id += rs * ir0;
  5263. for (int i01 = ir0; i01 < ir1; i01++) {
  5264. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5265. memcpy(dst_ptr + id, src0_ptr, rs);
  5266. id += rs;
  5267. }
  5268. id += rs * (ne01 - ir1);
  5269. }
  5270. }
  5271. } else if (dst->type == GGML_TYPE_F32) {
  5272. size_t id = 0;
  5273. float * dst_ptr = (float *) dst->data;
  5274. for (int i03 = 0; i03 < ne03; i03++) {
  5275. for (int i02 = 0; i02 < ne02; i02++) {
  5276. id += ne00 * ir0;
  5277. for (int i01 = ir0; i01 < ir1; i01++) {
  5278. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5279. for (int i00 = 0; i00 < ne00; i00++) {
  5280. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5281. id++;
  5282. }
  5283. }
  5284. id += ne00 * (ne01 - ir1);
  5285. }
  5286. }
  5287. } else if (type_traits[dst->type].from_float) {
  5288. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5289. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5290. size_t id = 0;
  5291. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5292. char * dst_ptr = (char *) dst->data;
  5293. for (int i03 = 0; i03 < ne03; i03++) {
  5294. for (int i02 = 0; i02 < ne02; i02++) {
  5295. id += rs * ir0;
  5296. for (int i01 = ir0; i01 < ir1; i01++) {
  5297. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5298. for (int i00 = 0; i00 < ne00; i00++) {
  5299. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5300. }
  5301. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5302. id += rs;
  5303. }
  5304. id += rs * (ne01 - ir1);
  5305. }
  5306. }
  5307. } else {
  5308. GGML_ASSERT(false); // TODO: implement
  5309. }
  5310. } else {
  5311. //printf("%s: this is not optimal - fix me\n", __func__);
  5312. if (dst->type == GGML_TYPE_F32) {
  5313. size_t id = 0;
  5314. float * dst_ptr = (float *) dst->data;
  5315. for (int i03 = 0; i03 < ne03; i03++) {
  5316. for (int i02 = 0; i02 < ne02; i02++) {
  5317. id += ne00 * ir0;
  5318. for (int i01 = ir0; i01 < ir1; i01++) {
  5319. for (int i00 = 0; i00 < ne00; i00++) {
  5320. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5321. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5322. id++;
  5323. }
  5324. }
  5325. id += ne00 * (ne01 - ir1);
  5326. }
  5327. }
  5328. } else if (dst->type == GGML_TYPE_F16) {
  5329. size_t id = 0;
  5330. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5331. for (int i03 = 0; i03 < ne03; i03++) {
  5332. for (int i02 = 0; i02 < ne02; i02++) {
  5333. id += ne00 * ir0;
  5334. for (int i01 = ir0; i01 < ir1; i01++) {
  5335. for (int i00 = 0; i00 < ne00; i00++) {
  5336. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5337. dst_ptr[id] = *src0_ptr;
  5338. id++;
  5339. }
  5340. }
  5341. id += ne00 * (ne01 - ir1);
  5342. }
  5343. }
  5344. } else {
  5345. GGML_ASSERT(false); // TODO: implement
  5346. }
  5347. }
  5348. return;
  5349. }
  5350. // dst counters
  5351. int64_t i10 = 0;
  5352. int64_t i11 = 0;
  5353. int64_t i12 = 0;
  5354. int64_t i13 = 0;
  5355. if (dst->type == GGML_TYPE_F16) {
  5356. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5357. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5358. i10 += ne00 * ir0;
  5359. while (i10 >= ne0) {
  5360. i10 -= ne0;
  5361. if (++i11 == ne1) {
  5362. i11 = 0;
  5363. if (++i12 == ne2) {
  5364. i12 = 0;
  5365. if (++i13 == ne3) {
  5366. i13 = 0;
  5367. }
  5368. }
  5369. }
  5370. }
  5371. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5372. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5373. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5374. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5375. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5376. if (++i10 == ne00) {
  5377. i10 = 0;
  5378. if (++i11 == ne01) {
  5379. i11 = 0;
  5380. if (++i12 == ne02) {
  5381. i12 = 0;
  5382. if (++i13 == ne03) {
  5383. i13 = 0;
  5384. }
  5385. }
  5386. }
  5387. }
  5388. }
  5389. }
  5390. i10 += ne00 * (ne01 - ir1);
  5391. while (i10 >= ne0) {
  5392. i10 -= ne0;
  5393. if (++i11 == ne1) {
  5394. i11 = 0;
  5395. if (++i12 == ne2) {
  5396. i12 = 0;
  5397. if (++i13 == ne3) {
  5398. i13 = 0;
  5399. }
  5400. }
  5401. }
  5402. }
  5403. }
  5404. }
  5405. } else if (dst->type == GGML_TYPE_F32) {
  5406. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5407. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5408. i10 += ne00 * ir0;
  5409. while (i10 >= ne0) {
  5410. i10 -= ne0;
  5411. if (++i11 == ne1) {
  5412. i11 = 0;
  5413. if (++i12 == ne2) {
  5414. i12 = 0;
  5415. if (++i13 == ne3) {
  5416. i13 = 0;
  5417. }
  5418. }
  5419. }
  5420. }
  5421. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5422. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5423. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5424. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5425. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5426. if (++i10 == ne0) {
  5427. i10 = 0;
  5428. if (++i11 == ne1) {
  5429. i11 = 0;
  5430. if (++i12 == ne2) {
  5431. i12 = 0;
  5432. if (++i13 == ne3) {
  5433. i13 = 0;
  5434. }
  5435. }
  5436. }
  5437. }
  5438. }
  5439. }
  5440. i10 += ne00 * (ne01 - ir1);
  5441. while (i10 >= ne0) {
  5442. i10 -= ne0;
  5443. if (++i11 == ne1) {
  5444. i11 = 0;
  5445. if (++i12 == ne2) {
  5446. i12 = 0;
  5447. if (++i13 == ne3) {
  5448. i13 = 0;
  5449. }
  5450. }
  5451. }
  5452. }
  5453. }
  5454. }
  5455. } else {
  5456. GGML_ASSERT(false); // TODO: implement
  5457. }
  5458. }
  5459. static void ggml_compute_forward_dup_f32(
  5460. const struct ggml_compute_params * params,
  5461. const struct ggml_tensor * src0,
  5462. struct ggml_tensor * dst) {
  5463. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5465. return;
  5466. }
  5467. GGML_TENSOR_UNARY_OP_LOCALS
  5468. const int ith = params->ith; // thread index
  5469. const int nth = params->nth; // number of threads
  5470. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5471. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5472. return;
  5473. }
  5474. // parallelize by rows
  5475. const int nr = ne01;
  5476. // number of rows per thread
  5477. const int dr = (nr + nth - 1) / nth;
  5478. // row range for this thread
  5479. const int ir0 = dr * ith;
  5480. const int ir1 = MIN(ir0 + dr, nr);
  5481. if (src0->type == dst->type &&
  5482. ne00 == ne0 &&
  5483. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5484. // copy by rows
  5485. const size_t rs = ne00*nb00;
  5486. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5487. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5488. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5489. memcpy(
  5490. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5491. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5492. rs);
  5493. }
  5494. }
  5495. }
  5496. return;
  5497. }
  5498. if (ggml_is_contiguous(dst)) {
  5499. // TODO: simplify
  5500. if (nb00 == sizeof(float)) {
  5501. if (dst->type == GGML_TYPE_F32) {
  5502. size_t id = 0;
  5503. const size_t rs = ne00 * nb00;
  5504. char * dst_ptr = (char *) dst->data;
  5505. for (int i03 = 0; i03 < ne03; i03++) {
  5506. for (int i02 = 0; i02 < ne02; i02++) {
  5507. id += rs * ir0;
  5508. for (int i01 = ir0; i01 < ir1; i01++) {
  5509. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5510. memcpy(dst_ptr + id, src0_ptr, rs);
  5511. id += rs;
  5512. }
  5513. id += rs * (ne01 - ir1);
  5514. }
  5515. }
  5516. } else if (type_traits[dst->type].from_float) {
  5517. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5518. size_t id = 0;
  5519. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5520. char * dst_ptr = (char *) dst->data;
  5521. for (int i03 = 0; i03 < ne03; i03++) {
  5522. for (int i02 = 0; i02 < ne02; i02++) {
  5523. id += rs * ir0;
  5524. for (int i01 = ir0; i01 < ir1; i01++) {
  5525. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5526. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5527. id += rs;
  5528. }
  5529. id += rs * (ne01 - ir1);
  5530. }
  5531. }
  5532. } else {
  5533. GGML_ASSERT(false); // TODO: implement
  5534. }
  5535. } else {
  5536. //printf("%s: this is not optimal - fix me\n", __func__);
  5537. if (dst->type == GGML_TYPE_F32) {
  5538. size_t id = 0;
  5539. float * dst_ptr = (float *) dst->data;
  5540. for (int i03 = 0; i03 < ne03; i03++) {
  5541. for (int i02 = 0; i02 < ne02; i02++) {
  5542. id += ne00 * ir0;
  5543. for (int i01 = ir0; i01 < ir1; i01++) {
  5544. for (int i00 = 0; i00 < ne00; i00++) {
  5545. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5546. dst_ptr[id] = *src0_ptr;
  5547. id++;
  5548. }
  5549. }
  5550. id += ne00 * (ne01 - ir1);
  5551. }
  5552. }
  5553. } else if (dst->type == GGML_TYPE_F16) {
  5554. size_t id = 0;
  5555. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5556. for (int i03 = 0; i03 < ne03; i03++) {
  5557. for (int i02 = 0; i02 < ne02; i02++) {
  5558. id += ne00 * ir0;
  5559. for (int i01 = ir0; i01 < ir1; i01++) {
  5560. for (int i00 = 0; i00 < ne00; i00++) {
  5561. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5562. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5563. id++;
  5564. }
  5565. }
  5566. id += ne00 * (ne01 - ir1);
  5567. }
  5568. }
  5569. } else {
  5570. GGML_ASSERT(false); // TODO: implement
  5571. }
  5572. }
  5573. return;
  5574. }
  5575. // dst counters
  5576. int64_t i10 = 0;
  5577. int64_t i11 = 0;
  5578. int64_t i12 = 0;
  5579. int64_t i13 = 0;
  5580. if (dst->type == GGML_TYPE_F32) {
  5581. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5582. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5583. i10 += ne00 * ir0;
  5584. while (i10 >= ne0) {
  5585. i10 -= ne0;
  5586. if (++i11 == ne1) {
  5587. i11 = 0;
  5588. if (++i12 == ne2) {
  5589. i12 = 0;
  5590. if (++i13 == ne3) {
  5591. i13 = 0;
  5592. }
  5593. }
  5594. }
  5595. }
  5596. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5597. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5598. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5599. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5600. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5601. if (++i10 == ne0) {
  5602. i10 = 0;
  5603. if (++i11 == ne1) {
  5604. i11 = 0;
  5605. if (++i12 == ne2) {
  5606. i12 = 0;
  5607. if (++i13 == ne3) {
  5608. i13 = 0;
  5609. }
  5610. }
  5611. }
  5612. }
  5613. }
  5614. }
  5615. i10 += ne00 * (ne01 - ir1);
  5616. while (i10 >= ne0) {
  5617. i10 -= ne0;
  5618. if (++i11 == ne1) {
  5619. i11 = 0;
  5620. if (++i12 == ne2) {
  5621. i12 = 0;
  5622. if (++i13 == ne3) {
  5623. i13 = 0;
  5624. }
  5625. }
  5626. }
  5627. }
  5628. }
  5629. }
  5630. } else if (dst->type == GGML_TYPE_F16) {
  5631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5632. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5633. i10 += ne00 * ir0;
  5634. while (i10 >= ne0) {
  5635. i10 -= ne0;
  5636. if (++i11 == ne1) {
  5637. i11 = 0;
  5638. if (++i12 == ne2) {
  5639. i12 = 0;
  5640. if (++i13 == ne3) {
  5641. i13 = 0;
  5642. }
  5643. }
  5644. }
  5645. }
  5646. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5647. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5648. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5649. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5650. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5651. if (++i10 == ne0) {
  5652. i10 = 0;
  5653. if (++i11 == ne1) {
  5654. i11 = 0;
  5655. if (++i12 == ne2) {
  5656. i12 = 0;
  5657. if (++i13 == ne3) {
  5658. i13 = 0;
  5659. }
  5660. }
  5661. }
  5662. }
  5663. }
  5664. }
  5665. i10 += ne00 * (ne01 - ir1);
  5666. while (i10 >= ne0) {
  5667. i10 -= ne0;
  5668. if (++i11 == ne1) {
  5669. i11 = 0;
  5670. if (++i12 == ne2) {
  5671. i12 = 0;
  5672. if (++i13 == ne3) {
  5673. i13 = 0;
  5674. }
  5675. }
  5676. }
  5677. }
  5678. }
  5679. }
  5680. } else {
  5681. GGML_ASSERT(false); // TODO: implement
  5682. }
  5683. }
  5684. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5685. static void ggml_compute_forward_dup_bytes(
  5686. const struct ggml_compute_params * params,
  5687. const struct ggml_tensor * src0,
  5688. struct ggml_tensor * dst) {
  5689. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5690. GGML_ASSERT(src0->type == dst->type);
  5691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5692. return;
  5693. }
  5694. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5695. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5696. return;
  5697. }
  5698. GGML_TENSOR_UNARY_OP_LOCALS;
  5699. const size_t type_size = ggml_type_size(src0->type);
  5700. const int ith = params->ith; // thread index
  5701. const int nth = params->nth; // number of threads
  5702. // parallelize by rows
  5703. const int nr = ne01;
  5704. // number of rows per thread
  5705. const int dr = (nr + nth - 1) / nth;
  5706. // row range for this thread
  5707. const int ir0 = dr * ith;
  5708. const int ir1 = MIN(ir0 + dr, nr);
  5709. if (src0->type == dst->type &&
  5710. ne00 == ne0 &&
  5711. nb00 == type_size && nb0 == type_size) {
  5712. // copy by rows
  5713. const size_t rs = ne00 * type_size;
  5714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5716. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5717. memcpy(
  5718. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5719. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5720. rs);
  5721. }
  5722. }
  5723. }
  5724. return;
  5725. }
  5726. if (ggml_is_contiguous(dst)) {
  5727. size_t id = 0;
  5728. char * dst_ptr = (char *) dst->data;
  5729. const size_t rs = ne00 * type_size;
  5730. if (nb00 == type_size) {
  5731. // src0 is contigous on first dimension, copy by rows
  5732. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5733. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5734. id += rs * ir0;
  5735. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5736. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5737. memcpy(dst_ptr + id, src0_ptr, rs);
  5738. id += rs;
  5739. }
  5740. id += rs * (ne01 - ir1);
  5741. }
  5742. }
  5743. } else {
  5744. //printf("%s: this is not optimal - fix me\n", __func__);
  5745. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5747. id += rs * ir0;
  5748. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5749. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5750. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5751. memcpy(dst_ptr + id, src0_ptr, type_size);
  5752. id += type_size;
  5753. }
  5754. }
  5755. id += rs * (ne01 - ir1);
  5756. }
  5757. }
  5758. }
  5759. return;
  5760. }
  5761. // dst counters
  5762. int64_t i10 = 0;
  5763. int64_t i11 = 0;
  5764. int64_t i12 = 0;
  5765. int64_t i13 = 0;
  5766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5768. i10 += ne00 * ir0;
  5769. while (i10 >= ne0) {
  5770. i10 -= ne0;
  5771. if (++i11 == ne1) {
  5772. i11 = 0;
  5773. if (++i12 == ne2) {
  5774. i12 = 0;
  5775. if (++i13 == ne3) {
  5776. i13 = 0;
  5777. }
  5778. }
  5779. }
  5780. }
  5781. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5782. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5783. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5784. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5785. memcpy(dst_ptr, src0_ptr, type_size);
  5786. if (++i10 == ne0) {
  5787. i10 = 0;
  5788. if (++i11 == ne1) {
  5789. i11 = 0;
  5790. if (++i12 == ne2) {
  5791. i12 = 0;
  5792. if (++i13 == ne3) {
  5793. i13 = 0;
  5794. }
  5795. }
  5796. }
  5797. }
  5798. }
  5799. }
  5800. i10 += ne00 * (ne01 - ir1);
  5801. while (i10 >= ne0) {
  5802. i10 -= ne0;
  5803. if (++i11 == ne1) {
  5804. i11 = 0;
  5805. if (++i12 == ne2) {
  5806. i12 = 0;
  5807. if (++i13 == ne3) {
  5808. i13 = 0;
  5809. }
  5810. }
  5811. }
  5812. }
  5813. }
  5814. }
  5815. }
  5816. static void ggml_compute_forward_dup(
  5817. const struct ggml_compute_params * params,
  5818. const struct ggml_tensor * src0,
  5819. struct ggml_tensor * dst) {
  5820. if (src0->type == dst->type) {
  5821. ggml_compute_forward_dup_bytes(params, src0, dst);
  5822. return;
  5823. }
  5824. switch (src0->type) {
  5825. case GGML_TYPE_F16:
  5826. {
  5827. ggml_compute_forward_dup_f16(params, src0, dst);
  5828. } break;
  5829. case GGML_TYPE_F32:
  5830. {
  5831. ggml_compute_forward_dup_f32(params, src0, dst);
  5832. } break;
  5833. default:
  5834. {
  5835. GGML_ASSERT(false);
  5836. } break;
  5837. }
  5838. }
  5839. // ggml_compute_forward_add
  5840. static void ggml_compute_forward_add_f32(
  5841. const struct ggml_compute_params * params,
  5842. const struct ggml_tensor * src0,
  5843. const struct ggml_tensor * src1,
  5844. struct ggml_tensor * dst) {
  5845. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5847. return;
  5848. }
  5849. const int ith = params->ith;
  5850. const int nth = params->nth;
  5851. const int nr = ggml_nrows(src0);
  5852. GGML_TENSOR_BINARY_OP_LOCALS
  5853. GGML_ASSERT( nb0 == sizeof(float));
  5854. GGML_ASSERT(nb00 == sizeof(float));
  5855. // rows per thread
  5856. const int dr = (nr + nth - 1)/nth;
  5857. // row range for this thread
  5858. const int ir0 = dr*ith;
  5859. const int ir1 = MIN(ir0 + dr, nr);
  5860. if (nb10 == sizeof(float)) {
  5861. for (int ir = ir0; ir < ir1; ++ir) {
  5862. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5863. const int64_t i03 = ir/(ne02*ne01);
  5864. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5865. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5866. const int64_t i13 = i03 % ne13;
  5867. const int64_t i12 = i02 % ne12;
  5868. const int64_t i11 = i01 % ne11;
  5869. const int64_t nr0 = ne00 / ne10;
  5870. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5871. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5872. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5873. for (int64_t r = 0; r < nr0; ++r) {
  5874. #ifdef GGML_USE_ACCELERATE
  5875. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5876. #else
  5877. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5878. #endif
  5879. }
  5880. }
  5881. } else {
  5882. // src1 is not contiguous
  5883. for (int ir = ir0; ir < ir1; ++ir) {
  5884. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5885. const int64_t i03 = ir/(ne02*ne01);
  5886. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5887. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5888. const int64_t i13 = i03 % ne13;
  5889. const int64_t i12 = i02 % ne12;
  5890. const int64_t i11 = i01 % ne11;
  5891. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5892. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5893. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5894. const int64_t i10 = i0 % ne10;
  5895. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5896. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5897. }
  5898. }
  5899. }
  5900. }
  5901. static void ggml_compute_forward_add_f16_f32(
  5902. const struct ggml_compute_params * params,
  5903. const struct ggml_tensor * src0,
  5904. const struct ggml_tensor * src1,
  5905. struct ggml_tensor * dst) {
  5906. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5908. return;
  5909. }
  5910. const int ith = params->ith;
  5911. const int nth = params->nth;
  5912. const int nr = ggml_nrows(src0);
  5913. GGML_TENSOR_BINARY_OP_LOCALS
  5914. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5915. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5916. if (dst->type == GGML_TYPE_F32) {
  5917. GGML_ASSERT( nb0 == sizeof(float));
  5918. }
  5919. else {
  5920. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5921. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5922. }
  5923. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5924. // rows per thread
  5925. const int dr = (nr + nth - 1)/nth;
  5926. // row range for this thread
  5927. const int ir0 = dr*ith;
  5928. const int ir1 = MIN(ir0 + dr, nr);
  5929. if (nb10 == sizeof(float)) {
  5930. if (dst->type == GGML_TYPE_F16) {
  5931. for (int ir = ir0; ir < ir1; ++ir) {
  5932. // src0, src1 and dst are same shape => same indices
  5933. const int i3 = ir/(ne2*ne1);
  5934. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5935. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5936. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5937. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5938. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5939. for (int i = 0; i < ne0; i++) {
  5940. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5941. }
  5942. }
  5943. } else {
  5944. for (int ir = ir0; ir < ir1; ++ir) {
  5945. // src0, src1 and dst are same shape => same indices
  5946. const int i3 = ir/(ne2*ne1);
  5947. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5948. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5949. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5950. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5951. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5952. for (int i = 0; i < ne0; i++) {
  5953. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5954. }
  5955. }
  5956. }
  5957. }
  5958. else {
  5959. // src1 is not contiguous
  5960. GGML_ASSERT(false);
  5961. }
  5962. }
  5963. static void ggml_compute_forward_add_f16_f16(
  5964. const struct ggml_compute_params * params,
  5965. const struct ggml_tensor * src0,
  5966. const struct ggml_tensor * src1,
  5967. struct ggml_tensor * dst) {
  5968. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5970. return;
  5971. }
  5972. const int ith = params->ith;
  5973. const int nth = params->nth;
  5974. const int nr = ggml_nrows(src0);
  5975. GGML_TENSOR_BINARY_OP_LOCALS
  5976. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5977. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5978. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5979. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5980. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5981. // rows per thread
  5982. const int dr = (nr + nth - 1)/nth;
  5983. // row range for this thread
  5984. const int ir0 = dr*ith;
  5985. const int ir1 = MIN(ir0 + dr, nr);
  5986. if (nb10 == sizeof(ggml_fp16_t)) {
  5987. for (int ir = ir0; ir < ir1; ++ir) {
  5988. // src0, src1 and dst are same shape => same indices
  5989. const int i3 = ir/(ne2*ne1);
  5990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5992. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5993. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5994. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5995. for (int i = 0; i < ne0; i++) {
  5996. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5997. }
  5998. }
  5999. }
  6000. else {
  6001. // src1 is not contiguous
  6002. GGML_ASSERT(false);
  6003. }
  6004. }
  6005. static void ggml_compute_forward_add_q_f32(
  6006. const struct ggml_compute_params * params,
  6007. const struct ggml_tensor * src0,
  6008. const struct ggml_tensor * src1,
  6009. struct ggml_tensor * dst) {
  6010. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6012. return;
  6013. }
  6014. const int nr = ggml_nrows(src0);
  6015. GGML_TENSOR_BINARY_OP_LOCALS
  6016. const int ith = params->ith;
  6017. const int nth = params->nth;
  6018. const enum ggml_type type = src0->type;
  6019. const enum ggml_type dtype = dst->type;
  6020. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6021. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6022. // we don't support permuted src0 or src1
  6023. GGML_ASSERT(nb00 == ggml_type_size(type));
  6024. GGML_ASSERT(nb10 == sizeof(float));
  6025. // dst cannot be transposed or permuted
  6026. GGML_ASSERT(nb0 <= nb1);
  6027. GGML_ASSERT(nb1 <= nb2);
  6028. GGML_ASSERT(nb2 <= nb3);
  6029. GGML_ASSERT(ggml_is_quantized(src0->type));
  6030. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6031. // rows per thread
  6032. const int dr = (nr + nth - 1)/nth;
  6033. // row range for this thread
  6034. const int ir0 = dr*ith;
  6035. const int ir1 = MIN(ir0 + dr, nr);
  6036. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6037. for (int ir = ir0; ir < ir1; ++ir) {
  6038. // src0 indices
  6039. const int i03 = ir/(ne02*ne01);
  6040. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6041. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6042. // src1 and dst are same shape as src0 => same indices
  6043. const int i13 = i03;
  6044. const int i12 = i02;
  6045. const int i11 = i01;
  6046. const int i3 = i03;
  6047. const int i2 = i02;
  6048. const int i1 = i01;
  6049. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6050. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6051. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6052. assert(ne00 % 32 == 0);
  6053. // unquantize row from src0 to temp buffer
  6054. dequantize_row_q(src0_row, wdata, ne00);
  6055. // add src1
  6056. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6057. // quantize row to dst
  6058. if (quantize_row_q != NULL) {
  6059. quantize_row_q(wdata, dst_row, ne00);
  6060. } else {
  6061. memcpy(dst_row, wdata, ne0*nb0);
  6062. }
  6063. }
  6064. }
  6065. static void ggml_compute_forward_add(
  6066. const struct ggml_compute_params * params,
  6067. const struct ggml_tensor * src0,
  6068. const struct ggml_tensor * src1,
  6069. struct ggml_tensor * dst) {
  6070. switch (src0->type) {
  6071. case GGML_TYPE_F32:
  6072. {
  6073. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6074. } break;
  6075. case GGML_TYPE_F16:
  6076. {
  6077. if (src1->type == GGML_TYPE_F16) {
  6078. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6079. }
  6080. else if (src1->type == GGML_TYPE_F32) {
  6081. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6082. }
  6083. else {
  6084. GGML_ASSERT(false);
  6085. }
  6086. } break;
  6087. case GGML_TYPE_Q4_0:
  6088. case GGML_TYPE_Q4_1:
  6089. case GGML_TYPE_Q5_0:
  6090. case GGML_TYPE_Q5_1:
  6091. case GGML_TYPE_Q8_0:
  6092. case GGML_TYPE_Q2_K:
  6093. case GGML_TYPE_Q3_K:
  6094. case GGML_TYPE_Q4_K:
  6095. case GGML_TYPE_Q5_K:
  6096. case GGML_TYPE_Q6_K:
  6097. case GGML_TYPE_IQ2_XXS:
  6098. {
  6099. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6100. } break;
  6101. default:
  6102. {
  6103. GGML_ASSERT(false);
  6104. } break;
  6105. }
  6106. }
  6107. // ggml_compute_forward_add1
  6108. static void ggml_compute_forward_add1_f32(
  6109. const struct ggml_compute_params * params,
  6110. const struct ggml_tensor * src0,
  6111. const struct ggml_tensor * src1,
  6112. struct ggml_tensor * dst) {
  6113. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6114. GGML_ASSERT(ggml_is_scalar(src1));
  6115. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6116. return;
  6117. }
  6118. const int ith = params->ith;
  6119. const int nth = params->nth;
  6120. const int nr = ggml_nrows(src0);
  6121. GGML_TENSOR_UNARY_OP_LOCALS
  6122. GGML_ASSERT( nb0 == sizeof(float));
  6123. GGML_ASSERT(nb00 == sizeof(float));
  6124. // rows per thread
  6125. const int dr = (nr + nth - 1)/nth;
  6126. // row range for this thread
  6127. const int ir0 = dr*ith;
  6128. const int ir1 = MIN(ir0 + dr, nr);
  6129. for (int ir = ir0; ir < ir1; ++ir) {
  6130. // src0 and dst are same shape => same indices
  6131. const int i3 = ir/(ne2*ne1);
  6132. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6133. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6134. #ifdef GGML_USE_ACCELERATE
  6135. UNUSED(ggml_vec_add1_f32);
  6136. vDSP_vadd(
  6137. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6138. (float *) ((char *) src1->data), 0,
  6139. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6140. ne0);
  6141. #else
  6142. ggml_vec_add1_f32(ne0,
  6143. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6144. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6145. *(float *) src1->data);
  6146. #endif
  6147. }
  6148. }
  6149. static void ggml_compute_forward_add1_f16_f32(
  6150. const struct ggml_compute_params * params,
  6151. const struct ggml_tensor * src0,
  6152. const struct ggml_tensor * src1,
  6153. struct ggml_tensor * dst) {
  6154. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6155. GGML_ASSERT(ggml_is_scalar(src1));
  6156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6157. return;
  6158. }
  6159. // scalar to add
  6160. const float v = *(float *) src1->data;
  6161. const int ith = params->ith;
  6162. const int nth = params->nth;
  6163. const int nr = ggml_nrows(src0);
  6164. GGML_TENSOR_UNARY_OP_LOCALS
  6165. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6166. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6167. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6168. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6169. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6170. // rows per thread
  6171. const int dr = (nr + nth - 1)/nth;
  6172. // row range for this thread
  6173. const int ir0 = dr*ith;
  6174. const int ir1 = MIN(ir0 + dr, nr);
  6175. for (int ir = ir0; ir < ir1; ++ir) {
  6176. // src0 and dst are same shape => same indices
  6177. const int i3 = ir/(ne2*ne1);
  6178. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6179. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6180. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6181. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6182. for (int i = 0; i < ne0; i++) {
  6183. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6184. }
  6185. }
  6186. }
  6187. static void ggml_compute_forward_add1_f16_f16(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. const struct ggml_tensor * src1,
  6191. struct ggml_tensor * dst) {
  6192. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6193. GGML_ASSERT(ggml_is_scalar(src1));
  6194. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6195. return;
  6196. }
  6197. // scalar to add
  6198. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6199. const int ith = params->ith;
  6200. const int nth = params->nth;
  6201. const int nr = ggml_nrows(src0);
  6202. GGML_TENSOR_UNARY_OP_LOCALS
  6203. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6204. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6205. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6206. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6207. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6208. // rows per thread
  6209. const int dr = (nr + nth - 1)/nth;
  6210. // row range for this thread
  6211. const int ir0 = dr*ith;
  6212. const int ir1 = MIN(ir0 + dr, nr);
  6213. for (int ir = ir0; ir < ir1; ++ir) {
  6214. // src0 and dst are same shape => same indices
  6215. const int i3 = ir/(ne2*ne1);
  6216. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6217. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6218. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6219. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6220. for (int i = 0; i < ne0; i++) {
  6221. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6222. }
  6223. }
  6224. }
  6225. static void ggml_compute_forward_add1_q_f32(
  6226. const struct ggml_compute_params * params,
  6227. const struct ggml_tensor * src0,
  6228. const struct ggml_tensor * src1,
  6229. struct ggml_tensor * dst) {
  6230. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6231. GGML_ASSERT(ggml_is_scalar(src1));
  6232. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6233. return;
  6234. }
  6235. // scalar to add
  6236. const float v = *(float *) src1->data;
  6237. const int ith = params->ith;
  6238. const int nth = params->nth;
  6239. const int nr = ggml_nrows(src0);
  6240. GGML_TENSOR_UNARY_OP_LOCALS
  6241. const enum ggml_type type = src0->type;
  6242. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6243. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6244. // we don't support permuted src0
  6245. GGML_ASSERT(nb00 == ggml_type_size(type));
  6246. // dst cannot be transposed or permuted
  6247. GGML_ASSERT(nb0 <= nb1);
  6248. GGML_ASSERT(nb1 <= nb2);
  6249. GGML_ASSERT(nb2 <= nb3);
  6250. GGML_ASSERT(ggml_is_quantized(src0->type));
  6251. GGML_ASSERT(dst->type == src0->type);
  6252. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6253. // rows per thread
  6254. const int dr = (nr + nth - 1)/nth;
  6255. // row range for this thread
  6256. const int ir0 = dr*ith;
  6257. const int ir1 = MIN(ir0 + dr, nr);
  6258. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6259. for (int ir = ir0; ir < ir1; ++ir) {
  6260. // src0 and dst are same shape => same indices
  6261. const int i3 = ir/(ne2*ne1);
  6262. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6263. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6264. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6265. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6266. assert(ne0 % 32 == 0);
  6267. // unquantize row from src0 to temp buffer
  6268. dequantize_row_q(src0_row, wdata, ne0);
  6269. // add src1
  6270. ggml_vec_acc1_f32(ne0, wdata, v);
  6271. // quantize row to dst
  6272. quantize_row_q(wdata, dst_row, ne0);
  6273. }
  6274. }
  6275. static void ggml_compute_forward_add1(
  6276. const struct ggml_compute_params * params,
  6277. const struct ggml_tensor * src0,
  6278. const struct ggml_tensor * src1,
  6279. struct ggml_tensor * dst) {
  6280. switch (src0->type) {
  6281. case GGML_TYPE_F32:
  6282. {
  6283. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6284. } break;
  6285. case GGML_TYPE_F16:
  6286. {
  6287. if (src1->type == GGML_TYPE_F16) {
  6288. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6289. }
  6290. else if (src1->type == GGML_TYPE_F32) {
  6291. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6292. }
  6293. else {
  6294. GGML_ASSERT(false);
  6295. }
  6296. } break;
  6297. case GGML_TYPE_Q4_0:
  6298. case GGML_TYPE_Q4_1:
  6299. case GGML_TYPE_Q5_0:
  6300. case GGML_TYPE_Q5_1:
  6301. case GGML_TYPE_Q8_0:
  6302. case GGML_TYPE_Q8_1:
  6303. case GGML_TYPE_Q2_K:
  6304. case GGML_TYPE_Q3_K:
  6305. case GGML_TYPE_Q4_K:
  6306. case GGML_TYPE_Q5_K:
  6307. case GGML_TYPE_Q6_K:
  6308. case GGML_TYPE_IQ2_XXS:
  6309. {
  6310. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6311. } break;
  6312. default:
  6313. {
  6314. GGML_ASSERT(false);
  6315. } break;
  6316. }
  6317. }
  6318. // ggml_compute_forward_acc
  6319. static void ggml_compute_forward_acc_f32(
  6320. const struct ggml_compute_params * params,
  6321. const struct ggml_tensor * src0,
  6322. const struct ggml_tensor * src1,
  6323. struct ggml_tensor * dst) {
  6324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6325. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6326. // view src0 and dst with these strides and data offset inbytes during acc
  6327. // nb0 is implicitly element_size because src0 and dst are contiguous
  6328. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6329. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6330. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6331. size_t offset = ((int32_t *) dst->op_params)[3];
  6332. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6333. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6334. // memcpy needs to be synchronized across threads to avoid race conditions.
  6335. // => do it in INIT phase
  6336. memcpy(
  6337. ((char *) dst->data),
  6338. ((char *) src0->data),
  6339. ggml_nbytes(dst));
  6340. }
  6341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6342. return;
  6343. }
  6344. const int ith = params->ith;
  6345. const int nth = params->nth;
  6346. const int nr = ggml_nrows(src1);
  6347. const int nc = src1->ne[0];
  6348. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6349. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6350. // src0 and dst as viewed during acc
  6351. const size_t nb0 = ggml_element_size(src0);
  6352. const size_t nb00 = nb0;
  6353. const size_t nb01 = nb1;
  6354. const size_t nb02 = nb2;
  6355. const size_t nb03 = nb3;
  6356. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6357. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6358. GGML_ASSERT(nb10 == sizeof(float));
  6359. // rows per thread
  6360. const int dr = (nr + nth - 1)/nth;
  6361. // row range for this thread
  6362. const int ir0 = dr*ith;
  6363. const int ir1 = MIN(ir0 + dr, nr);
  6364. for (int ir = ir0; ir < ir1; ++ir) {
  6365. // src0 and dst are viewed with shape of src1 and offset
  6366. // => same indices
  6367. const int i3 = ir/(ne12*ne11);
  6368. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6369. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6370. #ifdef GGML_USE_ACCELERATE
  6371. vDSP_vadd(
  6372. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6373. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6374. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6375. #else
  6376. ggml_vec_add_f32(nc,
  6377. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6378. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6379. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6380. #endif
  6381. }
  6382. }
  6383. static void ggml_compute_forward_acc(
  6384. const struct ggml_compute_params * params,
  6385. const struct ggml_tensor * src0,
  6386. const struct ggml_tensor * src1,
  6387. struct ggml_tensor * dst) {
  6388. switch (src0->type) {
  6389. case GGML_TYPE_F32:
  6390. {
  6391. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6392. } break;
  6393. case GGML_TYPE_F16:
  6394. case GGML_TYPE_Q4_0:
  6395. case GGML_TYPE_Q4_1:
  6396. case GGML_TYPE_Q5_0:
  6397. case GGML_TYPE_Q5_1:
  6398. case GGML_TYPE_Q8_0:
  6399. case GGML_TYPE_Q8_1:
  6400. case GGML_TYPE_Q2_K:
  6401. case GGML_TYPE_Q3_K:
  6402. case GGML_TYPE_Q4_K:
  6403. case GGML_TYPE_Q5_K:
  6404. case GGML_TYPE_Q6_K:
  6405. case GGML_TYPE_IQ2_XXS:
  6406. default:
  6407. {
  6408. GGML_ASSERT(false);
  6409. } break;
  6410. }
  6411. }
  6412. // ggml_compute_forward_sub
  6413. static void ggml_compute_forward_sub_f32(
  6414. const struct ggml_compute_params * params,
  6415. const struct ggml_tensor * src0,
  6416. const struct ggml_tensor * src1,
  6417. struct ggml_tensor * dst) {
  6418. assert(params->ith == 0);
  6419. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6421. return;
  6422. }
  6423. const int nr = ggml_nrows(src0);
  6424. GGML_TENSOR_BINARY_OP_LOCALS
  6425. GGML_ASSERT( nb0 == sizeof(float));
  6426. GGML_ASSERT(nb00 == sizeof(float));
  6427. if (nb10 == sizeof(float)) {
  6428. for (int ir = 0; ir < nr; ++ir) {
  6429. // src0, src1 and dst are same shape => same indices
  6430. const int i3 = ir/(ne2*ne1);
  6431. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6432. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6433. #ifdef GGML_USE_ACCELERATE
  6434. vDSP_vsub(
  6435. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6436. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6437. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6438. ne0);
  6439. #else
  6440. ggml_vec_sub_f32(ne0,
  6441. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6442. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6443. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6444. #endif
  6445. // }
  6446. // }
  6447. }
  6448. } else {
  6449. // src1 is not contiguous
  6450. for (int ir = 0; ir < nr; ++ir) {
  6451. // src0, src1 and dst are same shape => same indices
  6452. const int i3 = ir/(ne2*ne1);
  6453. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6454. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6455. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6456. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6457. for (int i0 = 0; i0 < ne0; i0++) {
  6458. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6459. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6460. }
  6461. }
  6462. }
  6463. }
  6464. static void ggml_compute_forward_sub(
  6465. const struct ggml_compute_params * params,
  6466. const struct ggml_tensor * src0,
  6467. const struct ggml_tensor * src1,
  6468. struct ggml_tensor * dst) {
  6469. switch (src0->type) {
  6470. case GGML_TYPE_F32:
  6471. {
  6472. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6473. } break;
  6474. default:
  6475. {
  6476. GGML_ASSERT(false);
  6477. } break;
  6478. }
  6479. }
  6480. // ggml_compute_forward_mul
  6481. static void ggml_compute_forward_mul_f32(
  6482. const struct ggml_compute_params * params,
  6483. const struct ggml_tensor * src0,
  6484. const struct ggml_tensor * src1,
  6485. struct ggml_tensor * dst) {
  6486. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6488. return;
  6489. }
  6490. const int ith = params->ith;
  6491. const int nth = params->nth;
  6492. #ifdef GGML_USE_CLBLAST
  6493. if (src1->backend == GGML_BACKEND_GPU) {
  6494. // TODO: OpenCL kernel support full broadcast
  6495. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6496. if (ith == 0) {
  6497. ggml_cl_mul(src0, src1, dst);
  6498. }
  6499. return;
  6500. }
  6501. #endif
  6502. const int64_t nr = ggml_nrows(src0);
  6503. GGML_TENSOR_BINARY_OP_LOCALS
  6504. GGML_ASSERT( nb0 == sizeof(float));
  6505. GGML_ASSERT(nb00 == sizeof(float));
  6506. if (nb10 == sizeof(float)) {
  6507. for (int64_t ir = ith; ir < nr; ir += nth) {
  6508. // src0 and dst are same shape => same indices
  6509. const int64_t i03 = ir/(ne02*ne01);
  6510. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6511. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6512. const int64_t i13 = i03 % ne13;
  6513. const int64_t i12 = i02 % ne12;
  6514. const int64_t i11 = i01 % ne11;
  6515. const int64_t nr0 = ne00 / ne10;
  6516. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6517. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6518. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6519. for (int64_t r = 0 ; r < nr0; ++r) {
  6520. #ifdef GGML_USE_ACCELERATE
  6521. UNUSED(ggml_vec_mul_f32);
  6522. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6523. #else
  6524. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6525. #endif
  6526. }
  6527. }
  6528. } else {
  6529. // src1 is not contiguous
  6530. for (int64_t ir = ith; ir < nr; ir += nth) {
  6531. // src0 and dst are same shape => same indices
  6532. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6533. const int64_t i03 = ir/(ne02*ne01);
  6534. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6535. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6536. const int64_t i13 = i03 % ne13;
  6537. const int64_t i12 = i02 % ne12;
  6538. const int64_t i11 = i01 % ne11;
  6539. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6540. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6541. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6542. const int64_t i10 = i0 % ne10;
  6543. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6544. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6545. }
  6546. }
  6547. }
  6548. }
  6549. static void ggml_compute_forward_mul(
  6550. const struct ggml_compute_params * params,
  6551. const struct ggml_tensor * src0,
  6552. const struct ggml_tensor * src1,
  6553. struct ggml_tensor * dst) {
  6554. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6555. switch (src0->type) {
  6556. case GGML_TYPE_F32:
  6557. {
  6558. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6559. } break;
  6560. default:
  6561. {
  6562. GGML_ASSERT(false);
  6563. } break;
  6564. }
  6565. }
  6566. // ggml_compute_forward_div
  6567. static void ggml_compute_forward_div_f32(
  6568. const struct ggml_compute_params * params,
  6569. const struct ggml_tensor * src0,
  6570. const struct ggml_tensor * src1,
  6571. struct ggml_tensor * dst) {
  6572. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6573. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6574. return;
  6575. }
  6576. const int ith = params->ith;
  6577. const int nth = params->nth;
  6578. const int64_t nr = ggml_nrows(src0);
  6579. GGML_TENSOR_BINARY_OP_LOCALS
  6580. GGML_ASSERT( nb0 == sizeof(float));
  6581. GGML_ASSERT(nb00 == sizeof(float));
  6582. if (nb10 == sizeof(float)) {
  6583. for (int64_t ir = ith; ir < nr; ir += nth) {
  6584. // src0 and dst are same shape => same indices
  6585. const int64_t i03 = ir/(ne02*ne01);
  6586. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6587. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6588. const int64_t i13 = i03 % ne13;
  6589. const int64_t i12 = i02 % ne12;
  6590. const int64_t i11 = i01 % ne11;
  6591. const int64_t nr0 = ne00 / ne10;
  6592. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6593. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6594. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6595. for (int64_t r = 0; r < nr0; ++r) {
  6596. #ifdef GGML_USE_ACCELERATE
  6597. UNUSED(ggml_vec_div_f32);
  6598. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6599. #else
  6600. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6601. #endif
  6602. }
  6603. }
  6604. } else {
  6605. // src1 is not contiguous
  6606. for (int64_t ir = ith; ir < nr; ir += nth) {
  6607. // src0 and dst are same shape => same indices
  6608. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6609. const int64_t i03 = ir/(ne02*ne01);
  6610. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6611. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6612. const int64_t i13 = i03 % ne13;
  6613. const int64_t i12 = i02 % ne12;
  6614. const int64_t i11 = i01 % ne11;
  6615. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6616. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6617. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6618. const int64_t i10 = i0 % ne10;
  6619. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6620. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_div(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. switch (src0->type) {
  6631. case GGML_TYPE_F32:
  6632. {
  6633. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6634. } break;
  6635. default:
  6636. {
  6637. GGML_ASSERT(false);
  6638. } break;
  6639. }
  6640. }
  6641. // ggml_compute_forward_sqr
  6642. static void ggml_compute_forward_sqr_f32(
  6643. const struct ggml_compute_params * params,
  6644. const struct ggml_tensor * src0,
  6645. struct ggml_tensor * dst) {
  6646. assert(params->ith == 0);
  6647. assert(ggml_are_same_shape(src0, dst));
  6648. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6649. return;
  6650. }
  6651. const int n = ggml_nrows(src0);
  6652. const int nc = src0->ne[0];
  6653. assert( dst->nb[0] == sizeof(float));
  6654. assert(src0->nb[0] == sizeof(float));
  6655. for (int i = 0; i < n; i++) {
  6656. ggml_vec_sqr_f32(nc,
  6657. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6658. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6659. }
  6660. }
  6661. static void ggml_compute_forward_sqr(
  6662. const struct ggml_compute_params * params,
  6663. const struct ggml_tensor * src0,
  6664. struct ggml_tensor * dst) {
  6665. switch (src0->type) {
  6666. case GGML_TYPE_F32:
  6667. {
  6668. ggml_compute_forward_sqr_f32(params, src0, dst);
  6669. } break;
  6670. default:
  6671. {
  6672. GGML_ASSERT(false);
  6673. } break;
  6674. }
  6675. }
  6676. // ggml_compute_forward_sqrt
  6677. static void ggml_compute_forward_sqrt_f32(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. struct ggml_tensor * dst) {
  6681. assert(params->ith == 0);
  6682. assert(ggml_are_same_shape(src0, dst));
  6683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6684. return;
  6685. }
  6686. const int n = ggml_nrows(src0);
  6687. const int nc = src0->ne[0];
  6688. assert( dst->nb[0] == sizeof(float));
  6689. assert(src0->nb[0] == sizeof(float));
  6690. for (int i = 0; i < n; i++) {
  6691. ggml_vec_sqrt_f32(nc,
  6692. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6693. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6694. }
  6695. }
  6696. static void ggml_compute_forward_sqrt(
  6697. const struct ggml_compute_params * params,
  6698. const struct ggml_tensor * src0,
  6699. struct ggml_tensor * dst) {
  6700. switch (src0->type) {
  6701. case GGML_TYPE_F32:
  6702. {
  6703. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6704. } break;
  6705. default:
  6706. {
  6707. GGML_ASSERT(false);
  6708. } break;
  6709. }
  6710. }
  6711. // ggml_compute_forward_log
  6712. static void ggml_compute_forward_log_f32(
  6713. const struct ggml_compute_params * params,
  6714. const struct ggml_tensor * src0,
  6715. struct ggml_tensor * dst) {
  6716. GGML_ASSERT(params->ith == 0);
  6717. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6719. return;
  6720. }
  6721. const int n = ggml_nrows(src0);
  6722. const int nc = src0->ne[0];
  6723. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6724. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6725. for (int i = 0; i < n; i++) {
  6726. ggml_vec_log_f32(nc,
  6727. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6728. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6729. }
  6730. }
  6731. static void ggml_compute_forward_log(
  6732. const struct ggml_compute_params * params,
  6733. const struct ggml_tensor * src0,
  6734. struct ggml_tensor * dst) {
  6735. switch (src0->type) {
  6736. case GGML_TYPE_F32:
  6737. {
  6738. ggml_compute_forward_log_f32(params, src0, dst);
  6739. } break;
  6740. default:
  6741. {
  6742. GGML_ASSERT(false);
  6743. } break;
  6744. }
  6745. }
  6746. // ggml_compute_forward_sum
  6747. static void ggml_compute_forward_sum_f32(
  6748. const struct ggml_compute_params * params,
  6749. const struct ggml_tensor * src0,
  6750. struct ggml_tensor * dst) {
  6751. assert(params->ith == 0);
  6752. assert(ggml_is_scalar(dst));
  6753. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6754. return;
  6755. }
  6756. assert(ggml_is_scalar(dst));
  6757. assert(src0->nb[0] == sizeof(float));
  6758. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6759. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6760. ggml_float sum = 0;
  6761. ggml_float row_sum = 0;
  6762. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6763. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6764. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6765. ggml_vec_sum_f32_ggf(ne00,
  6766. &row_sum,
  6767. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6768. sum += row_sum;
  6769. }
  6770. }
  6771. }
  6772. ((float *) dst->data)[0] = sum;
  6773. }
  6774. static void ggml_compute_forward_sum_f16(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * src0,
  6777. struct ggml_tensor * dst) {
  6778. assert(params->ith == 0);
  6779. assert(ggml_is_scalar(dst));
  6780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6781. return;
  6782. }
  6783. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6784. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6785. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6786. float sum = 0;
  6787. float row_sum = 0;
  6788. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6789. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6790. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6791. ggml_vec_sum_f16_ggf(ne00,
  6792. &row_sum,
  6793. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6794. sum += row_sum;
  6795. }
  6796. }
  6797. }
  6798. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6799. }
  6800. static void ggml_compute_forward_sum(
  6801. const struct ggml_compute_params * params,
  6802. const struct ggml_tensor * src0,
  6803. struct ggml_tensor * dst) {
  6804. switch (src0->type) {
  6805. case GGML_TYPE_F32:
  6806. {
  6807. ggml_compute_forward_sum_f32(params, src0, dst);
  6808. } break;
  6809. case GGML_TYPE_F16:
  6810. {
  6811. ggml_compute_forward_sum_f16(params, src0, dst);
  6812. } break;
  6813. default:
  6814. {
  6815. GGML_ASSERT(false);
  6816. } break;
  6817. }
  6818. }
  6819. // ggml_compute_forward_sum_rows
  6820. static void ggml_compute_forward_sum_rows_f32(
  6821. const struct ggml_compute_params * params,
  6822. const struct ggml_tensor * src0,
  6823. struct ggml_tensor * dst) {
  6824. GGML_ASSERT(params->ith == 0);
  6825. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6826. return;
  6827. }
  6828. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6829. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6830. GGML_TENSOR_UNARY_OP_LOCALS
  6831. GGML_ASSERT(ne0 == 1);
  6832. GGML_ASSERT(ne1 == ne01);
  6833. GGML_ASSERT(ne2 == ne02);
  6834. GGML_ASSERT(ne3 == ne03);
  6835. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6836. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6837. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6838. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6839. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6840. float row_sum = 0;
  6841. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6842. dst_row[0] = row_sum;
  6843. }
  6844. }
  6845. }
  6846. }
  6847. static void ggml_compute_forward_sum_rows(
  6848. const struct ggml_compute_params * params,
  6849. const struct ggml_tensor * src0,
  6850. struct ggml_tensor * dst) {
  6851. switch (src0->type) {
  6852. case GGML_TYPE_F32:
  6853. {
  6854. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6855. } break;
  6856. default:
  6857. {
  6858. GGML_ASSERT(false);
  6859. } break;
  6860. }
  6861. }
  6862. // ggml_compute_forward_mean
  6863. static void ggml_compute_forward_mean_f32(
  6864. const struct ggml_compute_params * params,
  6865. const struct ggml_tensor * src0,
  6866. struct ggml_tensor * dst) {
  6867. assert(params->ith == 0);
  6868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6869. return;
  6870. }
  6871. assert(src0->nb[0] == sizeof(float));
  6872. GGML_TENSOR_UNARY_OP_LOCALS
  6873. assert(ne0 == 1);
  6874. assert(ne1 == ne01);
  6875. assert(ne2 == ne02);
  6876. assert(ne3 == ne03);
  6877. UNUSED(ne0);
  6878. UNUSED(ne1);
  6879. UNUSED(ne2);
  6880. UNUSED(ne3);
  6881. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6882. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6883. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6884. ggml_vec_sum_f32(ne00,
  6885. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6886. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6887. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6888. }
  6889. }
  6890. }
  6891. }
  6892. static void ggml_compute_forward_mean(
  6893. const struct ggml_compute_params * params,
  6894. const struct ggml_tensor * src0,
  6895. struct ggml_tensor * dst) {
  6896. switch (src0->type) {
  6897. case GGML_TYPE_F32:
  6898. {
  6899. ggml_compute_forward_mean_f32(params, src0, dst);
  6900. } break;
  6901. default:
  6902. {
  6903. GGML_ASSERT(false);
  6904. } break;
  6905. }
  6906. }
  6907. // ggml_compute_forward_argmax
  6908. static void ggml_compute_forward_argmax_f32(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. struct ggml_tensor * dst) {
  6912. assert(params->ith == 0);
  6913. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6914. return;
  6915. }
  6916. assert(src0->nb[0] == sizeof(float));
  6917. assert(dst->nb[0] == sizeof(float));
  6918. const int64_t ne00 = src0->ne[0];
  6919. const int64_t ne01 = src0->ne[1];
  6920. const size_t nb01 = src0->nb[1];
  6921. const size_t nb0 = dst->nb[0];
  6922. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6923. float * src = (float *) ((char *) src0->data + i1*nb01);
  6924. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6925. int v = 0;
  6926. ggml_vec_argmax_f32(ne00, &v, src);
  6927. dst_[0] = v;
  6928. }
  6929. }
  6930. static void ggml_compute_forward_argmax(
  6931. const struct ggml_compute_params * params,
  6932. const struct ggml_tensor * src0,
  6933. struct ggml_tensor * dst) {
  6934. switch (src0->type) {
  6935. case GGML_TYPE_F32:
  6936. {
  6937. ggml_compute_forward_argmax_f32(params, src0, dst);
  6938. } break;
  6939. default:
  6940. {
  6941. GGML_ASSERT(false);
  6942. } break;
  6943. }
  6944. }
  6945. // ggml_compute_forward_repeat
  6946. static void ggml_compute_forward_repeat_f32(
  6947. const struct ggml_compute_params * params,
  6948. const struct ggml_tensor * src0,
  6949. struct ggml_tensor * dst) {
  6950. GGML_ASSERT(params->ith == 0);
  6951. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6952. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6953. return;
  6954. }
  6955. GGML_TENSOR_UNARY_OP_LOCALS
  6956. // guaranteed to be an integer due to the check in ggml_can_repeat
  6957. const int nr0 = (int)(ne0/ne00);
  6958. const int nr1 = (int)(ne1/ne01);
  6959. const int nr2 = (int)(ne2/ne02);
  6960. const int nr3 = (int)(ne3/ne03);
  6961. // TODO: support for transposed / permuted tensors
  6962. GGML_ASSERT(nb0 == sizeof(float));
  6963. GGML_ASSERT(nb00 == sizeof(float));
  6964. // TODO: maybe this is not optimal?
  6965. for (int i3 = 0; i3 < nr3; i3++) {
  6966. for (int k3 = 0; k3 < ne03; k3++) {
  6967. for (int i2 = 0; i2 < nr2; i2++) {
  6968. for (int k2 = 0; k2 < ne02; k2++) {
  6969. for (int i1 = 0; i1 < nr1; i1++) {
  6970. for (int k1 = 0; k1 < ne01; k1++) {
  6971. for (int i0 = 0; i0 < nr0; i0++) {
  6972. ggml_vec_cpy_f32(ne00,
  6973. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6974. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6975. }
  6976. }
  6977. }
  6978. }
  6979. }
  6980. }
  6981. }
  6982. }
  6983. static void ggml_compute_forward_repeat_f16(
  6984. const struct ggml_compute_params * params,
  6985. const struct ggml_tensor * src0,
  6986. struct ggml_tensor * dst) {
  6987. GGML_ASSERT(params->ith == 0);
  6988. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6989. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6990. return;
  6991. }
  6992. GGML_TENSOR_UNARY_OP_LOCALS
  6993. // guaranteed to be an integer due to the check in ggml_can_repeat
  6994. const int nr0 = (int)(ne0/ne00);
  6995. const int nr1 = (int)(ne1/ne01);
  6996. const int nr2 = (int)(ne2/ne02);
  6997. const int nr3 = (int)(ne3/ne03);
  6998. // TODO: support for transposed / permuted tensors
  6999. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7000. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7001. // TODO: maybe this is not optimal?
  7002. for (int i3 = 0; i3 < nr3; i3++) {
  7003. for (int k3 = 0; k3 < ne03; k3++) {
  7004. for (int i2 = 0; i2 < nr2; i2++) {
  7005. for (int k2 = 0; k2 < ne02; k2++) {
  7006. for (int i1 = 0; i1 < nr1; i1++) {
  7007. for (int k1 = 0; k1 < ne01; k1++) {
  7008. for (int i0 = 0; i0 < nr0; i0++) {
  7009. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7010. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7011. // ggml_vec_cpy_f16(ne00, y, x)
  7012. for (int i = 0; i < ne00; ++i) {
  7013. y[i] = x[i];
  7014. }
  7015. }
  7016. }
  7017. }
  7018. }
  7019. }
  7020. }
  7021. }
  7022. }
  7023. static void ggml_compute_forward_repeat(
  7024. const struct ggml_compute_params * params,
  7025. const struct ggml_tensor * src0,
  7026. struct ggml_tensor * dst) {
  7027. switch (src0->type) {
  7028. case GGML_TYPE_F16:
  7029. case GGML_TYPE_I16:
  7030. {
  7031. ggml_compute_forward_repeat_f16(params, src0, dst);
  7032. } break;
  7033. case GGML_TYPE_F32:
  7034. case GGML_TYPE_I32:
  7035. {
  7036. ggml_compute_forward_repeat_f32(params, src0, dst);
  7037. } break;
  7038. default:
  7039. {
  7040. GGML_ASSERT(false);
  7041. } break;
  7042. }
  7043. }
  7044. // ggml_compute_forward_repeat_back
  7045. static void ggml_compute_forward_repeat_back_f32(
  7046. const struct ggml_compute_params * params,
  7047. const struct ggml_tensor * src0,
  7048. struct ggml_tensor * dst) {
  7049. GGML_ASSERT(params->ith == 0);
  7050. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7052. return;
  7053. }
  7054. GGML_TENSOR_UNARY_OP_LOCALS
  7055. // guaranteed to be an integer due to the check in ggml_can_repeat
  7056. const int nr0 = (int)(ne00/ne0);
  7057. const int nr1 = (int)(ne01/ne1);
  7058. const int nr2 = (int)(ne02/ne2);
  7059. const int nr3 = (int)(ne03/ne3);
  7060. // TODO: support for transposed / permuted tensors
  7061. GGML_ASSERT(nb0 == sizeof(float));
  7062. GGML_ASSERT(nb00 == sizeof(float));
  7063. if (ggml_is_contiguous(dst)) {
  7064. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7065. } else {
  7066. for (int k3 = 0; k3 < ne3; k3++) {
  7067. for (int k2 = 0; k2 < ne2; k2++) {
  7068. for (int k1 = 0; k1 < ne1; k1++) {
  7069. ggml_vec_set_f32(ne0,
  7070. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7071. 0);
  7072. }
  7073. }
  7074. }
  7075. }
  7076. // TODO: maybe this is not optimal?
  7077. for (int i3 = 0; i3 < nr3; i3++) {
  7078. for (int k3 = 0; k3 < ne3; k3++) {
  7079. for (int i2 = 0; i2 < nr2; i2++) {
  7080. for (int k2 = 0; k2 < ne2; k2++) {
  7081. for (int i1 = 0; i1 < nr1; i1++) {
  7082. for (int k1 = 0; k1 < ne1; k1++) {
  7083. for (int i0 = 0; i0 < nr0; i0++) {
  7084. ggml_vec_acc_f32(ne0,
  7085. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7086. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7087. }
  7088. }
  7089. }
  7090. }
  7091. }
  7092. }
  7093. }
  7094. }
  7095. static void ggml_compute_forward_repeat_back(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * src0,
  7098. struct ggml_tensor * dst) {
  7099. switch (src0->type) {
  7100. case GGML_TYPE_F32:
  7101. {
  7102. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7103. } break;
  7104. default:
  7105. {
  7106. GGML_ASSERT(false);
  7107. } break;
  7108. }
  7109. }
  7110. // ggml_compute_forward_concat
  7111. static void ggml_compute_forward_concat_f32(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. const struct ggml_tensor * src1,
  7115. struct ggml_tensor * dst) {
  7116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7117. return;
  7118. }
  7119. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7120. const int ith = params->ith;
  7121. const int nth = params->nth;
  7122. GGML_TENSOR_BINARY_OP_LOCALS
  7123. // TODO: support for transposed / permuted tensors
  7124. GGML_ASSERT(nb0 == sizeof(float));
  7125. GGML_ASSERT(nb00 == sizeof(float));
  7126. GGML_ASSERT(nb10 == sizeof(float));
  7127. for (int i3 = 0; i3 < ne3; i3++) {
  7128. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7129. if (i2 < ne02) { // src0
  7130. for (int i1 = 0; i1 < ne1; i1++) {
  7131. for (int i0 = 0; i0 < ne0; i0++) {
  7132. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7133. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7134. *y = *x;
  7135. }
  7136. }
  7137. } // src1
  7138. else {
  7139. for (int i1 = 0; i1 < ne1; i1++) {
  7140. for (int i0 = 0; i0 < ne0; i0++) {
  7141. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7142. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7143. *y = *x;
  7144. }
  7145. }
  7146. }
  7147. }
  7148. }
  7149. }
  7150. static void ggml_compute_forward_concat(
  7151. const struct ggml_compute_params* params,
  7152. const struct ggml_tensor* src0,
  7153. const struct ggml_tensor* src1,
  7154. struct ggml_tensor* dst) {
  7155. switch (src0->type) {
  7156. case GGML_TYPE_F32:
  7157. case GGML_TYPE_I32:
  7158. {
  7159. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7160. } break;
  7161. default:
  7162. {
  7163. GGML_ASSERT(false);
  7164. } break;
  7165. }
  7166. }
  7167. // ggml_compute_forward_abs
  7168. static void ggml_compute_forward_abs_f32(
  7169. const struct ggml_compute_params * params,
  7170. const struct ggml_tensor * src0,
  7171. struct ggml_tensor * dst) {
  7172. assert(params->ith == 0);
  7173. assert(ggml_are_same_shape(src0, dst));
  7174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7175. return;
  7176. }
  7177. const int n = ggml_nrows(src0);
  7178. const int nc = src0->ne[0];
  7179. assert(dst->nb[0] == sizeof(float));
  7180. assert(src0->nb[0] == sizeof(float));
  7181. for (int i = 0; i < n; i++) {
  7182. ggml_vec_abs_f32(nc,
  7183. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7184. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7185. }
  7186. }
  7187. static void ggml_compute_forward_abs(
  7188. const struct ggml_compute_params * params,
  7189. const struct ggml_tensor * src0,
  7190. struct ggml_tensor * dst) {
  7191. switch (src0->type) {
  7192. case GGML_TYPE_F32:
  7193. {
  7194. ggml_compute_forward_abs_f32(params, src0, dst);
  7195. } break;
  7196. default:
  7197. {
  7198. GGML_ASSERT(false);
  7199. } break;
  7200. }
  7201. }
  7202. // ggml_compute_forward_sgn
  7203. static void ggml_compute_forward_sgn_f32(
  7204. const struct ggml_compute_params * params,
  7205. const struct ggml_tensor * src0,
  7206. struct ggml_tensor * dst) {
  7207. assert(params->ith == 0);
  7208. assert(ggml_are_same_shape(src0, dst));
  7209. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7210. return;
  7211. }
  7212. const int n = ggml_nrows(src0);
  7213. const int nc = src0->ne[0];
  7214. assert(dst->nb[0] == sizeof(float));
  7215. assert(src0->nb[0] == sizeof(float));
  7216. for (int i = 0; i < n; i++) {
  7217. ggml_vec_sgn_f32(nc,
  7218. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7219. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7220. }
  7221. }
  7222. static void ggml_compute_forward_sgn(
  7223. const struct ggml_compute_params * params,
  7224. const struct ggml_tensor * src0,
  7225. struct ggml_tensor * dst) {
  7226. switch (src0->type) {
  7227. case GGML_TYPE_F32:
  7228. {
  7229. ggml_compute_forward_sgn_f32(params, src0, dst);
  7230. } break;
  7231. default:
  7232. {
  7233. GGML_ASSERT(false);
  7234. } break;
  7235. }
  7236. }
  7237. // ggml_compute_forward_neg
  7238. static void ggml_compute_forward_neg_f32(
  7239. const struct ggml_compute_params * params,
  7240. const struct ggml_tensor * src0,
  7241. struct ggml_tensor * dst) {
  7242. assert(params->ith == 0);
  7243. assert(ggml_are_same_shape(src0, dst));
  7244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7245. return;
  7246. }
  7247. const int n = ggml_nrows(src0);
  7248. const int nc = src0->ne[0];
  7249. assert(dst->nb[0] == sizeof(float));
  7250. assert(src0->nb[0] == sizeof(float));
  7251. for (int i = 0; i < n; i++) {
  7252. ggml_vec_neg_f32(nc,
  7253. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7254. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7255. }
  7256. }
  7257. static void ggml_compute_forward_neg(
  7258. const struct ggml_compute_params * params,
  7259. const struct ggml_tensor * src0,
  7260. struct ggml_tensor * dst) {
  7261. switch (src0->type) {
  7262. case GGML_TYPE_F32:
  7263. {
  7264. ggml_compute_forward_neg_f32(params, src0, dst);
  7265. } break;
  7266. default:
  7267. {
  7268. GGML_ASSERT(false);
  7269. } break;
  7270. }
  7271. }
  7272. // ggml_compute_forward_step
  7273. static void ggml_compute_forward_step_f32(
  7274. const struct ggml_compute_params * params,
  7275. const struct ggml_tensor * src0,
  7276. struct ggml_tensor * dst) {
  7277. assert(params->ith == 0);
  7278. assert(ggml_are_same_shape(src0, dst));
  7279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7280. return;
  7281. }
  7282. const int n = ggml_nrows(src0);
  7283. const int nc = src0->ne[0];
  7284. assert(dst->nb[0] == sizeof(float));
  7285. assert(src0->nb[0] == sizeof(float));
  7286. for (int i = 0; i < n; i++) {
  7287. ggml_vec_step_f32(nc,
  7288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7289. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7290. }
  7291. }
  7292. static void ggml_compute_forward_step(
  7293. const struct ggml_compute_params * params,
  7294. const struct ggml_tensor * src0,
  7295. struct ggml_tensor * dst) {
  7296. switch (src0->type) {
  7297. case GGML_TYPE_F32:
  7298. {
  7299. ggml_compute_forward_step_f32(params, src0, dst);
  7300. } break;
  7301. default:
  7302. {
  7303. GGML_ASSERT(false);
  7304. } break;
  7305. }
  7306. }
  7307. // ggml_compute_forward_tanh
  7308. static void ggml_compute_forward_tanh_f32(
  7309. const struct ggml_compute_params * params,
  7310. const struct ggml_tensor * src0,
  7311. struct ggml_tensor * dst) {
  7312. assert(params->ith == 0);
  7313. assert(ggml_are_same_shape(src0, dst));
  7314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7315. return;
  7316. }
  7317. const int n = ggml_nrows(src0);
  7318. const int nc = src0->ne[0];
  7319. assert(dst->nb[0] == sizeof(float));
  7320. assert(src0->nb[0] == sizeof(float));
  7321. for (int i = 0; i < n; i++) {
  7322. ggml_vec_tanh_f32(nc,
  7323. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7324. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7325. }
  7326. }
  7327. static void ggml_compute_forward_tanh(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * src0,
  7330. struct ggml_tensor * dst) {
  7331. switch (src0->type) {
  7332. case GGML_TYPE_F32:
  7333. {
  7334. ggml_compute_forward_tanh_f32(params, src0, dst);
  7335. } break;
  7336. default:
  7337. {
  7338. GGML_ASSERT(false);
  7339. } break;
  7340. }
  7341. }
  7342. // ggml_compute_forward_elu
  7343. static void ggml_compute_forward_elu_f32(
  7344. const struct ggml_compute_params * params,
  7345. const struct ggml_tensor * src0,
  7346. struct ggml_tensor * dst) {
  7347. assert(params->ith == 0);
  7348. assert(ggml_are_same_shape(src0, dst));
  7349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7350. return;
  7351. }
  7352. const int n = ggml_nrows(src0);
  7353. const int nc = src0->ne[0];
  7354. assert(dst->nb[0] == sizeof(float));
  7355. assert(src0->nb[0] == sizeof(float));
  7356. for (int i = 0; i < n; i++) {
  7357. ggml_vec_elu_f32(nc,
  7358. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7359. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7360. }
  7361. }
  7362. static void ggml_compute_forward_elu(
  7363. const struct ggml_compute_params * params,
  7364. const struct ggml_tensor * src0,
  7365. struct ggml_tensor * dst) {
  7366. switch (src0->type) {
  7367. case GGML_TYPE_F32:
  7368. {
  7369. ggml_compute_forward_elu_f32(params, src0, dst);
  7370. } break;
  7371. default:
  7372. {
  7373. GGML_ASSERT(false);
  7374. } break;
  7375. }
  7376. }
  7377. // ggml_compute_forward_relu
  7378. static void ggml_compute_forward_relu_f32(
  7379. const struct ggml_compute_params * params,
  7380. const struct ggml_tensor * src0,
  7381. struct ggml_tensor * dst) {
  7382. assert(params->ith == 0);
  7383. assert(ggml_are_same_shape(src0, dst));
  7384. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7385. return;
  7386. }
  7387. const int n = ggml_nrows(src0);
  7388. const int nc = src0->ne[0];
  7389. assert(dst->nb[0] == sizeof(float));
  7390. assert(src0->nb[0] == sizeof(float));
  7391. for (int i = 0; i < n; i++) {
  7392. ggml_vec_relu_f32(nc,
  7393. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7394. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7395. }
  7396. }
  7397. static void ggml_compute_forward_relu(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. switch (src0->type) {
  7402. case GGML_TYPE_F32:
  7403. {
  7404. ggml_compute_forward_relu_f32(params, src0, dst);
  7405. } break;
  7406. default:
  7407. {
  7408. GGML_ASSERT(false);
  7409. } break;
  7410. }
  7411. }
  7412. // ggml_compute_forward_gelu
  7413. static void ggml_compute_forward_gelu_f32(
  7414. const struct ggml_compute_params * params,
  7415. const struct ggml_tensor * src0,
  7416. struct ggml_tensor * dst) {
  7417. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7418. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7419. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7420. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7421. return;
  7422. }
  7423. const int ith = params->ith;
  7424. const int nth = params->nth;
  7425. const int nc = src0->ne[0];
  7426. const int nr = ggml_nrows(src0);
  7427. // rows per thread
  7428. const int dr = (nr + nth - 1)/nth;
  7429. // row range for this thread
  7430. const int ir0 = dr*ith;
  7431. const int ir1 = MIN(ir0 + dr, nr);
  7432. for (int i1 = ir0; i1 < ir1; i1++) {
  7433. ggml_vec_gelu_f32(nc,
  7434. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7435. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7436. #ifndef NDEBUG
  7437. for (int k = 0; k < nc; k++) {
  7438. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7439. UNUSED(x);
  7440. assert(!isnan(x));
  7441. assert(!isinf(x));
  7442. }
  7443. #endif
  7444. }
  7445. }
  7446. static void ggml_compute_forward_gelu(
  7447. const struct ggml_compute_params * params,
  7448. const struct ggml_tensor * src0,
  7449. struct ggml_tensor * dst) {
  7450. switch (src0->type) {
  7451. case GGML_TYPE_F32:
  7452. {
  7453. ggml_compute_forward_gelu_f32(params, src0, dst);
  7454. } break;
  7455. default:
  7456. {
  7457. GGML_ASSERT(false);
  7458. } break;
  7459. }
  7460. }
  7461. // ggml_compute_forward_gelu_quick
  7462. static void ggml_compute_forward_gelu_quick_f32(
  7463. const struct ggml_compute_params * params,
  7464. const struct ggml_tensor * src0,
  7465. struct ggml_tensor * dst) {
  7466. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7467. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7468. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7469. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7470. return;
  7471. }
  7472. const int ith = params->ith;
  7473. const int nth = params->nth;
  7474. const int nc = src0->ne[0];
  7475. const int nr = ggml_nrows(src0);
  7476. // rows per thread
  7477. const int dr = (nr + nth - 1)/nth;
  7478. // row range for this thread
  7479. const int ir0 = dr*ith;
  7480. const int ir1 = MIN(ir0 + dr, nr);
  7481. for (int i1 = ir0; i1 < ir1; i1++) {
  7482. ggml_vec_gelu_quick_f32(nc,
  7483. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7484. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7485. #ifndef NDEBUG
  7486. for (int k = 0; k < nc; k++) {
  7487. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7488. UNUSED(x);
  7489. assert(!isnan(x));
  7490. assert(!isinf(x));
  7491. }
  7492. #endif
  7493. }
  7494. }
  7495. static void ggml_compute_forward_gelu_quick(
  7496. const struct ggml_compute_params * params,
  7497. const struct ggml_tensor * src0,
  7498. struct ggml_tensor * dst) {
  7499. switch (src0->type) {
  7500. case GGML_TYPE_F32:
  7501. {
  7502. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7503. } break;
  7504. default:
  7505. {
  7506. GGML_ASSERT(false);
  7507. } break;
  7508. }
  7509. }
  7510. // ggml_compute_forward_silu
  7511. static void ggml_compute_forward_silu_f32(
  7512. const struct ggml_compute_params * params,
  7513. const struct ggml_tensor * src0,
  7514. struct ggml_tensor * dst) {
  7515. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7516. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7519. return;
  7520. }
  7521. const int ith = params->ith;
  7522. const int nth = params->nth;
  7523. const int nc = src0->ne[0];
  7524. const int nr = ggml_nrows(src0);
  7525. // rows per thread
  7526. const int dr = (nr + nth - 1)/nth;
  7527. // row range for this thread
  7528. const int ir0 = dr*ith;
  7529. const int ir1 = MIN(ir0 + dr, nr);
  7530. for (int i1 = ir0; i1 < ir1; i1++) {
  7531. ggml_vec_silu_f32(nc,
  7532. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7533. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7534. #ifndef NDEBUG
  7535. for (int k = 0; k < nc; k++) {
  7536. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7537. UNUSED(x);
  7538. assert(!isnan(x));
  7539. assert(!isinf(x));
  7540. }
  7541. #endif
  7542. }
  7543. }
  7544. static void ggml_compute_forward_silu(
  7545. const struct ggml_compute_params * params,
  7546. const struct ggml_tensor * src0,
  7547. struct ggml_tensor * dst) {
  7548. switch (src0->type) {
  7549. case GGML_TYPE_F32:
  7550. {
  7551. ggml_compute_forward_silu_f32(params, src0, dst);
  7552. } break;
  7553. default:
  7554. {
  7555. GGML_ASSERT(false);
  7556. } break;
  7557. }
  7558. }
  7559. // ggml_compute_forward_leaky_relu
  7560. static void ggml_compute_forward_leaky_relu_f32(
  7561. const struct ggml_compute_params * params,
  7562. const struct ggml_tensor * src0,
  7563. struct ggml_tensor * dst) {
  7564. assert(params->ith == 0);
  7565. assert(ggml_are_same_shape(src0, dst));
  7566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7567. return;
  7568. }
  7569. const int n = ggml_nrows(src0);
  7570. const int nc = src0->ne[0];
  7571. float negative_slope;
  7572. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7573. assert(dst->nb[0] == sizeof(float));
  7574. assert(src0->nb[0] == sizeof(float));
  7575. for (int i = 0; i < n; i++) {
  7576. ggml_vec_leaky_relu_f32(nc,
  7577. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7578. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7579. }
  7580. }
  7581. static void ggml_compute_forward_leaky_relu(
  7582. const struct ggml_compute_params * params,
  7583. const struct ggml_tensor * src0,
  7584. struct ggml_tensor * dst) {
  7585. switch (src0->type) {
  7586. case GGML_TYPE_F32:
  7587. {
  7588. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7589. } break;
  7590. default:
  7591. {
  7592. GGML_ASSERT(false);
  7593. } break;
  7594. }
  7595. }
  7596. // ggml_compute_forward_silu_back
  7597. static void ggml_compute_forward_silu_back_f32(
  7598. const struct ggml_compute_params * params,
  7599. const struct ggml_tensor * src0,
  7600. const struct ggml_tensor * grad,
  7601. struct ggml_tensor * dst) {
  7602. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7603. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7604. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7605. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7606. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7607. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7608. return;
  7609. }
  7610. const int ith = params->ith;
  7611. const int nth = params->nth;
  7612. const int nc = src0->ne[0];
  7613. const int nr = ggml_nrows(src0);
  7614. // rows per thread
  7615. const int dr = (nr + nth - 1)/nth;
  7616. // row range for this thread
  7617. const int ir0 = dr*ith;
  7618. const int ir1 = MIN(ir0 + dr, nr);
  7619. for (int i1 = ir0; i1 < ir1; i1++) {
  7620. ggml_vec_silu_backward_f32(nc,
  7621. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7622. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7623. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7624. #ifndef NDEBUG
  7625. for (int k = 0; k < nc; k++) {
  7626. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7627. UNUSED(x);
  7628. assert(!isnan(x));
  7629. assert(!isinf(x));
  7630. }
  7631. #endif
  7632. }
  7633. }
  7634. static void ggml_compute_forward_silu_back(
  7635. const struct ggml_compute_params * params,
  7636. const struct ggml_tensor * src0,
  7637. const struct ggml_tensor * grad,
  7638. struct ggml_tensor * dst) {
  7639. switch (src0->type) {
  7640. case GGML_TYPE_F32:
  7641. {
  7642. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7643. } break;
  7644. default:
  7645. {
  7646. GGML_ASSERT(false);
  7647. } break;
  7648. }
  7649. }
  7650. // ggml_compute_forward_norm
  7651. static void ggml_compute_forward_norm_f32(
  7652. const struct ggml_compute_params * params,
  7653. const struct ggml_tensor * src0,
  7654. struct ggml_tensor * dst) {
  7655. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7656. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7657. return;
  7658. }
  7659. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7660. const int ith = params->ith;
  7661. const int nth = params->nth;
  7662. GGML_TENSOR_UNARY_OP_LOCALS
  7663. float eps;
  7664. memcpy(&eps, dst->op_params, sizeof(float));
  7665. GGML_ASSERT(eps > 0.0f);
  7666. // TODO: optimize
  7667. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7668. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7669. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7670. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7671. ggml_float sum = 0.0;
  7672. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7673. sum += (ggml_float)x[i00];
  7674. }
  7675. float mean = sum/ne00;
  7676. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7677. ggml_float sum2 = 0.0;
  7678. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7679. float v = x[i00] - mean;
  7680. y[i00] = v;
  7681. sum2 += (ggml_float)(v*v);
  7682. }
  7683. float variance = sum2/ne00;
  7684. const float scale = 1.0f/sqrtf(variance + eps);
  7685. ggml_vec_scale_f32(ne00, y, scale);
  7686. }
  7687. }
  7688. }
  7689. }
  7690. static void ggml_compute_forward_norm(
  7691. const struct ggml_compute_params * params,
  7692. const struct ggml_tensor * src0,
  7693. struct ggml_tensor * dst) {
  7694. switch (src0->type) {
  7695. case GGML_TYPE_F32:
  7696. {
  7697. ggml_compute_forward_norm_f32(params, src0, dst);
  7698. } break;
  7699. default:
  7700. {
  7701. GGML_ASSERT(false);
  7702. } break;
  7703. }
  7704. }
  7705. // ggml_compute_forward_group_rms_norm
  7706. static void ggml_compute_forward_rms_norm_f32(
  7707. const struct ggml_compute_params * params,
  7708. const struct ggml_tensor * src0,
  7709. struct ggml_tensor * dst) {
  7710. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7711. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7712. return;
  7713. }
  7714. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7715. const int ith = params->ith;
  7716. const int nth = params->nth;
  7717. GGML_TENSOR_UNARY_OP_LOCALS
  7718. float eps;
  7719. memcpy(&eps, dst->op_params, sizeof(float));
  7720. GGML_ASSERT(eps > 0.0f);
  7721. // TODO: optimize
  7722. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7723. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7724. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7725. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7726. ggml_float sum = 0.0;
  7727. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7728. sum += (ggml_float)(x[i00] * x[i00]);
  7729. }
  7730. const float mean = sum/ne00;
  7731. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7732. memcpy(y, x, ne00 * sizeof(float));
  7733. // for (int i00 = 0; i00 < ne00; i00++) {
  7734. // y[i00] = x[i00];
  7735. // }
  7736. const float scale = 1.0f/sqrtf(mean + eps);
  7737. ggml_vec_scale_f32(ne00, y, scale);
  7738. }
  7739. }
  7740. }
  7741. }
  7742. static void ggml_compute_forward_rms_norm(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. struct ggml_tensor * dst) {
  7746. switch (src0->type) {
  7747. case GGML_TYPE_F32:
  7748. {
  7749. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7750. } break;
  7751. default:
  7752. {
  7753. GGML_ASSERT(false);
  7754. } break;
  7755. }
  7756. }
  7757. static void ggml_compute_forward_rms_norm_back_f32(
  7758. const struct ggml_compute_params * params,
  7759. const struct ggml_tensor * src0,
  7760. const struct ggml_tensor * src1,
  7761. struct ggml_tensor * dst) {
  7762. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7764. return;
  7765. }
  7766. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7767. const int ith = params->ith;
  7768. const int nth = params->nth;
  7769. GGML_TENSOR_BINARY_OP_LOCALS
  7770. float eps;
  7771. memcpy(&eps, dst->op_params, sizeof(float));
  7772. // TODO: optimize
  7773. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7774. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7775. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7776. // src1 is same shape as src0 => same indices
  7777. const int64_t i11 = i01;
  7778. const int64_t i12 = i02;
  7779. const int64_t i13 = i03;
  7780. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7781. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7782. ggml_float sum_xx = 0.0;
  7783. ggml_float sum_xdz = 0.0;
  7784. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7785. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7786. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7787. }
  7788. //const float mean = (float)(sum_xx)/ne00;
  7789. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7790. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7791. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7792. // we could cache rms from forward pass to improve performance.
  7793. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7794. //const float rms = sqrtf(mean_eps);
  7795. const float rrms = 1.0f / sqrtf(mean_eps);
  7796. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7797. {
  7798. // z = rms_norm(x)
  7799. //
  7800. // rms_norm(src0) =
  7801. // scale(
  7802. // src0,
  7803. // div(
  7804. // 1,
  7805. // sqrt(
  7806. // add(
  7807. // scale(
  7808. // sum(
  7809. // sqr(
  7810. // src0)),
  7811. // (1.0/N)),
  7812. // eps))));
  7813. // postorder:
  7814. // ## op args grad
  7815. // 00 param src0 grad[#00]
  7816. // 01 const 1
  7817. // 02 sqr (#00) grad[#02]
  7818. // 03 sum (#02) grad[#03]
  7819. // 04 const 1/N
  7820. // 05 scale (#03, #04) grad[#05]
  7821. // 06 const eps
  7822. // 07 add (#05, #06) grad[#07]
  7823. // 08 sqrt (#07) grad[#08]
  7824. // 09 div (#01,#08) grad[#09]
  7825. // 10 scale (#00,#09) grad[#10]
  7826. //
  7827. // backward pass, given grad[#10]
  7828. // #10: scale
  7829. // grad[#00] += scale(grad[#10],#09)
  7830. // grad[#09] += sum(mul(grad[#10],#00))
  7831. // #09: div
  7832. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7833. // #08: sqrt
  7834. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7835. // #07: add
  7836. // grad[#05] += grad[#07]
  7837. // #05: scale
  7838. // grad[#03] += scale(grad[#05],#04)
  7839. // #03: sum
  7840. // grad[#02] += repeat(grad[#03], #02)
  7841. // #02:
  7842. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7843. //
  7844. // substitute and simplify:
  7845. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7846. // grad[#02] = repeat(grad[#03], #02)
  7847. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7848. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7849. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7850. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7851. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7852. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7853. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7854. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7855. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7856. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7857. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7858. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7859. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7860. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7861. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7862. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7863. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7864. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7865. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7866. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7867. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7868. // a = b*c + d*e
  7869. // a = b*c*f/f + d*e*f/f
  7870. // a = (b*c*f + d*e*f)*(1/f)
  7871. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7872. // a = (b + d*e/c)*c
  7873. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7874. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7875. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7876. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7877. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7878. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7879. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7880. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7881. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7882. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7883. }
  7884. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7885. // post-order:
  7886. // dx := x
  7887. // dx := scale(dx,-mean_xdz/mean_eps)
  7888. // dx := add(dx, dz)
  7889. // dx := scale(dx, rrms)
  7890. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7891. ggml_vec_cpy_f32 (ne00, dx, x);
  7892. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7893. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7894. ggml_vec_acc_f32 (ne00, dx, dz);
  7895. ggml_vec_scale_f32(ne00, dx, rrms);
  7896. }
  7897. }
  7898. }
  7899. }
  7900. static void ggml_compute_forward_rms_norm_back(
  7901. const struct ggml_compute_params * params,
  7902. const struct ggml_tensor * src0,
  7903. const struct ggml_tensor * src1,
  7904. struct ggml_tensor * dst) {
  7905. switch (src0->type) {
  7906. case GGML_TYPE_F32:
  7907. {
  7908. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7909. } break;
  7910. default:
  7911. {
  7912. GGML_ASSERT(false);
  7913. } break;
  7914. }
  7915. }
  7916. // ggml_compute_forward_group_norm
  7917. static void ggml_compute_forward_group_norm_f32(
  7918. const struct ggml_compute_params * params,
  7919. const struct ggml_tensor * src0,
  7920. struct ggml_tensor * dst) {
  7921. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7922. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7923. return;
  7924. }
  7925. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7926. const int ith = params->ith;
  7927. const int nth = params->nth;
  7928. GGML_TENSOR_UNARY_OP_LOCALS
  7929. const float eps = 1e-6f; // TODO: make this a parameter
  7930. // TODO: optimize
  7931. int n_channels = src0->ne[2];
  7932. int n_groups = dst->op_params[0];
  7933. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7934. for (int i = ith; i < n_groups; i+=nth) {
  7935. int start = i * n_channels_per_group;
  7936. int end = start + n_channels_per_group;
  7937. if (end > n_channels) {
  7938. end = n_channels;
  7939. }
  7940. int step = end - start;
  7941. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7942. ggml_float sum = 0.0;
  7943. for (int64_t i02 = start; i02 < end; i02++) {
  7944. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7945. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7946. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7947. sum += (ggml_float)x[i00];
  7948. }
  7949. }
  7950. }
  7951. float mean = sum / (ne00 * ne01 * step);
  7952. ggml_float sum2 = 0.0;
  7953. for (int64_t i02 = start; i02 < end; i02++) {
  7954. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7955. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7956. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7957. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7958. float v = x[i00] - mean;
  7959. y[i00] = v;
  7960. sum2 += (ggml_float)(v * v);
  7961. }
  7962. }
  7963. }
  7964. float variance = sum2 / (ne00 * ne01 * step);
  7965. const float scale = 1.0f / sqrtf(variance + eps);
  7966. for (int64_t i02 = start; i02 < end; i02++) {
  7967. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7968. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7969. ggml_vec_scale_f32(ne00, y, scale);
  7970. }
  7971. }
  7972. }
  7973. }
  7974. }
  7975. static void ggml_compute_forward_group_norm(
  7976. const struct ggml_compute_params * params,
  7977. const struct ggml_tensor * src0,
  7978. struct ggml_tensor * dst) {
  7979. switch (src0->type) {
  7980. case GGML_TYPE_F32:
  7981. {
  7982. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7983. } break;
  7984. default:
  7985. {
  7986. GGML_ASSERT(false);
  7987. } break;
  7988. }
  7989. }
  7990. // ggml_compute_forward_mul_mat
  7991. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7992. // helper function to determine if it is better to use BLAS or not
  7993. // for large matrices, BLAS is faster
  7994. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  7995. const struct ggml_tensor * src0 = dst->src[0];
  7996. const struct ggml_tensor * src1 = dst->src[1];
  7997. //const int64_t ne00 = src0->ne[0];
  7998. //const int64_t ne01 = src0->ne[1];
  7999. const int64_t ne10 = src1->ne[0];
  8000. const int64_t ne0 = dst->ne[0];
  8001. const int64_t ne1 = dst->ne[1];
  8002. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8003. // all the experts for each batch element and the processing would become incredibly slow
  8004. // TODO: find the optimal values for these
  8005. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8006. ggml_is_contiguous(src0) &&
  8007. ggml_is_contiguous(src1) &&
  8008. //src0->type == GGML_TYPE_F32 &&
  8009. src1->type == GGML_TYPE_F32 &&
  8010. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8011. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8012. return true;
  8013. }
  8014. return false;
  8015. }
  8016. #endif
  8017. static void ggml_compute_forward_mul_mat(
  8018. const struct ggml_compute_params * params,
  8019. const struct ggml_tensor * src0,
  8020. const struct ggml_tensor * src1,
  8021. struct ggml_tensor * dst) {
  8022. int64_t t0 = ggml_perf_time_us();
  8023. UNUSED(t0);
  8024. GGML_TENSOR_BINARY_OP_LOCALS
  8025. const int ith = params->ith;
  8026. const int nth = params->nth;
  8027. const enum ggml_type type = src0->type;
  8028. const bool src1_cont = ggml_is_contiguous(src1);
  8029. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8030. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8031. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8032. GGML_ASSERT(ne0 == ne01);
  8033. GGML_ASSERT(ne1 == ne11);
  8034. GGML_ASSERT(ne2 == ne12);
  8035. GGML_ASSERT(ne3 == ne13);
  8036. // we don't support permuted src0 or src1
  8037. GGML_ASSERT(nb00 == ggml_type_size(type));
  8038. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8039. // dst cannot be transposed or permuted
  8040. GGML_ASSERT(nb0 == sizeof(float));
  8041. GGML_ASSERT(nb0 <= nb1);
  8042. GGML_ASSERT(nb1 <= nb2);
  8043. GGML_ASSERT(nb2 <= nb3);
  8044. // broadcast factors
  8045. const int64_t r2 = ne12/ne02;
  8046. const int64_t r3 = ne13/ne03;
  8047. // nb01 >= nb00 - src0 is not transposed
  8048. // compute by src0 rows
  8049. #if defined(GGML_USE_CLBLAST)
  8050. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8051. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8052. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8053. }
  8054. return;
  8055. }
  8056. #endif
  8057. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8058. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8059. if (params->ith != 0) {
  8060. return;
  8061. }
  8062. if (params->type == GGML_TASK_INIT) {
  8063. return;
  8064. }
  8065. if (params->type == GGML_TASK_FINALIZE) {
  8066. return;
  8067. }
  8068. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8069. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8070. // broadcast src0 into src1 across 2nd,3rd dimension
  8071. const int64_t i03 = i13/r3;
  8072. const int64_t i02 = i12/r2;
  8073. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8074. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8075. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8076. if (type != GGML_TYPE_F32) {
  8077. float * const wdata = params->wdata;
  8078. ggml_to_float_t const to_float = type_traits[type].to_float;
  8079. size_t id = 0;
  8080. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8081. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  8082. id += ne00;
  8083. }
  8084. assert(id*sizeof(float) <= params->wsize);
  8085. x = wdata;
  8086. }
  8087. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8088. ne1, ne01, ne10,
  8089. 1.0f, y, ne10,
  8090. x, ne00,
  8091. 0.0f, d, ne01);
  8092. }
  8093. }
  8094. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8095. return;
  8096. }
  8097. #endif
  8098. if (params->type == GGML_TASK_INIT) {
  8099. if (src1->type != vec_dot_type) {
  8100. char * wdata = params->wdata;
  8101. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8102. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8103. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8104. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8105. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8106. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8107. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8108. wdata += row_size;
  8109. }
  8110. }
  8111. }
  8112. }
  8113. return;
  8114. }
  8115. if (params->type == GGML_TASK_FINALIZE) {
  8116. return;
  8117. }
  8118. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8119. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8120. const int64_t nr0 = ne01; // src0 rows
  8121. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8122. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8123. // distribute the thread work across the inner or outer loop based on which one is larger
  8124. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8125. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8126. const int64_t ith0 = ith % nth0;
  8127. const int64_t ith1 = ith / nth0;
  8128. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8129. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8130. const int64_t ir010 = dr0*ith0;
  8131. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8132. const int64_t ir110 = dr1*ith1;
  8133. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8134. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8135. // threads with no work simply yield (not sure if it helps)
  8136. if (ir010 >= ir011 || ir110 >= ir111) {
  8137. sched_yield();
  8138. return;
  8139. }
  8140. assert(ne12 % ne02 == 0);
  8141. assert(ne13 % ne03 == 0);
  8142. // block-tiling attempt
  8143. const int64_t blck_0 = 16;
  8144. const int64_t blck_1 = 16;
  8145. // attempt to reduce false-sharing (does not seem to make a difference)
  8146. float tmp[16];
  8147. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8148. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8149. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8150. const int64_t i13 = (ir1/(ne12*ne1));
  8151. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8152. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8153. // broadcast src0 into src1
  8154. const int64_t i03 = i13/r3;
  8155. const int64_t i02 = i12/r2;
  8156. const int64_t i1 = i11;
  8157. const int64_t i2 = i12;
  8158. const int64_t i3 = i13;
  8159. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8160. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8161. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8162. // the original src1 data pointer, so we should index using the indices directly
  8163. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8164. const char * src1_col = (const char *) wdata +
  8165. (src1_cont || src1->type != vec_dot_type
  8166. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8167. : (i11*nb11 + i12*nb12 + i13*nb13));
  8168. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8169. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8170. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8171. //}
  8172. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8173. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8174. }
  8175. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8176. }
  8177. }
  8178. }
  8179. }
  8180. // ggml_compute_forward_mul_mat_id
  8181. static void ggml_compute_forward_mul_mat_id(
  8182. const struct ggml_compute_params * params,
  8183. const struct ggml_tensor * ids,
  8184. const struct ggml_tensor * src1,
  8185. struct ggml_tensor * dst) {
  8186. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8187. GGML_TENSOR_BINARY_OP_LOCALS
  8188. const int ith = params->ith;
  8189. const int nth = params->nth;
  8190. const enum ggml_type type = src0->type;
  8191. const bool src1_cont = ggml_is_contiguous(src1);
  8192. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8193. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8194. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8195. GGML_ASSERT(ne0 == ne01);
  8196. GGML_ASSERT(ne1 == ne11);
  8197. GGML_ASSERT(ne2 == ne12);
  8198. GGML_ASSERT(ne3 == ne13);
  8199. // we don't support permuted src0 or src1
  8200. GGML_ASSERT(nb00 == ggml_type_size(type));
  8201. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8202. // dst cannot be transposed or permuted
  8203. GGML_ASSERT(nb0 == sizeof(float));
  8204. GGML_ASSERT(nb0 <= nb1);
  8205. GGML_ASSERT(nb1 <= nb2);
  8206. GGML_ASSERT(nb2 <= nb3);
  8207. // broadcast factors
  8208. const int64_t r2 = ne12/ne02;
  8209. const int64_t r3 = ne13/ne03;
  8210. // row groups
  8211. const int id = ggml_get_op_params_i32(dst, 0);
  8212. const int n_as = ggml_get_op_params_i32(dst, 1);
  8213. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8214. (char *) params->wdata :
  8215. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8216. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8217. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8218. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8219. if (params->type == GGML_TASK_INIT) {
  8220. char * wdata = params->wdata;
  8221. if (src1->type != vec_dot_type) {
  8222. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8223. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8224. assert(src1->type == GGML_TYPE_F32);
  8225. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8226. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8227. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8228. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8229. wdata += row_size;
  8230. }
  8231. }
  8232. }
  8233. }
  8234. // initialize matrix_row_counts
  8235. GGML_ASSERT(wdata == wdata_src1_end);
  8236. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8237. // group rows by src0 matrix
  8238. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8239. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8240. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8241. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8242. matrix_row_counts[row_id] += 1;
  8243. }
  8244. return;
  8245. }
  8246. if (params->type == GGML_TASK_FINALIZE) {
  8247. return;
  8248. }
  8249. // compute each matrix multiplication in sequence
  8250. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8251. const int64_t cne1 = matrix_row_counts[cur_a];
  8252. if (cne1 == 0) {
  8253. continue;
  8254. }
  8255. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8256. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8257. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8258. const int64_t nr0 = ne01; // src0 rows
  8259. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8260. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8261. // distribute the thread work across the inner or outer loop based on which one is larger
  8262. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8263. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8264. const int64_t ith0 = ith % nth0;
  8265. const int64_t ith1 = ith / nth0;
  8266. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8267. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8268. const int64_t ir010 = dr0*ith0;
  8269. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8270. const int64_t ir110 = dr1*ith1;
  8271. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8272. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8273. // threads with no work simply yield (not sure if it helps)
  8274. if (ir010 >= ir011 || ir110 >= ir111) {
  8275. sched_yield();
  8276. continue;
  8277. }
  8278. assert(ne12 % ne02 == 0);
  8279. assert(ne13 % ne03 == 0);
  8280. // block-tiling attempt
  8281. const int64_t blck_0 = 16;
  8282. const int64_t blck_1 = 16;
  8283. // attempt to reduce false-sharing (does not seem to make a difference)
  8284. float tmp[16];
  8285. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8286. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8287. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8288. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8289. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8290. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8291. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8292. // broadcast src0 into src1
  8293. const int64_t i03 = i13/r3;
  8294. const int64_t i02 = i12/r2;
  8295. const int64_t i1 = i11;
  8296. const int64_t i2 = i12;
  8297. const int64_t i3 = i13;
  8298. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8299. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8300. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8301. // the original src1 data pointer, so we should index using the indices directly
  8302. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8303. const char * src1_col = (const char *) wdata +
  8304. (src1_cont || src1->type != vec_dot_type
  8305. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8306. : (i11*nb11 + i12*nb12 + i13*nb13));
  8307. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8308. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8309. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8310. //}
  8311. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8312. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8313. }
  8314. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8315. }
  8316. }
  8317. }
  8318. }
  8319. #undef MMID_MATRIX_ROW
  8320. }
  8321. // ggml_compute_forward_out_prod
  8322. static void ggml_compute_forward_out_prod_f32(
  8323. const struct ggml_compute_params * params,
  8324. const struct ggml_tensor * src0,
  8325. const struct ggml_tensor * src1,
  8326. struct ggml_tensor * dst) {
  8327. // int64_t t0 = ggml_perf_time_us();
  8328. // UNUSED(t0);
  8329. GGML_TENSOR_BINARY_OP_LOCALS
  8330. const int ith = params->ith;
  8331. const int nth = params->nth;
  8332. GGML_ASSERT(ne0 == ne00);
  8333. GGML_ASSERT(ne1 == ne10);
  8334. GGML_ASSERT(ne2 == ne02);
  8335. GGML_ASSERT(ne02 == ne12);
  8336. GGML_ASSERT(ne3 == ne13);
  8337. GGML_ASSERT(ne03 == ne13);
  8338. // we don't support permuted src0 or src1
  8339. GGML_ASSERT(nb00 == sizeof(float));
  8340. // dst cannot be transposed or permuted
  8341. GGML_ASSERT(nb0 == sizeof(float));
  8342. // GGML_ASSERT(nb0 <= nb1);
  8343. // GGML_ASSERT(nb1 <= nb2);
  8344. // GGML_ASSERT(nb2 <= nb3);
  8345. // nb01 >= nb00 - src0 is not transposed
  8346. // compute by src0 rows
  8347. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8348. // TODO: #if defined(GGML_USE_CLBLAST)
  8349. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8350. bool use_blas = ggml_is_matrix(src0) &&
  8351. ggml_is_matrix(src1) &&
  8352. ggml_is_contiguous(src0) &&
  8353. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8354. #endif
  8355. if (params->type == GGML_TASK_INIT) {
  8356. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8357. if (use_blas) {
  8358. return;
  8359. }
  8360. #endif
  8361. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8362. return;
  8363. }
  8364. if (params->type == GGML_TASK_FINALIZE) {
  8365. return;
  8366. }
  8367. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8368. if (use_blas) {
  8369. if (params->ith != 0) { // All threads other than the first do no work.
  8370. return;
  8371. }
  8372. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8373. // src0: (k,n)
  8374. // src1: (k,m)
  8375. // dst: (m,n)
  8376. //
  8377. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8378. // Also expressed as (major,minor)
  8379. // a: (m,k): so src1 transposed
  8380. // b: (k,n): so src0
  8381. // c: (m,n)
  8382. //
  8383. // However, if ggml_is_transposed(src1) is true, then
  8384. // src1->data already contains a transposed version, so sgemm mustn't
  8385. // transpose it further.
  8386. int n = src0->ne[0];
  8387. int k = src0->ne[1];
  8388. int m = src1->ne[0];
  8389. int transposeA, lda;
  8390. if (!ggml_is_transposed(src1)) {
  8391. transposeA = CblasTrans;
  8392. lda = m;
  8393. } else {
  8394. transposeA = CblasNoTrans;
  8395. lda = k;
  8396. }
  8397. float * a = (float *) ((char *) src1->data);
  8398. float * b = (float *) ((char *) src0->data);
  8399. float * c = (float *) ((char *) dst->data);
  8400. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8401. return;
  8402. }
  8403. #endif
  8404. // dst[:,:,:,:] = 0
  8405. // for i2,i3:
  8406. // for i1:
  8407. // for i01:
  8408. // for i0:
  8409. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8410. // parallelize by last three dimensions
  8411. // total rows in dst
  8412. const int64_t nr = ne1*ne2*ne3;
  8413. // rows per thread
  8414. const int64_t dr = (nr + nth - 1)/nth;
  8415. // row range for this thread
  8416. const int64_t ir0 = dr*ith;
  8417. const int64_t ir1 = MIN(ir0 + dr, nr);
  8418. // block-tiling attempt
  8419. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8420. const int64_t blck_1 = 16;
  8421. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8422. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8423. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8424. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8425. for (int64_t ir = bir; ir < bir1; ++ir) {
  8426. // dst indices
  8427. const int64_t i3 = ir/(ne2*ne1);
  8428. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8429. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8430. const int64_t i02 = i2;
  8431. const int64_t i03 = i3;
  8432. //const int64_t i10 = i1;
  8433. const int64_t i12 = i2;
  8434. const int64_t i13 = i3;
  8435. #if GGML_VEC_MAD_UNROLL > 2
  8436. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8437. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8438. const int64_t i11 = i01;
  8439. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8440. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8441. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8442. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8443. }
  8444. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8445. const int64_t i11 = i01;
  8446. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8447. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8448. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8449. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8450. }
  8451. #else
  8452. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8453. const int64_t i11 = i01;
  8454. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8455. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8456. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8457. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8458. }
  8459. #endif
  8460. }
  8461. }
  8462. }
  8463. //int64_t t1 = ggml_perf_time_us();
  8464. //static int64_t acc = 0;
  8465. //acc += t1 - t0;
  8466. //if (t1 - t0 > 10) {
  8467. // printf("\n");
  8468. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8469. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8470. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8471. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8472. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8473. //}
  8474. }
  8475. static void ggml_compute_forward_out_prod_q_f32(
  8476. const struct ggml_compute_params * params,
  8477. const struct ggml_tensor * src0,
  8478. const struct ggml_tensor * src1,
  8479. struct ggml_tensor * dst) {
  8480. // int64_t t0 = ggml_perf_time_us();
  8481. // UNUSED(t0);
  8482. GGML_TENSOR_BINARY_OP_LOCALS;
  8483. const int ith = params->ith;
  8484. const int nth = params->nth;
  8485. const enum ggml_type type = src0->type;
  8486. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8487. GGML_ASSERT(ne02 == ne12);
  8488. GGML_ASSERT(ne03 == ne13);
  8489. GGML_ASSERT(ne2 == ne12);
  8490. GGML_ASSERT(ne3 == ne13);
  8491. // we don't support permuted src0 dim0
  8492. GGML_ASSERT(nb00 == ggml_type_size(type));
  8493. // dst dim0 cannot be transposed or permuted
  8494. GGML_ASSERT(nb0 == sizeof(float));
  8495. // GGML_ASSERT(nb0 <= nb1);
  8496. // GGML_ASSERT(nb1 <= nb2);
  8497. // GGML_ASSERT(nb2 <= nb3);
  8498. GGML_ASSERT(ne0 == ne00);
  8499. GGML_ASSERT(ne1 == ne10);
  8500. GGML_ASSERT(ne2 == ne02);
  8501. GGML_ASSERT(ne3 == ne03);
  8502. // nb01 >= nb00 - src0 is not transposed
  8503. // compute by src0 rows
  8504. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8505. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8506. if (params->type == GGML_TASK_INIT) {
  8507. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8508. return;
  8509. }
  8510. if (params->type == GGML_TASK_FINALIZE) {
  8511. return;
  8512. }
  8513. // parallelize by last three dimensions
  8514. // total rows in dst
  8515. const int64_t nr = ne1*ne2*ne3;
  8516. // rows per thread
  8517. const int64_t dr = (nr + nth - 1)/nth;
  8518. // row range for this thread
  8519. const int64_t ir0 = dr*ith;
  8520. const int64_t ir1 = MIN(ir0 + dr, nr);
  8521. // dst[:,:,:,:] = 0
  8522. // for i2,i3:
  8523. // for i1:
  8524. // for i01:
  8525. // for i0:
  8526. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8527. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8528. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8529. // dst indices
  8530. const int64_t i3 = ir/(ne2*ne1);
  8531. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8532. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8533. const int64_t i02 = i2;
  8534. const int64_t i03 = i3;
  8535. //const int64_t i10 = i1;
  8536. const int64_t i12 = i2;
  8537. const int64_t i13 = i3;
  8538. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8539. const int64_t i11 = i01;
  8540. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8541. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8542. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8543. dequantize_row_q(s0, wdata, ne0);
  8544. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8545. }
  8546. }
  8547. //int64_t t1 = ggml_perf_time_us();
  8548. //static int64_t acc = 0;
  8549. //acc += t1 - t0;
  8550. //if (t1 - t0 > 10) {
  8551. // printf("\n");
  8552. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8553. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8554. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8555. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8556. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8557. //}
  8558. }
  8559. static void ggml_compute_forward_out_prod(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * src0,
  8562. const struct ggml_tensor * src1,
  8563. struct ggml_tensor * dst) {
  8564. switch (src0->type) {
  8565. case GGML_TYPE_Q4_0:
  8566. case GGML_TYPE_Q4_1:
  8567. case GGML_TYPE_Q5_0:
  8568. case GGML_TYPE_Q5_1:
  8569. case GGML_TYPE_Q8_0:
  8570. case GGML_TYPE_Q2_K:
  8571. case GGML_TYPE_Q3_K:
  8572. case GGML_TYPE_Q4_K:
  8573. case GGML_TYPE_Q5_K:
  8574. case GGML_TYPE_Q6_K:
  8575. case GGML_TYPE_IQ2_XXS:
  8576. {
  8577. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8578. } break;
  8579. case GGML_TYPE_F16:
  8580. {
  8581. GGML_ASSERT(false); // todo
  8582. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8583. } break;
  8584. case GGML_TYPE_F32:
  8585. {
  8586. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8587. } break;
  8588. default:
  8589. {
  8590. GGML_ASSERT(false);
  8591. } break;
  8592. }
  8593. }
  8594. // ggml_compute_forward_scale
  8595. static void ggml_compute_forward_scale_f32(
  8596. const struct ggml_compute_params * params,
  8597. const struct ggml_tensor * src0,
  8598. struct ggml_tensor * dst) {
  8599. GGML_ASSERT(ggml_is_contiguous(src0));
  8600. GGML_ASSERT(ggml_is_contiguous(dst));
  8601. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8603. return;
  8604. }
  8605. // scale factor
  8606. float v;
  8607. memcpy(&v, dst->op_params, sizeof(float));
  8608. const int ith = params->ith;
  8609. const int nth = params->nth;
  8610. const int nc = src0->ne[0];
  8611. const int nr = ggml_nrows(src0);
  8612. // rows per thread
  8613. const int dr = (nr + nth - 1)/nth;
  8614. // row range for this thread
  8615. const int ir0 = dr*ith;
  8616. const int ir1 = MIN(ir0 + dr, nr);
  8617. const size_t nb01 = src0->nb[1];
  8618. const size_t nb1 = dst->nb[1];
  8619. for (int i1 = ir0; i1 < ir1; i1++) {
  8620. if (dst->data != src0->data) {
  8621. // src0 is same shape as dst => same indices
  8622. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8623. }
  8624. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8625. }
  8626. }
  8627. static void ggml_compute_forward_scale(
  8628. const struct ggml_compute_params * params,
  8629. const struct ggml_tensor * src0,
  8630. struct ggml_tensor * dst) {
  8631. switch (src0->type) {
  8632. case GGML_TYPE_F32:
  8633. {
  8634. ggml_compute_forward_scale_f32(params, src0, dst);
  8635. } break;
  8636. default:
  8637. {
  8638. GGML_ASSERT(false);
  8639. } break;
  8640. }
  8641. }
  8642. // ggml_compute_forward_set
  8643. static void ggml_compute_forward_set_f32(
  8644. const struct ggml_compute_params * params,
  8645. const struct ggml_tensor * src0,
  8646. const struct ggml_tensor * src1,
  8647. struct ggml_tensor * dst) {
  8648. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8649. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8650. // view src0 and dst with these strides and data offset inbytes during set
  8651. // nb0 is implicitly element_size because src0 and dst are contiguous
  8652. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8653. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8654. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8655. size_t offset = ((int32_t *) dst->op_params)[3];
  8656. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8657. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8658. // memcpy needs to be synchronized across threads to avoid race conditions.
  8659. // => do it in INIT phase
  8660. memcpy(
  8661. ((char *) dst->data),
  8662. ((char *) src0->data),
  8663. ggml_nbytes(dst));
  8664. }
  8665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8666. return;
  8667. }
  8668. const int ith = params->ith;
  8669. const int nth = params->nth;
  8670. const int nr = ggml_nrows(src1);
  8671. const int nc = src1->ne[0];
  8672. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8673. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8674. // src0 and dst as viewed during set
  8675. const size_t nb0 = ggml_element_size(src0);
  8676. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8677. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8678. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8679. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8680. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8681. GGML_ASSERT(nb10 == sizeof(float));
  8682. // rows per thread
  8683. const int dr = (nr + nth - 1)/nth;
  8684. // row range for this thread
  8685. const int ir0 = dr*ith;
  8686. const int ir1 = MIN(ir0 + dr, nr);
  8687. for (int ir = ir0; ir < ir1; ++ir) {
  8688. // src0 and dst are viewed with shape of src1 and offset
  8689. // => same indices
  8690. const int i3 = ir/(ne12*ne11);
  8691. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8692. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8693. ggml_vec_cpy_f32(nc,
  8694. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8695. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8696. }
  8697. }
  8698. static void ggml_compute_forward_set(
  8699. const struct ggml_compute_params * params,
  8700. const struct ggml_tensor * src0,
  8701. const struct ggml_tensor * src1,
  8702. struct ggml_tensor * dst) {
  8703. switch (src0->type) {
  8704. case GGML_TYPE_F32:
  8705. {
  8706. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8707. } break;
  8708. case GGML_TYPE_F16:
  8709. case GGML_TYPE_Q4_0:
  8710. case GGML_TYPE_Q4_1:
  8711. case GGML_TYPE_Q5_0:
  8712. case GGML_TYPE_Q5_1:
  8713. case GGML_TYPE_Q8_0:
  8714. case GGML_TYPE_Q8_1:
  8715. case GGML_TYPE_Q2_K:
  8716. case GGML_TYPE_Q3_K:
  8717. case GGML_TYPE_Q4_K:
  8718. case GGML_TYPE_Q5_K:
  8719. case GGML_TYPE_Q6_K:
  8720. case GGML_TYPE_IQ2_XXS:
  8721. default:
  8722. {
  8723. GGML_ASSERT(false);
  8724. } break;
  8725. }
  8726. }
  8727. // ggml_compute_forward_cpy
  8728. static void ggml_compute_forward_cpy(
  8729. const struct ggml_compute_params * params,
  8730. const struct ggml_tensor * src0,
  8731. struct ggml_tensor * dst) {
  8732. ggml_compute_forward_dup(params, src0, dst);
  8733. }
  8734. // ggml_compute_forward_cont
  8735. static void ggml_compute_forward_cont(
  8736. const struct ggml_compute_params * params,
  8737. const struct ggml_tensor * src0,
  8738. struct ggml_tensor * dst) {
  8739. ggml_compute_forward_dup(params, src0, dst);
  8740. }
  8741. // ggml_compute_forward_reshape
  8742. static void ggml_compute_forward_reshape(
  8743. const struct ggml_compute_params * params,
  8744. const struct ggml_tensor * src0,
  8745. struct ggml_tensor * dst) {
  8746. // NOP
  8747. UNUSED(params);
  8748. UNUSED(src0);
  8749. UNUSED(dst);
  8750. }
  8751. // ggml_compute_forward_view
  8752. static void ggml_compute_forward_view(
  8753. const struct ggml_compute_params * params,
  8754. const struct ggml_tensor * src0) {
  8755. // NOP
  8756. UNUSED(params);
  8757. UNUSED(src0);
  8758. }
  8759. // ggml_compute_forward_permute
  8760. static void ggml_compute_forward_permute(
  8761. const struct ggml_compute_params * params,
  8762. const struct ggml_tensor * src0) {
  8763. // NOP
  8764. UNUSED(params);
  8765. UNUSED(src0);
  8766. }
  8767. // ggml_compute_forward_transpose
  8768. static void ggml_compute_forward_transpose(
  8769. const struct ggml_compute_params * params,
  8770. const struct ggml_tensor * src0) {
  8771. // NOP
  8772. UNUSED(params);
  8773. UNUSED(src0);
  8774. }
  8775. // ggml_compute_forward_get_rows
  8776. static void ggml_compute_forward_get_rows_q(
  8777. const struct ggml_compute_params * params,
  8778. const struct ggml_tensor * src0,
  8779. const struct ggml_tensor * src1,
  8780. struct ggml_tensor * dst) {
  8781. assert(params->ith == 0);
  8782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8783. return;
  8784. }
  8785. GGML_TENSOR_BINARY_OP_LOCALS
  8786. const int64_t nc = ne00;
  8787. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8788. const enum ggml_type type = src0->type;
  8789. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8790. assert(ne0 == nc);
  8791. assert(ne02 == ne11);
  8792. assert(nb00 == ggml_type_size(type));
  8793. assert(ggml_nrows(dst) == nr);
  8794. // TODO: multi-thread
  8795. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8796. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8797. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8798. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8799. dequantize_row_q(
  8800. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8801. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8802. }
  8803. }
  8804. }
  8805. }
  8806. static void ggml_compute_forward_get_rows_f16(
  8807. const struct ggml_compute_params * params,
  8808. const struct ggml_tensor * src0,
  8809. const struct ggml_tensor * src1,
  8810. struct ggml_tensor * dst) {
  8811. assert(params->ith == 0);
  8812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8813. return;
  8814. }
  8815. GGML_TENSOR_BINARY_OP_LOCALS
  8816. const int64_t nc = ne00;
  8817. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8818. assert(ne0 == nc);
  8819. assert(ne02 == ne11);
  8820. assert(nb00 == sizeof(ggml_fp16_t));
  8821. assert(ggml_nrows(dst) == nr);
  8822. // TODO: multi-thread
  8823. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8824. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8825. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8826. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8827. ggml_fp16_to_fp32_row(
  8828. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8829. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8830. }
  8831. }
  8832. }
  8833. }
  8834. static void ggml_compute_forward_get_rows_f32(
  8835. const struct ggml_compute_params * params,
  8836. const struct ggml_tensor * src0,
  8837. const struct ggml_tensor * src1,
  8838. struct ggml_tensor * dst) {
  8839. assert(params->ith == 0);
  8840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8841. return;
  8842. }
  8843. GGML_TENSOR_BINARY_OP_LOCALS
  8844. const int64_t nc = ne00;
  8845. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8846. assert(ne0 == nc);
  8847. assert(ne02 == ne11);
  8848. assert(nb00 == sizeof(float));
  8849. assert(ggml_nrows(dst) == nr);
  8850. // TODO: multi-thread
  8851. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8852. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8853. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8854. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8855. ggml_vec_cpy_f32(nc,
  8856. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8857. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8858. }
  8859. }
  8860. }
  8861. }
  8862. static void ggml_compute_forward_get_rows(
  8863. const struct ggml_compute_params * params,
  8864. const struct ggml_tensor * src0,
  8865. const struct ggml_tensor * src1,
  8866. struct ggml_tensor * dst) {
  8867. switch (src0->type) {
  8868. case GGML_TYPE_Q4_0:
  8869. case GGML_TYPE_Q4_1:
  8870. case GGML_TYPE_Q5_0:
  8871. case GGML_TYPE_Q5_1:
  8872. case GGML_TYPE_Q8_0:
  8873. case GGML_TYPE_Q8_1:
  8874. case GGML_TYPE_Q2_K:
  8875. case GGML_TYPE_Q3_K:
  8876. case GGML_TYPE_Q4_K:
  8877. case GGML_TYPE_Q5_K:
  8878. case GGML_TYPE_Q6_K:
  8879. case GGML_TYPE_IQ2_XXS:
  8880. {
  8881. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8882. } break;
  8883. case GGML_TYPE_F16:
  8884. {
  8885. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8886. } break;
  8887. case GGML_TYPE_F32:
  8888. case GGML_TYPE_I32:
  8889. {
  8890. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8891. } break;
  8892. default:
  8893. {
  8894. GGML_ASSERT(false);
  8895. } break;
  8896. }
  8897. //static bool first = true;
  8898. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8899. //if (first) {
  8900. // first = false;
  8901. //} else {
  8902. // for (int k = 0; k < dst->ne[1]; ++k) {
  8903. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8904. // for (int i = 0; i < 16; ++i) {
  8905. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8906. // }
  8907. // printf("\n");
  8908. // }
  8909. // printf("\n");
  8910. // }
  8911. // printf("\n");
  8912. // exit(0);
  8913. //}
  8914. }
  8915. // ggml_compute_forward_get_rows_back
  8916. static void ggml_compute_forward_get_rows_back_f32_f16(
  8917. const struct ggml_compute_params * params,
  8918. const struct ggml_tensor * src0,
  8919. const struct ggml_tensor * src1,
  8920. struct ggml_tensor * dst) {
  8921. GGML_ASSERT(params->ith == 0);
  8922. GGML_ASSERT(ggml_is_contiguous(dst));
  8923. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8924. if (params->type == GGML_TASK_INIT) {
  8925. memset(dst->data, 0, ggml_nbytes(dst));
  8926. }
  8927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8928. return;
  8929. }
  8930. const int nc = src0->ne[0];
  8931. const int nr = ggml_nelements(src1);
  8932. GGML_ASSERT( dst->ne[0] == nc);
  8933. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8934. for (int i = 0; i < nr; ++i) {
  8935. const int r = ((int32_t *) src1->data)[i];
  8936. for (int j = 0; j < nc; ++j) {
  8937. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8938. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8939. }
  8940. }
  8941. }
  8942. static void ggml_compute_forward_get_rows_back_f32(
  8943. const struct ggml_compute_params * params,
  8944. const struct ggml_tensor * src0,
  8945. const struct ggml_tensor * src1,
  8946. struct ggml_tensor * dst) {
  8947. GGML_ASSERT(params->ith == 0);
  8948. GGML_ASSERT(ggml_is_contiguous(dst));
  8949. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8950. if (params->type == GGML_TASK_INIT) {
  8951. memset(dst->data, 0, ggml_nbytes(dst));
  8952. }
  8953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8954. return;
  8955. }
  8956. const int nc = src0->ne[0];
  8957. const int nr = ggml_nelements(src1);
  8958. GGML_ASSERT( dst->ne[0] == nc);
  8959. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8960. for (int i = 0; i < nr; ++i) {
  8961. const int r = ((int32_t *) src1->data)[i];
  8962. ggml_vec_add_f32(nc,
  8963. (float *) ((char *) dst->data + r*dst->nb[1]),
  8964. (float *) ((char *) dst->data + r*dst->nb[1]),
  8965. (float *) ((char *) src0->data + i*src0->nb[1]));
  8966. }
  8967. }
  8968. static void ggml_compute_forward_get_rows_back(
  8969. const struct ggml_compute_params * params,
  8970. const struct ggml_tensor * src0,
  8971. const struct ggml_tensor * src1,
  8972. struct ggml_tensor * dst) {
  8973. switch (src0->type) {
  8974. case GGML_TYPE_F16:
  8975. {
  8976. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8977. } break;
  8978. case GGML_TYPE_F32:
  8979. {
  8980. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8981. } break;
  8982. default:
  8983. {
  8984. GGML_ASSERT(false);
  8985. } break;
  8986. }
  8987. //static bool first = true;
  8988. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8989. //if (first) {
  8990. // first = false;
  8991. //} else {
  8992. // for (int k = 0; k < dst->ne[1]; ++k) {
  8993. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8994. // for (int i = 0; i < 16; ++i) {
  8995. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8996. // }
  8997. // printf("\n");
  8998. // }
  8999. // printf("\n");
  9000. // }
  9001. // printf("\n");
  9002. // exit(0);
  9003. //}
  9004. }
  9005. // ggml_compute_forward_diag
  9006. static void ggml_compute_forward_diag_f32(
  9007. const struct ggml_compute_params * params,
  9008. const struct ggml_tensor * src0,
  9009. struct ggml_tensor * dst) {
  9010. GGML_ASSERT(params->ith == 0);
  9011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9012. return;
  9013. }
  9014. // TODO: handle transposed/permuted matrices
  9015. GGML_TENSOR_UNARY_OP_LOCALS
  9016. GGML_ASSERT(ne00 == ne0);
  9017. GGML_ASSERT(ne00 == ne1);
  9018. GGML_ASSERT(ne01 == 1);
  9019. GGML_ASSERT(ne02 == ne2);
  9020. GGML_ASSERT(ne03 == ne3);
  9021. GGML_ASSERT(nb00 == sizeof(float));
  9022. GGML_ASSERT(nb0 == sizeof(float));
  9023. for (int i3 = 0; i3 < ne3; i3++) {
  9024. for (int i2 = 0; i2 < ne2; i2++) {
  9025. for (int i1 = 0; i1 < ne1; i1++) {
  9026. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9027. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9028. for (int i0 = 0; i0 < i1; i0++) {
  9029. d[i0] = 0;
  9030. }
  9031. d[i1] = s[i1];
  9032. for (int i0 = i1+1; i0 < ne0; i0++) {
  9033. d[i0] = 0;
  9034. }
  9035. }
  9036. }
  9037. }
  9038. }
  9039. static void ggml_compute_forward_diag(
  9040. const struct ggml_compute_params * params,
  9041. const struct ggml_tensor * src0,
  9042. struct ggml_tensor * dst) {
  9043. switch (src0->type) {
  9044. case GGML_TYPE_F32:
  9045. {
  9046. ggml_compute_forward_diag_f32(params, src0, dst);
  9047. } break;
  9048. default:
  9049. {
  9050. GGML_ASSERT(false);
  9051. } break;
  9052. }
  9053. }
  9054. // ggml_compute_forward_diag_mask_inf
  9055. static void ggml_compute_forward_diag_mask_f32(
  9056. const struct ggml_compute_params * params,
  9057. const struct ggml_tensor * src0,
  9058. struct ggml_tensor * dst,
  9059. const float value) {
  9060. const int ith = params->ith;
  9061. const int nth = params->nth;
  9062. const int n_past = ((int32_t *) dst->op_params)[0];
  9063. const bool inplace = src0->data == dst->data;
  9064. GGML_ASSERT(n_past >= 0);
  9065. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9066. // memcpy needs to be synchronized across threads to avoid race conditions.
  9067. // => do it in INIT phase
  9068. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9069. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9070. memcpy(
  9071. ((char *) dst->data),
  9072. ((char *) src0->data),
  9073. ggml_nbytes(dst));
  9074. }
  9075. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9076. return;
  9077. }
  9078. // TODO: handle transposed/permuted matrices
  9079. const int n = ggml_nrows(src0);
  9080. const int nc = src0->ne[0];
  9081. const int nr = src0->ne[1];
  9082. const int nz = n/nr;
  9083. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9084. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9085. for (int k = 0; k < nz; k++) {
  9086. for (int j = ith; j < nr; j += nth) {
  9087. for (int i = n_past; i < nc; i++) {
  9088. if (i > n_past + j) {
  9089. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9090. }
  9091. }
  9092. }
  9093. }
  9094. }
  9095. static void ggml_compute_forward_diag_mask_inf(
  9096. const struct ggml_compute_params * params,
  9097. const struct ggml_tensor * src0,
  9098. struct ggml_tensor * dst) {
  9099. switch (src0->type) {
  9100. case GGML_TYPE_F32:
  9101. {
  9102. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9103. } break;
  9104. default:
  9105. {
  9106. GGML_ASSERT(false);
  9107. } break;
  9108. }
  9109. }
  9110. static void ggml_compute_forward_diag_mask_zero(
  9111. const struct ggml_compute_params * params,
  9112. const struct ggml_tensor * src0,
  9113. struct ggml_tensor * dst) {
  9114. switch (src0->type) {
  9115. case GGML_TYPE_F32:
  9116. {
  9117. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9118. } break;
  9119. default:
  9120. {
  9121. GGML_ASSERT(false);
  9122. } break;
  9123. }
  9124. }
  9125. // ggml_compute_forward_soft_max
  9126. static void ggml_compute_forward_soft_max_f32(
  9127. const struct ggml_compute_params * params,
  9128. const struct ggml_tensor * src0,
  9129. const struct ggml_tensor * src1,
  9130. struct ggml_tensor * dst) {
  9131. assert(ggml_is_contiguous(dst));
  9132. assert(ggml_are_same_shape(src0, dst));
  9133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9134. return;
  9135. }
  9136. float scale = 1.0f;
  9137. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9138. // TODO: handle transposed/permuted matrices
  9139. const int ith = params->ith;
  9140. const int nth = params->nth;
  9141. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9142. const int nc = src0->ne[0];
  9143. const int nr = ggml_nrows(src0);
  9144. // rows per thread
  9145. const int dr = (nr + nth - 1)/nth;
  9146. // row range for this thread
  9147. const int ir0 = dr*ith;
  9148. const int ir1 = MIN(ir0 + dr, nr);
  9149. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9150. for (int i1 = ir0; i1 < ir1; i1++) {
  9151. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9152. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9153. // broadcast the mask across rows
  9154. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9155. ggml_vec_cpy_f32 (nc, wp, sp);
  9156. ggml_vec_scale_f32(nc, wp, scale);
  9157. if (mp) {
  9158. ggml_vec_acc_f32(nc, wp, mp);
  9159. }
  9160. #ifndef NDEBUG
  9161. for (int i = 0; i < nc; ++i) {
  9162. //printf("p[%d] = %f\n", i, p[i]);
  9163. assert(!isnan(wp[i]));
  9164. }
  9165. #endif
  9166. float max = -INFINITY;
  9167. ggml_vec_max_f32(nc, &max, wp);
  9168. ggml_float sum = 0.0;
  9169. uint16_t scvt;
  9170. for (int i = 0; i < nc; i++) {
  9171. if (wp[i] == -INFINITY) {
  9172. dp[i] = 0.0f;
  9173. } else {
  9174. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9175. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9176. memcpy(&scvt, &s, sizeof(scvt));
  9177. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9178. sum += (ggml_float)val;
  9179. dp[i] = val;
  9180. }
  9181. }
  9182. assert(sum > 0.0);
  9183. sum = 1.0/sum;
  9184. ggml_vec_scale_f32(nc, dp, sum);
  9185. #ifndef NDEBUG
  9186. for (int i = 0; i < nc; ++i) {
  9187. assert(!isnan(dp[i]));
  9188. assert(!isinf(dp[i]));
  9189. }
  9190. #endif
  9191. }
  9192. }
  9193. static void ggml_compute_forward_soft_max(
  9194. const struct ggml_compute_params * params,
  9195. const struct ggml_tensor * src0,
  9196. const struct ggml_tensor * src1,
  9197. struct ggml_tensor * dst) {
  9198. switch (src0->type) {
  9199. case GGML_TYPE_F32:
  9200. {
  9201. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9202. } break;
  9203. default:
  9204. {
  9205. GGML_ASSERT(false);
  9206. } break;
  9207. }
  9208. }
  9209. // ggml_compute_forward_soft_max_back
  9210. static void ggml_compute_forward_soft_max_back_f32(
  9211. const struct ggml_compute_params * params,
  9212. const struct ggml_tensor * src0,
  9213. const struct ggml_tensor * src1,
  9214. struct ggml_tensor * dst) {
  9215. GGML_ASSERT(ggml_is_contiguous(src0));
  9216. GGML_ASSERT(ggml_is_contiguous(src1));
  9217. GGML_ASSERT(ggml_is_contiguous(dst));
  9218. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9219. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9220. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9221. return;
  9222. }
  9223. // TODO: handle transposed/permuted matrices
  9224. const int ith = params->ith;
  9225. const int nth = params->nth;
  9226. const int nc = src0->ne[0];
  9227. const int nr = ggml_nrows(src0);
  9228. // rows per thread
  9229. const int dr = (nr + nth - 1)/nth;
  9230. // row range for this thread
  9231. const int ir0 = dr*ith;
  9232. const int ir1 = MIN(ir0 + dr, nr);
  9233. for (int i1 = ir0; i1 < ir1; i1++) {
  9234. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9235. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9236. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9237. #ifndef NDEBUG
  9238. for (int i = 0; i < nc; ++i) {
  9239. //printf("p[%d] = %f\n", i, p[i]);
  9240. assert(!isnan(dy[i]));
  9241. assert(!isnan(y[i]));
  9242. }
  9243. #endif
  9244. // Jii = yi - yi*yi
  9245. // Jij = -yi*yj
  9246. // J = diag(y)-y.T*y
  9247. // dx = J * dy
  9248. // dxk = sum_i(Jki * dyi)
  9249. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9250. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9251. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9252. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9253. // dxk = -yk * dot(y, dy) + yk*dyk
  9254. // dxk = yk * (- dot(y, dy) + dyk)
  9255. // dxk = yk * (dyk - dot(y, dy))
  9256. //
  9257. // post-order:
  9258. // dot_y_dy := dot(y, dy)
  9259. // dx := dy
  9260. // dx := dx - dot_y_dy
  9261. // dx := dx * y
  9262. // linear runtime, no additional memory
  9263. float dot_y_dy = 0;
  9264. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9265. ggml_vec_cpy_f32 (nc, dx, dy);
  9266. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9267. ggml_vec_mul_f32 (nc, dx, dx, y);
  9268. #ifndef NDEBUG
  9269. for (int i = 0; i < nc; ++i) {
  9270. assert(!isnan(dx[i]));
  9271. assert(!isinf(dx[i]));
  9272. }
  9273. #endif
  9274. }
  9275. }
  9276. static void ggml_compute_forward_soft_max_back(
  9277. const struct ggml_compute_params * params,
  9278. const struct ggml_tensor * src0,
  9279. const struct ggml_tensor * src1,
  9280. struct ggml_tensor * dst) {
  9281. switch (src0->type) {
  9282. case GGML_TYPE_F32:
  9283. {
  9284. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9285. } break;
  9286. default:
  9287. {
  9288. GGML_ASSERT(false);
  9289. } break;
  9290. }
  9291. }
  9292. // ggml_compute_forward_alibi
  9293. static void ggml_compute_forward_alibi_f32(
  9294. const struct ggml_compute_params * params,
  9295. const struct ggml_tensor * src0,
  9296. struct ggml_tensor * dst) {
  9297. assert(params->ith == 0);
  9298. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9299. return;
  9300. }
  9301. //const int n_past = ((int32_t *) dst->op_params)[0];
  9302. const int n_head = ((int32_t *) dst->op_params)[1];
  9303. float max_bias;
  9304. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9305. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9306. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9307. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9308. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9309. const int64_t n = ggml_nrows(src0);
  9310. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9311. const size_t nb0 = src0->nb[0];
  9312. const size_t nb1 = src0->nb[1];
  9313. const size_t nb2 = src0->nb[2];
  9314. //const int nb3 = src0->nb[3];
  9315. GGML_ASSERT(nb0 == sizeof(float));
  9316. GGML_ASSERT(n_head == ne2);
  9317. // add alibi to src0 (KQ_scaled)
  9318. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9319. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9320. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9321. for (int64_t i = 0; i < ne0; i++) {
  9322. for (int64_t j = 0; j < ne1; j++) {
  9323. for (int64_t k = 0; k < ne2_ne3; k++) {
  9324. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9325. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9326. // TODO: k*nb2 or k*nb3
  9327. float m_k;
  9328. if (k < n_heads_log2_floor) {
  9329. m_k = powf(m0, k + 1);
  9330. } else {
  9331. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9332. }
  9333. pdst[0] = i * m_k + src[0];
  9334. }
  9335. }
  9336. }
  9337. }
  9338. static void ggml_compute_forward_alibi_f16(
  9339. const struct ggml_compute_params * params,
  9340. const struct ggml_tensor * src0,
  9341. struct ggml_tensor * dst) {
  9342. assert(params->ith == 0);
  9343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9344. return;
  9345. }
  9346. //const int n_past = ((int32_t *) dst->op_params)[0];
  9347. const int n_head = ((int32_t *) dst->op_params)[1];
  9348. float max_bias;
  9349. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9350. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9351. const int ne1 = src0->ne[1]; // seq_len_without_past
  9352. const int ne2 = src0->ne[2]; // n_head -> this is k
  9353. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9354. const int n = ggml_nrows(src0);
  9355. const int ne2_ne3 = n/ne1; // ne2*ne3
  9356. const int nb0 = src0->nb[0];
  9357. const int nb1 = src0->nb[1];
  9358. const int nb2 = src0->nb[2];
  9359. //const int nb3 = src0->nb[3];
  9360. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9361. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9362. GGML_ASSERT(n_head == ne2);
  9363. // add alibi to src0 (KQ_scaled)
  9364. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9365. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9366. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9367. for (int i = 0; i < ne0; i++) {
  9368. for (int j = 0; j < ne1; j++) {
  9369. for (int k = 0; k < ne2_ne3; k++) {
  9370. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9371. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9372. // TODO: k*nb2 or k*nb3
  9373. float m_k;
  9374. if (k < n_heads_log2_floor) {
  9375. m_k = powf(m0, k + 1);
  9376. } else {
  9377. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9378. }
  9379. // we return F32
  9380. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9381. }
  9382. }
  9383. }
  9384. }
  9385. static void ggml_compute_forward_alibi(
  9386. const struct ggml_compute_params * params,
  9387. const struct ggml_tensor * src0,
  9388. struct ggml_tensor * dst) {
  9389. switch (src0->type) {
  9390. case GGML_TYPE_F16:
  9391. {
  9392. ggml_compute_forward_alibi_f16(params, src0, dst);
  9393. } break;
  9394. case GGML_TYPE_F32:
  9395. {
  9396. ggml_compute_forward_alibi_f32(params, src0, dst);
  9397. } break;
  9398. case GGML_TYPE_Q4_0:
  9399. case GGML_TYPE_Q4_1:
  9400. case GGML_TYPE_Q5_0:
  9401. case GGML_TYPE_Q5_1:
  9402. case GGML_TYPE_Q8_0:
  9403. case GGML_TYPE_Q8_1:
  9404. case GGML_TYPE_Q2_K:
  9405. case GGML_TYPE_Q3_K:
  9406. case GGML_TYPE_Q4_K:
  9407. case GGML_TYPE_Q5_K:
  9408. case GGML_TYPE_Q6_K:
  9409. case GGML_TYPE_IQ2_XXS:
  9410. case GGML_TYPE_Q8_K:
  9411. case GGML_TYPE_I8:
  9412. case GGML_TYPE_I16:
  9413. case GGML_TYPE_I32:
  9414. case GGML_TYPE_COUNT:
  9415. {
  9416. GGML_ASSERT(false);
  9417. } break;
  9418. }
  9419. }
  9420. // ggml_compute_forward_clamp
  9421. static void ggml_compute_forward_clamp_f32(
  9422. const struct ggml_compute_params * params,
  9423. const struct ggml_tensor * src0,
  9424. struct ggml_tensor * dst) {
  9425. assert(params->ith == 0);
  9426. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9427. return;
  9428. }
  9429. float min;
  9430. float max;
  9431. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9432. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9433. const int ith = params->ith;
  9434. const int nth = params->nth;
  9435. const int n = ggml_nrows(src0);
  9436. const int nc = src0->ne[0];
  9437. const size_t nb00 = src0->nb[0];
  9438. const size_t nb01 = src0->nb[1];
  9439. const size_t nb0 = dst->nb[0];
  9440. const size_t nb1 = dst->nb[1];
  9441. GGML_ASSERT( nb0 == sizeof(float));
  9442. GGML_ASSERT(nb00 == sizeof(float));
  9443. for (int j = ith; j < n; j += nth) {
  9444. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9445. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9446. for (int i = 0; i < nc; i++) {
  9447. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9448. }
  9449. }
  9450. }
  9451. static void ggml_compute_forward_clamp(
  9452. const struct ggml_compute_params * params,
  9453. const struct ggml_tensor * src0,
  9454. struct ggml_tensor * dst) {
  9455. switch (src0->type) {
  9456. case GGML_TYPE_F32:
  9457. {
  9458. ggml_compute_forward_clamp_f32(params, src0, dst);
  9459. } break;
  9460. case GGML_TYPE_F16:
  9461. case GGML_TYPE_Q4_0:
  9462. case GGML_TYPE_Q4_1:
  9463. case GGML_TYPE_Q5_0:
  9464. case GGML_TYPE_Q5_1:
  9465. case GGML_TYPE_Q8_0:
  9466. case GGML_TYPE_Q8_1:
  9467. case GGML_TYPE_Q2_K:
  9468. case GGML_TYPE_Q3_K:
  9469. case GGML_TYPE_Q4_K:
  9470. case GGML_TYPE_Q5_K:
  9471. case GGML_TYPE_Q6_K:
  9472. case GGML_TYPE_IQ2_XXS:
  9473. case GGML_TYPE_Q8_K:
  9474. case GGML_TYPE_I8:
  9475. case GGML_TYPE_I16:
  9476. case GGML_TYPE_I32:
  9477. case GGML_TYPE_COUNT:
  9478. {
  9479. GGML_ASSERT(false);
  9480. } break;
  9481. }
  9482. }
  9483. // ggml_compute_forward_rope
  9484. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9485. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9486. return 1 - MIN(1, MAX(0, y));
  9487. }
  9488. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9489. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9490. static void rope_yarn(
  9491. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9492. float * cos_theta, float * sin_theta
  9493. ) {
  9494. // Get n-d rotational scaling corrected for extrapolation
  9495. float theta_interp = freq_scale * theta_extrap;
  9496. float theta = theta_interp;
  9497. if (ext_factor != 0.0f) {
  9498. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9499. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9500. // Get n-d magnitude scaling corrected for interpolation
  9501. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9502. }
  9503. *cos_theta = cosf(theta) * mscale;
  9504. *sin_theta = sinf(theta) * mscale;
  9505. }
  9506. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9507. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9508. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9509. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9510. }
  9511. void ggml_rope_yarn_corr_dims(
  9512. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9513. ) {
  9514. // start and end correction dims
  9515. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9516. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9517. }
  9518. static void ggml_compute_forward_rope_f32(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * src0,
  9521. const struct ggml_tensor * src1,
  9522. struct ggml_tensor * dst,
  9523. const bool forward) {
  9524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9525. return;
  9526. }
  9527. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9528. // these two only relevant for xPos RoPE:
  9529. float xpos_base;
  9530. bool xpos_down;
  9531. //const int n_past = ((int32_t *) dst->op_params)[0];
  9532. const int n_dims = ((int32_t *) dst->op_params)[1];
  9533. const int mode = ((int32_t *) dst->op_params)[2];
  9534. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9535. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9536. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9537. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9538. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9539. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9540. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9541. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9542. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9543. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9544. GGML_TENSOR_UNARY_OP_LOCALS
  9545. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9546. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9547. GGML_ASSERT(nb00 == sizeof(float));
  9548. const int ith = params->ith;
  9549. const int nth = params->nth;
  9550. const int nr = ggml_nrows(dst);
  9551. GGML_ASSERT(n_dims <= ne0);
  9552. GGML_ASSERT(n_dims % 2 == 0);
  9553. // rows per thread
  9554. const int dr = (nr + nth - 1)/nth;
  9555. // row range for this thread
  9556. const int ir0 = dr*ith;
  9557. const int ir1 = MIN(ir0 + dr, nr);
  9558. // row index used to determine which thread to use
  9559. int ir = 0;
  9560. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9561. const float inv_ndims = -1.f/n_dims;
  9562. float corr_dims[2];
  9563. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9564. const bool is_neox = mode & 2;
  9565. const bool is_glm = mode & 4;
  9566. // backward process uses inverse rotation by cos and sin.
  9567. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9568. // this essentially just switches the sign of sin.
  9569. const float sin_sign = forward ? 1.0f : -1.0f;
  9570. const int32_t * pos = (const int32_t *) src1->data;
  9571. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9572. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9573. const int64_t p = pos[i2];
  9574. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9575. if (ir++ < ir0) continue;
  9576. if (ir > ir1) break;
  9577. float theta_base = (float)p;
  9578. if (is_glm) {
  9579. theta_base = MIN(p, n_ctx - 2);
  9580. float block_theta = MAX(p - (n_ctx - 2), 0);
  9581. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9582. const float cos_theta = cosf(theta_base);
  9583. const float sin_theta = sinf(theta_base) * sin_sign;
  9584. const float cos_block_theta = cosf(block_theta);
  9585. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9586. theta_base *= theta_scale;
  9587. block_theta *= theta_scale;
  9588. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9589. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9590. const float x0 = src[0];
  9591. const float x1 = src[n_dims/2];
  9592. const float x2 = src[n_dims];
  9593. const float x3 = src[n_dims/2*3];
  9594. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9595. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9596. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9597. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9598. }
  9599. } else if (!is_neox) {
  9600. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9601. float cos_theta, sin_theta;
  9602. rope_yarn(
  9603. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9604. );
  9605. sin_theta *= sin_sign;
  9606. // zeta scaling for xPos only:
  9607. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9608. if (xpos_down) zeta = 1.0f / zeta;
  9609. theta_base *= theta_scale;
  9610. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9611. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9612. const float x0 = src[0];
  9613. const float x1 = src[1];
  9614. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9615. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9616. }
  9617. } else {
  9618. // TODO: this might be wrong for ne0 != n_dims - need double check
  9619. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9620. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9621. theta_base *= freq_scale;
  9622. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9623. if (ic < n_dims) {
  9624. const int64_t ib = 0;
  9625. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9626. float cur_rot = inv_ndims * ic - ib;
  9627. float cos_theta, sin_theta;
  9628. rope_yarn(
  9629. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9630. &cos_theta, &sin_theta
  9631. );
  9632. sin_theta *= sin_sign;
  9633. theta_base *= theta_scale;
  9634. const int64_t i0 = ib*n_dims + ic/2;
  9635. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9636. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9637. const float x0 = src[0];
  9638. const float x1 = src[n_dims/2];
  9639. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9640. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9641. } else {
  9642. const int64_t i0 = ic;
  9643. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9644. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9645. dst_data[0] = src[0];
  9646. dst_data[1] = src[1];
  9647. }
  9648. }
  9649. }
  9650. }
  9651. }
  9652. }
  9653. }
  9654. static void ggml_compute_forward_rope_f16(
  9655. const struct ggml_compute_params * params,
  9656. const struct ggml_tensor * src0,
  9657. const struct ggml_tensor * src1,
  9658. struct ggml_tensor * dst,
  9659. const bool forward) {
  9660. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9661. return;
  9662. }
  9663. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9664. //const int n_past = ((int32_t *) dst->op_params)[0];
  9665. const int n_dims = ((int32_t *) dst->op_params)[1];
  9666. const int mode = ((int32_t *) dst->op_params)[2];
  9667. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9668. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9669. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9670. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9671. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9672. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9673. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9674. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9675. GGML_TENSOR_UNARY_OP_LOCALS
  9676. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9677. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9678. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9679. const int ith = params->ith;
  9680. const int nth = params->nth;
  9681. const int nr = ggml_nrows(dst);
  9682. GGML_ASSERT(n_dims <= ne0);
  9683. GGML_ASSERT(n_dims % 2 == 0);
  9684. // rows per thread
  9685. const int dr = (nr + nth - 1)/nth;
  9686. // row range for this thread
  9687. const int ir0 = dr*ith;
  9688. const int ir1 = MIN(ir0 + dr, nr);
  9689. // row index used to determine which thread to use
  9690. int ir = 0;
  9691. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9692. const float inv_ndims = -1.f/n_dims;
  9693. float corr_dims[2];
  9694. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9695. const bool is_neox = mode & 2;
  9696. const bool is_glm = mode & 4;
  9697. // backward process uses inverse rotation by cos and sin.
  9698. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9699. // this essentially just switches the sign of sin.
  9700. const float sin_sign = forward ? 1.0f : -1.0f;
  9701. const int32_t * pos = (const int32_t *) src1->data;
  9702. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9703. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9704. const int64_t p = pos[i2];
  9705. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9706. if (ir++ < ir0) continue;
  9707. if (ir > ir1) break;
  9708. float theta_base = (float)p;
  9709. if (is_glm) {
  9710. theta_base = MIN(p, n_ctx - 2);
  9711. float block_theta = MAX(p - (n_ctx - 2), 0);
  9712. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9713. const float cos_theta = cosf(theta_base);
  9714. const float sin_theta = sinf(theta_base) * sin_sign;
  9715. const float cos_block_theta = cosf(block_theta);
  9716. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9717. theta_base *= theta_scale;
  9718. block_theta *= theta_scale;
  9719. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9720. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9721. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9722. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9723. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9724. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9725. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9726. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9727. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9728. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9729. }
  9730. } else if (!is_neox) {
  9731. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9732. float cos_theta, sin_theta;
  9733. rope_yarn(
  9734. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9735. );
  9736. sin_theta *= sin_sign;
  9737. theta_base *= theta_scale;
  9738. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9739. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9740. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9741. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9742. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9743. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9744. }
  9745. } else {
  9746. // TODO: this might be wrong for ne0 != n_dims - need double check
  9747. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9748. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9749. theta_base *= freq_scale;
  9750. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9751. if (ic < n_dims) {
  9752. const int64_t ib = 0;
  9753. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9754. float cur_rot = inv_ndims * ic - ib;
  9755. float cos_theta, sin_theta;
  9756. rope_yarn(
  9757. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9758. &cos_theta, &sin_theta
  9759. );
  9760. sin_theta *= sin_sign;
  9761. theta_base *= theta_scale;
  9762. const int64_t i0 = ib*n_dims + ic/2;
  9763. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9764. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9765. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9766. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9767. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9768. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9769. } else {
  9770. const int64_t i0 = ic;
  9771. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9772. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9773. dst_data[0] = src[0];
  9774. dst_data[1] = src[1];
  9775. }
  9776. }
  9777. }
  9778. }
  9779. }
  9780. }
  9781. }
  9782. static void ggml_compute_forward_rope(
  9783. const struct ggml_compute_params * params,
  9784. const struct ggml_tensor * src0,
  9785. const struct ggml_tensor * src1,
  9786. struct ggml_tensor * dst) {
  9787. switch (src0->type) {
  9788. case GGML_TYPE_F16:
  9789. {
  9790. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9791. } break;
  9792. case GGML_TYPE_F32:
  9793. {
  9794. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9795. } break;
  9796. default:
  9797. {
  9798. GGML_ASSERT(false);
  9799. } break;
  9800. }
  9801. }
  9802. // ggml_compute_forward_rope_back
  9803. static void ggml_compute_forward_rope_back(
  9804. const struct ggml_compute_params * params,
  9805. const struct ggml_tensor * src0,
  9806. const struct ggml_tensor * src1,
  9807. struct ggml_tensor * dst) {
  9808. switch (src0->type) {
  9809. case GGML_TYPE_F16:
  9810. {
  9811. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9812. } break;
  9813. case GGML_TYPE_F32:
  9814. {
  9815. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9816. } break;
  9817. default:
  9818. {
  9819. GGML_ASSERT(false);
  9820. } break;
  9821. }
  9822. }
  9823. // ggml_compute_forward_conv_transpose_1d
  9824. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9825. const struct ggml_compute_params * params,
  9826. const struct ggml_tensor * src0,
  9827. const struct ggml_tensor * src1,
  9828. struct ggml_tensor * dst) {
  9829. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9830. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9831. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9832. int64_t t0 = ggml_perf_time_us();
  9833. UNUSED(t0);
  9834. GGML_TENSOR_BINARY_OP_LOCALS
  9835. const int ith = params->ith;
  9836. const int nth = params->nth;
  9837. const int nk = ne00*ne01*ne02;
  9838. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9839. GGML_ASSERT(nb10 == sizeof(float));
  9840. if (params->type == GGML_TASK_INIT) {
  9841. memset(params->wdata, 0, params->wsize);
  9842. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9843. {
  9844. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9845. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9846. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9847. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9848. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9849. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9850. dst_data[i00*ne02 + i02] = src[i00];
  9851. }
  9852. }
  9853. }
  9854. }
  9855. // permute source data (src1) from (L x Cin) to (Cin x L)
  9856. {
  9857. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9858. ggml_fp16_t * dst_data = wdata;
  9859. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9860. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9861. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9862. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9863. }
  9864. }
  9865. }
  9866. // need to zero dst since we are accumulating into it
  9867. memset(dst->data, 0, ggml_nbytes(dst));
  9868. return;
  9869. }
  9870. if (params->type == GGML_TASK_FINALIZE) {
  9871. return;
  9872. }
  9873. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9874. // total rows in dst
  9875. const int nr = ne1;
  9876. // rows per thread
  9877. const int dr = (nr + nth - 1)/nth;
  9878. // row range for this thread
  9879. const int ir0 = dr*ith;
  9880. const int ir1 = MIN(ir0 + dr, nr);
  9881. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9882. ggml_fp16_t * const wdata_src = wdata + nk;
  9883. for (int i1 = ir0; i1 < ir1; i1++) {
  9884. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9885. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9886. for (int i10 = 0; i10 < ne10; i10++) {
  9887. const int i1n = i10*ne11;
  9888. for (int i00 = 0; i00 < ne00; i00++) {
  9889. float v = 0;
  9890. ggml_vec_dot_f16(ne02, &v,
  9891. (ggml_fp16_t *) wdata_src + i1n,
  9892. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9893. dst_data[i10*s0 + i00] += v;
  9894. }
  9895. }
  9896. }
  9897. }
  9898. static void ggml_compute_forward_conv_transpose_1d_f32(
  9899. const struct ggml_compute_params * params,
  9900. const struct ggml_tensor * src0,
  9901. const struct ggml_tensor * src1,
  9902. struct ggml_tensor * dst) {
  9903. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9904. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9905. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9906. int64_t t0 = ggml_perf_time_us();
  9907. UNUSED(t0);
  9908. GGML_TENSOR_BINARY_OP_LOCALS
  9909. const int ith = params->ith;
  9910. const int nth = params->nth;
  9911. const int nk = ne00*ne01*ne02;
  9912. GGML_ASSERT(nb00 == sizeof(float));
  9913. GGML_ASSERT(nb10 == sizeof(float));
  9914. if (params->type == GGML_TASK_INIT) {
  9915. memset(params->wdata, 0, params->wsize);
  9916. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9917. {
  9918. float * const wdata = (float *) params->wdata + 0;
  9919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9920. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9921. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9922. float * dst_data = wdata + i01*ne00*ne02;
  9923. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9924. dst_data[i00*ne02 + i02] = src[i00];
  9925. }
  9926. }
  9927. }
  9928. }
  9929. // prepare source data (src1)
  9930. {
  9931. float * const wdata = (float *) params->wdata + nk;
  9932. float * dst_data = wdata;
  9933. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9934. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9935. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9936. dst_data[i10*ne11 + i11] = src[i10];
  9937. }
  9938. }
  9939. }
  9940. // need to zero dst since we are accumulating into it
  9941. memset(dst->data, 0, ggml_nbytes(dst));
  9942. return;
  9943. }
  9944. if (params->type == GGML_TASK_FINALIZE) {
  9945. return;
  9946. }
  9947. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9948. // total rows in dst
  9949. const int nr = ne1;
  9950. // rows per thread
  9951. const int dr = (nr + nth - 1)/nth;
  9952. // row range for this thread
  9953. const int ir0 = dr*ith;
  9954. const int ir1 = MIN(ir0 + dr, nr);
  9955. float * const wdata = (float *) params->wdata + 0;
  9956. float * const wdata_src = wdata + nk;
  9957. for (int i1 = ir0; i1 < ir1; i1++) {
  9958. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9959. float * wdata_kernel = wdata + i1*ne02*ne00;
  9960. for (int i10 = 0; i10 < ne10; i10++) {
  9961. const int i1n = i10*ne11;
  9962. for (int i00 = 0; i00 < ne00; i00++) {
  9963. float v = 0;
  9964. ggml_vec_dot_f32(ne02, &v,
  9965. wdata_src + i1n,
  9966. wdata_kernel + i00*ne02);
  9967. dst_data[i10*s0 + i00] += v;
  9968. }
  9969. }
  9970. }
  9971. }
  9972. static void ggml_compute_forward_conv_transpose_1d(
  9973. const struct ggml_compute_params * params,
  9974. const struct ggml_tensor * src0,
  9975. const struct ggml_tensor * src1,
  9976. struct ggml_tensor * dst) {
  9977. switch (src0->type) {
  9978. case GGML_TYPE_F16:
  9979. {
  9980. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9981. } break;
  9982. case GGML_TYPE_F32:
  9983. {
  9984. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9985. } break;
  9986. default:
  9987. {
  9988. GGML_ASSERT(false);
  9989. } break;
  9990. }
  9991. }
  9992. // src0: kernel [OC, IC, KH, KW]
  9993. // src1: image [N, IC, IH, IW]
  9994. // dst: result [N, OH, OW, IC*KH*KW]
  9995. static void ggml_compute_forward_im2col_f16(
  9996. const struct ggml_compute_params * params,
  9997. const struct ggml_tensor * src0,
  9998. const struct ggml_tensor * src1,
  9999. struct ggml_tensor * dst) {
  10000. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10001. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10002. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10003. int64_t t0 = ggml_perf_time_us();
  10004. UNUSED(t0);
  10005. GGML_TENSOR_BINARY_OP_LOCALS;
  10006. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10007. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10008. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10009. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10010. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10011. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10012. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10013. const int ith = params->ith;
  10014. const int nth = params->nth;
  10015. const int64_t N = is_2D ? ne13 : ne12;
  10016. const int64_t IC = is_2D ? ne12 : ne11;
  10017. const int64_t IH = is_2D ? ne11 : 1;
  10018. const int64_t IW = ne10;
  10019. const int64_t KH = is_2D ? ne01 : 1;
  10020. const int64_t KW = ne00;
  10021. const int64_t OH = is_2D ? ne2 : 1;
  10022. const int64_t OW = ne1;
  10023. int ofs0 = is_2D ? nb13 : nb12;
  10024. int ofs1 = is_2D ? nb12 : nb11;
  10025. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10026. GGML_ASSERT(nb10 == sizeof(float));
  10027. if (params->type == GGML_TASK_INIT) {
  10028. return;
  10029. }
  10030. if (params->type == GGML_TASK_FINALIZE) {
  10031. return;
  10032. }
  10033. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10034. {
  10035. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10036. for (int64_t in = 0; in < N; in++) {
  10037. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10038. for (int64_t iow = 0; iow < OW; iow++) {
  10039. for (int64_t iic = ith; iic < IC; iic += nth) {
  10040. // micro kernel
  10041. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10042. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10043. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10044. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10045. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10046. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10047. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10048. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10049. } else {
  10050. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10051. }
  10052. }
  10053. }
  10054. }
  10055. }
  10056. }
  10057. }
  10058. }
  10059. }
  10060. static void ggml_compute_forward_im2col(
  10061. const struct ggml_compute_params * params,
  10062. const struct ggml_tensor * src0,
  10063. const struct ggml_tensor * src1,
  10064. struct ggml_tensor * dst) {
  10065. switch (src0->type) {
  10066. case GGML_TYPE_F16:
  10067. {
  10068. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10069. } break;
  10070. case GGML_TYPE_F32:
  10071. {
  10072. GGML_ASSERT(false);
  10073. } break;
  10074. default:
  10075. {
  10076. GGML_ASSERT(false);
  10077. } break;
  10078. }
  10079. }
  10080. // ggml_compute_forward_conv_transpose_2d
  10081. static void ggml_compute_forward_conv_transpose_2d(
  10082. const struct ggml_compute_params * params,
  10083. const struct ggml_tensor * src0,
  10084. const struct ggml_tensor * src1,
  10085. struct ggml_tensor * dst) {
  10086. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10087. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10088. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10089. int64_t t0 = ggml_perf_time_us();
  10090. UNUSED(t0);
  10091. GGML_TENSOR_BINARY_OP_LOCALS
  10092. const int ith = params->ith;
  10093. const int nth = params->nth;
  10094. const int nk = ne00*ne01*ne02*ne03;
  10095. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10096. GGML_ASSERT(nb10 == sizeof(float));
  10097. if (params->type == GGML_TASK_INIT) {
  10098. memset(params->wdata, 0, params->wsize);
  10099. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10100. {
  10101. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10102. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10103. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10104. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10105. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10106. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10107. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10108. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10109. }
  10110. }
  10111. }
  10112. }
  10113. }
  10114. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10115. {
  10116. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10117. for (int i12 = 0; i12 < ne12; i12++) {
  10118. for (int i11 = 0; i11 < ne11; i11++) {
  10119. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10120. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10121. for (int i10 = 0; i10 < ne10; i10++) {
  10122. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10123. }
  10124. }
  10125. }
  10126. }
  10127. memset(dst->data, 0, ggml_nbytes(dst));
  10128. return;
  10129. }
  10130. if (params->type == GGML_TASK_FINALIZE) {
  10131. return;
  10132. }
  10133. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10134. // total patches in dst
  10135. const int np = ne2;
  10136. // patches per thread
  10137. const int dp = (np + nth - 1)/nth;
  10138. // patch range for this thread
  10139. const int ip0 = dp*ith;
  10140. const int ip1 = MIN(ip0 + dp, np);
  10141. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10142. ggml_fp16_t * const wdata_src = wdata + nk;
  10143. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10144. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10145. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10146. for (int i11 = 0; i11 < ne11; i11++) {
  10147. for (int i10 = 0; i10 < ne10; i10++) {
  10148. const int i1n = i11*ne10*ne12 + i10*ne12;
  10149. for (int i01 = 0; i01 < ne01; i01++) {
  10150. for (int i00 = 0; i00 < ne00; i00++) {
  10151. float v = 0;
  10152. ggml_vec_dot_f16(ne03, &v,
  10153. wdata_src + i1n,
  10154. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10155. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10156. }
  10157. }
  10158. }
  10159. }
  10160. }
  10161. }
  10162. // ggml_compute_forward_pool_1d_sk_p0
  10163. static void ggml_compute_forward_pool_1d_sk_p0(
  10164. const struct ggml_compute_params * params,
  10165. const enum ggml_op_pool op,
  10166. const struct ggml_tensor * src,
  10167. const int k,
  10168. struct ggml_tensor * dst) {
  10169. assert(src->type == GGML_TYPE_F32);
  10170. assert(params->ith == 0);
  10171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10172. return;
  10173. }
  10174. const char * cdata = (const char *)src->data;
  10175. const char * const data_end = cdata + ggml_nbytes(src);
  10176. float * drow = (float *)dst->data;
  10177. const int64_t rs = dst->ne[0];
  10178. while (cdata < data_end) {
  10179. const float * const srow = (const float *)cdata;
  10180. int j = 0;
  10181. for (int64_t i = 0; i < rs; ++i) {
  10182. switch (op) {
  10183. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10184. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10185. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10186. }
  10187. for (int ki = 0; ki < k; ++ki) {
  10188. switch (op) {
  10189. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10190. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10191. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10192. }
  10193. ++j;
  10194. }
  10195. switch (op) {
  10196. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10197. case GGML_OP_POOL_MAX: break;
  10198. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10199. }
  10200. }
  10201. cdata += src->nb[1];
  10202. drow += rs;
  10203. }
  10204. }
  10205. // ggml_compute_forward_pool_1d
  10206. static void ggml_compute_forward_pool_1d(
  10207. const struct ggml_compute_params * params,
  10208. const struct ggml_tensor * src0,
  10209. struct ggml_tensor * dst) {
  10210. const int32_t * opts = (const int32_t *)dst->op_params;
  10211. enum ggml_op_pool op = opts[0];
  10212. const int k0 = opts[1];
  10213. const int s0 = opts[2];
  10214. const int p0 = opts[3];
  10215. GGML_ASSERT(p0 == 0); // padding not supported
  10216. GGML_ASSERT(k0 == s0); // only s = k supported
  10217. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10218. }
  10219. // ggml_compute_forward_pool_2d
  10220. static void ggml_compute_forward_pool_2d(
  10221. const struct ggml_compute_params * params,
  10222. const struct ggml_tensor * src,
  10223. struct ggml_tensor * dst) {
  10224. assert(src->type == GGML_TYPE_F32);
  10225. assert(params->ith == 0);
  10226. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10227. return;
  10228. }
  10229. const int32_t * opts = (const int32_t *)dst->op_params;
  10230. enum ggml_op_pool op = opts[0];
  10231. const int k0 = opts[1];
  10232. const int k1 = opts[2];
  10233. const int s0 = opts[3];
  10234. const int s1 = opts[4];
  10235. const int p0 = opts[5];
  10236. const int p1 = opts[6];
  10237. const char * cdata = (const char*)src->data;
  10238. const char * const data_end = cdata + ggml_nbytes(src);
  10239. const int64_t px = dst->ne[0];
  10240. const int64_t py = dst->ne[1];
  10241. const int64_t pa = px * py;
  10242. float * dplane = (float *)dst->data;
  10243. const int ka = k0 * k1;
  10244. const int offset0 = -p0;
  10245. const int offset1 = -p1;
  10246. while (cdata < data_end) {
  10247. for (int oy = 0; oy < py; ++oy) {
  10248. float * const drow = dplane + oy * px;
  10249. for (int ox = 0; ox < px; ++ox) {
  10250. float * const out = drow + ox;
  10251. switch (op) {
  10252. case GGML_OP_POOL_AVG: *out = 0; break;
  10253. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10254. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10255. }
  10256. const int ix = offset0 + ox * s0;
  10257. const int iy = offset1 + oy * s1;
  10258. for (int ky = 0; ky < k1; ++ky) {
  10259. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10260. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10261. for (int kx = 0; kx < k0; ++kx) {
  10262. int j = ix + kx;
  10263. if (j < 0 || j >= src->ne[0]) continue;
  10264. switch (op) {
  10265. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10266. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10267. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10268. }
  10269. }
  10270. }
  10271. switch (op) {
  10272. case GGML_OP_POOL_AVG: *out /= ka; break;
  10273. case GGML_OP_POOL_MAX: break;
  10274. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10275. }
  10276. }
  10277. }
  10278. cdata += src->nb[2];
  10279. dplane += pa;
  10280. }
  10281. }
  10282. // ggml_compute_forward_upscale
  10283. static void ggml_compute_forward_upscale_f32(
  10284. const struct ggml_compute_params * params,
  10285. const struct ggml_tensor * src0,
  10286. struct ggml_tensor * dst) {
  10287. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10288. return;
  10289. }
  10290. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10291. const int ith = params->ith;
  10292. const int nth = params->nth;
  10293. GGML_TENSOR_UNARY_OP_LOCALS
  10294. const int scale_factor = dst->op_params[0];
  10295. // TODO: optimize
  10296. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10297. const int64_t i03 = i3;
  10298. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10299. const int64_t i02 = i2;
  10300. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10301. const int64_t i01 = i1 / scale_factor;
  10302. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10303. const int64_t i00 = i0 / scale_factor;
  10304. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10305. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10306. *y = *x;
  10307. }
  10308. }
  10309. }
  10310. }
  10311. }
  10312. static void ggml_compute_forward_upscale(
  10313. const struct ggml_compute_params * params,
  10314. const struct ggml_tensor * src0,
  10315. struct ggml_tensor * dst) {
  10316. switch (src0->type) {
  10317. case GGML_TYPE_F32:
  10318. {
  10319. ggml_compute_forward_upscale_f32(params, src0, dst);
  10320. } break;
  10321. default:
  10322. {
  10323. GGML_ASSERT(false);
  10324. } break;
  10325. }
  10326. }
  10327. // ggml_compute_forward_pad
  10328. static void ggml_compute_forward_pad_f32(
  10329. const struct ggml_compute_params * params,
  10330. const struct ggml_tensor * src0,
  10331. struct ggml_tensor * dst) {
  10332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10333. return;
  10334. }
  10335. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10336. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10337. const int ith = params->ith;
  10338. const int nth = params->nth;
  10339. GGML_TENSOR_UNARY_OP_LOCALS
  10340. float * dst_ptr = (float *) dst->data;
  10341. // TODO: optimize
  10342. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10343. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10344. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10345. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10346. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10347. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10348. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10349. dst_ptr[dst_idx] = *src_ptr;
  10350. } else {
  10351. dst_ptr[dst_idx] = 0;
  10352. }
  10353. }
  10354. }
  10355. }
  10356. }
  10357. }
  10358. static void ggml_compute_forward_pad(
  10359. const struct ggml_compute_params * params,
  10360. const struct ggml_tensor * src0,
  10361. struct ggml_tensor * dst) {
  10362. switch (src0->type) {
  10363. case GGML_TYPE_F32:
  10364. {
  10365. ggml_compute_forward_pad_f32(params, src0, dst);
  10366. } break;
  10367. default:
  10368. {
  10369. GGML_ASSERT(false);
  10370. } break;
  10371. }
  10372. }
  10373. // ggml_compute_forward_argsort
  10374. static void ggml_compute_forward_argsort_f32(
  10375. const struct ggml_compute_params * params,
  10376. const struct ggml_tensor * src0,
  10377. struct ggml_tensor * dst) {
  10378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10379. return;
  10380. }
  10381. GGML_TENSOR_UNARY_OP_LOCALS
  10382. GGML_ASSERT(nb0 == sizeof(float));
  10383. const int ith = params->ith;
  10384. const int nth = params->nth;
  10385. const int64_t nr = ggml_nrows(src0);
  10386. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10387. for (int64_t i = ith; i < nr; i += nth) {
  10388. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10389. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10390. for (int64_t j = 0; j < ne0; j++) {
  10391. dst_data[j] = j;
  10392. }
  10393. // C doesn't have a functional sort, so we do a bubble sort instead
  10394. for (int64_t j = 0; j < ne0; j++) {
  10395. for (int64_t k = j + 1; k < ne0; k++) {
  10396. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10397. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10398. int32_t tmp = dst_data[j];
  10399. dst_data[j] = dst_data[k];
  10400. dst_data[k] = tmp;
  10401. }
  10402. }
  10403. }
  10404. }
  10405. }
  10406. static void ggml_compute_forward_argsort(
  10407. const struct ggml_compute_params * params,
  10408. const struct ggml_tensor * src0,
  10409. struct ggml_tensor * dst) {
  10410. switch (src0->type) {
  10411. case GGML_TYPE_F32:
  10412. {
  10413. ggml_compute_forward_argsort_f32(params, src0, dst);
  10414. } break;
  10415. default:
  10416. {
  10417. GGML_ASSERT(false);
  10418. } break;
  10419. }
  10420. }
  10421. // ggml_compute_forward_flash_attn
  10422. static void ggml_compute_forward_flash_attn_f32(
  10423. const struct ggml_compute_params * params,
  10424. const struct ggml_tensor * q,
  10425. const struct ggml_tensor * k,
  10426. const struct ggml_tensor * v,
  10427. const bool masked,
  10428. struct ggml_tensor * dst) {
  10429. int64_t t0 = ggml_perf_time_us();
  10430. UNUSED(t0);
  10431. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10432. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10433. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10434. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10435. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10436. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10437. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10438. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10439. const int ith = params->ith;
  10440. const int nth = params->nth;
  10441. const int64_t D = neq0;
  10442. const int64_t N = neq1;
  10443. const int64_t P = nek1 - N;
  10444. const int64_t M = P + N;
  10445. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10446. GGML_ASSERT(ne0 == D);
  10447. GGML_ASSERT(ne1 == N);
  10448. GGML_ASSERT(P >= 0);
  10449. GGML_ASSERT(nbq0 == sizeof(float));
  10450. GGML_ASSERT(nbk0 == sizeof(float));
  10451. GGML_ASSERT(nbv0 == sizeof(float));
  10452. GGML_ASSERT(neq0 == D);
  10453. GGML_ASSERT(nek0 == D);
  10454. GGML_ASSERT(nev1 == D);
  10455. GGML_ASSERT(neq1 == N);
  10456. GGML_ASSERT(nek1 == N + P);
  10457. GGML_ASSERT(nev1 == D);
  10458. // dst cannot be transposed or permuted
  10459. GGML_ASSERT(nb0 == sizeof(float));
  10460. GGML_ASSERT(nb0 <= nb1);
  10461. GGML_ASSERT(nb1 <= nb2);
  10462. GGML_ASSERT(nb2 <= nb3);
  10463. if (params->type == GGML_TASK_INIT) {
  10464. return;
  10465. }
  10466. if (params->type == GGML_TASK_FINALIZE) {
  10467. return;
  10468. }
  10469. // parallelize by q rows using ggml_vec_dot_f32
  10470. // total rows in q
  10471. const int nr = neq1*neq2*neq3;
  10472. // rows per thread
  10473. const int dr = (nr + nth - 1)/nth;
  10474. // row range for this thread
  10475. const int ir0 = dr*ith;
  10476. const int ir1 = MIN(ir0 + dr, nr);
  10477. const float scale = 1.0f/sqrtf(D);
  10478. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10479. for (int ir = ir0; ir < ir1; ++ir) {
  10480. // q indices
  10481. const int iq3 = ir/(neq2*neq1);
  10482. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10483. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10484. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10485. for (int i = M; i < Mup; ++i) {
  10486. S[i] = -INFINITY;
  10487. }
  10488. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10489. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10490. // k indices
  10491. const int ik3 = iq3;
  10492. const int ik2 = iq2 % nek2;
  10493. const int ik1 = ic;
  10494. // S indices
  10495. const int i1 = ik1;
  10496. ggml_vec_dot_f32(neq0,
  10497. S + i1,
  10498. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10499. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10500. }
  10501. // scale
  10502. ggml_vec_scale_f32(masked_begin, S, scale);
  10503. for (int64_t i = masked_begin; i < M; i++) {
  10504. S[i] = -INFINITY;
  10505. }
  10506. // softmax
  10507. // exclude known -INF S[..] values from max and loop
  10508. // dont forget to set their SW values to zero
  10509. {
  10510. float max = -INFINITY;
  10511. ggml_vec_max_f32(masked_begin, &max, S);
  10512. ggml_float sum = 0.0;
  10513. {
  10514. #ifdef GGML_SOFT_MAX_ACCELERATE
  10515. max = -max;
  10516. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10517. vvexpf(S, S, &Mup);
  10518. ggml_vec_sum_f32(Mup, &sum, S);
  10519. #else
  10520. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10521. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10522. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10523. if (i >= masked_begin) {
  10524. break;
  10525. }
  10526. float * SS = S + i;
  10527. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10528. if (i + j >= masked_begin) {
  10529. break;
  10530. } else if (SS[j] == -INFINITY) {
  10531. SS[j] = 0.0f;
  10532. } else {
  10533. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10534. const float val = expf(SS[j] - max);
  10535. #else
  10536. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10537. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10538. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10539. #endif
  10540. sump[j] += (ggml_float)val;
  10541. SS[j] = val;
  10542. }
  10543. }
  10544. }
  10545. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10546. sum += sump[i];
  10547. }
  10548. #endif
  10549. }
  10550. assert(sum > 0.0);
  10551. sum = 1.0/sum;
  10552. ggml_vec_scale_f32(masked_begin, S, sum);
  10553. #ifndef NDEBUG
  10554. for (int i = 0; i < masked_begin; ++i) {
  10555. assert(!isnan(S[i]));
  10556. assert(!isinf(S[i]));
  10557. }
  10558. #endif
  10559. }
  10560. for (int64_t ic = 0; ic < nev1; ++ic) {
  10561. // dst indices
  10562. const int i1 = iq1;
  10563. const int i2 = iq2;
  10564. const int i3 = iq3;
  10565. // v indices
  10566. const int iv2 = iq2 % nev2;
  10567. const int iv3 = iq3;
  10568. ggml_vec_dot_f32(masked_begin,
  10569. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10570. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10571. S);
  10572. }
  10573. }
  10574. }
  10575. static void ggml_compute_forward_flash_attn_f16(
  10576. const struct ggml_compute_params * params,
  10577. const struct ggml_tensor * q,
  10578. const struct ggml_tensor * k,
  10579. const struct ggml_tensor * v,
  10580. const bool masked,
  10581. struct ggml_tensor * dst) {
  10582. int64_t t0 = ggml_perf_time_us();
  10583. UNUSED(t0);
  10584. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10585. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10586. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10587. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10588. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10589. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10590. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10591. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10592. const int ith = params->ith;
  10593. const int nth = params->nth;
  10594. const int64_t D = neq0;
  10595. const int64_t N = neq1;
  10596. const int64_t P = nek1 - N;
  10597. const int64_t M = P + N;
  10598. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10599. GGML_ASSERT(ne0 == D);
  10600. GGML_ASSERT(ne1 == N);
  10601. GGML_ASSERT(P >= 0);
  10602. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10603. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10604. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10605. GGML_ASSERT(neq0 == D);
  10606. GGML_ASSERT(nek0 == D);
  10607. GGML_ASSERT(nev1 == D);
  10608. GGML_ASSERT(neq1 == N);
  10609. GGML_ASSERT(nek1 == N + P);
  10610. GGML_ASSERT(nev1 == D);
  10611. // dst cannot be transposed or permuted
  10612. GGML_ASSERT(nb0 == sizeof(float));
  10613. GGML_ASSERT(nb0 <= nb1);
  10614. GGML_ASSERT(nb1 <= nb2);
  10615. GGML_ASSERT(nb2 <= nb3);
  10616. if (params->type == GGML_TASK_INIT) {
  10617. return;
  10618. }
  10619. if (params->type == GGML_TASK_FINALIZE) {
  10620. return;
  10621. }
  10622. // parallelize by q rows using ggml_vec_dot_f32
  10623. // total rows in q
  10624. const int nr = neq1*neq2*neq3;
  10625. // rows per thread
  10626. const int dr = (nr + nth - 1)/nth;
  10627. // row range for this thread
  10628. const int ir0 = dr*ith;
  10629. const int ir1 = MIN(ir0 + dr, nr);
  10630. const float scale = 1.0f/sqrtf(D);
  10631. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10632. for (int ir = ir0; ir < ir1; ++ir) {
  10633. // q indices
  10634. const int iq3 = ir/(neq2*neq1);
  10635. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10636. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10637. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10638. for (int i = M; i < Mup; ++i) {
  10639. S[i] = -INFINITY;
  10640. }
  10641. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10642. for (int64_t ic = 0; ic < nek1; ++ic) {
  10643. // k indices
  10644. const int ik3 = iq3;
  10645. const int ik2 = iq2 % nek2;
  10646. const int ik1 = ic;
  10647. // S indices
  10648. const int i1 = ik1;
  10649. ggml_vec_dot_f16(neq0,
  10650. S + i1,
  10651. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10652. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10653. }
  10654. } else {
  10655. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10656. // k indices
  10657. const int ik3 = iq3;
  10658. const int ik2 = iq2 % nek2;
  10659. const int ik1 = ic;
  10660. // S indices
  10661. const int i1 = ik1;
  10662. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10663. S + i1,
  10664. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10665. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10666. }
  10667. }
  10668. // scale
  10669. ggml_vec_scale_f32(nek1, S, scale);
  10670. if (masked) {
  10671. for (int64_t i = P; i < M; i++) {
  10672. if (i > P + iq1) {
  10673. S[i] = -INFINITY;
  10674. }
  10675. }
  10676. }
  10677. // softmax
  10678. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10679. // dont forget to set their S values to zero
  10680. {
  10681. float max = -INFINITY;
  10682. ggml_vec_max_f32(M, &max, S);
  10683. ggml_float sum = 0.0;
  10684. {
  10685. #ifdef GGML_SOFT_MAX_ACCELERATE
  10686. max = -max;
  10687. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10688. vvexpf(S, S, &Mup);
  10689. ggml_vec_sum_f32(Mup, &sum, S);
  10690. #else
  10691. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10692. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10693. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10694. float * SS = S + i;
  10695. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10696. if (SS[j] == -INFINITY) {
  10697. SS[j] = 0.0f;
  10698. } else {
  10699. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10700. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10701. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10702. sump[j] += (ggml_float)val;
  10703. SS[j] = val;
  10704. }
  10705. }
  10706. }
  10707. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10708. sum += sump[i];
  10709. }
  10710. #endif
  10711. }
  10712. assert(sum > 0.0);
  10713. sum = 1.0/sum;
  10714. ggml_vec_scale_f32(M, S, sum);
  10715. #ifndef NDEBUG
  10716. for (int i = 0; i < M; ++i) {
  10717. assert(!isnan(S[i]));
  10718. assert(!isinf(S[i]));
  10719. }
  10720. #endif
  10721. }
  10722. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10723. for (int64_t i = 0; i < M; i++) {
  10724. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10725. }
  10726. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10727. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10728. for (int64_t ic = 0; ic < nev1; ++ic) {
  10729. // dst indices
  10730. const int i1 = iq1;
  10731. const int i2 = iq2;
  10732. const int i3 = iq3;
  10733. // v indices
  10734. const int iv2 = iq2 % nev2;
  10735. const int iv3 = iq3;
  10736. ggml_vec_dot_f16(nev0,
  10737. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10738. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10739. S16);
  10740. }
  10741. } else {
  10742. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10743. // dst indices
  10744. const int i1 = iq1;
  10745. const int i2 = iq2;
  10746. const int i3 = iq3;
  10747. // v indices
  10748. const int iv2 = iq2 % nev2;
  10749. const int iv3 = iq3;
  10750. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10751. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10752. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10753. S16);
  10754. }
  10755. }
  10756. }
  10757. }
  10758. static void ggml_compute_forward_flash_attn(
  10759. const struct ggml_compute_params * params,
  10760. const struct ggml_tensor * q,
  10761. const struct ggml_tensor * k,
  10762. const struct ggml_tensor * v,
  10763. const bool masked,
  10764. struct ggml_tensor * dst) {
  10765. switch (q->type) {
  10766. case GGML_TYPE_F16:
  10767. {
  10768. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10769. } break;
  10770. case GGML_TYPE_F32:
  10771. {
  10772. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10773. } break;
  10774. default:
  10775. {
  10776. GGML_ASSERT(false);
  10777. } break;
  10778. }
  10779. }
  10780. // ggml_compute_forward_flash_ff
  10781. static void ggml_compute_forward_flash_ff_f16(
  10782. const struct ggml_compute_params * params,
  10783. const struct ggml_tensor * a, // F16
  10784. const struct ggml_tensor * b0, // F16 fc_w
  10785. const struct ggml_tensor * b1, // F32 fc_b
  10786. const struct ggml_tensor * c0, // F16 proj_w
  10787. const struct ggml_tensor * c1, // F32 proj_b
  10788. struct ggml_tensor * dst) {
  10789. int64_t t0 = ggml_perf_time_us();
  10790. UNUSED(t0);
  10791. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10792. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10793. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10794. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10795. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10796. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10797. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10798. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10799. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10800. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10801. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10802. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10803. const int ith = params->ith;
  10804. const int nth = params->nth;
  10805. const int64_t D = nea0;
  10806. //const int64_t N = nea1;
  10807. const int64_t M = neb01;
  10808. GGML_ASSERT(ne0 == nea0);
  10809. GGML_ASSERT(ne1 == nea1);
  10810. GGML_ASSERT(ne2 == nea2);
  10811. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10812. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10813. GGML_ASSERT(nbb10 == sizeof(float));
  10814. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10815. GGML_ASSERT(nbc10 == sizeof(float));
  10816. GGML_ASSERT(neb00 == D);
  10817. GGML_ASSERT(neb01 == M);
  10818. GGML_ASSERT(neb10 == M);
  10819. GGML_ASSERT(neb11 == 1);
  10820. GGML_ASSERT(nec00 == M);
  10821. GGML_ASSERT(nec01 == D);
  10822. GGML_ASSERT(nec10 == D);
  10823. GGML_ASSERT(nec11 == 1);
  10824. // dst cannot be transposed or permuted
  10825. GGML_ASSERT(nb0 == sizeof(float));
  10826. GGML_ASSERT(nb0 <= nb1);
  10827. GGML_ASSERT(nb1 <= nb2);
  10828. GGML_ASSERT(nb2 <= nb3);
  10829. if (params->type == GGML_TASK_INIT) {
  10830. return;
  10831. }
  10832. if (params->type == GGML_TASK_FINALIZE) {
  10833. return;
  10834. }
  10835. // parallelize by a rows using ggml_vec_dot_f32
  10836. // total rows in a
  10837. const int nr = nea1*nea2*nea3;
  10838. // rows per thread
  10839. const int dr = (nr + nth - 1)/nth;
  10840. // row range for this thread
  10841. const int ir0 = dr*ith;
  10842. const int ir1 = MIN(ir0 + dr, nr);
  10843. for (int ir = ir0; ir < ir1; ++ir) {
  10844. // a indices
  10845. const int ia3 = ir/(nea2*nea1);
  10846. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10847. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10848. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10849. for (int64_t ic = 0; ic < neb01; ++ic) {
  10850. // b0 indices
  10851. const int ib03 = ia3;
  10852. const int ib02 = ia2;
  10853. const int ib01 = ic;
  10854. // S indices
  10855. const int i1 = ib01;
  10856. ggml_vec_dot_f16(nea0,
  10857. S + i1,
  10858. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10859. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10860. }
  10861. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10862. //ggml_vec_gelu_f32(neb01, S, S);
  10863. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10864. for (int64_t i = 0; i < M; i++) {
  10865. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10866. }
  10867. ggml_vec_gelu_f16(neb01, S16, S16);
  10868. {
  10869. // dst indices
  10870. const int i1 = ia1;
  10871. const int i2 = ia2;
  10872. const int i3 = ia3;
  10873. for (int64_t ic = 0; ic < nec01; ++ic) {
  10874. ggml_vec_dot_f16(neb01,
  10875. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10876. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10877. S16);
  10878. }
  10879. ggml_vec_add_f32(nec01,
  10880. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10881. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10882. (float *) c1->data);
  10883. }
  10884. }
  10885. }
  10886. static void ggml_compute_forward_flash_ff(
  10887. const struct ggml_compute_params * params,
  10888. const struct ggml_tensor * a,
  10889. const struct ggml_tensor * b0,
  10890. const struct ggml_tensor * b1,
  10891. const struct ggml_tensor * c0,
  10892. const struct ggml_tensor * c1,
  10893. struct ggml_tensor * dst) {
  10894. switch (b0->type) {
  10895. case GGML_TYPE_F16:
  10896. {
  10897. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10898. } break;
  10899. case GGML_TYPE_F32:
  10900. {
  10901. GGML_ASSERT(false); // TODO
  10902. } break;
  10903. default:
  10904. {
  10905. GGML_ASSERT(false);
  10906. } break;
  10907. }
  10908. }
  10909. // ggml_compute_forward_flash_attn_back
  10910. static void ggml_compute_forward_flash_attn_back_f32(
  10911. const struct ggml_compute_params * params,
  10912. const struct ggml_tensor * q,
  10913. const struct ggml_tensor * k,
  10914. const struct ggml_tensor * v,
  10915. const struct ggml_tensor * d,
  10916. const bool masked,
  10917. struct ggml_tensor * dst) {
  10918. int64_t t0 = ggml_perf_time_us();
  10919. UNUSED(t0);
  10920. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10921. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10922. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10923. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10924. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10925. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10926. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10927. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10928. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10929. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10930. const int ith = params->ith;
  10931. const int nth = params->nth;
  10932. const int64_t D = neq0;
  10933. const int64_t N = neq1;
  10934. const int64_t P = nek1 - N;
  10935. const int64_t M = P + N;
  10936. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10937. const int mxDM = MAX(D, Mup);
  10938. // GGML_ASSERT(ne0 == D);
  10939. // GGML_ASSERT(ne1 == N);
  10940. GGML_ASSERT(P >= 0);
  10941. GGML_ASSERT(nbq0 == sizeof(float));
  10942. GGML_ASSERT(nbk0 == sizeof(float));
  10943. GGML_ASSERT(nbv0 == sizeof(float));
  10944. GGML_ASSERT(neq0 == D);
  10945. GGML_ASSERT(nek0 == D);
  10946. GGML_ASSERT(nev1 == D);
  10947. GGML_ASSERT(ned0 == D);
  10948. GGML_ASSERT(neq1 == N);
  10949. GGML_ASSERT(nek1 == N + P);
  10950. GGML_ASSERT(nev1 == D);
  10951. GGML_ASSERT(ned1 == N);
  10952. // dst cannot be transposed or permuted
  10953. GGML_ASSERT(nb0 == sizeof(float));
  10954. GGML_ASSERT(nb0 <= nb1);
  10955. GGML_ASSERT(nb1 <= nb2);
  10956. GGML_ASSERT(nb2 <= nb3);
  10957. if (params->type == GGML_TASK_INIT) {
  10958. if (ith == 0) {
  10959. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10960. }
  10961. return;
  10962. }
  10963. if (params->type == GGML_TASK_FINALIZE) {
  10964. return;
  10965. }
  10966. const int64_t elem_q = ggml_nelements(q);
  10967. const int64_t elem_k = ggml_nelements(k);
  10968. enum ggml_type result_type = dst->type;
  10969. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10970. const size_t tsize = ggml_type_size(result_type);
  10971. const size_t offs_q = 0;
  10972. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10973. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10974. void * grad_q = (char *) dst->data;
  10975. void * grad_k = (char *) dst->data + offs_k;
  10976. void * grad_v = (char *) dst->data + offs_v;
  10977. const size_t nbgq1 = nb0*neq0;
  10978. const size_t nbgq2 = nb0*neq0*neq1;
  10979. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10980. const size_t nbgk1 = nb0*nek0;
  10981. const size_t nbgk2 = nb0*nek0*nek1;
  10982. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10983. const size_t nbgv1 = nb0*nev0;
  10984. const size_t nbgv2 = nb0*nev0*nev1;
  10985. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10986. // parallelize by k rows using ggml_vec_dot_f32
  10987. // total rows in k
  10988. const int nr = nek2*nek3;
  10989. // rows per thread
  10990. const int dr = (nr + nth - 1)/nth;
  10991. // row range for this thread
  10992. const int ir0 = dr*ith;
  10993. const int ir1 = MIN(ir0 + dr, nr);
  10994. const float scale = 1.0f/sqrtf(D);
  10995. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10996. // how often k2 (and v2) is repeated in q2
  10997. int nrep = neq2/nek2;
  10998. for (int ir = ir0; ir < ir1; ++ir) {
  10999. // q indices
  11000. const int ik3 = ir/(nek2);
  11001. const int ik2 = ir - ik3*nek2;
  11002. const int iq3 = ik3;
  11003. const int id3 = ik3;
  11004. const int iv3 = ik3;
  11005. const int iv2 = ik2;
  11006. for (int irep = 0; irep < nrep; ++irep) {
  11007. const int iq2 = ik2 + irep*nek2;
  11008. const int id2 = iq2;
  11009. // (ik2 + irep*nek2) % nek2 == ik2
  11010. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11011. const int id1 = iq1;
  11012. // not sure about CACHE_LINE_SIZE_F32..
  11013. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11014. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11015. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11016. for (int i = M; i < Mup; ++i) {
  11017. S[i] = -INFINITY;
  11018. }
  11019. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11020. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11021. // k indices
  11022. const int ik1 = ic;
  11023. // S indices
  11024. const int i1 = ik1;
  11025. ggml_vec_dot_f32(neq0,
  11026. S + i1,
  11027. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11028. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11029. }
  11030. // scale
  11031. ggml_vec_scale_f32(masked_begin, S, scale);
  11032. for (int64_t i = masked_begin; i < M; i++) {
  11033. S[i] = -INFINITY;
  11034. }
  11035. // softmax
  11036. // exclude known -INF S[..] values from max and loop
  11037. // dont forget to set their SM values to zero
  11038. {
  11039. float max = -INFINITY;
  11040. ggml_vec_max_f32(masked_begin, &max, S);
  11041. ggml_float sum = 0.0;
  11042. {
  11043. #ifdef GGML_SOFT_MAX_ACCELERATE
  11044. max = -max;
  11045. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11046. vvexpf(SM, SM, &Mup);
  11047. ggml_vec_sum_f32(Mup, &sum, SM);
  11048. #else
  11049. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11050. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11051. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11052. if (i >= masked_begin) {
  11053. break;
  11054. }
  11055. float * SR = S + i;
  11056. float * SW = SM + i;
  11057. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11058. if (i + j >= masked_begin) {
  11059. break;
  11060. } else if (SR[j] == -INFINITY) {
  11061. SW[j] = 0.0f;
  11062. } else {
  11063. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11064. const float val = expf(SR[j] - max);
  11065. #else
  11066. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11067. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11068. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11069. #endif
  11070. sump[j] += (ggml_float)val;
  11071. SW[j] = val;
  11072. }
  11073. }
  11074. }
  11075. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11076. sum += sump[i];
  11077. }
  11078. #endif
  11079. }
  11080. assert(sum > 0.0);
  11081. sum = 1.0/sum;
  11082. ggml_vec_scale_f32(masked_begin, SM, sum);
  11083. }
  11084. // step-by-step explanation
  11085. {
  11086. // forward-process shape grads from backward process
  11087. // parallel_for ik2,ik3:
  11088. // for irep:
  11089. // iq2 = ik2 + irep*nek2
  11090. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11091. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11092. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11093. // for iq1:
  11094. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11095. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11096. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11097. // S0 = -Inf [D,1,1,1]
  11098. // ~S1[i] = dot(kcur[:D,i], qcur)
  11099. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11100. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11101. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11102. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11103. // ~S5[i] = dot(vcur[:,i], S4)
  11104. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11105. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11106. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11107. // dst backward-/ grad[dst] = d
  11108. //
  11109. // output gradients with their dependencies:
  11110. //
  11111. // grad[kcur] = grad[S1].T @ qcur
  11112. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11113. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11114. // grad[S4] = grad[S5] @ vcur
  11115. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11116. // grad[qcur] = grad[S1] @ kcur
  11117. // grad[vcur] = grad[S5].T @ S4
  11118. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11119. //
  11120. // in post-order:
  11121. //
  11122. // S1 = qcur @ kcur.T
  11123. // S2 = S1 * scale
  11124. // S3 = diag_mask_inf(S2, P)
  11125. // S4 = softmax(S3)
  11126. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11127. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11128. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11129. // grad[qcur] = grad[S1] @ kcur
  11130. // grad[kcur] = grad[S1].T @ qcur
  11131. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11132. //
  11133. // using less variables (SM=S4):
  11134. //
  11135. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11136. // SM = softmax(S)
  11137. // S = d[:D,iq1,iq2,iq3] @ vcur
  11138. // dot_SM_gradSM = dot(SM, S)
  11139. // S = SM * (S - dot(SM, S))
  11140. // S = diag_mask_zero(S, P) * scale
  11141. //
  11142. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11143. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11144. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11145. }
  11146. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11147. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11148. // for ic:
  11149. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11150. // exclude known future zero S[..] values from operation
  11151. ggml_vec_set_f32(masked_begin, S, 0);
  11152. for (int64_t ic = 0; ic < D; ++ic) {
  11153. ggml_vec_mad_f32(masked_begin,
  11154. S,
  11155. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11156. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11157. }
  11158. // S = SM * (S - dot(SM, S))
  11159. float dot_SM_gradSM = 0;
  11160. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11161. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11162. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11163. // S = diag_mask_zero(S, P) * scale
  11164. // already done by above ggml_vec_set_f32
  11165. // exclude known zero S[..] values from operation
  11166. ggml_vec_scale_f32(masked_begin, S, scale);
  11167. // S shape [M,1]
  11168. // SM shape [M,1]
  11169. // kcur shape [D,M]
  11170. // qcur shape [D,1]
  11171. // vcur shape [M,D]
  11172. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11173. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11174. // for ic:
  11175. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11176. // exclude known zero S[..] values from loop
  11177. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11178. ggml_vec_mad_f32(D,
  11179. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11180. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11181. S[ic]);
  11182. }
  11183. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11184. // for ic:
  11185. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11186. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11187. // exclude known zero S[..] values from loop
  11188. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11189. ggml_vec_mad_f32(D,
  11190. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11191. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11192. S[ic]);
  11193. }
  11194. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11195. // for ic:
  11196. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11197. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11198. // exclude known zero SM[..] values from mad
  11199. for (int64_t ic = 0; ic < D; ++ic) {
  11200. ggml_vec_mad_f32(masked_begin,
  11201. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11202. SM,
  11203. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11204. }
  11205. }
  11206. }
  11207. }
  11208. }
  11209. static void ggml_compute_forward_flash_attn_back(
  11210. const struct ggml_compute_params * params,
  11211. const struct ggml_tensor * q,
  11212. const struct ggml_tensor * k,
  11213. const struct ggml_tensor * v,
  11214. const struct ggml_tensor * d,
  11215. const bool masked,
  11216. struct ggml_tensor * dst) {
  11217. switch (q->type) {
  11218. case GGML_TYPE_F32:
  11219. {
  11220. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11221. } break;
  11222. default:
  11223. {
  11224. GGML_ASSERT(false);
  11225. } break;
  11226. }
  11227. }
  11228. // ggml_compute_forward_win_part
  11229. static void ggml_compute_forward_win_part_f32(
  11230. const struct ggml_compute_params * params,
  11231. const struct ggml_tensor * src0,
  11232. struct ggml_tensor * dst) {
  11233. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11234. return;
  11235. }
  11236. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11237. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11238. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11239. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11240. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11241. assert(ne00 == ne0);
  11242. assert(ne3 == nep0*nep1);
  11243. // TODO: optimize / multi-thread
  11244. for (int py = 0; py < nep1; ++py) {
  11245. for (int px = 0; px < nep0; ++px) {
  11246. const int64_t i3 = py*nep0 + px;
  11247. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11248. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11249. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11250. const int64_t i02 = py*w + i2;
  11251. const int64_t i01 = px*w + i1;
  11252. const int64_t i00 = i0;
  11253. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11254. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11255. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11256. ((float *) dst->data)[i] = 0.0f;
  11257. } else {
  11258. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11259. }
  11260. }
  11261. }
  11262. }
  11263. }
  11264. }
  11265. }
  11266. static void ggml_compute_forward_win_part(
  11267. const struct ggml_compute_params * params,
  11268. const struct ggml_tensor * src0,
  11269. struct ggml_tensor * dst) {
  11270. switch (src0->type) {
  11271. case GGML_TYPE_F32:
  11272. {
  11273. ggml_compute_forward_win_part_f32(params, src0, dst);
  11274. } break;
  11275. default:
  11276. {
  11277. GGML_ASSERT(false);
  11278. } break;
  11279. }
  11280. }
  11281. // ggml_compute_forward_win_unpart
  11282. static void ggml_compute_forward_win_unpart_f32(
  11283. const struct ggml_compute_params * params,
  11284. const struct ggml_tensor * src0,
  11285. struct ggml_tensor * dst) {
  11286. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11287. return;
  11288. }
  11289. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11290. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11291. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11292. // padding
  11293. const int px = (w - ne1%w)%w;
  11294. //const int py = (w - ne2%w)%w;
  11295. const int npx = (px + ne1)/w;
  11296. //const int npy = (py + ne2)/w;
  11297. assert(ne0 == ne00);
  11298. // TODO: optimize / multi-thread
  11299. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11300. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11301. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11302. const int ip2 = i2/w;
  11303. const int ip1 = i1/w;
  11304. const int64_t i02 = i2%w;
  11305. const int64_t i01 = i1%w;
  11306. const int64_t i00 = i0;
  11307. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11308. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11309. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11310. }
  11311. }
  11312. }
  11313. }
  11314. static void ggml_compute_forward_win_unpart(
  11315. const struct ggml_compute_params * params,
  11316. const struct ggml_tensor * src0,
  11317. struct ggml_tensor * dst) {
  11318. switch (src0->type) {
  11319. case GGML_TYPE_F32:
  11320. {
  11321. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11322. } break;
  11323. default:
  11324. {
  11325. GGML_ASSERT(false);
  11326. } break;
  11327. }
  11328. }
  11329. //gmml_compute_forward_unary
  11330. static void ggml_compute_forward_unary(
  11331. const struct ggml_compute_params * params,
  11332. const struct ggml_tensor * src0,
  11333. struct ggml_tensor * dst) {
  11334. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11335. switch (op) {
  11336. case GGML_UNARY_OP_ABS:
  11337. {
  11338. ggml_compute_forward_abs(params, src0, dst);
  11339. } break;
  11340. case GGML_UNARY_OP_SGN:
  11341. {
  11342. ggml_compute_forward_sgn(params, src0, dst);
  11343. } break;
  11344. case GGML_UNARY_OP_NEG:
  11345. {
  11346. ggml_compute_forward_neg(params, src0, dst);
  11347. } break;
  11348. case GGML_UNARY_OP_STEP:
  11349. {
  11350. ggml_compute_forward_step(params, src0, dst);
  11351. } break;
  11352. case GGML_UNARY_OP_TANH:
  11353. {
  11354. ggml_compute_forward_tanh(params, src0, dst);
  11355. } break;
  11356. case GGML_UNARY_OP_ELU:
  11357. {
  11358. ggml_compute_forward_elu(params, src0, dst);
  11359. } break;
  11360. case GGML_UNARY_OP_RELU:
  11361. {
  11362. ggml_compute_forward_relu(params, src0, dst);
  11363. } break;
  11364. case GGML_UNARY_OP_GELU:
  11365. {
  11366. ggml_compute_forward_gelu(params, src0, dst);
  11367. } break;
  11368. case GGML_UNARY_OP_GELU_QUICK:
  11369. {
  11370. ggml_compute_forward_gelu_quick(params, src0, dst);
  11371. } break;
  11372. case GGML_UNARY_OP_SILU:
  11373. {
  11374. ggml_compute_forward_silu(params, src0, dst);
  11375. } break;
  11376. default:
  11377. {
  11378. GGML_ASSERT(false);
  11379. } break;
  11380. }
  11381. }
  11382. // ggml_compute_forward_get_rel_pos
  11383. static void ggml_compute_forward_get_rel_pos_f16(
  11384. const struct ggml_compute_params * params,
  11385. const struct ggml_tensor * src0,
  11386. struct ggml_tensor * dst) {
  11387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11388. return;
  11389. }
  11390. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11391. GGML_TENSOR_UNARY_OP_LOCALS
  11392. const int64_t w = ne1;
  11393. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11394. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11395. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11396. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11397. const int64_t pos = (w - i1 - 1) + i2;
  11398. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11399. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11400. }
  11401. }
  11402. }
  11403. }
  11404. static void ggml_compute_forward_get_rel_pos(
  11405. const struct ggml_compute_params * params,
  11406. const struct ggml_tensor * src0,
  11407. struct ggml_tensor * dst) {
  11408. switch (src0->type) {
  11409. case GGML_TYPE_F16:
  11410. {
  11411. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11412. } break;
  11413. default:
  11414. {
  11415. GGML_ASSERT(false);
  11416. } break;
  11417. }
  11418. }
  11419. // ggml_compute_forward_add_rel_pos
  11420. static void ggml_compute_forward_add_rel_pos_f32(
  11421. const struct ggml_compute_params * params,
  11422. const struct ggml_tensor * src0,
  11423. const struct ggml_tensor * src1,
  11424. const struct ggml_tensor * src2,
  11425. struct ggml_tensor * dst) {
  11426. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11427. if (!inplace && params->type == GGML_TASK_INIT) {
  11428. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11429. return;
  11430. }
  11431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11432. return;
  11433. }
  11434. int64_t t0 = ggml_perf_time_us();
  11435. UNUSED(t0);
  11436. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11437. float * src1_data = (float *) src1->data;
  11438. float * src2_data = (float *) src2->data;
  11439. float * dst_data = (float *) dst->data;
  11440. const int64_t ne10 = src1->ne[0];
  11441. const int64_t ne11 = src1->ne[1];
  11442. const int64_t ne12 = src1->ne[2];
  11443. const int64_t ne13 = src1->ne[3];
  11444. const int ith = params->ith;
  11445. const int nth = params->nth;
  11446. // total patches in dst
  11447. const int np = ne13;
  11448. // patches per thread
  11449. const int dp = (np + nth - 1)/nth;
  11450. // patch range for this thread
  11451. const int ip0 = dp*ith;
  11452. const int ip1 = MIN(ip0 + dp, np);
  11453. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11454. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11455. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11456. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11457. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11458. const int64_t jp0 = jp1 + i10;
  11459. const float src1_e = src1_data[jp0];
  11460. const float src2_e = src2_data[jp0];
  11461. const int64_t jdh = jp0 * ne10;
  11462. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11463. for (int64_t j = 0; j < ne10; ++j) {
  11464. dst_data[jdh + j ] += src2_e;
  11465. dst_data[jdw + j*ne10] += src1_e;
  11466. }
  11467. }
  11468. }
  11469. }
  11470. }
  11471. }
  11472. static void ggml_compute_forward_add_rel_pos(
  11473. const struct ggml_compute_params * params,
  11474. const struct ggml_tensor * src0,
  11475. const struct ggml_tensor * src1,
  11476. const struct ggml_tensor * src2,
  11477. struct ggml_tensor * dst) {
  11478. switch (src0->type) {
  11479. case GGML_TYPE_F32:
  11480. {
  11481. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11482. } break;
  11483. default:
  11484. {
  11485. GGML_ASSERT(false);
  11486. } break;
  11487. }
  11488. }
  11489. // ggml_compute_forward_map_unary
  11490. static void ggml_compute_forward_map_unary_f32(
  11491. const struct ggml_compute_params * params,
  11492. const struct ggml_tensor * src0,
  11493. struct ggml_tensor * dst,
  11494. const ggml_unary_op_f32_t fun) {
  11495. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11497. return;
  11498. }
  11499. const int n = ggml_nrows(src0);
  11500. const int nc = src0->ne[0];
  11501. assert( dst->nb[0] == sizeof(float));
  11502. assert(src0->nb[0] == sizeof(float));
  11503. for (int i = 0; i < n; i++) {
  11504. fun(nc,
  11505. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11506. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11507. }
  11508. }
  11509. static void ggml_compute_forward_map_unary(
  11510. const struct ggml_compute_params * params,
  11511. const struct ggml_tensor * src0,
  11512. struct ggml_tensor * dst,
  11513. const ggml_unary_op_f32_t fun) {
  11514. switch (src0->type) {
  11515. case GGML_TYPE_F32:
  11516. {
  11517. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11518. } break;
  11519. default:
  11520. {
  11521. GGML_ASSERT(false);
  11522. } break;
  11523. }
  11524. }
  11525. // ggml_compute_forward_map_binary
  11526. static void ggml_compute_forward_map_binary_f32(
  11527. const struct ggml_compute_params * params,
  11528. const struct ggml_tensor * src0,
  11529. const struct ggml_tensor * src1,
  11530. struct ggml_tensor * dst,
  11531. const ggml_binary_op_f32_t fun) {
  11532. assert(params->ith == 0);
  11533. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11535. return;
  11536. }
  11537. const int n = ggml_nrows(src0);
  11538. const int nc = src0->ne[0];
  11539. assert( dst->nb[0] == sizeof(float));
  11540. assert(src0->nb[0] == sizeof(float));
  11541. assert(src1->nb[0] == sizeof(float));
  11542. for (int i = 0; i < n; i++) {
  11543. fun(nc,
  11544. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11545. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11546. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11547. }
  11548. }
  11549. static void ggml_compute_forward_map_binary(
  11550. const struct ggml_compute_params * params,
  11551. const struct ggml_tensor * src0,
  11552. const struct ggml_tensor * src1,
  11553. struct ggml_tensor * dst,
  11554. const ggml_binary_op_f32_t fun) {
  11555. switch (src0->type) {
  11556. case GGML_TYPE_F32:
  11557. {
  11558. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11559. } break;
  11560. default:
  11561. {
  11562. GGML_ASSERT(false);
  11563. } break;
  11564. }
  11565. }
  11566. // ggml_compute_forward_map_custom1
  11567. static void ggml_compute_forward_map_custom1_f32(
  11568. const struct ggml_compute_params * params,
  11569. const struct ggml_tensor * a,
  11570. struct ggml_tensor * dst,
  11571. const ggml_custom1_op_f32_t fun) {
  11572. assert(params->ith == 0);
  11573. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11574. return;
  11575. }
  11576. fun(dst, a);
  11577. }
  11578. // ggml_compute_forward_map_custom2
  11579. static void ggml_compute_forward_map_custom2_f32(
  11580. const struct ggml_compute_params * params,
  11581. const struct ggml_tensor * a,
  11582. const struct ggml_tensor * b,
  11583. struct ggml_tensor * dst,
  11584. const ggml_custom2_op_f32_t fun) {
  11585. assert(params->ith == 0);
  11586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11587. return;
  11588. }
  11589. fun(dst, a, b);
  11590. }
  11591. // ggml_compute_forward_map_custom3
  11592. static void ggml_compute_forward_map_custom3_f32(
  11593. const struct ggml_compute_params * params,
  11594. const struct ggml_tensor * a,
  11595. const struct ggml_tensor * b,
  11596. const struct ggml_tensor * c,
  11597. struct ggml_tensor * dst,
  11598. const ggml_custom3_op_f32_t fun) {
  11599. assert(params->ith == 0);
  11600. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11601. return;
  11602. }
  11603. fun(dst, a, b, c);
  11604. }
  11605. // ggml_compute_forward_map_custom1
  11606. static void ggml_compute_forward_map_custom1(
  11607. const struct ggml_compute_params * params,
  11608. const struct ggml_tensor * a,
  11609. struct ggml_tensor * dst) {
  11610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11611. return;
  11612. }
  11613. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11614. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11615. }
  11616. // ggml_compute_forward_map_custom2
  11617. static void ggml_compute_forward_map_custom2(
  11618. const struct ggml_compute_params * params,
  11619. const struct ggml_tensor * a,
  11620. const struct ggml_tensor * b,
  11621. struct ggml_tensor * dst) {
  11622. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11623. return;
  11624. }
  11625. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11626. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11627. }
  11628. // ggml_compute_forward_map_custom3
  11629. static void ggml_compute_forward_map_custom3(
  11630. const struct ggml_compute_params * params,
  11631. const struct ggml_tensor * a,
  11632. const struct ggml_tensor * b,
  11633. const struct ggml_tensor * c,
  11634. struct ggml_tensor * dst) {
  11635. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11636. return;
  11637. }
  11638. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11639. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11640. }
  11641. // ggml_compute_forward_cross_entropy_loss
  11642. static void ggml_compute_forward_cross_entropy_loss_f32(
  11643. const struct ggml_compute_params * params,
  11644. const struct ggml_tensor * src0,
  11645. const struct ggml_tensor * src1,
  11646. struct ggml_tensor * dst) {
  11647. GGML_ASSERT(ggml_is_contiguous(src0));
  11648. GGML_ASSERT(ggml_is_contiguous(src1));
  11649. GGML_ASSERT(ggml_is_scalar(dst));
  11650. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11651. const int ith = params->ith;
  11652. const int nth = params->nth;
  11653. float * sums = (float *) params->wdata;
  11654. // TODO: handle transposed/permuted matrices
  11655. const int nc = src0->ne[0];
  11656. const int nr = ggml_nrows(src0);
  11657. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11658. if (params->type == GGML_TASK_INIT) {
  11659. if (ith == 0) {
  11660. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11661. }
  11662. return;
  11663. }
  11664. if (params->type == GGML_TASK_FINALIZE) {
  11665. if (ith == 0) {
  11666. float * dp = (float *) dst->data;
  11667. ggml_vec_sum_f32(nth, dp, sums);
  11668. dp[0] *= -1.0f / (float) nr;
  11669. }
  11670. return;
  11671. }
  11672. const double eps = 1e-9;
  11673. // rows per thread
  11674. const int dr = (nr + nth - 1)/nth;
  11675. // row range for this thread
  11676. const int ir0 = dr*ith;
  11677. const int ir1 = MIN(ir0 + dr, nr);
  11678. for (int i1 = ir0; i1 < ir1; i1++) {
  11679. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11680. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11681. float * st = ((float *) params->wdata) + nth + ith*nc;
  11682. #ifndef NDEBUG
  11683. for (int i = 0; i < nc; ++i) {
  11684. //printf("p[%d] = %f\n", i, p[i]);
  11685. assert(!isnan(s0[i]));
  11686. assert(!isnan(s1[i]));
  11687. }
  11688. #endif
  11689. // soft_max
  11690. ggml_float sum = 0.0;
  11691. {
  11692. float max = -INFINITY;
  11693. ggml_vec_max_f32(nc, &max, s0);
  11694. uint16_t scvt; UNUSED(scvt);
  11695. for (int i = 0; i < nc; i++) {
  11696. if (s0[i] == -INFINITY) {
  11697. st[i] = 0.0f;
  11698. } else {
  11699. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11700. const float s = s0[i] - max;
  11701. const float val = expf(s);
  11702. #else
  11703. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11704. memcpy(&scvt, &s, sizeof(scvt));
  11705. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11706. #endif
  11707. sum += (ggml_float)val;
  11708. st[i] = val;
  11709. }
  11710. }
  11711. assert(sum > 0.0);
  11712. // sum = 1.0/sum;
  11713. }
  11714. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11715. sum = (1.0 - eps) / sum;
  11716. ggml_vec_scale_f32(nc, st, sum);
  11717. ggml_vec_add1_f32(nc, st, st, eps);
  11718. ggml_vec_log_f32(nc, st, st);
  11719. ggml_vec_mul_f32(nc, st, st, s1);
  11720. float st_sum = 0;
  11721. ggml_vec_sum_f32(nc, &st_sum, st);
  11722. sums[ith] += st_sum;
  11723. #ifndef NDEBUG
  11724. for (int i = 0; i < nc; ++i) {
  11725. assert(!isnan(st[i]));
  11726. assert(!isinf(st[i]));
  11727. }
  11728. #endif
  11729. }
  11730. }
  11731. static void ggml_compute_forward_cross_entropy_loss(
  11732. const struct ggml_compute_params * params,
  11733. const struct ggml_tensor * src0,
  11734. const struct ggml_tensor * src1,
  11735. struct ggml_tensor * dst) {
  11736. switch (src0->type) {
  11737. case GGML_TYPE_F32:
  11738. {
  11739. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11740. } break;
  11741. default:
  11742. {
  11743. GGML_ASSERT(false);
  11744. } break;
  11745. }
  11746. }
  11747. // ggml_compute_forward_cross_entropy_loss_back
  11748. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11749. const struct ggml_compute_params * params,
  11750. const struct ggml_tensor * src0,
  11751. const struct ggml_tensor * src1,
  11752. const struct ggml_tensor * opt0,
  11753. struct ggml_tensor * dst) {
  11754. GGML_ASSERT(ggml_is_contiguous(dst));
  11755. GGML_ASSERT(ggml_is_contiguous(src0));
  11756. GGML_ASSERT(ggml_is_contiguous(src1));
  11757. GGML_ASSERT(ggml_is_contiguous(opt0));
  11758. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11759. const int64_t ith = params->ith;
  11760. const int64_t nth = params->nth;
  11761. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11762. return;
  11763. }
  11764. const double eps = 1e-9;
  11765. // TODO: handle transposed/permuted matrices
  11766. const int64_t nc = src0->ne[0];
  11767. const int64_t nr = ggml_nrows(src0);
  11768. // rows per thread
  11769. const int64_t dr = (nr + nth - 1)/nth;
  11770. // row range for this thread
  11771. const int64_t ir0 = dr*ith;
  11772. const int64_t ir1 = MIN(ir0 + dr, nr);
  11773. float * d = (float *) opt0->data;
  11774. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11775. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11776. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11777. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11778. #ifndef NDEBUG
  11779. for (int i = 0; i < nc; ++i) {
  11780. //printf("p[%d] = %f\n", i, p[i]);
  11781. assert(!isnan(s0[i]));
  11782. assert(!isnan(s1[i]));
  11783. }
  11784. #endif
  11785. // soft_max
  11786. ggml_float sum = 0.0;
  11787. {
  11788. float max = -INFINITY;
  11789. ggml_vec_max_f32(nc, &max, s0);
  11790. uint16_t scvt; UNUSED(scvt);
  11791. for (int i = 0; i < nc; i++) {
  11792. if (s0[i] == -INFINITY) {
  11793. ds0[i] = 0.0f;
  11794. } else {
  11795. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11796. const float s = s0[i] - max;
  11797. const float val = expf(s);
  11798. #else
  11799. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11800. memcpy(&scvt, &s, sizeof(scvt));
  11801. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11802. #endif
  11803. sum += (ggml_float)val;
  11804. ds0[i] = val;
  11805. }
  11806. }
  11807. assert(sum > 0.0);
  11808. sum = (1.0 - eps)/sum;
  11809. }
  11810. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11811. ggml_vec_scale_f32(nc, ds0, sum);
  11812. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11813. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11814. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11815. #ifndef NDEBUG
  11816. for (int i = 0; i < nc; ++i) {
  11817. assert(!isnan(ds0[i]));
  11818. assert(!isinf(ds0[i]));
  11819. }
  11820. #endif
  11821. }
  11822. }
  11823. static void ggml_compute_forward_cross_entropy_loss_back(
  11824. const struct ggml_compute_params * params,
  11825. const struct ggml_tensor * src0,
  11826. const struct ggml_tensor * src1,
  11827. const struct ggml_tensor * opt0,
  11828. struct ggml_tensor * dst) {
  11829. switch (src0->type) {
  11830. case GGML_TYPE_F32:
  11831. {
  11832. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11833. } break;
  11834. default:
  11835. {
  11836. GGML_ASSERT(false);
  11837. } break;
  11838. }
  11839. }
  11840. /////////////////////////////////
  11841. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11842. GGML_ASSERT(params);
  11843. if (tensor->op == GGML_OP_NONE) {
  11844. return;
  11845. }
  11846. #ifdef GGML_USE_CUBLAS
  11847. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11848. if (skip_cpu) {
  11849. return;
  11850. }
  11851. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11852. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11853. #endif // GGML_USE_CUBLAS
  11854. switch (tensor->op) {
  11855. case GGML_OP_DUP:
  11856. {
  11857. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11858. } break;
  11859. case GGML_OP_ADD:
  11860. {
  11861. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11862. } break;
  11863. case GGML_OP_ADD1:
  11864. {
  11865. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11866. } break;
  11867. case GGML_OP_ACC:
  11868. {
  11869. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11870. } break;
  11871. case GGML_OP_SUB:
  11872. {
  11873. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11874. } break;
  11875. case GGML_OP_MUL:
  11876. {
  11877. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11878. } break;
  11879. case GGML_OP_DIV:
  11880. {
  11881. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11882. } break;
  11883. case GGML_OP_SQR:
  11884. {
  11885. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11886. } break;
  11887. case GGML_OP_SQRT:
  11888. {
  11889. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11890. } break;
  11891. case GGML_OP_LOG:
  11892. {
  11893. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11894. } break;
  11895. case GGML_OP_SUM:
  11896. {
  11897. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11898. } break;
  11899. case GGML_OP_SUM_ROWS:
  11900. {
  11901. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11902. } break;
  11903. case GGML_OP_MEAN:
  11904. {
  11905. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11906. } break;
  11907. case GGML_OP_ARGMAX:
  11908. {
  11909. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11910. } break;
  11911. case GGML_OP_REPEAT:
  11912. {
  11913. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11914. } break;
  11915. case GGML_OP_REPEAT_BACK:
  11916. {
  11917. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11918. } break;
  11919. case GGML_OP_CONCAT:
  11920. {
  11921. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11922. } break;
  11923. case GGML_OP_SILU_BACK:
  11924. {
  11925. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11926. } break;
  11927. case GGML_OP_NORM:
  11928. {
  11929. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11930. } break;
  11931. case GGML_OP_RMS_NORM:
  11932. {
  11933. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11934. } break;
  11935. case GGML_OP_RMS_NORM_BACK:
  11936. {
  11937. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11938. } break;
  11939. case GGML_OP_GROUP_NORM:
  11940. {
  11941. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11942. } break;
  11943. case GGML_OP_MUL_MAT:
  11944. {
  11945. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11946. } break;
  11947. case GGML_OP_MUL_MAT_ID:
  11948. {
  11949. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11950. } break;
  11951. case GGML_OP_OUT_PROD:
  11952. {
  11953. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11954. } break;
  11955. case GGML_OP_SCALE:
  11956. {
  11957. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  11958. } break;
  11959. case GGML_OP_SET:
  11960. {
  11961. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11962. } break;
  11963. case GGML_OP_CPY:
  11964. {
  11965. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11966. } break;
  11967. case GGML_OP_CONT:
  11968. {
  11969. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11970. } break;
  11971. case GGML_OP_RESHAPE:
  11972. {
  11973. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11974. } break;
  11975. case GGML_OP_VIEW:
  11976. {
  11977. ggml_compute_forward_view(params, tensor->src[0]);
  11978. } break;
  11979. case GGML_OP_PERMUTE:
  11980. {
  11981. ggml_compute_forward_permute(params, tensor->src[0]);
  11982. } break;
  11983. case GGML_OP_TRANSPOSE:
  11984. {
  11985. ggml_compute_forward_transpose(params, tensor->src[0]);
  11986. } break;
  11987. case GGML_OP_GET_ROWS:
  11988. {
  11989. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11990. } break;
  11991. case GGML_OP_GET_ROWS_BACK:
  11992. {
  11993. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11994. } break;
  11995. case GGML_OP_DIAG:
  11996. {
  11997. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11998. } break;
  11999. case GGML_OP_DIAG_MASK_INF:
  12000. {
  12001. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12002. } break;
  12003. case GGML_OP_DIAG_MASK_ZERO:
  12004. {
  12005. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12006. } break;
  12007. case GGML_OP_SOFT_MAX:
  12008. {
  12009. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12010. } break;
  12011. case GGML_OP_SOFT_MAX_BACK:
  12012. {
  12013. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12014. } break;
  12015. case GGML_OP_ROPE:
  12016. {
  12017. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12018. } break;
  12019. case GGML_OP_ROPE_BACK:
  12020. {
  12021. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12022. } break;
  12023. case GGML_OP_ALIBI:
  12024. {
  12025. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12026. } break;
  12027. case GGML_OP_CLAMP:
  12028. {
  12029. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12030. } break;
  12031. case GGML_OP_CONV_TRANSPOSE_1D:
  12032. {
  12033. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12034. } break;
  12035. case GGML_OP_IM2COL:
  12036. {
  12037. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12038. } break;
  12039. case GGML_OP_CONV_TRANSPOSE_2D:
  12040. {
  12041. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12042. } break;
  12043. case GGML_OP_POOL_1D:
  12044. {
  12045. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12046. } break;
  12047. case GGML_OP_POOL_2D:
  12048. {
  12049. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12050. } break;
  12051. case GGML_OP_UPSCALE:
  12052. {
  12053. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12054. } break;
  12055. case GGML_OP_PAD:
  12056. {
  12057. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12058. } break;
  12059. case GGML_OP_ARGSORT:
  12060. {
  12061. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12062. } break;
  12063. case GGML_OP_LEAKY_RELU:
  12064. {
  12065. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12066. } break;
  12067. case GGML_OP_FLASH_ATTN:
  12068. {
  12069. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12070. GGML_ASSERT(t == 0 || t == 1);
  12071. const bool masked = t != 0;
  12072. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12073. } break;
  12074. case GGML_OP_FLASH_FF:
  12075. {
  12076. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12077. } break;
  12078. case GGML_OP_FLASH_ATTN_BACK:
  12079. {
  12080. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12081. GGML_ASSERT(t == 0 || t == 1);
  12082. bool masked = t != 0;
  12083. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12084. } break;
  12085. case GGML_OP_WIN_PART:
  12086. {
  12087. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12088. } break;
  12089. case GGML_OP_WIN_UNPART:
  12090. {
  12091. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12092. } break;
  12093. case GGML_OP_UNARY:
  12094. {
  12095. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12096. } break;
  12097. case GGML_OP_GET_REL_POS:
  12098. {
  12099. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12100. } break;
  12101. case GGML_OP_ADD_REL_POS:
  12102. {
  12103. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12104. } break;
  12105. case GGML_OP_MAP_UNARY:
  12106. {
  12107. ggml_unary_op_f32_t fun;
  12108. memcpy(&fun, tensor->op_params, sizeof(fun));
  12109. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12110. }
  12111. break;
  12112. case GGML_OP_MAP_BINARY:
  12113. {
  12114. ggml_binary_op_f32_t fun;
  12115. memcpy(&fun, tensor->op_params, sizeof(fun));
  12116. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12117. }
  12118. break;
  12119. case GGML_OP_MAP_CUSTOM1_F32:
  12120. {
  12121. ggml_custom1_op_f32_t fun;
  12122. memcpy(&fun, tensor->op_params, sizeof(fun));
  12123. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12124. }
  12125. break;
  12126. case GGML_OP_MAP_CUSTOM2_F32:
  12127. {
  12128. ggml_custom2_op_f32_t fun;
  12129. memcpy(&fun, tensor->op_params, sizeof(fun));
  12130. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12131. }
  12132. break;
  12133. case GGML_OP_MAP_CUSTOM3_F32:
  12134. {
  12135. ggml_custom3_op_f32_t fun;
  12136. memcpy(&fun, tensor->op_params, sizeof(fun));
  12137. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12138. }
  12139. break;
  12140. case GGML_OP_MAP_CUSTOM1:
  12141. {
  12142. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12143. }
  12144. break;
  12145. case GGML_OP_MAP_CUSTOM2:
  12146. {
  12147. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12148. }
  12149. break;
  12150. case GGML_OP_MAP_CUSTOM3:
  12151. {
  12152. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12153. }
  12154. break;
  12155. case GGML_OP_CROSS_ENTROPY_LOSS:
  12156. {
  12157. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12158. }
  12159. break;
  12160. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12161. {
  12162. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12163. }
  12164. break;
  12165. case GGML_OP_NONE:
  12166. {
  12167. // nop
  12168. } break;
  12169. case GGML_OP_COUNT:
  12170. {
  12171. GGML_ASSERT(false);
  12172. } break;
  12173. }
  12174. }
  12175. ////////////////////////////////////////////////////////////////////////////////
  12176. static size_t ggml_hash_size(size_t min_sz) {
  12177. // next primes after powers of two
  12178. static const size_t primes[] = {
  12179. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12180. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12181. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12182. 16777259, 33554467, 67108879, 134217757, 268435459,
  12183. 536870923, 1073741827, 2147483659
  12184. };
  12185. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12186. // find the smallest prime that is larger or equal to min_sz
  12187. size_t l = 0;
  12188. size_t r = n_primes;
  12189. while (l < r) {
  12190. size_t m = (l + r)/2;
  12191. if (primes[m] < min_sz) {
  12192. l = m + 1;
  12193. } else {
  12194. r = m;
  12195. }
  12196. }
  12197. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12198. return sz;
  12199. }
  12200. static size_t ggml_hash(const void * p) {
  12201. return (size_t)p;
  12202. }
  12203. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12204. size_t h = ggml_hash(key) % hash_set.size;
  12205. // linear probing
  12206. size_t i = h;
  12207. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12208. i = (i + 1) % hash_set.size;
  12209. if (i == h) {
  12210. // visited all hash table entries -> not found
  12211. return GGML_HASHTABLE_FULL;
  12212. }
  12213. }
  12214. return i;
  12215. }
  12216. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12217. size_t i = ggml_hash_find(hash_set, key);
  12218. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12219. }
  12220. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12221. size_t i = ggml_hash_find(hash_set, key);
  12222. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12223. if (hash_set.keys[i] == key) {
  12224. return GGML_HASHTABLE_ALREADY_EXISTS;
  12225. }
  12226. // insert
  12227. GGML_ASSERT(hash_set.keys[i] == NULL);
  12228. hash_set.keys[i] = key;
  12229. return i;
  12230. }
  12231. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12232. size_t i = ggml_hash_find(hash_set, key);
  12233. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12234. hash_set.keys[i] = key;
  12235. return i;
  12236. }
  12237. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12238. size = ggml_hash_size(size);
  12239. struct ggml_hash_set result;
  12240. result.size = size;
  12241. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  12242. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12243. return result;
  12244. }
  12245. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12246. free(hash_set.keys);
  12247. }
  12248. struct hash_map {
  12249. struct ggml_hash_set set;
  12250. struct ggml_tensor ** vals;
  12251. };
  12252. static struct hash_map * ggml_new_hash_map(size_t size) {
  12253. struct hash_map * result = malloc(sizeof(struct hash_map));
  12254. result->set = ggml_hash_set_new(size);
  12255. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  12256. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12257. return result;
  12258. }
  12259. static void ggml_hash_map_free(struct hash_map * map) {
  12260. ggml_hash_set_free(map->set);
  12261. free(map->vals);
  12262. free(map);
  12263. }
  12264. // gradient checkpointing
  12265. static struct ggml_tensor * ggml_recompute_graph_node(
  12266. struct ggml_context * ctx,
  12267. struct ggml_cgraph * graph,
  12268. struct hash_map * replacements,
  12269. struct ggml_tensor * node) {
  12270. if (node == NULL) {
  12271. return NULL;
  12272. }
  12273. if (node->is_param) {
  12274. return node;
  12275. }
  12276. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12277. return node;
  12278. }
  12279. int count_children = 0;
  12280. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12281. if (node->src[k]) {
  12282. ++count_children;
  12283. }
  12284. }
  12285. if (count_children == 0) {
  12286. return node;
  12287. }
  12288. size_t i = ggml_hash_find(replacements->set, node);
  12289. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12290. if (replacements->set.keys[i] == node) {
  12291. return replacements->vals[i];
  12292. }
  12293. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12294. // insert clone into replacements
  12295. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12296. replacements->set.keys[i] = node;
  12297. replacements->vals[i] = clone;
  12298. clone->op = node->op;
  12299. clone->grad = node->grad;
  12300. clone->is_param = node->is_param;
  12301. clone->extra = node->extra;
  12302. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12303. clone->nb[k] = node->nb[k];
  12304. }
  12305. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12306. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12307. }
  12308. if (node->view_src != NULL) {
  12309. clone->data = (node->view_src->data == NULL)
  12310. ? NULL // view_src not yet allocated
  12311. : (char *) node->view_src->data // view_src already allocated
  12312. + node->view_offs;
  12313. clone->view_src = node->view_src;
  12314. clone->view_offs = node->view_offs;
  12315. }
  12316. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12317. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12318. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12319. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12320. return clone;
  12321. }
  12322. void ggml_build_backward_gradient_checkpointing(
  12323. struct ggml_context * ctx,
  12324. struct ggml_cgraph * gf,
  12325. struct ggml_cgraph * gb,
  12326. struct ggml_cgraph * gb_tmp,
  12327. struct ggml_tensor * * checkpoints,
  12328. int n_checkpoints) {
  12329. ggml_graph_cpy(gf, gb_tmp);
  12330. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12331. if (n_checkpoints <= 0) {
  12332. ggml_graph_cpy(gb_tmp, gb);
  12333. return;
  12334. }
  12335. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12336. // insert checkpoints in replacements
  12337. for (int i = 0; i < n_checkpoints; ++i) {
  12338. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12339. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12340. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12341. replacements->set.keys[k] = checkpoints[i];
  12342. replacements->vals[k] = checkpoints[i];
  12343. }
  12344. ggml_graph_cpy(gf, gb);
  12345. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12346. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12347. // by recomputing them from checkpoints
  12348. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12349. struct ggml_tensor * node = gb_tmp->nodes[i];
  12350. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12351. // insert new tensors recomputing src, reusing already made replacements,
  12352. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12353. // recurse for input tensors,
  12354. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12355. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12356. }
  12357. // insert rewritten backward node with replacements made into resulting backward graph gb
  12358. ggml_build_forward_expand(gb, node);
  12359. }
  12360. ggml_hash_map_free(replacements);
  12361. }
  12362. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12363. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12364. if (ggml_hash_contains(zero_table, a)) {
  12365. return b;
  12366. } else {
  12367. return ggml_add_impl(ctx, a, b, false);
  12368. }
  12369. }
  12370. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12371. if (ggml_hash_contains(zero_table, a)) {
  12372. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12373. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12374. } else {
  12375. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12376. }
  12377. }
  12378. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12379. if (ggml_hash_contains(zero_table, a)) {
  12380. return ggml_repeat(ctx, b, a);
  12381. } else {
  12382. return ggml_add1_impl(ctx, a, b, false);
  12383. }
  12384. }
  12385. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12386. if (ggml_hash_contains(zero_table, a)) {
  12387. return ggml_neg(ctx, b);
  12388. } else {
  12389. return ggml_sub_impl(ctx, a, b, false);
  12390. }
  12391. }
  12392. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12393. struct ggml_tensor * src0 = tensor->src[0];
  12394. struct ggml_tensor * src1 = tensor->src[1];
  12395. switch (tensor->op) {
  12396. case GGML_OP_DUP:
  12397. {
  12398. if (src0->grad) {
  12399. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12400. }
  12401. } break;
  12402. case GGML_OP_ADD:
  12403. {
  12404. if (src0->grad) {
  12405. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12406. }
  12407. if (src1->grad) {
  12408. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12409. }
  12410. } break;
  12411. case GGML_OP_ADD1:
  12412. {
  12413. if (src0->grad) {
  12414. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12415. }
  12416. if (src1->grad) {
  12417. src1->grad = ggml_add_or_set(ctx,
  12418. src1->grad,
  12419. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12420. zero_table);
  12421. }
  12422. } break;
  12423. case GGML_OP_ACC:
  12424. {
  12425. if (src0->grad) {
  12426. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12427. }
  12428. if (src1->grad) {
  12429. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12430. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12431. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12432. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12433. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12434. tensor->grad,
  12435. src1->grad->ne[0],
  12436. src1->grad->ne[1],
  12437. src1->grad->ne[2],
  12438. src1->grad->ne[3],
  12439. nb1, nb2, nb3, offset);
  12440. src1->grad =
  12441. ggml_add_or_set(ctx,
  12442. src1->grad,
  12443. ggml_reshape(ctx,
  12444. ggml_cont(ctx, tensor_grad_view),
  12445. src1->grad),
  12446. zero_table);
  12447. }
  12448. } break;
  12449. case GGML_OP_SUB:
  12450. {
  12451. if (src0->grad) {
  12452. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12453. }
  12454. if (src1->grad) {
  12455. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12456. }
  12457. } break;
  12458. case GGML_OP_MUL:
  12459. {
  12460. if (src0->grad) {
  12461. src0->grad =
  12462. ggml_add_or_set(ctx,
  12463. src0->grad,
  12464. ggml_mul(ctx, src1, tensor->grad),
  12465. zero_table);
  12466. }
  12467. if (src1->grad) {
  12468. src1->grad =
  12469. ggml_add_or_set(ctx,
  12470. src1->grad,
  12471. ggml_mul(ctx, src0, tensor->grad),
  12472. zero_table);
  12473. }
  12474. } break;
  12475. case GGML_OP_DIV:
  12476. {
  12477. if (src0->grad) {
  12478. src0->grad =
  12479. ggml_add_or_set(ctx,
  12480. src0->grad,
  12481. ggml_div(ctx, tensor->grad, src1),
  12482. zero_table);
  12483. }
  12484. if (src1->grad) {
  12485. src1->grad =
  12486. ggml_sub_or_set(ctx,
  12487. src1->grad,
  12488. ggml_mul(ctx,
  12489. tensor->grad,
  12490. ggml_div(ctx, tensor, src1)),
  12491. zero_table);
  12492. }
  12493. } break;
  12494. case GGML_OP_SQR:
  12495. {
  12496. if (src0->grad) {
  12497. src0->grad =
  12498. ggml_add_or_set(ctx,
  12499. src0->grad,
  12500. ggml_scale(ctx,
  12501. ggml_mul(ctx, src0, tensor->grad),
  12502. 2.0f),
  12503. zero_table);
  12504. }
  12505. } break;
  12506. case GGML_OP_SQRT:
  12507. {
  12508. if (src0->grad) {
  12509. src0->grad =
  12510. ggml_add_or_set(ctx,
  12511. src0->grad,
  12512. ggml_scale(ctx,
  12513. ggml_div(ctx,
  12514. tensor->grad,
  12515. tensor),
  12516. 0.5f),
  12517. zero_table);
  12518. }
  12519. } break;
  12520. case GGML_OP_LOG:
  12521. {
  12522. if (src0->grad) {
  12523. src0->grad =
  12524. ggml_add_or_set(ctx,
  12525. src0->grad,
  12526. ggml_div(ctx,
  12527. tensor->grad,
  12528. src0),
  12529. zero_table);
  12530. }
  12531. } break;
  12532. case GGML_OP_SUM:
  12533. {
  12534. if (src0->grad) {
  12535. src0->grad =
  12536. ggml_add1_or_set(ctx,
  12537. src0->grad,
  12538. tensor->grad,
  12539. zero_table);
  12540. }
  12541. } break;
  12542. case GGML_OP_SUM_ROWS:
  12543. {
  12544. if (src0->grad) {
  12545. src0->grad =
  12546. ggml_add_or_set(ctx,
  12547. src0->grad,
  12548. ggml_repeat(ctx,
  12549. tensor->grad,
  12550. src0->grad),
  12551. zero_table);
  12552. }
  12553. } break;
  12554. case GGML_OP_MEAN:
  12555. case GGML_OP_ARGMAX:
  12556. {
  12557. GGML_ASSERT(false); // TODO: implement
  12558. } break;
  12559. case GGML_OP_REPEAT:
  12560. {
  12561. // necessary for llama
  12562. if (src0->grad) {
  12563. src0->grad = ggml_add_or_set(ctx,
  12564. src0->grad,
  12565. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12566. zero_table);
  12567. }
  12568. } break;
  12569. case GGML_OP_REPEAT_BACK:
  12570. {
  12571. if (src0->grad) {
  12572. // TODO: test this
  12573. src0->grad = ggml_add_or_set(ctx,
  12574. src0->grad,
  12575. ggml_repeat(ctx, tensor->grad, src0->grad),
  12576. zero_table);
  12577. }
  12578. } break;
  12579. case GGML_OP_CONCAT:
  12580. {
  12581. GGML_ASSERT(false); // TODO: implement
  12582. } break;
  12583. case GGML_OP_SILU_BACK:
  12584. {
  12585. GGML_ASSERT(false); // TODO: not implemented
  12586. } break;
  12587. case GGML_OP_NORM:
  12588. {
  12589. GGML_ASSERT(false); // TODO: not implemented
  12590. } break;
  12591. case GGML_OP_RMS_NORM:
  12592. {
  12593. // necessary for llama
  12594. if (src0->grad) {
  12595. float eps;
  12596. memcpy(&eps, tensor->op_params, sizeof(float));
  12597. src0->grad = ggml_add_or_set(ctx,
  12598. src0->grad,
  12599. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12600. zero_table);
  12601. }
  12602. } break;
  12603. case GGML_OP_RMS_NORM_BACK:
  12604. {
  12605. GGML_ASSERT(false); // TODO: not implemented
  12606. } break;
  12607. case GGML_OP_GROUP_NORM:
  12608. {
  12609. GGML_ASSERT(false); // TODO: not implemented
  12610. } break;
  12611. case GGML_OP_MUL_MAT:
  12612. {
  12613. // https://cs231n.github.io/optimization-2/#staged
  12614. // # forward pass
  12615. // s0 = np.random.randn(5, 10)
  12616. // s1 = np.random.randn(10, 3)
  12617. // t = s0.dot(s1)
  12618. // # now suppose we had the gradient on t from above in the circuit
  12619. // dt = np.random.randn(*t.shape) # same shape as t
  12620. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12621. // ds1 = t.T.dot(dt)
  12622. // tensor.shape [m,p,qq,rr]
  12623. // src0.shape [n,m,q1,r1]
  12624. // src1.shape [n,p,qq,rr]
  12625. // necessary for llama
  12626. if (src0->grad) {
  12627. struct ggml_tensor * s1_tg =
  12628. ggml_out_prod(ctx, // [n,m,qq,rr]
  12629. src1, // [n,p,qq,rr]
  12630. tensor->grad); // [m,p,qq,rr]
  12631. const int64_t qq = s1_tg->ne[2];
  12632. const int64_t rr = s1_tg->ne[3];
  12633. const int64_t q1 = src0->ne[2];
  12634. const int64_t r1 = src0->ne[3];
  12635. const bool ne2_broadcasted = qq > q1;
  12636. const bool ne3_broadcasted = rr > r1;
  12637. if (ne2_broadcasted || ne3_broadcasted) {
  12638. // sum broadcast repetitions of s1_tg into shape of src0
  12639. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12640. }
  12641. src0->grad =
  12642. ggml_add_or_set(ctx,
  12643. src0->grad, // [n,m,q1,r1]
  12644. s1_tg, // [n,m,q1,r1]
  12645. zero_table);
  12646. }
  12647. if (src1->grad) {
  12648. src1->grad =
  12649. ggml_add_or_set(ctx,
  12650. src1->grad, // [n,p,qq,rr]
  12651. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12652. // ggml_cont(ctx, // [m,n,q1,r1]
  12653. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12654. // tensor->grad), // [m,p,qq,rr]
  12655. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12656. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12657. // // and then use ggml_out_prod
  12658. ggml_out_prod(ctx, // [n,p,qq,rr]
  12659. src0, // [n,m,q1,r1]
  12660. ggml_transpose(ctx, // [p,m,qq,rr]
  12661. tensor->grad)), // [m,p,qq,rr]
  12662. zero_table);
  12663. }
  12664. } break;
  12665. case GGML_OP_MUL_MAT_ID:
  12666. {
  12667. GGML_ASSERT(false); // TODO: not implemented
  12668. } break;
  12669. case GGML_OP_OUT_PROD:
  12670. {
  12671. GGML_ASSERT(false); // TODO: not implemented
  12672. } break;
  12673. case GGML_OP_SCALE:
  12674. {
  12675. // necessary for llama
  12676. if (src0->grad) {
  12677. float s;
  12678. memcpy(&s, tensor->op_params, sizeof(float));
  12679. src0->grad =
  12680. ggml_add_or_set(ctx,
  12681. src0->grad,
  12682. ggml_scale_impl(ctx, tensor->grad, s, false),
  12683. zero_table);
  12684. }
  12685. } break;
  12686. case GGML_OP_SET:
  12687. {
  12688. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12689. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12690. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12691. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12692. struct ggml_tensor * tensor_grad_view = NULL;
  12693. if (src0->grad || src1->grad) {
  12694. GGML_ASSERT(src0->type == tensor->type);
  12695. GGML_ASSERT(tensor->grad->type == tensor->type);
  12696. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12697. tensor_grad_view = ggml_view_4d(ctx,
  12698. tensor->grad,
  12699. src1->grad->ne[0],
  12700. src1->grad->ne[1],
  12701. src1->grad->ne[2],
  12702. src1->grad->ne[3],
  12703. nb1, nb2, nb3, offset);
  12704. }
  12705. if (src0->grad) {
  12706. src0->grad = ggml_add_or_set(ctx,
  12707. src0->grad,
  12708. ggml_acc_impl(ctx,
  12709. tensor->grad,
  12710. ggml_neg(ctx, tensor_grad_view),
  12711. nb1, nb2, nb3, offset, false),
  12712. zero_table);
  12713. }
  12714. if (src1->grad) {
  12715. src1->grad =
  12716. ggml_add_or_set(ctx,
  12717. src1->grad,
  12718. ggml_reshape(ctx,
  12719. ggml_cont(ctx, tensor_grad_view),
  12720. src1->grad),
  12721. zero_table);
  12722. }
  12723. } break;
  12724. case GGML_OP_CPY:
  12725. {
  12726. // necessary for llama
  12727. // cpy overwrites value of src1 by src0 and returns view(src1)
  12728. // the overwriting is mathematically equivalent to:
  12729. // tensor = src0 * 1 + src1 * 0
  12730. if (src0->grad) {
  12731. // dsrc0 = dtensor * 1
  12732. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12733. }
  12734. if (src1->grad) {
  12735. // dsrc1 = dtensor * 0 -> noop
  12736. }
  12737. } break;
  12738. case GGML_OP_CONT:
  12739. {
  12740. // same as cpy
  12741. if (src0->grad) {
  12742. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12743. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12744. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12745. }
  12746. } break;
  12747. case GGML_OP_RESHAPE:
  12748. {
  12749. // necessary for llama
  12750. if (src0->grad) {
  12751. src0->grad =
  12752. ggml_add_or_set(ctx, src0->grad,
  12753. ggml_reshape(ctx,
  12754. ggml_is_contiguous(tensor->grad)
  12755. ? tensor->grad
  12756. : ggml_cont(ctx, tensor->grad),
  12757. src0->grad),
  12758. zero_table);
  12759. }
  12760. } break;
  12761. case GGML_OP_VIEW:
  12762. {
  12763. // necessary for llama
  12764. if (src0->grad) {
  12765. size_t offset;
  12766. memcpy(&offset, tensor->op_params, sizeof(offset));
  12767. size_t nb1 = tensor->nb[1];
  12768. size_t nb2 = tensor->nb[2];
  12769. size_t nb3 = tensor->nb[3];
  12770. if (src0->type != src0->grad->type) {
  12771. // gradient is typically F32, but src0 could be other type
  12772. size_t ng = ggml_element_size(src0->grad);
  12773. size_t n0 = ggml_element_size(src0);
  12774. GGML_ASSERT(offset % n0 == 0);
  12775. GGML_ASSERT(nb1 % n0 == 0);
  12776. GGML_ASSERT(nb2 % n0 == 0);
  12777. GGML_ASSERT(nb3 % n0 == 0);
  12778. offset = (offset / n0) * ng;
  12779. nb1 = (nb1 / n0) * ng;
  12780. nb2 = (nb2 / n0) * ng;
  12781. nb3 = (nb3 / n0) * ng;
  12782. }
  12783. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12784. }
  12785. } break;
  12786. case GGML_OP_PERMUTE:
  12787. {
  12788. // necessary for llama
  12789. if (src0->grad) {
  12790. int32_t * axes = (int32_t *) tensor->op_params;
  12791. int axis0 = axes[0] & 0x3;
  12792. int axis1 = axes[1] & 0x3;
  12793. int axis2 = axes[2] & 0x3;
  12794. int axis3 = axes[3] & 0x3;
  12795. int axes_backward[4] = {0,0,0,0};
  12796. axes_backward[axis0] = 0;
  12797. axes_backward[axis1] = 1;
  12798. axes_backward[axis2] = 2;
  12799. axes_backward[axis3] = 3;
  12800. src0->grad =
  12801. ggml_add_or_set(ctx, src0->grad,
  12802. ggml_permute(ctx,
  12803. tensor->grad,
  12804. axes_backward[0],
  12805. axes_backward[1],
  12806. axes_backward[2],
  12807. axes_backward[3]),
  12808. zero_table);
  12809. }
  12810. } break;
  12811. case GGML_OP_TRANSPOSE:
  12812. {
  12813. // necessary for llama
  12814. if (src0->grad) {
  12815. src0->grad =
  12816. ggml_add_or_set(ctx, src0->grad,
  12817. ggml_transpose(ctx, tensor->grad),
  12818. zero_table);
  12819. }
  12820. } break;
  12821. case GGML_OP_GET_ROWS:
  12822. {
  12823. // necessary for llama (only for tokenizer)
  12824. if (src0->grad) {
  12825. src0->grad =
  12826. ggml_add_or_set(ctx, src0->grad,
  12827. // last ggml_get_rows_back argument src0->grad is only
  12828. // necessary to setup correct output shape
  12829. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12830. zero_table);
  12831. }
  12832. if (src1->grad) {
  12833. // noop
  12834. }
  12835. } break;
  12836. case GGML_OP_GET_ROWS_BACK:
  12837. {
  12838. GGML_ASSERT(false); // TODO: not implemented
  12839. } break;
  12840. case GGML_OP_DIAG:
  12841. {
  12842. GGML_ASSERT(false); // TODO: not implemented
  12843. } break;
  12844. case GGML_OP_DIAG_MASK_INF:
  12845. {
  12846. // necessary for llama
  12847. if (src0->grad) {
  12848. const int n_past = ((int32_t *) tensor->op_params)[0];
  12849. src0->grad =
  12850. ggml_add_or_set(ctx, src0->grad,
  12851. /* ggml_diag_mask_inf_impl() shouldn't be here */
  12852. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  12853. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12854. zero_table);
  12855. }
  12856. } break;
  12857. case GGML_OP_DIAG_MASK_ZERO:
  12858. {
  12859. // necessary for llama
  12860. if (src0->grad) {
  12861. const int n_past = ((int32_t *) tensor->op_params)[0];
  12862. src0->grad =
  12863. ggml_add_or_set(ctx, src0->grad,
  12864. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12865. zero_table);
  12866. }
  12867. } break;
  12868. case GGML_OP_SOFT_MAX:
  12869. {
  12870. // necessary for llama
  12871. if (src0->grad) {
  12872. src0->grad =
  12873. ggml_add_or_set(ctx, src0->grad,
  12874. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12875. zero_table);
  12876. }
  12877. } break;
  12878. case GGML_OP_SOFT_MAX_BACK:
  12879. {
  12880. GGML_ASSERT(false); // TODO: not implemented
  12881. } break;
  12882. case GGML_OP_ROPE:
  12883. {
  12884. // necessary for llama
  12885. if (src0->grad) {
  12886. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12887. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12888. const int mode = ((int32_t *) tensor->op_params)[2];
  12889. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12890. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12891. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12892. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12893. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12894. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12895. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12896. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12897. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12898. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12899. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12900. src0->grad = ggml_add_or_set(ctx,
  12901. src0->grad,
  12902. ggml_rope_back(ctx,
  12903. tensor->grad,
  12904. src1,
  12905. n_dims,
  12906. mode,
  12907. n_ctx,
  12908. n_orig_ctx,
  12909. freq_base,
  12910. freq_scale,
  12911. ext_factor,
  12912. attn_factor,
  12913. beta_fast,
  12914. beta_slow,
  12915. xpos_base,
  12916. xpos_down),
  12917. zero_table);
  12918. }
  12919. } break;
  12920. case GGML_OP_ROPE_BACK:
  12921. {
  12922. if (src0->grad) {
  12923. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12924. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12925. const int mode = ((int32_t *) tensor->op_params)[2];
  12926. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12927. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12928. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12929. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12930. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12931. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12932. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12933. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12934. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12935. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12936. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12937. src0->grad = ggml_add_or_set(ctx,
  12938. src0->grad,
  12939. ggml_rope_impl(ctx,
  12940. tensor->grad,
  12941. src1,
  12942. n_dims,
  12943. mode,
  12944. n_ctx,
  12945. n_orig_ctx,
  12946. freq_base,
  12947. freq_scale,
  12948. ext_factor,
  12949. attn_factor,
  12950. beta_fast,
  12951. beta_slow,
  12952. xpos_base,
  12953. xpos_down,
  12954. false),
  12955. zero_table);
  12956. }
  12957. } break;
  12958. case GGML_OP_ALIBI:
  12959. {
  12960. GGML_ASSERT(false); // TODO: not implemented
  12961. } break;
  12962. case GGML_OP_CLAMP:
  12963. {
  12964. GGML_ASSERT(false); // TODO: not implemented
  12965. } break;
  12966. case GGML_OP_CONV_TRANSPOSE_1D:
  12967. {
  12968. GGML_ASSERT(false); // TODO: not implemented
  12969. } break;
  12970. case GGML_OP_IM2COL:
  12971. {
  12972. GGML_ASSERT(false); // TODO: not implemented
  12973. } break;
  12974. case GGML_OP_CONV_TRANSPOSE_2D:
  12975. {
  12976. GGML_ASSERT(false); // TODO: not implemented
  12977. } break;
  12978. case GGML_OP_POOL_1D:
  12979. {
  12980. GGML_ASSERT(false); // TODO: not implemented
  12981. } break;
  12982. case GGML_OP_POOL_2D:
  12983. {
  12984. GGML_ASSERT(false); // TODO: not implemented
  12985. } break;
  12986. case GGML_OP_UPSCALE:
  12987. {
  12988. GGML_ASSERT(false); // TODO: not implemented
  12989. } break;
  12990. case GGML_OP_PAD:
  12991. {
  12992. GGML_ASSERT(false); // TODO: not implemented
  12993. } break;
  12994. case GGML_OP_ARGSORT:
  12995. {
  12996. GGML_ASSERT(false); // TODO: not implemented
  12997. } break;
  12998. case GGML_OP_LEAKY_RELU:
  12999. {
  13000. GGML_ASSERT(false); // TODO: not implemented
  13001. } break;
  13002. case GGML_OP_FLASH_ATTN:
  13003. {
  13004. struct ggml_tensor * flash_grad = NULL;
  13005. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13006. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13007. GGML_ASSERT(t == 0 || t == 1);
  13008. bool masked = t != 0;
  13009. flash_grad =
  13010. ggml_flash_attn_back(ctx,
  13011. src0,
  13012. src1,
  13013. tensor->src[2],
  13014. tensor->grad,
  13015. masked);
  13016. }
  13017. struct ggml_tensor * src2 = tensor->src[2];
  13018. const int64_t elem_q = ggml_nelements(src0);
  13019. const int64_t elem_k = ggml_nelements(src1);
  13020. const int64_t elem_v = ggml_nelements(src2);
  13021. enum ggml_type result_type = flash_grad->type;
  13022. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13023. const size_t tsize = ggml_type_size(result_type);
  13024. const size_t offs_q = 0;
  13025. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13026. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13027. if (src0->grad) {
  13028. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13029. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13030. src0->grad = ggml_add_or_set(ctx,
  13031. src0->grad,
  13032. grad_q,
  13033. zero_table);
  13034. }
  13035. if (src1->grad) {
  13036. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13037. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13038. src1->grad = ggml_add_or_set(ctx,
  13039. src1->grad,
  13040. grad_k,
  13041. zero_table);
  13042. }
  13043. if (src2->grad) {
  13044. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13045. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13046. src2->grad = ggml_add_or_set(ctx,
  13047. src2->grad,
  13048. grad_v,
  13049. zero_table);
  13050. }
  13051. } break;
  13052. case GGML_OP_FLASH_FF:
  13053. {
  13054. GGML_ASSERT(false); // not supported
  13055. } break;
  13056. case GGML_OP_FLASH_ATTN_BACK:
  13057. {
  13058. GGML_ASSERT(false); // not supported
  13059. } break;
  13060. case GGML_OP_WIN_PART:
  13061. case GGML_OP_WIN_UNPART:
  13062. case GGML_OP_UNARY:
  13063. {
  13064. switch (ggml_get_unary_op(tensor)) {
  13065. case GGML_UNARY_OP_ABS:
  13066. {
  13067. if (src0->grad) {
  13068. src0->grad =
  13069. ggml_add_or_set(ctx,
  13070. src0->grad,
  13071. ggml_mul(ctx,
  13072. ggml_sgn(ctx, src0),
  13073. tensor->grad),
  13074. zero_table);
  13075. }
  13076. } break;
  13077. case GGML_UNARY_OP_SGN:
  13078. {
  13079. if (src0->grad) {
  13080. // noop
  13081. }
  13082. } break;
  13083. case GGML_UNARY_OP_NEG:
  13084. {
  13085. if (src0->grad) {
  13086. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13087. }
  13088. } break;
  13089. case GGML_UNARY_OP_STEP:
  13090. {
  13091. if (src0->grad) {
  13092. // noop
  13093. }
  13094. } break;
  13095. case GGML_UNARY_OP_TANH:
  13096. {
  13097. GGML_ASSERT(false); // TODO: not implemented
  13098. } break;
  13099. case GGML_UNARY_OP_ELU:
  13100. {
  13101. GGML_ASSERT(false); // TODO: not implemented
  13102. } break;
  13103. case GGML_UNARY_OP_RELU:
  13104. {
  13105. if (src0->grad) {
  13106. src0->grad = ggml_add_or_set(ctx,
  13107. src0->grad,
  13108. ggml_mul(ctx,
  13109. ggml_step(ctx, src0),
  13110. tensor->grad),
  13111. zero_table);
  13112. }
  13113. } break;
  13114. case GGML_UNARY_OP_GELU:
  13115. {
  13116. GGML_ASSERT(false); // TODO: not implemented
  13117. } break;
  13118. case GGML_UNARY_OP_GELU_QUICK:
  13119. {
  13120. GGML_ASSERT(false); // TODO: not implemented
  13121. } break;
  13122. case GGML_UNARY_OP_SILU:
  13123. {
  13124. // necessary for llama
  13125. if (src0->grad) {
  13126. src0->grad = ggml_add_or_set(ctx,
  13127. src0->grad,
  13128. ggml_silu_back(ctx, src0, tensor->grad),
  13129. zero_table);
  13130. }
  13131. } break;
  13132. default:
  13133. GGML_ASSERT(false);
  13134. }
  13135. } break;
  13136. case GGML_OP_GET_REL_POS:
  13137. case GGML_OP_ADD_REL_POS:
  13138. case GGML_OP_MAP_UNARY:
  13139. case GGML_OP_MAP_BINARY:
  13140. case GGML_OP_MAP_CUSTOM1_F32:
  13141. case GGML_OP_MAP_CUSTOM2_F32:
  13142. case GGML_OP_MAP_CUSTOM3_F32:
  13143. case GGML_OP_MAP_CUSTOM1:
  13144. case GGML_OP_MAP_CUSTOM2:
  13145. case GGML_OP_MAP_CUSTOM3:
  13146. {
  13147. GGML_ASSERT(false); // not supported
  13148. } break;
  13149. case GGML_OP_CROSS_ENTROPY_LOSS:
  13150. {
  13151. if (src0->grad) {
  13152. src0->grad = ggml_add_or_set(ctx,
  13153. src0->grad,
  13154. ggml_cross_entropy_loss_back(ctx,
  13155. src0,
  13156. src1,
  13157. tensor->grad),
  13158. zero_table);
  13159. }
  13160. } break;
  13161. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13162. {
  13163. GGML_ASSERT(false); // not supported
  13164. } break;
  13165. case GGML_OP_NONE:
  13166. {
  13167. // nop
  13168. } break;
  13169. case GGML_OP_COUNT:
  13170. {
  13171. GGML_ASSERT(false);
  13172. } break;
  13173. }
  13174. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13175. if (tensor->src[i] && tensor->src[i]->grad) {
  13176. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13177. }
  13178. }
  13179. }
  13180. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13181. if (node->grad == NULL) {
  13182. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13183. // it can also happen during forward pass, if the user performs computations with constants
  13184. if (node->op != GGML_OP_NONE) {
  13185. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13186. }
  13187. }
  13188. // check if already visited
  13189. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13190. return;
  13191. }
  13192. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13193. const int k =
  13194. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13195. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13196. /* unknown order, just fall back to using i*/ i;
  13197. if (node->src[k]) {
  13198. ggml_visit_parents(cgraph, node->src[k]);
  13199. }
  13200. }
  13201. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13202. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13203. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13204. if (strlen(node->name) == 0) {
  13205. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13206. }
  13207. cgraph->leafs[cgraph->n_leafs] = node;
  13208. cgraph->n_leafs++;
  13209. } else {
  13210. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13211. if (strlen(node->name) == 0) {
  13212. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13213. }
  13214. cgraph->nodes[cgraph->n_nodes] = node;
  13215. if (cgraph->grads) {
  13216. cgraph->grads[cgraph->n_nodes] = node->grad;
  13217. }
  13218. cgraph->n_nodes++;
  13219. }
  13220. }
  13221. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13222. if (!expand) {
  13223. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13224. ggml_graph_clear(cgraph);
  13225. }
  13226. const int n0 = cgraph->n_nodes;
  13227. UNUSED(n0);
  13228. ggml_visit_parents(cgraph, tensor);
  13229. const int n_new = cgraph->n_nodes - n0;
  13230. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13231. if (n_new > 0) {
  13232. // the last added node should always be starting point
  13233. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13234. }
  13235. }
  13236. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13237. ggml_build_forward_impl(cgraph, tensor, true);
  13238. }
  13239. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13240. GGML_ASSERT(gf->n_nodes > 0);
  13241. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13242. if (keep) {
  13243. for (int i = 0; i < gf->n_nodes; i++) {
  13244. struct ggml_tensor * node = gf->nodes[i];
  13245. if (node->grad) {
  13246. node->grad = ggml_dup_tensor(ctx, node);
  13247. gf->grads[i] = node->grad;
  13248. }
  13249. }
  13250. }
  13251. // remember original gradients which start with zero values
  13252. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13253. for (int i = 0; i < gf->n_nodes; i++) {
  13254. if (gf->grads[i]) {
  13255. ggml_hash_insert(zero_table, gf->grads[i]);
  13256. }
  13257. }
  13258. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13259. struct ggml_tensor * node = gf->nodes[i];
  13260. // inplace operations to add gradients are not created by ggml_compute_backward
  13261. // use allocator to automatically make inplace operations
  13262. if (node->grad) {
  13263. ggml_compute_backward(ctx, node, zero_table);
  13264. }
  13265. }
  13266. for (int i = 0; i < gf->n_nodes; i++) {
  13267. struct ggml_tensor * node = gf->nodes[i];
  13268. if (node->is_param) {
  13269. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13270. ggml_build_forward_expand(gb, node->grad);
  13271. }
  13272. }
  13273. ggml_hash_set_free(zero_table);
  13274. }
  13275. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13276. size_t nbytes = sizeof(struct ggml_cgraph);
  13277. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13278. if (grads) {
  13279. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13280. }
  13281. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13282. return nbytes;
  13283. }
  13284. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13285. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13286. }
  13287. size_t ggml_graph_overhead(void) {
  13288. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13289. }
  13290. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13291. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13292. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13293. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13294. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13295. size_t hash_size = ggml_hash_size(size * 2);
  13296. struct ggml_tensor ** nodes_ptr = data_start;
  13297. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13298. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13299. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13300. // check that we allocated the correct amount of memory
  13301. assert(obj_size == (size_t) (
  13302. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13303. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13304. *cgraph = (struct ggml_cgraph) {
  13305. /*.size =*/ size,
  13306. /*.n_nodes =*/ 0,
  13307. /*.n_leafs =*/ 0,
  13308. /*.nodes =*/ nodes_ptr,
  13309. /*.grads =*/ grads_ptr,
  13310. /*.leafs =*/ leafs_ptr,
  13311. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13312. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13313. /*.perf_runs =*/ 0,
  13314. /*.perf_cycles =*/ 0,
  13315. /*.perf_time_us =*/ 0,
  13316. };
  13317. return cgraph;
  13318. }
  13319. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13320. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13321. }
  13322. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13323. struct ggml_cgraph cgraph = {
  13324. /*.size =*/ 0,
  13325. /*.n_nodes =*/ i1 - i0,
  13326. /*.n_leafs =*/ 0,
  13327. /*.nodes =*/ cgraph0->nodes + i0,
  13328. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13329. /*.leafs =*/ NULL,
  13330. /*.hash_table =*/ { 0, NULL },
  13331. /*.order =*/ cgraph0->order,
  13332. /*.perf_runs =*/ 0,
  13333. /*.perf_cycles =*/ 0,
  13334. /*.perf_time_us =*/ 0,
  13335. };
  13336. return cgraph;
  13337. }
  13338. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13339. GGML_ASSERT(dst->size >= src->n_leafs);
  13340. GGML_ASSERT(dst->size >= src->n_nodes);
  13341. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13342. dst->n_leafs = src->n_leafs;
  13343. dst->n_nodes = src->n_nodes;
  13344. dst->order = src->order;
  13345. for (int i = 0; i < src->n_leafs; ++i) {
  13346. dst->leafs[i] = src->leafs[i];
  13347. }
  13348. for (int i = 0; i < src->n_nodes; ++i) {
  13349. dst->nodes[i] = src->nodes[i];
  13350. }
  13351. if (src->grads) {
  13352. GGML_ASSERT(dst->grads != NULL);
  13353. for (int i = 0; i < src->n_nodes; ++i) {
  13354. dst->grads[i] = src->grads[i];
  13355. }
  13356. }
  13357. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13358. if (src->visited_hash_table.keys[i]) {
  13359. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13360. }
  13361. }
  13362. }
  13363. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13364. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13365. ggml_graph_cpy(cgraph, result);
  13366. return result;
  13367. }
  13368. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13369. GGML_ASSERT(cgraph->grads != NULL);
  13370. for (int i = 0; i < cgraph->n_nodes; i++) {
  13371. struct ggml_tensor * grad = cgraph->grads[i];
  13372. if (grad) {
  13373. ggml_set_zero(grad);
  13374. }
  13375. }
  13376. }
  13377. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13378. cgraph->n_leafs = 0;
  13379. cgraph->n_nodes = 0;
  13380. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13381. }
  13382. //
  13383. // thread data
  13384. //
  13385. // synchronization is done via busy loops
  13386. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13387. //
  13388. #ifdef __APPLE__
  13389. //#include <os/lock.h>
  13390. //
  13391. //typedef os_unfair_lock ggml_lock_t;
  13392. //
  13393. //#define ggml_lock_init(x) UNUSED(x)
  13394. //#define ggml_lock_destroy(x) UNUSED(x)
  13395. //#define ggml_lock_lock os_unfair_lock_lock
  13396. //#define ggml_lock_unlock os_unfair_lock_unlock
  13397. //
  13398. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13399. typedef int ggml_lock_t;
  13400. #define ggml_lock_init(x) UNUSED(x)
  13401. #define ggml_lock_destroy(x) UNUSED(x)
  13402. #define ggml_lock_lock(x) UNUSED(x)
  13403. #define ggml_lock_unlock(x) UNUSED(x)
  13404. #define GGML_LOCK_INITIALIZER 0
  13405. typedef pthread_t ggml_thread_t;
  13406. #define ggml_thread_create pthread_create
  13407. #define ggml_thread_join pthread_join
  13408. #else
  13409. //typedef pthread_spinlock_t ggml_lock_t;
  13410. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13411. //#define ggml_lock_destroy pthread_spin_destroy
  13412. //#define ggml_lock_lock pthread_spin_lock
  13413. //#define ggml_lock_unlock pthread_spin_unlock
  13414. typedef int ggml_lock_t;
  13415. #define ggml_lock_init(x) UNUSED(x)
  13416. #define ggml_lock_destroy(x) UNUSED(x)
  13417. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13418. #define ggml_lock_lock(x) _mm_pause()
  13419. #else
  13420. #define ggml_lock_lock(x) UNUSED(x)
  13421. #endif
  13422. #define ggml_lock_unlock(x) UNUSED(x)
  13423. #define GGML_LOCK_INITIALIZER 0
  13424. typedef pthread_t ggml_thread_t;
  13425. #define ggml_thread_create pthread_create
  13426. #define ggml_thread_join pthread_join
  13427. #endif
  13428. // Android's libc implementation "bionic" does not support setting affinity
  13429. #if defined(__linux__) && !defined(__BIONIC__)
  13430. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13431. if (!ggml_is_numa()) {
  13432. return;
  13433. }
  13434. // run thread on node_num thread_n / (threads per node)
  13435. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13436. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13437. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13438. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13439. CPU_ZERO_S(setsize, cpus);
  13440. for (size_t i = 0; i < node->n_cpus; ++i) {
  13441. CPU_SET_S(node->cpus[i], setsize, cpus);
  13442. }
  13443. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13444. if (rv) {
  13445. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13446. strerror(rv));
  13447. }
  13448. CPU_FREE(cpus);
  13449. }
  13450. static void clear_numa_thread_affinity(void) {
  13451. if (!ggml_is_numa()) {
  13452. return;
  13453. }
  13454. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13455. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13456. CPU_ZERO_S(setsize, cpus);
  13457. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13458. CPU_SET_S(i, setsize, cpus);
  13459. }
  13460. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13461. if (rv) {
  13462. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13463. strerror(rv));
  13464. }
  13465. CPU_FREE(cpus);
  13466. }
  13467. #else
  13468. // TODO: Windows etc.
  13469. // (the linux implementation may also work on BSD, someone should test)
  13470. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13471. static void clear_numa_thread_affinity(void) {}
  13472. #endif
  13473. struct ggml_compute_state_shared {
  13474. const struct ggml_cgraph * cgraph;
  13475. const struct ggml_cplan * cplan;
  13476. int64_t perf_node_start_cycles;
  13477. int64_t perf_node_start_time_us;
  13478. const int n_threads;
  13479. // synchronization primitives
  13480. atomic_int n_active; // num active threads
  13481. atomic_int node_n; // active graph node
  13482. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13483. void * abort_callback_data;
  13484. };
  13485. struct ggml_compute_state {
  13486. ggml_thread_t thrd;
  13487. int ith;
  13488. struct ggml_compute_state_shared * shared;
  13489. };
  13490. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13491. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13492. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13493. node->perf_runs++;
  13494. node->perf_cycles += cycles_cur;
  13495. node->perf_time_us += time_us_cur;
  13496. }
  13497. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13498. int n_tasks = 0;
  13499. switch (node->op) {
  13500. case GGML_OP_CPY:
  13501. case GGML_OP_DUP:
  13502. case GGML_OP_ADD:
  13503. case GGML_OP_ADD1:
  13504. case GGML_OP_ACC:
  13505. {
  13506. n_tasks = n_threads;
  13507. } break;
  13508. case GGML_OP_SUB:
  13509. case GGML_OP_SQR:
  13510. case GGML_OP_SQRT:
  13511. case GGML_OP_LOG:
  13512. case GGML_OP_SUM:
  13513. case GGML_OP_SUM_ROWS:
  13514. case GGML_OP_MEAN:
  13515. case GGML_OP_ARGMAX:
  13516. case GGML_OP_REPEAT:
  13517. case GGML_OP_REPEAT_BACK:
  13518. case GGML_OP_LEAKY_RELU:
  13519. {
  13520. n_tasks = 1;
  13521. } break;
  13522. case GGML_OP_UNARY:
  13523. switch (ggml_get_unary_op(node)) {
  13524. case GGML_UNARY_OP_ABS:
  13525. case GGML_UNARY_OP_SGN:
  13526. case GGML_UNARY_OP_NEG:
  13527. case GGML_UNARY_OP_STEP:
  13528. case GGML_UNARY_OP_TANH:
  13529. case GGML_UNARY_OP_ELU:
  13530. case GGML_UNARY_OP_RELU:
  13531. {
  13532. n_tasks = 1;
  13533. } break;
  13534. case GGML_UNARY_OP_GELU:
  13535. case GGML_UNARY_OP_GELU_QUICK:
  13536. case GGML_UNARY_OP_SILU:
  13537. {
  13538. n_tasks = n_threads;
  13539. } break;
  13540. default:
  13541. GGML_ASSERT(false);
  13542. }
  13543. break;
  13544. case GGML_OP_SILU_BACK:
  13545. case GGML_OP_MUL:
  13546. case GGML_OP_DIV:
  13547. case GGML_OP_NORM:
  13548. case GGML_OP_RMS_NORM:
  13549. case GGML_OP_RMS_NORM_BACK:
  13550. case GGML_OP_GROUP_NORM:
  13551. case GGML_OP_CONCAT:
  13552. {
  13553. n_tasks = n_threads;
  13554. } break;
  13555. case GGML_OP_MUL_MAT:
  13556. {
  13557. n_tasks = n_threads;
  13558. // TODO: use different scheduling for different matrix sizes
  13559. //const int nr0 = ggml_nrows(node->src[0]);
  13560. //const int nr1 = ggml_nrows(node->src[1]);
  13561. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13562. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13563. } break;
  13564. case GGML_OP_MUL_MAT_ID:
  13565. {
  13566. n_tasks = n_threads;
  13567. } break;
  13568. case GGML_OP_OUT_PROD:
  13569. {
  13570. n_tasks = n_threads;
  13571. } break;
  13572. case GGML_OP_SCALE:
  13573. case GGML_OP_SET:
  13574. case GGML_OP_CONT:
  13575. case GGML_OP_RESHAPE:
  13576. case GGML_OP_VIEW:
  13577. case GGML_OP_PERMUTE:
  13578. case GGML_OP_TRANSPOSE:
  13579. case GGML_OP_GET_ROWS:
  13580. case GGML_OP_GET_ROWS_BACK:
  13581. case GGML_OP_DIAG:
  13582. {
  13583. n_tasks = 1;
  13584. } break;
  13585. case GGML_OP_DIAG_MASK_ZERO:
  13586. case GGML_OP_DIAG_MASK_INF:
  13587. case GGML_OP_SOFT_MAX_BACK:
  13588. case GGML_OP_ROPE:
  13589. case GGML_OP_ROPE_BACK:
  13590. case GGML_OP_ADD_REL_POS:
  13591. {
  13592. n_tasks = n_threads;
  13593. } break;
  13594. case GGML_OP_ALIBI:
  13595. {
  13596. n_tasks = 1; //TODO
  13597. } break;
  13598. case GGML_OP_CLAMP:
  13599. {
  13600. n_tasks = 1; //TODO
  13601. } break;
  13602. case GGML_OP_SOFT_MAX:
  13603. {
  13604. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13605. } break;
  13606. case GGML_OP_CONV_TRANSPOSE_1D:
  13607. {
  13608. n_tasks = n_threads;
  13609. } break;
  13610. case GGML_OP_IM2COL:
  13611. {
  13612. n_tasks = n_threads;
  13613. } break;
  13614. case GGML_OP_CONV_TRANSPOSE_2D:
  13615. {
  13616. n_tasks = n_threads;
  13617. } break;
  13618. case GGML_OP_POOL_1D:
  13619. case GGML_OP_POOL_2D:
  13620. {
  13621. n_tasks = 1;
  13622. } break;
  13623. case GGML_OP_UPSCALE:
  13624. {
  13625. n_tasks = n_threads;
  13626. } break;
  13627. case GGML_OP_PAD:
  13628. {
  13629. n_tasks = n_threads;
  13630. } break;
  13631. case GGML_OP_ARGSORT:
  13632. {
  13633. n_tasks = n_threads;
  13634. } break;
  13635. case GGML_OP_FLASH_ATTN:
  13636. {
  13637. n_tasks = n_threads;
  13638. } break;
  13639. case GGML_OP_FLASH_FF:
  13640. {
  13641. n_tasks = n_threads;
  13642. } break;
  13643. case GGML_OP_FLASH_ATTN_BACK:
  13644. {
  13645. n_tasks = n_threads;
  13646. } break;
  13647. case GGML_OP_WIN_PART:
  13648. case GGML_OP_WIN_UNPART:
  13649. case GGML_OP_GET_REL_POS:
  13650. case GGML_OP_MAP_UNARY:
  13651. case GGML_OP_MAP_BINARY:
  13652. case GGML_OP_MAP_CUSTOM1_F32:
  13653. case GGML_OP_MAP_CUSTOM2_F32:
  13654. case GGML_OP_MAP_CUSTOM3_F32:
  13655. {
  13656. n_tasks = 1;
  13657. } break;
  13658. case GGML_OP_MAP_CUSTOM1:
  13659. {
  13660. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13661. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13662. n_tasks = n_threads;
  13663. } else {
  13664. n_tasks = MIN(p->n_tasks, n_threads);
  13665. }
  13666. } break;
  13667. case GGML_OP_MAP_CUSTOM2:
  13668. {
  13669. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13670. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13671. n_tasks = n_threads;
  13672. } else {
  13673. n_tasks = MIN(p->n_tasks, n_threads);
  13674. }
  13675. } break;
  13676. case GGML_OP_MAP_CUSTOM3:
  13677. {
  13678. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13679. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13680. n_tasks = n_threads;
  13681. } else {
  13682. n_tasks = MIN(p->n_tasks, n_threads);
  13683. }
  13684. } break;
  13685. case GGML_OP_CROSS_ENTROPY_LOSS:
  13686. {
  13687. n_tasks = n_threads;
  13688. } break;
  13689. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13690. {
  13691. n_tasks = n_threads;
  13692. } break;
  13693. case GGML_OP_NONE:
  13694. {
  13695. n_tasks = 1;
  13696. } break;
  13697. case GGML_OP_COUNT:
  13698. {
  13699. GGML_ASSERT(false);
  13700. } break;
  13701. default:
  13702. {
  13703. fprintf(stderr, "%s: op not implemented: ", __func__);
  13704. if (node->op < GGML_OP_COUNT) {
  13705. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13706. } else {
  13707. fprintf(stderr, "%d\n", node->op);
  13708. }
  13709. GGML_ASSERT(false);
  13710. } break;
  13711. }
  13712. assert(n_tasks > 0);
  13713. return n_tasks;
  13714. }
  13715. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13716. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13717. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13718. const struct ggml_cplan * cplan = state->shared->cplan;
  13719. const int n_threads = state->shared->n_threads;
  13720. set_numa_thread_affinity(state->ith, n_threads);
  13721. int node_n = -1;
  13722. while (true) {
  13723. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13724. state->shared->node_n += 1;
  13725. return (thread_ret_t) GGML_EXIT_ABORTED;
  13726. }
  13727. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13728. // all other threads are finished and spinning
  13729. // do finalize and init here so we don't have synchronize again
  13730. struct ggml_compute_params params = {
  13731. /*.type =*/ GGML_TASK_FINALIZE,
  13732. /*.ith =*/ 0,
  13733. /*.nth =*/ 0,
  13734. /*.wsize =*/ cplan->work_size,
  13735. /*.wdata =*/ cplan->work_data,
  13736. };
  13737. if (node_n != -1) {
  13738. /* FINALIZE */
  13739. struct ggml_tensor * node = cgraph->nodes[node_n];
  13740. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13741. params.nth = ggml_get_n_tasks(node, n_threads);
  13742. ggml_compute_forward(&params, node);
  13743. }
  13744. ggml_graph_compute_perf_stats_node(node, state->shared);
  13745. }
  13746. // distribute new work or execute it direct if 1T
  13747. while (++node_n < cgraph->n_nodes) {
  13748. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13749. struct ggml_tensor * node = cgraph->nodes[node_n];
  13750. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13751. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13752. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13753. params.nth = n_tasks;
  13754. /* INIT */
  13755. if (GGML_OP_HAS_INIT[node->op]) {
  13756. params.type = GGML_TASK_INIT;
  13757. ggml_compute_forward(&params, node);
  13758. }
  13759. if (n_tasks == 1) {
  13760. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13761. // they do something more efficient than spinning (?)
  13762. params.type = GGML_TASK_COMPUTE;
  13763. ggml_compute_forward(&params, node);
  13764. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13765. params.type = GGML_TASK_FINALIZE;
  13766. ggml_compute_forward(&params, node);
  13767. }
  13768. ggml_graph_compute_perf_stats_node(node, state->shared);
  13769. } else {
  13770. break;
  13771. }
  13772. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13773. break;
  13774. }
  13775. }
  13776. atomic_store(&state->shared->n_active, n_threads);
  13777. atomic_store(&state->shared->node_n, node_n);
  13778. } else {
  13779. // wait for other threads to finish
  13780. const int last = node_n;
  13781. const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT;
  13782. while (true) {
  13783. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13784. // depending on the workload and the operating system.
  13785. // since it is not clear what is the best approach, it should potentially become user-configurable
  13786. // ref: https://github.com/ggerganov/ggml/issues/291
  13787. // UPD: adding the do_yield flag seems to resolve the issue universally
  13788. if (do_yield) {
  13789. sched_yield();
  13790. }
  13791. node_n = atomic_load(&state->shared->node_n);
  13792. if (node_n != last) break;
  13793. };
  13794. }
  13795. // check if we should stop
  13796. if (node_n >= cgraph->n_nodes) break;
  13797. /* COMPUTE */
  13798. struct ggml_tensor * node = cgraph->nodes[node_n];
  13799. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13800. struct ggml_compute_params params = {
  13801. /*.type =*/ GGML_TASK_COMPUTE,
  13802. /*.ith =*/ state->ith,
  13803. /*.nth =*/ n_tasks,
  13804. /*.wsize =*/ cplan->work_size,
  13805. /*.wdata =*/ cplan->work_data,
  13806. };
  13807. if (state->ith < n_tasks) {
  13808. ggml_compute_forward(&params, node);
  13809. }
  13810. }
  13811. return GGML_EXIT_SUCCESS;
  13812. }
  13813. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13814. if (n_threads <= 0) {
  13815. n_threads = GGML_DEFAULT_N_THREADS;
  13816. }
  13817. size_t work_size = 0;
  13818. struct ggml_cplan cplan;
  13819. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13820. // thread scheduling for the different operations + work buffer size estimation
  13821. for (int i = 0; i < cgraph->n_nodes; i++) {
  13822. struct ggml_tensor * node = cgraph->nodes[i];
  13823. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13824. size_t cur = 0;
  13825. switch (node->op) {
  13826. case GGML_OP_CPY:
  13827. case GGML_OP_DUP:
  13828. {
  13829. if (ggml_is_quantized(node->type)) {
  13830. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13831. }
  13832. } break;
  13833. case GGML_OP_ADD:
  13834. case GGML_OP_ADD1:
  13835. {
  13836. if (ggml_is_quantized(node->src[0]->type)) {
  13837. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13838. }
  13839. } break;
  13840. case GGML_OP_ACC:
  13841. {
  13842. if (ggml_is_quantized(node->src[0]->type)) {
  13843. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13844. }
  13845. } break;
  13846. case GGML_OP_MUL_MAT:
  13847. {
  13848. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13849. #if defined(GGML_USE_CLBLAST)
  13850. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13851. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13852. } else
  13853. #endif
  13854. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13855. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  13856. if (node->src[0]->type != GGML_TYPE_F32) {
  13857. // here we need memory just for single 2D matrix from src0
  13858. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13859. }
  13860. } else
  13861. #endif
  13862. if (node->src[1]->type != vec_dot_type) {
  13863. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  13864. }
  13865. } break;
  13866. case GGML_OP_MUL_MAT_ID:
  13867. {
  13868. const struct ggml_tensor * src0 = node->src[2];
  13869. const struct ggml_tensor * src1 = node->src[1];
  13870. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  13871. if (src1->type != vec_dot_type) {
  13872. cur = ggml_row_size(vec_dot_type, ggml_nelements(src1));
  13873. }
  13874. const int n_as = ggml_get_op_params_i32(node, 1);
  13875. cur = GGML_PAD(cur, sizeof(int64_t)); // align
  13876. cur += n_as * sizeof(int64_t); // matrix_row_counts
  13877. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  13878. } break;
  13879. case GGML_OP_OUT_PROD:
  13880. {
  13881. if (ggml_is_quantized(node->src[0]->type)) {
  13882. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13883. }
  13884. } break;
  13885. case GGML_OP_SOFT_MAX:
  13886. {
  13887. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13888. } break;
  13889. case GGML_OP_CONV_TRANSPOSE_1D:
  13890. {
  13891. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13892. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13893. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13894. const int64_t ne00 = node->src[0]->ne[0]; // K
  13895. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13896. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13897. const int64_t ne10 = node->src[1]->ne[0]; // L
  13898. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13899. if (node->src[0]->type == GGML_TYPE_F16 &&
  13900. node->src[1]->type == GGML_TYPE_F32) {
  13901. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13902. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13903. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13904. node->src[1]->type == GGML_TYPE_F32) {
  13905. cur += sizeof(float)*ne00*ne01*ne02;
  13906. cur += sizeof(float)*ne10*ne11;
  13907. } else {
  13908. GGML_ASSERT(false);
  13909. }
  13910. } break;
  13911. case GGML_OP_CONV_TRANSPOSE_2D:
  13912. {
  13913. const int64_t ne00 = node->src[0]->ne[0]; // W
  13914. const int64_t ne01 = node->src[0]->ne[1]; // H
  13915. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13916. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13917. const int64_t ne10 = node->src[1]->ne[0]; // W
  13918. const int64_t ne11 = node->src[1]->ne[1]; // H
  13919. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13920. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13921. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13922. } break;
  13923. case GGML_OP_FLASH_ATTN:
  13924. {
  13925. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13926. if (node->src[1]->type == GGML_TYPE_F32) {
  13927. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13928. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13929. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13930. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13931. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13932. }
  13933. } break;
  13934. case GGML_OP_FLASH_FF:
  13935. {
  13936. if (node->src[1]->type == GGML_TYPE_F32) {
  13937. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13938. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13939. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13940. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13941. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13942. }
  13943. } break;
  13944. case GGML_OP_FLASH_ATTN_BACK:
  13945. {
  13946. const int64_t D = node->src[0]->ne[0];
  13947. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13948. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13949. if (node->src[1]->type == GGML_TYPE_F32) {
  13950. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13951. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13952. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13953. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13954. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13955. }
  13956. } break;
  13957. case GGML_OP_CROSS_ENTROPY_LOSS:
  13958. {
  13959. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13960. } break;
  13961. case GGML_OP_COUNT:
  13962. {
  13963. GGML_ASSERT(false);
  13964. } break;
  13965. default:
  13966. break;
  13967. }
  13968. work_size = MAX(work_size, cur);
  13969. }
  13970. if (work_size > 0) {
  13971. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13972. }
  13973. cplan.n_threads = n_threads;
  13974. cplan.work_size = work_size;
  13975. cplan.work_data = NULL;
  13976. return cplan;
  13977. }
  13978. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13979. {
  13980. GGML_ASSERT(cplan);
  13981. GGML_ASSERT(cplan->n_threads > 0);
  13982. if (cplan->work_size > 0) {
  13983. GGML_ASSERT(cplan->work_data);
  13984. }
  13985. }
  13986. const int n_threads = cplan->n_threads;
  13987. struct ggml_compute_state_shared state_shared = {
  13988. /*.cgraph =*/ cgraph,
  13989. /*.cgraph_plan =*/ cplan,
  13990. /*.perf_node_start_cycles =*/ 0,
  13991. /*.perf_node_start_time_us =*/ 0,
  13992. /*.n_threads =*/ n_threads,
  13993. /*.n_active =*/ n_threads,
  13994. /*.node_n =*/ -1,
  13995. /*.abort_callback =*/ NULL,
  13996. /*.abort_callback_data =*/ NULL,
  13997. };
  13998. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13999. // create thread pool
  14000. if (n_threads > 1) {
  14001. for (int j = 1; j < n_threads; ++j) {
  14002. workers[j] = (struct ggml_compute_state) {
  14003. .thrd = 0,
  14004. .ith = j,
  14005. .shared = &state_shared,
  14006. };
  14007. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14008. GGML_ASSERT(rc == 0);
  14009. UNUSED(rc);
  14010. }
  14011. }
  14012. workers[0].ith = 0;
  14013. workers[0].shared = &state_shared;
  14014. const int64_t perf_start_cycles = ggml_perf_cycles();
  14015. const int64_t perf_start_time_us = ggml_perf_time_us();
  14016. // this is a work thread too
  14017. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14018. // don't leave affinity set on the main thread
  14019. clear_numa_thread_affinity();
  14020. // join or kill thread pool
  14021. if (n_threads > 1) {
  14022. for (int j = 1; j < n_threads; j++) {
  14023. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14024. GGML_ASSERT(rc == 0);
  14025. }
  14026. }
  14027. // performance stats (graph)
  14028. {
  14029. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14030. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14031. cgraph->perf_runs++;
  14032. cgraph->perf_cycles += perf_cycles_cur;
  14033. cgraph->perf_time_us += perf_time_us_cur;
  14034. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14035. __func__, cgraph->perf_runs,
  14036. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14037. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14038. (double) perf_time_us_cur / 1000.0,
  14039. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14040. }
  14041. return compute_status;
  14042. }
  14043. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14044. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14045. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14046. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14047. ggml_graph_compute(cgraph, &cplan);
  14048. }
  14049. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14050. for (int i = 0; i < cgraph->n_leafs; i++) {
  14051. struct ggml_tensor * leaf = cgraph->leafs[i];
  14052. if (strcmp(leaf->name, name) == 0) {
  14053. return leaf;
  14054. }
  14055. }
  14056. for (int i = 0; i < cgraph->n_nodes; i++) {
  14057. struct ggml_tensor * node = cgraph->nodes[i];
  14058. if (strcmp(node->name, name) == 0) {
  14059. return node;
  14060. }
  14061. }
  14062. return NULL;
  14063. }
  14064. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14065. const int64_t * ne = tensor->ne;
  14066. const size_t * nb = tensor->nb;
  14067. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14068. ggml_type_name(tensor->type),
  14069. ggml_op_name (tensor->op),
  14070. ggml_n_dims(tensor),
  14071. ne[0], ne[1], ne[2], ne[3],
  14072. nb[0], nb[1], nb[2], nb[3],
  14073. tensor->data,
  14074. tensor->name);
  14075. }
  14076. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14077. const int64_t * ne = tensor->ne;
  14078. const size_t * nb = tensor->nb;
  14079. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14080. arg,
  14081. ggml_type_name(tensor->type),
  14082. ggml_op_name (tensor->op),
  14083. ggml_n_dims(tensor),
  14084. ne[0], ne[1], ne[2], ne[3],
  14085. nb[0], nb[1], nb[2], nb[3],
  14086. tensor->data,
  14087. tensor->name);
  14088. }
  14089. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14090. uint64_t size_eval = 0;
  14091. // compute size of intermediate results
  14092. // TODO: does not take into account scratch buffers !!!!
  14093. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14094. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14095. }
  14096. // print
  14097. {
  14098. FILE * fout = stdout;
  14099. fprintf(fout, "\n");
  14100. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14101. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14102. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14103. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14104. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14105. // header
  14106. fprintf(fout, "\n");
  14107. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14108. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14109. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14110. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14111. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14112. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14113. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14114. }
  14115. // header
  14116. fprintf(fout, "\n");
  14117. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14118. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14119. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14120. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14121. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14122. if (cgraph->nodes[i]->src[j]) {
  14123. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14124. }
  14125. }
  14126. fprintf(fout, "\n");
  14127. }
  14128. fprintf(fout, "\n");
  14129. }
  14130. // write binary data
  14131. {
  14132. FILE * fout = fopen(fname, "wb");
  14133. if (!fout) {
  14134. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14135. return;
  14136. }
  14137. // header
  14138. {
  14139. const uint32_t magic = GGML_FILE_MAGIC;
  14140. const uint32_t version = GGML_FILE_VERSION;
  14141. const uint32_t n_leafs = cgraph->n_leafs;
  14142. const uint32_t n_nodes = cgraph->n_nodes;
  14143. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14144. fwrite(&version, sizeof(uint32_t), 1, fout);
  14145. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14146. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14147. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14148. }
  14149. // leafs
  14150. {
  14151. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14152. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14153. const uint32_t type = tensor->type;
  14154. const uint32_t op = tensor->op;
  14155. fwrite(&type, sizeof(uint32_t), 1, fout);
  14156. fwrite(&op, sizeof(uint32_t), 1, fout);
  14157. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14158. const uint64_t ne = tensor->ne[j];
  14159. const uint64_t nb = tensor->nb[j];
  14160. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14161. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14162. }
  14163. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14164. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14165. // dump the data
  14166. // TODO: pad this to 32 byte boundary
  14167. {
  14168. const size_t size = ggml_nbytes(tensor);
  14169. fwrite(tensor->data, sizeof(char), size, fout);
  14170. }
  14171. }
  14172. }
  14173. // nodes
  14174. {
  14175. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14176. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14177. const uint32_t type = tensor->type;
  14178. const uint32_t op = tensor->op;
  14179. fwrite(&type, sizeof(uint32_t), 1, fout);
  14180. fwrite(&op, sizeof(uint32_t), 1, fout);
  14181. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14182. const uint64_t ne = tensor->ne[j];
  14183. const uint64_t nb = tensor->nb[j];
  14184. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14185. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14186. }
  14187. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14188. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14189. // output the op arguments
  14190. {
  14191. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14192. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14193. args[j] = tensor->src[j];
  14194. }
  14195. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14196. if (args[j]) {
  14197. int32_t idx = -1;
  14198. // check if leaf
  14199. {
  14200. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14201. if (args[j] == cgraph->leafs[k]) {
  14202. idx = k;
  14203. break;
  14204. }
  14205. }
  14206. }
  14207. // check if node
  14208. if (idx == -1) {
  14209. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14210. if (args[j] == cgraph->nodes[k]) {
  14211. idx = cgraph->n_leafs + k;
  14212. break;
  14213. }
  14214. }
  14215. }
  14216. if (idx == -1) {
  14217. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14218. fclose(fout);
  14219. return;
  14220. }
  14221. fwrite(&idx, sizeof(int32_t), 1, fout);
  14222. } else {
  14223. const int32_t nul = -1;
  14224. fwrite(&nul, sizeof(int32_t), 1, fout);
  14225. }
  14226. }
  14227. }
  14228. }
  14229. }
  14230. fclose(fout);
  14231. }
  14232. }
  14233. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14234. assert(*ctx_data == NULL);
  14235. assert(*ctx_eval == NULL);
  14236. struct ggml_cgraph * result = NULL;
  14237. struct ggml_tensor * data = NULL;
  14238. // read file into data
  14239. {
  14240. FILE * fin = fopen(fname, "rb");
  14241. if (!fin) {
  14242. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14243. return result;
  14244. }
  14245. size_t fsize = 0;
  14246. fseek(fin, 0, SEEK_END);
  14247. fsize = ftell(fin);
  14248. fseek(fin, 0, SEEK_SET);
  14249. // create the data context
  14250. {
  14251. const size_t overhead = 1*ggml_tensor_overhead();
  14252. struct ggml_init_params params = {
  14253. .mem_size = fsize + overhead,
  14254. .mem_buffer = NULL,
  14255. .no_alloc = false,
  14256. };
  14257. *ctx_data = ggml_init(params);
  14258. if (!*ctx_data) {
  14259. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14260. fclose(fin);
  14261. return result;
  14262. }
  14263. }
  14264. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14265. {
  14266. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14267. if (ret != fsize) {
  14268. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14269. fclose(fin);
  14270. return result;
  14271. }
  14272. }
  14273. fclose(fin);
  14274. }
  14275. // populate result
  14276. {
  14277. char * ptr = (char *) data->data;
  14278. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14279. if (magic != GGML_FILE_MAGIC) {
  14280. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14281. return result;
  14282. }
  14283. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14284. if (version != GGML_FILE_VERSION) {
  14285. fprintf(stderr, "%s: invalid version number\n", __func__);
  14286. return result;
  14287. }
  14288. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14289. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14290. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14291. const int graph_size = MAX(n_leafs, n_nodes);
  14292. // create the data context
  14293. {
  14294. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14295. struct ggml_init_params params = {
  14296. .mem_size = size_eval + overhead,
  14297. .mem_buffer = NULL,
  14298. .no_alloc = true,
  14299. };
  14300. *ctx_eval = ggml_init(params);
  14301. if (!*ctx_eval) {
  14302. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14303. return result;
  14304. }
  14305. }
  14306. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14307. result->n_leafs = n_leafs;
  14308. result->n_nodes = n_nodes;
  14309. // leafs
  14310. {
  14311. uint32_t type;
  14312. uint32_t op;
  14313. for (uint32_t i = 0; i < n_leafs; ++i) {
  14314. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14315. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14316. int64_t ne[GGML_MAX_DIMS];
  14317. size_t nb[GGML_MAX_DIMS];
  14318. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14319. uint64_t ne_cur;
  14320. uint64_t nb_cur;
  14321. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14322. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14323. ne[j] = ne_cur;
  14324. nb[j] = nb_cur;
  14325. }
  14326. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14327. tensor->op = (enum ggml_op) op;
  14328. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14329. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14330. tensor->data = (void *) ptr;
  14331. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14332. tensor->nb[j] = nb[j];
  14333. }
  14334. result->leafs[i] = tensor;
  14335. ptr += ggml_nbytes(tensor);
  14336. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14337. }
  14338. }
  14339. ggml_set_no_alloc(*ctx_eval, false);
  14340. // nodes
  14341. {
  14342. uint32_t type;
  14343. uint32_t op;
  14344. for (uint32_t i = 0; i < n_nodes; ++i) {
  14345. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14346. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14347. enum ggml_op eop = (enum ggml_op) op;
  14348. int64_t ne[GGML_MAX_DIMS];
  14349. size_t nb[GGML_MAX_DIMS];
  14350. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14351. uint64_t ne_cur;
  14352. uint64_t nb_cur;
  14353. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14354. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14355. ne[j] = ne_cur;
  14356. nb[j] = nb_cur;
  14357. }
  14358. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14359. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14360. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14361. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14362. // parse args
  14363. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14364. const int32_t arg_idx = ptr_arg_idx[j];
  14365. if (arg_idx == -1) {
  14366. continue;
  14367. }
  14368. if (arg_idx < result->n_leafs) {
  14369. args[j] = result->leafs[arg_idx];
  14370. } else {
  14371. args[j] = result->nodes[arg_idx - result->n_leafs];
  14372. }
  14373. }
  14374. // create the tensor
  14375. // "view" operations are handled differently
  14376. // TODO: handle inplace ops - currently a copy is always made
  14377. struct ggml_tensor * tensor = NULL;
  14378. switch (eop) {
  14379. // TODO: implement other view ops
  14380. case GGML_OP_RESHAPE:
  14381. {
  14382. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14383. } break;
  14384. case GGML_OP_VIEW:
  14385. {
  14386. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14387. size_t offs;
  14388. memcpy(&offs, ptr_op_params, sizeof(offs));
  14389. tensor->data = ((char *) tensor->data) + offs;
  14390. } break;
  14391. case GGML_OP_TRANSPOSE:
  14392. {
  14393. tensor = ggml_transpose(*ctx_eval, args[0]);
  14394. } break;
  14395. case GGML_OP_PERMUTE:
  14396. {
  14397. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14398. } break;
  14399. default:
  14400. {
  14401. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14402. tensor->op = eop;
  14403. } break;
  14404. }
  14405. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14406. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14407. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14408. tensor->nb[j] = nb[j];
  14409. }
  14410. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14411. tensor->src[j] = args[j];
  14412. }
  14413. result->nodes[i] = tensor;
  14414. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14415. }
  14416. }
  14417. }
  14418. return result;
  14419. }
  14420. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14421. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14422. GGML_PRINT("=== GRAPH ===\n");
  14423. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14424. for (int i = 0; i < cgraph->n_nodes; i++) {
  14425. struct ggml_tensor * node = cgraph->nodes[i];
  14426. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14427. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14428. i,
  14429. node->ne[0], node->ne[1], node->ne[2],
  14430. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14431. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14432. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14433. (double) node->perf_time_us / 1000.0,
  14434. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14435. }
  14436. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14437. for (int i = 0; i < cgraph->n_leafs; i++) {
  14438. struct ggml_tensor * node = cgraph->leafs[i];
  14439. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14440. i,
  14441. node->ne[0], node->ne[1],
  14442. ggml_op_name(node->op),
  14443. ggml_get_name(node));
  14444. }
  14445. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14446. if (perf_total_per_op_us[i] == 0) {
  14447. continue;
  14448. }
  14449. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14450. }
  14451. GGML_PRINT("========================================\n");
  14452. }
  14453. // check if node is part of the graph
  14454. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14455. if (cgraph == NULL) {
  14456. return true;
  14457. }
  14458. for (int i = 0; i < cgraph->n_nodes; i++) {
  14459. if (cgraph->nodes[i] == node) {
  14460. return true;
  14461. }
  14462. }
  14463. return false;
  14464. }
  14465. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14466. for (int i = 0; i < cgraph->n_nodes; i++) {
  14467. struct ggml_tensor * parent = cgraph->nodes[i];
  14468. if (parent->grad == node) {
  14469. return parent;
  14470. }
  14471. }
  14472. return NULL;
  14473. }
  14474. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14475. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14476. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14477. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14478. gparent0 ? (void *) gparent0 : (void *) parent,
  14479. gparent0 ? "g" : "x",
  14480. gparent ? (void *) gparent : (void *) node,
  14481. gparent ? "g" : "x",
  14482. gparent ? "empty" : "vee",
  14483. gparent ? "dashed" : "solid",
  14484. label);
  14485. }
  14486. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14487. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14488. (void *) parent, "x",
  14489. (void *) node, "x",
  14490. label);
  14491. }
  14492. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14493. char color[16];
  14494. FILE * fp = fopen(filename, "w");
  14495. GGML_ASSERT(fp);
  14496. fprintf(fp, "digraph G {\n");
  14497. fprintf(fp, " newrank = true;\n");
  14498. fprintf(fp, " rankdir = LR;\n");
  14499. for (int i = 0; i < gb->n_nodes; i++) {
  14500. struct ggml_tensor * node = gb->nodes[i];
  14501. if (ggml_graph_get_parent(gb, node) != NULL) {
  14502. continue;
  14503. }
  14504. if (node->is_param) {
  14505. snprintf(color, sizeof(color), "yellow");
  14506. } else if (node->grad) {
  14507. if (ggml_graph_find(gf, node)) {
  14508. snprintf(color, sizeof(color), "green");
  14509. } else {
  14510. snprintf(color, sizeof(color), "lightblue");
  14511. }
  14512. } else {
  14513. snprintf(color, sizeof(color), "white");
  14514. }
  14515. fprintf(fp, " \"%p\" [ "
  14516. "style = filled; fillcolor = %s; shape = record; "
  14517. "label=\"",
  14518. (void *) node, color);
  14519. if (strlen(node->name) > 0) {
  14520. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14521. } else {
  14522. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14523. }
  14524. if (ggml_is_matrix(node)) {
  14525. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14526. } else {
  14527. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14528. }
  14529. if (node->grad) {
  14530. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14531. } else {
  14532. fprintf(fp, "\"; ]\n");
  14533. }
  14534. }
  14535. for (int i = 0; i < gb->n_leafs; i++) {
  14536. struct ggml_tensor * node = gb->leafs[i];
  14537. snprintf(color, sizeof(color), "pink");
  14538. fprintf(fp, " \"%p\" [ "
  14539. "style = filled; fillcolor = %s; shape = record; "
  14540. "label=\"<x>",
  14541. (void *) node, color);
  14542. if (strlen(node->name) > 0) {
  14543. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14544. } else {
  14545. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14546. }
  14547. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14548. if (ggml_nelements(node) < 5) {
  14549. fprintf(fp, " | (");
  14550. for (int j = 0; j < ggml_nelements(node); j++) {
  14551. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14552. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14553. }
  14554. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14555. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14556. }
  14557. else {
  14558. fprintf(fp, "#");
  14559. }
  14560. if (j < ggml_nelements(node) - 1) {
  14561. fprintf(fp, ", ");
  14562. }
  14563. }
  14564. fprintf(fp, ")");
  14565. }
  14566. fprintf(fp, "\"; ]\n");
  14567. }
  14568. for (int i = 0; i < gb->n_nodes; i++) {
  14569. struct ggml_tensor * node = gb->nodes[i];
  14570. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14571. if (node->src[j]) {
  14572. char label[16];
  14573. snprintf(label, sizeof(label), "src %d", j);
  14574. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14575. }
  14576. }
  14577. }
  14578. for (int i = 0; i < gb->n_leafs; i++) {
  14579. struct ggml_tensor * node = gb->leafs[i];
  14580. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14581. if (node->src[j]) {
  14582. char label[16];
  14583. snprintf(label, sizeof(label), "src %d", j);
  14584. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14585. }
  14586. }
  14587. }
  14588. fprintf(fp, "}\n");
  14589. fclose(fp);
  14590. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14591. }
  14592. ////////////////////////////////////////////////////////////////////////////////
  14593. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14594. int i = 0;
  14595. for (int p = 0; p < np; ++p) {
  14596. const int64_t ne = ggml_nelements(ps[p]) ;
  14597. // TODO: add function to set tensor from array
  14598. for (int64_t j = 0; j < ne; ++j) {
  14599. ggml_set_f32_1d(ps[p], j, x[i++]);
  14600. }
  14601. }
  14602. }
  14603. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14604. int i = 0;
  14605. for (int p = 0; p < np; ++p) {
  14606. const int64_t ne = ggml_nelements(ps[p]) ;
  14607. // TODO: add function to get all elements at once
  14608. for (int64_t j = 0; j < ne; ++j) {
  14609. x[i++] = ggml_get_f32_1d(ps[p], j);
  14610. }
  14611. }
  14612. }
  14613. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14614. int64_t i = 0;
  14615. for (int p = 0; p < np; ++p) {
  14616. const int64_t ne = ggml_nelements(ps[p]) ;
  14617. // TODO: add function to get all elements at once
  14618. for (int64_t j = 0; j < ne; ++j) {
  14619. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14620. }
  14621. }
  14622. }
  14623. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14624. int64_t i = 0;
  14625. for (int p = 0; p < np; ++p) {
  14626. const int64_t ne = ggml_nelements(ps[p]) ;
  14627. // TODO: add function to get all elements at once
  14628. for (int64_t j = 0; j < ne; ++j) {
  14629. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14630. }
  14631. }
  14632. }
  14633. //
  14634. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14635. //
  14636. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14637. //
  14638. static enum ggml_opt_result ggml_opt_adam(
  14639. struct ggml_context * ctx,
  14640. struct ggml_opt_context * opt,
  14641. struct ggml_opt_params params,
  14642. struct ggml_tensor * f,
  14643. struct ggml_cgraph * gf,
  14644. struct ggml_cgraph * gb,
  14645. ggml_opt_callback callback,
  14646. void * callback_data) {
  14647. GGML_ASSERT(ggml_is_scalar(f));
  14648. // these will store the parameters we want to optimize
  14649. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14650. int np = 0;
  14651. int64_t nx = 0;
  14652. for (int i = 0; i < gf->n_nodes; ++i) {
  14653. if (gf->nodes[i]->is_param) {
  14654. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14655. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14656. ps[np++] = gf->nodes[i];
  14657. nx += ggml_nelements(gf->nodes[i]);
  14658. }
  14659. }
  14660. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14661. int iter = opt->iter;
  14662. ggml_opt_init(opt->ctx, opt, params, nx);
  14663. opt->iter = iter;
  14664. }
  14665. // constants
  14666. float sched = params.adam.sched;
  14667. const float alpha = params.adam.alpha;
  14668. const float decay = params.adam.decay * alpha;
  14669. const float beta1 = params.adam.beta1;
  14670. const float beta2 = params.adam.beta2;
  14671. const float eps = params.adam.eps;
  14672. const float gclip = params.adam.gclip;
  14673. const int decay_min_ndim = params.adam.decay_min_ndim;
  14674. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14675. const float accum_norm = 1.0f / (float) n_accum;
  14676. float * g = opt->adam.g->data; // gradients
  14677. float * m = opt->adam.m->data; // first moment
  14678. float * v = opt->adam.v->data; // second moment
  14679. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14680. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14681. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14682. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14683. bool cancel = false;
  14684. // compute the function value
  14685. float fx = 0;
  14686. ggml_set_zero(opt->adam.g);
  14687. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14688. if (callback) {
  14689. callback(callback_data, accum_step, &sched, &cancel);
  14690. if (cancel) {
  14691. return GGML_OPT_CANCEL;
  14692. }
  14693. }
  14694. // ggml_graph_reset (gf);
  14695. ggml_set_f32 (f->grad, 1.0f);
  14696. ggml_graph_compute(gb, &cplan);
  14697. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14698. fx += ggml_get_f32_1d(f, 0);
  14699. }
  14700. fx *= accum_norm;
  14701. opt->adam.fx_prev = fx;
  14702. opt->adam.fx_best = opt->adam.fx_prev;
  14703. if (pf) {
  14704. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14705. }
  14706. opt->loss_before = opt->adam.fx_prev;
  14707. opt->loss_after = opt->adam.fx_prev;
  14708. // initialize
  14709. if (opt->just_initialized) {
  14710. opt->adam.n_no_improvement = 0;
  14711. opt->just_initialized = false;
  14712. }
  14713. float * fx_best = &opt->adam.fx_best;
  14714. float * fx_prev = &opt->adam.fx_prev;
  14715. int * n_no_improvement = &opt->adam.n_no_improvement;
  14716. int iter0 = opt->iter;
  14717. // run the optimizer
  14718. for (int t = 0; t < params.adam.n_iter; ++t) {
  14719. opt->iter = iter0 + t + 1;
  14720. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14721. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14722. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14723. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14724. for (int i = 0; i < np; ++i) {
  14725. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14726. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14727. }
  14728. const int64_t t_start_wall = ggml_time_us();
  14729. const int64_t t_start_cpu = ggml_cycles();
  14730. UNUSED(t_start_wall);
  14731. UNUSED(t_start_cpu);
  14732. {
  14733. float gnorm = 1.0f;
  14734. if (gclip > 0.0f) {
  14735. // gradient clipping
  14736. ggml_float sum = 0.0;
  14737. for (int64_t i = 0; i < nx; ++i) {
  14738. sum += (ggml_float)(g[i]*g[i]);
  14739. }
  14740. ggml_float norm = sqrt(sum);
  14741. if (norm > (ggml_float) gclip) {
  14742. gnorm = (float) ((ggml_float) gclip / norm);
  14743. }
  14744. }
  14745. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14746. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14747. int64_t i = 0;
  14748. for (int p = 0; p < np; ++p) {
  14749. const int64_t ne = ggml_nelements(ps[p]);
  14750. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14751. for (int64_t j = 0; j < ne; ++j) {
  14752. float x = ggml_get_f32_1d(ps[p], j);
  14753. float g_ = g[i]*gnorm;
  14754. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14755. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14756. float mh = m[i]*beta1h;
  14757. float vh = v[i]*beta2h;
  14758. vh = sqrtf(vh) + eps;
  14759. x = x*(1.0f - p_decay) - mh/vh;
  14760. ggml_set_f32_1d(ps[p], j, x);
  14761. ++i;
  14762. }
  14763. }
  14764. }
  14765. fx = 0;
  14766. ggml_set_zero(opt->adam.g);
  14767. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14768. if (callback) {
  14769. callback(callback_data, accum_step, &sched, &cancel);
  14770. if (cancel) {
  14771. return GGML_OPT_CANCEL;;
  14772. }
  14773. }
  14774. // ggml_graph_reset (gf);
  14775. ggml_set_f32 (f->grad, 1.0f);
  14776. ggml_graph_compute(gb, &cplan);
  14777. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14778. fx += ggml_get_f32_1d(f, 0);
  14779. }
  14780. fx *= accum_norm;
  14781. opt->loss_after = fx;
  14782. // check convergence
  14783. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14784. GGML_PRINT_DEBUG("converged\n");
  14785. return GGML_OPT_OK;
  14786. }
  14787. // delta-based convergence test
  14788. if (pf != NULL) {
  14789. // need at least params.past iterations to start checking for convergence
  14790. if (params.past <= iter0 + t) {
  14791. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14792. if (fabsf(rate) < params.delta) {
  14793. return GGML_OPT_OK;
  14794. }
  14795. }
  14796. pf[(iter0 + t)%params.past] = fx;
  14797. }
  14798. // check for improvement
  14799. if (params.max_no_improvement > 0) {
  14800. if (fx_best[0] > fx) {
  14801. fx_best[0] = fx;
  14802. n_no_improvement[0] = 0;
  14803. } else {
  14804. ++n_no_improvement[0];
  14805. if (n_no_improvement[0] >= params.max_no_improvement) {
  14806. return GGML_OPT_OK;
  14807. }
  14808. }
  14809. }
  14810. fx_prev[0] = fx;
  14811. {
  14812. const int64_t t_end_cpu = ggml_cycles();
  14813. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14814. UNUSED(t_end_cpu);
  14815. const int64_t t_end_wall = ggml_time_us();
  14816. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14817. UNUSED(t_end_wall);
  14818. }
  14819. }
  14820. return GGML_OPT_DID_NOT_CONVERGE;
  14821. }
  14822. //
  14823. // L-BFGS
  14824. //
  14825. // the L-BFGS implementation below is based on the following implementation:
  14826. //
  14827. // https://github.com/chokkan/liblbfgs
  14828. //
  14829. struct ggml_lbfgs_iteration_data {
  14830. float alpha;
  14831. float ys;
  14832. float * s;
  14833. float * y;
  14834. };
  14835. static enum ggml_opt_result linesearch_backtracking(
  14836. const struct ggml_opt_params * params,
  14837. int nx,
  14838. float * x,
  14839. float * fx,
  14840. float * g,
  14841. float * d,
  14842. float * step,
  14843. const float * xp,
  14844. struct ggml_tensor * f,
  14845. struct ggml_cgraph * gb,
  14846. struct ggml_cplan * cplan,
  14847. const int np,
  14848. struct ggml_tensor * ps[],
  14849. bool * cancel,
  14850. ggml_opt_callback callback,
  14851. void * callback_data) {
  14852. int count = 0;
  14853. float width = 0.0f;
  14854. float dg = 0.0f;
  14855. float finit = 0.0f;
  14856. float dginit = 0.0f;
  14857. float dgtest = 0.0f;
  14858. const float dec = 0.5f;
  14859. const float inc = 2.1f;
  14860. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14861. const float accum_norm = 1.0f / (float) n_accum;
  14862. if (*step <= 0.f) {
  14863. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14864. }
  14865. // compute the initial gradient in the search direction
  14866. ggml_vec_dot_f32(nx, &dginit, g, d);
  14867. // make sure that d points to a descent direction
  14868. if (0 < dginit) {
  14869. return GGML_LINESEARCH_FAIL;
  14870. }
  14871. // initialize local variables
  14872. finit = *fx;
  14873. dgtest = params->lbfgs.ftol*dginit;
  14874. while (true) {
  14875. ggml_vec_cpy_f32(nx, x, xp);
  14876. ggml_vec_mad_f32(nx, x, d, *step);
  14877. // evaluate the function and gradient values
  14878. {
  14879. ggml_opt_set_params(np, ps, x);
  14880. *fx = 0;
  14881. memset(g, 0, sizeof(float)*nx);
  14882. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14883. if (callback) {
  14884. // LBFG-S does not support learning rate -> ignore learning schedule
  14885. float sched = 0;
  14886. callback(callback_data, accum_step, &sched, cancel);
  14887. if (*cancel) {
  14888. return GGML_OPT_CANCEL;
  14889. }
  14890. }
  14891. // ggml_graph_reset (gf);
  14892. ggml_set_f32 (f->grad, 1.0f);
  14893. ggml_graph_compute(gb, cplan);
  14894. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14895. *fx += ggml_get_f32_1d(f, 0);
  14896. }
  14897. *fx *= accum_norm;
  14898. }
  14899. ++count;
  14900. if (*fx > finit + (*step)*dgtest) {
  14901. width = dec;
  14902. } else {
  14903. // Armijo condition is satisfied
  14904. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14905. return count;
  14906. }
  14907. ggml_vec_dot_f32(nx, &dg, g, d);
  14908. // check the Wolfe condition
  14909. if (dg < params->lbfgs.wolfe * dginit) {
  14910. width = inc;
  14911. } else {
  14912. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14913. // regular Wolfe conditions
  14914. return count;
  14915. }
  14916. if(dg > -params->lbfgs.wolfe*dginit) {
  14917. width = dec;
  14918. } else {
  14919. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14920. return count;
  14921. }
  14922. }
  14923. }
  14924. if (*step < params->lbfgs.min_step) {
  14925. return GGML_LINESEARCH_MINIMUM_STEP;
  14926. }
  14927. if (*step > params->lbfgs.max_step) {
  14928. return GGML_LINESEARCH_MAXIMUM_STEP;
  14929. }
  14930. if (params->lbfgs.max_linesearch <= count) {
  14931. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14932. }
  14933. (*step) *= width;
  14934. }
  14935. GGML_UNREACHABLE();
  14936. }
  14937. static enum ggml_opt_result ggml_opt_lbfgs(
  14938. struct ggml_context * ctx,
  14939. struct ggml_opt_context * opt,
  14940. struct ggml_opt_params params,
  14941. struct ggml_tensor * f,
  14942. struct ggml_cgraph * gf,
  14943. struct ggml_cgraph * gb,
  14944. ggml_opt_callback callback,
  14945. void * callback_data) {
  14946. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14947. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14948. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14949. return GGML_OPT_INVALID_WOLFE;
  14950. }
  14951. }
  14952. const int m = params.lbfgs.m;
  14953. // these will store the parameters we want to optimize
  14954. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14955. int np = 0;
  14956. int nx = 0;
  14957. for (int i = 0; i < gf->n_nodes; ++i) {
  14958. if (gf->nodes[i]->is_param) {
  14959. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14960. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14961. ps[np++] = gf->nodes[i];
  14962. nx += ggml_nelements(gf->nodes[i]);
  14963. }
  14964. }
  14965. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14966. int iter = opt->iter;
  14967. ggml_opt_init(ctx, opt, params, nx);
  14968. opt->iter = iter;
  14969. }
  14970. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14971. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14972. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14973. float * x = opt->lbfgs.x->data; // current parameters
  14974. float * xp = opt->lbfgs.xp->data; // previous parameters
  14975. float * g = opt->lbfgs.g->data; // current gradient
  14976. float * gp = opt->lbfgs.gp->data; // previous gradient
  14977. float * d = opt->lbfgs.d->data; // search direction
  14978. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14979. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14980. const float accum_norm = 1.0f / (float) n_accum;
  14981. float fx = 0.0f; // cost function value
  14982. float xnorm = 0.0f; // ||x||
  14983. float gnorm = 0.0f; // ||g||
  14984. // initialize x from the graph nodes
  14985. ggml_opt_get_params(np, ps, x);
  14986. // the L-BFGS memory
  14987. float * lm_alpha = opt->lbfgs.lmal->data;
  14988. float * lm_ys = opt->lbfgs.lmys->data;
  14989. float * lm_s = opt->lbfgs.lms->data;
  14990. float * lm_y = opt->lbfgs.lmy->data;
  14991. bool cancel = false;
  14992. // evaluate the function value and its gradient
  14993. {
  14994. ggml_opt_set_params(np, ps, x);
  14995. fx = 0;
  14996. memset(g, 0, sizeof(float)*nx);
  14997. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14998. if (callback) {
  14999. // LBFG-S does not support learning rate -> ignore learning schedule
  15000. float sched = 0;
  15001. callback(callback_data, accum_step, &sched, &cancel);
  15002. if (cancel) {
  15003. return GGML_OPT_CANCEL;
  15004. }
  15005. }
  15006. // ggml_graph_reset (gf);
  15007. ggml_set_f32 (f->grad, 1.0f);
  15008. ggml_graph_compute(gb, &cplan);
  15009. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15010. fx += ggml_get_f32_1d(f, 0);
  15011. }
  15012. fx *= accum_norm;
  15013. opt->loss_before = fx;
  15014. opt->loss_after = fx;
  15015. }
  15016. // search direction = -gradient
  15017. ggml_vec_neg_f32(nx, d, g);
  15018. // ||x||, ||g||
  15019. ggml_vec_norm_f32(nx, &xnorm, x);
  15020. ggml_vec_norm_f32(nx, &gnorm, g);
  15021. if (xnorm < 1.0f) {
  15022. xnorm = 1.0f;
  15023. }
  15024. // already optimized
  15025. if (gnorm/xnorm <= params.lbfgs.eps) {
  15026. return GGML_OPT_OK;
  15027. }
  15028. if (opt->just_initialized) {
  15029. if (pf) {
  15030. pf[0] = fx;
  15031. }
  15032. opt->lbfgs.fx_best = fx;
  15033. // initial step
  15034. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15035. opt->lbfgs.j = 0;
  15036. opt->lbfgs.k = 1;
  15037. opt->lbfgs.end = 0;
  15038. opt->lbfgs.n_no_improvement = 0;
  15039. opt->just_initialized = false;
  15040. }
  15041. float * fx_best = &opt->lbfgs.fx_best;
  15042. float * step = &opt->lbfgs.step;
  15043. int * j = &opt->lbfgs.j;
  15044. int * k = &opt->lbfgs.k;
  15045. int * end = &opt->lbfgs.end;
  15046. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15047. int ls = 0;
  15048. int bound = 0;
  15049. float ys = 0.0f;
  15050. float yy = 0.0f;
  15051. float beta = 0.0f;
  15052. int it = 0;
  15053. while (true) {
  15054. // store the current position and gradient vectors
  15055. ggml_vec_cpy_f32(nx, xp, x);
  15056. ggml_vec_cpy_f32(nx, gp, g);
  15057. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15058. // to determine if the optimization should be cancelled
  15059. // this is a simple change, but not doing this atm, since I don't have a nice
  15060. // way to test and don't want to break something with so many changes lined up
  15061. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15062. if (cancel) {
  15063. return GGML_OPT_CANCEL;
  15064. }
  15065. if (ls < 0) {
  15066. // linesearch failed - go back to the previous point and return
  15067. ggml_vec_cpy_f32(nx, x, xp);
  15068. ggml_vec_cpy_f32(nx, g, gp);
  15069. return ls;
  15070. }
  15071. opt->loss_after = fx;
  15072. ggml_vec_norm_f32(nx, &xnorm, x);
  15073. ggml_vec_norm_f32(nx, &gnorm, g);
  15074. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15075. if (xnorm < 1.0f) {
  15076. xnorm = 1.0f;
  15077. }
  15078. if (gnorm/xnorm <= params.lbfgs.eps) {
  15079. // converged
  15080. return GGML_OPT_OK;
  15081. }
  15082. // delta-based convergence test
  15083. if (pf != NULL) {
  15084. // need at least params.past iterations to start checking for convergence
  15085. if (params.past <= k[0]) {
  15086. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15087. if (fabsf(rate) < params.delta) {
  15088. return GGML_OPT_OK;
  15089. }
  15090. }
  15091. pf[k[0]%params.past] = fx;
  15092. }
  15093. // check for improvement
  15094. if (params.max_no_improvement > 0) {
  15095. if (fx < fx_best[0]) {
  15096. fx_best[0] = fx;
  15097. n_no_improvement[0] = 0;
  15098. } else {
  15099. n_no_improvement[0]++;
  15100. if (n_no_improvement[0] >= params.max_no_improvement) {
  15101. return GGML_OPT_OK;
  15102. }
  15103. }
  15104. }
  15105. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15106. // reached the maximum number of iterations
  15107. return GGML_OPT_DID_NOT_CONVERGE;
  15108. }
  15109. // update vectors s and y:
  15110. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15111. // y_{k+1} = g_{k+1} - g_{k}.
  15112. //
  15113. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15114. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15115. // compute scalars ys and yy:
  15116. // ys = y^t \cdot s -> 1 / \rho.
  15117. // yy = y^t \cdot y.
  15118. //
  15119. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15120. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15121. lm_ys[end[0]] = ys;
  15122. // find new search direction
  15123. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15124. bound = (m <= k[0]) ? m : k[0];
  15125. k[0]++;
  15126. it++;
  15127. end[0] = (end[0] + 1)%m;
  15128. // initialize search direction with -g
  15129. ggml_vec_neg_f32(nx, d, g);
  15130. j[0] = end[0];
  15131. for (int i = 0; i < bound; ++i) {
  15132. j[0] = (j[0] + m - 1) % m;
  15133. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15134. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15135. lm_alpha[j[0]] /= lm_ys[j[0]];
  15136. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15137. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15138. }
  15139. ggml_vec_scale_f32(nx, d, ys/yy);
  15140. for (int i = 0; i < bound; ++i) {
  15141. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15142. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15143. beta /= lm_ys[j[0]];
  15144. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15145. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15146. j[0] = (j[0] + 1)%m;
  15147. }
  15148. step[0] = 1.0;
  15149. }
  15150. GGML_UNREACHABLE();
  15151. }
  15152. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15153. struct ggml_opt_params result;
  15154. switch (type) {
  15155. case GGML_OPT_ADAM:
  15156. {
  15157. result = (struct ggml_opt_params) {
  15158. .type = GGML_OPT_ADAM,
  15159. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15160. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15161. .past = 0,
  15162. .delta = 1e-5f,
  15163. .max_no_improvement = 100,
  15164. .print_forward_graph = true,
  15165. .print_backward_graph = true,
  15166. .n_gradient_accumulation = 1,
  15167. .adam = {
  15168. .n_iter = 10000,
  15169. .sched = 1.000f,
  15170. .decay = 0.0f,
  15171. .decay_min_ndim = 2,
  15172. .alpha = 0.001f,
  15173. .beta1 = 0.9f,
  15174. .beta2 = 0.999f,
  15175. .eps = 1e-8f,
  15176. .eps_f = 1e-5f,
  15177. .eps_g = 1e-3f,
  15178. .gclip = 0.0f,
  15179. },
  15180. };
  15181. } break;
  15182. case GGML_OPT_LBFGS:
  15183. {
  15184. result = (struct ggml_opt_params) {
  15185. .type = GGML_OPT_LBFGS,
  15186. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15187. .n_threads = 1,
  15188. .past = 0,
  15189. .delta = 1e-5f,
  15190. .max_no_improvement = 0,
  15191. .print_forward_graph = true,
  15192. .print_backward_graph = true,
  15193. .n_gradient_accumulation = 1,
  15194. .lbfgs = {
  15195. .m = 6,
  15196. .n_iter = 100,
  15197. .max_linesearch = 20,
  15198. .eps = 1e-5f,
  15199. .ftol = 1e-4f,
  15200. .wolfe = 0.9f,
  15201. .min_step = 1e-20f,
  15202. .max_step = 1e+20f,
  15203. .linesearch = GGML_LINESEARCH_DEFAULT,
  15204. },
  15205. };
  15206. } break;
  15207. }
  15208. return result;
  15209. }
  15210. GGML_API void ggml_opt_init(
  15211. struct ggml_context * ctx,
  15212. struct ggml_opt_context * opt,
  15213. struct ggml_opt_params params,
  15214. int64_t nx) {
  15215. opt->ctx = ctx;
  15216. opt->params = params;
  15217. opt->iter = 0;
  15218. opt->nx = nx;
  15219. opt->just_initialized = true;
  15220. if (opt->ctx == NULL) {
  15221. struct ggml_init_params ctx_opt_params;
  15222. if (opt->params.type == GGML_OPT_ADAM) {
  15223. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15224. if (opt->params.past > 0) {
  15225. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15226. }
  15227. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15228. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15229. if (opt->params.past > 0) {
  15230. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15231. }
  15232. }
  15233. ctx_opt_params.mem_buffer = NULL;
  15234. ctx_opt_params.no_alloc = false;
  15235. opt->ctx = ggml_init(ctx_opt_params);
  15236. }
  15237. switch (opt->params.type) {
  15238. case GGML_OPT_ADAM:
  15239. {
  15240. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15241. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15242. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15243. opt->adam.pf = params.past > 0
  15244. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15245. : NULL;
  15246. ggml_set_zero(opt->adam.m);
  15247. ggml_set_zero(opt->adam.v);
  15248. if (opt->adam.pf) {
  15249. ggml_set_zero(opt->adam.pf);
  15250. }
  15251. } break;
  15252. case GGML_OPT_LBFGS:
  15253. {
  15254. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15255. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15256. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15257. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15258. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15259. opt->lbfgs.pf = params.past > 0
  15260. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15261. : NULL;
  15262. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15263. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15264. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15265. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15266. ggml_set_zero(opt->lbfgs.x);
  15267. ggml_set_zero(opt->lbfgs.xp);
  15268. ggml_set_zero(opt->lbfgs.g);
  15269. ggml_set_zero(opt->lbfgs.gp);
  15270. ggml_set_zero(opt->lbfgs.d);
  15271. if (opt->lbfgs.pf) {
  15272. ggml_set_zero(opt->lbfgs.pf);
  15273. }
  15274. ggml_set_zero(opt->lbfgs.lmal);
  15275. ggml_set_zero(opt->lbfgs.lmys);
  15276. ggml_set_zero(opt->lbfgs.lms);
  15277. ggml_set_zero(opt->lbfgs.lmy);
  15278. } break;
  15279. }
  15280. }
  15281. enum ggml_opt_result ggml_opt(
  15282. struct ggml_context * ctx,
  15283. struct ggml_opt_params params,
  15284. struct ggml_tensor * f) {
  15285. bool free_ctx = false;
  15286. if (ctx == NULL) {
  15287. struct ggml_init_params params_ctx = {
  15288. .mem_size = 16*1024*1024,
  15289. .mem_buffer = NULL,
  15290. .no_alloc = false,
  15291. };
  15292. ctx = ggml_init(params_ctx);
  15293. if (ctx == NULL) {
  15294. return GGML_OPT_NO_CONTEXT;
  15295. }
  15296. free_ctx = true;
  15297. }
  15298. enum ggml_opt_result result = GGML_OPT_OK;
  15299. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15300. ggml_opt_init(ctx, opt, params, 0);
  15301. result = ggml_opt_resume(ctx, opt, f);
  15302. if (free_ctx) {
  15303. ggml_free(ctx);
  15304. }
  15305. return result;
  15306. }
  15307. enum ggml_opt_result ggml_opt_resume(
  15308. struct ggml_context * ctx,
  15309. struct ggml_opt_context * opt,
  15310. struct ggml_tensor * f) {
  15311. // build forward + backward compute graphs
  15312. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15313. ggml_build_forward_expand(gf, f);
  15314. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15315. ggml_build_backward_expand(ctx, gf, gb, true);
  15316. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15317. }
  15318. enum ggml_opt_result ggml_opt_resume_g(
  15319. struct ggml_context * ctx,
  15320. struct ggml_opt_context * opt,
  15321. struct ggml_tensor * f,
  15322. struct ggml_cgraph * gf,
  15323. struct ggml_cgraph * gb,
  15324. ggml_opt_callback callback,
  15325. void * callback_data) {
  15326. // build forward + backward compute graphs
  15327. enum ggml_opt_result result = GGML_OPT_OK;
  15328. switch (opt->params.type) {
  15329. case GGML_OPT_ADAM:
  15330. {
  15331. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15332. } break;
  15333. case GGML_OPT_LBFGS:
  15334. {
  15335. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15336. } break;
  15337. }
  15338. if (opt->params.print_forward_graph) {
  15339. ggml_graph_print (gf);
  15340. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15341. }
  15342. if (opt->params.print_backward_graph) {
  15343. ggml_graph_print (gb);
  15344. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15345. }
  15346. return result;
  15347. }
  15348. ////////////////////////////////////////////////////////////////////////////////
  15349. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15350. assert(k % QK4_0 == 0);
  15351. const int nb = k / QK4_0;
  15352. for (int b = 0; b < n; b += k) {
  15353. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15354. quantize_row_q4_0_reference(src + b, y, k);
  15355. for (int i = 0; i < nb; i++) {
  15356. for (int j = 0; j < QK4_0; j += 2) {
  15357. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15358. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15359. hist[vi0]++;
  15360. hist[vi1]++;
  15361. }
  15362. }
  15363. }
  15364. return (n/QK4_0*sizeof(block_q4_0));
  15365. }
  15366. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15367. assert(k % QK4_1 == 0);
  15368. const int nb = k / QK4_1;
  15369. for (int b = 0; b < n; b += k) {
  15370. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15371. quantize_row_q4_1_reference(src + b, y, k);
  15372. for (int i = 0; i < nb; i++) {
  15373. for (int j = 0; j < QK4_1; j += 2) {
  15374. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15375. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15376. hist[vi0]++;
  15377. hist[vi1]++;
  15378. }
  15379. }
  15380. }
  15381. return (n/QK4_1*sizeof(block_q4_1));
  15382. }
  15383. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15384. assert(k % QK5_0 == 0);
  15385. const int nb = k / QK5_0;
  15386. for (int b = 0; b < n; b += k) {
  15387. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15388. quantize_row_q5_0_reference(src + b, y, k);
  15389. for (int i = 0; i < nb; i++) {
  15390. uint32_t qh;
  15391. memcpy(&qh, &y[i].qh, sizeof(qh));
  15392. for (int j = 0; j < QK5_0; j += 2) {
  15393. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15394. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15395. // cast to 16 bins
  15396. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15397. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15398. hist[vi0]++;
  15399. hist[vi1]++;
  15400. }
  15401. }
  15402. }
  15403. return (n/QK5_0*sizeof(block_q5_0));
  15404. }
  15405. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15406. assert(k % QK5_1 == 0);
  15407. const int nb = k / QK5_1;
  15408. for (int b = 0; b < n; b += k) {
  15409. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15410. quantize_row_q5_1_reference(src + b, y, k);
  15411. for (int i = 0; i < nb; i++) {
  15412. uint32_t qh;
  15413. memcpy(&qh, &y[i].qh, sizeof(qh));
  15414. for (int j = 0; j < QK5_1; j += 2) {
  15415. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15416. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15417. // cast to 16 bins
  15418. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15419. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15420. hist[vi0]++;
  15421. hist[vi1]++;
  15422. }
  15423. }
  15424. }
  15425. return (n/QK5_1*sizeof(block_q5_1));
  15426. }
  15427. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15428. assert(k % QK8_0 == 0);
  15429. const int nb = k / QK8_0;
  15430. for (int b = 0; b < n; b += k) {
  15431. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15432. quantize_row_q8_0_reference(src + b, y, k);
  15433. for (int i = 0; i < nb; i++) {
  15434. for (int j = 0; j < QK8_0; ++j) {
  15435. const int8_t vi = y[i].qs[j];
  15436. hist[vi/16 + 8]++;
  15437. }
  15438. }
  15439. }
  15440. return (n/QK8_0*sizeof(block_q8_0));
  15441. }
  15442. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15443. size_t result = 0;
  15444. switch (type) {
  15445. case GGML_TYPE_Q4_0:
  15446. {
  15447. GGML_ASSERT(start % QK4_0 == 0);
  15448. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15449. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15450. } break;
  15451. case GGML_TYPE_Q4_1:
  15452. {
  15453. GGML_ASSERT(start % QK4_1 == 0);
  15454. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15455. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15456. } break;
  15457. case GGML_TYPE_Q5_0:
  15458. {
  15459. GGML_ASSERT(start % QK5_0 == 0);
  15460. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15461. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15462. } break;
  15463. case GGML_TYPE_Q5_1:
  15464. {
  15465. GGML_ASSERT(start % QK5_1 == 0);
  15466. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15467. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15468. } break;
  15469. case GGML_TYPE_Q8_0:
  15470. {
  15471. GGML_ASSERT(start % QK8_0 == 0);
  15472. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15473. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15474. } break;
  15475. case GGML_TYPE_Q2_K:
  15476. {
  15477. GGML_ASSERT(start % QK_K == 0);
  15478. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15479. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15480. } break;
  15481. case GGML_TYPE_Q3_K:
  15482. {
  15483. GGML_ASSERT(start % QK_K == 0);
  15484. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15485. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15486. } break;
  15487. case GGML_TYPE_Q4_K:
  15488. {
  15489. GGML_ASSERT(start % QK_K == 0);
  15490. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15491. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15492. } break;
  15493. case GGML_TYPE_Q5_K:
  15494. {
  15495. GGML_ASSERT(start % QK_K == 0);
  15496. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15497. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15498. } break;
  15499. case GGML_TYPE_Q6_K:
  15500. {
  15501. GGML_ASSERT(start % QK_K == 0);
  15502. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15503. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15504. } break;
  15505. case GGML_TYPE_IQ2_XXS:
  15506. {
  15507. GGML_ASSERT(start % QK_K == 0);
  15508. block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K;
  15509. result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist);
  15510. } break;
  15511. case GGML_TYPE_F16:
  15512. {
  15513. int elemsize = sizeof(ggml_fp16_t);
  15514. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15515. result = n * elemsize;
  15516. } break;
  15517. case GGML_TYPE_F32:
  15518. {
  15519. int elemsize = sizeof(float);
  15520. result = n * elemsize;
  15521. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15522. } break;
  15523. default:
  15524. assert(false);
  15525. }
  15526. return result;
  15527. }
  15528. ////////////////////////////////////////////////////////////////////////////////
  15529. struct gguf_str {
  15530. uint64_t n; // GGUFv2
  15531. char * data;
  15532. };
  15533. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15534. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15535. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15536. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15537. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15538. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15539. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15540. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15541. [GGUF_TYPE_BOOL] = sizeof(bool),
  15542. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15543. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15544. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15545. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15546. [GGUF_TYPE_ARRAY] = 0, // undefined
  15547. };
  15548. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15549. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15550. [GGUF_TYPE_UINT8] = "u8",
  15551. [GGUF_TYPE_INT8] = "i8",
  15552. [GGUF_TYPE_UINT16] = "u16",
  15553. [GGUF_TYPE_INT16] = "i16",
  15554. [GGUF_TYPE_UINT32] = "u32",
  15555. [GGUF_TYPE_INT32] = "i32",
  15556. [GGUF_TYPE_FLOAT32] = "f32",
  15557. [GGUF_TYPE_BOOL] = "bool",
  15558. [GGUF_TYPE_STRING] = "str",
  15559. [GGUF_TYPE_ARRAY] = "arr",
  15560. [GGUF_TYPE_UINT64] = "u64",
  15561. [GGUF_TYPE_INT64] = "i64",
  15562. [GGUF_TYPE_FLOAT64] = "f64",
  15563. };
  15564. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15565. union gguf_value {
  15566. uint8_t uint8;
  15567. int8_t int8;
  15568. uint16_t uint16;
  15569. int16_t int16;
  15570. uint32_t uint32;
  15571. int32_t int32;
  15572. float float32;
  15573. uint64_t uint64;
  15574. int64_t int64;
  15575. double float64;
  15576. bool bool_;
  15577. struct gguf_str str;
  15578. struct {
  15579. enum gguf_type type;
  15580. uint64_t n; // GGUFv2
  15581. void * data;
  15582. } arr;
  15583. };
  15584. struct gguf_kv {
  15585. struct gguf_str key;
  15586. enum gguf_type type;
  15587. union gguf_value value;
  15588. };
  15589. struct gguf_header {
  15590. char magic[4];
  15591. uint32_t version;
  15592. uint64_t n_tensors; // GGUFv2
  15593. uint64_t n_kv; // GGUFv2
  15594. };
  15595. struct gguf_tensor_info {
  15596. struct gguf_str name;
  15597. uint32_t n_dims;
  15598. uint64_t ne[GGML_MAX_DIMS];
  15599. enum ggml_type type;
  15600. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15601. // for writing API
  15602. const void * data;
  15603. size_t size;
  15604. };
  15605. struct gguf_context {
  15606. struct gguf_header header;
  15607. struct gguf_kv * kv;
  15608. struct gguf_tensor_info * infos;
  15609. size_t alignment;
  15610. size_t offset; // offset of `data` from beginning of file
  15611. size_t size; // size of `data` in bytes
  15612. //uint8_t * padding;
  15613. void * data;
  15614. };
  15615. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15616. const size_t n = fread(dst, 1, size, file);
  15617. *offset += n;
  15618. return n == size;
  15619. }
  15620. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15621. p->n = 0;
  15622. p->data = NULL;
  15623. bool ok = true;
  15624. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15625. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15626. return ok;
  15627. }
  15628. struct gguf_context * gguf_init_empty(void) {
  15629. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15630. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15631. ctx->header.version = GGUF_VERSION;
  15632. ctx->header.n_tensors = 0;
  15633. ctx->header.n_kv = 0;
  15634. ctx->kv = NULL;
  15635. ctx->infos = NULL;
  15636. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15637. ctx->offset = 0;
  15638. ctx->size = 0;
  15639. ctx->data = NULL;
  15640. return ctx;
  15641. }
  15642. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15643. FILE * file = fopen(fname, "rb");
  15644. if (!file) {
  15645. return NULL;
  15646. }
  15647. // offset from start of file
  15648. size_t offset = 0;
  15649. char magic[4];
  15650. // check the magic before making allocations
  15651. {
  15652. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15653. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15654. if (magic[i] != GGUF_MAGIC[i]) {
  15655. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15656. fclose(file);
  15657. return NULL;
  15658. }
  15659. }
  15660. }
  15661. bool ok = true;
  15662. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15663. // read the header
  15664. {
  15665. strncpy(ctx->header.magic, magic, 4);
  15666. ctx->kv = NULL;
  15667. ctx->infos = NULL;
  15668. ctx->data = NULL;
  15669. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15670. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15671. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15672. if (ctx->header.version == 1) {
  15673. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15674. fclose(file);
  15675. gguf_free(ctx);
  15676. return NULL;
  15677. }
  15678. if (!ok) {
  15679. fprintf(stderr, "%s: failed to read header\n", __func__);
  15680. fclose(file);
  15681. gguf_free(ctx);
  15682. return NULL;
  15683. }
  15684. }
  15685. // read the kv pairs
  15686. {
  15687. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15688. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15689. struct gguf_kv * kv = &ctx->kv[i];
  15690. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15691. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15692. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15693. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15694. switch (kv->type) {
  15695. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15696. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15697. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15698. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15699. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15700. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15701. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15702. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15703. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15704. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15705. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15706. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15707. case GGUF_TYPE_ARRAY:
  15708. {
  15709. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15710. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15711. switch (kv->value.arr.type) {
  15712. case GGUF_TYPE_UINT8:
  15713. case GGUF_TYPE_INT8:
  15714. case GGUF_TYPE_UINT16:
  15715. case GGUF_TYPE_INT16:
  15716. case GGUF_TYPE_UINT32:
  15717. case GGUF_TYPE_INT32:
  15718. case GGUF_TYPE_FLOAT32:
  15719. case GGUF_TYPE_UINT64:
  15720. case GGUF_TYPE_INT64:
  15721. case GGUF_TYPE_FLOAT64:
  15722. case GGUF_TYPE_BOOL:
  15723. {
  15724. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15725. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15726. } break;
  15727. case GGUF_TYPE_STRING:
  15728. {
  15729. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15730. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15731. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15732. }
  15733. } break;
  15734. case GGUF_TYPE_ARRAY:
  15735. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15736. }
  15737. } break;
  15738. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15739. }
  15740. if (!ok) {
  15741. break;
  15742. }
  15743. }
  15744. if (!ok) {
  15745. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15746. fclose(file);
  15747. gguf_free(ctx);
  15748. return NULL;
  15749. }
  15750. }
  15751. // read the tensor infos
  15752. {
  15753. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15754. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15755. struct gguf_tensor_info * info = &ctx->infos[i];
  15756. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15757. info->ne[j] = 1;
  15758. }
  15759. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15760. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15761. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15762. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15763. }
  15764. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15765. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15766. if (!ok) {
  15767. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15768. fclose(file);
  15769. gguf_free(ctx);
  15770. return NULL;
  15771. }
  15772. }
  15773. }
  15774. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15775. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15776. if (alignment_idx != -1) {
  15777. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15778. }
  15779. // we require the data section to be aligned, so take into account any padding
  15780. {
  15781. const size_t offset_pad = offset % ctx->alignment;
  15782. if (offset_pad != 0) {
  15783. offset += ctx->alignment - offset_pad;
  15784. fseek(file, offset, SEEK_SET);
  15785. }
  15786. }
  15787. // store the current file offset - this is where the data section starts
  15788. ctx->offset = offset;
  15789. // compute the total size of the data section, taking into account the alignment
  15790. {
  15791. ctx->size = 0;
  15792. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15793. struct gguf_tensor_info * info = &ctx->infos[i];
  15794. const int64_t ne =
  15795. (int64_t) info->ne[0] *
  15796. (int64_t) info->ne[1] *
  15797. (int64_t) info->ne[2] *
  15798. (int64_t) info->ne[3];
  15799. if (ne % ggml_blck_size(info->type) != 0) {
  15800. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15801. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15802. fclose(file);
  15803. gguf_free(ctx);
  15804. return NULL;
  15805. }
  15806. const size_t size_cur = ggml_row_size(info->type, ne);
  15807. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15808. }
  15809. }
  15810. // load the tensor data only if requested
  15811. if (params.ctx != NULL) {
  15812. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15813. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15814. // the ggml_tensor structs to the appropriate locations in the binary blob
  15815. // compute the exact size needed for the new ggml_context
  15816. const size_t mem_size =
  15817. params.no_alloc ?
  15818. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15819. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15820. struct ggml_init_params pdata = {
  15821. .mem_size = mem_size,
  15822. .mem_buffer = NULL,
  15823. .no_alloc = params.no_alloc,
  15824. };
  15825. *params.ctx = ggml_init(pdata);
  15826. struct ggml_context * ctx_data = *params.ctx;
  15827. struct ggml_tensor * data = NULL;
  15828. if (!params.no_alloc) {
  15829. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15830. ok = ok && data != NULL;
  15831. // read the binary blob with the tensor data
  15832. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15833. if (!ok) {
  15834. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15835. fclose(file);
  15836. ggml_free(ctx_data);
  15837. gguf_free(ctx);
  15838. return NULL;
  15839. }
  15840. ctx->data = data->data;
  15841. }
  15842. ggml_set_no_alloc(ctx_data, true);
  15843. // create the tensors
  15844. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15845. const int64_t ne[GGML_MAX_DIMS] = {
  15846. ctx->infos[i].ne[0],
  15847. ctx->infos[i].ne[1],
  15848. ctx->infos[i].ne[2],
  15849. ctx->infos[i].ne[3],
  15850. };
  15851. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15852. ok = ok && cur != NULL;
  15853. ggml_set_name(cur, ctx->infos[i].name.data);
  15854. if (!ok) {
  15855. break;
  15856. }
  15857. // point the data member to the appropriate location in the binary blob using the tensor infos
  15858. if (!params.no_alloc) {
  15859. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15860. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15861. }
  15862. }
  15863. if (!ok) {
  15864. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15865. fclose(file);
  15866. ggml_free(ctx_data);
  15867. gguf_free(ctx);
  15868. return NULL;
  15869. }
  15870. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15871. }
  15872. fclose(file);
  15873. return ctx;
  15874. }
  15875. void gguf_free(struct gguf_context * ctx) {
  15876. if (ctx == NULL) {
  15877. return;
  15878. }
  15879. if (ctx->kv) {
  15880. // free string memory - not great..
  15881. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15882. struct gguf_kv * kv = &ctx->kv[i];
  15883. if (kv->key.data) {
  15884. free(kv->key.data);
  15885. }
  15886. if (kv->type == GGUF_TYPE_STRING) {
  15887. if (kv->value.str.data) {
  15888. free(kv->value.str.data);
  15889. }
  15890. }
  15891. if (kv->type == GGUF_TYPE_ARRAY) {
  15892. if (kv->value.arr.data) {
  15893. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15894. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15895. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15896. if (str->data) {
  15897. free(str->data);
  15898. }
  15899. }
  15900. }
  15901. free(kv->value.arr.data);
  15902. }
  15903. }
  15904. }
  15905. free(ctx->kv);
  15906. }
  15907. if (ctx->infos) {
  15908. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15909. struct gguf_tensor_info * info = &ctx->infos[i];
  15910. if (info->name.data) {
  15911. free(info->name.data);
  15912. }
  15913. }
  15914. free(ctx->infos);
  15915. }
  15916. GGML_ALIGNED_FREE(ctx);
  15917. }
  15918. const char * gguf_type_name(enum gguf_type type) {
  15919. return GGUF_TYPE_NAME[type];
  15920. }
  15921. int gguf_get_version(const struct gguf_context * ctx) {
  15922. return ctx->header.version;
  15923. }
  15924. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15925. return ctx->alignment;
  15926. }
  15927. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15928. return ctx->offset;
  15929. }
  15930. void * gguf_get_data(const struct gguf_context * ctx) {
  15931. return ctx->data;
  15932. }
  15933. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15934. return ctx->header.n_kv;
  15935. }
  15936. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15937. // return -1 if key not found
  15938. int keyfound = -1;
  15939. const int n_kv = gguf_get_n_kv(ctx);
  15940. for (int i = 0; i < n_kv; ++i) {
  15941. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15942. keyfound = i;
  15943. break;
  15944. }
  15945. }
  15946. return keyfound;
  15947. }
  15948. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15949. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15950. return ctx->kv[key_id].key.data;
  15951. }
  15952. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15953. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15954. return ctx->kv[key_id].type;
  15955. }
  15956. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15957. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15958. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15959. return ctx->kv[key_id].value.arr.type;
  15960. }
  15961. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15962. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15963. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15964. return ctx->kv[key_id].value.arr.data;
  15965. }
  15966. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15967. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15968. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15969. struct gguf_kv * kv = &ctx->kv[key_id];
  15970. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15971. return str->data;
  15972. }
  15973. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15974. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15975. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15976. return ctx->kv[key_id].value.arr.n;
  15977. }
  15978. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15979. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15980. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15981. return ctx->kv[key_id].value.uint8;
  15982. }
  15983. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15984. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15985. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15986. return ctx->kv[key_id].value.int8;
  15987. }
  15988. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15989. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15990. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15991. return ctx->kv[key_id].value.uint16;
  15992. }
  15993. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15994. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15995. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15996. return ctx->kv[key_id].value.int16;
  15997. }
  15998. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15999. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16000. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16001. return ctx->kv[key_id].value.uint32;
  16002. }
  16003. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16004. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16005. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16006. return ctx->kv[key_id].value.int32;
  16007. }
  16008. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16009. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16010. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16011. return ctx->kv[key_id].value.float32;
  16012. }
  16013. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16014. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16015. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16016. return ctx->kv[key_id].value.uint64;
  16017. }
  16018. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16019. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16020. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16021. return ctx->kv[key_id].value.int64;
  16022. }
  16023. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16024. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16025. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16026. return ctx->kv[key_id].value.float64;
  16027. }
  16028. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16029. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16030. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16031. return ctx->kv[key_id].value.bool_;
  16032. }
  16033. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16034. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16035. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16036. return ctx->kv[key_id].value.str.data;
  16037. }
  16038. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16039. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16040. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16041. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16042. return &ctx->kv[key_id].value;
  16043. }
  16044. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16045. return ctx->header.n_tensors;
  16046. }
  16047. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16048. // return -1 if tensor not found
  16049. int tensorfound = -1;
  16050. const int n_tensors = gguf_get_n_tensors(ctx);
  16051. for (int i = 0; i < n_tensors; ++i) {
  16052. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16053. tensorfound = i;
  16054. break;
  16055. }
  16056. }
  16057. return tensorfound;
  16058. }
  16059. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16060. return ctx->infos[i].offset;
  16061. }
  16062. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16063. return ctx->infos[i].name.data;
  16064. }
  16065. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16066. return ctx->infos[i].type;
  16067. }
  16068. // returns the index
  16069. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16070. const int idx = gguf_find_key(ctx, key);
  16071. if (idx >= 0) {
  16072. return idx;
  16073. }
  16074. const int n_kv = gguf_get_n_kv(ctx);
  16075. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16076. ctx->kv[n_kv].key.n = strlen(key);
  16077. ctx->kv[n_kv].key.data = strdup(key);
  16078. ctx->header.n_kv++;
  16079. return n_kv;
  16080. }
  16081. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16082. const int idx = gguf_get_or_add_key(ctx, key);
  16083. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16084. ctx->kv[idx].value.uint8 = val;
  16085. }
  16086. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16087. const int idx = gguf_get_or_add_key(ctx, key);
  16088. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16089. ctx->kv[idx].value.int8 = val;
  16090. }
  16091. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16092. const int idx = gguf_get_or_add_key(ctx, key);
  16093. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16094. ctx->kv[idx].value.uint16 = val;
  16095. }
  16096. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16097. const int idx = gguf_get_or_add_key(ctx, key);
  16098. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16099. ctx->kv[idx].value.int16 = val;
  16100. }
  16101. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16102. const int idx = gguf_get_or_add_key(ctx, key);
  16103. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16104. ctx->kv[idx].value.uint32 = val;
  16105. }
  16106. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16107. const int idx = gguf_get_or_add_key(ctx, key);
  16108. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16109. ctx->kv[idx].value.int32 = val;
  16110. }
  16111. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16112. const int idx = gguf_get_or_add_key(ctx, key);
  16113. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16114. ctx->kv[idx].value.float32 = val;
  16115. }
  16116. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16117. const int idx = gguf_get_or_add_key(ctx, key);
  16118. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16119. ctx->kv[idx].value.uint64 = val;
  16120. }
  16121. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16122. const int idx = gguf_get_or_add_key(ctx, key);
  16123. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16124. ctx->kv[idx].value.int64 = val;
  16125. }
  16126. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16127. const int idx = gguf_get_or_add_key(ctx, key);
  16128. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16129. ctx->kv[idx].value.float64 = val;
  16130. }
  16131. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16132. const int idx = gguf_get_or_add_key(ctx, key);
  16133. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16134. ctx->kv[idx].value.bool_ = val;
  16135. }
  16136. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16137. const int idx = gguf_get_or_add_key(ctx, key);
  16138. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16139. ctx->kv[idx].value.str.n = strlen(val);
  16140. ctx->kv[idx].value.str.data = strdup(val);
  16141. }
  16142. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16143. const int idx = gguf_get_or_add_key(ctx, key);
  16144. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16145. ctx->kv[idx].value.arr.type = type;
  16146. ctx->kv[idx].value.arr.n = n;
  16147. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16148. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16149. }
  16150. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16151. const int idx = gguf_get_or_add_key(ctx, key);
  16152. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16153. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16154. ctx->kv[idx].value.arr.n = n;
  16155. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16156. for (int i = 0; i < n; i++) {
  16157. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16158. str->n = strlen(data[i]);
  16159. str->data = strdup(data[i]);
  16160. }
  16161. }
  16162. // set or add KV pairs from another context
  16163. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16164. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16165. switch (src->kv[i].type) {
  16166. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16167. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16168. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16169. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16170. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16171. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16172. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16173. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16174. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16175. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16176. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16177. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16178. case GGUF_TYPE_ARRAY:
  16179. {
  16180. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16181. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16182. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16183. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16184. }
  16185. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16186. free((void *)data);
  16187. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16188. GGML_ASSERT(false && "nested arrays not supported");
  16189. } else {
  16190. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16191. }
  16192. } break;
  16193. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16194. }
  16195. }
  16196. }
  16197. void gguf_add_tensor(
  16198. struct gguf_context * ctx,
  16199. const struct ggml_tensor * tensor) {
  16200. const int idx = ctx->header.n_tensors;
  16201. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16202. ctx->infos[idx].name.n = strlen(tensor->name);
  16203. ctx->infos[idx].name.data = strdup(tensor->name);
  16204. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16205. ctx->infos[idx].ne[i] = 1;
  16206. }
  16207. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16208. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16209. ctx->infos[idx].ne[i] = tensor->ne[i];
  16210. }
  16211. ctx->infos[idx].type = tensor->type;
  16212. ctx->infos[idx].offset = 0;
  16213. ctx->infos[idx].data = tensor->data;
  16214. ctx->infos[idx].size = ggml_nbytes(tensor);
  16215. if (ctx->header.n_tensors > 0) {
  16216. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16217. }
  16218. ctx->header.n_tensors++;
  16219. }
  16220. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16221. const int idx = gguf_find_tensor(ctx, name);
  16222. if (idx < 0) {
  16223. GGML_ASSERT(false && "tensor not found");
  16224. }
  16225. ctx->infos[idx].type = type;
  16226. }
  16227. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16228. const int idx = gguf_find_tensor(ctx, name);
  16229. if (idx < 0) {
  16230. GGML_ASSERT(false && "tensor not found");
  16231. }
  16232. ctx->infos[idx].data = data;
  16233. ctx->infos[idx].size = size;
  16234. // update offsets
  16235. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16236. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16237. }
  16238. }
  16239. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16240. // fwrite(&val->n, sizeof(val->n), 1, file);
  16241. // fwrite(val->data, sizeof(char), val->n, file);
  16242. //}
  16243. //
  16244. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16245. // fwrite(val, sizeof(char), size, file);
  16246. //}
  16247. struct gguf_buf {
  16248. void * data;
  16249. size_t size;
  16250. size_t offset;
  16251. };
  16252. static struct gguf_buf gguf_buf_init(size_t size) {
  16253. struct gguf_buf buf = {
  16254. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16255. /*buf.size =*/ size,
  16256. /*buf.offset =*/ 0,
  16257. };
  16258. return buf;
  16259. }
  16260. static void gguf_buf_free(struct gguf_buf buf) {
  16261. if (buf.data) {
  16262. free(buf.data);
  16263. }
  16264. }
  16265. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16266. if (buf->offset + size > buf->size) {
  16267. buf->size = 1.5*(buf->offset + size);
  16268. if (buf->data) {
  16269. buf->data = realloc(buf->data, buf->size);
  16270. }
  16271. }
  16272. }
  16273. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16274. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16275. if (buf->data) {
  16276. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16277. }
  16278. buf->offset += sizeof(val->n);
  16279. if (buf->data) {
  16280. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16281. }
  16282. buf->offset += val->n;
  16283. }
  16284. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16285. gguf_buf_grow(buf, el_size);
  16286. if (buf->data) {
  16287. memcpy((char *) buf->data + buf->offset, val, el_size);
  16288. }
  16289. buf->offset += el_size;
  16290. }
  16291. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16292. // write header
  16293. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16294. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16295. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16296. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16297. // write key-value pairs
  16298. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16299. struct gguf_kv * kv = &ctx->kv[i];
  16300. gguf_bwrite_str(buf, &kv->key);
  16301. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16302. switch (kv->type) {
  16303. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16304. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16305. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16306. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16307. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16308. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16309. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16310. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16311. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16312. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16313. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16314. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16315. case GGUF_TYPE_ARRAY:
  16316. {
  16317. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16318. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16319. switch (kv->value.arr.type) {
  16320. case GGUF_TYPE_UINT8:
  16321. case GGUF_TYPE_INT8:
  16322. case GGUF_TYPE_UINT16:
  16323. case GGUF_TYPE_INT16:
  16324. case GGUF_TYPE_UINT32:
  16325. case GGUF_TYPE_INT32:
  16326. case GGUF_TYPE_FLOAT32:
  16327. case GGUF_TYPE_UINT64:
  16328. case GGUF_TYPE_INT64:
  16329. case GGUF_TYPE_FLOAT64:
  16330. case GGUF_TYPE_BOOL:
  16331. {
  16332. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16333. } break;
  16334. case GGUF_TYPE_STRING:
  16335. {
  16336. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16337. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16338. }
  16339. } break;
  16340. case GGUF_TYPE_ARRAY:
  16341. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16342. }
  16343. } break;
  16344. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16345. }
  16346. }
  16347. // write tensor infos
  16348. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16349. struct gguf_tensor_info * info = &ctx->infos[i];
  16350. gguf_bwrite_str(buf, &info->name);
  16351. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16352. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16353. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16354. }
  16355. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16356. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16357. }
  16358. // we require the data section to be aligned, so take into account any padding
  16359. {
  16360. const size_t offset = buf->offset;
  16361. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16362. if (offset_pad != offset) {
  16363. uint8_t pad = 0;
  16364. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16365. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16366. }
  16367. }
  16368. }
  16369. if (only_meta) {
  16370. return;
  16371. }
  16372. size_t offset = 0;
  16373. // write tensor data
  16374. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16375. struct gguf_tensor_info * info = &ctx->infos[i];
  16376. const size_t size = info->size;
  16377. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16378. gguf_bwrite_el(buf, info->data, size);
  16379. if (size_pad != size) {
  16380. uint8_t pad = 0;
  16381. for (size_t j = 0; j < size_pad - size; ++j) {
  16382. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16383. }
  16384. }
  16385. GGML_ASSERT(offset == info->offset);
  16386. offset += size_pad;
  16387. }
  16388. }
  16389. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16390. FILE * file = fopen(fname, "wb");
  16391. if (!file) {
  16392. GGML_ASSERT(false && "failed to open file for writing");
  16393. }
  16394. struct gguf_buf buf = gguf_buf_init(16*1024);
  16395. gguf_write_to_buf(ctx, &buf, only_meta);
  16396. fwrite(buf.data, 1, buf.offset, file);
  16397. gguf_buf_free(buf);
  16398. fclose(file);
  16399. }
  16400. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16401. // no allocs - only compute size
  16402. struct gguf_buf buf = gguf_buf_init(0);
  16403. gguf_write_to_buf(ctx, &buf, true);
  16404. return buf.offset;
  16405. }
  16406. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16407. struct gguf_buf buf = gguf_buf_init(16*1024);
  16408. gguf_write_to_buf(ctx, &buf, true);
  16409. memcpy(data, buf.data, buf.offset);
  16410. gguf_buf_free(buf);
  16411. }
  16412. ////////////////////////////////////////////////////////////////////////////////
  16413. int ggml_cpu_has_avx(void) {
  16414. #if defined(__AVX__)
  16415. return 1;
  16416. #else
  16417. return 0;
  16418. #endif
  16419. }
  16420. int ggml_cpu_has_avx_vnni(void) {
  16421. #if defined(__AVXVNNI__)
  16422. return 1;
  16423. #else
  16424. return 0;
  16425. #endif
  16426. }
  16427. int ggml_cpu_has_avx2(void) {
  16428. #if defined(__AVX2__)
  16429. return 1;
  16430. #else
  16431. return 0;
  16432. #endif
  16433. }
  16434. int ggml_cpu_has_avx512(void) {
  16435. #if defined(__AVX512F__)
  16436. return 1;
  16437. #else
  16438. return 0;
  16439. #endif
  16440. }
  16441. int ggml_cpu_has_avx512_vbmi(void) {
  16442. #if defined(__AVX512VBMI__)
  16443. return 1;
  16444. #else
  16445. return 0;
  16446. #endif
  16447. }
  16448. int ggml_cpu_has_avx512_vnni(void) {
  16449. #if defined(__AVX512VNNI__)
  16450. return 1;
  16451. #else
  16452. return 0;
  16453. #endif
  16454. }
  16455. int ggml_cpu_has_fma(void) {
  16456. #if defined(__FMA__)
  16457. return 1;
  16458. #else
  16459. return 0;
  16460. #endif
  16461. }
  16462. int ggml_cpu_has_neon(void) {
  16463. #if defined(__ARM_NEON)
  16464. return 1;
  16465. #else
  16466. return 0;
  16467. #endif
  16468. }
  16469. int ggml_cpu_has_arm_fma(void) {
  16470. #if defined(__ARM_FEATURE_FMA)
  16471. return 1;
  16472. #else
  16473. return 0;
  16474. #endif
  16475. }
  16476. int ggml_cpu_has_metal(void) {
  16477. #if defined(GGML_USE_METAL)
  16478. return 1;
  16479. #else
  16480. return 0;
  16481. #endif
  16482. }
  16483. int ggml_cpu_has_f16c(void) {
  16484. #if defined(__F16C__)
  16485. return 1;
  16486. #else
  16487. return 0;
  16488. #endif
  16489. }
  16490. int ggml_cpu_has_fp16_va(void) {
  16491. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16492. return 1;
  16493. #else
  16494. return 0;
  16495. #endif
  16496. }
  16497. int ggml_cpu_has_wasm_simd(void) {
  16498. #if defined(__wasm_simd128__)
  16499. return 1;
  16500. #else
  16501. return 0;
  16502. #endif
  16503. }
  16504. int ggml_cpu_has_blas(void) {
  16505. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16506. return 1;
  16507. #else
  16508. return 0;
  16509. #endif
  16510. }
  16511. int ggml_cpu_has_cublas(void) {
  16512. #if defined(GGML_USE_CUBLAS)
  16513. return 1;
  16514. #else
  16515. return 0;
  16516. #endif
  16517. }
  16518. int ggml_cpu_has_clblast(void) {
  16519. #if defined(GGML_USE_CLBLAST)
  16520. return 1;
  16521. #else
  16522. return 0;
  16523. #endif
  16524. }
  16525. int ggml_cpu_has_gpublas(void) {
  16526. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16527. }
  16528. int ggml_cpu_has_sse3(void) {
  16529. #if defined(__SSE3__)
  16530. return 1;
  16531. #else
  16532. return 0;
  16533. #endif
  16534. }
  16535. int ggml_cpu_has_ssse3(void) {
  16536. #if defined(__SSSE3__)
  16537. return 1;
  16538. #else
  16539. return 0;
  16540. #endif
  16541. }
  16542. int ggml_cpu_has_vsx(void) {
  16543. #if defined(__POWER9_VECTOR__)
  16544. return 1;
  16545. #else
  16546. return 0;
  16547. #endif
  16548. }
  16549. ////////////////////////////////////////////////////////////////////////////////