convert_hf_to_gguf.py 442 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. part_names: list[str]
  74. is_safetensors: bool
  75. hparams: dict[str, Any]
  76. tensor_names: set[str] | None
  77. gguf_writer: gguf.GGUFWriter
  78. model_name: str | None
  79. metadata_override: Path | None
  80. dir_model_card: Path
  81. remote_hf_model_id: str | None
  82. # subclasses should define this!
  83. model_arch: gguf.MODEL_ARCH
  84. # subclasses should initialize this!
  85. block_count: int
  86. tensor_map: gguf.TensorNameMap
  87. # Mistral format specifics
  88. is_mistral_format: bool = False
  89. disable_mistral_community_chat_template: bool = False
  90. sentence_transformers_dense_modules: bool = False
  91. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  92. use_temp_file: bool = False, eager: bool = False,
  93. metadata_override: Path | None = None, model_name: str | None = None,
  94. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  95. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  96. disable_mistral_community_chat_template: bool = False,
  97. sentence_transformers_dense_modules: bool = False):
  98. if type(self) is ModelBase or \
  99. type(self) is TextModel or \
  100. type(self) is MmprojModel:
  101. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  102. if self.is_mistral_format and not _mistral_common_installed:
  103. raise ImportError(_mistral_import_error_msg)
  104. self.dir_model = dir_model
  105. self.ftype = ftype
  106. self.fname_out = fname_out
  107. self.is_big_endian = is_big_endian
  108. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  109. self.use_temp_file = use_temp_file
  110. self.lazy = not eager or (remote_hf_model_id is not None)
  111. self.dry_run = dry_run
  112. self.remote_hf_model_id = remote_hf_model_id
  113. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  114. if remote_hf_model_id is not None:
  115. self.is_safetensors = True
  116. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  117. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  118. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  119. self.tensor_names = set(name for name in remote_tensors.keys())
  120. for name, remote_tensor in remote_tensors.items():
  121. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  122. self.get_tensors = get_remote_tensors
  123. else:
  124. prefix = "model" if not self.is_mistral_format else "consolidated"
  125. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  126. self.is_safetensors = len(self.part_names) > 0
  127. if not self.is_safetensors:
  128. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  129. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  130. self.tensor_names = None
  131. self.metadata_override = metadata_override
  132. self.model_name = model_name
  133. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  134. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  135. if self.ftype == gguf.LlamaFileType.GUESSED:
  136. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  137. _, first_tensor = next(self.get_tensors())
  138. if first_tensor.dtype == torch.float16:
  139. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  140. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  141. else:
  142. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  143. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  144. # Configure GGUF Writer
  145. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  146. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  147. # Mistral specific
  148. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  149. @classmethod
  150. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  151. stem, suffix = path.stem, path.suffix
  152. new_name = f"{prefix}{stem}{suffix}"
  153. return path.with_name(new_name)
  154. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  155. key = next((k for k in keys if k in self.hparams), None)
  156. if key is not None:
  157. return self.hparams[key]
  158. if optional:
  159. return None
  160. raise KeyError(f"could not find any of: {keys}")
  161. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  162. tensor_names_from_parts: set[str] = set()
  163. if not self.is_mistral_format:
  164. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  165. index_name += ".index.json"
  166. index_file = self.dir_model / index_name
  167. if index_file.is_file():
  168. self.tensor_names = set()
  169. logger.info(f"gguf: loading model weight map from '{index_name}'")
  170. with open(index_file, "r", encoding="utf-8") as f:
  171. index: dict[str, Any] = json.load(f)
  172. weight_map = index.get("weight_map")
  173. if weight_map is None or not isinstance(weight_map, dict):
  174. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  175. self.tensor_names.update(weight_map.keys())
  176. else:
  177. self.tensor_names = tensor_names_from_parts
  178. weight_map = {}
  179. else:
  180. self.tensor_names = tensor_names_from_parts
  181. weight_map = {}
  182. for part_name in self.part_names:
  183. logger.info(f"gguf: loading model part '{part_name}'")
  184. ctx: ContextManager[Any]
  185. if self.is_safetensors:
  186. from safetensors import safe_open
  187. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  188. else:
  189. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  190. with ctx as model_part:
  191. tensor_names_from_parts.update(model_part.keys())
  192. for name in model_part.keys():
  193. if self.is_safetensors:
  194. if self.lazy:
  195. data = model_part.get_slice(name)
  196. data = LazyTorchTensor.from_safetensors_slice(data)
  197. else:
  198. data = model_part.get_tensor(name)
  199. else:
  200. data = model_part[name]
  201. if self.lazy:
  202. data = LazyTorchTensor.from_eager(data)
  203. yield name, data
  204. # verify tensor name presence and identify potentially missing files
  205. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  206. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  207. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  208. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  209. if len(extra) == 0 and len(missing_files) > 0:
  210. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  211. f"Missing tensors: {missing}")
  212. else:
  213. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  214. f"Missing tensors: {missing}\n"
  215. f"Extra tensors: {extra}")
  216. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  217. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  218. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  219. name: str = gguf.TENSOR_NAMES[key]
  220. if "{bid}" in name:
  221. assert bid is not None
  222. name = name.format(bid=bid)
  223. return name + suffix
  224. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  225. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  226. return False
  227. key_name: str = gguf.TENSOR_NAMES[key]
  228. if "{bid}" in key_name:
  229. if bid is None:
  230. return False
  231. key_name = key_name.format(bid=bid)
  232. else:
  233. if bid is not None:
  234. return False
  235. return name == (key_name + suffix)
  236. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  237. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  238. if new_name is None:
  239. raise ValueError(f"Can not map tensor {name!r}")
  240. return new_name
  241. def set_gguf_parameters(self):
  242. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  244. del bid # unused
  245. return [(self.map_tensor_name(name), data_torch)]
  246. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  247. del name, new_name, bid, n_dims # unused
  248. return False
  249. # some models need extra generated tensors (like rope_freqs)
  250. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  251. return ()
  252. def prepare_tensors(self):
  253. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  254. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  255. # we don't need these
  256. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  257. continue
  258. old_dtype = data_torch.dtype
  259. # convert any unsupported data types to float32
  260. if data_torch.dtype not in (torch.float16, torch.float32):
  261. data_torch = data_torch.to(torch.float32)
  262. # use the first number-like part of the tensor name as the block id
  263. bid = None
  264. for part in name.split("."):
  265. if part.isdecimal():
  266. bid = int(part)
  267. break
  268. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  269. # TODO: why do we squeeze here?
  270. # data = data_torch.squeeze().numpy()
  271. data = data_torch.numpy()
  272. n_dims = len(data.shape)
  273. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  274. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  275. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  276. data_qtype = gguf.GGMLQuantizationType.F32
  277. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  278. # Some tensor types are always in float32
  279. if data_qtype is False and (
  280. any(
  281. self.match_model_tensor_name(new_name, key, bid)
  282. for key in (
  283. gguf.MODEL_TENSOR.FFN_GATE_INP,
  284. gguf.MODEL_TENSOR.POS_EMBD,
  285. gguf.MODEL_TENSOR.TOKEN_TYPES,
  286. gguf.MODEL_TENSOR.SSM_CONV1D,
  287. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  288. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  289. gguf.MODEL_TENSOR.TIME_MIX_W1,
  290. gguf.MODEL_TENSOR.TIME_MIX_W2,
  291. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  292. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  293. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  294. gguf.MODEL_TENSOR.POSNET_NORM1,
  295. gguf.MODEL_TENSOR.POSNET_NORM2,
  296. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  297. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  298. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  299. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  300. )
  301. )
  302. or not new_name.endswith(".weight")
  303. ):
  304. data_qtype = gguf.GGMLQuantizationType.F32
  305. if data_qtype is False and any(
  306. self.match_model_tensor_name(new_name, key, bid)
  307. for key in (
  308. gguf.MODEL_TENSOR.TOKEN_EMBD,
  309. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  310. gguf.MODEL_TENSOR.OUTPUT,
  311. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  312. gguf.MODEL_TENSOR.LAUREL_L,
  313. gguf.MODEL_TENSOR.LAUREL_R,
  314. )
  315. ):
  316. if self.ftype in (
  317. gguf.LlamaFileType.MOSTLY_TQ1_0,
  318. gguf.LlamaFileType.MOSTLY_TQ2_0,
  319. ):
  320. # TODO: use Q4_K and Q6_K
  321. data_qtype = gguf.GGMLQuantizationType.F16
  322. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  323. if isinstance(data_qtype, bool):
  324. if self.ftype == gguf.LlamaFileType.ALL_F32:
  325. data_qtype = gguf.GGMLQuantizationType.F32
  326. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  327. data_qtype = gguf.GGMLQuantizationType.F16
  328. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  329. data_qtype = gguf.GGMLQuantizationType.BF16
  330. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  331. data_qtype = gguf.GGMLQuantizationType.Q8_0
  332. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  333. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  334. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  335. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  336. else:
  337. raise ValueError(f"Unknown file type: {self.ftype.name}")
  338. try:
  339. data = gguf.quants.quantize(data, data_qtype)
  340. except gguf.QuantError as e:
  341. logger.warning("%s, %s", e, "falling back to F16")
  342. data_qtype = gguf.GGMLQuantizationType.F16
  343. data = gguf.quants.quantize(data, data_qtype)
  344. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  345. # reverse shape to make it similar to the internal ggml dimension order
  346. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  347. # n_dims is implicit in the shape
  348. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  349. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  350. def set_type(self):
  351. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  352. def prepare_metadata(self, vocab_only: bool):
  353. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  354. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  355. # If we are using HF model id, set the metadata name to the model id
  356. if self.remote_hf_model_id:
  357. self.metadata.name = self.remote_hf_model_id
  358. # Fallback to model directory name if metadata name is still missing
  359. if self.metadata.name is None:
  360. self.metadata.name = self.dir_model.name
  361. # Generate parameter weight class (useful for leader boards) if not yet determined
  362. if self.metadata.size_label is None and total_params > 0:
  363. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  364. self.set_type()
  365. logger.info("Set meta model")
  366. self.metadata.set_gguf_meta_model(self.gguf_writer)
  367. logger.info("Set model parameters")
  368. self.set_gguf_parameters()
  369. logger.info("Set model quantization version")
  370. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  371. def write_vocab(self):
  372. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  373. def write(self):
  374. self.prepare_tensors()
  375. self.prepare_metadata(vocab_only=False)
  376. self.gguf_writer.write_header_to_file(path=self.fname_out)
  377. self.gguf_writer.write_kv_data_to_file()
  378. self.gguf_writer.write_tensors_to_file(progress=True)
  379. self.gguf_writer.close()
  380. @staticmethod
  381. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  382. part_names: list[str] = []
  383. for filename in os.listdir(dir_model):
  384. if filename.startswith(prefix) and filename.endswith(suffix):
  385. part_names.append(filename)
  386. part_names.sort()
  387. return part_names
  388. @staticmethod
  389. def load_hparams(dir_model: Path, is_mistral_format: bool):
  390. if is_mistral_format:
  391. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  392. config = json.load(f)
  393. return config
  394. try:
  395. # for security reason, we don't allow loading remote code by default
  396. # if a model need remote code, we will fallback to config.json
  397. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  398. except Exception as e:
  399. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  400. logger.warning("Trying to load config.json instead")
  401. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  402. config = json.load(f)
  403. if "llm_config" in config:
  404. # rename for InternVL
  405. config["text_config"] = config["llm_config"]
  406. if "thinker_config" in config:
  407. # rename for Qwen2.5-Omni
  408. config["text_config"] = config["thinker_config"]["text_config"]
  409. return config
  410. @classmethod
  411. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  412. assert names
  413. def func(modelcls: AnyModel) -> AnyModel:
  414. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  415. for name in names:
  416. cls._model_classes[model_type][name] = modelcls
  417. return modelcls
  418. return func
  419. @classmethod
  420. def print_registered_models(cls):
  421. for model_type, model_classes in cls._model_classes.items():
  422. logger.error(f"{model_type.name} models:")
  423. for name in sorted(model_classes.keys()):
  424. logger.error(f" - {name}")
  425. @classmethod
  426. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  427. try:
  428. return cls._model_classes[model_type][arch]
  429. except KeyError:
  430. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  431. class TextModel(ModelBase):
  432. model_type = ModelType.TEXT
  433. hf_arch: str
  434. def __init__(self, *args, **kwargs):
  435. super().__init__(*args, **kwargs)
  436. if not self.is_mistral_format:
  437. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  438. else:
  439. self.hf_arch = ""
  440. if "text_config" in self.hparams:
  441. # move the text_config to the root level
  442. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  443. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  444. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  445. @classmethod
  446. def __init_subclass__(cls):
  447. # can't use an abstract property, because overriding it without type errors
  448. # would require using decorated functions instead of simply defining the property
  449. if "model_arch" not in cls.__dict__:
  450. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  451. def set_vocab(self):
  452. self._set_vocab_gpt2()
  453. def prepare_metadata(self, vocab_only: bool):
  454. super().prepare_metadata(vocab_only=vocab_only)
  455. total_params = self.gguf_writer.get_total_parameter_count()[0]
  456. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  457. output_type: str = self.ftype.name.partition("_")[2]
  458. # Filename Output
  459. if self.fname_out.is_dir():
  460. # Generate default filename based on model specification and available metadata
  461. if not vocab_only:
  462. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  463. else:
  464. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  465. # Use the default filename
  466. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  467. else:
  468. # Output path is a custom defined templated filename
  469. # Note: `not is_dir()` is used because `.is_file()` will not detect
  470. # file template strings as it doesn't actually exist as a file
  471. # Process templated file name with the output ftype, useful with the "auto" ftype
  472. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  473. logger.info("Set model tokenizer")
  474. self.set_vocab()
  475. def set_gguf_parameters(self):
  476. self.gguf_writer.add_block_count(self.block_count)
  477. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  478. self.gguf_writer.add_context_length(n_ctx)
  479. logger.info(f"gguf: context length = {n_ctx}")
  480. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  481. self.gguf_writer.add_embedding_length(n_embd)
  482. logger.info(f"gguf: embedding length = {n_embd}")
  483. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  484. self.gguf_writer.add_feed_forward_length(n_ff)
  485. logger.info(f"gguf: feed forward length = {n_ff}")
  486. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  487. self.gguf_writer.add_head_count(n_head)
  488. logger.info(f"gguf: head count = {n_head}")
  489. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  490. self.gguf_writer.add_head_count_kv(n_head_kv)
  491. logger.info(f"gguf: key-value head count = {n_head_kv}")
  492. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  493. self.gguf_writer.add_rope_freq_base(rope_theta)
  494. logger.info(f"gguf: rope theta = {rope_theta}")
  495. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  496. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  497. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  498. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  499. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  500. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  501. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  502. self.gguf_writer.add_expert_count(n_experts)
  503. logger.info(f"gguf: expert count = {n_experts}")
  504. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  505. self.gguf_writer.add_expert_used_count(n_experts_used)
  506. logger.info(f"gguf: experts used count = {n_experts_used}")
  507. if (head_dim := self.hparams.get("head_dim")) is not None:
  508. self.gguf_writer.add_key_length(head_dim)
  509. self.gguf_writer.add_value_length(head_dim)
  510. self.gguf_writer.add_file_type(self.ftype)
  511. logger.info(f"gguf: file type = {self.ftype}")
  512. def write_vocab(self):
  513. if len(self.gguf_writer.tensors) != 1:
  514. raise ValueError('Splitting the vocabulary is not supported')
  515. self.prepare_metadata(vocab_only=True)
  516. self.gguf_writer.write_header_to_file(path=self.fname_out)
  517. self.gguf_writer.write_kv_data_to_file()
  518. self.gguf_writer.close()
  519. def does_token_look_special(self, token: str | bytes) -> bool:
  520. if isinstance(token, (bytes, bytearray)):
  521. token_text = token.decode(encoding="utf-8")
  522. elif isinstance(token, memoryview):
  523. token_text = token.tobytes().decode(encoding="utf-8")
  524. else:
  525. token_text = token
  526. # Some models mark some added tokens which ought to be control tokens as not special.
  527. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  528. seems_special = token_text in (
  529. "<pad>", # deepseek-coder
  530. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  531. )
  532. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  533. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  534. # TODO: should these be marked as UNUSED instead? (maybe not)
  535. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  536. return seems_special
  537. # used for GPT-2 BPE and WordPiece vocabs
  538. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  539. tokens: list[str] = []
  540. toktypes: list[int] = []
  541. from transformers import AutoTokenizer
  542. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  543. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  544. assert max(tokenizer.vocab.values()) < vocab_size
  545. tokpre = self.get_vocab_base_pre(tokenizer)
  546. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  547. added_vocab = tokenizer.get_added_vocab()
  548. added_tokens_decoder = tokenizer.added_tokens_decoder
  549. for i in range(vocab_size):
  550. if i not in reverse_vocab:
  551. tokens.append(f"[PAD{i}]")
  552. toktypes.append(gguf.TokenType.UNUSED)
  553. else:
  554. token: str = reverse_vocab[i]
  555. if token in added_vocab:
  556. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  557. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  558. if not added_tokens_decoder[i].normalized:
  559. previous_token = token
  560. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  561. if previous_token != token:
  562. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  563. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  564. toktypes.append(gguf.TokenType.CONTROL)
  565. else:
  566. # NOTE: this was added for Gemma.
  567. # Encoding and decoding the tokens above isn't sufficient for this case.
  568. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  569. toktypes.append(gguf.TokenType.USER_DEFINED)
  570. else:
  571. toktypes.append(gguf.TokenType.NORMAL)
  572. tokens.append(token)
  573. return tokens, toktypes, tokpre
  574. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  575. # do not modify it manually!
  576. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  577. # Marker: Start get_vocab_base_pre
  578. def get_vocab_base_pre(self, tokenizer) -> str:
  579. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  580. # is specific for the BPE pre-tokenizer used by the model
  581. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  582. # use in llama.cpp to implement the same pre-tokenizer
  583. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  584. chktok = tokenizer.encode(chktxt)
  585. chkhsh = sha256(str(chktok).encode()).hexdigest()
  586. logger.debug(f"chktok: {chktok}")
  587. logger.debug(f"chkhsh: {chkhsh}")
  588. res = None
  589. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  590. # or pull the latest version of the model from Huggingface
  591. # don't edit the hashes manually!
  592. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  593. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  594. res = "chatglm-bpe"
  595. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  596. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  597. res = "chatglm-bpe"
  598. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  599. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  600. res = "glm4"
  601. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  602. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  603. res = "glm4"
  604. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  605. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  606. res = "minerva-7b"
  607. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  608. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  609. res = "hunyuan"
  610. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  611. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  612. res = "hunyuan-dense"
  613. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  614. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  615. res = "falcon-h1"
  616. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  617. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  618. res = "falcon-h1"
  619. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  620. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  621. res = "falcon-h1"
  622. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  623. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  624. res = "falcon-h1"
  625. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  626. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  627. res = "kimi-k2"
  628. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  629. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  630. res = "qwen2"
  631. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  632. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  633. res = "grok-2"
  634. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  635. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  636. res = "llama-bpe"
  637. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  638. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  639. res = "deepseek-llm"
  640. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  641. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  642. res = "deepseek-coder"
  643. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  644. # ref: https://huggingface.co/tiiuae/falcon-7b
  645. res = "falcon"
  646. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  647. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  648. res = "bert-bge"
  649. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  650. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  651. res = "falcon3"
  652. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  653. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  654. res = "bert-bge-large"
  655. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  656. # ref: https://huggingface.co/mosaicml/mpt-7b
  657. res = "mpt"
  658. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  659. # ref: https://huggingface.co/bigcode/starcoder2-3b
  660. res = "starcoder"
  661. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  662. # ref: https://huggingface.co/openai-community/gpt2
  663. res = "gpt-2"
  664. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  665. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  666. res = "stablelm2"
  667. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  668. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  669. res = "refact"
  670. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  671. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  672. res = "command-r"
  673. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  674. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  675. res = "qwen2"
  676. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  677. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  678. res = "olmo"
  679. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  680. # ref: https://huggingface.co/databricks/dbrx-base
  681. res = "dbrx"
  682. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  683. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  684. res = "jina-v1-en"
  685. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  686. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  687. res = "jina-v2-en"
  688. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  689. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  690. res = "jina-v2-es"
  691. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  692. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  693. res = "jina-v2-de"
  694. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  695. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  696. res = "smaug-bpe"
  697. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  698. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  699. res = "poro-chat"
  700. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  701. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  702. res = "jina-v2-code"
  703. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  704. # ref: https://huggingface.co/LumiOpen/Viking-7B
  705. res = "viking"
  706. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  707. # ref: https://huggingface.co/core42/jais-13b
  708. res = "jais"
  709. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  710. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  711. res = "codeshell"
  712. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  713. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  714. res = "tekken"
  715. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  716. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  717. res = "smollm"
  718. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  719. # ref: https://huggingface.co/bigscience/bloom
  720. res = "bloom"
  721. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  722. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  723. res = "gpt3-finnish"
  724. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  725. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  726. res = "exaone"
  727. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  728. # ref: https://huggingface.co/microsoft/phi-2
  729. res = "phi-2"
  730. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  731. # ref: https://huggingface.co/facebook/chameleon-7b
  732. res = "chameleon"
  733. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  734. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  735. res = "roberta-bpe"
  736. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  737. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  738. res = "gigachat"
  739. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  740. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  741. res = "megrez"
  742. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  743. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  744. res = "deepseek-v3"
  745. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  746. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  747. res = "deepseek-r1-qwen"
  748. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  749. # ref: https://huggingface.co/Xenova/gpt-4o
  750. res = "gpt-4o"
  751. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  752. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  753. res = "superbpe"
  754. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  755. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  756. res = "trillion"
  757. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  758. # ref: https://huggingface.co/inclusionAI/Ling-lite
  759. res = "bailingmoe"
  760. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  761. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  762. res = "llama4"
  763. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  764. # ref: https://huggingface.co/mistral-community/pixtral-12b
  765. res = "pixtral"
  766. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  767. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  768. res = "seed-coder"
  769. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  770. # ref: https://huggingface.co/skt/A.X-4.0
  771. res = "a.x-4.0"
  772. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  773. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  774. res = "midm-2.0"
  775. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  776. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  777. res = "lfm2"
  778. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  779. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  780. res = "exaone4"
  781. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  782. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  783. res = "mellum"
  784. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  785. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  786. res = "bailingmoe2"
  787. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  788. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  789. res = "granite-docling"
  790. if res is None:
  791. logger.warning("\n")
  792. logger.warning("**************************************************************************************")
  793. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  794. logger.warning("** There are 2 possible reasons for this:")
  795. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  796. logger.warning("** - the pre-tokenization config has changed upstream")
  797. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  798. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  799. logger.warning("**")
  800. logger.warning(f"** chkhsh: {chkhsh}")
  801. logger.warning("**************************************************************************************")
  802. logger.warning("\n")
  803. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  804. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  805. logger.debug(f"chkhsh: {chkhsh}")
  806. return res
  807. # Marker: End get_vocab_base_pre
  808. def _set_vocab_none(self) -> None:
  809. self.gguf_writer.add_tokenizer_model("none")
  810. def _set_vocab_gpt2(self) -> None:
  811. tokens, toktypes, tokpre = self.get_vocab_base()
  812. self.gguf_writer.add_tokenizer_model("gpt2")
  813. self.gguf_writer.add_tokenizer_pre(tokpre)
  814. self.gguf_writer.add_token_list(tokens)
  815. self.gguf_writer.add_token_types(toktypes)
  816. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  817. special_vocab.add_to_gguf(self.gguf_writer)
  818. def _set_vocab_qwen(self):
  819. dir_model = self.dir_model
  820. hparams = self.hparams
  821. tokens: list[str] = []
  822. toktypes: list[int] = []
  823. from transformers import AutoTokenizer
  824. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  825. vocab_size = hparams["vocab_size"]
  826. assert max(tokenizer.get_vocab().values()) < vocab_size
  827. tokpre = self.get_vocab_base_pre(tokenizer)
  828. merges = []
  829. vocab = {}
  830. mergeable_ranks = tokenizer.mergeable_ranks
  831. for token, rank in mergeable_ranks.items():
  832. vocab[QwenModel.token_bytes_to_string(token)] = rank
  833. if len(token) == 1:
  834. continue
  835. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  836. assert len(merged) == 2
  837. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  838. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  839. added_vocab = tokenizer.special_tokens
  840. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  841. for i in range(vocab_size):
  842. if i not in reverse_vocab:
  843. tokens.append(f"[PAD{i}]")
  844. toktypes.append(gguf.TokenType.UNUSED)
  845. elif reverse_vocab[i] in added_vocab:
  846. tokens.append(reverse_vocab[i])
  847. toktypes.append(gguf.TokenType.CONTROL)
  848. else:
  849. tokens.append(reverse_vocab[i])
  850. toktypes.append(gguf.TokenType.NORMAL)
  851. self.gguf_writer.add_tokenizer_model("gpt2")
  852. self.gguf_writer.add_tokenizer_pre(tokpre)
  853. self.gguf_writer.add_token_list(tokens)
  854. self.gguf_writer.add_token_types(toktypes)
  855. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  856. special_vocab.merges = merges
  857. # only add special tokens when they were not already loaded from config.json
  858. if len(special_vocab.special_token_ids) == 0:
  859. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  860. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  861. # this one is usually not in config.json anyway
  862. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  863. special_vocab.add_to_gguf(self.gguf_writer)
  864. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  865. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  866. self.gguf_writer.add_tokenizer_model("llama")
  867. self.gguf_writer.add_tokenizer_pre("default")
  868. self.gguf_writer.add_token_list(tokens)
  869. self.gguf_writer.add_token_scores(scores)
  870. self.gguf_writer.add_token_types(toktypes)
  871. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  872. special_vocab.add_to_gguf(self.gguf_writer)
  873. def _create_vocab_sentencepiece(self):
  874. from sentencepiece import SentencePieceProcessor
  875. tokenizer_path = self.dir_model / 'tokenizer.model'
  876. if not tokenizer_path.is_file():
  877. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  878. tokenizer = SentencePieceProcessor()
  879. tokenizer.LoadFromFile(str(tokenizer_path))
  880. vocab_size = self.find_hparam([
  881. "vocab_size_per_layer_input", # gemma3n
  882. "vocab_size",
  883. ], optional=True) or tokenizer.vocab_size()
  884. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  885. scores: list[float] = [-10000.0] * vocab_size
  886. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  887. for token_id in range(tokenizer.vocab_size()):
  888. if token_id >= vocab_size:
  889. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  890. break
  891. piece = tokenizer.IdToPiece(token_id)
  892. text = piece.encode("utf-8")
  893. score = tokenizer.GetScore(token_id)
  894. toktype = SentencePieceTokenTypes.NORMAL
  895. if tokenizer.IsUnknown(token_id):
  896. toktype = SentencePieceTokenTypes.UNKNOWN
  897. elif tokenizer.IsControl(token_id):
  898. toktype = SentencePieceTokenTypes.CONTROL
  899. elif tokenizer.IsUnused(token_id):
  900. toktype = SentencePieceTokenTypes.UNUSED
  901. elif tokenizer.IsByte(token_id):
  902. toktype = SentencePieceTokenTypes.BYTE
  903. tokens[token_id] = text
  904. scores[token_id] = score
  905. toktypes[token_id] = toktype
  906. added_tokens_file = self.dir_model / 'added_tokens.json'
  907. if added_tokens_file.is_file():
  908. with open(added_tokens_file, "r", encoding="utf-8") as f:
  909. added_tokens_json = json.load(f)
  910. for key in added_tokens_json:
  911. token_id = added_tokens_json[key]
  912. if token_id >= vocab_size:
  913. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  914. continue
  915. tokens[token_id] = key.encode("utf-8")
  916. scores[token_id] = -1000.0
  917. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  918. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  919. if tokenizer_config_file.is_file():
  920. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  921. tokenizer_config_json = json.load(f)
  922. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  923. for token_id, token_data in added_tokens_decoder.items():
  924. token_id = int(token_id)
  925. token: str = token_data["content"]
  926. if token_id >= vocab_size:
  927. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  928. continue
  929. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  930. if tokens[token_id] != token.encode("utf-8"):
  931. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  932. if token_data.get("special") or self.does_token_look_special(token):
  933. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  934. else:
  935. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  936. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  937. scores[token_id] = -1000.0
  938. tokens[token_id] = token.encode("utf-8")
  939. if vocab_size > len(tokens):
  940. pad_count = vocab_size - len(tokens)
  941. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  942. for i in range(1, pad_count + 1):
  943. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  944. scores.append(-1000.0)
  945. toktypes.append(SentencePieceTokenTypes.UNUSED)
  946. return tokens, scores, toktypes
  947. def _set_vocab_llama_hf(self):
  948. vocab = gguf.LlamaHfVocab(self.dir_model)
  949. tokens = []
  950. scores = []
  951. toktypes = []
  952. for text, score, toktype in vocab.all_tokens():
  953. tokens.append(text)
  954. scores.append(score)
  955. toktypes.append(toktype)
  956. assert len(tokens) == vocab.vocab_size
  957. self.gguf_writer.add_tokenizer_model("llama")
  958. self.gguf_writer.add_tokenizer_pre("default")
  959. self.gguf_writer.add_token_list(tokens)
  960. self.gguf_writer.add_token_scores(scores)
  961. self.gguf_writer.add_token_types(toktypes)
  962. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  963. special_vocab.add_to_gguf(self.gguf_writer)
  964. def _set_vocab_rwkv_world(self):
  965. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  966. vocab_size = self.hparams.get("vocab_size", 65536)
  967. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  968. toktypes: list[int] = [gguf.TokenType.CONTROL]
  969. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  970. lines = f.readlines()
  971. for line in lines:
  972. parts = line.split(' ')
  973. assert len(parts) >= 3
  974. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  975. token = token.encode("utf-8") if isinstance(token, str) else token
  976. assert isinstance(token, bytes)
  977. assert len(token) == token_len
  978. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  979. tokens.append(token_text.encode("utf-8"))
  980. toktypes.append(gguf.TokenType.NORMAL)
  981. remainder = vocab_size - len(tokens)
  982. assert remainder >= 0
  983. for i in range(len(tokens), vocab_size):
  984. tokens.append(f"[PAD{i}]".encode("utf-8"))
  985. toktypes.append(gguf.TokenType.UNUSED)
  986. self.gguf_writer.add_tokenizer_model("rwkv")
  987. self.gguf_writer.add_token_list(tokens)
  988. self.gguf_writer.add_token_types(toktypes)
  989. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  990. if special_vocab.chat_template is None:
  991. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  992. if template_path.is_file():
  993. with open(template_path, "r", encoding="utf-8") as f:
  994. template = f.read()
  995. else:
  996. template = "rwkv-world"
  997. special_vocab.chat_template = template
  998. # hack: Add '\n\n' as the EOT token to make it chat normally
  999. special_vocab._set_special_token("eot", 261)
  1000. # hack: Override these as they have already been set (incorrectly)
  1001. special_vocab.special_token_ids["bos"] = 0
  1002. special_vocab.special_token_ids["eos"] = 0
  1003. special_vocab.add_to_gguf(self.gguf_writer)
  1004. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1005. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1006. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1007. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1008. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1009. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1010. assert field # tokenizer model
  1011. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1012. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1013. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1014. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1015. assert field # token list
  1016. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1017. if model_name == "llama-spm":
  1018. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1019. assert field # token scores
  1020. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1021. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1022. assert field # token types
  1023. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1024. if model_name != "llama-spm":
  1025. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1026. assert field # token merges
  1027. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1028. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1029. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1030. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1031. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1032. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1033. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1034. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1035. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1036. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1037. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1038. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1039. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1040. def _try_set_pooling_type(self) -> None:
  1041. # get pooling path
  1042. pooling_path = None
  1043. module_path = self.dir_model / "modules.json"
  1044. if module_path.is_file():
  1045. with open(module_path, encoding="utf-8") as f:
  1046. modules = json.load(f)
  1047. for mod in modules:
  1048. if mod["type"] == "sentence_transformers.models.Pooling":
  1049. pooling_path = mod["path"]
  1050. break
  1051. # get pooling type
  1052. if pooling_path is not None:
  1053. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1054. pooling = json.load(f)
  1055. if pooling["pooling_mode_mean_tokens"]:
  1056. pooling_type = gguf.PoolingType.MEAN
  1057. elif pooling["pooling_mode_cls_token"]:
  1058. pooling_type = gguf.PoolingType.CLS
  1059. elif pooling["pooling_mode_lasttoken"]:
  1060. pooling_type = gguf.PoolingType.LAST
  1061. else:
  1062. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1063. self.gguf_writer.add_pooling_type(pooling_type)
  1064. def _set_vocab_interns1(self):
  1065. tokens: list[str] = []
  1066. toktypes: list[int] = []
  1067. from transformers import AutoTokenizer
  1068. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1069. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1070. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1071. assert max(vocab.values()) < vocab_size
  1072. tokpre = self.get_vocab_base_pre(tokenizer)
  1073. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1074. added_vocab = tokenizer.get_added_vocab()
  1075. added_tokens_decoder = tokenizer.added_tokens_decoder
  1076. for i in range(vocab_size):
  1077. if i not in reverse_vocab:
  1078. tokens.append(f"[PAD{i}]")
  1079. toktypes.append(gguf.TokenType.UNUSED)
  1080. else:
  1081. token: str = reverse_vocab[i]
  1082. if token in added_vocab:
  1083. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1084. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1085. if not added_tokens_decoder[i].normalized:
  1086. previous_token = token
  1087. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1088. if previous_token != token:
  1089. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1090. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1091. toktypes.append(gguf.TokenType.CONTROL)
  1092. else:
  1093. toktypes.append(gguf.TokenType.USER_DEFINED)
  1094. else:
  1095. toktypes.append(gguf.TokenType.NORMAL)
  1096. tokens.append(token)
  1097. self.gguf_writer.add_tokenizer_model("gpt2")
  1098. self.gguf_writer.add_tokenizer_pre(tokpre)
  1099. self.gguf_writer.add_token_list(tokens)
  1100. self.gguf_writer.add_token_types(toktypes)
  1101. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1102. special_vocab._set_special_token("bos", 151643)
  1103. special_vocab.add_to_gguf(self.gguf_writer)
  1104. class MmprojModel(ModelBase):
  1105. model_type = ModelType.MMPROJ
  1106. model_arch = gguf.MODEL_ARCH.MMPROJ
  1107. preprocessor_config: dict[str, Any]
  1108. global_config: dict[str, Any]
  1109. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1110. has_vision_encoder: bool = True # by default
  1111. has_audio_encoder: bool = False
  1112. # for models having multiple encoders, we need to separate their hparams
  1113. hparams_vision: dict[str, Any] | None = None
  1114. hparams_audio: dict[str, Any] | None = None
  1115. def __init__(self, *args, **kwargs):
  1116. super().__init__(*args, **kwargs)
  1117. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1118. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1119. # get n_embd of the text model
  1120. if not self.is_mistral_format:
  1121. if "text_config" not in self.hparams:
  1122. self.hparams["text_config"] = {}
  1123. if "audio_config" not in self.hparams:
  1124. self.hparams["audio_config"] = {}
  1125. text_config = {**self.hparams, **self.hparams["text_config"]}
  1126. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1127. else:
  1128. text_config = {
  1129. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1130. }
  1131. self.n_embd_text = text_config.get("hidden_dim", 0)
  1132. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1133. # move vision config to the top level, while preserving the original hparams in global_config
  1134. import copy
  1135. self.global_config = copy.deepcopy(self.hparams)
  1136. self.hparams_vision = self.get_vision_config()
  1137. self.hparams_audio = self.get_audio_config()
  1138. if self.hparams_vision is None and self.hparams_audio is None:
  1139. raise ValueError("vision_config / audio_config not found in hparams")
  1140. # for compat with vision-only models
  1141. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1142. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1143. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1144. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1145. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1146. # load preprocessor config
  1147. self.preprocessor_config = {}
  1148. if not self.is_mistral_format:
  1149. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1150. self.preprocessor_config = json.load(f)
  1151. def get_vision_config(self) -> dict[str, Any] | None:
  1152. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1153. return self.global_config.get(config_name)
  1154. def get_audio_config(self) -> dict[str, Any] | None:
  1155. return self.global_config.get("audio_config")
  1156. def set_type(self):
  1157. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1158. def set_gguf_parameters(self):
  1159. self.gguf_writer.add_file_type(self.ftype)
  1160. if self.has_vision_encoder:
  1161. self.gguf_writer.add_clip_has_vision_encoder(True)
  1162. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1163. # vision config
  1164. self.image_size = self.find_vparam(["image_size"])
  1165. self.gguf_writer.add_vision_image_size(self.image_size)
  1166. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1167. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1168. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1169. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1170. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1171. # preprocessor config
  1172. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1173. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1174. self.gguf_writer.add_vision_image_mean(image_mean)
  1175. self.gguf_writer.add_vision_image_std(image_std)
  1176. if self.has_audio_encoder:
  1177. self.gguf_writer.add_clip_has_audio_encoder(True)
  1178. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1179. # audio config
  1180. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1181. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1182. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1183. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1184. if not self.has_vision_encoder and not self.has_audio_encoder:
  1185. raise ValueError("MmprojModel must have either vision or audio encoder")
  1186. def write_vocab(self):
  1187. raise ValueError("MmprojModel does not support vocab writing")
  1188. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1189. assert self.hparams_vision is not None
  1190. return self._find_param(self.hparams_vision, keys, optional)
  1191. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1192. assert self.hparams_audio is not None
  1193. return self._find_param(self.hparams_audio, keys, optional)
  1194. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1195. key = next((k for k in keys if k in obj), None)
  1196. if key is not None:
  1197. return obj[key]
  1198. if optional:
  1199. return None
  1200. raise KeyError(f"could not find any of: {keys}")
  1201. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1202. del bid, name, n_dims # unused
  1203. if ".patch_embd.weight" in new_name:
  1204. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1205. return False
  1206. @ModelBase.register("GPTNeoXForCausalLM")
  1207. class GPTNeoXModel(TextModel):
  1208. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1209. def set_gguf_parameters(self):
  1210. block_count = self.hparams["num_hidden_layers"]
  1211. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1212. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1213. self.gguf_writer.add_block_count(block_count)
  1214. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1215. self.gguf_writer.add_rope_dimension_count(
  1216. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1217. )
  1218. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1219. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1220. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1222. del bid # unused
  1223. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1224. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1225. tensors: list[tuple[str, Tensor]] = []
  1226. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1227. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1228. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1229. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1230. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1231. data_torch = torch.cat(
  1232. (
  1233. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1234. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1235. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1236. ),
  1237. dim=0,
  1238. )
  1239. logger.info("re-format attention.linear_qkv.weight")
  1240. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1241. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1242. data_torch = torch.cat(
  1243. (
  1244. qkv_bias[:, 0, :].reshape((n_embed,)),
  1245. qkv_bias[:, 1, :].reshape((n_embed,)),
  1246. qkv_bias[:, 2, :].reshape((n_embed,)),
  1247. ),
  1248. dim=0,
  1249. )
  1250. logger.info("re-format attention.linear_qkv.bias")
  1251. tensors.append((self.map_tensor_name(name), data_torch))
  1252. return tensors
  1253. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1254. class BloomModel(TextModel):
  1255. model_arch = gguf.MODEL_ARCH.BLOOM
  1256. def set_gguf_parameters(self):
  1257. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1258. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1259. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1260. self.gguf_writer.add_embedding_length(n_embed)
  1261. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1262. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1263. self.gguf_writer.add_head_count(n_head)
  1264. self.gguf_writer.add_head_count_kv(n_head)
  1265. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1266. self.gguf_writer.add_file_type(self.ftype)
  1267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1268. del bid # unused
  1269. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1270. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1271. name = re.sub(r'transformer\.', '', name)
  1272. tensors: list[tuple[str, Tensor]] = []
  1273. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1274. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1275. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1276. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1277. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1278. data_torch = torch.cat(
  1279. (
  1280. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1281. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1282. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1283. ),
  1284. dim=0,
  1285. )
  1286. logger.info("re-format attention.linear_qkv.weight")
  1287. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1288. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1289. data_torch = torch.cat(
  1290. (
  1291. qkv_bias[:, 0, :].reshape((n_embed,)),
  1292. qkv_bias[:, 1, :].reshape((n_embed,)),
  1293. qkv_bias[:, 2, :].reshape((n_embed,)),
  1294. ),
  1295. dim=0,
  1296. )
  1297. logger.info("re-format attention.linear_qkv.bias")
  1298. tensors.append((self.map_tensor_name(name), data_torch))
  1299. return tensors
  1300. @ModelBase.register("MPTForCausalLM")
  1301. class MPTModel(TextModel):
  1302. model_arch = gguf.MODEL_ARCH.MPT
  1303. def set_vocab(self):
  1304. try:
  1305. self._set_vocab_gpt2()
  1306. except Exception:
  1307. # Fallback for SEA-LION model
  1308. self._set_vocab_sentencepiece()
  1309. self.gguf_writer.add_add_bos_token(False)
  1310. self.gguf_writer.add_pad_token_id(3)
  1311. self.gguf_writer.add_eos_token_id(1)
  1312. self.gguf_writer.add_unk_token_id(0)
  1313. def set_gguf_parameters(self):
  1314. block_count = self.hparams["n_layers"]
  1315. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1316. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1317. self.gguf_writer.add_block_count(block_count)
  1318. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1319. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1320. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1321. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1322. self.gguf_writer.add_layer_norm_eps(1e-5)
  1323. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1324. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1325. if self.hparams["attn_config"]["alibi"]:
  1326. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1327. else:
  1328. self.gguf_writer.add_max_alibi_bias(0.0)
  1329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1330. del bid # unused
  1331. if "scales" in name:
  1332. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1333. new_name = new_name.replace("scales", "act.scales")
  1334. else:
  1335. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1336. return [(new_name, data_torch)]
  1337. @ModelBase.register("OrionForCausalLM")
  1338. class OrionModel(TextModel):
  1339. model_arch = gguf.MODEL_ARCH.ORION
  1340. def set_vocab(self):
  1341. self._set_vocab_sentencepiece()
  1342. def set_gguf_parameters(self):
  1343. block_count = self.hparams["num_hidden_layers"]
  1344. head_count = self.hparams["num_attention_heads"]
  1345. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1346. ctx_length = 0
  1347. if "max_sequence_length" in self.hparams:
  1348. ctx_length = self.hparams["max_sequence_length"]
  1349. elif "max_position_embeddings" in self.hparams:
  1350. ctx_length = self.hparams["max_position_embeddings"]
  1351. elif "model_max_length" in self.hparams:
  1352. ctx_length = self.hparams["model_max_length"]
  1353. else:
  1354. raise ValueError("gguf: can not find ctx length parameter.")
  1355. self.gguf_writer.add_file_type(self.ftype)
  1356. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1357. self.gguf_writer.add_context_length(ctx_length)
  1358. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1359. self.gguf_writer.add_block_count(block_count)
  1360. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1361. self.gguf_writer.add_head_count(head_count)
  1362. self.gguf_writer.add_head_count_kv(head_count_kv)
  1363. # note: config provides rms norm but it is actually layer norm
  1364. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1365. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1366. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1367. class BaichuanModel(TextModel):
  1368. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1369. def set_vocab(self):
  1370. self._set_vocab_sentencepiece()
  1371. def set_gguf_parameters(self):
  1372. block_count = self.hparams["num_hidden_layers"]
  1373. head_count = self.hparams["num_attention_heads"]
  1374. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1375. ctx_length = 0
  1376. if "max_sequence_length" in self.hparams:
  1377. ctx_length = self.hparams["max_sequence_length"]
  1378. elif "max_position_embeddings" in self.hparams:
  1379. ctx_length = self.hparams["max_position_embeddings"]
  1380. elif "model_max_length" in self.hparams:
  1381. ctx_length = self.hparams["model_max_length"]
  1382. else:
  1383. raise ValueError("gguf: can not find ctx length parameter.")
  1384. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1385. self.gguf_writer.add_context_length(ctx_length)
  1386. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1387. self.gguf_writer.add_block_count(block_count)
  1388. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1389. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1390. self.gguf_writer.add_head_count(head_count)
  1391. self.gguf_writer.add_head_count_kv(head_count_kv)
  1392. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1393. self.gguf_writer.add_file_type(self.ftype)
  1394. rope_scaling = self.hparams.get("rope_scaling") or {}
  1395. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1396. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1397. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1398. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1399. head_count = self.hparams["num_attention_heads"]
  1400. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1401. tensors: list[tuple[str, Tensor]] = []
  1402. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1403. logger.info(f"Unpacking and permuting layer {bid}")
  1404. tensors = [
  1405. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1406. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1407. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1408. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1409. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1410. self._reverse_hf_part(data_torch, 2)),
  1411. ]
  1412. else:
  1413. tensors = [(self.map_tensor_name(name), data_torch)]
  1414. return tensors
  1415. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1416. if n_kv_head is not None and n_head != n_kv_head:
  1417. n_head //= n_kv_head
  1418. return (
  1419. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1420. .swapaxes(1, 2)
  1421. .reshape(weights.shape)
  1422. )
  1423. def _reverse_hf_permute_part(
  1424. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1425. ) -> Tensor:
  1426. r = weights.shape[0] // 3
  1427. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1428. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1429. r = weights.shape[0] // 3
  1430. return weights[r * n_part:r * n_part + r, ...]
  1431. @ModelBase.register("XverseForCausalLM")
  1432. class XverseModel(TextModel):
  1433. model_arch = gguf.MODEL_ARCH.XVERSE
  1434. def set_vocab(self):
  1435. assert (self.dir_model / "tokenizer.json").is_file()
  1436. dir_model = self.dir_model
  1437. hparams = self.hparams
  1438. tokens: list[bytes] = []
  1439. toktypes: list[int] = []
  1440. from transformers import AutoTokenizer
  1441. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1442. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1443. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1444. # because vocab_size is the count of items, and indexes start at 0.
  1445. max_vocab_index = max(tokenizer.get_vocab().values())
  1446. if max_vocab_index >= vocab_size:
  1447. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1448. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1449. added_vocab = tokenizer.get_added_vocab()
  1450. for token_id in range(vocab_size):
  1451. token_text = reverse_vocab[token_id].encode('utf-8')
  1452. # replace "\x00" to string with length > 0
  1453. if token_text == b"\x00":
  1454. toktype = gguf.TokenType.BYTE # special
  1455. token_text = f"<{token_text}>".encode('utf-8')
  1456. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1457. toktype = gguf.TokenType.BYTE # special
  1458. elif reverse_vocab[token_id] in added_vocab:
  1459. if tokenizer.added_tokens_decoder[token_id].special:
  1460. toktype = gguf.TokenType.CONTROL
  1461. else:
  1462. toktype = gguf.TokenType.USER_DEFINED
  1463. else:
  1464. toktype = gguf.TokenType.NORMAL
  1465. tokens.append(token_text)
  1466. toktypes.append(toktype)
  1467. self.gguf_writer.add_tokenizer_model("llama")
  1468. self.gguf_writer.add_tokenizer_pre("default")
  1469. self.gguf_writer.add_token_list(tokens)
  1470. self.gguf_writer.add_token_types(toktypes)
  1471. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1472. special_vocab.add_to_gguf(self.gguf_writer)
  1473. def set_gguf_parameters(self):
  1474. block_count = self.hparams["num_hidden_layers"]
  1475. head_count = self.hparams["num_attention_heads"]
  1476. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1477. ctx_length = 0
  1478. if "max_sequence_length" in self.hparams:
  1479. ctx_length = self.hparams["max_sequence_length"]
  1480. elif "max_position_embeddings" in self.hparams:
  1481. ctx_length = self.hparams["max_position_embeddings"]
  1482. elif "model_max_length" in self.hparams:
  1483. ctx_length = self.hparams["model_max_length"]
  1484. else:
  1485. raise ValueError("gguf: can not find ctx length parameter.")
  1486. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1487. self.gguf_writer.add_context_length(ctx_length)
  1488. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1489. self.gguf_writer.add_block_count(block_count)
  1490. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1491. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1492. self.gguf_writer.add_head_count(head_count)
  1493. self.gguf_writer.add_head_count_kv(head_count_kv)
  1494. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1495. self.gguf_writer.add_file_type(self.ftype)
  1496. rope_scaling = self.hparams.get("rope_scaling") or {}
  1497. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1498. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1499. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1500. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1501. del bid # unused
  1502. head_count = self.hparams["num_attention_heads"]
  1503. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1504. # HF models permute some of the tensors, so we need to undo that
  1505. if name.endswith("q_proj.weight"):
  1506. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1507. if name.endswith("k_proj.weight"):
  1508. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1509. return [(self.map_tensor_name(name), data_torch)]
  1510. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1511. if n_kv_head is not None and n_head != n_kv_head:
  1512. n_head //= n_kv_head
  1513. return (
  1514. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1515. .swapaxes(1, 2)
  1516. .reshape(weights.shape)
  1517. )
  1518. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1519. class FalconModel(TextModel):
  1520. model_arch = gguf.MODEL_ARCH.FALCON
  1521. def set_gguf_parameters(self):
  1522. block_count = self.hparams.get("num_hidden_layers")
  1523. if block_count is None:
  1524. block_count = self.hparams["n_layer"] # old name
  1525. n_head = self.hparams.get("num_attention_heads")
  1526. if n_head is None:
  1527. n_head = self.hparams["n_head"] # old name
  1528. n_head_kv = self.hparams.get("num_kv_heads")
  1529. if n_head_kv is None:
  1530. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1531. self.gguf_writer.add_context_length(2048) # not in config.json
  1532. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1533. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1534. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1535. self.gguf_writer.add_block_count(block_count)
  1536. self.gguf_writer.add_head_count(n_head)
  1537. self.gguf_writer.add_head_count_kv(n_head_kv)
  1538. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1539. self.gguf_writer.add_file_type(self.ftype)
  1540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1541. del bid # unused
  1542. # QKV tensor transform
  1543. # The original query_key_value tensor contains n_head_kv "kv groups",
  1544. # each consisting of n_head/n_head_kv query weights followed by one key
  1545. # and one value weight (shared by all query heads in the kv group).
  1546. # This layout makes it a big pain to work with in GGML.
  1547. # So we rearrange them here,, so that we have n_head query weights
  1548. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1549. # in contiguous fashion.
  1550. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1551. if "query_key_value" in name:
  1552. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1553. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1554. head_dim = self.hparams["hidden_size"] // n_head
  1555. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1556. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1557. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1558. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1559. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1560. return [(self.map_tensor_name(name), data_torch)]
  1561. @ModelBase.register("GPTBigCodeForCausalLM")
  1562. class StarCoderModel(TextModel):
  1563. model_arch = gguf.MODEL_ARCH.STARCODER
  1564. def set_gguf_parameters(self):
  1565. block_count = self.hparams["n_layer"]
  1566. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1567. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1568. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1569. self.gguf_writer.add_block_count(block_count)
  1570. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1571. self.gguf_writer.add_head_count_kv(1)
  1572. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1573. self.gguf_writer.add_file_type(self.ftype)
  1574. @ModelBase.register("GPTRefactForCausalLM")
  1575. class RefactModel(TextModel):
  1576. model_arch = gguf.MODEL_ARCH.REFACT
  1577. def set_vocab(self):
  1578. super().set_vocab()
  1579. # TODO: how to determine special FIM tokens automatically?
  1580. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1581. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1582. special_vocab._set_special_token("prefix", 1)
  1583. special_vocab._set_special_token("suffix", 3)
  1584. special_vocab._set_special_token("middle", 2)
  1585. special_vocab.chat_template = None # do not add it twice
  1586. special_vocab.add_to_gguf(self.gguf_writer)
  1587. def set_gguf_parameters(self):
  1588. hidden_dim = self.hparams["n_embd"]
  1589. inner_dim = 4 * hidden_dim
  1590. hidden_dim = int(2 * inner_dim / 3)
  1591. multiple_of = 256
  1592. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1593. block_count = self.hparams["n_layer"]
  1594. # refact uses Alibi. So this is from config.json which might be used by training.
  1595. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1596. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1597. self.gguf_writer.add_feed_forward_length(ff_dim)
  1598. self.gguf_writer.add_block_count(block_count)
  1599. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1600. self.gguf_writer.add_head_count_kv(1)
  1601. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1602. self.gguf_writer.add_file_type(self.ftype)
  1603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1604. hidden_dim = self.hparams["n_embd"]
  1605. inner_dim = 4 * hidden_dim
  1606. hidden_dim = int(2 * inner_dim / 3)
  1607. multiple_of = 256
  1608. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1609. n_head = self.hparams["n_head"]
  1610. n_head_kv = 1
  1611. head_dim = self.hparams["n_embd"] // n_head
  1612. tensors: list[tuple[str, Tensor]] = []
  1613. if bid is not None:
  1614. if name == f"transformer.h.{bid}.attn.kv.weight":
  1615. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1616. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1617. elif name == f"transformer.h.{bid}.attn.q.weight":
  1618. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1619. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1620. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1621. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1622. if len(tensors) == 0:
  1623. tensors.append((self.map_tensor_name(name), data_torch))
  1624. return tensors
  1625. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1626. class StableLMModel(TextModel):
  1627. model_arch = gguf.MODEL_ARCH.STABLELM
  1628. def set_vocab(self):
  1629. if (self.dir_model / "tokenizer.json").is_file():
  1630. self._set_vocab_gpt2()
  1631. else:
  1632. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1633. self._set_vocab_qwen()
  1634. def set_gguf_parameters(self):
  1635. hparams = self.hparams
  1636. block_count = hparams["num_hidden_layers"]
  1637. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1638. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1639. self.gguf_writer.add_block_count(block_count)
  1640. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1641. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1642. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1643. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1644. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1645. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1646. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1647. self.gguf_writer.add_file_type(self.ftype)
  1648. _q_norms: list[dict[str, Tensor]] | None = None
  1649. _k_norms: list[dict[str, Tensor]] | None = None
  1650. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1651. n_head = self.hparams["num_attention_heads"]
  1652. n_kv_head = self.hparams["num_key_value_heads"]
  1653. if name.find("q_layernorm.norms") != -1:
  1654. assert bid is not None
  1655. if self._q_norms is None:
  1656. self._q_norms = [{} for _ in range(self.block_count)]
  1657. self._q_norms[bid][name] = data_torch
  1658. if len(self._q_norms[bid]) >= n_head:
  1659. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1660. else:
  1661. return []
  1662. if name.find("k_layernorm.norms") != -1:
  1663. assert bid is not None
  1664. if self._k_norms is None:
  1665. self._k_norms = [{} for _ in range(self.block_count)]
  1666. self._k_norms[bid][name] = data_torch
  1667. if len(self._k_norms[bid]) >= n_kv_head:
  1668. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1669. else:
  1670. return []
  1671. return [(self.map_tensor_name(name), data_torch)]
  1672. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1673. datas: list[Tensor] = []
  1674. # extract the norms in order
  1675. for xid in range(n_head):
  1676. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1677. datas.append(norms[ename])
  1678. del norms[ename]
  1679. data_torch = torch.stack(datas, dim=0)
  1680. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1681. new_name = self.map_tensor_name(merged_name)
  1682. return [(new_name, data_torch)]
  1683. def prepare_tensors(self):
  1684. super().prepare_tensors()
  1685. if self._q_norms is not None or self._k_norms is not None:
  1686. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1687. norms = (
  1688. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1689. ) + (
  1690. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1691. )
  1692. if len(norms) > 0:
  1693. raise ValueError(f"Unprocessed norms: {norms}")
  1694. @ModelBase.register(
  1695. "LLaMAForCausalLM",
  1696. "LlamaForCausalLM",
  1697. "MistralForCausalLM",
  1698. "MixtralForCausalLM",
  1699. "VLlama3ForCausalLM",
  1700. "LlavaForConditionalGeneration",
  1701. "VoxtralForConditionalGeneration",
  1702. "LlamaModel")
  1703. class LlamaModel(TextModel):
  1704. model_arch = gguf.MODEL_ARCH.LLAMA
  1705. undo_permute = True
  1706. def __init__(self, *args, **kwargs):
  1707. super().__init__(*args, **kwargs)
  1708. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1709. if self.hf_arch == "VLlama3ForCausalLM":
  1710. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1711. def _set_vocab_mistral(self):
  1712. if not _mistral_common_installed:
  1713. raise ImportError(_mistral_import_error_msg)
  1714. vocab = MistralVocab(self.dir_model)
  1715. logger.info(
  1716. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1717. )
  1718. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1719. tokens = []
  1720. scores = []
  1721. toktypes = []
  1722. for text, score, toktype in vocab.all_tokens():
  1723. tokens.append(text)
  1724. scores.append(score)
  1725. toktypes.append(toktype)
  1726. assert len(tokens) == vocab.vocab_size, (
  1727. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1728. )
  1729. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1730. self.gguf_writer.add_tokenizer_pre("tekken")
  1731. self.gguf_writer.add_token_merges(
  1732. vocab.extract_vocab_merges_from_model()
  1733. )
  1734. logger.info(
  1735. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1736. )
  1737. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1738. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1739. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1740. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1741. self.gguf_writer.add_token_list(tokens)
  1742. self.gguf_writer.add_token_scores(scores)
  1743. self.gguf_writer.add_token_types(toktypes)
  1744. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1745. self.gguf_writer.add_add_bos_token(True)
  1746. self.gguf_writer.add_add_eos_token(False)
  1747. template_dir = Path(__file__).parent / "models/templates/"
  1748. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1749. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1750. if self.is_mistral_format:
  1751. logger.info(
  1752. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1753. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1754. )
  1755. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1756. self.gguf_writer.add_chat_template(template)
  1757. else:
  1758. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1759. def set_vocab(self):
  1760. if self.is_mistral_format:
  1761. return self._set_vocab_mistral()
  1762. path_tekken_json = self.dir_model / "tekken.json"
  1763. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1764. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1765. self._set_vocab_mistral()
  1766. try:
  1767. self._set_vocab_sentencepiece()
  1768. except FileNotFoundError:
  1769. try:
  1770. self._set_vocab_llama_hf()
  1771. except (FileNotFoundError, TypeError):
  1772. # Llama 3
  1773. self._set_vocab_gpt2()
  1774. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1775. if self.hparams.get("vocab_size", 32000) == 32016:
  1776. special_vocab = gguf.SpecialVocab(
  1777. self.dir_model, load_merges=False,
  1778. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1779. )
  1780. special_vocab._set_special_token("prefix", 32007)
  1781. special_vocab._set_special_token("suffix", 32008)
  1782. special_vocab._set_special_token("middle", 32009)
  1783. special_vocab._set_special_token("eot", 32010)
  1784. special_vocab.add_to_gguf(self.gguf_writer)
  1785. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1786. if tokenizer_config_file.is_file():
  1787. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1788. tokenizer_config_json = json.load(f)
  1789. if "add_prefix_space" in tokenizer_config_json:
  1790. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1791. # Apply to granite small models only
  1792. if self.hparams.get("vocab_size", 32000) == 49152:
  1793. self.gguf_writer.add_add_bos_token(False)
  1794. def set_gguf_parameters(self):
  1795. super().set_gguf_parameters()
  1796. hparams = self.hparams
  1797. if not self.is_mistral_format:
  1798. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1799. if (rope_dim := hparams.get("head_dim")) is None:
  1800. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1801. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1802. rope_scaling = self.hparams.get("rope_scaling") or {}
  1803. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1804. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1805. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1806. @staticmethod
  1807. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1808. if n_head_kv is not None and n_head != n_head_kv:
  1809. n_head = n_head_kv
  1810. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1811. .swapaxes(1, 2)
  1812. .reshape(weights.shape))
  1813. _experts: list[dict[str, Tensor]] | None = None
  1814. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1815. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1816. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1817. vision_prefixes = [
  1818. "vision_encoder.",
  1819. "vision_language_adapter.",
  1820. "patch_merger.",
  1821. "pre_mm_projector_norm",
  1822. ]
  1823. is_multimodal_tensor = "vision_tower" in name \
  1824. or "vision_model" in name \
  1825. or "audio_tower" in name \
  1826. or "model.connector" in name \
  1827. or "multi_modal_projector" in name \
  1828. or any(
  1829. name.startswith(prefix)
  1830. for prefix in vision_prefixes
  1831. )
  1832. if is_multimodal_tensor:
  1833. return [] # skip vision tensors
  1834. elif self.hf_arch == "LlamaModel":
  1835. name = "model." + name
  1836. elif name.startswith("model.text_model"):
  1837. name = name.replace("text_model.", "") # for SmolVLM
  1838. elif name.startswith("language_model."):
  1839. name = name.replace("language_model.", "") # for the rest
  1840. if self.undo_permute:
  1841. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1842. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1843. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1844. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1845. # process the experts separately
  1846. if name.find("block_sparse_moe.experts") != -1:
  1847. n_experts = self.hparams["num_local_experts"]
  1848. assert bid is not None
  1849. if self._experts is None:
  1850. self._experts = [{} for _ in range(self.block_count)]
  1851. self._experts[bid][name] = data_torch
  1852. if len(self._experts[bid]) >= n_experts * 3:
  1853. tensors: list[tuple[str, Tensor]] = []
  1854. # merge the experts into a single 3d tensor
  1855. for wid in ["w1", "w2", "w3"]:
  1856. datas: list[Tensor] = []
  1857. for xid in range(n_experts):
  1858. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1859. datas.append(self._experts[bid][ename])
  1860. del self._experts[bid][ename]
  1861. data_torch = torch.stack(datas, dim=0)
  1862. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1863. new_name = self.map_tensor_name(merged_name)
  1864. tensors.append((new_name, data_torch))
  1865. return tensors
  1866. else:
  1867. return []
  1868. return [(self.map_tensor_name(name), data_torch)]
  1869. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1870. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1871. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1872. base = self.hparams.get("rope_theta", 10000.0)
  1873. if (dim := self.hparams.get("head_dim")) is None:
  1874. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1875. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1876. factor = rope_scaling.get("factor", 8.0)
  1877. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1878. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1879. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1880. low_freq_wavelen = old_context_len / low_freq_factor
  1881. high_freq_wavelen = old_context_len / high_freq_factor
  1882. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1883. rope_factors = []
  1884. for freq in freqs:
  1885. wavelen = 2 * math.pi / freq
  1886. if wavelen < high_freq_wavelen:
  1887. rope_factors.append(1)
  1888. elif wavelen > low_freq_wavelen:
  1889. rope_factors.append(factor)
  1890. else:
  1891. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1892. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1893. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1894. def prepare_tensors(self):
  1895. super().prepare_tensors()
  1896. if self._experts is not None:
  1897. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1898. experts = [k for d in self._experts for k in d.keys()]
  1899. if len(experts) > 0:
  1900. raise ValueError(f"Unprocessed experts: {experts}")
  1901. @ModelBase.register("ArceeForCausalLM")
  1902. class ArceeModel(LlamaModel):
  1903. model_arch = gguf.MODEL_ARCH.ARCEE
  1904. def set_gguf_parameters(self):
  1905. super().set_gguf_parameters()
  1906. self._try_set_pooling_type()
  1907. rope_scaling = self.hparams.get("rope_scaling") or {}
  1908. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1909. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1910. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1911. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1912. @ModelBase.register(
  1913. "LlavaForConditionalGeneration", # pixtral
  1914. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1915. )
  1916. class LlavaVisionModel(MmprojModel):
  1917. img_break_tok_id = -1
  1918. def __init__(self, *args, **kwargs):
  1919. super().__init__(*args, **kwargs)
  1920. if self.hparams.get("model_type") == "pixtral":
  1921. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1922. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1923. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1924. elif self.is_mistral_format:
  1925. # hparams is already vision config here so norm_eps is only defined in global_config.
  1926. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1927. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1928. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1929. else:
  1930. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1931. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1932. def get_token_id(self, token: str) -> int:
  1933. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1934. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1935. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1936. for id_, token_data in added_tokens_decoder.items():
  1937. if token_data["content"] == token:
  1938. return int(id_)
  1939. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1940. def set_gguf_parameters(self):
  1941. super().set_gguf_parameters()
  1942. hparams = self.hparams
  1943. if hparams.get("model_type") == "pixtral":
  1944. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1945. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1946. # hidden_act
  1947. if hparams["hidden_act"] == "silu":
  1948. self.gguf_writer.add_vision_use_silu(True)
  1949. elif hparams["hidden_act"] == "gelu":
  1950. self.gguf_writer.add_vision_use_gelu(True)
  1951. else:
  1952. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1953. # spatial_merge_size
  1954. if "spatial_merge_size" in self.global_config:
  1955. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1956. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1957. del bid # unused
  1958. n_head = (
  1959. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1960. )
  1961. n_kv_head = n_head
  1962. valid_prefixes = (
  1963. "multi_modal_projector.",
  1964. "vision_tower.",
  1965. "vision_encoder.",
  1966. "vision_language_adapter.",
  1967. "patch_merger.",
  1968. "pre_mm_projector_norm",
  1969. )
  1970. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1971. # process vision tensors
  1972. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1973. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1974. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1975. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1976. return [(self.map_tensor_name(name), data_torch)]
  1977. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1978. if self.img_break_tok_id > 0 and embed_key in name:
  1979. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1980. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1981. img_break_embd = data_torch[self.img_break_tok_id]
  1982. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1983. return [(self.map_tensor_name(name), img_break_embd)]
  1984. return [] # skip other tensors
  1985. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1986. class SmolVLMModel(MmprojModel):
  1987. def __init__(self, *args, **kwargs):
  1988. super().__init__(*args, **kwargs)
  1989. if self.hparams["model_type"] == "smolvlm_vision":
  1990. # fix for SmolVLM2, missing some keys in config.json
  1991. # default values are taken from transformers code
  1992. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1993. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1994. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1995. def set_gguf_parameters(self):
  1996. super().set_gguf_parameters()
  1997. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1998. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1999. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2000. self.gguf_writer.add_vision_use_gelu(True)
  2001. # Add the preprocessor longest edge size
  2002. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2003. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2004. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2005. if ".embeddings." in name:
  2006. return gguf.GGMLQuantizationType.F32
  2007. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2008. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2009. del bid # unused
  2010. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2011. if is_vision_tensor:
  2012. return [(self.map_tensor_name(name), data_torch)]
  2013. return [] # skip other tensors
  2014. @ModelBase.register(
  2015. "Llama4ForConditionalGeneration",
  2016. "Llama4ForCausalLM",
  2017. )
  2018. class Llama4Model(LlamaModel):
  2019. model_arch = gguf.MODEL_ARCH.LLAMA4
  2020. undo_permute = False
  2021. def __init__(self, *args, **kwargs):
  2022. super().__init__(*args, **kwargs)
  2023. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2024. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2025. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2026. def set_vocab(self):
  2027. self._set_vocab_gpt2()
  2028. def set_gguf_parameters(self):
  2029. super().set_gguf_parameters()
  2030. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2031. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2032. if "layer_types" in self.hparams:
  2033. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2034. # all layers are full attention (for MobileLLM), disable swa
  2035. self.gguf_writer.add_sliding_window(0)
  2036. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2037. if name.startswith("language_model."):
  2038. name = name.replace("language_model.", "")
  2039. # split the gate_up into gate and up
  2040. if "gate_up_proj" in name:
  2041. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2042. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2043. dim_half = data_torch.shape[-1] // 2
  2044. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2045. return [
  2046. (self.map_tensor_name(name_gate), gate_proj_weight),
  2047. (self.map_tensor_name(name_up), up_proj_weight)
  2048. ]
  2049. if name.endswith("down_proj"):
  2050. name += ".weight"
  2051. data_torch = data_torch.transpose(-1, -2)
  2052. if "multi_modal_projector" in name or "vision_model" in name:
  2053. return []
  2054. return super().modify_tensors(data_torch, name, bid)
  2055. @ModelBase.register("Llama4ForConditionalGeneration")
  2056. class Llama4VisionModel(MmprojModel):
  2057. def set_gguf_parameters(self):
  2058. super().set_gguf_parameters()
  2059. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2060. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2061. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2062. assert self.hparams["hidden_act"] == "gelu"
  2063. self.gguf_writer.add_vision_use_gelu(True)
  2064. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2065. del bid # unused
  2066. if "multi_modal_projector" in name or "vision_model" in name:
  2067. # process vision tensors
  2068. if "positional_embedding_vlm" in name and ".weight" not in name:
  2069. name += ".weight"
  2070. if "multi_modal_projector.linear_1" in name:
  2071. # despite the name with number postfix, this is a single fully connected layer
  2072. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2073. return [(self.map_tensor_name(name), data_torch)]
  2074. return []
  2075. @ModelBase.register("Mistral3ForConditionalGeneration")
  2076. class Mistral3Model(LlamaModel):
  2077. model_arch = gguf.MODEL_ARCH.LLAMA
  2078. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2079. name = name.replace("language_model.", "")
  2080. if "multi_modal_projector" in name or "vision_tower" in name:
  2081. return []
  2082. return super().modify_tensors(data_torch, name, bid)
  2083. @ModelBase.register("DeciLMForCausalLM")
  2084. class DeciModel(TextModel):
  2085. model_arch = gguf.MODEL_ARCH.DECI
  2086. @staticmethod
  2087. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2088. # DeciLM-specific code
  2089. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2090. return DeciModel._find_multiple(intermediate_size, 256)
  2091. @staticmethod
  2092. def _find_multiple(n: int, k: int) -> int:
  2093. # DeciLM-specific code
  2094. if n % k == 0:
  2095. return n
  2096. return n + k - (n % k)
  2097. def __init__(self, *args, **kwargs):
  2098. super().__init__(*args, **kwargs)
  2099. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2100. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2101. assert self.block_count == len(_block_configs)
  2102. self._num_kv_heads = list()
  2103. self._num_heads = list()
  2104. _ffn_multipliers = list()
  2105. # ***linear attention layer***
  2106. # if n_heads_in_group is None and replace_with_linear is True
  2107. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2108. # ***attention-free layer***
  2109. # if n_heads_in_group is None and replace_with_linear is False
  2110. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2111. # ***normal attention-layer***
  2112. # if n_heads_in_group is not None, then
  2113. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2114. # _num_heads[il] is num_attention_head
  2115. # ***dummy layer*** for nemotron 253B
  2116. # if n_heads_in_group is None and ffn_mult is None
  2117. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2118. for il in range(len(_block_configs)):
  2119. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2120. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2121. self._num_kv_heads.append(0)
  2122. self._num_heads.append(self.hparams["num_attention_heads"])
  2123. else:
  2124. self._num_kv_heads.append(0)
  2125. self._num_heads.append(0)
  2126. else:
  2127. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2128. self._num_heads.append(self.hparams["num_attention_heads"])
  2129. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2130. _ffn_multipliers.append(0.0)
  2131. else:
  2132. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2133. assert self.block_count == len(self._num_kv_heads)
  2134. assert self.block_count == len(self._num_heads)
  2135. assert self.block_count == len(_ffn_multipliers)
  2136. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2137. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2138. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2139. self._ffn_dims: list[int] = [
  2140. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2141. for multiplier in _ffn_multipliers
  2142. ]
  2143. def set_vocab(self):
  2144. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2145. # eos_token from '|eot_id|' to '|end_of_text|'
  2146. if self.hparams.get("vocab_size", 128256) == 128256:
  2147. tokens, toktypes, tokpre = self.get_vocab_base()
  2148. self.gguf_writer.add_tokenizer_model("gpt2")
  2149. self.gguf_writer.add_tokenizer_pre(tokpre)
  2150. self.gguf_writer.add_token_list(tokens)
  2151. self.gguf_writer.add_token_types(toktypes)
  2152. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2153. special_vocab.add_to_gguf(self.gguf_writer)
  2154. else:
  2155. # DeciLM-7B
  2156. self._set_vocab_llama_hf()
  2157. def set_gguf_parameters(self):
  2158. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2159. assert self.block_count == len(self._num_kv_heads)
  2160. assert self.block_count == len(self._num_heads)
  2161. assert self.block_count == len(self._ffn_dims)
  2162. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2163. self.gguf_writer.add_rope_freq_base(rope_theta)
  2164. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2165. self.gguf_writer.add_head_count(self._num_heads)
  2166. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2167. self.gguf_writer.add_block_count(self.block_count)
  2168. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2169. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2170. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2171. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2172. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2173. self.gguf_writer.add_file_type(self.ftype)
  2174. else: # DeciLM-7B
  2175. super().set_gguf_parameters()
  2176. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2177. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2178. assert self.block_count == len(self._num_kv_heads)
  2179. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2180. hparams = self.hparams
  2181. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2182. if (rope_dim := hparams.get("head_dim")) is None:
  2183. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2184. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2185. rope_scaling = self.hparams.get("rope_scaling") or {}
  2186. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2187. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2188. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2189. @staticmethod
  2190. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2191. if n_head_kv is not None and n_head != n_head_kv:
  2192. n_head = n_head_kv
  2193. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2194. .swapaxes(1, 2)
  2195. .reshape(weights.shape))
  2196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2197. n_head = self.hparams["num_attention_heads"]
  2198. if bid is not None:
  2199. if "num_key_value_heads_per_layer" in self.hparams:
  2200. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2201. elif "block_configs" in self.hparams:
  2202. n_kv_head = self._num_kv_heads[bid]
  2203. n_head = self._num_heads[bid]
  2204. else:
  2205. n_kv_head = self.hparams.get("num_key_value_heads")
  2206. else:
  2207. n_kv_head = self.hparams.get("num_key_value_heads")
  2208. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2209. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2210. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2211. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2212. return [(self.map_tensor_name(name), data_torch)]
  2213. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2214. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2215. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2216. base = self.hparams.get("rope_theta", 10000.0)
  2217. if (dim := self.hparams.get("head_dim")) is None:
  2218. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2219. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2220. factor = rope_scaling.get("factor", 8.0)
  2221. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2222. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2223. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2224. low_freq_wavelen = old_context_len / low_freq_factor
  2225. high_freq_wavelen = old_context_len / high_freq_factor
  2226. assert low_freq_wavelen != high_freq_wavelen
  2227. rope_factors = []
  2228. for freq in freqs:
  2229. wavelen = 2 * math.pi / freq
  2230. if wavelen < high_freq_wavelen:
  2231. rope_factors.append(1)
  2232. elif wavelen > low_freq_wavelen:
  2233. rope_factors.append(factor)
  2234. else:
  2235. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2236. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2237. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2238. def prepare_tensors(self):
  2239. super().prepare_tensors()
  2240. @ModelBase.register("BitnetForCausalLM")
  2241. class BitnetModel(TextModel):
  2242. model_arch = gguf.MODEL_ARCH.BITNET
  2243. def set_vocab(self):
  2244. self._set_vocab_sentencepiece()
  2245. def set_gguf_parameters(self):
  2246. super().set_gguf_parameters()
  2247. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2248. self.gguf_writer.add_rope_scaling_factor(1.0)
  2249. def weight_quant(self, weight: Tensor) -> Tensor:
  2250. dtype = weight.dtype
  2251. weight = weight.float()
  2252. scale = weight.abs().mean().clamp(min=1e-5)
  2253. iscale = 1 / scale
  2254. # TODO: multiply by the scale directly instead of inverting it twice
  2255. # (this is also unnecessarily doubly inverted upstream)
  2256. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2257. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2258. return result.type(dtype)
  2259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2260. new_name = self.map_tensor_name(name)
  2261. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2262. gguf.MODEL_TENSOR.ATTN_Q,
  2263. gguf.MODEL_TENSOR.ATTN_K,
  2264. gguf.MODEL_TENSOR.ATTN_V,
  2265. gguf.MODEL_TENSOR.ATTN_OUT,
  2266. gguf.MODEL_TENSOR.FFN_UP,
  2267. gguf.MODEL_TENSOR.FFN_DOWN,
  2268. gguf.MODEL_TENSOR.FFN_GATE,
  2269. ]):
  2270. # transform weight into 1/0/-1 (in fp32)
  2271. data_torch = self.weight_quant(data_torch)
  2272. yield (new_name, data_torch)
  2273. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2274. class GrokModel(TextModel):
  2275. model_arch = gguf.MODEL_ARCH.GROK
  2276. def set_vocab(self):
  2277. if (self.dir_model / 'tokenizer.model').is_file():
  2278. self._set_vocab_sentencepiece()
  2279. return
  2280. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2281. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2282. sys.exit(1)
  2283. self._set_vocab_gpt2()
  2284. def __init__(self, *args, **kwargs):
  2285. super().__init__(*args, **kwargs)
  2286. def set_gguf_parameters(self):
  2287. super().set_gguf_parameters()
  2288. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2289. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2290. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2291. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2292. if (rope_dim := self.hparams.get("head_dim")) is None:
  2293. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2294. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2295. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2296. # Treat "original" as "yarn", seems to have been a mistake
  2297. if self.hparams.get("rope_type") in ("yarn", "original"):
  2298. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2299. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2300. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2301. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2302. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2303. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2304. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2305. if temp_len := self.hparams.get("attn_temperature_len"):
  2306. self.gguf_writer.add_attn_temperature_length(temp_len)
  2307. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2308. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2309. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2310. _experts: list[dict[str, list[Tensor]]] | None = None
  2311. _cur_expert = ""
  2312. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2313. tensors: list[tuple[str, Tensor]] = []
  2314. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2315. if not is_expert:
  2316. tensors.append((self.map_tensor_name(name), data_torch))
  2317. # process the experts separately
  2318. if is_expert or self._cur_expert:
  2319. n_experts = self.hparams["num_local_experts"]
  2320. assert bid is not None
  2321. if self._experts is None:
  2322. self._experts = [{} for _ in range(self.block_count)]
  2323. # concatenate split tensors
  2324. if name in self._experts[bid]:
  2325. self._cur_expert = name
  2326. self._experts[bid][name].append(data_torch)
  2327. return []
  2328. elif is_expert:
  2329. self._cur_expert = name
  2330. self._experts[bid][name] = [data_torch]
  2331. return []
  2332. else:
  2333. self._cur_expert = ""
  2334. for bid in range(self.block_count):
  2335. if len(self._experts[bid]) >= n_experts * 3:
  2336. # merge the experts into a single 3d tensor
  2337. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2338. datas: list[Tensor] = []
  2339. for xid in range(n_experts):
  2340. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2341. if ename not in self._experts[bid]:
  2342. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2343. tensor_list = self._experts[bid][ename]
  2344. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2345. del self._experts[bid][ename]
  2346. data_torch = torch.stack(datas, dim=0)
  2347. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2348. new_name = self.map_tensor_name(merged_name)
  2349. yield (new_name, data_torch)
  2350. yield from tensors
  2351. @ModelBase.register("DbrxForCausalLM")
  2352. class DbrxModel(TextModel):
  2353. model_arch = gguf.MODEL_ARCH.DBRX
  2354. def set_gguf_parameters(self):
  2355. ffn_config = self.hparams["ffn_config"]
  2356. attn_config = self.hparams["attn_config"]
  2357. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2358. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2359. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2360. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2361. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2362. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2363. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2364. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2365. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2366. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2367. self.gguf_writer.add_layer_norm_eps(1e-5)
  2368. self.gguf_writer.add_file_type(self.ftype)
  2369. logger.info(f"gguf: file type = {self.ftype}")
  2370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2371. del bid # unused
  2372. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2373. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2374. n_embd = self.hparams["d_model"]
  2375. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2376. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2377. # But llama.cpp moe graph works differently
  2378. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2379. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2380. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2381. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2382. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2383. experts = False
  2384. for exp_tensor_name in exp_tensor_names.keys():
  2385. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2386. experts = True
  2387. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2388. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2389. data_torch = data_torch.permute(*permute_tensor)
  2390. break
  2391. # map tensor names
  2392. # In MoE models the ffn tensors are typically most of the model weights,
  2393. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2394. # Every other model has the weight names ending in .weight,
  2395. # let's assume that is the convention which is not the case for dbrx:
  2396. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2397. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2398. return [(new_name, data_torch)]
  2399. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2400. del name, new_name, bid # unused
  2401. return n_dims > 1
  2402. @ModelBase.register("MiniCPMForCausalLM")
  2403. class MiniCPMModel(TextModel):
  2404. model_arch = gguf.MODEL_ARCH.MINICPM
  2405. def set_gguf_parameters(self):
  2406. super().set_gguf_parameters()
  2407. embedding_scale = float(self.hparams["scale_emb"])
  2408. self.gguf_writer.add_embedding_scale(embedding_scale)
  2409. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2410. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2411. self.gguf_writer.add_residual_scale(residual_scale)
  2412. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2413. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2414. self.gguf_writer.add_logit_scale(logit_scale)
  2415. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2416. rope_scaling = self.hparams.get("rope_scaling") or {}
  2417. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2418. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2419. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2420. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2421. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2422. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2423. if rope_scaling is not None:
  2424. long_factors = rope_scaling.get('long_factor', None)
  2425. short_factors = rope_scaling.get('short_factor', None)
  2426. if long_factors is None or short_factors is None:
  2427. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2428. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2429. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2430. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2431. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2432. def set_vocab(self):
  2433. self._set_vocab_sentencepiece()
  2434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2435. del bid # unused
  2436. n_head = self.hparams["num_attention_heads"]
  2437. n_kv_head = self.hparams.get("num_key_value_heads")
  2438. # HF models permute some of the tensors, so we need to undo that
  2439. if name.endswith(("q_proj.weight")):
  2440. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2441. if name.endswith(("k_proj.weight")):
  2442. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2443. return [(self.map_tensor_name(name), data_torch)]
  2444. @ModelBase.register("MiniCPM3ForCausalLM")
  2445. class MiniCPM3Model(TextModel):
  2446. model_arch = gguf.MODEL_ARCH.MINICPM3
  2447. def set_gguf_parameters(self):
  2448. hparams = self.hparams
  2449. self.gguf_writer.add_file_type(self.ftype)
  2450. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2451. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2452. self.gguf_writer.add_block_count(self.block_count)
  2453. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2454. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2455. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2456. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2457. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2458. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2459. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2460. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2461. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2462. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2463. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2464. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2465. if rope_scaling is not None:
  2466. rope_dims = self.hparams["qk_rope_head_dim"]
  2467. long_factors = rope_scaling.get('long_factor', None)
  2468. short_factors = rope_scaling.get('short_factor', None)
  2469. if long_factors is None or short_factors is None:
  2470. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2471. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2472. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2473. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2474. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2475. def set_vocab(self):
  2476. self._set_vocab_sentencepiece()
  2477. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2478. if n_kv_head is not None and n_head != n_kv_head:
  2479. n_head //= n_kv_head
  2480. return (
  2481. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2482. .swapaxes(1, 2)
  2483. .reshape(weights.shape)
  2484. )
  2485. @ModelBase.register("QWenLMHeadModel")
  2486. class QwenModel(TextModel):
  2487. model_arch = gguf.MODEL_ARCH.QWEN
  2488. @staticmethod
  2489. def token_bytes_to_string(b):
  2490. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2491. byte_encoder = bytes_to_unicode()
  2492. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2493. @staticmethod
  2494. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2495. parts = [bytes([b]) for b in token]
  2496. while True:
  2497. min_idx = None
  2498. min_rank = None
  2499. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2500. rank = mergeable_ranks.get(pair[0] + pair[1])
  2501. if rank is not None and (min_rank is None or rank < min_rank):
  2502. min_idx = i
  2503. min_rank = rank
  2504. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2505. break
  2506. assert min_idx is not None
  2507. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2508. return parts
  2509. def set_vocab(self):
  2510. self._set_vocab_qwen()
  2511. def set_gguf_parameters(self):
  2512. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2513. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2514. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2515. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2516. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2517. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2518. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2519. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2520. self.gguf_writer.add_file_type(self.ftype)
  2521. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2522. class Qwen2Model(TextModel):
  2523. model_arch = gguf.MODEL_ARCH.QWEN2
  2524. def set_vocab(self):
  2525. try:
  2526. self._set_vocab_sentencepiece()
  2527. except FileNotFoundError:
  2528. self._set_vocab_gpt2()
  2529. def set_gguf_parameters(self):
  2530. super().set_gguf_parameters()
  2531. self._try_set_pooling_type()
  2532. rope_scaling = self.hparams.get("rope_scaling") or {}
  2533. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2534. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2535. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2536. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2537. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2538. if self.hf_arch == "Qwen2Model":
  2539. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2540. if "language_model." in name:
  2541. name = name.replace("language_model.", "") # for InternVL
  2542. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2543. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2544. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2545. # skip vision and audio tensors
  2546. return []
  2547. yield from super().modify_tensors(data_torch, name, bid)
  2548. @ModelBase.register("DreamModel")
  2549. class DreamModel(TextModel):
  2550. model_arch = gguf.MODEL_ARCH.DREAM
  2551. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2552. tokens: list[str] = []
  2553. toktypes: list[int] = []
  2554. from transformers import AutoTokenizer
  2555. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2556. vocab_dict = tokenizer.get_vocab()
  2557. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2558. assert max(vocab_dict.values()) < vocab_size
  2559. tokpre = self.get_vocab_base_pre(tokenizer)
  2560. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2561. added_vocab = tokenizer.get_added_vocab()
  2562. for i in range(vocab_size):
  2563. if i not in reverse_vocab:
  2564. tokens.append(f"[PAD{i}]")
  2565. toktypes.append(gguf.TokenType.UNUSED)
  2566. elif reverse_vocab[i] in added_vocab:
  2567. tokens.append(reverse_vocab[i])
  2568. # Check if it's a special token - treat special tokens as CONTROL tokens
  2569. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2570. if tokenizer.added_tokens_decoder[i].special:
  2571. toktypes.append(gguf.TokenType.CONTROL)
  2572. else:
  2573. toktypes.append(gguf.TokenType.USER_DEFINED)
  2574. else:
  2575. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2576. toktypes.append(gguf.TokenType.CONTROL)
  2577. else:
  2578. tokens.append(reverse_vocab[i])
  2579. toktypes.append(gguf.TokenType.NORMAL)
  2580. return tokens, toktypes, tokpre
  2581. def set_vocab(self):
  2582. try:
  2583. self._set_vocab_sentencepiece()
  2584. except FileNotFoundError:
  2585. self._set_vocab_gpt2()
  2586. def set_gguf_parameters(self):
  2587. super().set_gguf_parameters()
  2588. self._try_set_pooling_type()
  2589. # Dream models use non-causal attention for diffusion
  2590. self.gguf_writer.add_causal_attention(False)
  2591. # Handle RoPE scaling similar to Qwen2
  2592. rope_scaling = self.hparams.get("rope_scaling") or {}
  2593. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2594. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2595. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2596. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2597. # Add Dream-specific parameters
  2598. mask_token_id = self.hparams.get("mask_token_id")
  2599. if mask_token_id is not None:
  2600. self.gguf_writer.add_mask_token_id(mask_token_id)
  2601. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2602. # Dream model tensors should be mapped directly since it's the base model
  2603. yield from super().modify_tensors(data_torch, name, bid)
  2604. @ModelBase.register("LLaDAModelLM")
  2605. class LLaDAModel(TextModel):
  2606. model_arch = gguf.MODEL_ARCH.LLADA
  2607. undo_permute = True
  2608. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2609. tokens: list[str] = []
  2610. toktypes: list[int] = []
  2611. from transformers import AutoTokenizer
  2612. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2613. vocab_dict = tokenizer.get_vocab()
  2614. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2615. assert max(vocab_dict.values()) < vocab_size
  2616. tokpre = self.get_vocab_base_pre(tokenizer)
  2617. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2618. added_vocab = tokenizer.get_added_vocab()
  2619. for i in range(vocab_size):
  2620. if i not in reverse_vocab:
  2621. tokens.append(f"[PAD{i}]")
  2622. toktypes.append(gguf.TokenType.UNUSED)
  2623. elif reverse_vocab[i] in added_vocab:
  2624. tokens.append(reverse_vocab[i])
  2625. # Check if it's a special token - treat special tokens as CONTROL tokens
  2626. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2627. if tokenizer.added_tokens_decoder[i].special:
  2628. toktypes.append(gguf.TokenType.CONTROL)
  2629. else:
  2630. toktypes.append(gguf.TokenType.USER_DEFINED)
  2631. else:
  2632. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2633. toktypes.append(gguf.TokenType.CONTROL)
  2634. else:
  2635. tokens.append(reverse_vocab[i])
  2636. toktypes.append(gguf.TokenType.NORMAL)
  2637. return tokens, toktypes, tokpre
  2638. def set_vocab(self):
  2639. self._set_vocab_gpt2()
  2640. # LLaDA specific parameters
  2641. self.gguf_writer.add_add_bos_token(True)
  2642. def set_gguf_parameters(self):
  2643. super().set_gguf_parameters()
  2644. self._try_set_pooling_type()
  2645. # Add parameters similar to LlamaModel
  2646. hparams = self.hparams
  2647. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2648. if (rope_dim := hparams.get("head_dim")) is None:
  2649. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2650. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2651. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2652. # Set context length for LLaDA
  2653. context_length = self.hparams.get("max_sequence_length", 4096)
  2654. self.gguf_writer.add_context_length(context_length)
  2655. # Set embedding length (dimension size)
  2656. embedding_length = self.hparams.get("d_model", 4096)
  2657. self.gguf_writer.add_embedding_length(embedding_length)
  2658. # Set feed forward length (MLP hidden size)
  2659. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2660. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2661. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2662. self.gguf_writer.add_causal_attention(False)
  2663. # LLaDA models don't shift their logits
  2664. self.gguf_writer.add_diffusion_shift_logits(False)
  2665. @staticmethod
  2666. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2667. if n_head_kv is not None and n_head != n_head_kv:
  2668. n_head = n_head_kv
  2669. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2670. .swapaxes(1, 2)
  2671. .reshape(weights.shape))
  2672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2673. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2674. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2675. if self.undo_permute:
  2676. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2677. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2678. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2679. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2680. # LLaDA model tensors should be mapped directly since it's the base model
  2681. yield from super().modify_tensors(data_torch, name, bid)
  2682. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2683. class Ernie4_5Model(TextModel):
  2684. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2685. def set_vocab(self):
  2686. self._set_vocab_sentencepiece()
  2687. def set_gguf_parameters(self):
  2688. super().set_gguf_parameters()
  2689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2690. num_heads = self.hparams["num_attention_heads"]
  2691. num_kv_heads = self.hparams["num_key_value_heads"]
  2692. if (head_dim := self.hparams.get("head_dim")) is None:
  2693. head_dim = self.hparams["hidden_size"] // num_heads
  2694. if "ernie." in name:
  2695. name = name.replace("ernie.", "model.")
  2696. # split the qkv weights
  2697. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2698. if "qkv_proj" in name:
  2699. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2700. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2701. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2702. total_q_dim = num_heads * head_dim
  2703. total_k_dim = num_kv_heads * head_dim
  2704. total_v_dim = num_kv_heads * head_dim
  2705. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2706. return [
  2707. (self.map_tensor_name(name_q), q_proj_weight),
  2708. (self.map_tensor_name(name_k), k_proj_weight),
  2709. (self.map_tensor_name(name_v), v_proj_weight)
  2710. ]
  2711. # split the up_gate_proj into gate and up
  2712. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2713. if "up_gate_proj" in name:
  2714. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2715. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2716. dim_half = data_torch.shape[0] // 2
  2717. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2718. return [
  2719. (self.map_tensor_name(name_gate), gate_proj_weight),
  2720. (self.map_tensor_name(name_up), up_proj_weight)
  2721. ]
  2722. return [(self.map_tensor_name(name), data_torch)]
  2723. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2724. class Ernie4_5MoeModel(Ernie4_5Model):
  2725. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2726. _experts: list[dict[str, Tensor]] | None = None
  2727. def __init__(self, *args, **kwargs):
  2728. super().__init__(*args, **kwargs)
  2729. self._experts = [{} for _ in range(self.block_count)]
  2730. def set_gguf_parameters(self):
  2731. super().set_gguf_parameters()
  2732. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2733. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2734. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2735. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2736. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2737. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2738. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2739. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2740. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2741. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2743. # Modify correction bias name as in DeepseekV2
  2744. if name.endswith("e_score_correction_bias"):
  2745. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2746. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2747. match = re.match(r"model.mtp_block.(\d+)", name)
  2748. if match:
  2749. return []
  2750. # skip all other MTP tensors for now
  2751. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2752. if match:
  2753. return []
  2754. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2755. if match:
  2756. return []
  2757. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2758. if match:
  2759. return []
  2760. # process the experts separately
  2761. if name.find("mlp.experts") != -1:
  2762. n_experts = self.hparams["moe_num_experts"]
  2763. assert bid is not None
  2764. if self._experts is None:
  2765. self._experts = [{} for _ in range(self.block_count)]
  2766. self._experts[bid][name] = data_torch
  2767. if len(self._experts[bid]) >= n_experts * 3:
  2768. tensors: list[tuple[str, Tensor]] = []
  2769. # merge the experts into a single 3d tensor
  2770. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2771. datas: list[Tensor] = []
  2772. for xid in range(n_experts):
  2773. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2774. datas.append(self._experts[bid][ename_to_retrieve])
  2775. del self._experts[bid][ename_to_retrieve]
  2776. data_torch = torch.stack(datas, dim=0)
  2777. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2778. new_name = self.map_tensor_name(merged_name)
  2779. tensors.append((new_name, data_torch))
  2780. return tensors
  2781. else:
  2782. return []
  2783. return [(self.map_tensor_name(name), data_torch)]
  2784. def prepare_tensors(self):
  2785. super().prepare_tensors()
  2786. if self._experts is not None:
  2787. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2788. experts = [k for d in self._experts for k in d.keys()]
  2789. if len(experts) > 0:
  2790. raise ValueError(f"Unprocessed experts: {experts}")
  2791. @ModelBase.register(
  2792. "Qwen2VLModel",
  2793. "Qwen2VLForConditionalGeneration",
  2794. "Qwen2_5_VLForConditionalGeneration",
  2795. "Qwen2_5OmniModel",
  2796. )
  2797. class Qwen2VLModel(TextModel):
  2798. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2799. def set_gguf_parameters(self):
  2800. super().set_gguf_parameters()
  2801. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2802. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2803. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2804. def set_vocab(self):
  2805. try:
  2806. self._set_vocab_sentencepiece()
  2807. except FileNotFoundError:
  2808. self._set_vocab_gpt2()
  2809. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2810. del bid # unused
  2811. if name.startswith("thinker."):
  2812. name = name.replace("thinker.", "")
  2813. if name.startswith("visual") or name.startswith("audio") or \
  2814. name.startswith("talker") or name.startswith("token2wav"):
  2815. # skip multimodal tensors
  2816. return []
  2817. return [(self.map_tensor_name(name), data_torch)]
  2818. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2819. class Qwen2VLVisionModel(MmprojModel):
  2820. def __init__(self, *args, **kwargs):
  2821. super().__init__(*args, **kwargs)
  2822. assert self.hparams_vision is not None
  2823. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2824. # rename config.json values
  2825. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2826. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2827. if "embed_dim" in self.hparams_vision: # qwen2vl
  2828. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2829. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2830. def set_gguf_parameters(self):
  2831. super().set_gguf_parameters()
  2832. assert self.hparams_vision is not None
  2833. hparams = self.hparams_vision
  2834. model_type = self.global_config['model_type']
  2835. if model_type == 'qwen2_vl':
  2836. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2837. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2838. if model_type == 'qwen2_5_omni':
  2839. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2840. else:
  2841. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2842. self.gguf_writer.add_vision_use_silu(True)
  2843. # find n_wa_pattern (window attention pattern)
  2844. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2845. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2846. n_wa_pattern = fullatt_block_indexes[0] + 1
  2847. # validate n_wa_pattern
  2848. for i in range(1, len(fullatt_block_indexes)):
  2849. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2850. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2851. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2852. else:
  2853. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2854. # default values below are taken from HF tranformers code
  2855. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2856. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2857. if ".position_embd." in new_name:
  2858. return gguf.GGMLQuantizationType.F32
  2859. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2860. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2861. del bid # unused
  2862. if name.startswith("visual."):
  2863. # process visual tensors
  2864. # split QKV tensors if needed
  2865. if ".qkv." in name:
  2866. if data_torch.ndim == 2: # weight
  2867. c3, _ = data_torch.shape
  2868. else: # bias
  2869. c3 = data_torch.shape[0]
  2870. assert c3 % 3 == 0
  2871. c = c3 // 3
  2872. wq = data_torch[:c]
  2873. wk = data_torch[c: c * 2]
  2874. wv = data_torch[c * 2:]
  2875. return [
  2876. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2877. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2878. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2879. ]
  2880. elif 'patch_embed.proj.weight' in name:
  2881. # split Conv3D into Conv2Ds
  2882. c1, c2, kt, kh, kw = data_torch.shape
  2883. del c1, c2, kh, kw # unused
  2884. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2885. return [
  2886. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2887. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2888. ]
  2889. else:
  2890. return [(self.map_tensor_name(name), data_torch)]
  2891. return [] # skip other tensors
  2892. @ModelBase.register("Qwen2_5OmniModel")
  2893. class Qwen25OmniModel(Qwen2VLVisionModel):
  2894. has_vision_encoder = True
  2895. has_audio_encoder = True
  2896. def __init__(self, *args, **kwargs):
  2897. super().__init__(*args, **kwargs)
  2898. assert self.hparams_audio is not None
  2899. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2900. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2901. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2902. def set_gguf_parameters(self):
  2903. super().set_gguf_parameters()
  2904. assert self.hparams_audio is not None
  2905. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2906. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2907. def get_vision_config(self) -> dict[str, Any] | None:
  2908. return self.global_config["thinker_config"].get("vision_config")
  2909. def get_audio_config(self) -> dict[str, Any] | None:
  2910. return self.global_config["thinker_config"].get("audio_config")
  2911. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2912. # SinusoidsPositionEmbedding
  2913. assert self.hparams_audio is not None
  2914. max_timescale = 10000
  2915. length = 1500
  2916. channels = self.hparams_audio["hidden_size"]
  2917. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2918. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2919. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2920. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2921. yield ("audio_tower.embed_positions.weight", pos_embd)
  2922. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2923. if ".conv" in name and ".weight" in name:
  2924. return gguf.GGMLQuantizationType.F16
  2925. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2926. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2927. if name.startswith("thinker."):
  2928. name = name.replace("thinker.", "")
  2929. if name.startswith("audio_tower"):
  2930. # process audio tensors
  2931. if "conv1.bias" in name or "conv2.bias" in name:
  2932. # transpose conv1 and conv2 bias
  2933. data_torch = data_torch.unsqueeze(-1)
  2934. if "audio_bos_eos_token" in name:
  2935. # this tensor is left unused in transformers code
  2936. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2937. return []
  2938. return [(self.map_tensor_name(name), data_torch)]
  2939. return super().modify_tensors(data_torch, name, bid)
  2940. @ModelBase.register("InternVisionModel")
  2941. class InternVisionModel(MmprojModel):
  2942. def set_gguf_parameters(self):
  2943. assert self.hparams_vision is not None
  2944. if isinstance(self.hparams_vision['image_size'], list):
  2945. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2946. if isinstance(self.hparams_vision['patch_size'], list):
  2947. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2948. super().set_gguf_parameters()
  2949. hparams = self.hparams
  2950. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2951. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2952. # hidden_act
  2953. if hparams["hidden_act"] == "silu":
  2954. self.gguf_writer.add_vision_use_silu(True)
  2955. elif hparams["hidden_act"] == "gelu":
  2956. self.gguf_writer.add_vision_use_gelu(True)
  2957. else:
  2958. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2959. # downsample_ratio
  2960. downsample_ratio = self.global_config.get("downsample_ratio")
  2961. assert downsample_ratio is not None
  2962. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2963. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2964. if ".position_embd." in new_name:
  2965. return gguf.GGMLQuantizationType.F32
  2966. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2967. def _mapping_interns1_name(self, name):
  2968. names_map = {
  2969. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2970. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2971. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2972. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2973. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2974. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2975. }
  2976. if name in names_map:
  2977. name = names_map[name]
  2978. return name
  2979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2980. del bid # unused
  2981. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2982. # deal with intern-s1 special case
  2983. name = self._mapping_interns1_name(name)
  2984. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2985. # process visual tensors
  2986. # correct name
  2987. if name.startswith("vision_model"):
  2988. name = "vision_tower." + name
  2989. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2990. name += ".weight"
  2991. # split QKV tensors if needed
  2992. if ".qkv." in name:
  2993. if data_torch.ndim == 2: # weight
  2994. c3, _ = data_torch.shape
  2995. else: # bias
  2996. c3 = data_torch.shape[0]
  2997. assert c3 % 3 == 0
  2998. c = c3 // 3
  2999. wq = data_torch[:c]
  3000. wk = data_torch[c: c * 2]
  3001. wv = data_torch[c * 2:]
  3002. return [
  3003. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3004. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3005. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3006. ]
  3007. return [(self.map_tensor_name(name), data_torch)]
  3008. return [] # skip other tensors
  3009. @ModelBase.register("WavTokenizerDec")
  3010. class WavTokenizerDecModel(TextModel):
  3011. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3012. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3013. del bid # unused
  3014. if \
  3015. name.endswith("codebook.cluster_size") or \
  3016. name.endswith("codebook.embed_avg") or \
  3017. name.endswith("codebook.inited"):
  3018. logger.debug(f"Skipping {name!r}")
  3019. return []
  3020. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3021. return [(self.map_tensor_name(name), data_torch)]
  3022. def set_vocab(self):
  3023. self._set_vocab_none()
  3024. def set_gguf_parameters(self):
  3025. super().set_gguf_parameters()
  3026. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3027. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3028. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3029. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3030. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3031. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3032. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3033. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3034. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3035. self.gguf_writer.add_causal_attention(False)
  3036. @ModelBase.register("Qwen2MoeForCausalLM")
  3037. class Qwen2MoeModel(TextModel):
  3038. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3039. def set_gguf_parameters(self):
  3040. super().set_gguf_parameters()
  3041. if (n_experts := self.hparams.get("num_experts")) is not None:
  3042. self.gguf_writer.add_expert_count(n_experts)
  3043. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3044. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3045. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3046. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3047. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3048. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3049. # YaRN is not enabled by default
  3050. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3051. rope_scaling = self.hparams.get("rope_scaling") or {}
  3052. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3053. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3054. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3055. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3056. _experts: list[dict[str, Tensor]] | None = None
  3057. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3058. # process the experts separately
  3059. name = name.replace("language_model.", "") # InternVL
  3060. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3061. # skip visual tensors
  3062. return []
  3063. if name.find("experts") != -1:
  3064. n_experts = self.hparams["num_experts"]
  3065. assert bid is not None
  3066. if self._experts is None:
  3067. self._experts = [{} for _ in range(self.block_count)]
  3068. self._experts[bid][name] = data_torch
  3069. if len(self._experts[bid]) >= n_experts * 3:
  3070. tensors: list[tuple[str, Tensor]] = []
  3071. # merge the experts into a single 3d tensor
  3072. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3073. datas: list[Tensor] = []
  3074. for xid in range(n_experts):
  3075. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3076. datas.append(self._experts[bid][ename])
  3077. del self._experts[bid][ename]
  3078. data_torch = torch.stack(datas, dim=0)
  3079. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3080. new_name = self.map_tensor_name(merged_name)
  3081. tensors.append((new_name, data_torch))
  3082. return tensors
  3083. else:
  3084. return []
  3085. return [(self.map_tensor_name(name), data_torch)]
  3086. def prepare_tensors(self):
  3087. super().prepare_tensors()
  3088. if self._experts is not None:
  3089. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3090. experts = [k for d in self._experts for k in d.keys()]
  3091. if len(experts) > 0:
  3092. raise ValueError(f"Unprocessed experts: {experts}")
  3093. @ModelBase.register("Qwen3ForCausalLM")
  3094. class Qwen3Model(Qwen2Model):
  3095. model_arch = gguf.MODEL_ARCH.QWEN3
  3096. # extra logic for rerank models
  3097. is_rerank: bool = False
  3098. is_tied_embeddings: bool = False
  3099. token_false_id: int | None = None
  3100. token_true_id: int | None = None
  3101. def __init__(self, *args, **kwargs):
  3102. super().__init__(*args, **kwargs)
  3103. # track for intern-s1-mini
  3104. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3105. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3106. # a bit hacky, but currently the only way to detect if this is a rerank model
  3107. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3108. readme_path = self.dir_model / "README.md"
  3109. readme_text = ""
  3110. if readme_path.exists():
  3111. with readme_path.open("r", encoding="utf-8") as f:
  3112. readme_text = f.read()
  3113. if "# Qwen3-Reranker" in readme_text:
  3114. self._find_rerank_config()
  3115. def set_vocab(self):
  3116. # deal with intern-s1-mini
  3117. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3118. self._set_vocab_interns1()
  3119. return
  3120. super().set_vocab()
  3121. def _find_rerank_config(self):
  3122. from transformers import AutoTokenizer
  3123. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3124. self.is_rerank = True
  3125. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3126. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3127. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3128. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3129. assert self.token_false_id is not None and self.token_true_id is not None
  3130. def set_gguf_parameters(self):
  3131. super().set_gguf_parameters()
  3132. if self.is_rerank:
  3133. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3134. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3135. self.gguf_writer.add_chat_template([{
  3136. "name": "rerank",
  3137. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3138. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3139. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3140. }])
  3141. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3142. # extract "yes" and "no" tokens from the output lm_head tensor
  3143. false_row = data_torch[self.token_false_id]
  3144. true_row = data_torch[self.token_true_id]
  3145. return torch.stack([true_row, false_row], dim=0)
  3146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3147. if self.is_rerank:
  3148. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3149. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3150. if is_tied_head or is_real_head:
  3151. cls_out_head = (
  3152. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3153. self._get_cls_out_tensor(data_torch),
  3154. )
  3155. if is_tied_head:
  3156. embed = (self.map_tensor_name(name), data_torch)
  3157. return [cls_out_head, embed]
  3158. if is_real_head:
  3159. return [cls_out_head]
  3160. return super().modify_tensors(data_torch, name, bid)
  3161. @ModelBase.register("Qwen3MoeForCausalLM")
  3162. class Qwen3MoeModel(Qwen2MoeModel):
  3163. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3164. def __init__(self, *args, **kwargs):
  3165. super().__init__(*args, **kwargs)
  3166. hparams = ModelBase.load_hparams(self.dir_model, False)
  3167. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3168. def set_vocab(self):
  3169. # deal with intern-s1
  3170. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3171. self._set_vocab_interns1()
  3172. return
  3173. super().set_vocab()
  3174. @ModelBase.register("GPT2LMHeadModel")
  3175. class GPT2Model(TextModel):
  3176. model_arch = gguf.MODEL_ARCH.GPT2
  3177. def set_gguf_parameters(self):
  3178. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3179. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3180. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3181. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3182. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3183. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3184. self.gguf_writer.add_file_type(self.ftype)
  3185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3186. del bid # unused
  3187. tensors: list[tuple[str, Tensor]] = []
  3188. # we don't need these
  3189. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3190. return tensors
  3191. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3192. data_torch = data_torch.transpose(1, 0)
  3193. new_name = self.map_tensor_name(name)
  3194. tensors.append((new_name, data_torch))
  3195. return tensors
  3196. @ModelBase.register("PhiForCausalLM")
  3197. class Phi2Model(TextModel):
  3198. model_arch = gguf.MODEL_ARCH.PHI2
  3199. def set_gguf_parameters(self):
  3200. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3201. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3202. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3203. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3204. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3205. self.gguf_writer.add_embedding_length(n_embd)
  3206. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3207. self.gguf_writer.add_block_count(block_count)
  3208. self.gguf_writer.add_head_count(n_head)
  3209. self.gguf_writer.add_head_count_kv(n_head)
  3210. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3211. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3212. self.gguf_writer.add_file_type(self.ftype)
  3213. self.gguf_writer.add_add_bos_token(False)
  3214. @ModelBase.register("Phi3ForCausalLM")
  3215. class Phi3MiniModel(TextModel):
  3216. model_arch = gguf.MODEL_ARCH.PHI3
  3217. def set_vocab(self):
  3218. # Phi-4 model uses GPT2Tokenizer
  3219. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3220. if tokenizer_config_file.is_file():
  3221. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3222. tokenizer_config_json = json.load(f)
  3223. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3224. if tokenizer_class == 'GPT2Tokenizer':
  3225. return self._set_vocab_gpt2()
  3226. from sentencepiece import SentencePieceProcessor
  3227. tokenizer_path = self.dir_model / 'tokenizer.model'
  3228. if not tokenizer_path.is_file():
  3229. raise ValueError(f'Error: Missing {tokenizer_path}')
  3230. tokenizer = SentencePieceProcessor()
  3231. tokenizer.LoadFromFile(str(tokenizer_path))
  3232. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3233. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3234. scores: list[float] = [-10000.0] * vocab_size
  3235. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3236. for token_id in range(tokenizer.vocab_size()):
  3237. piece = tokenizer.IdToPiece(token_id)
  3238. text = piece.encode("utf-8")
  3239. score = tokenizer.GetScore(token_id)
  3240. toktype = SentencePieceTokenTypes.NORMAL
  3241. if tokenizer.IsUnknown(token_id):
  3242. toktype = SentencePieceTokenTypes.UNKNOWN
  3243. elif tokenizer.IsControl(token_id):
  3244. toktype = SentencePieceTokenTypes.CONTROL
  3245. elif tokenizer.IsUnused(token_id):
  3246. toktype = SentencePieceTokenTypes.UNUSED
  3247. elif tokenizer.IsByte(token_id):
  3248. toktype = SentencePieceTokenTypes.BYTE
  3249. tokens[token_id] = text
  3250. scores[token_id] = score
  3251. toktypes[token_id] = toktype
  3252. added_tokens_file = self.dir_model / 'added_tokens.json'
  3253. if added_tokens_file.is_file():
  3254. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3255. added_tokens_json = json.load(f)
  3256. for key in added_tokens_json:
  3257. token_id = added_tokens_json[key]
  3258. if token_id >= vocab_size:
  3259. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3260. continue
  3261. tokens[token_id] = key.encode("utf-8")
  3262. scores[token_id] = -1000.0
  3263. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3264. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3265. if tokenizer_config_file.is_file():
  3266. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3267. tokenizer_config_json = json.load(f)
  3268. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3269. for token_id, foken_data in added_tokens_decoder.items():
  3270. token_id = int(token_id)
  3271. token = foken_data["content"].encode("utf-8")
  3272. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3273. if tokens[token_id] != token:
  3274. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3275. tokens[token_id] = token
  3276. scores[token_id] = -1000.0
  3277. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3278. if foken_data.get("special"):
  3279. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3280. tokenizer_file = self.dir_model / 'tokenizer.json'
  3281. if tokenizer_file.is_file():
  3282. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3283. tokenizer_json = json.load(f)
  3284. added_tokens = tokenizer_json.get("added_tokens", [])
  3285. for foken_data in added_tokens:
  3286. token_id = int(foken_data["id"])
  3287. token = foken_data["content"].encode("utf-8")
  3288. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3289. if tokens[token_id] != token:
  3290. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3291. tokens[token_id] = token
  3292. scores[token_id] = -1000.0
  3293. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3294. if foken_data.get("special"):
  3295. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3296. self.gguf_writer.add_tokenizer_model("llama")
  3297. self.gguf_writer.add_tokenizer_pre("default")
  3298. self.gguf_writer.add_token_list(tokens)
  3299. self.gguf_writer.add_token_scores(scores)
  3300. self.gguf_writer.add_token_types(toktypes)
  3301. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3302. special_vocab.add_to_gguf(self.gguf_writer)
  3303. def set_gguf_parameters(self):
  3304. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3305. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3306. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3307. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3308. rms_eps = self.find_hparam(["rms_norm_eps"])
  3309. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3310. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3311. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3312. rope_dims = int(rot_pct * n_embd) // n_head
  3313. self.gguf_writer.add_context_length(max_pos_embds)
  3314. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3315. self.gguf_writer.add_embedding_length(n_embd)
  3316. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3317. self.gguf_writer.add_block_count(block_count)
  3318. self.gguf_writer.add_head_count(n_head)
  3319. self.gguf_writer.add_head_count_kv(n_head_kv)
  3320. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3321. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3322. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3323. self.gguf_writer.add_file_type(self.ftype)
  3324. sliding_window = self.hparams.get("sliding_window")
  3325. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3326. if sliding_window is None:
  3327. sliding_window = 0
  3328. self.gguf_writer.add_sliding_window(sliding_window)
  3329. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3330. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3331. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3332. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3333. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3334. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3335. rope_dims = int(rot_pct * n_embd) // n_head
  3336. # write rope scaling for long context (128k) model
  3337. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3338. if rope_scaling is None:
  3339. return
  3340. scale = max_pos_embds / orig_max_pos_embds
  3341. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3342. if len(rope_scaling_type) == 0:
  3343. raise KeyError('Missing the required key rope_scaling.type')
  3344. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3345. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3346. elif rope_scaling_type == 'yarn':
  3347. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3348. else:
  3349. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3350. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3351. long_factors = rope_scaling.get('long_factor', None)
  3352. short_factors = rope_scaling.get('short_factor', None)
  3353. if long_factors is None or short_factors is None:
  3354. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3355. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3356. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3357. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3358. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3359. @ModelBase.register("PhiMoEForCausalLM")
  3360. class PhiMoeModel(Phi3MiniModel):
  3361. model_arch = gguf.MODEL_ARCH.PHIMOE
  3362. _experts: list[dict[str, Tensor]] | None = None
  3363. def set_gguf_parameters(self):
  3364. super().set_gguf_parameters()
  3365. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3366. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3367. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3368. # process the experts separately
  3369. if name.find("block_sparse_moe.experts") != -1:
  3370. n_experts = self.hparams["num_local_experts"]
  3371. assert bid is not None
  3372. if self._experts is None:
  3373. self._experts = [{} for _ in range(self.block_count)]
  3374. self._experts[bid][name] = data_torch
  3375. if len(self._experts[bid]) >= n_experts * 3:
  3376. tensors: list[tuple[str, Tensor]] = []
  3377. # merge the experts into a single 3d tensor
  3378. for w_name in ["w1", "w2", "w3"]:
  3379. datas: list[Tensor] = []
  3380. for xid in range(n_experts):
  3381. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3382. datas.append(self._experts[bid][ename])
  3383. del self._experts[bid][ename]
  3384. data_torch = torch.stack(datas, dim=0)
  3385. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3386. new_name = self.map_tensor_name(merged_name)
  3387. tensors.append((new_name, data_torch))
  3388. return tensors
  3389. else:
  3390. return []
  3391. return [(self.map_tensor_name(name), data_torch)]
  3392. def prepare_tensors(self):
  3393. super().prepare_tensors()
  3394. if self._experts is not None:
  3395. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3396. experts = [k for d in self._experts for k in d.keys()]
  3397. if len(experts) > 0:
  3398. raise ValueError(f"Unprocessed experts: {experts}")
  3399. @ModelBase.register("PlamoForCausalLM")
  3400. class PlamoModel(TextModel):
  3401. model_arch = gguf.MODEL_ARCH.PLAMO
  3402. def set_vocab(self):
  3403. self._set_vocab_sentencepiece()
  3404. def set_gguf_parameters(self):
  3405. hparams = self.hparams
  3406. block_count = hparams["num_hidden_layers"]
  3407. self.gguf_writer.add_context_length(4096) # not in config.json
  3408. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3409. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3410. self.gguf_writer.add_block_count(block_count)
  3411. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3412. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3413. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3414. self.gguf_writer.add_file_type(self.ftype)
  3415. def shuffle_attn_q_weight(self, data_torch):
  3416. assert data_torch.size() == (5120, 5120)
  3417. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3418. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3419. data_torch = torch.reshape(data_torch, (5120, 5120))
  3420. return data_torch
  3421. def shuffle_attn_output_weight(self, data_torch):
  3422. assert data_torch.size() == (5120, 5120)
  3423. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3424. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3425. data_torch = torch.reshape(data_torch, (5120, 5120))
  3426. return data_torch
  3427. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3428. del bid # unused
  3429. new_name = self.map_tensor_name(name)
  3430. # shuffle for broadcasting of gqa in ggml_mul_mat
  3431. if new_name.endswith("attn_q.weight"):
  3432. data_torch = self.shuffle_attn_q_weight(data_torch)
  3433. elif new_name.endswith("attn_output.weight"):
  3434. data_torch = self.shuffle_attn_output_weight(data_torch)
  3435. return [(new_name, data_torch)]
  3436. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3437. class Plamo2Model(TextModel):
  3438. model_arch = gguf.MODEL_ARCH.PLAMO2
  3439. def set_vocab(self):
  3440. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3441. # We need to handle this specially
  3442. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3443. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3444. if not tokenizer_jsonl_path.is_file():
  3445. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3446. # Load tokenizer config
  3447. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3448. tokenizer_config = json.load(f)
  3449. # Load tokens from JSONL file (actually a list format)
  3450. tokens = []
  3451. scores = []
  3452. toktypes = []
  3453. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3454. for line_num, line in enumerate(f):
  3455. if line.strip():
  3456. token_data = json.loads(line)
  3457. # Format: [token, score, type, ?, ?, ?, ?]
  3458. token = token_data[0].encode("utf-8")
  3459. score = float(token_data[1])
  3460. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3461. tokens.append(token)
  3462. scores.append(score)
  3463. # Map token type strings to GGUF token types
  3464. if token_type_str == "UNKNOWN":
  3465. toktypes.append(gguf.TokenType.UNKNOWN)
  3466. elif token_type_str == "CONTROL":
  3467. toktypes.append(gguf.TokenType.CONTROL)
  3468. elif token_type_str == "BYTE":
  3469. toktypes.append(gguf.TokenType.BYTE)
  3470. else:
  3471. # Check for PLaMo-2 special tokens
  3472. token_str = token_data[0]
  3473. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3474. toktypes.append(gguf.TokenType.CONTROL)
  3475. else:
  3476. toktypes.append(gguf.TokenType.NORMAL)
  3477. vocab_size = self.hparams["vocab_size"]
  3478. if vocab_size > len(tokens):
  3479. pad_count = vocab_size - len(tokens)
  3480. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3481. for i in range(1, pad_count + 1):
  3482. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3483. scores.append(-1000.0)
  3484. toktypes.append(gguf.TokenType.UNUSED)
  3485. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3486. self.gguf_writer.add_tokenizer_model("plamo2")
  3487. self.gguf_writer.add_tokenizer_pre("default")
  3488. self.gguf_writer.add_token_list(tokens)
  3489. self.gguf_writer.add_token_scores(scores)
  3490. self.gguf_writer.add_token_types(toktypes)
  3491. # Add special tokens from config
  3492. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3493. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3494. self.gguf_writer.add_bos_token_id(token_id)
  3495. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3496. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3497. self.gguf_writer.add_eos_token_id(token_id)
  3498. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3499. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3500. self.gguf_writer.add_pad_token_id(token_id)
  3501. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3502. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3503. self.gguf_writer.add_sep_token_id(token_id)
  3504. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3505. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3506. self.gguf_writer.add_unk_token_id(token_id)
  3507. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3508. self.gguf_writer.add_eot_token_id(4)
  3509. self.gguf_writer.add_add_space_prefix(False)
  3510. def set_gguf_parameters(self):
  3511. hparams = self.hparams
  3512. block_count = hparams["num_hidden_layers"]
  3513. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3514. # Which layers are Mamba layers
  3515. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3516. # This logic matches modeling_plamo.py's is_mamba function
  3517. mamba_step = hparams.get("mamba_step", 2)
  3518. mamba_enabled = hparams.get("mamba_enabled", True)
  3519. num_key_value_heads = []
  3520. num_attention_heads = []
  3521. if mamba_enabled:
  3522. for i in range(block_count):
  3523. if block_count <= (mamba_step // 2):
  3524. # use attention in last layer
  3525. is_mamba = (i != block_count - 1)
  3526. else:
  3527. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3528. if is_mamba:
  3529. num_key_value_heads.append(0)
  3530. num_attention_heads.append(0)
  3531. else:
  3532. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  3533. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  3534. if num_key_value_heads and num_attention_heads:
  3535. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3536. self.gguf_writer.add_head_count(num_attention_heads)
  3537. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3538. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3539. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  3540. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  3541. self.gguf_writer.add_block_count(block_count)
  3542. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3543. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3544. # Mamba parameters
  3545. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3546. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3547. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3548. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3549. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3550. self.gguf_writer.add_ssm_group_count(0)
  3551. # MLP feed forward parameters (for attention layers)
  3552. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3553. self.gguf_writer.add_file_type(self.ftype)
  3554. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3555. del bid # unused
  3556. if name.endswith(".A_log"):
  3557. data_torch = -torch.exp(data_torch)
  3558. elif name.endswith(".dt_bias"):
  3559. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3560. elif name.endswith(".dt_norm_weight"):
  3561. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3562. elif name.endswith(".B_norm_weight"):
  3563. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3564. elif name.endswith(".C_norm_weight"):
  3565. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3566. elif name.endswith(".k_weight"):
  3567. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3568. elif name.endswith(".q_weight"):
  3569. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3570. elif name.endswith(".conv1d.weight"):
  3571. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3572. assert data_torch.ndim == 2
  3573. elif name.endswith(".pre_mixer_norm.weight"):
  3574. data_torch += 1.0
  3575. elif name.endswith(".post_mixer_norm.weight"):
  3576. data_torch += 1.0 / 5
  3577. elif name.endswith(".pre_mlp_norm.weight"):
  3578. data_torch += 1.0
  3579. elif name.endswith(".post_mlp_norm.weight"):
  3580. data_torch += 1.0 / (5**1.5)
  3581. elif name.endswith(".norm.weight"):
  3582. data_torch += 1.0
  3583. new_name = self.map_tensor_name(name)
  3584. return [(new_name, data_torch)]
  3585. @ModelBase.register("CodeShellForCausalLM")
  3586. class CodeShellModel(TextModel):
  3587. model_arch = gguf.MODEL_ARCH.CODESHELL
  3588. def set_gguf_parameters(self):
  3589. block_count = self.hparams["n_layer"]
  3590. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3591. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3592. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3593. self.gguf_writer.add_block_count(block_count)
  3594. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3595. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3596. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3597. self.gguf_writer.add_file_type(self.ftype)
  3598. self.gguf_writer.add_rope_freq_base(10000.0)
  3599. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3600. self.gguf_writer.add_rope_scaling_factor(1.0)
  3601. _has_tok_embd = False
  3602. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3603. del bid # unused
  3604. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3605. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3606. new_name = self.map_tensor_name(name)
  3607. # assuming token_embd.weight is seen before output.weight
  3608. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3609. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3610. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3611. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3612. self.tensor_names.remove("transformer.wte.weight")
  3613. elif new_name == tok_embd_name:
  3614. self._has_tok_embd = True
  3615. return [(new_name, data_torch)]
  3616. @ModelBase.register("InternLM2ForCausalLM")
  3617. class InternLM2Model(TextModel):
  3618. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3619. def set_vocab(self):
  3620. # (TODO): Is there a better way?
  3621. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3622. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3623. # recognized as an empty string in C++.
  3624. from sentencepiece import SentencePieceProcessor
  3625. from sentencepiece import sentencepiece_model_pb2 as model
  3626. tokenizer_path = self.dir_model / 'tokenizer.model'
  3627. tokens: list[bytes] = []
  3628. scores: list[float] = []
  3629. toktypes: list[int] = []
  3630. if not tokenizer_path.is_file():
  3631. logger.error(f'Error: Missing {tokenizer_path}')
  3632. sys.exit(1)
  3633. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3634. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3635. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3636. tokenizer = SentencePieceProcessor()
  3637. tokenizer.LoadFromFile(str(tokenizer_path))
  3638. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3639. for token_id in range(vocab_size):
  3640. piece = tokenizer.IdToPiece(token_id)
  3641. text = piece.encode("utf-8")
  3642. score = tokenizer.GetScore(token_id)
  3643. if text == b"\x00":
  3644. # (TODO): fixme
  3645. # Hack here and replace the \x00 characters.
  3646. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3647. text = "🐉".encode("utf-8")
  3648. toktype = SentencePieceTokenTypes.NORMAL
  3649. if tokenizer.IsUnknown(token_id):
  3650. toktype = SentencePieceTokenTypes.UNKNOWN
  3651. elif tokenizer.IsControl(token_id):
  3652. toktype = SentencePieceTokenTypes.CONTROL
  3653. elif tokenizer.IsUnused(token_id):
  3654. toktype = SentencePieceTokenTypes.UNUSED
  3655. elif tokenizer.IsByte(token_id):
  3656. toktype = SentencePieceTokenTypes.BYTE
  3657. # take care of ununsed raw token
  3658. if piece.startswith('[UNUSED'):
  3659. toktype = SentencePieceTokenTypes.UNUSED
  3660. tokens.append(text)
  3661. scores.append(score)
  3662. toktypes.append(toktype)
  3663. added_tokens_file = self.dir_model / 'added_tokens.json'
  3664. if added_tokens_file.is_file():
  3665. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3666. added_tokens_json = json.load(f)
  3667. for key in added_tokens_json:
  3668. tokens.append(key.encode("utf-8"))
  3669. scores.append(-1000.0)
  3670. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3671. chat_eos_token = '<|im_end|>'
  3672. chat_eos_token_id = None
  3673. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3674. if tokenizer_config_file.is_file():
  3675. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3676. tokenizer_config_json = json.load(f)
  3677. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3678. for token_id, foken_data in added_tokens_decoder.items():
  3679. token_id = int(token_id)
  3680. token = foken_data["content"]
  3681. if token == chat_eos_token:
  3682. chat_eos_token_id = token_id
  3683. token = token.encode("utf-8")
  3684. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3685. if tokens[token_id] != token:
  3686. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3687. tokens[token_id] = token
  3688. scores[token_id] = -1000.0
  3689. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3690. if foken_data.get("special"):
  3691. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3692. tokenizer_file = self.dir_model / 'tokenizer.json'
  3693. if tokenizer_file.is_file():
  3694. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3695. tokenizer_json = json.load(f)
  3696. added_tokens = tokenizer_json.get("added_tokens", [])
  3697. for foken_data in added_tokens:
  3698. token_id = int(foken_data["id"])
  3699. token = foken_data["content"]
  3700. if token == chat_eos_token:
  3701. chat_eos_token_id = token_id
  3702. token = token.encode("utf-8")
  3703. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3704. if tokens[token_id] != token:
  3705. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3706. tokens[token_id] = token
  3707. scores[token_id] = -1000.0
  3708. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3709. if foken_data.get("special"):
  3710. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3711. self.gguf_writer.add_tokenizer_model("llama")
  3712. self.gguf_writer.add_tokenizer_pre("default")
  3713. self.gguf_writer.add_token_list(tokens)
  3714. self.gguf_writer.add_token_scores(scores)
  3715. self.gguf_writer.add_token_types(toktypes)
  3716. self.gguf_writer.add_add_space_prefix(add_prefix)
  3717. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3718. old_eos = special_vocab.special_token_ids["eos"]
  3719. if chat_eos_token_id is not None:
  3720. # For the chat model, we replace the eos with '<|im_end|>'.
  3721. # TODO: this is a hack, should be fixed
  3722. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3723. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3724. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3725. " in chat mode so that the conversation can end normally.")
  3726. special_vocab.add_to_gguf(self.gguf_writer)
  3727. def set_gguf_parameters(self):
  3728. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3729. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3730. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3731. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3732. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3733. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3734. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3735. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3736. self.gguf_writer.add_file_type(self.ftype)
  3737. rope_scaling = self.hparams.get("rope_scaling") or {}
  3738. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3739. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3740. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3741. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3742. num_heads = self.hparams["num_attention_heads"]
  3743. num_kv_heads = self.hparams["num_key_value_heads"]
  3744. n_embd = self.hparams["hidden_size"]
  3745. q_per_kv = num_heads // num_kv_heads
  3746. head_dim = n_embd // num_heads
  3747. num_groups = num_heads // q_per_kv
  3748. name = name.replace("language_model.", "") # InternVL
  3749. if name.startswith("mlp") or name.startswith("vision_model"):
  3750. # skip visual tensors
  3751. return []
  3752. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3753. qkv = data_torch
  3754. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3755. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3756. # The model weights of q and k equire additional reshape.
  3757. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3758. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3759. v = v.reshape((-1, v.shape[-1]))
  3760. return [
  3761. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3762. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3763. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3764. ]
  3765. else:
  3766. return [(self.map_tensor_name(name), data_torch)]
  3767. @ModelBase.register("InternLM3ForCausalLM")
  3768. class InternLM3Model(TextModel):
  3769. model_arch = gguf.MODEL_ARCH.LLAMA
  3770. def set_vocab(self):
  3771. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3772. self.gguf_writer.add_tokenizer_model("llama")
  3773. self.gguf_writer.add_tokenizer_pre("default")
  3774. self.gguf_writer.add_token_list(tokens)
  3775. self.gguf_writer.add_token_scores(scores)
  3776. self.gguf_writer.add_token_types(toktypes)
  3777. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3778. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3779. if tokenizer_config_file.is_file():
  3780. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3781. tokenizer_config_json = json.load(f)
  3782. if "add_prefix_space" in tokenizer_config_json:
  3783. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3784. if "added_tokens_decoder" in tokenizer_config_json:
  3785. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3786. if token_data.get("special"):
  3787. token_id = int(token_id)
  3788. token = token_data["content"]
  3789. special_vocab._set_special_token(token, token_id)
  3790. # update eos token
  3791. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3792. special_vocab.special_token_ids["eos"] = token_id
  3793. special_vocab.add_to_gguf(self.gguf_writer)
  3794. def set_gguf_parameters(self):
  3795. super().set_gguf_parameters()
  3796. hparams = self.hparams
  3797. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3798. if (rope_dim := hparams.get("head_dim")) is None:
  3799. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3800. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3801. rope_scaling = self.hparams.get("rope_scaling") or {}
  3802. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3803. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3804. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3805. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3806. n_head = self.hparams["num_attention_heads"]
  3807. n_kv_head = self.hparams.get("num_key_value_heads")
  3808. name = name.replace("language_model.", "") # InternVL
  3809. if name.startswith("mlp") or name.startswith("vision_model"):
  3810. # skip visual tensors
  3811. return []
  3812. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3813. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3814. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3815. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3816. return [(self.map_tensor_name(name), data_torch)]
  3817. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3818. class BertModel(TextModel):
  3819. model_arch = gguf.MODEL_ARCH.BERT
  3820. def __init__(self, *args, **kwargs):
  3821. super().__init__(*args, **kwargs)
  3822. self.vocab_size = None
  3823. if cls_out_labels := self.hparams.get("id2label"):
  3824. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3825. # Remove dummy labels added by AutoConfig
  3826. cls_out_labels = None
  3827. self.cls_out_labels = cls_out_labels
  3828. def set_gguf_parameters(self):
  3829. super().set_gguf_parameters()
  3830. self.gguf_writer.add_causal_attention(False)
  3831. self._try_set_pooling_type()
  3832. if self.cls_out_labels:
  3833. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3834. def set_vocab(self):
  3835. tokens, toktypes, tokpre = self.get_vocab_base()
  3836. self.vocab_size = len(tokens)
  3837. # we need this to validate the size of the token_type embeddings
  3838. # though currently we are passing all zeros to the token_type embeddings
  3839. # "Sequence A" or "Sequence B"
  3840. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3841. # convert to phantom space vocab
  3842. def phantom(tok):
  3843. if tok.startswith("[") and tok.endswith("]"):
  3844. return tok
  3845. if tok.startswith("##"):
  3846. return tok[2:]
  3847. return "\u2581" + tok
  3848. tokens = list(map(phantom, tokens))
  3849. # add vocab to gguf
  3850. self.gguf_writer.add_tokenizer_model("bert")
  3851. self.gguf_writer.add_tokenizer_pre(tokpre)
  3852. self.gguf_writer.add_token_list(tokens)
  3853. self.gguf_writer.add_token_types(toktypes)
  3854. # handle special tokens
  3855. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3856. special_vocab.add_to_gguf(self.gguf_writer)
  3857. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3858. del bid # unused
  3859. if name.startswith("bert."):
  3860. name = name[5:]
  3861. if name.endswith(".gamma"):
  3862. name = name[:-6] + ".weight"
  3863. if name.endswith(".beta"):
  3864. name = name[:-5] + ".bias"
  3865. # we are only using BERT for embeddings so we don't need the pooling layer
  3866. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3867. return [] # we don't need these
  3868. if name.startswith("cls.predictions"):
  3869. return []
  3870. if name.startswith("cls.seq_relationship"):
  3871. return []
  3872. if self.cls_out_labels:
  3873. # For BertForSequenceClassification (direct projection layer)
  3874. if name == "classifier.weight":
  3875. name = "classifier.out_proj.weight"
  3876. if name == "classifier.bias":
  3877. name = "classifier.out_proj.bias"
  3878. return [(self.map_tensor_name(name), data_torch)]
  3879. def _xlmroberta_tokenizer_init(self) -> None:
  3880. # we need the pad_token_id to know how to chop down position_embd matrix
  3881. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3882. self._position_offset = 1 + pad_token_id
  3883. if "max_position_embeddings" in self.hparams:
  3884. self.hparams["max_position_embeddings"] -= self._position_offset
  3885. else:
  3886. self._position_offset = None
  3887. def _xlmroberta_set_vocab(self) -> None:
  3888. # to avoid TypeError: Descriptors cannot be created directly
  3889. # exception when importing sentencepiece_model_pb2
  3890. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3891. from sentencepiece import SentencePieceProcessor
  3892. from sentencepiece import sentencepiece_model_pb2 as model
  3893. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3894. tokenizer_json = {}
  3895. tokenizer_config_json = {}
  3896. if not tokenizer_path.is_file():
  3897. tokenizer_path = self.dir_model / 'tokenizer.json'
  3898. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3899. if not tokenizer_path.is_file():
  3900. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3901. from base64 import b64decode
  3902. from transformers import AutoTokenizer
  3903. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3904. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3905. tokenizer_json = json.load(fp)
  3906. if tokenizer_config_path.is_file():
  3907. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3908. tokenizer_config_json = json.load(fp)
  3909. add_prefix = tokenizer.add_prefix_space
  3910. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3911. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3912. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3913. else:
  3914. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3915. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3916. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3917. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3918. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3919. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3920. tokenizer = SentencePieceProcessor()
  3921. tokenizer.LoadFromFile(str(tokenizer_path))
  3922. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3923. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3924. scores: list[float] = [-10000.0] * vocab_size
  3925. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3926. if isinstance(tokenizer, SentencePieceProcessor):
  3927. for token_id in range(tokenizer.vocab_size()):
  3928. piece = tokenizer.IdToPiece(token_id)
  3929. text = piece.encode("utf-8")
  3930. score = tokenizer.GetScore(token_id)
  3931. toktype = SentencePieceTokenTypes.NORMAL
  3932. if tokenizer.IsUnknown(token_id):
  3933. toktype = SentencePieceTokenTypes.UNKNOWN
  3934. elif tokenizer.IsControl(token_id):
  3935. toktype = SentencePieceTokenTypes.CONTROL
  3936. elif tokenizer.IsUnused(token_id):
  3937. toktype = SentencePieceTokenTypes.UNUSED
  3938. elif tokenizer.IsByte(token_id):
  3939. toktype = SentencePieceTokenTypes.BYTE
  3940. tokens[token_id] = text
  3941. scores[token_id] = score
  3942. toktypes[token_id] = toktype
  3943. else:
  3944. added_vocab = tokenizer.get_added_vocab()
  3945. unk_token = tokenizer_config_json.get("unk_token")
  3946. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3947. for token_id in range(tokenizer.vocab_size):
  3948. piece = tokenizer._convert_id_to_token(token_id)
  3949. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3950. text = piece.encode("utf-8")
  3951. score = tokenizer_json["model"]["vocab"][token_id][1]
  3952. toktype = SentencePieceTokenTypes.NORMAL
  3953. if token_id == unk_token_id:
  3954. toktype = SentencePieceTokenTypes.UNKNOWN
  3955. elif token_id in tokenizer.all_special_ids:
  3956. toktype = SentencePieceTokenTypes.CONTROL
  3957. elif token_id in added_vocab.values():
  3958. toktype = SentencePieceTokenTypes.USER_DEFINED
  3959. # No reliable way to detect this, but jina doesn't have any
  3960. # elif tokenizer.IsByte(token_id):
  3961. # toktype = SentencePieceTokenTypes.BYTE
  3962. tokens[token_id] = text
  3963. scores[token_id] = score
  3964. toktypes[token_id] = toktype
  3965. if isinstance(tokenizer, SentencePieceProcessor):
  3966. # realign tokens (see HF tokenizer code)
  3967. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3968. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3969. toktypes = [
  3970. SentencePieceTokenTypes.CONTROL,
  3971. SentencePieceTokenTypes.CONTROL,
  3972. SentencePieceTokenTypes.CONTROL,
  3973. SentencePieceTokenTypes.UNKNOWN,
  3974. ] + toktypes[3:-1]
  3975. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3976. # Add mask token missing from sentencepiece.bpe.model
  3977. tokens[250001] = b'<mask>'
  3978. scores[250001] = 0.0
  3979. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3980. self.gguf_writer.add_tokenizer_model("t5")
  3981. self.gguf_writer.add_tokenizer_pre("default")
  3982. self.gguf_writer.add_token_list(tokens)
  3983. self.gguf_writer.add_token_scores(scores)
  3984. self.gguf_writer.add_token_types(toktypes)
  3985. self.gguf_writer.add_add_space_prefix(add_prefix)
  3986. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3987. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3988. if precompiled_charsmap:
  3989. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3990. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3991. special_vocab.add_to_gguf(self.gguf_writer)
  3992. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3993. class DistilBertModel(BertModel):
  3994. model_arch = gguf.MODEL_ARCH.BERT
  3995. def set_gguf_parameters(self):
  3996. self.gguf_writer.add_layer_norm_eps(1e-12)
  3997. logger.info("gguf: layer norm epsilon = 1e-12")
  3998. super().set_gguf_parameters()
  3999. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4000. if name.startswith("distilbert."):
  4001. name = name[11:]
  4002. # These layers act as MLM head, so we don't need them
  4003. if name.startswith("vocab_"):
  4004. return []
  4005. return super().modify_tensors(data_torch, name, bid)
  4006. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4007. class RobertaModel(BertModel):
  4008. model_arch = gguf.MODEL_ARCH.BERT
  4009. def __init__(self, *args, **kwargs):
  4010. super().__init__(*args, **kwargs)
  4011. # we need the pad_token_id to know how to chop down position_embd matrix
  4012. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4013. self._position_offset = 1 + pad_token_id
  4014. if "max_position_embeddings" in self.hparams:
  4015. self.hparams["max_position_embeddings"] -= self._position_offset
  4016. else:
  4017. self._position_offset = None
  4018. def set_vocab(self):
  4019. """Support BPE tokenizers for roberta models"""
  4020. bpe_tok_path = self.dir_model / "tokenizer.json"
  4021. if bpe_tok_path.exists():
  4022. self._set_vocab_gpt2()
  4023. # we need this to validate the size of the token_type embeddings
  4024. # though currently we are passing all zeros to the token_type embeddings
  4025. # "Sequence A" or "Sequence B"
  4026. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4027. else:
  4028. return super().set_vocab()
  4029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4030. # if name starts with "roberta.", remove the prefix
  4031. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4032. if name.startswith("roberta."):
  4033. name = name[8:]
  4034. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4035. if name == "embeddings.position_embeddings.weight":
  4036. if self._position_offset is not None:
  4037. data_torch = data_torch[self._position_offset:,:]
  4038. return super().modify_tensors(data_torch, name, bid)
  4039. @ModelBase.register("NomicBertModel")
  4040. class NomicBertModel(BertModel):
  4041. model_arch = gguf.MODEL_ARCH.BERT
  4042. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4043. hparams = kwargs.pop("hparams", None)
  4044. if hparams is None:
  4045. hparams = ModelBase.load_hparams(dir_model, False)
  4046. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4047. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4048. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4049. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4050. if self._tokenizer_is_xlmroberta:
  4051. self._xlmroberta_tokenizer_init()
  4052. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4053. if npos == 8192 and mtp == 2048:
  4054. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4055. elif npos == 2048 and mtp == 2048:
  4056. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4057. else:
  4058. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4059. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4060. # this doesn't do anything in the HF version
  4061. assert self.hparams["causal"] is False
  4062. # no bias tensors unless MoE
  4063. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4064. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4065. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4066. # norm at end of layer
  4067. assert self.hparams["prenorm"] is False
  4068. # standard RoPE
  4069. assert self.hparams["rotary_emb_fraction"] == 1.0
  4070. assert self.hparams["rotary_emb_interleaved"] is False
  4071. assert self.hparams["rotary_emb_scale_base"] is None
  4072. def set_vocab(self) -> None:
  4073. if self._tokenizer_is_xlmroberta:
  4074. return self._xlmroberta_set_vocab()
  4075. return super().set_vocab()
  4076. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4077. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4078. if "mlp.experts.bias" in name:
  4079. return [] # Explicitly return an empty list.
  4080. if "mlp.experts.mlp.w1" in name:
  4081. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4082. name += ".weight"
  4083. if "mlp.experts.mlp.w2" in name:
  4084. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4085. data_torch = data_torch.transpose(1, 2)
  4086. name += ".weight"
  4087. return [(self.map_tensor_name(name), data_torch)]
  4088. def set_gguf_parameters(self):
  4089. super().set_gguf_parameters()
  4090. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4091. if self.is_moe:
  4092. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4093. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4094. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4095. def _is_tokenizer_xlmroberta(self) -> bool:
  4096. with open(self.dir_model / "tokenizer.json") as f:
  4097. tokenizer_json = json.load(f)
  4098. toktyp = tokenizer_json["model"]["type"]
  4099. if toktyp == "Unigram":
  4100. return True
  4101. if toktyp == "WordPiece":
  4102. return False
  4103. raise ValueError(f"unknown tokenizer: {toktyp}")
  4104. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4105. class NeoBert(BertModel):
  4106. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4107. def set_gguf_parameters(self):
  4108. super().set_gguf_parameters()
  4109. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4110. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4111. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4112. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4113. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4114. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4115. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4116. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4117. def modify_tensors(self, data_torch, name, bid):
  4118. if name.startswith("decoder."):
  4119. return []
  4120. if name.startswith("model."):
  4121. name = name[6:]
  4122. return super().modify_tensors(data_torch, name, bid)
  4123. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4124. class XLMRobertaModel(BertModel):
  4125. model_arch = gguf.MODEL_ARCH.BERT
  4126. _lora_files = {}
  4127. _lora_names = []
  4128. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4129. hparams = kwargs.pop("hparams", None)
  4130. if hparams is None:
  4131. hparams = ModelBase.load_hparams(dir_model, False)
  4132. if lora_names := hparams.get("lora_adaptations"):
  4133. self._lora_names = lora_names
  4134. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4135. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4136. self._xlmroberta_tokenizer_init()
  4137. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4138. if self._lora_names:
  4139. for name in self._lora_names:
  4140. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4141. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4142. return super().generate_extra_tensors()
  4143. def set_type(self):
  4144. for lora_writer in self._lora_files.values():
  4145. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4146. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4147. super().set_type()
  4148. def set_vocab(self):
  4149. self._xlmroberta_set_vocab()
  4150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4151. # if name starts with "roberta.", remove the prefix
  4152. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4153. if name.startswith("roberta."):
  4154. name = name[8:]
  4155. # jina-embeddings-v3
  4156. if ".parametrizations." in name:
  4157. name = name.replace(".parametrizations.", ".")
  4158. if name.endswith(".original"):
  4159. name = name[:-9]
  4160. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4161. if name == "embeddings.position_embeddings.weight":
  4162. if self._position_offset is not None:
  4163. data_torch = data_torch[self._position_offset:,:]
  4164. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4165. if name.startswith("pooler.dense"):
  4166. return []
  4167. num_loras = data_torch.size(0)
  4168. assert num_loras == len(self._lora_names)
  4169. # Split out each LoRA in their own GGUF
  4170. for i, lora_writer in enumerate(self._lora_files.values()):
  4171. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4172. data = data_torch[i, :, :]
  4173. # Transpose/flip token_embd/types into correct shape
  4174. if new_name == "token_embd.weight.lora_b":
  4175. data = data.T
  4176. elif new_name.startswith("token_types.weight."):
  4177. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4178. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4179. return []
  4180. return super().modify_tensors(data_torch, name, bid)
  4181. def set_gguf_parameters(self):
  4182. super().set_gguf_parameters()
  4183. # jina-embeddings-v3
  4184. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4185. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4186. lora_alpha = self.hparams.get("lora_alpha")
  4187. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4188. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4189. for lora_name, lora_writer in self._lora_files.items():
  4190. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4191. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4192. if lora_prompt_prefixes:
  4193. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4194. def write(self):
  4195. super().write()
  4196. for lora_writer in self._lora_files.values():
  4197. lora_writer.write_header_to_file()
  4198. lora_writer.write_kv_data_to_file()
  4199. lora_writer.write_tensors_to_file(progress=True)
  4200. lora_writer.close()
  4201. @ModelBase.register("GemmaForCausalLM")
  4202. class GemmaModel(TextModel):
  4203. model_arch = gguf.MODEL_ARCH.GEMMA
  4204. def set_vocab(self):
  4205. self._set_vocab_sentencepiece()
  4206. # TODO: these special tokens should be exported only for the CodeGemma family
  4207. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4208. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4209. special_vocab._set_special_token("prefix", 67)
  4210. special_vocab._set_special_token("suffix", 69)
  4211. special_vocab._set_special_token("middle", 68)
  4212. special_vocab._set_special_token("fsep", 70)
  4213. special_vocab._set_special_token("eot", 107)
  4214. special_vocab.chat_template = None # do not add it twice
  4215. special_vocab.add_to_gguf(self.gguf_writer)
  4216. self.gguf_writer.add_add_space_prefix(False)
  4217. def set_gguf_parameters(self):
  4218. hparams = self.hparams
  4219. block_count = hparams["num_hidden_layers"]
  4220. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4221. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4222. self.gguf_writer.add_block_count(block_count)
  4223. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4224. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4225. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4226. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4227. self.gguf_writer.add_key_length(hparams["head_dim"])
  4228. self.gguf_writer.add_value_length(hparams["head_dim"])
  4229. self.gguf_writer.add_file_type(self.ftype)
  4230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4231. del bid # unused
  4232. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4233. # To prevent errors, skip loading lm_head.weight.
  4234. if name == "lm_head.weight":
  4235. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4236. return []
  4237. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4238. if name.endswith("norm.weight"):
  4239. data_torch = data_torch + 1
  4240. return [(self.map_tensor_name(name), data_torch)]
  4241. @ModelBase.register("Gemma2ForCausalLM")
  4242. class Gemma2Model(TextModel):
  4243. model_arch = gguf.MODEL_ARCH.GEMMA2
  4244. def set_vocab(self):
  4245. self._set_vocab_sentencepiece()
  4246. self.gguf_writer.add_add_space_prefix(False)
  4247. def set_gguf_parameters(self):
  4248. hparams = self.hparams
  4249. block_count = hparams["num_hidden_layers"]
  4250. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4251. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4252. self.gguf_writer.add_block_count(block_count)
  4253. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4254. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4255. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4256. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4257. self.gguf_writer.add_key_length(hparams["head_dim"])
  4258. self.gguf_writer.add_value_length(hparams["head_dim"])
  4259. self.gguf_writer.add_file_type(self.ftype)
  4260. self.gguf_writer.add_attn_logit_softcapping(
  4261. self.hparams["attn_logit_softcapping"]
  4262. )
  4263. self.gguf_writer.add_final_logit_softcapping(
  4264. self.hparams["final_logit_softcapping"]
  4265. )
  4266. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4268. del bid # unused
  4269. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4270. # To prevent errors, skip loading lm_head.weight.
  4271. if name == "lm_head.weight":
  4272. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4273. return []
  4274. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4275. if name.endswith("norm.weight"):
  4276. data_torch = data_torch + 1
  4277. return [(self.map_tensor_name(name), data_torch)]
  4278. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4279. class Gemma3Model(TextModel):
  4280. model_arch = gguf.MODEL_ARCH.GEMMA3
  4281. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4282. def set_vocab(self):
  4283. self._set_vocab_sentencepiece()
  4284. self.gguf_writer.add_add_space_prefix(False)
  4285. def set_gguf_parameters(self):
  4286. hparams = self.hparams
  4287. block_count = hparams["num_hidden_layers"]
  4288. # some default values are not specified in the hparams
  4289. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4290. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4291. self.gguf_writer.add_block_count(block_count)
  4292. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4293. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4294. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4295. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4296. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4297. self.gguf_writer.add_file_type(self.ftype)
  4298. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4299. # attn_logit_softcapping is removed in Gemma3
  4300. assert hparams.get("attn_logit_softcapping") is None
  4301. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4302. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4303. if hparams.get("rope_scaling") is not None:
  4304. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4305. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4306. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4307. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4308. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4309. del bid # unused
  4310. if "language_model." in name:
  4311. name = name.replace("language_model.", "")
  4312. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4313. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4314. return [] # skip vision tensors
  4315. # remove OOV (out-of-vocabulary) rows in token_embd
  4316. if "embed_tokens.weight" in name:
  4317. vocab = self._create_vocab_sentencepiece()
  4318. tokens = vocab[0]
  4319. data_torch = data_torch[:len(tokens)]
  4320. # ref code in Gemma3RMSNorm
  4321. # output = output * (1.0 + self.weight.float())
  4322. # note: this is not the case on gemma3n
  4323. if name.endswith("norm.weight"):
  4324. data_torch = data_torch + self.norm_shift
  4325. return [(self.map_tensor_name(name), data_torch)]
  4326. @ModelBase.register("Gemma3TextModel")
  4327. class EmbeddingGemma(Gemma3Model):
  4328. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4329. module_paths = []
  4330. dense_features_dims = {}
  4331. def __init__(self, *args, **kwargs):
  4332. super().__init__(*args, **kwargs)
  4333. if self.sentence_transformers_dense_modules:
  4334. # read modules.json to determine if model has Dense layers
  4335. modules_file = self.dir_model / "modules.json"
  4336. if modules_file.is_file():
  4337. with open(modules_file, encoding="utf-8") as modules_json_file:
  4338. mods = json.load(modules_json_file)
  4339. for mod in mods:
  4340. if mod["type"] == "sentence_transformers.models.Dense":
  4341. mod_path = mod["path"]
  4342. # check if model.safetensors file for Dense layer exists
  4343. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4344. if model_tensors_file.is_file():
  4345. self.module_paths.append(mod_path)
  4346. # read config.json of the Dense layer to get in/out features
  4347. mod_conf_file = self.dir_model / mod_path / "config.json"
  4348. if mod_conf_file.is_file():
  4349. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4350. mod_conf = json.load(mod_conf_json_file)
  4351. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4352. prefix = self._get_dense_prefix(mod_path)
  4353. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4354. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4355. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4356. from safetensors.torch import load_file
  4357. module_paths = list(self.module_paths)
  4358. for i, module_path in enumerate(module_paths):
  4359. tensors_file = self.dir_model / module_path / "model.safetensors"
  4360. local_tensors = load_file(tensors_file)
  4361. tensor_name = self._get_dense_prefix(module_path)
  4362. for name, local_tensor in local_tensors.items():
  4363. if not name.endswith(".weight"):
  4364. continue
  4365. orig_name = name.replace("linear", tensor_name)
  4366. name = self.map_tensor_name(orig_name)
  4367. yield name, local_tensor.clone()
  4368. @staticmethod
  4369. def _get_dense_prefix(module_path) -> str:
  4370. """Get the tensor name prefix for the Dense layer from module path."""
  4371. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4372. return tensor_name
  4373. def set_gguf_parameters(self):
  4374. super().set_gguf_parameters()
  4375. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4376. # constructor. We want to use the value from the original model's config.json.
  4377. # ref: https://github.com/huggingface/transformers/pull/40700
  4378. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4379. config = json.load(f)
  4380. orig_sliding_window = config.get("sliding_window")
  4381. if orig_sliding_window is None:
  4382. raise ValueError("sliding_window not found in model config - this is required for the model")
  4383. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4384. f"instead of {self.hparams['sliding_window']}")
  4385. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4386. if self.sentence_transformers_dense_modules:
  4387. for dense, dims in self.dense_features_dims.items():
  4388. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4389. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4390. self._try_set_pooling_type()
  4391. @ModelBase.register("Gemma3ForConditionalGeneration")
  4392. class Gemma3VisionModel(MmprojModel):
  4393. def set_gguf_parameters(self):
  4394. super().set_gguf_parameters()
  4395. hparams = self.hparams
  4396. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4397. # default values below are taken from HF tranformers code
  4398. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4399. self.gguf_writer.add_vision_use_gelu(True)
  4400. # calculate proj_scale_factor (used by tinygemma3 test model)
  4401. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4402. n_per_side = int(image_seq_length ** 0.5)
  4403. image_size = self.hparams["image_size"]
  4404. patch_size = self.hparams["patch_size"]
  4405. proj_scale_factor = (image_size // patch_size) // n_per_side
  4406. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4407. # we only need to write this if it's not the default value
  4408. # in this case, we are converting a test model
  4409. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4410. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4411. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4412. if "input_projection" in name:
  4413. return gguf.GGMLQuantizationType.F16
  4414. if ".embeddings." in name:
  4415. return gguf.GGMLQuantizationType.F32
  4416. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4417. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4418. del bid # unused
  4419. if "vision_model.head." in name:
  4420. return [] # skip redundant tensors for tinygemma3
  4421. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4422. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4423. # process vision tensors
  4424. name = name.replace("_weight", ".weight")
  4425. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4426. # the other norm values are part of SigLIP model, and they are already correct
  4427. # ref code: Gemma3RMSNorm
  4428. if "soft_emb_norm.weight" in name:
  4429. logger.info(f"Correcting norm value for '{name}'")
  4430. data_torch = data_torch + 1
  4431. return [(self.map_tensor_name(name), data_torch)]
  4432. return [] # skip other tensors
  4433. @ModelBase.register("Gemma3nForConditionalGeneration")
  4434. class Gemma3NModel(Gemma3Model):
  4435. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4436. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4437. _altup_proj: list[Tensor] = []
  4438. _altup_unembd: list[Tensor] = []
  4439. def __init__(self, *args, **kwargs):
  4440. super().__init__(*args, **kwargs)
  4441. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4442. self._altup_proj = [
  4443. torch.Tensor(), # to be replaced
  4444. torch.Tensor(), # to be replaced
  4445. torch.Tensor(), # to be replaced
  4446. ]
  4447. self._altup_unembd = [
  4448. torch.Tensor(), # to be replaced
  4449. torch.Tensor(), # to be replaced
  4450. torch.Tensor(), # to be replaced
  4451. ]
  4452. def set_vocab(self):
  4453. super().set_vocab()
  4454. def set_gguf_parameters(self):
  4455. super().set_gguf_parameters()
  4456. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4457. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4458. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4459. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4460. activation_sparsity_scale = []
  4461. for s in self.hparams["activation_sparsity_pattern"]:
  4462. normal_dist = torch.distributions.normal.Normal(0, 1)
  4463. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4464. activation_sparsity_scale.append(std_multiplier.item())
  4465. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4466. sliding_window_pattern = []
  4467. for t in self.hparams["layer_types"]:
  4468. sliding_window_pattern.append(t == "sliding_attention")
  4469. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4470. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4471. has_all = all(m.numel() > 0 for m in matrices)
  4472. if not has_all:
  4473. return None
  4474. else:
  4475. return torch.stack(matrices, dim=0)
  4476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4477. if name.endswith("_scale"):
  4478. name = name + ".weight"
  4479. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4480. if "language_model." not in name:
  4481. return [] # skip non-language model tensors
  4482. if "altup_unembed_projections" in name:
  4483. data_torch = data_torch.to(device="cpu")
  4484. if ".0." in name:
  4485. self._altup_unembd[0] = data_torch
  4486. elif ".1." in name:
  4487. self._altup_unembd[1] = data_torch
  4488. elif ".2." in name:
  4489. self._altup_unembd[2] = data_torch
  4490. else:
  4491. raise ValueError(f"Unknown name: {name}")
  4492. out = self._stack_matrices(self._altup_unembd)
  4493. if out is not None:
  4494. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4495. else:
  4496. return []
  4497. if "altup_projections" in name:
  4498. data_torch = data_torch.to(device="cpu")
  4499. if ".0." in name:
  4500. self._altup_proj[0] = data_torch
  4501. elif ".1." in name:
  4502. self._altup_proj[1] = data_torch
  4503. elif ".2." in name:
  4504. self._altup_proj[2] = data_torch
  4505. else:
  4506. raise ValueError(f"Unknown name: {name}")
  4507. out = self._stack_matrices(self._altup_proj)
  4508. if out is not None:
  4509. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4510. else:
  4511. return []
  4512. return super().modify_tensors(data_torch, name, bid)
  4513. @ModelBase.register("Starcoder2ForCausalLM")
  4514. class StarCoder2Model(TextModel):
  4515. model_arch = gguf.MODEL_ARCH.STARCODER2
  4516. @ModelBase.register("Rwkv6ForCausalLM")
  4517. class Rwkv6Model(TextModel):
  4518. model_arch = gguf.MODEL_ARCH.RWKV6
  4519. def set_vocab(self):
  4520. self._set_vocab_rwkv_world()
  4521. def set_gguf_parameters(self):
  4522. block_count = self.hparams["num_hidden_layers"]
  4523. head_size = self.hparams["head_size"]
  4524. hidden_size = self.hparams["hidden_size"]
  4525. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4526. rescale_every_n_layers = self.hparams["rescale_every"]
  4527. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4528. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4529. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4530. # RWKV isn't context limited
  4531. self.gguf_writer.add_context_length(1048576)
  4532. self.gguf_writer.add_embedding_length(hidden_size)
  4533. self.gguf_writer.add_block_count(block_count)
  4534. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4535. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4536. self.gguf_writer.add_wkv_head_size(head_size)
  4537. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4538. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4539. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4540. self.gguf_writer.add_file_type(self.ftype)
  4541. # required by llama.cpp, unused
  4542. self.gguf_writer.add_head_count(0)
  4543. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4545. new_name = self.map_tensor_name(name)
  4546. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4547. new_name += ".weight"
  4548. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4549. data_torch = data_torch.transpose(0, 1)
  4550. if new_name.endswith("time_mix_w2.weight"):
  4551. data_torch = data_torch.permute(0, 2, 1)
  4552. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4553. data_torch = data_torch.squeeze()
  4554. try:
  4555. rescale_every_n_layers = self.hparams["rescale_every"]
  4556. if rescale_every_n_layers > 0:
  4557. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4558. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4559. except KeyError:
  4560. pass
  4561. # concat time_mix_lerp weights to reduce some cpu overhead
  4562. # also reduces the number of tensors in the model
  4563. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4564. try:
  4565. self.lerp_weights[bid][new_name] = data_torch
  4566. except KeyError:
  4567. self.lerp_weights[bid] = {new_name: data_torch}
  4568. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4569. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4570. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4571. yield (new_name, data)
  4572. return
  4573. yield (new_name, data_torch)
  4574. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4575. class RWKV6Qwen2Model(Rwkv6Model):
  4576. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4577. def set_vocab(self):
  4578. try:
  4579. self._set_vocab_sentencepiece()
  4580. except FileNotFoundError:
  4581. self._set_vocab_gpt2()
  4582. def set_gguf_parameters(self):
  4583. block_count = self.hparams["num_hidden_layers"]
  4584. num_attention_heads = self.hparams["num_attention_heads"]
  4585. num_key_value_heads = self.hparams["num_key_value_heads"]
  4586. hidden_size = self.hparams["hidden_size"]
  4587. head_size = hidden_size // num_attention_heads
  4588. rms_norm_eps = self.hparams["rms_norm_eps"]
  4589. intermediate_size = self.hparams["intermediate_size"]
  4590. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4591. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4592. # RWKV isn't context limited
  4593. self.gguf_writer.add_context_length(1048576)
  4594. self.gguf_writer.add_embedding_length(hidden_size)
  4595. self.gguf_writer.add_block_count(block_count)
  4596. self.gguf_writer.add_wkv_head_size(head_size)
  4597. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4598. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4599. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4600. self.gguf_writer.add_file_type(self.ftype)
  4601. # special parameters for time_mixing in RWKV6QWEN2
  4602. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4603. self.gguf_writer.add_token_shift_count(1)
  4604. # RWKV6QWEN2 use grouped key/value like GQA
  4605. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4606. # required by llama.cpp, unused
  4607. self.gguf_writer.add_head_count(0)
  4608. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4609. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4610. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4611. data = data.view(5, -1, data.shape[-1])
  4612. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4613. # permute them here to avoid code changes
  4614. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4615. if "w2" in new_name:
  4616. data = data.view(5, -1, data.shape[-1])
  4617. yield (new_name, data)
  4618. continue
  4619. yield (new_name, data)
  4620. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4621. class Rwkv7Model(TextModel):
  4622. model_arch = gguf.MODEL_ARCH.RWKV7
  4623. def set_vocab(self):
  4624. self._set_vocab_rwkv_world()
  4625. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4626. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4627. def set_gguf_parameters(self):
  4628. block_count = self.hparams["num_hidden_layers"]
  4629. try:
  4630. head_size = self.hparams["head_size"]
  4631. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4632. except KeyError:
  4633. head_size = self.hparams["head_dim"]
  4634. layer_norm_eps = self.hparams["norm_eps"]
  4635. hidden_size = self.hparams["hidden_size"]
  4636. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4637. # ICLR: In-Context-Learning-Rate
  4638. try:
  4639. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4640. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4641. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4642. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4643. except KeyError:
  4644. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4645. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4646. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4647. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4648. # RWKV isn't context limited
  4649. self.gguf_writer.add_context_length(1048576)
  4650. self.gguf_writer.add_embedding_length(hidden_size)
  4651. self.gguf_writer.add_block_count(block_count)
  4652. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4653. self.gguf_writer.add_wkv_head_size(head_size)
  4654. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4655. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4656. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4657. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4658. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4659. self.gguf_writer.add_file_type(self.ftype)
  4660. # required by llama.cpp, unused
  4661. self.gguf_writer.add_head_count(0)
  4662. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4663. lora_needs_transpose: bool = True
  4664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4665. # unify tensor names here to make life easier
  4666. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4667. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4668. name = name.replace("time_mixer.", "")
  4669. # lora layer names in fla-hub's impl
  4670. if "_lora.lora" in name:
  4671. self.lora_needs_transpose = False
  4672. name = name.replace("_lora.lora.0.weight", "1.weight")
  4673. name = name.replace("_lora.lora.2.weight", "2.weight")
  4674. name = name.replace("_lora.lora.2.bias", "0.weight")
  4675. name = name.replace("feed_forward_norm", "ln2")
  4676. name = name.replace("g_norm", "ln_x")
  4677. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4678. # some models have dummy v0/v1/v2 on first layer while others don't
  4679. # ignore them all since they are not used
  4680. return
  4681. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4682. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4683. if bid is not None and "attention.x_" in name:
  4684. if "attention.x_x" in name:
  4685. # already concatenated
  4686. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4687. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4688. yield (new_name, data)
  4689. else:
  4690. try:
  4691. self.lerp_weights[bid][name] = data_torch
  4692. except KeyError:
  4693. self.lerp_weights[bid] = {name: data_torch}
  4694. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4695. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4696. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4697. yield (new_name, data)
  4698. return
  4699. else:
  4700. data_torch = data_torch.squeeze()
  4701. new_name = self.map_tensor_name(name)
  4702. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4703. new_name += ".weight"
  4704. if self.lora_needs_transpose and any(
  4705. new_name.endswith(t) for t in [
  4706. "time_mix_w1.weight", "time_mix_w2.weight",
  4707. "time_mix_a1.weight", "time_mix_a2.weight",
  4708. "time_mix_v1.weight", "time_mix_v2.weight",
  4709. "time_mix_g1.weight", "time_mix_g2.weight",
  4710. ]
  4711. ):
  4712. data_torch = data_torch.transpose(0, 1)
  4713. if 'r_k' in new_name:
  4714. data_torch = data_torch.flatten()
  4715. if bid == 0 and "time_mix_a" in new_name:
  4716. # dummy v0/v1/v2 on first layer
  4717. # easist way to make llama happy
  4718. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4719. yield (new_name, data_torch)
  4720. @ModelBase.register("RwkvHybridForCausalLM")
  4721. class ARwkv7Model(Rwkv7Model):
  4722. model_arch = gguf.MODEL_ARCH.ARWKV7
  4723. def set_vocab(self):
  4724. try:
  4725. self._set_vocab_sentencepiece()
  4726. except FileNotFoundError:
  4727. self._set_vocab_gpt2()
  4728. def set_gguf_parameters(self):
  4729. block_count = self.hparams["num_hidden_layers"]
  4730. hidden_size = self.hparams["hidden_size"]
  4731. head_size = self.hparams["head_size"]
  4732. rms_norm_eps = self.hparams["rms_norm_eps"]
  4733. intermediate_size = self.hparams["intermediate_size"]
  4734. wkv_has_gate = self.hparams["wkv_has_gate"]
  4735. assert self.hparams["wkv_version"] == 7
  4736. # ICLR: In-Context-Learning-Rate
  4737. lora_rank_decay = 64
  4738. lora_rank_iclr = 64
  4739. lora_rank_value_residual_mix = 32
  4740. lora_rank_gate = 128 if wkv_has_gate else 0
  4741. # RWKV isn't context limited
  4742. self.gguf_writer.add_context_length(1048576)
  4743. self.gguf_writer.add_embedding_length(hidden_size)
  4744. self.gguf_writer.add_block_count(block_count)
  4745. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4746. self.gguf_writer.add_wkv_head_size(head_size)
  4747. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4748. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4749. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4750. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4751. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4752. self.gguf_writer.add_file_type(self.ftype)
  4753. self.gguf_writer.add_token_shift_count(1)
  4754. # required by llama.cpp, unused
  4755. self.gguf_writer.add_head_count(0)
  4756. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4757. class MambaModel(TextModel):
  4758. model_arch = gguf.MODEL_ARCH.MAMBA
  4759. def __init__(self, dir_model: Path, *args, **kwargs):
  4760. # Avoid using AutoConfig for hparams
  4761. hparams = kwargs.pop("hparams", None)
  4762. if hparams is None:
  4763. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4764. hparams = json.load(f)
  4765. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4766. def set_vocab(self):
  4767. vocab_size = self.hparams["vocab_size"]
  4768. # Round vocab size to next multiple of 8
  4769. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4770. # pad using ceiling division
  4771. # ref: https://stackoverflow.com/a/17511341/22827863
  4772. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4773. self.hparams["vocab_size"] = vocab_size
  4774. if (self.dir_model / "tokenizer.json").is_file():
  4775. self._set_vocab_gpt2()
  4776. elif (self.dir_model / "tokenizer.model").is_file():
  4777. self._set_vocab_sentencepiece()
  4778. else:
  4779. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4780. self._set_vocab_builtin("gpt-neox", vocab_size)
  4781. def set_gguf_parameters(self):
  4782. d_model = self.find_hparam(["hidden_size", "d_model"])
  4783. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4784. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4785. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4786. # ceiling division
  4787. # ref: https://stackoverflow.com/a/17511341/22827863
  4788. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4789. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4790. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4791. use_dt_b_c_norm = False
  4792. # For falconmamba we do apply RMS norm on B / DT and C layers
  4793. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4794. use_dt_b_c_norm = True
  4795. # Fail early for models which don't have a block expansion factor of 2
  4796. assert d_inner == 2 * d_model
  4797. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4798. self.gguf_writer.add_embedding_length(d_model)
  4799. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4800. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4801. self.gguf_writer.add_block_count(self.block_count)
  4802. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4803. self.gguf_writer.add_ssm_inner_size(d_inner)
  4804. self.gguf_writer.add_ssm_state_size(d_state)
  4805. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4806. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4807. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4808. self.gguf_writer.add_file_type(self.ftype)
  4809. _tok_embd = None
  4810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4811. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4812. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4813. new_name = self.map_tensor_name(name)
  4814. if name.endswith(".A_log"):
  4815. logger.debug("A_log --> A ==> " + new_name)
  4816. data_torch = -torch.exp(data_torch)
  4817. # [4 1 8192 1] -> [4 8192 1 1]
  4818. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4819. data_torch = data_torch.squeeze()
  4820. # assuming token_embd.weight is seen before output.weight
  4821. if self._tok_embd is not None and new_name == output_name:
  4822. if torch.equal(self._tok_embd, data_torch):
  4823. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4824. return []
  4825. elif new_name == tok_embd_name:
  4826. self._tok_embd = data_torch
  4827. return [(new_name, data_torch)]
  4828. @ModelBase.register("Mamba2ForCausalLM")
  4829. class Mamba2Model(TextModel):
  4830. model_arch = gguf.MODEL_ARCH.MAMBA2
  4831. def __init__(self, dir_model: Path, *args, **kwargs):
  4832. # Avoid using AutoConfig for hparams
  4833. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4834. hparams = kwargs.pop("hparams", None)
  4835. if hparams is None:
  4836. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4837. hparams = json.load(f)
  4838. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4839. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4840. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4841. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4842. def set_vocab(self):
  4843. vocab_size = self.hparams["vocab_size"]
  4844. # Round vocab size to next multiple of 16
  4845. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4846. # pad using ceiling division
  4847. # ref: https://stackoverflow.com/a/17511341/22827863
  4848. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4849. self.hparams["vocab_size"] = vocab_size
  4850. if (self.dir_model / "tokenizer.model").is_file():
  4851. self._set_vocab_sentencepiece()
  4852. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4853. # mamba-codestral
  4854. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4855. elif (self.dir_model / "tokenizer.json").is_file():
  4856. self._set_vocab_gpt2()
  4857. else:
  4858. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4859. self._set_vocab_builtin("gpt-neox", vocab_size)
  4860. def set_gguf_parameters(self):
  4861. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4862. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4863. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4864. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4865. # Fail early for models which don't have a block expansion factor of 2
  4866. # TODO: does this really matter?
  4867. # skip the assertion for FalconH1 Model
  4868. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4869. assert self.d_inner == 2 * self.d_model
  4870. assert self.d_inner % head_dim == 0
  4871. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4872. self.gguf_writer.add_embedding_length(self.d_model)
  4873. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4874. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4875. self.gguf_writer.add_block_count(self.block_count)
  4876. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4877. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4878. self.gguf_writer.add_ssm_state_size(d_state)
  4879. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4880. self.gguf_writer.add_ssm_group_count(self.n_group)
  4881. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4882. self.gguf_writer.add_file_type(self.ftype)
  4883. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4884. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4885. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4886. name = name.removeprefix("model.")
  4887. if name.endswith(".dt_bias"):
  4888. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4889. new_name = self.map_tensor_name(name)
  4890. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4891. data_torch = data_torch.squeeze()
  4892. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4893. gguf.MODEL_TENSOR.SSM_A,
  4894. gguf.MODEL_TENSOR.SSM_D,
  4895. ]):
  4896. # unsqueeze A to use similar shape semantics as Mamba-1
  4897. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4898. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4899. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4900. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4901. if name.endswith(".A_log"):
  4902. logger.debug("A_log --> A ==> " + new_name)
  4903. data_torch = -torch.exp(data_torch)
  4904. yield (new_name, data_torch)
  4905. @ModelBase.register("JambaForCausalLM")
  4906. class JambaModel(TextModel):
  4907. model_arch = gguf.MODEL_ARCH.JAMBA
  4908. def set_vocab(self):
  4909. if (self.dir_model / "tokenizer.model").is_file():
  4910. self._set_vocab_sentencepiece()
  4911. else:
  4912. self._set_vocab_llama_hf()
  4913. self.gguf_writer.add_add_space_prefix(False)
  4914. def set_gguf_parameters(self):
  4915. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4916. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4917. d_inner = self.hparams["mamba_expand"] * d_model
  4918. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4919. # ceiling division
  4920. # ref: https://stackoverflow.com/a/17511341/22827863
  4921. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4922. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4923. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4924. n_kv_head = self.hparams["num_key_value_heads"]
  4925. attn_offset = self.hparams["attn_layer_offset"]
  4926. attn_period = self.hparams["attn_layer_period"]
  4927. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4928. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4929. ]
  4930. self.gguf_writer.add_block_count(self.block_count)
  4931. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4932. self.gguf_writer.add_embedding_length(d_model)
  4933. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4934. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4935. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4936. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4937. self.gguf_writer.add_ssm_inner_size(d_inner)
  4938. self.gguf_writer.add_ssm_state_size(d_state)
  4939. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4940. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4941. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4942. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4943. self.gguf_writer.add_file_type(self.ftype)
  4944. _experts: list[dict[str, Tensor]] | None = None
  4945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4946. # Mini-Jamba
  4947. name = name.replace(".moe.", ".feed_forward.")
  4948. if bid is not None:
  4949. moe_offset = self.hparams["expert_layer_offset"]
  4950. moe_period = self.hparams["expert_layer_period"]
  4951. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4952. name = name.replace(".experts.0.", ".")
  4953. # process the experts separately
  4954. if ".feed_forward.experts." in name:
  4955. n_experts = self.hparams["num_experts"]
  4956. assert bid is not None
  4957. if self._experts is None:
  4958. self._experts = [{} for _ in range(self.block_count)]
  4959. self._experts[bid][name] = data_torch
  4960. if len(self._experts[bid]) >= n_experts * 3:
  4961. # merge the experts into a single 3d tensor
  4962. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4963. datas: list[Tensor] = []
  4964. for xid in range(n_experts):
  4965. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4966. datas.append(self._experts[bid][ename])
  4967. del self._experts[bid][ename]
  4968. data_torch = torch.stack(datas, dim=0)
  4969. # using the same merged name as qwen2moe
  4970. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4971. new_name = self.map_tensor_name(merged_name)
  4972. yield new_name, data_torch
  4973. return
  4974. new_name = self.map_tensor_name(name)
  4975. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4976. data_torch = data_torch.squeeze()
  4977. if name.endswith(".A_log"):
  4978. logger.debug("A_log --> A ==> " + new_name)
  4979. data_torch = -torch.exp(data_torch)
  4980. yield (new_name, data_torch)
  4981. def prepare_tensors(self):
  4982. super().prepare_tensors()
  4983. if self._experts is not None:
  4984. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4985. experts = [k for d in self._experts for k in d.keys()]
  4986. if len(experts) > 0:
  4987. raise ValueError(f"Unprocessed experts: {experts}")
  4988. @ModelBase.register("CohereForCausalLM")
  4989. class CommandR2Model(TextModel):
  4990. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4991. def __init__(self, *args, **kwargs):
  4992. super().__init__(*args, **kwargs)
  4993. # max_position_embeddings = 8192 in config.json but model was actually
  4994. # trained on 128k context length
  4995. # aya-23 models don't have model_max_length specified
  4996. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4997. def set_gguf_parameters(self):
  4998. super().set_gguf_parameters()
  4999. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5000. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5001. @ModelBase.register("Cohere2ForCausalLM")
  5002. class Cohere2Model(TextModel):
  5003. model_arch = gguf.MODEL_ARCH.COHERE2
  5004. def set_gguf_parameters(self):
  5005. super().set_gguf_parameters()
  5006. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5007. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5008. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5009. rotary_pct = self.hparams["rotary_pct"]
  5010. hidden_size = self.hparams["hidden_size"]
  5011. num_attention_heads = self.hparams["num_attention_heads"]
  5012. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5013. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5014. @ModelBase.register("OlmoForCausalLM")
  5015. @ModelBase.register("OLMoForCausalLM")
  5016. class OlmoModel(TextModel):
  5017. model_arch = gguf.MODEL_ARCH.OLMO
  5018. def set_gguf_parameters(self):
  5019. super().set_gguf_parameters()
  5020. self.gguf_writer.add_layer_norm_eps(1e-5)
  5021. clip_qkv = self.hparams.get("clip_qkv")
  5022. if clip_qkv is not None:
  5023. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5024. # Same as super class, but permuting q_proj, k_proj
  5025. # Copied from: LlamaModel
  5026. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5027. del bid # unused
  5028. n_head = self.hparams["num_attention_heads"]
  5029. n_kv_head = self.hparams.get("num_key_value_heads")
  5030. if name.endswith("q_proj.weight"):
  5031. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5032. if name.endswith("k_proj.weight"):
  5033. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5034. return [(self.map_tensor_name(name), data_torch)]
  5035. @ModelBase.register("SeedOssForCausalLM")
  5036. class SeedOssModel(TextModel):
  5037. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5038. @ModelBase.register("Olmo2ForCausalLM")
  5039. @ModelBase.register("Olmo3ForCausalLM")
  5040. class Olmo2Model(TextModel):
  5041. model_arch = gguf.MODEL_ARCH.OLMO2
  5042. def set_gguf_parameters(self):
  5043. super().set_gguf_parameters()
  5044. rope_scaling = self.hparams.get("rope_scaling") or {}
  5045. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5046. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5047. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5048. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5049. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5050. if "sliding_window" in self.hparams:
  5051. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5052. sliding_window_pattern = []
  5053. if "layer_types" in self.hparams:
  5054. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5055. else:
  5056. # Olmo2 does not use sliding window attention.
  5057. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5058. for i in range(self.hparams["num_hidden_layers"]):
  5059. sliding_window_pattern.append((i + 1) % 4 != 0)
  5060. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5061. @ModelBase.register("OlmoeForCausalLM")
  5062. class OlmoeModel(TextModel):
  5063. model_arch = gguf.MODEL_ARCH.OLMOE
  5064. def set_gguf_parameters(self):
  5065. super().set_gguf_parameters()
  5066. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5067. if (n_experts := self.hparams.get("num_experts")) is not None:
  5068. self.gguf_writer.add_expert_count(n_experts)
  5069. _experts: list[dict[str, Tensor]] | None = None
  5070. # Copied from: Qwen2MoeModel
  5071. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5072. # process the experts separately
  5073. if name.find("experts") != -1:
  5074. n_experts = self.hparams["num_experts"]
  5075. assert bid is not None
  5076. if self._experts is None:
  5077. self._experts = [{} for _ in range(self.block_count)]
  5078. self._experts[bid][name] = data_torch
  5079. if len(self._experts[bid]) >= n_experts * 3:
  5080. tensors: list[tuple[str, Tensor]] = []
  5081. # merge the experts into a single 3d tensor
  5082. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5083. datas: list[Tensor] = []
  5084. for xid in range(n_experts):
  5085. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5086. datas.append(self._experts[bid][ename])
  5087. del self._experts[bid][ename]
  5088. data_torch = torch.stack(datas, dim=0)
  5089. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5090. new_name = self.map_tensor_name(merged_name)
  5091. tensors.append((new_name, data_torch))
  5092. return tensors
  5093. else:
  5094. return []
  5095. return [(self.map_tensor_name(name), data_torch)]
  5096. # Copied from: Qwen2MoeModel
  5097. def prepare_tensors(self):
  5098. super().prepare_tensors()
  5099. if self._experts is not None:
  5100. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5101. experts = [k for d in self._experts for k in d.keys()]
  5102. if len(experts) > 0:
  5103. raise ValueError(f"Unprocessed experts: {experts}")
  5104. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5105. class JinaBertV2Model(BertModel):
  5106. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5107. def set_vocab(self):
  5108. tokenizer_class = 'BertTokenizer'
  5109. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5110. tokenizer_class = json.load(f)['tokenizer_class']
  5111. if tokenizer_class == 'BertTokenizer':
  5112. super().set_vocab()
  5113. elif tokenizer_class == 'RobertaTokenizer':
  5114. self._set_vocab_gpt2()
  5115. self.gguf_writer.add_token_type_count(2)
  5116. else:
  5117. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5118. @ModelBase.register("OpenELMForCausalLM")
  5119. class OpenELMModel(TextModel):
  5120. model_arch = gguf.MODEL_ARCH.OPENELM
  5121. @staticmethod
  5122. def _make_divisible(v: float | int, divisor: int) -> int:
  5123. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5124. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5125. # Make sure that round down does not go down by more than 10%.
  5126. if new_v < 0.9 * v:
  5127. new_v += divisor
  5128. return new_v
  5129. def __init__(self, *args, **kwargs):
  5130. super().__init__(*args, **kwargs)
  5131. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5132. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5133. self._n_embd: int = self.hparams["model_dim"]
  5134. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5135. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5136. self._ffn_dims: list[int] = [
  5137. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5138. for multiplier in ffn_multipliers
  5139. ]
  5140. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5141. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5142. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5143. def set_vocab(self):
  5144. try:
  5145. self._set_vocab_sentencepiece()
  5146. except FileNotFoundError:
  5147. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5148. def set_gguf_parameters(self):
  5149. n_embd = self._n_embd
  5150. head_dim = self.hparams["head_dim"]
  5151. rot_pct = 1.0
  5152. assert self.block_count == len(self._num_kv_heads)
  5153. assert self.block_count == len(self._num_query_heads)
  5154. assert self.block_count == len(self._ffn_dims)
  5155. self.gguf_writer.add_block_count(self.block_count)
  5156. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5157. self.gguf_writer.add_embedding_length(n_embd)
  5158. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5159. self.gguf_writer.add_head_count(self._num_query_heads)
  5160. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5161. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5162. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5163. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5164. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5165. self.gguf_writer.add_key_length(head_dim)
  5166. self.gguf_writer.add_value_length(head_dim)
  5167. self.gguf_writer.add_file_type(self.ftype)
  5168. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5169. if "n_layers" in keys:
  5170. return self.hparams["num_transformer_layers"]
  5171. return super().find_hparam(keys, optional)
  5172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5173. # split ff
  5174. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5175. ff_dim = self._ffn_dims[bid]
  5176. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5177. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5178. return
  5179. yield (self.map_tensor_name(name), data_torch)
  5180. @ModelBase.register("ArcticForCausalLM")
  5181. class ArcticModel(TextModel):
  5182. model_arch = gguf.MODEL_ARCH.ARCTIC
  5183. def set_vocab(self):
  5184. # The reason for using a custom implementation here is that the
  5185. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5186. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5187. from sentencepiece import SentencePieceProcessor
  5188. tokenizer_path = self.dir_model / 'tokenizer.model'
  5189. if not tokenizer_path.is_file():
  5190. logger.error(f'Error: Missing {tokenizer_path}')
  5191. sys.exit(1)
  5192. # Read the whole vocabulary from the tokenizer.model file
  5193. tokenizer = SentencePieceProcessor()
  5194. tokenizer.LoadFromFile(str(tokenizer_path))
  5195. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5196. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5197. scores: list[float] = [-10000.0] * vocab_size
  5198. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5199. for token_id in range(tokenizer.vocab_size()):
  5200. piece = tokenizer.IdToPiece(token_id)
  5201. text = piece.encode("utf-8")
  5202. score = tokenizer.GetScore(token_id)
  5203. toktype = SentencePieceTokenTypes.NORMAL
  5204. if tokenizer.IsUnknown(token_id):
  5205. toktype = SentencePieceTokenTypes.UNKNOWN
  5206. elif tokenizer.IsControl(token_id):
  5207. toktype = SentencePieceTokenTypes.CONTROL
  5208. elif tokenizer.IsUnused(token_id):
  5209. toktype = SentencePieceTokenTypes.UNUSED
  5210. elif tokenizer.IsByte(token_id):
  5211. toktype = SentencePieceTokenTypes.BYTE
  5212. tokens[token_id] = text
  5213. scores[token_id] = score
  5214. toktypes[token_id] = toktype
  5215. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5216. # of information about added/redefined tokens and modify them accordingly.
  5217. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5218. if tokenizer_config_file.is_file():
  5219. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5220. tokenizer_config_json = json.load(f)
  5221. if "added_tokens_decoder" in tokenizer_config_json:
  5222. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5223. for token_id, token_json in added_tokens_decoder.items():
  5224. token_id = int(token_id)
  5225. if token_id >= vocab_size:
  5226. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5227. continue
  5228. token_content = token_json["content"]
  5229. token_type = SentencePieceTokenTypes.USER_DEFINED
  5230. token_score = -10000.0
  5231. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5232. # Set the score to 0.0 as in the original tokenizer.model
  5233. if ("special" in token_json) and token_json["special"]:
  5234. if token_content == tokenizer_config_json["unk_token"]:
  5235. token_type = SentencePieceTokenTypes.UNKNOWN
  5236. else:
  5237. token_type = SentencePieceTokenTypes.CONTROL
  5238. token_score = 0.0
  5239. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5240. tokens[token_id] = token_content.encode("utf-8")
  5241. toktypes[token_id] = token_type
  5242. scores[token_id] = token_score
  5243. self.gguf_writer.add_tokenizer_model("llama")
  5244. self.gguf_writer.add_tokenizer_pre("default")
  5245. self.gguf_writer.add_token_list(tokens)
  5246. self.gguf_writer.add_token_scores(scores)
  5247. self.gguf_writer.add_token_types(toktypes)
  5248. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5249. special_vocab.add_to_gguf(self.gguf_writer)
  5250. def set_gguf_parameters(self):
  5251. super().set_gguf_parameters()
  5252. hparams = self.hparams
  5253. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5254. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5255. _experts: list[dict[str, Tensor]] | None = None
  5256. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5257. n_head = self.hparams["num_attention_heads"]
  5258. n_kv_head = self.hparams.get("num_key_value_heads")
  5259. if name.endswith("q_proj.weight"):
  5260. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5261. if name.endswith("k_proj.weight"):
  5262. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5263. # process the experts separately
  5264. if name.find("block_sparse_moe.experts") != -1:
  5265. n_experts = self.hparams["num_local_experts"]
  5266. assert bid is not None
  5267. if self._experts is None:
  5268. self._experts = [{} for _ in range(self.block_count)]
  5269. self._experts[bid][name] = data_torch
  5270. if len(self._experts[bid]) >= n_experts * 3:
  5271. tensors: list[tuple[str, Tensor]] = []
  5272. # merge the experts into a single 3d tensor
  5273. for wid in ["w1", "w2", "w3"]:
  5274. datas: list[Tensor] = []
  5275. for xid in range(n_experts):
  5276. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5277. datas.append(self._experts[bid][ename])
  5278. del self._experts[bid][ename]
  5279. data_torch = torch.stack(datas, dim=0)
  5280. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5281. new_name = self.map_tensor_name(merged_name)
  5282. tensors.append((new_name, data_torch))
  5283. return tensors
  5284. else:
  5285. return []
  5286. return [(self.map_tensor_name(name), data_torch)]
  5287. def prepare_tensors(self):
  5288. super().prepare_tensors()
  5289. if self._experts is not None:
  5290. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5291. experts = [k for d in self._experts for k in d.keys()]
  5292. if len(experts) > 0:
  5293. raise ValueError(f"Unprocessed experts: {experts}")
  5294. @ModelBase.register("DeepseekForCausalLM")
  5295. class DeepseekModel(TextModel):
  5296. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5297. def set_vocab(self):
  5298. try:
  5299. self._set_vocab_sentencepiece()
  5300. except FileNotFoundError:
  5301. self._set_vocab_gpt2()
  5302. def set_gguf_parameters(self):
  5303. super().set_gguf_parameters()
  5304. hparams = self.hparams
  5305. if (rope_dim := hparams.get("head_dim")) is None:
  5306. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5307. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5308. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5309. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5310. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5311. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5312. self.gguf_writer.add_expert_weights_scale(1.0)
  5313. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5314. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5315. _experts: list[dict[str, Tensor]] | None = None
  5316. @staticmethod
  5317. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5318. if n_head_kv is not None and n_head != n_head_kv:
  5319. n_head = n_head_kv
  5320. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5321. .swapaxes(1, 2)
  5322. .reshape(weights.shape))
  5323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5324. n_head = self.hparams["num_attention_heads"]
  5325. n_kv_head = self.hparams.get("num_key_value_heads")
  5326. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5327. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5328. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5329. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5330. # process the experts separately
  5331. if name.find("mlp.experts") != -1:
  5332. n_experts = self.hparams["n_routed_experts"]
  5333. assert bid is not None
  5334. if self._experts is None:
  5335. self._experts = [{} for _ in range(self.block_count)]
  5336. self._experts[bid][name] = data_torch
  5337. if len(self._experts[bid]) >= n_experts * 3:
  5338. tensors: list[tuple[str, Tensor]] = []
  5339. # merge the experts into a single 3d tensor
  5340. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5341. datas: list[Tensor] = []
  5342. for xid in range(n_experts):
  5343. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5344. datas.append(self._experts[bid][ename])
  5345. del self._experts[bid][ename]
  5346. data_torch = torch.stack(datas, dim=0)
  5347. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5348. new_name = self.map_tensor_name(merged_name)
  5349. tensors.append((new_name, data_torch))
  5350. return tensors
  5351. else:
  5352. return []
  5353. return [(self.map_tensor_name(name), data_torch)]
  5354. def prepare_tensors(self):
  5355. super().prepare_tensors()
  5356. if self._experts is not None:
  5357. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5358. experts = [k for d in self._experts for k in d.keys()]
  5359. if len(experts) > 0:
  5360. raise ValueError(f"Unprocessed experts: {experts}")
  5361. @ModelBase.register(
  5362. "DeepseekV2ForCausalLM",
  5363. "DeepseekV3ForCausalLM",
  5364. "KimiVLForConditionalGeneration",
  5365. )
  5366. class DeepseekV2Model(TextModel):
  5367. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5368. def set_vocab(self):
  5369. try:
  5370. self._set_vocab_gpt2()
  5371. return
  5372. except Exception:
  5373. pass
  5374. from transformers import AutoTokenizer
  5375. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5376. tokpre = self.get_vocab_base_pre(tokenizer)
  5377. if tokpre == "kimi-k2":
  5378. # Build merges list using the approach similar to HunYuanMoE
  5379. merges = []
  5380. vocab = {}
  5381. mergeable_ranks = tokenizer.model._mergeable_ranks
  5382. for token, rank in mergeable_ranks.items():
  5383. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5384. if len(token) == 1:
  5385. continue
  5386. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5387. if len(merged) == 2:
  5388. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5389. # Build token list
  5390. vocab_size = self.hparams["vocab_size"]
  5391. special_tokens = tokenizer.special_tokens
  5392. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5393. tokens: list[str] = []
  5394. toktypes: list[int] = []
  5395. for i in range(vocab_size):
  5396. if i not in reverse_vocab:
  5397. tokens.append(f"[PAD{i}]")
  5398. toktypes.append(gguf.TokenType.UNUSED)
  5399. else:
  5400. token = reverse_vocab[i]
  5401. tokens.append(token)
  5402. if i in special_tokens.values():
  5403. toktypes.append(gguf.TokenType.CONTROL)
  5404. else:
  5405. toktypes.append(gguf.TokenType.NORMAL)
  5406. self.gguf_writer.add_tokenizer_model("gpt2")
  5407. self.gguf_writer.add_tokenizer_pre(tokpre)
  5408. self.gguf_writer.add_token_list(tokens)
  5409. self.gguf_writer.add_token_types(toktypes)
  5410. self.gguf_writer.add_token_merges(merges)
  5411. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5412. special_vocab.add_to_gguf(self.gguf_writer)
  5413. else:
  5414. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5415. def set_gguf_parameters(self):
  5416. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5417. self.hparams["num_key_value_heads"] = 1
  5418. super().set_gguf_parameters()
  5419. hparams = self.hparams
  5420. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5421. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5422. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5423. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5424. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5425. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5426. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5427. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5428. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5429. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5430. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5431. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5432. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5433. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5434. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5435. if hparams["scoring_func"] == "sigmoid":
  5436. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5437. elif hparams["scoring_func"] == "softmax":
  5438. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5439. else:
  5440. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5441. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5442. rope_scaling = self.hparams.get("rope_scaling") or {}
  5443. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5444. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5445. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5446. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5447. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5448. _experts: list[dict[str, Tensor]] | None = None
  5449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5450. # skip vision tensors and remove "language_model." for Kimi-VL
  5451. if "vision_tower" in name or "multi_modal_projector" in name:
  5452. return []
  5453. if name.startswith("language_model."):
  5454. name = name.replace("language_model.", "")
  5455. # rename e_score_correction_bias tensors
  5456. if name.endswith("e_score_correction_bias"):
  5457. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5458. # skip Multi-Token Prediction (MTP) layers
  5459. block_count = self.hparams["num_hidden_layers"]
  5460. match = re.match(r"model.layers.(\d+)", name)
  5461. if match and int(match.group(1)) >= block_count:
  5462. return []
  5463. # process the experts separately
  5464. if name.find("mlp.experts") != -1:
  5465. n_experts = self.hparams["n_routed_experts"]
  5466. assert bid is not None
  5467. if self._experts is None:
  5468. self._experts = [{} for _ in range(self.block_count)]
  5469. self._experts[bid][name] = data_torch
  5470. if len(self._experts[bid]) >= n_experts * 3:
  5471. tensors: list[tuple[str, Tensor]] = []
  5472. # merge the experts into a single 3d tensor
  5473. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5474. datas: list[Tensor] = []
  5475. for xid in range(n_experts):
  5476. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5477. datas.append(self._experts[bid][ename])
  5478. del self._experts[bid][ename]
  5479. data_torch = torch.stack(datas, dim=0)
  5480. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5481. new_name = self.map_tensor_name(merged_name)
  5482. tensors.append((new_name, data_torch))
  5483. return tensors
  5484. else:
  5485. return []
  5486. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5487. if name.endswith("kv_b_proj.weight"):
  5488. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5489. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5490. n_head_kv = self.hparams["num_key_value_heads"]
  5491. v_head_dim = self.hparams["v_head_dim"]
  5492. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5493. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5494. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5495. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5496. k_b = k_b.transpose(1, 2)
  5497. return [
  5498. (self.map_tensor_name(name_kb), k_b),
  5499. (self.map_tensor_name(name_vb), v_b)
  5500. ]
  5501. return [(self.map_tensor_name(name), data_torch)]
  5502. def prepare_tensors(self):
  5503. super().prepare_tensors()
  5504. if self._experts is not None:
  5505. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5506. experts = [k for d in self._experts for k in d.keys()]
  5507. if len(experts) > 0:
  5508. raise ValueError(f"Unprocessed experts: {experts}")
  5509. @ModelBase.register("Dots1ForCausalLM")
  5510. class Dots1Model(Qwen2MoeModel):
  5511. model_arch = gguf.MODEL_ARCH.DOTS1
  5512. def __init__(self, *args, **kwargs):
  5513. super().__init__(*args, **kwargs)
  5514. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5515. def set_gguf_parameters(self):
  5516. super().set_gguf_parameters()
  5517. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5518. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5519. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5520. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5521. if self.hparams["scoring_func"] == "noaux_tc":
  5522. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5523. else:
  5524. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5526. if name.endswith("e_score_correction_bias"):
  5527. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5528. if "shared_experts" in name:
  5529. return [(self.map_tensor_name(name), data_torch)]
  5530. return super().modify_tensors(data_torch, name, bid)
  5531. @ModelBase.register("PLMForCausalLM")
  5532. class PLMModel(TextModel):
  5533. model_arch = gguf.MODEL_ARCH.PLM
  5534. def set_vocab(self):
  5535. self._set_vocab_gpt2()
  5536. def set_gguf_parameters(self):
  5537. super().set_gguf_parameters()
  5538. hparams = self.hparams
  5539. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5540. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5541. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5542. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5543. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5545. return [(self.map_tensor_name(name), data_torch)]
  5546. def prepare_tensors(self):
  5547. super().prepare_tensors()
  5548. @ModelBase.register("T5WithLMHeadModel")
  5549. @ModelBase.register("T5ForConditionalGeneration")
  5550. @ModelBase.register("MT5ForConditionalGeneration")
  5551. @ModelBase.register("UMT5ForConditionalGeneration")
  5552. class T5Model(TextModel):
  5553. model_arch = gguf.MODEL_ARCH.T5
  5554. def __init__(self, *args, **kwargs):
  5555. super().__init__(*args, **kwargs)
  5556. self.shared_token_embeddings_found = False
  5557. def set_vocab(self):
  5558. # to avoid TypeError: Descriptors cannot be created directly
  5559. # exception when importing sentencepiece_model_pb2
  5560. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5561. from sentencepiece import SentencePieceProcessor
  5562. from sentencepiece import sentencepiece_model_pb2 as model
  5563. tokenizer_path = self.dir_model / 'tokenizer.model'
  5564. # many older models use spiece.model tokenizer model filename
  5565. if not tokenizer_path.is_file():
  5566. tokenizer_path = self.dir_model / 'spiece.model'
  5567. if not tokenizer_path.is_file():
  5568. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5569. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5570. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5571. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5572. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5573. # assure the tokenizer model file name is correct
  5574. assert tokenizer_path.name == 'tokenizer.model'
  5575. return self._set_vocab_sentencepiece()
  5576. else:
  5577. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5578. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5579. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5580. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5581. tokenizer = SentencePieceProcessor()
  5582. tokenizer.LoadFromFile(str(tokenizer_path))
  5583. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5584. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5585. scores: list[float] = [-10000.0] * vocab_size
  5586. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5587. for token_id in range(tokenizer.vocab_size()):
  5588. piece = tokenizer.IdToPiece(token_id)
  5589. text = piece.encode("utf-8")
  5590. score = tokenizer.GetScore(token_id)
  5591. toktype = SentencePieceTokenTypes.NORMAL
  5592. if tokenizer.IsUnknown(token_id):
  5593. toktype = SentencePieceTokenTypes.UNKNOWN
  5594. elif tokenizer.IsControl(token_id):
  5595. toktype = SentencePieceTokenTypes.CONTROL
  5596. elif tokenizer.IsUnused(token_id):
  5597. toktype = SentencePieceTokenTypes.UNUSED
  5598. elif tokenizer.IsByte(token_id):
  5599. toktype = SentencePieceTokenTypes.BYTE
  5600. tokens[token_id] = text
  5601. scores[token_id] = score
  5602. toktypes[token_id] = toktype
  5603. added_tokens_file = self.dir_model / 'added_tokens.json'
  5604. if added_tokens_file.is_file():
  5605. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5606. added_tokens_json = json.load(f)
  5607. for key in added_tokens_json:
  5608. token_id = added_tokens_json[key]
  5609. if token_id >= vocab_size:
  5610. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5611. continue
  5612. tokens[token_id] = key.encode("utf-8")
  5613. scores[token_id] = -1000.0
  5614. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5615. if vocab_size > len(tokens):
  5616. pad_count = vocab_size - len(tokens)
  5617. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5618. for i in range(1, pad_count + 1):
  5619. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5620. scores.append(-1000.0)
  5621. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5622. self.gguf_writer.add_tokenizer_model("t5")
  5623. self.gguf_writer.add_tokenizer_pre("default")
  5624. self.gguf_writer.add_token_list(tokens)
  5625. self.gguf_writer.add_token_scores(scores)
  5626. self.gguf_writer.add_token_types(toktypes)
  5627. self.gguf_writer.add_add_space_prefix(add_prefix)
  5628. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5629. if precompiled_charsmap:
  5630. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5631. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5632. special_vocab.add_to_gguf(self.gguf_writer)
  5633. def set_gguf_parameters(self):
  5634. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5635. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5636. n_ctx = 512
  5637. self.gguf_writer.add_context_length(n_ctx)
  5638. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5639. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5640. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5641. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5642. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5643. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5644. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5645. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5646. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5647. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5648. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5649. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5650. self.gguf_writer.add_file_type(self.ftype)
  5651. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5652. del bid # unused
  5653. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5654. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5655. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5656. # and decoder and ignore the remaining ones.
  5657. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5658. if not self.shared_token_embeddings_found:
  5659. name = "shared.weight"
  5660. self.shared_token_embeddings_found = True
  5661. else:
  5662. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5663. return []
  5664. return [(self.map_tensor_name(name), data_torch)]
  5665. @ModelBase.register("T5EncoderModel")
  5666. class T5EncoderModel(TextModel):
  5667. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5668. def __init__(self, *args, **kwargs):
  5669. super().__init__(*args, **kwargs)
  5670. self.shared_token_embeddings_found = False
  5671. def set_vocab(self):
  5672. # to avoid TypeError: Descriptors cannot be created directly
  5673. # exception when importing sentencepiece_model_pb2
  5674. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5675. from sentencepiece import SentencePieceProcessor
  5676. from sentencepiece import sentencepiece_model_pb2 as model
  5677. tokenizer_path = self.dir_model / 'tokenizer.model'
  5678. # many older models use spiece.model tokenizer model filename
  5679. if not tokenizer_path.is_file():
  5680. tokenizer_path = self.dir_model / 'spiece.model'
  5681. if not tokenizer_path.is_file():
  5682. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5683. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5684. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5685. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5686. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5687. # assure the tokenizer model file name is correct
  5688. assert tokenizer_path.name == 'tokenizer.model'
  5689. return self._set_vocab_sentencepiece()
  5690. else:
  5691. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5692. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5693. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5694. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5695. tokenizer = SentencePieceProcessor()
  5696. tokenizer.LoadFromFile(str(tokenizer_path))
  5697. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5698. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5699. scores: list[float] = [-10000.0] * vocab_size
  5700. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5701. for token_id in range(tokenizer.vocab_size()):
  5702. piece = tokenizer.IdToPiece(token_id)
  5703. text = piece.encode("utf-8")
  5704. score = tokenizer.GetScore(token_id)
  5705. toktype = SentencePieceTokenTypes.NORMAL
  5706. if tokenizer.IsUnknown(token_id):
  5707. toktype = SentencePieceTokenTypes.UNKNOWN
  5708. elif tokenizer.IsControl(token_id):
  5709. toktype = SentencePieceTokenTypes.CONTROL
  5710. elif tokenizer.IsUnused(token_id):
  5711. toktype = SentencePieceTokenTypes.UNUSED
  5712. elif tokenizer.IsByte(token_id):
  5713. toktype = SentencePieceTokenTypes.BYTE
  5714. tokens[token_id] = text
  5715. scores[token_id] = score
  5716. toktypes[token_id] = toktype
  5717. added_tokens_file = self.dir_model / 'added_tokens.json'
  5718. if added_tokens_file.is_file():
  5719. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5720. added_tokens_json = json.load(f)
  5721. for key in added_tokens_json:
  5722. token_id = added_tokens_json[key]
  5723. if token_id >= vocab_size:
  5724. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5725. continue
  5726. tokens[token_id] = key.encode("utf-8")
  5727. scores[token_id] = -1000.0
  5728. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5729. if vocab_size > len(tokens):
  5730. pad_count = vocab_size - len(tokens)
  5731. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5732. for i in range(1, pad_count + 1):
  5733. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5734. scores.append(-1000.0)
  5735. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5736. self.gguf_writer.add_tokenizer_model("t5")
  5737. self.gguf_writer.add_tokenizer_pre("default")
  5738. self.gguf_writer.add_token_list(tokens)
  5739. self.gguf_writer.add_token_scores(scores)
  5740. self.gguf_writer.add_token_types(toktypes)
  5741. self.gguf_writer.add_add_space_prefix(add_prefix)
  5742. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5743. if precompiled_charsmap:
  5744. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5745. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5746. special_vocab.add_to_gguf(self.gguf_writer)
  5747. def set_gguf_parameters(self):
  5748. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5749. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5750. n_ctx = 512
  5751. self.gguf_writer.add_context_length(n_ctx)
  5752. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5753. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5754. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5755. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5756. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5757. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5758. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5759. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5760. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5761. self.gguf_writer.add_file_type(self.ftype)
  5762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5763. del bid # unused
  5764. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5765. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5766. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5767. # and decoder and ignore the remaining ones.
  5768. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5769. if not self.shared_token_embeddings_found:
  5770. name = "shared.weight"
  5771. self.shared_token_embeddings_found = True
  5772. else:
  5773. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5774. return []
  5775. return [(self.map_tensor_name(name), data_torch)]
  5776. @ModelBase.register("JAISLMHeadModel")
  5777. class JaisModel(TextModel):
  5778. model_arch = gguf.MODEL_ARCH.JAIS
  5779. def __init__(self, *args, **kwargs):
  5780. super().__init__(*args, **kwargs)
  5781. # SwigLU activation
  5782. assert self.hparams["activation_function"] == "swiglu"
  5783. # ALiBi position embedding
  5784. assert self.hparams["position_embedding_type"] == "alibi"
  5785. # Embeddings scale
  5786. self.embeddings_scale = 1.0
  5787. if 'mup_embeddings_scale' in self.hparams:
  5788. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5789. elif 'embeddings_scale' in self.hparams:
  5790. self.embeddings_scale = self.hparams['embeddings_scale']
  5791. else:
  5792. assert False
  5793. self.width_scale = 1.0
  5794. if 'mup_output_alpha' in self.hparams:
  5795. assert 'mup_width_scale' in self.hparams
  5796. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5797. elif 'width_scale' in self.hparams:
  5798. self.width_scale = self.hparams['width_scale']
  5799. else:
  5800. assert False
  5801. self.max_alibi_bias = 8.0
  5802. def set_vocab(self):
  5803. self._set_vocab_gpt2()
  5804. def set_gguf_parameters(self):
  5805. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5806. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5807. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5808. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5809. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5810. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5811. self.gguf_writer.add_file_type(self.ftype)
  5812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5813. del bid # unused
  5814. tensors: list[tuple[str, Tensor]] = []
  5815. # we don't need these
  5816. if name.endswith((".attn.bias")):
  5817. return tensors
  5818. if name.endswith(("relative_pe.slopes")):
  5819. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5820. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5821. # but Jais's PyTorch model simply precalculates the slope values and places them
  5822. # in relative_pes.slopes
  5823. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5824. first_val = float(data_torch[0].item())
  5825. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5826. return tensors
  5827. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5828. data_torch = data_torch.transpose(1, 0)
  5829. new_name = self.map_tensor_name(name)
  5830. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5831. tensors.append((new_name, data_torch * self.embeddings_scale))
  5832. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5833. tensors.append((new_name, data_torch * self.width_scale))
  5834. else:
  5835. tensors.append((new_name, data_torch))
  5836. return tensors
  5837. def prepare_tensors(self):
  5838. super().prepare_tensors()
  5839. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5840. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5841. class Glm4Model(TextModel):
  5842. model_arch = gguf.MODEL_ARCH.GLM4
  5843. def set_vocab(self):
  5844. from transformers import AutoTokenizer
  5845. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5846. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5847. tokens, toktypes, tokpre = self.get_vocab_base()
  5848. self.gguf_writer.add_tokenizer_model("gpt2")
  5849. self.gguf_writer.add_tokenizer_pre(tokpre)
  5850. self.gguf_writer.add_token_list(tokens)
  5851. self.gguf_writer.add_token_types(toktypes)
  5852. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5853. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5854. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5855. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5856. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5857. special_vocab.add_to_gguf(self.gguf_writer)
  5858. def set_gguf_parameters(self):
  5859. super().set_gguf_parameters()
  5860. if (rope_dim := self.hparams.get("head_dim")) is None:
  5861. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5862. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5863. rope_scaling = self.hparams.get("rope_scaling") or {}
  5864. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5865. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5866. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5867. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5869. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5870. return []
  5871. elif name.startswith("model.language_model."):
  5872. name = name.replace("language_model.", "") # for Glm4v
  5873. return super().modify_tensors(data_torch, name, bid)
  5874. @ModelBase.register("Glm4MoeForCausalLM")
  5875. class Glm4MoeModel(TextModel):
  5876. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5877. def __init__(self, *args, **kwargs):
  5878. super().__init__(*args, **kwargs)
  5879. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5880. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5881. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5882. def set_vocab(self):
  5883. from transformers import AutoTokenizer
  5884. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5885. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5886. tokens, toktypes, tokpre = self.get_vocab_base()
  5887. self.gguf_writer.add_tokenizer_model("gpt2")
  5888. self.gguf_writer.add_tokenizer_pre(tokpre)
  5889. self.gguf_writer.add_token_list(tokens)
  5890. self.gguf_writer.add_token_types(toktypes)
  5891. # Special tokens
  5892. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5893. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5894. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5895. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5896. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5897. # Patch broken chat template
  5898. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5899. special_vocab.chat_template = special_vocab.chat_template.replace(
  5900. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5901. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5902. special_vocab.add_to_gguf(self.gguf_writer)
  5903. def set_gguf_parameters(self):
  5904. super().set_gguf_parameters()
  5905. if (rope_dim := self.hparams.get("head_dim")) is None:
  5906. rope_dim = (
  5907. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5908. )
  5909. self.gguf_writer.add_rope_dimension_count(
  5910. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5911. )
  5912. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5913. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5914. self.gguf_writer.add_expert_count(n_routed_experts)
  5915. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5916. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5917. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5918. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5919. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5920. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5921. # Expert gating function (sigmoid for GLM4_MOE)
  5922. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5923. # Routed scaling factor
  5924. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5925. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5926. # Normalise topk probabilities
  5927. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5928. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5929. # NextN/MTP prediction layers
  5930. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5931. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5932. _experts: list[dict[str, Tensor]] | None = None
  5933. def modify_tensors(
  5934. self, data_torch: Tensor, name: str, bid: int | None
  5935. ) -> Iterable[tuple[str, Tensor]]:
  5936. if name.startswith("model.visual."): # ignore visual part
  5937. return []
  5938. elif name.startswith("model.language_model."):
  5939. name = name.replace("language_model.", "") # for multimodal variants
  5940. # Handle main token embedding (but not layer-specific NextN embeddings)
  5941. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5942. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5943. # Handle routed experts
  5944. if name.find("mlp.experts") != -1:
  5945. n_experts = self.hparams["n_routed_experts"]
  5946. assert bid is not None
  5947. if self._experts is None:
  5948. self._experts = [{} for _ in range(self.block_count)]
  5949. self._experts[bid][name] = data_torch
  5950. if len(self._experts[bid]) >= n_experts * 3:
  5951. tensors: list[tuple[str, Tensor]] = []
  5952. # merge the experts into a single 3d tensor
  5953. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5954. datas: list[Tensor] = []
  5955. for xid in range(n_experts):
  5956. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5957. datas.append(self._experts[bid][ename])
  5958. del self._experts[bid][ename]
  5959. data_torch = torch.stack(datas, dim=0)
  5960. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5961. new_name = self.map_tensor_name(merged_name)
  5962. tensors.append((new_name, data_torch))
  5963. return tensors
  5964. else:
  5965. return []
  5966. if name.endswith("e_score_correction_bias"):
  5967. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5968. new_name = self.map_tensor_name(name)
  5969. return [(new_name, data_torch)]
  5970. def prepare_tensors(self):
  5971. super().prepare_tensors()
  5972. if self._experts is not None:
  5973. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5974. experts = [k for d in self._experts for k in d.keys()]
  5975. if len(experts) > 0:
  5976. raise ValueError(f"Unprocessed experts: {experts}")
  5977. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5978. class ChatGLMModel(TextModel):
  5979. model_arch = gguf.MODEL_ARCH.CHATGLM
  5980. def set_vocab_chatglm3(self):
  5981. dir_model = self.dir_model
  5982. hparams = self.hparams
  5983. tokens: list[bytes] = []
  5984. toktypes: list[int] = []
  5985. scores: list[float] = []
  5986. from transformers import AutoTokenizer
  5987. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5988. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5989. assert max(tokenizer.get_vocab().values()) < vocab_size
  5990. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5991. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5992. for token_id in range(vocab_size):
  5993. piece = tokenizer._convert_id_to_token(token_id)
  5994. if token_id == 0:
  5995. piece = "<unk>"
  5996. elif token_id == 1:
  5997. piece = "<bos>"
  5998. elif token_id == 2:
  5999. piece = "<eos>"
  6000. text = piece.encode("utf-8")
  6001. score = 0.0
  6002. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6003. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6004. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6005. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6006. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6007. if piece in special_tokens:
  6008. toktype = SentencePieceTokenTypes.CONTROL
  6009. elif len(piece) == 0:
  6010. text = f"[PAD{token_id}]".encode("utf-8")
  6011. toktype = SentencePieceTokenTypes.UNUSED
  6012. else:
  6013. toktype = SentencePieceTokenTypes.USER_DEFINED
  6014. tokens.append(text)
  6015. scores.append(score)
  6016. toktypes.append(toktype)
  6017. continue
  6018. toktype = SentencePieceTokenTypes.NORMAL
  6019. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6020. toktype = SentencePieceTokenTypes.UNKNOWN
  6021. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6022. toktype = SentencePieceTokenTypes.CONTROL
  6023. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6024. toktype = SentencePieceTokenTypes.UNUSED
  6025. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6026. toktype = SentencePieceTokenTypes.BYTE
  6027. tokens.append(text)
  6028. scores.append(score)
  6029. toktypes.append(toktype)
  6030. self.gguf_writer.add_tokenizer_model("llama")
  6031. # glm3 needs prefix and suffix formatted as:
  6032. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6033. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6034. self.gguf_writer.add_token_list(tokens)
  6035. self.gguf_writer.add_token_scores(scores)
  6036. self.gguf_writer.add_token_types(toktypes)
  6037. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6038. special_vocab.add_to_gguf(self.gguf_writer)
  6039. @staticmethod
  6040. def token_bytes_to_string(b):
  6041. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6042. byte_encoder = bytes_to_unicode()
  6043. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6044. @staticmethod
  6045. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6046. parts = [bytes([b]) for b in token]
  6047. while True:
  6048. min_idx = None
  6049. min_rank = None
  6050. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6051. rank = mergeable_ranks.get(pair[0] + pair[1])
  6052. if rank is not None and (min_rank is None or rank < min_rank):
  6053. min_idx = i
  6054. min_rank = rank
  6055. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6056. break
  6057. assert min_idx is not None
  6058. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6059. return parts
  6060. def set_vocab(self):
  6061. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6062. self.set_vocab_chatglm3()
  6063. return
  6064. dir_model = self.dir_model
  6065. hparams = self.hparams
  6066. tokens: list[str] = []
  6067. toktypes: list[int] = []
  6068. from transformers import AutoTokenizer
  6069. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6070. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6071. assert max(tokenizer.get_vocab().values()) < vocab_size
  6072. tokens, toktypes, tokpre = self.get_vocab_base()
  6073. self.gguf_writer.add_tokenizer_model("gpt2")
  6074. self.gguf_writer.add_tokenizer_pre(tokpre)
  6075. self.gguf_writer.add_token_list(tokens)
  6076. self.gguf_writer.add_token_types(toktypes)
  6077. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6078. # only add special tokens when they were not already loaded from config.json
  6079. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6080. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6081. # this one is usually not in config.json anyway
  6082. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6083. special_vocab.add_to_gguf(self.gguf_writer)
  6084. def set_gguf_parameters(self):
  6085. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6086. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6087. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6088. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6089. self.gguf_writer.add_embedding_length(n_embed)
  6090. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6091. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6092. self.gguf_writer.add_head_count(n_head)
  6093. self.gguf_writer.add_head_count_kv(n_head_kv)
  6094. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6095. self.gguf_writer.add_file_type(self.ftype)
  6096. if "attention_dim" in self.hparams:
  6097. rope_dim = self.hparams["attention_dim"]
  6098. else:
  6099. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6100. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6101. self.gguf_writer.add_add_bos_token(False)
  6102. rope_freq = 10000
  6103. if "rope_ratio" in self.hparams:
  6104. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6105. self.gguf_writer.add_rope_freq_base(rope_freq)
  6106. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6107. del bid # unused
  6108. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6109. return []
  6110. name = name.removeprefix("transformer.")
  6111. return [(self.map_tensor_name(name), data_torch)]
  6112. @ModelBase.register("NemotronForCausalLM")
  6113. class NemotronModel(TextModel):
  6114. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6115. def set_vocab(self):
  6116. self._set_vocab_sentencepiece()
  6117. self.gguf_writer.add_pad_token_id(0)
  6118. self.gguf_writer.add_unk_token_id(1)
  6119. def set_gguf_parameters(self):
  6120. super().set_gguf_parameters()
  6121. hparams = self.hparams
  6122. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6123. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6124. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6125. # * Partial RoPE
  6126. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6127. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6128. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6129. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6130. # * RopeScaling for Nemotron
  6131. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6132. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6133. else:
  6134. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6135. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6137. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6138. # model.layers.{l}.input_layernorm.weight
  6139. # model.layers.{l}.post_attention_layernorm.weight
  6140. # model.norm.weight
  6141. if name.endswith("norm.weight"):
  6142. data_torch = data_torch + 1
  6143. return [(self.map_tensor_name(name), data_torch)]
  6144. @ModelBase.register("ExaoneForCausalLM")
  6145. class ExaoneModel(TextModel):
  6146. model_arch = gguf.MODEL_ARCH.EXAONE
  6147. def set_gguf_parameters(self):
  6148. hparams = self.hparams
  6149. assert (hparams["activation_function"] == "silu")
  6150. max_position_embeddings = hparams["max_position_embeddings"]
  6151. embed_dim = hparams["hidden_size"]
  6152. num_heads = hparams["num_attention_heads"]
  6153. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6154. layer_norm_eps = hparams["layer_norm_epsilon"]
  6155. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6156. num_layers = hparams["num_layers"]
  6157. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6158. # attention_dropout_rate = hparams["attention_dropout"]
  6159. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6160. # embed_dropout_rate = hparams["embed_dropout"]
  6161. self.gguf_writer.add_embedding_length(embed_dim)
  6162. self.gguf_writer.add_head_count(num_heads)
  6163. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6164. self.gguf_writer.add_context_length(max_position_embeddings)
  6165. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6166. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6167. self.gguf_writer.add_block_count(num_layers)
  6168. self.gguf_writer.add_file_type(self.ftype)
  6169. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6170. self.gguf_writer.add_rope_freq_base(rope_theta)
  6171. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6172. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6173. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6174. rope_scaling = self.hparams.get("rope_scaling") or {}
  6175. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6176. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6177. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6178. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6179. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6180. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6181. base = self.hparams.get("rope_theta", 10000.0)
  6182. if (dim := self.hparams.get("head_dim")) is None:
  6183. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6184. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6185. factor = rope_scaling.get("factor", 8.0)
  6186. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6187. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6188. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6189. low_freq_wavelen = old_context_len / low_freq_factor
  6190. high_freq_wavelen = old_context_len / high_freq_factor
  6191. assert low_freq_wavelen != high_freq_wavelen
  6192. rope_factors = []
  6193. for freq in freqs:
  6194. wavelen = 2 * math.pi / freq
  6195. if wavelen < high_freq_wavelen:
  6196. rope_factors.append(1)
  6197. elif wavelen > low_freq_wavelen:
  6198. rope_factors.append(factor)
  6199. else:
  6200. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6201. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6202. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6203. @ModelBase.register("Exaone4ForCausalLM")
  6204. class Exaone4Model(TextModel):
  6205. model_arch = gguf.MODEL_ARCH.EXAONE4
  6206. def set_vocab(self):
  6207. tokens, toktypes, tokpre = self.get_vocab_base()
  6208. self.gguf_writer.add_tokenizer_model("gpt2")
  6209. self.gguf_writer.add_tokenizer_pre(tokpre)
  6210. self.gguf_writer.add_token_list(tokens)
  6211. self.gguf_writer.add_token_types(toktypes)
  6212. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6213. special_vocab.add_to_gguf(self.gguf_writer)
  6214. def set_gguf_parameters(self):
  6215. super().set_gguf_parameters()
  6216. hparams = self.hparams
  6217. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6218. if hparams.get("sliding_window") is not None:
  6219. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6220. if "layer_types" in hparams:
  6221. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6222. elif "sliding_window_pattern" in hparams:
  6223. sliding_window_pattern = []
  6224. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6225. for i in range(hparams["num_hidden_layers"]):
  6226. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6227. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6228. for i in range(hparams["num_hidden_layers"]):
  6229. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6230. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6231. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6232. rope_scaling = self.hparams.get("rope_scaling") or {}
  6233. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6234. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6235. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6236. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6237. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6238. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6239. base = self.hparams.get("rope_theta", 10_000.0)
  6240. if (dim := self.hparams.get("head_dim")) is None:
  6241. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6242. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6243. factor = rope_scaling.get("factor", 16.0)
  6244. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6245. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6246. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6247. low_freq_wavelen = old_context_len / low_freq_factor
  6248. high_freq_wavelen = old_context_len / high_freq_factor
  6249. rope_factors = []
  6250. for freq in freqs:
  6251. wavelen = 2 * math.pi / freq
  6252. if wavelen < high_freq_wavelen:
  6253. rope_factors.append(1)
  6254. elif wavelen > low_freq_wavelen:
  6255. rope_factors.append(factor)
  6256. else:
  6257. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6258. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6259. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6260. @ModelBase.register("GraniteForCausalLM")
  6261. class GraniteModel(LlamaModel):
  6262. """Conversion for IBM's GraniteForCausalLM"""
  6263. model_arch = gguf.MODEL_ARCH.GRANITE
  6264. def set_gguf_parameters(self):
  6265. """Granite uses standard llama parameters with the following differences:
  6266. - No head_dim support
  6267. - New multiplier params:
  6268. - attention_scale
  6269. - embedding_scale
  6270. - residual_scale
  6271. - logits_scaling
  6272. """
  6273. if head_dim := self.hparams.pop("head_dim", None):
  6274. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6275. super().set_gguf_parameters()
  6276. # NOTE: Convert _multiplier params to _scale params for naming
  6277. # consistency
  6278. if attention_scale := self.hparams.get("attention_multiplier"):
  6279. self.gguf_writer.add_attention_scale(attention_scale)
  6280. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6281. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6282. self.gguf_writer.add_embedding_scale(embedding_scale)
  6283. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6284. if residual_scale := self.hparams.get("residual_multiplier"):
  6285. self.gguf_writer.add_residual_scale(residual_scale)
  6286. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6287. if logits_scale := self.hparams.get("logits_scaling"):
  6288. self.gguf_writer.add_logit_scale(logits_scale)
  6289. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6290. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6291. class GraniteMoeModel(GraniteModel):
  6292. """Conversion for IBM's GraniteMoeForCausalLM"""
  6293. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6294. def set_gguf_parameters(self):
  6295. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6296. - shared_intermediate_size
  6297. """
  6298. super().set_gguf_parameters()
  6299. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6300. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6301. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6303. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6304. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6305. the hidden size that is then split during forward. To keep compatibility
  6306. with existing mixtral support, we pull them apart here.
  6307. """
  6308. if name.endswith("block_sparse_moe.input_linear.weight"):
  6309. ffn_dim = self.hparams["intermediate_size"]
  6310. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6311. gate, up = data_torch.split(ffn_dim, dim=-2)
  6312. return [
  6313. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6314. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6315. ]
  6316. has_experts = bool(self.hparams.get('num_local_experts'))
  6317. if name.endswith("shared_mlp.input_linear.weight"):
  6318. ffn_dim = self.hparams["shared_intermediate_size"]
  6319. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6320. gate, up = data_torch.split(ffn_dim, dim=-2)
  6321. if has_experts:
  6322. return [
  6323. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6324. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6325. ]
  6326. return [
  6327. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6328. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6329. ]
  6330. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6331. return [
  6332. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6333. ]
  6334. return super().modify_tensors(data_torch, name, bid)
  6335. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6336. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6337. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6338. layers and optionally uses MoE w/ a shared expert"""
  6339. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6340. undo_permute = True
  6341. def __init__(self, *args, **kwargs):
  6342. # Hybrid mamba models use a prefix for the mamba-specific params.
  6343. # TODO: Extend this if the prefix(es) need to be configurable
  6344. self.hparam_prefixes = ["mamba"]
  6345. super().__init__(*args, **kwargs)
  6346. # Lists of which layers use ssm vs attention
  6347. self._attn_layers = self.get_attn_layers()
  6348. self._ssm_layers = [
  6349. i for i in range(self.block_count)
  6350. if i not in self._attn_layers
  6351. ]
  6352. # There are some models in this family that are non-hybrid, but keep the
  6353. # same parent class by setting all layers to "attention." If this is the
  6354. # case, the model architecture needs to be updated to a standard
  6355. # "granite" or "granitemoe" model
  6356. if not self._ssm_layers:
  6357. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6358. new_arch = (
  6359. gguf.MODEL_ARCH.GRANITE_MOE
  6360. if has_experts else
  6361. gguf.MODEL_ARCH.GRANITE
  6362. )
  6363. self.model_arch = new_arch
  6364. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6365. self.gguf_writer.add_architecture()
  6366. # n_group and d_inner are used during reshape_tensors for mamba2
  6367. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6368. # disambiguate with top-level head_dim
  6369. # NOTE 2: If needed for future models, this can be isolated in a method
  6370. # to separate the prefix setting and teh keys used
  6371. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6372. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6373. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6374. def get_attn_layers(self):
  6375. # Explicit list of layer type names
  6376. if layer_types := self.hparams.get("layer_types"):
  6377. return [
  6378. i for i, typ in enumerate(layer_types)
  6379. if typ == "attention"
  6380. ]
  6381. # Layer types indicated by index or period
  6382. attn_layers = self.hparams.get("attn_layer_indices", [])
  6383. if not attn_layers:
  6384. attn_period = self.hparams.get("attn_layer_period")
  6385. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6386. attn_offset = self.hparams.get("attn_layer_offset")
  6387. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6388. attn_layers = [
  6389. i for i in range(self.block_count)
  6390. if i % attn_period == attn_offset
  6391. ]
  6392. return attn_layers
  6393. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6394. prefixed = []
  6395. for pfx in self.hparam_prefixes:
  6396. prefixed.extend(
  6397. "_".join([pfx, k])
  6398. for k in keys
  6399. )
  6400. keys = list(keys) + prefixed
  6401. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6402. def modify_tensors(
  6403. self, data_torch: Tensor, name: str, bid: int | None
  6404. ) -> Iterable[tuple[str, Tensor]]:
  6405. if (
  6406. name.endswith("block_sparse_moe.input_linear.weight")
  6407. or "shared_mlp" in name
  6408. ):
  6409. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6410. # Determine whether this is a mamba layer or an attention layer
  6411. if bid in self._ssm_layers:
  6412. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6413. elif bid in self._attn_layers:
  6414. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6415. return [(self.map_tensor_name(name), data_torch)]
  6416. def set_gguf_parameters(self):
  6417. """This method merges params from both parents and some that are
  6418. specific to this model. The result is some duplication of how the params
  6419. get set. The following warnings are expected during conversion:
  6420. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6421. WARNING:Duplicated key name 'granitehybrid.context_length'
  6422. """
  6423. GraniteMoeModel.set_gguf_parameters(self)
  6424. ## Mamba mixer params ##
  6425. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6426. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6427. self.gguf_writer.add_ssm_group_count(self.n_group)
  6428. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6429. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6430. # in llama.cpp
  6431. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6432. ## Attention params ##
  6433. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6434. head_count_kv_vec = [
  6435. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6436. ]
  6437. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6438. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6439. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6440. ## If Bamba or non-hybrid, use rope, otherwise don't
  6441. use_rope = (
  6442. "BambaForCausalLM" in self.hparams["architectures"]
  6443. or not self._ssm_layers
  6444. )
  6445. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6446. if not use_rope:
  6447. self.gguf_writer.add_context_length(2**20)
  6448. ## Validation ##
  6449. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6450. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6451. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6452. def set_vocab(self):
  6453. self.hparams["pad_vocab_size_multiple"] = 8
  6454. Mamba2Model.set_vocab(self)
  6455. @ModelBase.register("NemotronHForCausalLM")
  6456. class NemotronHModel(GraniteHybridModel):
  6457. """Hybrid mamba2/attention model from NVIDIA"""
  6458. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6459. def __init__(self, *args, **kwargs):
  6460. super().__init__(*args, **kwargs)
  6461. # Save the top-level head_dim for later
  6462. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6463. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6464. # Don't use expand to calculate d_inner
  6465. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6466. # Update the ssm / attn / mlp layers
  6467. # M: Mamba2, *: Attention, -: MLP
  6468. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6469. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6470. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6471. def get_attn_layers(self):
  6472. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6473. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6474. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6475. def set_gguf_parameters(self):
  6476. super().set_gguf_parameters()
  6477. self.gguf_writer.add_key_length(self.head_dim)
  6478. self.gguf_writer.add_value_length(self.head_dim)
  6479. # Set feed_forward_length
  6480. # NOTE: This will trigger an override warning. This is preferrable to
  6481. # duplicating all the parent logic
  6482. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6483. self.gguf_writer.add_feed_forward_length([
  6484. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6485. ])
  6486. def set_vocab(self):
  6487. super().set_vocab()
  6488. # The tokenizer _does_ add a BOS token (via post_processor type
  6489. # TemplateProcessing) but does not set add_bos_token to true in the
  6490. # config, so we need to explicitly override it here.
  6491. self.gguf_writer.add_add_bos_token(True)
  6492. @ModelBase.register("BailingMoeForCausalLM")
  6493. class BailingMoeModel(TextModel):
  6494. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6495. def set_vocab(self):
  6496. self._set_vocab_gpt2()
  6497. def set_gguf_parameters(self):
  6498. super().set_gguf_parameters()
  6499. hparams = self.hparams
  6500. if (rope_dim := hparams.get("head_dim")) is None:
  6501. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6502. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6503. rope_scaling = self.hparams.get("rope_scaling") or {}
  6504. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6505. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6506. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6507. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6508. else:
  6509. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6510. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6511. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6512. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6513. self.gguf_writer.add_expert_weights_scale(1.0)
  6514. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6515. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6516. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6517. _experts: list[dict[str, Tensor]] | None = None
  6518. @staticmethod
  6519. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6520. if n_head_kv is not None and n_head != n_head_kv:
  6521. n_head = n_head_kv
  6522. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6523. .swapaxes(1, 2)
  6524. .reshape(weights.shape))
  6525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6526. n_head = self.hparams["num_attention_heads"]
  6527. n_kv_head = self.hparams.get("num_key_value_heads")
  6528. n_embd = self.hparams["hidden_size"]
  6529. if (head_dim := self.hparams.get("head_dim")) is None:
  6530. head_dim = n_embd // n_head
  6531. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6532. if name.endswith("attention.dense.weight"):
  6533. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6534. elif name.endswith("query_key_value.weight"):
  6535. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6536. return [
  6537. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6538. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6539. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6540. ]
  6541. elif name.find("mlp.experts") != -1:
  6542. n_experts = self.hparams["num_experts"]
  6543. assert bid is not None
  6544. tensors: list[tuple[str, Tensor]] = []
  6545. if self._experts is None:
  6546. self._experts = [{} for _ in range(self.block_count)]
  6547. self._experts[bid][name] = data_torch
  6548. if len(self._experts[bid]) >= n_experts * 3:
  6549. # merge the experts into a single 3d tensor
  6550. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6551. datas: list[Tensor] = []
  6552. for xid in range(n_experts):
  6553. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6554. datas.append(self._experts[bid][ename])
  6555. del self._experts[bid][ename]
  6556. data_torch = torch.stack(datas, dim=0)
  6557. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6558. new_name = self.map_tensor_name(merged_name)
  6559. tensors.append((new_name, data_torch))
  6560. return tensors
  6561. new_name = self.map_tensor_name(name)
  6562. if new_name == output_name and self.hparams.get("norm_head"):
  6563. data_torch = data_torch.float()
  6564. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6565. return [(new_name, data_torch)]
  6566. def prepare_tensors(self):
  6567. super().prepare_tensors()
  6568. if self._experts is not None:
  6569. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6570. experts = [k for d in self._experts for k in d.keys()]
  6571. if len(experts) > 0:
  6572. raise ValueError(f"Unprocessed experts: {experts}")
  6573. @ModelBase.register("BailingMoeV2ForCausalLM")
  6574. class BailingMoeV2Model(TextModel):
  6575. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  6576. def __init__(self, *args, **kwargs):
  6577. super().__init__(*args, **kwargs)
  6578. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  6579. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  6580. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6581. def set_vocab(self):
  6582. self._set_vocab_gpt2()
  6583. def set_gguf_parameters(self):
  6584. super().set_gguf_parameters()
  6585. hparams = self.hparams
  6586. if (rope_dim := hparams.get("head_dim")) is None:
  6587. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6588. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6589. rope_scaling = self.hparams.get("rope_scaling") or {}
  6590. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6591. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6592. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6593. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6594. else:
  6595. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6596. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6597. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6598. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6599. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  6600. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  6601. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6602. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6603. self.gguf_writer.add_expert_group_count(hparams["n_group"])
  6604. self.gguf_writer.add_expert_group_used_count(hparams["topk_group"])
  6605. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6606. if hparams["score_function"] == "sigmoid":
  6607. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6608. elif hparams["score_function"] == "softmax":
  6609. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6610. else:
  6611. raise ValueError(f"Unsupported score_function value: {hparams['score_function']}")
  6612. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6613. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  6614. _experts: list[dict[str, Tensor]] | None = None
  6615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6616. if "mlp.experts" in name:
  6617. n_experts = self.hparams["num_experts"]
  6618. assert bid is not None
  6619. tensors: list[tuple[str, Tensor]] = []
  6620. if self._experts is None:
  6621. self._experts = [{} for _ in range(self.block_count)]
  6622. self._experts[bid][name] = data_torch
  6623. if len(self._experts[bid]) >= n_experts * 3:
  6624. # merge the experts into a single 3d tensor
  6625. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6626. datas: list[Tensor] = []
  6627. for xid in range(n_experts):
  6628. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6629. datas.append(self._experts[bid][ename])
  6630. del self._experts[bid][ename]
  6631. data_torch = torch.stack(datas, dim=0)
  6632. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6633. new_name = self.map_tensor_name(merged_name)
  6634. tensors.append((new_name, data_torch))
  6635. return tensors
  6636. if name.endswith(".expert_bias"):
  6637. name = name.replace(".expert_bias", ".expert_bias.bias")
  6638. return [(self.map_tensor_name(name), data_torch)]
  6639. def prepare_tensors(self):
  6640. super().prepare_tensors()
  6641. if self._experts is not None:
  6642. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6643. experts = [k for d in self._experts for k in d.keys()]
  6644. if len(experts) > 0:
  6645. raise ValueError(f"Unprocessed experts: {experts}")
  6646. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6647. class GroveMoeModel(TextModel):
  6648. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6649. def set_gguf_parameters(self):
  6650. super().set_gguf_parameters()
  6651. if (n_experts := self.hparams.get("num_experts")) is not None:
  6652. self.gguf_writer.add_expert_count(n_experts)
  6653. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6654. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6655. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6656. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6657. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6658. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6659. self.gguf_writer.add_experts_per_group(2)
  6660. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6661. self.gguf_writer.add_expert_group_scale(0.05)
  6662. # YaRN is not enabled by default
  6663. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6664. rope_scaling = self.hparams.get("rope_scaling") or {}
  6665. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6666. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6667. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6668. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6669. _experts: list[dict[str, Tensor]] | None = None
  6670. _chunk_experts: list[dict[str, Tensor]] | None = None
  6671. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6672. if name.endswith(".expert_bias"):
  6673. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  6674. return []
  6675. # process the experts separately
  6676. if name.find("chunk_experts") != -1:
  6677. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  6678. assert bid is not None
  6679. if self._chunk_experts is None:
  6680. self._chunk_experts = [{} for _ in range(self.block_count)]
  6681. self._chunk_experts[bid][name] = data_torch
  6682. if len(self._chunk_experts[bid]) >= n_experts * 3:
  6683. tensors: list[tuple[str, Tensor]] = []
  6684. # merge the experts into a single 3d tensor
  6685. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6686. datas: list[Tensor] = []
  6687. for xid in range(n_experts):
  6688. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  6689. datas.append(self._chunk_experts[bid][ename])
  6690. del self._chunk_experts[bid][ename]
  6691. data_torch = torch.stack(datas, dim=0)
  6692. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  6693. new_name = self.map_tensor_name(merged_name)
  6694. tensors.append((new_name, data_torch))
  6695. return tensors
  6696. else:
  6697. return []
  6698. elif name.find("experts") != -1:
  6699. n_experts = self.hparams["num_experts"]
  6700. assert bid is not None
  6701. if self._experts is None:
  6702. self._experts = [{} for _ in range(self.block_count)]
  6703. self._experts[bid][name] = data_torch
  6704. if len(self._experts[bid]) >= n_experts * 3:
  6705. tensors: list[tuple[str, Tensor]] = []
  6706. # merge the experts into a single 3d tensor
  6707. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6708. datas: list[Tensor] = []
  6709. for xid in range(n_experts):
  6710. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6711. datas.append(self._experts[bid][ename])
  6712. del self._experts[bid][ename]
  6713. data_torch = torch.stack(datas, dim=0)
  6714. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6715. new_name = self.map_tensor_name(merged_name)
  6716. tensors.append((new_name, data_torch))
  6717. return tensors
  6718. else:
  6719. return []
  6720. return [(self.map_tensor_name(name), data_torch)]
  6721. def prepare_tensors(self):
  6722. super().prepare_tensors()
  6723. if self._chunk_experts is not None:
  6724. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6725. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  6726. if len(chunk_experts) > 0:
  6727. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  6728. if self._experts is not None:
  6729. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6730. experts = [k for d in self._experts for k in d.keys()]
  6731. if len(experts) > 0:
  6732. raise ValueError(f"Unprocessed experts: {experts}")
  6733. @ModelBase.register("ChameleonForConditionalGeneration")
  6734. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6735. class ChameleonModel(TextModel):
  6736. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6737. def set_gguf_parameters(self):
  6738. super().set_gguf_parameters()
  6739. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6740. def set_vocab(self):
  6741. self._set_vocab_gpt2()
  6742. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6743. # ignore image tokenizer for now
  6744. # TODO: remove this once image support is implemented for Chameleon
  6745. if name.startswith("model.vqmodel"):
  6746. return []
  6747. n_head = self.hparams["num_attention_heads"]
  6748. n_kv_head = self.hparams.get("num_key_value_heads")
  6749. hidden_dim = self.hparams.get("hidden_size")
  6750. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6751. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6752. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6753. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6754. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6755. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6756. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6757. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6758. return [(self.map_tensor_name(name), data_torch)]
  6759. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6760. @staticmethod
  6761. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6762. head_dim = hidden_dim // n_heads
  6763. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6764. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6765. return data_torch
  6766. @ModelBase.register("UltravoxModel")
  6767. class UltravoxModel(TextModel):
  6768. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6769. def __init__(self, *args, **kwargs):
  6770. super().__init__(*args, **kwargs)
  6771. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6772. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6773. class WhisperEncoderModel(MmprojModel):
  6774. has_vision_encoder = False # no vision encoder
  6775. has_audio_encoder = True
  6776. def __init__(self, *args, **kwargs):
  6777. super().__init__(*args, **kwargs)
  6778. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6779. self.hparams["hidden_size"] = self.hparams["d_model"]
  6780. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6781. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6782. def set_gguf_parameters(self):
  6783. super().set_gguf_parameters()
  6784. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6785. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6786. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6787. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6788. if ".conv" in name and ".weight" in name:
  6789. return gguf.GGMLQuantizationType.F16
  6790. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6791. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6792. del bid # unused
  6793. if name.startswith("language_model."):
  6794. # skip language model tensors
  6795. return []
  6796. # prevent clash naming with vision tensors
  6797. if name.startswith("multi_modal_projector"):
  6798. name = "audio." + name
  6799. if "conv1.bias" in name or "conv2.bias" in name:
  6800. # transpose conv1 and conv2 bias
  6801. data_torch = data_torch.unsqueeze(-1)
  6802. return [(self.map_tensor_name(name), data_torch)]
  6803. @ModelBase.register("UltravoxModel")
  6804. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6805. has_vision_encoder = False # no vision encoder
  6806. has_audio_encoder = True
  6807. def set_gguf_parameters(self):
  6808. super().set_gguf_parameters()
  6809. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6810. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6811. @ModelBase.register("VoxtralForConditionalGeneration")
  6812. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6813. has_vision_encoder = False # no vision encoder
  6814. has_audio_encoder = True
  6815. def set_gguf_parameters(self):
  6816. super().set_gguf_parameters()
  6817. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6818. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6819. @ModelBase.register("FalconH1ForCausalLM")
  6820. class FalconH1Model(Mamba2Model):
  6821. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6822. def __init__(self, *args, **kwargs):
  6823. # Set the hparam prefixes for Falcon Mamba2
  6824. self.hparam_prefixes = ["mamba"]
  6825. # Initialize the base Mamba2Model
  6826. super().__init__(*args, **kwargs)
  6827. # Use Llama conversion for attention
  6828. self._transformer_model_class = LlamaModel
  6829. # n_group and d_inner are used during reshape_tensors for mamba2
  6830. self.n_group = self.find_hparam(["n_groups"])
  6831. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6832. self.d_head = self.find_hparam(["d_head"])
  6833. # Initialize any Falcon Mamba2 specific attributes
  6834. self.has_attention = True # Falcon Mamba2 has attention components
  6835. # Load Falcon-H1 multipliers from hyperparameters
  6836. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6837. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6838. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6839. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6840. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6841. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6842. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6843. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6844. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6845. prefixed = []
  6846. for pfx in self.hparam_prefixes:
  6847. prefixed.extend(
  6848. "_".join([pfx, k])
  6849. for k in keys
  6850. )
  6851. keys = list(keys) + prefixed
  6852. return super().find_hparam(keys, *args, **kwargs)
  6853. def set_vocab(self):
  6854. self._set_vocab_gpt2()
  6855. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6856. tensors = list(super().modify_tensors(data_torch, name, bid))
  6857. tensor = tensors[0][1]
  6858. if "down_proj" in name:
  6859. tensor = tensor * self.mlp_multipliers[1]
  6860. elif "gate_proj" in name:
  6861. tensor = tensor * self.mlp_multipliers[0]
  6862. elif "k_proj" in name:
  6863. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6864. elif "q_proj" in name:
  6865. tensor = tensor * self.attention_in_multiplier
  6866. elif "v_proj" in name:
  6867. tensor = tensor * self.attention_in_multiplier
  6868. elif "o_proj" in name:
  6869. tensor = tensor * self.attention_out_multiplier
  6870. elif "out_proj" in name:
  6871. tensor = tensor * self.ssm_out_multiplier
  6872. elif "in_proj" in name:
  6873. tensor = tensor * self.ssm_in_multiplier
  6874. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6875. intermediate_size = self.hparams["mamba_d_ssm"]
  6876. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6877. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6878. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6879. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6880. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6881. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6882. elif "lm_head" in name:
  6883. tensor = tensor * self.hparams["lm_head_multiplier"]
  6884. elif "embed_tokens" in name:
  6885. tensor = tensor * self.hparams["embedding_multiplier"]
  6886. elif "mamba.norm" in name:
  6887. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6888. tensors = [(tensors[0][0], tensor)]
  6889. return tensors
  6890. def set_gguf_parameters(self):
  6891. super().set_gguf_parameters()
  6892. ## General Params ##
  6893. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6894. # Override some Mamba2 defaults
  6895. self.gguf_writer.add_block_count(self.block_count)
  6896. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6897. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6898. ## Attention params ##
  6899. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6900. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6901. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6902. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6903. ## Validation ##
  6904. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6905. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6906. # Add any other Falcon Mamba2 specific configuration
  6907. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6908. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6909. class HunYuanMoEModel(TextModel):
  6910. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6911. def set_vocab(self):
  6912. from transformers import AutoTokenizer
  6913. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6914. # 1. Get the pre-tokenizer identifier hash
  6915. tokpre = self.get_vocab_base_pre(tokenizer)
  6916. # 2. Reverse-engineer the merges list from mergeable_ranks
  6917. merges = []
  6918. vocab = {}
  6919. mergeable_ranks = tokenizer.mergeable_ranks
  6920. for token, rank in mergeable_ranks.items():
  6921. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6922. if len(token) == 1:
  6923. continue
  6924. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6925. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6926. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6927. # 3. Generate the tokens and toktypes lists
  6928. vocab_size = self.hparams["vocab_size"]
  6929. assert tokenizer.vocab_size == vocab_size
  6930. special_tokens = tokenizer.special_tokens
  6931. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6932. tokens: list[str] = []
  6933. toktypes: list[int] = []
  6934. for i in range(vocab_size):
  6935. if i not in reverse_vocab:
  6936. tokens.append(f"[PAD{i}]")
  6937. toktypes.append(gguf.TokenType.UNUSED)
  6938. else:
  6939. token = reverse_vocab[i]
  6940. tokens.append(token)
  6941. if i in special_tokens.values():
  6942. toktypes.append(gguf.TokenType.CONTROL)
  6943. else:
  6944. toktypes.append(gguf.TokenType.NORMAL)
  6945. # 4. Write all vocab-related fields to the GGUF writer
  6946. self.gguf_writer.add_tokenizer_model("gpt2")
  6947. self.gguf_writer.add_tokenizer_pre(tokpre)
  6948. self.gguf_writer.add_token_list(tokens)
  6949. self.gguf_writer.add_token_types(toktypes)
  6950. self.gguf_writer.add_token_merges(merges)
  6951. # 5. Add special tokens and chat templates
  6952. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6953. special_vocab.add_to_gguf(self.gguf_writer)
  6954. # FIX for BOS token: Overwrite incorrect id read from config.json
  6955. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6956. def set_gguf_parameters(self):
  6957. super().set_gguf_parameters()
  6958. hparams = self.hparams
  6959. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6960. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6961. moe_intermediate_size = hparams["moe_intermediate_size"]
  6962. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6963. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6964. moe_topk = hparams["moe_topk"]
  6965. assert all(topk == moe_topk[0] for topk in moe_topk)
  6966. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6967. moe_shared_expert = hparams["num_shared_expert"]
  6968. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6969. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6970. # Rope
  6971. rope_scaling = hparams.get("rope_scaling", {})
  6972. if rope_scaling.get("type") == "dynamic":
  6973. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6974. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6975. alpha = rope_scaling.get("alpha", 1000)
  6976. base = hparams.get("rope_theta", 10000.0)
  6977. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6978. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6979. self.gguf_writer.add_rope_freq_base(scaled_base)
  6980. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6981. self.gguf_writer.add_rope_scaling_factor(1)
  6982. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6983. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6984. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6985. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6986. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6987. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6988. _experts: list[dict[str, Tensor]] | None = None
  6989. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6990. if name == "lm_head.weight":
  6991. if self.hparams.get("tie_word_embeddings", False):
  6992. logger.info("Skipping tied output layer 'lm_head.weight'")
  6993. return []
  6994. if name.find("mlp.experts") != -1:
  6995. n_experts = self.hparams["num_experts"]
  6996. assert bid is not None
  6997. if self._experts is None:
  6998. self._experts = [{} for _ in range(self.block_count)]
  6999. self._experts[bid][name] = data_torch
  7000. if len(self._experts[bid]) >= n_experts * 3:
  7001. # merge the experts into a single 3d tensor
  7002. tensors: list[tuple[str, Tensor]] = []
  7003. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7004. datas: list[Tensor] = []
  7005. for xid in range(n_experts):
  7006. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7007. datas.append(self._experts[bid][ename])
  7008. del self._experts[bid][ename]
  7009. data_torch = torch.stack(datas, dim=0)
  7010. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7011. new_name = self.map_tensor_name(merged_name)
  7012. tensors.append((new_name, data_torch))
  7013. return tensors
  7014. else:
  7015. return []
  7016. return [(self.map_tensor_name(name), data_torch)]
  7017. def prepare_tensors(self):
  7018. super().prepare_tensors()
  7019. if self._experts is not None:
  7020. experts = [k for d in self._experts for k in d.keys()]
  7021. if len(experts) > 0:
  7022. raise ValueError(f"Unprocessed experts: {experts}")
  7023. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7024. class LLaDAMoEModel(TextModel):
  7025. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7026. def set_gguf_parameters(self):
  7027. super().set_gguf_parameters()
  7028. if (n_experts := self.hparams.get("num_experts")) is not None:
  7029. self.gguf_writer.add_expert_count(n_experts)
  7030. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7031. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7032. # number of experts used per token (top-k)
  7033. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7034. self.gguf_writer.add_expert_used_count(n_experts_used)
  7035. self.gguf_writer.add_mask_token_id(156895)
  7036. self.gguf_writer.add_causal_attention(False)
  7037. self.gguf_writer.add_diffusion_shift_logits(False)
  7038. _experts: list[dict[str, Tensor]] | None = None
  7039. # Copied from: Qwen2MoeModel
  7040. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7041. # process the experts separately
  7042. if name.find("experts") != -1:
  7043. n_experts = self.hparams["num_experts"]
  7044. assert bid is not None
  7045. if self._experts is None:
  7046. self._experts = [{} for _ in range(self.block_count)]
  7047. self._experts[bid][name] = data_torch
  7048. if len(self._experts[bid]) >= n_experts * 3:
  7049. tensors: list[tuple[str, Tensor]] = []
  7050. # merge the experts into a single 3d tensor
  7051. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7052. datas: list[Tensor] = []
  7053. for xid in range(n_experts):
  7054. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7055. datas.append(self._experts[bid][ename])
  7056. del self._experts[bid][ename]
  7057. data_torch = torch.stack(datas, dim=0)
  7058. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7059. new_name = self.map_tensor_name(merged_name)
  7060. tensors.append((new_name, data_torch))
  7061. return tensors
  7062. else:
  7063. return []
  7064. return [(self.map_tensor_name(name), data_torch)]
  7065. # Copied from: Qwen2MoeModel
  7066. def prepare_tensors(self):
  7067. super().prepare_tensors()
  7068. if self._experts is not None:
  7069. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7070. experts = [k for d in self._experts for k in d.keys()]
  7071. if len(experts) > 0:
  7072. raise ValueError(f"Unprocessed experts: {experts}")
  7073. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7074. class HunYuanModel(TextModel):
  7075. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7076. def set_vocab(self):
  7077. if (self.dir_model / "tokenizer.json").is_file():
  7078. self._set_vocab_gpt2()
  7079. else:
  7080. from transformers import AutoTokenizer
  7081. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7082. # 1. Get the pre-tokenizer identifier hash
  7083. tokpre = self.get_vocab_base_pre(tokenizer)
  7084. # 2. Reverse-engineer the merges list from mergeable_ranks
  7085. merges = []
  7086. vocab = {}
  7087. mergeable_ranks = tokenizer.mergeable_ranks
  7088. for token, rank in mergeable_ranks.items():
  7089. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7090. if len(token) == 1:
  7091. continue
  7092. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7093. if len(merged) == 2:
  7094. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7095. # 3. Generate the tokens and toktypes lists
  7096. vocab_size = self.hparams["vocab_size"]
  7097. assert tokenizer.vocab_size == vocab_size
  7098. special_tokens = tokenizer.special_tokens
  7099. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7100. tokens: list[str] = []
  7101. toktypes: list[int] = []
  7102. for i in range(vocab_size):
  7103. if i not in reverse_vocab:
  7104. tokens.append(f"[PAD{i}]")
  7105. toktypes.append(gguf.TokenType.UNUSED)
  7106. else:
  7107. token = reverse_vocab[i]
  7108. tokens.append(token)
  7109. if i in special_tokens.values():
  7110. toktypes.append(gguf.TokenType.CONTROL)
  7111. else:
  7112. toktypes.append(gguf.TokenType.NORMAL)
  7113. # 4. Write all vocab-related fields to the GGUF writer
  7114. self.gguf_writer.add_tokenizer_model("gpt2")
  7115. self.gguf_writer.add_tokenizer_pre(tokpre)
  7116. self.gguf_writer.add_token_list(tokens)
  7117. self.gguf_writer.add_token_types(toktypes)
  7118. self.gguf_writer.add_token_merges(merges)
  7119. # 5. Add special tokens and chat templates
  7120. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7121. special_vocab.add_to_gguf(self.gguf_writer)
  7122. # FIX for BOS token: Overwrite incorrect id read from config.json
  7123. if self.hparams['hidden_size'] == 4096:
  7124. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7125. def set_gguf_parameters(self):
  7126. super().set_gguf_parameters()
  7127. hparams = self.hparams
  7128. # Rope
  7129. rope_scaling = hparams.get("rope_scaling", {})
  7130. if rope_scaling.get("type") == "dynamic":
  7131. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7132. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7133. alpha = rope_scaling.get("alpha", 50)
  7134. base = hparams.get("rope_theta", 10000.0)
  7135. dim = hparams["head_dim"]
  7136. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7137. self.gguf_writer.add_rope_freq_base(scaled_base)
  7138. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7139. self.gguf_writer.add_rope_scaling_factor(1)
  7140. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7141. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7142. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7143. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7144. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7145. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7147. if name == "lm_head.weight":
  7148. if self.hparams.get("tie_word_embeddings", False):
  7149. logger.info("Skipping tied output layer 'lm_head.weight'")
  7150. return []
  7151. return [(self.map_tensor_name(name), data_torch)]
  7152. @ModelBase.register("SmolLM3ForCausalLM")
  7153. class SmolLM3Model(LlamaModel):
  7154. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7155. def set_vocab(self):
  7156. super().set_vocab()
  7157. # remove unsupported array slicing in chat template
  7158. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7159. from transformers import AutoTokenizer
  7160. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7161. if tokenizer.chat_template is not None:
  7162. chat_template = tokenizer.chat_template.replace("[:]", "")
  7163. self.gguf_writer.add_chat_template(chat_template)
  7164. @ModelBase.register("GptOssForCausalLM")
  7165. class GptOssModel(TextModel):
  7166. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7167. def transform_nibble_layout(self, tensor):
  7168. assert tensor.dtype == torch.uint8
  7169. assert tensor.shape[-1] == 16
  7170. # swap nibbles
  7171. t_lo = tensor & 0x0F
  7172. t_hi = tensor & 0xF0
  7173. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7174. tensor = t_swapped
  7175. # transform aaaa...bbbb... to abababab...
  7176. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7177. # get a_
  7178. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7179. blk_a1 = (blk_a << 4).view(-1, 1)
  7180. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7181. # get _b
  7182. blk_b0 = (blk_b >> 4).view(-1, 1)
  7183. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7184. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7185. # swap once more
  7186. out = blk_a | blk_b
  7187. out_h = out & 0xF0
  7188. out_l = out & 0x0F
  7189. out = (out_h >> 4) | (out_l << 4)
  7190. return out
  7191. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7192. assert blocks.dtype == torch.uint8
  7193. assert scales.dtype == torch.uint8
  7194. scales = scales.unsqueeze(-1)
  7195. assert len(blocks.shape) == 4
  7196. assert len(scales.shape) == 4
  7197. blocks = self.transform_nibble_layout(blocks)
  7198. new_data = torch.concat((scales, blocks), dim=-1)
  7199. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7200. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7201. # flatten last dim
  7202. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7203. new_data = new_data.numpy()
  7204. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7205. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7206. blocks0: Tensor = torch.zeros(1)
  7207. blocks1: Tensor = torch.zeros(1)
  7208. # we assume that tensors are loaded in the correct order
  7209. for name, data_torch in self.get_tensors():
  7210. if "mlp.experts.down_proj_blocks" in name:
  7211. blocks0 = data_torch
  7212. elif "mlp.experts.down_proj_scales" in name:
  7213. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7214. self.repack_mxfp4(new_name, blocks0, data_torch)
  7215. elif "mlp.experts.gate_up_proj_blocks" in name:
  7216. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7217. elif "mlp.experts.gate_up_proj_scales" in name:
  7218. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7219. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7220. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7221. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7222. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7223. return []
  7224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7225. del bid # unused
  7226. if "sinks" in name:
  7227. name += ".weight"
  7228. # correct naming for down_proj
  7229. if "down_proj" in name:
  7230. if name.endswith("_bias"):
  7231. name = name.replace("down_proj_bias", "down_proj.bias")
  7232. elif "_blocks" not in name and "_scales" not in name:
  7233. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7234. name = name.replace("down_proj", "down_proj.weight")
  7235. data_torch = data_torch.transpose(-1, -2)
  7236. else:
  7237. # otherwise, it should already be repacked to ggml MXFP4 format
  7238. return []
  7239. # split the gate_up into gate and up
  7240. if "gate_up_proj" in name:
  7241. if name.endswith("_bias"):
  7242. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7243. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7244. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7245. return [
  7246. (self.map_tensor_name(name_gate), gate_proj_bias),
  7247. (self.map_tensor_name(name_up), up_proj_bias)
  7248. ]
  7249. elif "_blocks" not in name and "_scales" not in name:
  7250. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7251. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7252. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7253. data_torch = data_torch.transpose(-1, -2)
  7254. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7255. return [
  7256. (self.map_tensor_name(name_gate), gate_proj_weight),
  7257. (self.map_tensor_name(name_up), up_proj_weight)
  7258. ]
  7259. else:
  7260. # otherwise, it should already be repacked to ggml MXFP4 format
  7261. return []
  7262. return [(self.map_tensor_name(name), data_torch)]
  7263. def set_vocab(self):
  7264. self._set_vocab_gpt2()
  7265. def set_gguf_parameters(self):
  7266. super().set_gguf_parameters()
  7267. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7268. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7269. rope_scaling = self.hparams.get("rope_scaling") or {}
  7270. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7271. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7272. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7273. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7274. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7275. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7276. class LFM2Model(TextModel):
  7277. model_arch = gguf.MODEL_ARCH.LFM2
  7278. def _add_feed_forward_length(self):
  7279. ff_dim = self.hparams["block_ff_dim"]
  7280. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7281. ff_dim = self.hparams["block_ff_dim"]
  7282. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7283. multiple_of = self.hparams["block_multiple_of"]
  7284. if auto_adjust_ff_dim:
  7285. ff_dim = int(2 * ff_dim / 3)
  7286. # custom dim factor multiplier
  7287. if ffn_dim_multiplier is not None:
  7288. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7289. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7290. self.gguf_writer.add_feed_forward_length(ff_dim)
  7291. def set_gguf_parameters(self):
  7292. # set num_key_value_heads only for attention layers
  7293. self.hparams["num_key_value_heads"] = [
  7294. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7295. for layer_type in self.hparams["layer_types"]
  7296. ]
  7297. super().set_gguf_parameters()
  7298. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7299. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7300. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7301. self._add_feed_forward_length()
  7302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7303. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7304. if is_vision_tensor:
  7305. # skip vision tensors
  7306. return []
  7307. name = name.replace("language_model.", "")
  7308. # conv op requires 2d tensor
  7309. if 'conv.conv' in name:
  7310. data_torch = data_torch.squeeze(1)
  7311. return [(self.map_tensor_name(name), data_torch)]
  7312. @ModelBase.register("Lfm2MoeForCausalLM")
  7313. class LFM2MoeModel(TextModel):
  7314. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7315. def set_gguf_parameters(self):
  7316. # set num_key_value_heads only for attention layers
  7317. self.hparams["num_key_value_heads"] = [
  7318. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7319. for layer_type in self.hparams["layer_types"]
  7320. ]
  7321. super().set_gguf_parameters()
  7322. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7323. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7324. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7325. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7326. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7327. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7328. # cache for experts weights for merging
  7329. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7330. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7331. # conv op requires 2d tensor
  7332. if 'conv.conv' in name:
  7333. data_torch = data_torch.squeeze(1)
  7334. if name.endswith(".expert_bias"):
  7335. name = name.replace(".expert_bias", ".expert_bias.bias")
  7336. # merge expert weights
  7337. if 'experts' in name:
  7338. n_experts = self.hparams["num_experts"]
  7339. assert bid is not None
  7340. expert_cache = self._experts_cache.setdefault(bid, {})
  7341. expert_cache[name] = data_torch
  7342. expert_weights = ["w1", "w2", "w3"]
  7343. # not enough expert weights to merge
  7344. if len(expert_cache) < n_experts * len(expert_weights):
  7345. return []
  7346. tensors: list[tuple[str, Tensor]] = []
  7347. for w_name in expert_weights:
  7348. datas: list[Tensor] = []
  7349. for xid in range(n_experts):
  7350. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7351. datas.append(expert_cache[ename])
  7352. del expert_cache[ename]
  7353. data_torch = torch.stack(datas, dim=0)
  7354. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7355. new_name = self.map_tensor_name(merged_name)
  7356. tensors.append((new_name, data_torch))
  7357. del self._experts_cache[bid]
  7358. return tensors
  7359. return [(self.map_tensor_name(name), data_torch)]
  7360. def prepare_tensors(self):
  7361. super().prepare_tensors()
  7362. assert not self._experts_cache
  7363. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7364. class LFM2VLModel(MmprojModel):
  7365. def __init__(self, *args, **kwargs):
  7366. super().__init__(*args, **kwargs)
  7367. assert self.hparams_vision is not None
  7368. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7369. self.hparams_vision["image_size"] = 256
  7370. def set_gguf_parameters(self):
  7371. super().set_gguf_parameters()
  7372. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7373. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7374. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7375. self.gguf_writer.add_vision_use_gelu(True)
  7376. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7377. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7378. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7380. del bid # unused
  7381. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7382. if is_vision_tensor:
  7383. # remove "model." prefix
  7384. name = name.replace("model.vision_tower.", "vision_tower.")
  7385. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7386. if "patch_embedding.weight" in name:
  7387. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7388. return [(self.map_tensor_name(name), data_torch)]
  7389. return [] # skip other tensors
  7390. @ModelBase.register("SmallThinkerForCausalLM")
  7391. class SmallThinkerModel(TextModel):
  7392. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7393. def set_gguf_parameters(self):
  7394. super().set_gguf_parameters()
  7395. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7396. self.gguf_writer.add_expert_count(n_experts)
  7397. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7398. self.gguf_writer.add_expert_used_count(n_experts_used)
  7399. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7400. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7401. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7402. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7403. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7404. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7405. else:
  7406. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7407. # YaRN is not enabled by default
  7408. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7409. rope_scaling = self.hparams.get("rope_scaling") or {}
  7410. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7411. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7412. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7413. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7414. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7415. if sliding_window_layout:
  7416. for i in sliding_window_layout:
  7417. if i != 0:
  7418. sliding_window = self.hparams.get("sliding_window_size")
  7419. if sliding_window:
  7420. self.gguf_writer.add_sliding_window(sliding_window)
  7421. break
  7422. _experts: list[dict[str, Tensor]] | None = None
  7423. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7424. # process the experts separately
  7425. if name.find("experts") != -1:
  7426. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7427. assert bid is not None
  7428. if self._experts is None:
  7429. self._experts = [{} for _ in range(self.block_count)]
  7430. self._experts[bid][name] = data_torch
  7431. if len(self._experts[bid]) >= n_experts * 3:
  7432. tensors: list[tuple[str, Tensor]] = []
  7433. # merge the experts into a single 3d tensor
  7434. for w_name in ["down", "gate", "up"]:
  7435. datas: list[Tensor] = []
  7436. for xid in range(n_experts):
  7437. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7438. datas.append(self._experts[bid][ename])
  7439. del self._experts[bid][ename]
  7440. data_torch = torch.stack(datas, dim=0)
  7441. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7442. new_name = self.map_tensor_name(merged_name)
  7443. tensors.append((new_name, data_torch))
  7444. return tensors
  7445. else:
  7446. return []
  7447. return [(self.map_tensor_name(name), data_torch)]
  7448. def prepare_tensors(self):
  7449. super().prepare_tensors()
  7450. if self._experts is not None:
  7451. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7452. experts = [k for d in self._experts for k in d.keys()]
  7453. if len(experts) > 0:
  7454. raise ValueError(f"Unprocessed experts: {experts}")
  7455. @ModelBase.register("ApertusForCausalLM")
  7456. class ApertusModel(LlamaModel):
  7457. model_arch = gguf.MODEL_ARCH.APERTUS
  7458. undo_permute = False
  7459. _alpha_n = {}
  7460. _alpha_p = {}
  7461. _beta = {}
  7462. _eps = {}
  7463. def modify_tensors(self, data_torch, name, bid):
  7464. # Handle xIELU activation parameters
  7465. n_layers = self.hparams["num_hidden_layers"]
  7466. if name.endswith(".act_fn.alpha_n"):
  7467. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  7468. if (len(self._alpha_n) == n_layers):
  7469. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  7470. return []
  7471. if name.endswith(".act_fn.alpha_p"):
  7472. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  7473. if (len(self._alpha_p) == n_layers):
  7474. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  7475. return []
  7476. if name.endswith(".act_fn.beta"):
  7477. self._beta[bid] = data_torch.to("cpu").float().item()
  7478. if (len(self._beta) == n_layers):
  7479. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  7480. return []
  7481. if name.endswith(".act_fn.eps"):
  7482. self._eps[bid] = data_torch.to("cpu").float().item()
  7483. if (len(self._eps) == n_layers):
  7484. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  7485. return []
  7486. return super().modify_tensors(data_torch, name, bid)
  7487. class MistralModel(LlamaModel):
  7488. model_arch = gguf.MODEL_ARCH.LLAMA
  7489. model_name = "Mistral"
  7490. hf_arch = ""
  7491. is_mistral_format = True
  7492. undo_permute = False
  7493. @staticmethod
  7494. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7495. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  7496. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7497. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7498. )
  7499. if vocab.tokenizer.version == TokenizerVersion.v1:
  7500. return "mistral-v1"
  7501. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7502. return "mistral-v3"
  7503. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7504. return "mistral-v3-tekken"
  7505. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7506. return "mistral-v7"
  7507. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7508. return "mistral-v7-tekken"
  7509. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7510. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7511. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7512. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7513. else:
  7514. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7515. if is_mistral_format:
  7516. err_message += (
  7517. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7518. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7519. )
  7520. raise ValueError(err_message)
  7521. template_path = templates_dir / template_file
  7522. if not template_path.exists():
  7523. raise FileNotFoundError(f"Template file not found: {template_path}")
  7524. with open(template_path, "r", encoding="utf-8") as f:
  7525. template = f.read()
  7526. return template
  7527. class PixtralModel(LlavaVisionModel):
  7528. model_name = "Pixtral"
  7529. hf_arch = ""
  7530. is_mistral_format = True
  7531. def set_gguf_parameters(self):
  7532. super().set_gguf_parameters()
  7533. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7534. self.gguf_writer.add_vision_attention_layernorm_eps(
  7535. self.find_hparam(["norm_eps"])
  7536. )
  7537. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7538. self.gguf_writer.add_vision_use_silu(True)
  7539. # spatial_merge_size
  7540. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7541. self.gguf_writer.add_vision_spatial_merge_size(
  7542. self.find_vparam(["spatial_merge_size"])
  7543. )
  7544. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7545. if name == "vision_language_adapter.w_in.weight":
  7546. return "mm.1.weight"
  7547. elif name == "vision_language_adapter.w_out.weight":
  7548. return "mm.2.weight"
  7549. return super().map_tensor_name(name, try_suffixes)
  7550. @ModelBase.register("KimiVLForConditionalGeneration")
  7551. class KimiVLModel(MmprojModel):
  7552. def __init__(self, *args, **kwargs):
  7553. super().__init__(*args, **kwargs)
  7554. assert self.hparams_vision is not None
  7555. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7556. def set_gguf_parameters(self):
  7557. super().set_gguf_parameters()
  7558. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7559. self.gguf_writer.add_vision_use_gelu(True)
  7560. self.gguf_writer.add_vision_projector_scale_factor(2)
  7561. # eps is the same as pytorch's default value
  7562. assert self.hparams_vision is not None
  7563. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7564. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7565. del bid # unused
  7566. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7567. if is_vision_tensor:
  7568. if "pos_emb.weight" in name:
  7569. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7570. elif "wqkv" in name:
  7571. split_dim = 0 if "weight" in name else -1
  7572. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7573. return [
  7574. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7575. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7576. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7577. ]
  7578. return [(self.map_tensor_name(name), data_torch)]
  7579. return [] # skip other tensors
  7580. ###### CONVERSION LOGIC ######
  7581. # tree of lazy tensors
  7582. class LazyTorchTensor(gguf.LazyBase):
  7583. _tensor_type = torch.Tensor
  7584. # to keep the type-checker happy
  7585. dtype: torch.dtype
  7586. shape: torch.Size
  7587. # only used when converting a torch.Tensor to a np.ndarray
  7588. _dtype_map: dict[torch.dtype, type] = {
  7589. torch.float16: np.float16,
  7590. torch.float32: np.float32,
  7591. torch.uint8: np.uint8,
  7592. }
  7593. # used for safetensors slices
  7594. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7595. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7596. _dtype_str_map: dict[str, torch.dtype] = {
  7597. "F64": torch.float64,
  7598. "F32": torch.float32,
  7599. "BF16": torch.bfloat16,
  7600. "F16": torch.float16,
  7601. # "U64": torch.uint64,
  7602. "I64": torch.int64,
  7603. # "U32": torch.uint32,
  7604. "I32": torch.int32,
  7605. # "U16": torch.uint16,
  7606. "I16": torch.int16,
  7607. "U8": torch.uint8,
  7608. "I8": torch.int8,
  7609. "BOOL": torch.bool,
  7610. "F8_E4M3": torch.float8_e4m3fn,
  7611. "F8_E5M2": torch.float8_e5m2,
  7612. }
  7613. def numpy(self) -> gguf.LazyNumpyTensor:
  7614. dtype = self._dtype_map[self.dtype]
  7615. return gguf.LazyNumpyTensor(
  7616. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7617. args=(self,),
  7618. func=(lambda s: s.numpy())
  7619. )
  7620. @classmethod
  7621. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7622. return torch.empty(size=shape, dtype=dtype, device="meta")
  7623. @classmethod
  7624. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7625. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7626. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7627. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  7628. return cast(torch.Tensor, lazy)
  7629. @classmethod
  7630. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7631. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7632. shape = remote_tensor.shape
  7633. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7634. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7635. return cast(torch.Tensor, lazy)
  7636. @classmethod
  7637. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7638. del types # unused
  7639. if kwargs is None:
  7640. kwargs = {}
  7641. if func is torch.Tensor.numpy:
  7642. return args[0].numpy()
  7643. return cls._wrap_fn(func)(*args, **kwargs)
  7644. def parse_args() -> argparse.Namespace:
  7645. parser = argparse.ArgumentParser(
  7646. description="Convert a huggingface model to a GGML compatible file")
  7647. parser.add_argument(
  7648. "--vocab-only", action="store_true",
  7649. help="extract only the vocab",
  7650. )
  7651. parser.add_argument(
  7652. "--outfile", type=Path,
  7653. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7654. )
  7655. parser.add_argument(
  7656. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7657. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7658. )
  7659. parser.add_argument(
  7660. "--bigendian", action="store_true",
  7661. help="model is executed on big endian machine",
  7662. )
  7663. parser.add_argument(
  7664. "model", type=str,
  7665. help="directory containing model file or huggingface repository ID (if --remote)",
  7666. nargs="?",
  7667. )
  7668. parser.add_argument(
  7669. "--use-temp-file", action="store_true",
  7670. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7671. )
  7672. parser.add_argument(
  7673. "--no-lazy", action="store_true",
  7674. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7675. )
  7676. parser.add_argument(
  7677. "--model-name", type=str, default=None,
  7678. help="name of the model",
  7679. )
  7680. parser.add_argument(
  7681. "--verbose", action="store_true",
  7682. help="increase output verbosity",
  7683. )
  7684. parser.add_argument(
  7685. "--split-max-tensors", type=int, default=0,
  7686. help="max tensors in each split",
  7687. )
  7688. parser.add_argument(
  7689. "--split-max-size", type=str, default="0",
  7690. help="max size per split N(M|G)",
  7691. )
  7692. parser.add_argument(
  7693. "--dry-run", action="store_true",
  7694. help="only print out a split plan and exit, without writing any new files",
  7695. )
  7696. parser.add_argument(
  7697. "--no-tensor-first-split", action="store_true",
  7698. help="do not add tensors to the first split (disabled by default)"
  7699. )
  7700. parser.add_argument(
  7701. "--metadata", type=Path,
  7702. help="Specify the path for an authorship metadata override file"
  7703. )
  7704. parser.add_argument(
  7705. "--print-supported-models", action="store_true",
  7706. help="Print the supported models"
  7707. )
  7708. parser.add_argument(
  7709. "--remote", action="store_true",
  7710. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7711. )
  7712. parser.add_argument(
  7713. "--mmproj", action="store_true",
  7714. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7715. )
  7716. parser.add_argument(
  7717. "--mistral-format", action="store_true",
  7718. help="Whether the model is stored following the Mistral format.",
  7719. )
  7720. parser.add_argument(
  7721. "--disable-mistral-community-chat-template", action="store_true",
  7722. help=(
  7723. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7724. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7725. )
  7726. )
  7727. parser.add_argument(
  7728. "--sentence-transformers-dense-modules", action="store_true",
  7729. help=("Whether to include sentence-transformers dense modules."
  7730. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  7731. "Default these modules are not included.")
  7732. )
  7733. args = parser.parse_args()
  7734. if not args.print_supported_models and args.model is None:
  7735. parser.error("the following arguments are required: model")
  7736. return args
  7737. def split_str_to_n_bytes(split_str: str) -> int:
  7738. if split_str.endswith("K"):
  7739. n = int(split_str[:-1]) * 1000
  7740. elif split_str.endswith("M"):
  7741. n = int(split_str[:-1]) * 1000 * 1000
  7742. elif split_str.endswith("G"):
  7743. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7744. elif split_str.isnumeric():
  7745. n = int(split_str)
  7746. else:
  7747. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7748. if n < 0:
  7749. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7750. return n
  7751. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7752. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7753. # maybe we should fallback to text model's arch in that case, since not many models have both
  7754. text_config = hparams.get("text_config", {})
  7755. vision_config = hparams.get("vision_config", {})
  7756. arch = None
  7757. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7758. arch = arches[0]
  7759. elif "ssm_cfg" in hparams:
  7760. # For non-hf Mamba and Mamba2 models
  7761. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7762. # if "architectures" is found in the sub-config, use that instead
  7763. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7764. arch = text_config["architectures"][0]
  7765. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7766. arch = vision_config["architectures"][0]
  7767. if arch is None:
  7768. raise ValueError("Failed to detect model architecture")
  7769. return arch
  7770. def main() -> None:
  7771. args = parse_args()
  7772. if args.print_supported_models:
  7773. logger.error("Supported models:")
  7774. ModelBase.print_registered_models()
  7775. sys.exit(0)
  7776. if args.verbose:
  7777. logging.basicConfig(level=logging.DEBUG)
  7778. else:
  7779. logging.basicConfig(level=logging.INFO)
  7780. if args.remote:
  7781. hf_repo_id = args.model
  7782. from huggingface_hub import snapshot_download
  7783. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  7784. if args.sentence_transformers_dense_modules:
  7785. # include sentence-transformers dense modules safetensors files
  7786. allowed_patterns.append("*.safetensors")
  7787. local_dir = snapshot_download(
  7788. repo_id=hf_repo_id,
  7789. allow_patterns=allowed_patterns)
  7790. dir_model = Path(local_dir)
  7791. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7792. else:
  7793. hf_repo_id = None
  7794. dir_model = Path(args.model)
  7795. if not dir_model.is_dir():
  7796. logger.error(f'Error: {dir_model} is not a directory')
  7797. sys.exit(1)
  7798. ftype_map: dict[str, gguf.LlamaFileType] = {
  7799. "f32": gguf.LlamaFileType.ALL_F32,
  7800. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7801. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7802. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7803. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7804. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7805. "auto": gguf.LlamaFileType.GUESSED,
  7806. }
  7807. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7808. if args.use_temp_file and is_split:
  7809. logger.error("Error: Cannot use temp file when splitting")
  7810. sys.exit(1)
  7811. if args.outfile is not None:
  7812. fname_out = args.outfile
  7813. elif hf_repo_id:
  7814. # if remote, use the model ID as the output file name
  7815. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7816. else:
  7817. fname_out = dir_model
  7818. logger.info(f"Loading model: {dir_model.name}")
  7819. if args.mmproj:
  7820. if "mmproj" not in fname_out.name:
  7821. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7822. is_mistral_format = args.mistral_format
  7823. if is_mistral_format and not _mistral_common_installed:
  7824. raise ImportError(_mistral_import_error_msg)
  7825. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7826. with torch.inference_mode():
  7827. output_type = ftype_map[args.outtype]
  7828. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7829. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7830. if not is_mistral_format:
  7831. model_architecture = get_model_architecture(hparams, model_type)
  7832. logger.info(f"Model architecture: {model_architecture}")
  7833. try:
  7834. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7835. except NotImplementedError:
  7836. logger.error(f"Model {model_architecture} is not supported")
  7837. sys.exit(1)
  7838. elif args.mmproj:
  7839. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7840. model_class = PixtralModel
  7841. else:
  7842. model_class = MistralModel
  7843. model_instance = model_class(dir_model, output_type, fname_out,
  7844. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7845. eager=args.no_lazy,
  7846. metadata_override=args.metadata, model_name=args.model_name,
  7847. split_max_tensors=args.split_max_tensors,
  7848. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7849. small_first_shard=args.no_tensor_first_split,
  7850. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  7851. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  7852. )
  7853. if args.vocab_only:
  7854. logger.info("Exporting model vocab...")
  7855. model_instance.write_vocab()
  7856. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7857. else:
  7858. logger.info("Exporting model...")
  7859. model_instance.write()
  7860. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7861. logger.info(f"Model successfully exported to {out_path}")
  7862. if __name__ == '__main__':
  7863. main()