save-load-state.cpp 4.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130
  1. #include <vector>
  2. #include <cstdio>
  3. #include <chrono>
  4. #include "common.h"
  5. #include "llama.h"
  6. #include "llama.cpp"
  7. using namespace std;
  8. int main(int argc, char ** argv) {
  9. gpt_params params;
  10. params.model = "models/llama-7B/ggml-model.bin";
  11. params.seed = 42;
  12. params.n_threads = 4;
  13. params.repeat_last_n = 64;
  14. params.prompt = "The quick brown fox";
  15. if (gpt_params_parse(argc, argv, params) == false) {
  16. return 1;
  17. }
  18. auto lparams = llama_context_default_params();
  19. lparams.n_ctx = params.n_ctx;
  20. lparams.n_parts = params.n_parts;
  21. lparams.seed = params.seed;
  22. lparams.f16_kv = params.memory_f16;
  23. lparams.use_mmap = params.use_mmap;
  24. lparams.use_mlock = params.use_mlock;
  25. auto n_past = 0;
  26. auto last_n_tokens_data = vector<llama_token>(params.repeat_last_n, 0);
  27. // init
  28. auto ctx = llama_init_from_file(params.model.c_str(), lparams);
  29. auto tokens = vector<llama_token>(params.n_ctx);
  30. auto n_prompt_tokens = llama_tokenize(ctx, params.prompt.c_str(), tokens.data(), tokens.size(), true);
  31. if (n_prompt_tokens < 1) {
  32. fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
  33. return 1;
  34. }
  35. // evaluate prompt
  36. llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
  37. last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
  38. n_past += n_prompt_tokens;
  39. // Save state (rng, logits, embedding and kv_cache) to file
  40. FILE *fp_write = fopen("dump_state.bin", "wb");
  41. auto state_size = llama_get_state_size(ctx);
  42. auto state_mem = new uint8_t[state_size];
  43. llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
  44. fwrite(state_mem, 1, state_size, fp_write);
  45. fclose(fp_write);
  46. // save state (last tokens)
  47. auto last_n_tokens_data_saved = vector<llama_token>(last_n_tokens_data);
  48. auto n_past_saved = n_past;
  49. // first run
  50. printf("\n%s", params.prompt.c_str());
  51. for (auto i = 0; i < params.n_predict; i++) {
  52. auto logits = llama_get_logits(ctx);
  53. auto n_vocab = llama_n_vocab(ctx);
  54. std::vector<llama_token_data> candidates;
  55. candidates.reserve(n_vocab);
  56. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  57. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  58. }
  59. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  60. auto next_token = llama_sample_token(ctx, &candidates_p);
  61. auto next_token_str = llama_token_to_str(ctx, next_token);
  62. last_n_tokens_data.push_back(next_token);
  63. printf("%s", next_token_str);
  64. if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
  65. fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
  66. return 1;
  67. }
  68. n_past += 1;
  69. }
  70. printf("\n\n");
  71. // free old model
  72. llama_free(ctx);
  73. // load new model
  74. auto ctx2 = llama_init_from_file(params.model.c_str(), lparams);
  75. // Load state (rng, logits, embedding and kv_cache) from file
  76. FILE *fp_read = fopen("dump_state.bin", "rb");
  77. auto state_size2 = llama_get_state_size(ctx2);
  78. if (state_size != state_size2) {
  79. fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
  80. }
  81. fread(state_mem, 1, state_size, fp_read);
  82. llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
  83. fclose(fp_read);
  84. // restore state (last tokens)
  85. last_n_tokens_data = last_n_tokens_data_saved;
  86. n_past = n_past_saved;
  87. // second run
  88. for (auto i = 0; i < params.n_predict; i++) {
  89. auto logits = llama_get_logits(ctx2);
  90. auto n_vocab = llama_n_vocab(ctx2);
  91. std::vector<llama_token_data> candidates;
  92. candidates.reserve(n_vocab);
  93. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  94. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  95. }
  96. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  97. auto next_token = llama_sample_token(ctx2, &candidates_p);
  98. auto next_token_str = llama_token_to_str(ctx2, next_token);
  99. last_n_tokens_data.push_back(next_token);
  100. printf("%s", next_token_str);
  101. if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
  102. fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
  103. return 1;
  104. }
  105. n_past += 1;
  106. }
  107. printf("\n\n");
  108. return 0;
  109. }