test-sampling.cpp 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199
  1. #include "llama.h"
  2. #include "ggml.h"
  3. #include <cassert>
  4. #include <cmath>
  5. #include <numeric>
  6. #include <cassert>
  7. #include <iostream>
  8. #include <vector>
  9. #include <algorithm>
  10. void dump(const llama_token_data_array * candidates) {
  11. for (size_t i = 0; i < candidates->size; i++) {
  12. printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit);
  13. }
  14. }
  15. #define DUMP(__candidates) do { printf("%s:%d (%s)\n", __FILE__, __LINE__, __func__); dump((__candidates)); printf("-\n"); } while(0)
  16. void test_top_k(const std::vector<float> & probs,
  17. const std::vector<float> & expected_probs,
  18. int k) {
  19. size_t n_vocab = probs.size();
  20. std::vector<llama_token_data> candidates;
  21. candidates.reserve(n_vocab);
  22. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  23. float logit = log(probs[token_id]);
  24. candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
  25. }
  26. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  27. llama_sample_softmax(nullptr, &candidates_p);
  28. DUMP(&candidates_p);
  29. llama_sample_top_k(nullptr, &candidates_p, k);
  30. DUMP(&candidates_p);
  31. assert(candidates_p.size == expected_probs.size());
  32. for (size_t i = 0; i < candidates_p.size; i++) {
  33. assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5);
  34. }
  35. }
  36. void test_top_p(const std::vector<float> & probs,
  37. const std::vector<float> & expected_probs,
  38. float p) {
  39. size_t n_vocab = probs.size();
  40. std::vector<llama_token_data> candidates;
  41. candidates.reserve(n_vocab);
  42. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  43. float logit = log(probs[token_id]);
  44. candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
  45. }
  46. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  47. llama_sample_softmax(nullptr, &candidates_p);
  48. DUMP(&candidates_p);
  49. llama_sample_top_p(nullptr, &candidates_p, p);
  50. DUMP(&candidates_p);
  51. assert(candidates_p.size == expected_probs.size());
  52. for (size_t i = 0; i < candidates_p.size; i++) {
  53. assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
  54. }
  55. }
  56. void test_tfs(const std::vector<float> & probs,
  57. const std::vector<float> & expected_probs,
  58. float z) {
  59. size_t n_vocab = probs.size();
  60. std::vector<llama_token_data> candidates;
  61. candidates.reserve(n_vocab);
  62. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  63. float logit = log(probs[token_id]);
  64. candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
  65. }
  66. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  67. DUMP(&candidates_p);
  68. llama_sample_tail_free(nullptr, &candidates_p, z);
  69. DUMP(&candidates_p);
  70. assert(candidates_p.size == expected_probs.size());
  71. for (size_t i = 0; i < candidates_p.size; i++) {
  72. assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
  73. }
  74. }
  75. void test_typical(const std::vector<float> & probs,
  76. const std::vector<float> & expected_probs,
  77. float p) {
  78. size_t n_vocab = probs.size();
  79. std::vector<llama_token_data> candidates;
  80. candidates.reserve(n_vocab);
  81. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  82. float logit = log(probs[token_id]);
  83. candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
  84. }
  85. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  86. DUMP(&candidates_p);
  87. llama_sample_typical(nullptr, &candidates_p, p);
  88. DUMP(&candidates_p);
  89. assert(candidates_p.size == expected_probs.size());
  90. for (size_t i = 0; i < candidates_p.size; i++) {
  91. assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
  92. }
  93. }
  94. void test_repetition_penalty(
  95. const std::vector<float> & probs,
  96. const std::vector<llama_token> & last_tokens,
  97. const std::vector<float> & expected_probs,
  98. float penalty) {
  99. assert(probs.size() == expected_probs.size());
  100. size_t n_vocab = probs.size();
  101. std::vector<llama_token_data> candidates;
  102. candidates.reserve(n_vocab);
  103. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  104. float logit = log(probs[token_id]);
  105. candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
  106. }
  107. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  108. llama_sample_softmax(nullptr, &candidates_p);
  109. DUMP(&candidates_p);
  110. llama_sample_repetition_penalty(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), penalty);
  111. llama_sample_softmax(nullptr, &candidates_p);
  112. DUMP(&candidates_p);
  113. assert(candidates_p.size == expected_probs.size());
  114. for (size_t i = 0; i < candidates_p.size; i++) {
  115. assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6);
  116. }
  117. }
  118. void test_frequency_presence_penalty(
  119. const std::vector<float> & probs,
  120. const std::vector<llama_token> & last_tokens,
  121. const std::vector<float> & expected_probs,
  122. float alpha_frequency, float alpha_presence) {
  123. assert(probs.size() == expected_probs.size());
  124. size_t n_vocab = probs.size();
  125. std::vector<llama_token_data> candidates;
  126. candidates.reserve(n_vocab);
  127. for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) {
  128. float logit = log(probs[token_id]);
  129. candidates.emplace_back(llama_token_data{token_id, logit, 0.0f});
  130. }
  131. llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
  132. llama_sample_softmax(nullptr, &candidates_p);
  133. // DUMP(&candidates_p);
  134. llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (llama_token *)last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence);
  135. llama_sample_softmax(nullptr, &candidates_p);
  136. // DUMP(&candidates_p);
  137. assert(candidates_p.size == expected_probs.size());
  138. for (size_t i = 0; i < candidates_p.size; i++) {
  139. assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3);
  140. }
  141. }
  142. int main(void) {
  143. ggml_time_init();
  144. test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4}, 1);
  145. test_top_k({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2}, 3);
  146. test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4}, 0);
  147. test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3}, 0.7);
  148. test_top_p({0.1, 0.2, 0.3, 0.4}, {0.4, 0.3, 0.2, 0.1}, 1);
  149. test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3}, 0.25);
  150. test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.75);
  151. test_tfs({0.1, 0.15, 0.2, 0.25, 0.3}, {0.3, 0.25}, 0.99);
  152. test_typical({0.97, 0.01, 0.01, 0.01}, {0.97}, 0.5);
  153. test_typical({0.4, 0.2, 0.2, 0.2}, {0.2, 0.2, 0.2}, 0.5);
  154. test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.25, 0.25, 0.25, 0.25, 0}, 50.0);
  155. test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.5, 0.5, 0, 0, 0}, 50.0);
  156. test_repetition_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.5, 0.5, 0, 0, 0}, 50.0);
  157. test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0}, {0.249997, 0.249997, 0.249997, 0.249997, 0.000011}, 5.0, 5.0);
  158. test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2}, {0.499966, 0.499966, 0.000023, 0.000023, 0.000023}, 5.0, 5.0);
  159. test_frequency_presence_penalty({0.2, 0.2, 0.2, 0.2, 0.2}, {0, 1, 2, 0, 0}, {0.499977, 0.499977, 0.000023, 0.000023, 0.000000}, 5.0, 5.0);
  160. printf("OK\n");
  161. }