main.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640
  1. // Defines sigaction on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #endif
  5. #include "common.h"
  6. #include "llama.h"
  7. #include <cassert>
  8. #include <cinttypes>
  9. #include <cmath>
  10. #include <cstdio>
  11. #include <cstring>
  12. #include <ctime>
  13. #include <fstream>
  14. #include <iostream>
  15. #include <string>
  16. #include <vector>
  17. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  18. #include <signal.h>
  19. #include <unistd.h>
  20. #elif defined (_WIN32)
  21. #include <signal.h>
  22. #endif
  23. static console_state con_st;
  24. static llama_context ** g_ctx;
  25. static bool is_interacting = false;
  26. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  27. void sigint_handler(int signo) {
  28. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  29. printf("\n"); // this also force flush stdout.
  30. if (signo == SIGINT) {
  31. if (!is_interacting) {
  32. is_interacting=true;
  33. } else {
  34. llama_print_timings(*g_ctx);
  35. _exit(130);
  36. }
  37. }
  38. }
  39. #endif
  40. int main(int argc, char ** argv) {
  41. gpt_params params;
  42. params.model = "models/llama-7B/ggml-model.bin";
  43. if (gpt_params_parse(argc, argv, params) == false) {
  44. return 1;
  45. }
  46. // save choice to use color for later
  47. // (note for later: this is a slightly awkward choice)
  48. con_st.use_color = params.use_color;
  49. #if defined (_WIN32)
  50. win32_console_init(params.use_color);
  51. #endif
  52. if (params.perplexity) {
  53. printf("\n************\n");
  54. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  55. printf("************\n\n");
  56. return 0;
  57. }
  58. if (params.embedding) {
  59. printf("\n************\n");
  60. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  61. printf("************\n\n");
  62. return 0;
  63. }
  64. if (params.n_ctx > 2048) {
  65. fprintf(stderr, "%s: warning: model does not support context sizes greater than 2048 tokens (%d specified);"
  66. "expect poor results\n", __func__, params.n_ctx);
  67. }
  68. if (params.seed <= 0) {
  69. params.seed = time(NULL);
  70. }
  71. fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
  72. std::mt19937 rng(params.seed);
  73. if (params.random_prompt) {
  74. params.prompt = gpt_random_prompt(rng);
  75. }
  76. // params.prompt = R"(// this function checks if the number n is prime
  77. //bool is_prime(int n) {)";
  78. llama_context * ctx;
  79. g_ctx = &ctx;
  80. // load the model
  81. {
  82. auto lparams = llama_context_default_params();
  83. lparams.n_ctx = params.n_ctx;
  84. lparams.n_parts = params.n_parts;
  85. lparams.seed = params.seed;
  86. lparams.f16_kv = params.memory_f16;
  87. lparams.use_mmap = params.use_mmap;
  88. lparams.use_mlock = params.use_mlock;
  89. ctx = llama_init_from_file(params.model.c_str(), lparams);
  90. if (ctx == NULL) {
  91. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  92. return 1;
  93. }
  94. }
  95. if (!params.lora_adapter.empty()) {
  96. int err = llama_apply_lora_from_file(ctx,
  97. params.lora_adapter.c_str(),
  98. params.lora_base.empty() ? NULL : params.lora_base.c_str(),
  99. params.n_threads);
  100. if (err != 0) {
  101. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  102. return 1;
  103. }
  104. }
  105. // print system information
  106. {
  107. fprintf(stderr, "\n");
  108. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  109. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  110. }
  111. // determine the maximum memory usage needed to do inference for the given n_batch and n_predict parameters
  112. // uncomment the "used_mem" line in llama.cpp to see the results
  113. if (params.mem_test) {
  114. {
  115. const std::vector<llama_token> tmp(params.n_batch, 0);
  116. llama_eval(ctx, tmp.data(), tmp.size(), 0, params.n_threads);
  117. }
  118. {
  119. const std::vector<llama_token> tmp = { 0, };
  120. llama_eval(ctx, tmp.data(), tmp.size(), params.n_predict - 1, params.n_threads);
  121. }
  122. llama_print_timings(ctx);
  123. llama_free(ctx);
  124. return 0;
  125. }
  126. // Add a space in front of the first character to match OG llama tokenizer behavior
  127. params.prompt.insert(0, 1, ' ');
  128. std::string path_session = params.path_session;
  129. std::vector<llama_token> session_tokens;
  130. if (!path_session.empty()) {
  131. fprintf(stderr, "%s: attempting to load saved session from %s..\n", __func__, path_session.c_str());
  132. // REVIEW - fopen to check for existing session
  133. FILE * fp = std::fopen(path_session.c_str(), "rb");
  134. if (fp != NULL) {
  135. std::fclose(fp);
  136. session_tokens.resize(params.n_ctx);
  137. size_t n_token_count_out = 0;
  138. const size_t n_session_bytes = llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out);
  139. session_tokens.resize(n_token_count_out);
  140. if (n_session_bytes > 0) {
  141. fprintf(stderr, "%s: loaded %zu bytes of session data!\n", __func__, n_session_bytes);
  142. } else {
  143. fprintf(stderr, "%s: could not load session file, will recreate\n", __func__);
  144. }
  145. } else {
  146. fprintf(stderr, "%s: session file does not exist, will create\n", __func__);
  147. }
  148. }
  149. // tokenize the prompt
  150. auto embd_inp = ::llama_tokenize(ctx, params.prompt, true);
  151. const int n_ctx = llama_n_ctx(ctx);
  152. if ((int) embd_inp.size() > n_ctx - 4) {
  153. fprintf(stderr, "%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  154. return 1;
  155. }
  156. // debug message about similarity of saved session, if applicable
  157. size_t n_matching_session_tokens = 0;
  158. if (session_tokens.size()) {
  159. for (llama_token id : session_tokens) {
  160. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  161. break;
  162. }
  163. n_matching_session_tokens++;
  164. }
  165. if (n_matching_session_tokens >= embd_inp.size()) {
  166. fprintf(stderr, "%s: session file has exact match for prompt!\n", __func__);
  167. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  168. fprintf(stderr, "%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  169. __func__, n_matching_session_tokens, embd_inp.size());
  170. } else {
  171. fprintf(stderr, "%s: session file matches %zu / %zu tokens of prompt\n",
  172. __func__, n_matching_session_tokens, embd_inp.size());
  173. }
  174. }
  175. // number of tokens to keep when resetting context
  176. if (params.n_keep < 0 || params.n_keep > (int)embd_inp.size() || params.instruct) {
  177. params.n_keep = (int)embd_inp.size();
  178. }
  179. // prefix & suffix for instruct mode
  180. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", true);
  181. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  182. // in instruct mode, we inject a prefix and a suffix to each input by the user
  183. if (params.instruct) {
  184. params.interactive_first = true;
  185. params.antiprompt.push_back("### Instruction:\n\n");
  186. }
  187. // enable interactive mode if reverse prompt or interactive start is specified
  188. if (params.antiprompt.size() != 0 || params.interactive_first) {
  189. params.interactive = true;
  190. }
  191. // determine newline token
  192. auto llama_token_newline = ::llama_tokenize(ctx, "\n", false);
  193. if (params.verbose_prompt) {
  194. fprintf(stderr, "\n");
  195. fprintf(stderr, "%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  196. fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  197. for (int i = 0; i < (int) embd_inp.size(); i++) {
  198. fprintf(stderr, "%6d -> '%s'\n", embd_inp[i], llama_token_to_str(ctx, embd_inp[i]));
  199. }
  200. if (params.n_keep > 0) {
  201. fprintf(stderr, "%s: static prompt based on n_keep: '", __func__);
  202. for (int i = 0; i < params.n_keep; i++) {
  203. fprintf(stderr, "%s", llama_token_to_str(ctx, embd_inp[i]));
  204. }
  205. fprintf(stderr, "'\n");
  206. }
  207. fprintf(stderr, "\n");
  208. }
  209. if (params.interactive) {
  210. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  211. struct sigaction sigint_action;
  212. sigint_action.sa_handler = sigint_handler;
  213. sigemptyset (&sigint_action.sa_mask);
  214. sigint_action.sa_flags = 0;
  215. sigaction(SIGINT, &sigint_action, NULL);
  216. #elif defined (_WIN32)
  217. signal(SIGINT, sigint_handler);
  218. #endif
  219. fprintf(stderr, "%s: interactive mode on.\n", __func__);
  220. if (params.antiprompt.size()) {
  221. for (auto antiprompt : params.antiprompt) {
  222. fprintf(stderr, "Reverse prompt: '%s'\n", antiprompt.c_str());
  223. }
  224. }
  225. if (!params.input_prefix.empty()) {
  226. fprintf(stderr, "Input prefix: '%s'\n", params.input_prefix.c_str());
  227. }
  228. }
  229. fprintf(stderr, "sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  230. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  231. fprintf(stderr, "generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  232. fprintf(stderr, "\n\n");
  233. // TODO: replace with ring-buffer
  234. std::vector<llama_token> last_n_tokens(n_ctx);
  235. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  236. if (params.interactive) {
  237. fprintf(stderr, "== Running in interactive mode. ==\n"
  238. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  239. " - Press Ctrl+C to interject at any time.\n"
  240. #endif
  241. " - Press Return to return control to LLaMa.\n"
  242. " - If you want to submit another line, end your input in '\\'.\n\n");
  243. is_interacting = params.interactive_first;
  244. }
  245. bool is_antiprompt = false;
  246. bool input_noecho = false;
  247. // HACK - because session saving incurs a non-negligible delay, for now skip re-saving session
  248. // if we loaded a session with at least 75% similarity. It's currently just used to speed up the
  249. // initial prompt so it doesn't need to be an exact match.
  250. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < (embd_inp.size() * 3 / 4);
  251. int n_past = 0;
  252. int n_remain = params.n_predict;
  253. int n_consumed = 0;
  254. int n_session_consumed = 0;
  255. // the first thing we will do is to output the prompt, so set color accordingly
  256. set_console_color(con_st, CONSOLE_COLOR_PROMPT);
  257. std::vector<llama_token> embd;
  258. while (n_remain != 0 || params.interactive) {
  259. // predict
  260. if (embd.size() > 0) {
  261. // infinite text generation via context swapping
  262. // if we run out of context:
  263. // - take the n_keep first tokens from the original prompt (via n_past)
  264. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  265. if (n_past + (int) embd.size() > n_ctx) {
  266. const int n_left = n_past - params.n_keep;
  267. n_past = params.n_keep;
  268. // insert n_left/2 tokens at the start of embd from last_n_tokens
  269. embd.insert(embd.begin(), last_n_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_n_tokens.end() - embd.size());
  270. // REVIEW - stop saving session if we run out of context
  271. path_session = "";
  272. //printf("\n---\n");
  273. //printf("resetting: '");
  274. //for (int i = 0; i < (int) embd.size(); i++) {
  275. // printf("%s", llama_token_to_str(ctx, embd[i]));
  276. //}
  277. //printf("'\n");
  278. //printf("\n---\n");
  279. }
  280. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  281. // REVIEW
  282. if (n_session_consumed < (int) session_tokens.size()) {
  283. size_t i = 0;
  284. for ( ; i < embd.size(); i++) {
  285. if (embd[i] != session_tokens[n_session_consumed]) {
  286. session_tokens.resize(n_session_consumed);
  287. break;
  288. }
  289. n_past++;
  290. n_session_consumed++;
  291. if (n_session_consumed >= (int) session_tokens.size()) {
  292. break;
  293. }
  294. }
  295. if (i > 0) {
  296. embd.erase(embd.begin(), embd.begin() + i);
  297. }
  298. }
  299. // evaluate tokens in batches
  300. // embd is typically prepared beforehand to fit within a batch, but not always
  301. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  302. int n_eval = (int) embd.size() - i;
  303. if (n_eval > params.n_batch) {
  304. n_eval = params.n_batch;
  305. }
  306. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  307. fprintf(stderr, "%s : failed to eval\n", __func__);
  308. return 1;
  309. }
  310. n_past += n_eval;
  311. }
  312. if (embd.size() > 0 && !path_session.empty()) {
  313. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  314. n_session_consumed = session_tokens.size();
  315. }
  316. }
  317. embd.clear();
  318. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  319. // out of user input, sample next token
  320. const float temp = params.temp;
  321. const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
  322. const float top_p = params.top_p;
  323. const float tfs_z = params.tfs_z;
  324. const float typical_p = params.typical_p;
  325. const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
  326. const float repeat_penalty = params.repeat_penalty;
  327. const float alpha_presence = params.presence_penalty;
  328. const float alpha_frequency = params.frequency_penalty;
  329. const int mirostat = params.mirostat;
  330. const float mirostat_tau = params.mirostat_tau;
  331. const float mirostat_eta = params.mirostat_eta;
  332. const bool penalize_nl = params.penalize_nl;
  333. // optionally save the session on first sample (for faster prompt loading next time)
  334. if (!path_session.empty() && need_to_save_session) {
  335. need_to_save_session = false;
  336. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  337. }
  338. llama_token id = 0;
  339. {
  340. auto logits = llama_get_logits(ctx);
  341. auto n_vocab = llama_n_vocab(ctx);
  342. // Apply params.logit_bias map
  343. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  344. logits[it->first] += it->second;
  345. }
  346. std::vector<llama_token_data> candidates;
  347. candidates.reserve(n_vocab);
  348. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  349. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  350. }
  351. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  352. // Apply penalties
  353. float nl_logit = logits[llama_token_nl()];
  354. auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
  355. llama_sample_repetition_penalty(ctx, &candidates_p,
  356. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  357. last_n_repeat, repeat_penalty);
  358. llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
  359. last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
  360. last_n_repeat, alpha_frequency, alpha_presence);
  361. if (!penalize_nl) {
  362. logits[llama_token_nl()] = nl_logit;
  363. }
  364. if (temp <= 0) {
  365. // Greedy sampling
  366. id = llama_sample_token_greedy(ctx, &candidates_p);
  367. } else {
  368. if (mirostat == 1) {
  369. static float mirostat_mu = 2.0f * mirostat_tau;
  370. const int mirostat_m = 100;
  371. llama_sample_temperature(ctx, &candidates_p, temp);
  372. id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  373. } else if (mirostat == 2) {
  374. static float mirostat_mu = 2.0f * mirostat_tau;
  375. llama_sample_temperature(ctx, &candidates_p, temp);
  376. id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  377. } else {
  378. // Temperature sampling
  379. llama_sample_top_k(ctx, &candidates_p, top_k);
  380. llama_sample_tail_free(ctx, &candidates_p, tfs_z);
  381. llama_sample_typical(ctx, &candidates_p, typical_p);
  382. llama_sample_top_p(ctx, &candidates_p, top_p);
  383. llama_sample_temperature(ctx, &candidates_p, temp);
  384. id = llama_sample_token(ctx, &candidates_p);
  385. }
  386. }
  387. // printf("`%d`", candidates_p.size);
  388. last_n_tokens.erase(last_n_tokens.begin());
  389. last_n_tokens.push_back(id);
  390. }
  391. // replace end of text token with newline token when in interactive mode
  392. if (id == llama_token_eos() && params.interactive && !params.instruct) {
  393. id = llama_token_newline.front();
  394. if (params.antiprompt.size() != 0) {
  395. // tokenize and inject first reverse prompt
  396. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  397. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  398. }
  399. }
  400. // add it to the context
  401. embd.push_back(id);
  402. // echo this to console
  403. input_noecho = false;
  404. // decrement remaining sampling budget
  405. --n_remain;
  406. } else {
  407. // some user input remains from prompt or interaction, forward it to processing
  408. while ((int) embd_inp.size() > n_consumed) {
  409. embd.push_back(embd_inp[n_consumed]);
  410. last_n_tokens.erase(last_n_tokens.begin());
  411. last_n_tokens.push_back(embd_inp[n_consumed]);
  412. ++n_consumed;
  413. if ((int) embd.size() >= params.n_batch) {
  414. break;
  415. }
  416. }
  417. }
  418. // display text
  419. if (!input_noecho) {
  420. for (auto id : embd) {
  421. printf("%s", llama_token_to_str(ctx, id));
  422. }
  423. fflush(stdout);
  424. }
  425. // reset color to default if we there is no pending user input
  426. if (!input_noecho && (int)embd_inp.size() == n_consumed) {
  427. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  428. }
  429. // in interactive mode, and not currently processing queued inputs;
  430. // check if we should prompt the user for more
  431. if (params.interactive && (int) embd_inp.size() <= n_consumed) {
  432. // check for reverse prompt
  433. if (params.antiprompt.size()) {
  434. std::string last_output;
  435. for (auto id : last_n_tokens) {
  436. last_output += llama_token_to_str(ctx, id);
  437. }
  438. is_antiprompt = false;
  439. // Check if each of the reverse prompts appears at the end of the output.
  440. for (std::string & antiprompt : params.antiprompt) {
  441. if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) {
  442. is_interacting = true;
  443. is_antiprompt = true;
  444. set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
  445. fflush(stdout);
  446. break;
  447. }
  448. }
  449. }
  450. if (n_past > 0 && is_interacting) {
  451. // potentially set color to indicate we are taking user input
  452. set_console_color(con_st, CONSOLE_COLOR_USER_INPUT);
  453. #if defined (_WIN32)
  454. // Windows: must reactivate sigint handler after each signal
  455. signal(SIGINT, sigint_handler);
  456. #endif
  457. if (params.instruct) {
  458. printf("\n> ");
  459. }
  460. std::string buffer;
  461. if (!params.input_prefix.empty()) {
  462. buffer += params.input_prefix;
  463. printf("%s", buffer.c_str());
  464. }
  465. std::string line;
  466. bool another_line = true;
  467. do {
  468. #if defined(_WIN32)
  469. std::wstring wline;
  470. if (!std::getline(std::wcin, wline)) {
  471. // input stream is bad or EOF received
  472. return 0;
  473. }
  474. win32_utf8_encode(wline, line);
  475. #else
  476. if (!std::getline(std::cin, line)) {
  477. // input stream is bad or EOF received
  478. return 0;
  479. }
  480. #endif
  481. if (line.empty() || line.back() != '\\') {
  482. another_line = false;
  483. } else {
  484. line.pop_back(); // Remove the continue character
  485. }
  486. buffer += line + '\n'; // Append the line to the result
  487. } while (another_line);
  488. // done taking input, reset color
  489. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  490. // Add tokens to embd only if the input buffer is non-empty
  491. // Entering a empty line lets the user pass control back
  492. if (buffer.length() > 1) {
  493. // instruct mode: insert instruction prefix
  494. if (params.instruct && !is_antiprompt) {
  495. n_consumed = embd_inp.size();
  496. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  497. }
  498. auto line_inp = ::llama_tokenize(ctx, buffer, false);
  499. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  500. // instruct mode: insert response suffix
  501. if (params.instruct) {
  502. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  503. }
  504. n_remain -= line_inp.size();
  505. }
  506. input_noecho = true; // do not echo this again
  507. }
  508. if (n_past > 0) {
  509. is_interacting = false;
  510. }
  511. }
  512. // end of text token
  513. if (!embd.empty() && embd.back() == llama_token_eos()) {
  514. if (params.instruct) {
  515. is_interacting = true;
  516. } else {
  517. fprintf(stderr, " [end of text]\n");
  518. break;
  519. }
  520. }
  521. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  522. if (params.interactive && n_remain <= 0 && params.n_predict != -1) {
  523. n_remain = params.n_predict;
  524. is_interacting = true;
  525. }
  526. }
  527. #if defined (_WIN32)
  528. signal(SIGINT, SIG_DFL);
  529. #endif
  530. llama_print_timings(ctx);
  531. llama_free(ctx);
  532. set_console_color(con_st, CONSOLE_COLOR_DEFAULT);
  533. return 0;
  534. }