convert_hf_to_gguf.py 144 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
  53. model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  54. if type(self) is Model:
  55. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  56. self.dir_model = dir_model
  57. self.ftype = ftype
  58. self.is_big_endian = is_big_endian
  59. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  60. self.use_temp_file = use_temp_file
  61. self.lazy = not eager
  62. self.model_name = model_name
  63. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  64. self.is_safetensors = len(self.part_names) > 0
  65. if not self.is_safetensors:
  66. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  67. self.hparams = Model.load_hparams(self.dir_model)
  68. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  69. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  70. self.tensor_names = None
  71. if self.ftype == gguf.LlamaFileType.GUESSED:
  72. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  73. _, first_tensor = next(self.get_tensors())
  74. if first_tensor.dtype == torch.float16:
  75. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  77. else:
  78. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  79. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  80. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  81. ftype_lw: str = ftype_up.lower()
  82. # allow templating the file name with the output ftype, useful with the "auto" ftype
  83. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  84. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  85. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  86. @classmethod
  87. def __init_subclass__(cls):
  88. # can't use an abstract property, because overriding it without type errors
  89. # would require using decorated functions instead of simply defining the property
  90. if "model_arch" not in cls.__dict__:
  91. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  92. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  93. key = next((k for k in keys if k in self.hparams), None)
  94. if key is not None:
  95. return self.hparams[key]
  96. if optional:
  97. return None
  98. raise KeyError(f"could not find any of: {keys}")
  99. def set_vocab(self):
  100. self._set_vocab_gpt2()
  101. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  102. tensor_names_from_parts: set[str] = set()
  103. if len(self.part_names) > 1:
  104. self.tensor_names = set()
  105. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  106. index_name += ".index.json"
  107. logger.info(f"gguf: loading model weight map from '{index_name}'")
  108. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  109. index: dict[str, Any] = json.load(f)
  110. weight_map = index.get("weight_map")
  111. if weight_map is None or not isinstance(weight_map, dict):
  112. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  113. self.tensor_names.update(weight_map.keys())
  114. else:
  115. self.tensor_names = tensor_names_from_parts
  116. for part_name in self.part_names:
  117. logger.info(f"gguf: loading model part '{part_name}'")
  118. ctx: ContextManager[Any]
  119. if self.is_safetensors:
  120. from safetensors import safe_open
  121. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  122. else:
  123. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  124. with ctx as model_part:
  125. tensor_names_from_parts.update(model_part.keys())
  126. for name in model_part.keys():
  127. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  128. if self.lazy:
  129. data = LazyTorchTensor.from_eager(data)
  130. yield name, data
  131. # only verify tensor name presence; it doesn't matter if they are not in the right files
  132. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  133. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  134. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  135. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  136. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  137. name: str = gguf.TENSOR_NAMES[key]
  138. if "{bid}" in name:
  139. assert bid is not None
  140. name = name.format(bid=bid)
  141. return name + suffix
  142. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  143. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  144. return False
  145. key_name: str = gguf.TENSOR_NAMES[key]
  146. if "{bid}" in key_name:
  147. if bid is None:
  148. return False
  149. key_name = key_name.format(bid=bid)
  150. else:
  151. if bid is not None:
  152. return False
  153. return name == (key_name + suffix)
  154. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  155. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  156. if new_name is None:
  157. raise ValueError(f"Can not map tensor {name!r}")
  158. return new_name
  159. def set_gguf_parameters(self):
  160. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  161. self.gguf_writer.add_block_count(self.block_count)
  162. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  163. self.gguf_writer.add_context_length(n_ctx)
  164. logger.info(f"gguf: context length = {n_ctx}")
  165. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  166. self.gguf_writer.add_embedding_length(n_embd)
  167. logger.info(f"gguf: embedding length = {n_embd}")
  168. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  169. self.gguf_writer.add_feed_forward_length(n_ff)
  170. logger.info(f"gguf: feed forward length = {n_ff}")
  171. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  172. self.gguf_writer.add_head_count(n_head)
  173. logger.info(f"gguf: head count = {n_head}")
  174. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  175. self.gguf_writer.add_head_count_kv(n_head_kv)
  176. logger.info(f"gguf: key-value head count = {n_head_kv}")
  177. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  178. self.gguf_writer.add_rope_freq_base(rope_theta)
  179. logger.info(f"gguf: rope theta = {rope_theta}")
  180. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  181. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  182. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  183. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  184. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  185. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  186. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  187. self.gguf_writer.add_expert_count(n_experts)
  188. logger.info(f"gguf: expert count = {n_experts}")
  189. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  190. self.gguf_writer.add_expert_used_count(n_experts_used)
  191. logger.info(f"gguf: experts used count = {n_experts_used}")
  192. self.gguf_writer.add_file_type(self.ftype)
  193. logger.info(f"gguf: file type = {self.ftype}")
  194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  195. del bid # unused
  196. return [(self.map_tensor_name(name), data_torch)]
  197. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  198. del name, new_name, bid, n_dims # unused
  199. return False
  200. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  201. del name, new_name, bid, n_dims # unused
  202. return False
  203. def write_tensors(self):
  204. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  205. for name, data_torch in self.get_tensors():
  206. # we don't need these
  207. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  208. continue
  209. old_dtype = data_torch.dtype
  210. # convert any unsupported data types to float32
  211. if data_torch.dtype not in (torch.float16, torch.float32):
  212. data_torch = data_torch.to(torch.float32)
  213. # use the first number-like part of the tensor name as the block id
  214. bid = None
  215. for part in name.split("."):
  216. if part.isdecimal():
  217. bid = int(part)
  218. break
  219. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  220. data: np.ndarray = data # type hint
  221. n_dims = len(data.shape)
  222. data_dtype = data.dtype
  223. data_qtype: gguf.GGMLQuantizationType | None = None
  224. # when both are True, f32 should win
  225. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  226. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  227. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  228. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  229. extra_f32 = any(cond for cond in (
  230. extra_f32,
  231. n_dims == 1,
  232. new_name.endswith("_norm.weight"),
  233. ))
  234. # Some tensor types are always in float32
  235. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  236. gguf.MODEL_TENSOR.FFN_GATE_INP,
  237. gguf.MODEL_TENSOR.POS_EMBD,
  238. gguf.MODEL_TENSOR.TOKEN_TYPES,
  239. ))
  240. # if f16 desired, convert any float32 2-dim weight tensors to float16
  241. extra_f16 = any(cond for cond in (
  242. extra_f16,
  243. (name.endswith(".weight") and n_dims >= 2),
  244. ))
  245. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  246. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  247. data = gguf.quantize_bf16(data)
  248. assert data.dtype == np.int16
  249. data_qtype = gguf.GGMLQuantizationType.BF16
  250. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  251. data = gguf.quantize_q8_0(data)
  252. assert data.dtype == np.uint8
  253. data_qtype = gguf.GGMLQuantizationType.Q8_0
  254. else: # default to float16 for quantized tensors
  255. if data_dtype != np.float16:
  256. data = data.astype(np.float16)
  257. data_qtype = gguf.GGMLQuantizationType.F16
  258. if data_qtype is None: # by default, convert to float32
  259. if data_dtype != np.float32:
  260. data = data.astype(np.float32)
  261. data_qtype = gguf.GGMLQuantizationType.F32
  262. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  263. # reverse shape to make it similar to the internal ggml dimension order
  264. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  265. # n_dims is implicit in the shape
  266. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  267. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  268. def write(self):
  269. self.write_tensors()
  270. self.gguf_writer.write_header_to_file(self.fname_out)
  271. self.gguf_writer.write_kv_data_to_file()
  272. self.gguf_writer.write_tensors_to_file(progress=True)
  273. self.gguf_writer.close()
  274. def write_vocab(self):
  275. if len(self.gguf_writer.tensors) != 1:
  276. raise ValueError('Splitting the vocabulary is not supported')
  277. self.gguf_writer.write_header_to_file(self.fname_out)
  278. self.gguf_writer.write_kv_data_to_file()
  279. self.gguf_writer.close()
  280. @staticmethod
  281. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  282. part_names: list[str] = []
  283. for filename in os.listdir(dir_model):
  284. if filename.startswith(prefix) and filename.endswith(suffix):
  285. part_names.append(filename)
  286. part_names.sort()
  287. return part_names
  288. @staticmethod
  289. def load_hparams(dir_model: Path):
  290. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  291. return json.load(f)
  292. @classmethod
  293. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  294. assert names
  295. def func(modelcls: AnyModel) -> AnyModel:
  296. for name in names:
  297. cls._model_classes[name] = modelcls
  298. return modelcls
  299. return func
  300. @classmethod
  301. def from_model_architecture(cls, arch: str) -> type[Model]:
  302. try:
  303. return cls._model_classes[arch]
  304. except KeyError:
  305. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  306. # used for GPT-2 BPE and WordPiece vocabs
  307. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  308. tokens: list[str] = []
  309. toktypes: list[int] = []
  310. from transformers import AutoTokenizer
  311. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  312. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  313. assert max(tokenizer.vocab.values()) < vocab_size
  314. tokpre = self.get_vocab_base_pre(tokenizer)
  315. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  316. added_vocab = tokenizer.get_added_vocab()
  317. for i in range(vocab_size):
  318. if i not in reverse_vocab:
  319. tokens.append(f"[PAD{i}]")
  320. toktypes.append(gguf.TokenType.USER_DEFINED)
  321. elif reverse_vocab[i] in added_vocab:
  322. tokens.append(reverse_vocab[i])
  323. if tokenizer.added_tokens_decoder[i].special:
  324. toktypes.append(gguf.TokenType.CONTROL)
  325. else:
  326. toktypes.append(gguf.TokenType.USER_DEFINED)
  327. else:
  328. tokens.append(reverse_vocab[i])
  329. toktypes.append(gguf.TokenType.NORMAL)
  330. return tokens, toktypes, tokpre
  331. # NOTE: this function is generated by convert-hf-to-gguf-update.py
  332. # do not modify it manually!
  333. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  334. # Marker: Start get_vocab_base_pre
  335. def get_vocab_base_pre(self, tokenizer) -> str:
  336. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  337. # is specific for the BPE pre-tokenizer used by the model
  338. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  339. # use in llama.cpp to implement the same pre-tokenizer
  340. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  341. chktok = tokenizer.encode(chktxt)
  342. chkhsh = sha256(str(chktok).encode()).hexdigest()
  343. logger.debug(f"chktok: {chktok}")
  344. logger.debug(f"chkhsh: {chkhsh}")
  345. res = None
  346. # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
  347. # or pull the latest version of the model from Huggingface
  348. # don't edit the hashes manually!
  349. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  350. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  351. res = "llama-bpe"
  352. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  353. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  354. res = "deepseek-llm"
  355. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  356. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  357. res = "deepseek-coder"
  358. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  359. # ref: https://huggingface.co/tiiuae/falcon-7b
  360. res = "falcon"
  361. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  362. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  363. res = "bert-bge"
  364. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  365. # ref: https://huggingface.co/mosaicml/mpt-7b
  366. res = "mpt"
  367. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  368. # ref: https://huggingface.co/bigcode/starcoder2-3b
  369. res = "starcoder"
  370. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  371. # ref: https://huggingface.co/openai-community/gpt2
  372. res = "gpt-2"
  373. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  374. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  375. res = "stablelm2"
  376. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  377. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  378. res = "refact"
  379. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  380. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  381. res = "command-r"
  382. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  383. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  384. res = "qwen2"
  385. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  386. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  387. res = "olmo"
  388. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  389. # ref: https://huggingface.co/databricks/dbrx-base
  390. res = "dbrx"
  391. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  392. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  393. res = "jina-v2-en"
  394. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  395. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  396. res = "jina-v2-es"
  397. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  398. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  399. res = "jina-v2-de"
  400. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  401. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  402. res = "smaug-bpe"
  403. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  404. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  405. res = "poro-chat"
  406. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  407. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  408. res = "jina-v2-code"
  409. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  410. # ref: https://huggingface.co/LumiOpen/Viking-7B
  411. res = "viking"
  412. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  413. # ref: https://huggingface.co/core42/jais-13b
  414. res = "jais"
  415. if res is None:
  416. logger.warning("\n")
  417. logger.warning("**************************************************************************************")
  418. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  419. logger.warning("** There are 2 possible reasons for this:")
  420. logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
  421. logger.warning("** - the pre-tokenization config has changed upstream")
  422. logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
  423. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  424. logger.warning("**")
  425. logger.warning(f"** chkhsh: {chkhsh}")
  426. logger.warning("**************************************************************************************")
  427. logger.warning("\n")
  428. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  429. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  430. logger.debug(f"chkhsh: {chkhsh}")
  431. return res
  432. # Marker: End get_vocab_base_pre
  433. def _set_vocab_gpt2(self) -> None:
  434. tokens, toktypes, tokpre = self.get_vocab_base()
  435. self.gguf_writer.add_tokenizer_model("gpt2")
  436. self.gguf_writer.add_tokenizer_pre(tokpre)
  437. self.gguf_writer.add_token_list(tokens)
  438. self.gguf_writer.add_token_types(toktypes)
  439. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  440. special_vocab.add_to_gguf(self.gguf_writer)
  441. def _set_vocab_qwen(self):
  442. dir_model = self.dir_model
  443. hparams = self.hparams
  444. tokens: list[str] = []
  445. toktypes: list[int] = []
  446. from transformers import AutoTokenizer
  447. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  448. vocab_size = hparams["vocab_size"]
  449. assert max(tokenizer.get_vocab().values()) < vocab_size
  450. tokpre = self.get_vocab_base_pre(tokenizer)
  451. merges = []
  452. vocab = {}
  453. mergeable_ranks = tokenizer.mergeable_ranks
  454. for token, rank in mergeable_ranks.items():
  455. vocab[QwenModel.token_bytes_to_string(token)] = rank
  456. if len(token) == 1:
  457. continue
  458. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  459. assert len(merged) == 2
  460. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  461. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  462. added_vocab = tokenizer.special_tokens
  463. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  464. for i in range(vocab_size):
  465. if i not in reverse_vocab:
  466. tokens.append(f"[PAD{i}]")
  467. toktypes.append(gguf.TokenType.USER_DEFINED)
  468. elif reverse_vocab[i] in added_vocab:
  469. tokens.append(reverse_vocab[i])
  470. toktypes.append(gguf.TokenType.CONTROL)
  471. else:
  472. tokens.append(reverse_vocab[i])
  473. toktypes.append(gguf.TokenType.NORMAL)
  474. self.gguf_writer.add_tokenizer_model("gpt2")
  475. self.gguf_writer.add_tokenizer_pre(tokpre)
  476. self.gguf_writer.add_token_list(tokens)
  477. self.gguf_writer.add_token_types(toktypes)
  478. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  479. special_vocab.merges = merges
  480. # only add special tokens when they were not already loaded from config.json
  481. if len(special_vocab.special_token_ids) == 0:
  482. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  483. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  484. # this one is usually not in config.json anyway
  485. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  486. special_vocab.add_to_gguf(self.gguf_writer)
  487. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  488. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  489. self.gguf_writer.add_tokenizer_model("llama")
  490. self.gguf_writer.add_tokenizer_pre("default")
  491. self.gguf_writer.add_token_list(tokens)
  492. self.gguf_writer.add_token_scores(scores)
  493. self.gguf_writer.add_token_types(toktypes)
  494. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  495. special_vocab.add_to_gguf(self.gguf_writer)
  496. def _create_vocab_sentencepiece(self):
  497. from sentencepiece import SentencePieceProcessor
  498. tokenizer_path = self.dir_model / 'tokenizer.model'
  499. tokens: list[bytes] = []
  500. scores: list[float] = []
  501. toktypes: list[int] = []
  502. if not tokenizer_path.is_file():
  503. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  504. tokenizer = SentencePieceProcessor()
  505. tokenizer.LoadFromFile(str(tokenizer_path))
  506. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  507. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  508. scores: list[float] = [-10000.0] * vocab_size
  509. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  510. for token_id in range(tokenizer.vocab_size()):
  511. piece = tokenizer.IdToPiece(token_id)
  512. text = piece.encode("utf-8")
  513. score = tokenizer.GetScore(token_id)
  514. toktype = SentencePieceTokenTypes.NORMAL
  515. if tokenizer.IsUnknown(token_id):
  516. toktype = SentencePieceTokenTypes.UNKNOWN
  517. elif tokenizer.IsControl(token_id):
  518. toktype = SentencePieceTokenTypes.CONTROL
  519. elif tokenizer.IsUnused(token_id):
  520. toktype = SentencePieceTokenTypes.UNUSED
  521. elif tokenizer.IsByte(token_id):
  522. toktype = SentencePieceTokenTypes.BYTE
  523. tokens[token_id] = text
  524. scores[token_id] = score
  525. toktypes[token_id] = toktype
  526. added_tokens_file = self.dir_model / 'added_tokens.json'
  527. if added_tokens_file.is_file():
  528. with open(added_tokens_file, "r", encoding="utf-8") as f:
  529. added_tokens_json = json.load(f)
  530. for key in added_tokens_json:
  531. token_id = added_tokens_json[key]
  532. if (token_id >= vocab_size):
  533. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  534. continue
  535. tokens[token_id] = key.encode("utf-8")
  536. scores[token_id] = -1000.0
  537. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  538. if vocab_size > len(tokens):
  539. pad_count = vocab_size - len(tokens)
  540. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  541. for i in range(1, pad_count + 1):
  542. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  543. scores.append(-1000.0)
  544. toktypes.append(SentencePieceTokenTypes.UNUSED)
  545. return tokens, scores, toktypes
  546. def _set_vocab_llama_hf(self):
  547. vocab = gguf.LlamaHfVocab(self.dir_model)
  548. tokens = []
  549. scores = []
  550. toktypes = []
  551. for text, score, toktype in vocab.all_tokens():
  552. tokens.append(text)
  553. scores.append(score)
  554. toktypes.append(toktype)
  555. assert len(tokens) == vocab.vocab_size
  556. self.gguf_writer.add_tokenizer_model("llama")
  557. self.gguf_writer.add_tokenizer_pre("default")
  558. self.gguf_writer.add_token_list(tokens)
  559. self.gguf_writer.add_token_scores(scores)
  560. self.gguf_writer.add_token_types(toktypes)
  561. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  562. special_vocab.add_to_gguf(self.gguf_writer)
  563. @Model.register("GPTNeoXForCausalLM")
  564. class GPTNeoXModel(Model):
  565. model_arch = gguf.MODEL_ARCH.GPTNEOX
  566. def set_gguf_parameters(self):
  567. block_count = self.hparams["num_hidden_layers"]
  568. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  569. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  570. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  571. self.gguf_writer.add_block_count(block_count)
  572. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  573. self.gguf_writer.add_rope_dimension_count(
  574. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  575. )
  576. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  577. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  578. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  580. del bid # unused
  581. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  582. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  583. tensors: list[tuple[str, Tensor]] = []
  584. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  585. # Map bloom-style qkv_linear to gpt-style qkv_linear
  586. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  587. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  588. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  589. data_torch = torch.cat(
  590. (
  591. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  592. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  593. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  594. ),
  595. dim=0,
  596. )
  597. logger.info("re-format attention.linear_qkv.weight")
  598. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  599. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  600. data_torch = torch.cat(
  601. (
  602. qkv_bias[:, 0, :].reshape((n_embed,)),
  603. qkv_bias[:, 1, :].reshape((n_embed,)),
  604. qkv_bias[:, 2, :].reshape((n_embed,)),
  605. ),
  606. dim=0,
  607. )
  608. logger.info("re-format attention.linear_qkv.bias")
  609. tensors.append((self.map_tensor_name(name), data_torch))
  610. return tensors
  611. @Model.register("BloomForCausalLM")
  612. class BloomModel(Model):
  613. model_arch = gguf.MODEL_ARCH.BLOOM
  614. def set_gguf_parameters(self):
  615. self.gguf_writer.add_name("Bloom")
  616. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  617. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  618. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  619. self.gguf_writer.add_embedding_length(n_embed)
  620. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  621. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  622. self.gguf_writer.add_head_count(n_head)
  623. self.gguf_writer.add_head_count_kv(n_head)
  624. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  625. self.gguf_writer.add_file_type(self.ftype)
  626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  627. del bid # unused
  628. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  629. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  630. name = re.sub(r'transformer\.', '', name)
  631. tensors: list[tuple[str, Tensor]] = []
  632. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  633. # Map bloom-style qkv_linear to gpt-style qkv_linear
  634. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  635. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  636. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  637. data_torch = torch.cat(
  638. (
  639. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  640. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  641. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  642. ),
  643. dim=0,
  644. )
  645. logger.info("re-format attention.linear_qkv.weight")
  646. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  647. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  648. data_torch = torch.cat(
  649. (
  650. qkv_bias[:, 0, :].reshape((n_embed,)),
  651. qkv_bias[:, 1, :].reshape((n_embed,)),
  652. qkv_bias[:, 2, :].reshape((n_embed,)),
  653. ),
  654. dim=0,
  655. )
  656. logger.info("re-format attention.linear_qkv.bias")
  657. tensors.append((self.map_tensor_name(name), data_torch))
  658. if name == "word_embeddings.weight":
  659. assert self.tensor_names is not None
  660. # TODO: tie them at runtime, don't duplicate in the model file
  661. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  662. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  663. return tensors
  664. @Model.register("MPTForCausalLM")
  665. class MPTModel(Model):
  666. model_arch = gguf.MODEL_ARCH.MPT
  667. def set_vocab(self):
  668. try:
  669. self._set_vocab_gpt2()
  670. except Exception:
  671. # Fallback for SEA-LION model
  672. self._set_vocab_sentencepiece()
  673. self.gguf_writer.add_add_bos_token(False)
  674. self.gguf_writer.add_pad_token_id(3)
  675. self.gguf_writer.add_eos_token_id(1)
  676. self.gguf_writer.add_unk_token_id(0)
  677. def set_gguf_parameters(self):
  678. block_count = self.hparams["n_layers"]
  679. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  680. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  681. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  682. self.gguf_writer.add_block_count(block_count)
  683. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  684. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  685. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  686. self.gguf_writer.add_head_count_kv(kv_n_heads)
  687. self.gguf_writer.add_layer_norm_eps(1e-5)
  688. if self.hparams["attn_config"]["clip_qkv"] is not None:
  689. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  690. if self.hparams["attn_config"]["alibi"]:
  691. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  692. else:
  693. self.gguf_writer.add_max_alibi_bias(0.0)
  694. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  695. del bid # unused
  696. if "scales" in name:
  697. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  698. new_name = new_name.replace("scales", "act.scales")
  699. else:
  700. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  701. return [(new_name, data_torch)]
  702. @Model.register("OrionForCausalLM")
  703. class OrionModel(Model):
  704. model_arch = gguf.MODEL_ARCH.ORION
  705. def set_vocab(self):
  706. self._set_vocab_sentencepiece()
  707. def set_gguf_parameters(self):
  708. block_count = self.hparams["num_hidden_layers"]
  709. head_count = self.hparams["num_attention_heads"]
  710. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  711. hf_repo = self.hparams.get("_name_or_path", "")
  712. ctx_length = 0
  713. if "max_sequence_length" in self.hparams:
  714. ctx_length = self.hparams["max_sequence_length"]
  715. elif "max_position_embeddings" in self.hparams:
  716. ctx_length = self.hparams["max_position_embeddings"]
  717. elif "model_max_length" in self.hparams:
  718. ctx_length = self.hparams["model_max_length"]
  719. else:
  720. raise ValueError("gguf: can not find ctx length parameter.")
  721. self.gguf_writer.add_file_type(self.ftype)
  722. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  723. self.gguf_writer.add_source_hf_repo(hf_repo)
  724. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  725. self.gguf_writer.add_context_length(ctx_length)
  726. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  727. self.gguf_writer.add_block_count(block_count)
  728. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  729. self.gguf_writer.add_head_count(head_count)
  730. self.gguf_writer.add_head_count_kv(head_count_kv)
  731. # note: config provides rms norm but it is actually layer norm
  732. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  733. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  734. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  735. class BaichuanModel(Model):
  736. model_arch = gguf.MODEL_ARCH.BAICHUAN
  737. def set_vocab(self):
  738. self._set_vocab_sentencepiece()
  739. def set_gguf_parameters(self):
  740. block_count = self.hparams["num_hidden_layers"]
  741. head_count = self.hparams["num_attention_heads"]
  742. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  743. hf_repo = self.hparams.get("_name_or_path", "")
  744. ctx_length = 0
  745. if "max_sequence_length" in self.hparams:
  746. ctx_length = self.hparams["max_sequence_length"]
  747. elif "max_position_embeddings" in self.hparams:
  748. ctx_length = self.hparams["max_position_embeddings"]
  749. elif "model_max_length" in self.hparams:
  750. ctx_length = self.hparams["model_max_length"]
  751. else:
  752. raise ValueError("gguf: can not find ctx length parameter.")
  753. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  754. self.gguf_writer.add_source_hf_repo(hf_repo)
  755. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  756. self.gguf_writer.add_context_length(ctx_length)
  757. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  758. self.gguf_writer.add_block_count(block_count)
  759. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  760. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  761. self.gguf_writer.add_head_count(head_count)
  762. self.gguf_writer.add_head_count_kv(head_count_kv)
  763. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  764. self.gguf_writer.add_file_type(self.ftype)
  765. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  766. if self.hparams["rope_scaling"].get("type") == "linear":
  767. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  768. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  769. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  770. head_count = self.hparams["num_attention_heads"]
  771. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  772. tensors: list[tuple[str, Tensor]] = []
  773. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  774. logger.info(f"Unpacking and permuting layer {bid}")
  775. tensors = [
  776. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  777. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  778. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  779. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  780. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  781. self._reverse_hf_part(data_torch, 2)),
  782. ]
  783. else:
  784. tensors = [(self.map_tensor_name(name), data_torch)]
  785. return tensors
  786. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  787. if n_kv_head is not None and n_head != n_kv_head:
  788. n_head //= n_kv_head
  789. return (
  790. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  791. .swapaxes(1, 2)
  792. .reshape(weights.shape)
  793. )
  794. def _reverse_hf_permute_part(
  795. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  796. ) -> Tensor:
  797. r = weights.shape[0] // 3
  798. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  799. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  800. r = weights.shape[0] // 3
  801. return weights[r * n_part:r * n_part + r, ...]
  802. @Model.register("XverseForCausalLM")
  803. class XverseModel(Model):
  804. model_arch = gguf.MODEL_ARCH.XVERSE
  805. def set_vocab(self):
  806. assert (self.dir_model / "tokenizer.json").is_file()
  807. dir_model = self.dir_model
  808. hparams = self.hparams
  809. tokens: list[bytes] = []
  810. toktypes: list[int] = []
  811. from transformers import AutoTokenizer
  812. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  813. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  814. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  815. # because vocab_size is the count of items, and indexes start at 0.
  816. max_vocab_index = max(tokenizer.get_vocab().values())
  817. if max_vocab_index >= vocab_size:
  818. raise ValueError("Vocabulary size exceeds expected maximum size.")
  819. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  820. added_vocab = tokenizer.get_added_vocab()
  821. for token_id in range(vocab_size):
  822. token_text = reverse_vocab[token_id].encode('utf-8')
  823. # replace "\x00" to string with length > 0
  824. if token_text == b"\x00":
  825. toktype = gguf.TokenType.BYTE # special
  826. token_text = f"<{token_text}>".encode('utf-8')
  827. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  828. toktype = gguf.TokenType.BYTE # special
  829. elif reverse_vocab[token_id] in added_vocab:
  830. if tokenizer.added_tokens_decoder[token_id].special:
  831. toktype = gguf.TokenType.CONTROL
  832. else:
  833. toktype = gguf.TokenType.USER_DEFINED
  834. else:
  835. toktype = gguf.TokenType.NORMAL
  836. tokens.append(token_text)
  837. toktypes.append(toktype)
  838. self.gguf_writer.add_tokenizer_model("llama")
  839. self.gguf_writer.add_tokenizer_pre("default")
  840. self.gguf_writer.add_token_list(tokens)
  841. self.gguf_writer.add_token_types(toktypes)
  842. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  843. special_vocab.add_to_gguf(self.gguf_writer)
  844. def set_gguf_parameters(self):
  845. block_count = self.hparams["num_hidden_layers"]
  846. head_count = self.hparams["num_attention_heads"]
  847. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  848. hf_repo = self.hparams.get("_name_or_path", "")
  849. ctx_length = 0
  850. if "max_sequence_length" in self.hparams:
  851. ctx_length = self.hparams["max_sequence_length"]
  852. elif "max_position_embeddings" in self.hparams:
  853. ctx_length = self.hparams["max_position_embeddings"]
  854. elif "model_max_length" in self.hparams:
  855. ctx_length = self.hparams["model_max_length"]
  856. else:
  857. raise ValueError("gguf: can not find ctx length parameter.")
  858. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  859. self.gguf_writer.add_source_hf_repo(hf_repo)
  860. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  861. self.gguf_writer.add_context_length(ctx_length)
  862. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  863. self.gguf_writer.add_block_count(block_count)
  864. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  865. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  866. self.gguf_writer.add_head_count(head_count)
  867. self.gguf_writer.add_head_count_kv(head_count_kv)
  868. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  869. self.gguf_writer.add_file_type(self.ftype)
  870. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  871. if self.hparams["rope_scaling"].get("type") == "linear":
  872. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  873. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  874. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  875. del bid # unused
  876. head_count = self.hparams["num_attention_heads"]
  877. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  878. # HF models permute some of the tensors, so we need to undo that
  879. if name.endswith("q_proj.weight"):
  880. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  881. if name.endswith("k_proj.weight"):
  882. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  883. return [(self.map_tensor_name(name), data_torch)]
  884. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  885. if n_kv_head is not None and n_head != n_kv_head:
  886. n_head //= n_kv_head
  887. return (
  888. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  889. .swapaxes(1, 2)
  890. .reshape(weights.shape)
  891. )
  892. @Model.register("FalconForCausalLM", "RWForCausalLM")
  893. class FalconModel(Model):
  894. model_arch = gguf.MODEL_ARCH.FALCON
  895. def set_gguf_parameters(self):
  896. block_count = self.hparams.get("num_hidden_layers")
  897. if block_count is None:
  898. block_count = self.hparams["n_layer"] # old name
  899. n_head = self.hparams.get("num_attention_heads")
  900. if n_head is None:
  901. n_head = self.hparams["n_head"] # old name
  902. n_head_kv = self.hparams.get("num_kv_heads")
  903. if n_head_kv is None:
  904. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  905. self.gguf_writer.add_name("Falcon")
  906. self.gguf_writer.add_context_length(2048) # not in config.json
  907. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  908. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  909. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  910. self.gguf_writer.add_block_count(block_count)
  911. self.gguf_writer.add_head_count(n_head)
  912. self.gguf_writer.add_head_count_kv(n_head_kv)
  913. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  914. self.gguf_writer.add_file_type(self.ftype)
  915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  916. del bid # unused
  917. # QKV tensor transform
  918. # The original query_key_value tensor contains n_head_kv "kv groups",
  919. # each consisting of n_head/n_head_kv query weights followed by one key
  920. # and one value weight (shared by all query heads in the kv group).
  921. # This layout makes it a big pain to work with in GGML.
  922. # So we rearrange them here,, so that we have n_head query weights
  923. # followed by n_head_kv key weights followed by n_head_kv value weights,
  924. # in contiguous fashion.
  925. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  926. if "query_key_value" in name:
  927. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  928. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  929. head_dim = self.hparams["hidden_size"] // n_head
  930. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  931. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  932. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  933. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  934. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  935. return [(self.map_tensor_name(name), data_torch)]
  936. @Model.register("GPTBigCodeForCausalLM")
  937. class StarCoderModel(Model):
  938. model_arch = gguf.MODEL_ARCH.STARCODER
  939. def set_gguf_parameters(self):
  940. block_count = self.hparams["n_layer"]
  941. self.gguf_writer.add_name("StarCoder")
  942. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  943. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  944. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  945. self.gguf_writer.add_block_count(block_count)
  946. self.gguf_writer.add_head_count(self.hparams["n_head"])
  947. self.gguf_writer.add_head_count_kv(1)
  948. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  949. self.gguf_writer.add_file_type(self.ftype)
  950. @Model.register("GPTRefactForCausalLM")
  951. class RefactModel(Model):
  952. model_arch = gguf.MODEL_ARCH.REFACT
  953. def set_vocab(self):
  954. super().set_vocab()
  955. # TODO: how to determine special FIM tokens automatically?
  956. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  957. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  958. special_vocab._set_special_token("prefix", 1)
  959. special_vocab._set_special_token("suffix", 3)
  960. special_vocab._set_special_token("middle", 2)
  961. special_vocab._set_special_token("fsep", 4) # is this correct?
  962. special_vocab.add_to_gguf(self.gguf_writer)
  963. def set_gguf_parameters(self):
  964. hidden_dim = self.hparams["n_embd"]
  965. inner_dim = 4 * hidden_dim
  966. hidden_dim = int(2 * inner_dim / 3)
  967. multiple_of = 256
  968. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  969. block_count = self.hparams["n_layer"]
  970. self.gguf_writer.add_name("Refact")
  971. # refact uses Alibi. So this is from config.json which might be used by training.
  972. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  973. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  974. self.gguf_writer.add_feed_forward_length(ff_dim)
  975. self.gguf_writer.add_block_count(block_count)
  976. self.gguf_writer.add_head_count(self.hparams["n_head"])
  977. self.gguf_writer.add_head_count_kv(1)
  978. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  979. self.gguf_writer.add_file_type(self.ftype)
  980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  981. hidden_dim = self.hparams["n_embd"]
  982. inner_dim = 4 * hidden_dim
  983. hidden_dim = int(2 * inner_dim / 3)
  984. multiple_of = 256
  985. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  986. n_head = self.hparams["n_head"]
  987. n_head_kv = 1
  988. head_dim = self.hparams["n_embd"] // n_head
  989. tensors: list[tuple[str, Tensor]] = []
  990. if bid is not None:
  991. if name == f"transformer.h.{bid}.attn.kv.weight":
  992. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  993. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  994. elif name == f"transformer.h.{bid}.attn.q.weight":
  995. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  996. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  997. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  998. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  999. if len(tensors) == 0:
  1000. tensors.append((self.map_tensor_name(name), data_torch))
  1001. return tensors
  1002. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1003. class StableLMModel(Model):
  1004. model_arch = gguf.MODEL_ARCH.STABLELM
  1005. def set_vocab(self):
  1006. if (self.dir_model / "tokenizer.json").is_file():
  1007. self._set_vocab_gpt2()
  1008. else:
  1009. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  1010. self._set_vocab_qwen()
  1011. def set_gguf_parameters(self):
  1012. hparams = self.hparams
  1013. block_count = hparams["num_hidden_layers"]
  1014. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1015. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1016. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1017. self.gguf_writer.add_block_count(block_count)
  1018. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1019. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1020. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1021. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1022. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1023. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1024. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1025. self.gguf_writer.add_file_type(self.ftype)
  1026. _q_norms: list[dict[str, Tensor]] | None = None
  1027. _k_norms: list[dict[str, Tensor]] | None = None
  1028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1029. n_head = self.hparams["num_attention_heads"]
  1030. n_kv_head = self.hparams["num_key_value_heads"]
  1031. if name.find("q_layernorm.norms") != -1:
  1032. assert bid is not None
  1033. if self._q_norms is None:
  1034. self._q_norms = [{} for _ in range(self.block_count)]
  1035. self._q_norms[bid][name] = data_torch
  1036. if len(self._q_norms[bid]) >= n_head:
  1037. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1038. else:
  1039. return []
  1040. if name.find("k_layernorm.norms") != -1:
  1041. assert bid is not None
  1042. if self._k_norms is None:
  1043. self._k_norms = [{} for _ in range(self.block_count)]
  1044. self._k_norms[bid][name] = data_torch
  1045. if len(self._k_norms[bid]) >= n_kv_head:
  1046. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1047. else:
  1048. return []
  1049. return [(self.map_tensor_name(name), data_torch)]
  1050. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1051. datas: list[Tensor] = []
  1052. # extract the norms in order
  1053. for xid in range(n_head):
  1054. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1055. datas.append(norms[ename])
  1056. del norms[ename]
  1057. data_torch = torch.stack(datas, dim=0)
  1058. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1059. new_name = self.map_tensor_name(merged_name)
  1060. return [(new_name, data_torch)]
  1061. def write_tensors(self):
  1062. super().write_tensors()
  1063. if self._q_norms is not None or self._k_norms is not None:
  1064. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1065. norms = (
  1066. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1067. ) + (
  1068. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1069. )
  1070. if len(norms) > 0:
  1071. raise ValueError(f"Unprocessed norms: {norms}")
  1072. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1073. class LlamaModel(Model):
  1074. model_arch = gguf.MODEL_ARCH.LLAMA
  1075. def set_vocab(self):
  1076. try:
  1077. self. _set_vocab_sentencepiece()
  1078. except FileNotFoundError:
  1079. try:
  1080. self._set_vocab_llama_hf()
  1081. except (FileNotFoundError, TypeError):
  1082. # Llama 3
  1083. self._set_vocab_gpt2()
  1084. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1085. if self.hparams.get("vocab_size", 32000) == 32016:
  1086. special_vocab = gguf.SpecialVocab(
  1087. self.dir_model, load_merges=False,
  1088. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1089. )
  1090. special_vocab._set_special_token("prefix", 32007)
  1091. special_vocab._set_special_token("suffix", 32008)
  1092. special_vocab._set_special_token("middle", 32009)
  1093. special_vocab._set_special_token("eot", 32010)
  1094. special_vocab.add_to_gguf(self.gguf_writer)
  1095. def set_gguf_parameters(self):
  1096. super().set_gguf_parameters()
  1097. hparams = self.hparams
  1098. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1099. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1100. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1101. if self.hparams["rope_scaling"].get("type") == "linear":
  1102. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1103. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1104. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1105. if tokenizer_config_file.is_file():
  1106. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1107. tokenizer_config_json = json.load(f)
  1108. if "add_prefix_space" in tokenizer_config_json:
  1109. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1110. # Apply to granite small models only
  1111. if self.hparams.get("vocab_size", 32000) == 49152:
  1112. self.gguf_writer.add_add_bos_token(False)
  1113. @staticmethod
  1114. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1115. if n_head_kv is not None and n_head != n_head_kv:
  1116. n_head = n_head_kv
  1117. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1118. .swapaxes(1, 2)
  1119. .reshape(weights.shape))
  1120. _experts: list[dict[str, Tensor]] | None = None
  1121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1122. n_head = self.hparams["num_attention_heads"]
  1123. n_kv_head = self.hparams.get("num_key_value_heads")
  1124. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1125. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1126. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1127. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1128. # process the experts separately
  1129. if name.find("block_sparse_moe.experts") != -1:
  1130. n_experts = self.hparams["num_local_experts"]
  1131. assert bid is not None
  1132. if self._experts is None:
  1133. self._experts = [{} for _ in range(self.block_count)]
  1134. self._experts[bid][name] = data_torch
  1135. if len(self._experts[bid]) >= n_experts * 3:
  1136. tensors: list[tuple[str, Tensor]] = []
  1137. # merge the experts into a single 3d tensor
  1138. for wid in ["w1", "w2", "w3"]:
  1139. datas: list[Tensor] = []
  1140. for xid in range(n_experts):
  1141. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1142. datas.append(self._experts[bid][ename])
  1143. del self._experts[bid][ename]
  1144. data_torch = torch.stack(datas, dim=0)
  1145. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1146. new_name = self.map_tensor_name(merged_name)
  1147. tensors.append((new_name, data_torch))
  1148. return tensors
  1149. else:
  1150. return []
  1151. return [(self.map_tensor_name(name), data_torch)]
  1152. def write_tensors(self):
  1153. super().write_tensors()
  1154. if self._experts is not None:
  1155. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1156. experts = [k for d in self._experts for k in d.keys()]
  1157. if len(experts) > 0:
  1158. raise ValueError(f"Unprocessed experts: {experts}")
  1159. @Model.register("BitnetForCausalLM")
  1160. class BitnetModel(Model):
  1161. model_arch = gguf.MODEL_ARCH.BITNET
  1162. def set_vocab(self):
  1163. self._set_vocab_sentencepiece()
  1164. def set_gguf_parameters(self):
  1165. super().set_gguf_parameters()
  1166. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1167. self.gguf_writer.add_rope_scaling_factor(1.0)
  1168. def weight_quant(self, weight):
  1169. dtype = weight.dtype
  1170. weight = weight.float()
  1171. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1172. weight = (weight * s).round().clamp(-1, 1) / s
  1173. scale = weight.abs().max().unsqueeze(0)
  1174. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1175. weight = torch.sign(weight).type(dtype)
  1176. return weight.type(dtype), scale.type(torch.float32)
  1177. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1178. new_name = self.map_tensor_name(name)
  1179. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1180. gguf.MODEL_TENSOR.ATTN_Q,
  1181. gguf.MODEL_TENSOR.ATTN_K,
  1182. gguf.MODEL_TENSOR.ATTN_V,
  1183. gguf.MODEL_TENSOR.ATTN_OUT,
  1184. gguf.MODEL_TENSOR.FFN_UP,
  1185. gguf.MODEL_TENSOR.FFN_DOWN,
  1186. gguf.MODEL_TENSOR.FFN_GATE,
  1187. ]):
  1188. # transform weight into 1/0/-1 (in fp32)
  1189. weight_torch, scale_torch = self.weight_quant(data_torch)
  1190. yield (new_name, weight_torch)
  1191. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1192. else:
  1193. yield (new_name, data_torch)
  1194. @Model.register("GrokForCausalLM")
  1195. class GrokModel(Model):
  1196. model_arch = gguf.MODEL_ARCH.GROK
  1197. def set_vocab(self):
  1198. self._set_vocab_sentencepiece()
  1199. def __init__(self, *args, **kwargs):
  1200. super().__init__(*args, **kwargs)
  1201. def set_gguf_parameters(self):
  1202. super().set_gguf_parameters()
  1203. self.gguf_writer.add_name("Grok")
  1204. _experts: list[dict[str, Tensor]] | None = None
  1205. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1206. # process the experts separately
  1207. if name.find(".moe.") != -1:
  1208. n_experts = self.hparams["num_local_experts"]
  1209. assert bid is not None
  1210. if self._experts is None:
  1211. self._experts = [{} for _ in range(self.block_count)]
  1212. self._experts[bid][name] = data_torch
  1213. if len(self._experts[bid]) >= n_experts * 3:
  1214. tensors: list[tuple[str, Tensor]] = []
  1215. # merge the experts into a single 3d tensor
  1216. for wid in ["linear", "linear_1", "linear_v"]:
  1217. datas: list[Tensor] = []
  1218. for xid in range(n_experts):
  1219. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1220. datas.append(self._experts[bid][ename])
  1221. del self._experts[bid][ename]
  1222. data_torch = torch.stack(datas, dim=0)
  1223. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1224. new_name = self.map_tensor_name(merged_name)
  1225. tensors.append((new_name, data_torch))
  1226. return tensors
  1227. else:
  1228. return []
  1229. return [(self.map_tensor_name(name), data_torch)]
  1230. @Model.register("DbrxForCausalLM")
  1231. class DbrxModel(Model):
  1232. model_arch = gguf.MODEL_ARCH.DBRX
  1233. def set_gguf_parameters(self):
  1234. ffn_config = self.hparams["ffn_config"]
  1235. attn_config = self.hparams["attn_config"]
  1236. self.gguf_writer.add_name(self.hparams["model_type"])
  1237. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1238. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1239. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1240. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1241. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1242. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1243. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1244. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1245. self.gguf_writer.add_file_type(self.ftype)
  1246. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1247. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1248. self.gguf_writer.add_layer_norm_eps(1e-5)
  1249. self.gguf_writer.add_file_type(self.ftype)
  1250. logger.info(f"gguf: file type = {self.ftype}")
  1251. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1252. del bid # unused
  1253. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1254. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1255. n_embd = self.hparams["d_model"]
  1256. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1257. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1258. # But llama.cpp moe graph works differently
  1259. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1260. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1261. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1262. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1263. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1264. experts = False
  1265. for exp_tensor_name in exp_tensor_names.keys():
  1266. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1267. experts = True
  1268. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1269. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1270. data_torch = data_torch.permute(*permute_tensor)
  1271. break
  1272. # map tensor names
  1273. # In MoE models the ffn tensors are typically most of the model weights,
  1274. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1275. # Every other model has the weight names ending in .weight,
  1276. # let's assume that is the convention which is not the case for dbrx:
  1277. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1278. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1279. return [(new_name, data_torch)]
  1280. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1281. del name, new_name, bid # unused
  1282. return n_dims > 1
  1283. @Model.register("MiniCPMForCausalLM")
  1284. class MiniCPMModel(Model):
  1285. model_arch = gguf.MODEL_ARCH.MINICPM
  1286. def set_gguf_parameters(self):
  1287. block_count = self.hparams["num_hidden_layers"]
  1288. self.gguf_writer.add_name("MiniCPM")
  1289. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1290. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1291. self.gguf_writer.add_block_count(block_count)
  1292. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1293. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1294. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1295. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1296. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1297. self.gguf_writer.add_file_type(self.ftype)
  1298. def set_vocab(self):
  1299. self._set_vocab_llama_hf()
  1300. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1301. if n_kv_head is not None and n_head != n_kv_head:
  1302. n_head //= n_kv_head
  1303. return (
  1304. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1305. .swapaxes(1, 2)
  1306. .reshape(weights.shape)
  1307. )
  1308. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1309. del bid # unused
  1310. n_head = self.hparams["num_attention_heads"]
  1311. n_kv_head = self.hparams.get("num_key_value_heads")
  1312. # HF models permute some of the tensors, so we need to undo that
  1313. if name.endswith(("q_proj.weight")):
  1314. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1315. if name.endswith(("k_proj.weight")):
  1316. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1317. return [(self.map_tensor_name(name), data_torch)]
  1318. @Model.register("QWenLMHeadModel")
  1319. class QwenModel(Model):
  1320. model_arch = gguf.MODEL_ARCH.QWEN
  1321. @staticmethod
  1322. def token_bytes_to_string(b):
  1323. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1324. byte_encoder = bytes_to_unicode()
  1325. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1326. @staticmethod
  1327. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1328. parts = [bytes([b]) for b in token]
  1329. while True:
  1330. min_idx = None
  1331. min_rank = None
  1332. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1333. rank = mergeable_ranks.get(pair[0] + pair[1])
  1334. if rank is not None and (min_rank is None or rank < min_rank):
  1335. min_idx = i
  1336. min_rank = rank
  1337. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1338. break
  1339. assert min_idx is not None
  1340. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1341. return parts
  1342. def set_vocab(self):
  1343. self._set_vocab_qwen()
  1344. def set_gguf_parameters(self):
  1345. self.gguf_writer.add_name("Qwen")
  1346. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1347. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1348. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1349. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1350. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1351. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1352. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1353. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1354. self.gguf_writer.add_file_type(self.ftype)
  1355. @Model.register("Qwen2ForCausalLM")
  1356. class Qwen2Model(Model):
  1357. model_arch = gguf.MODEL_ARCH.QWEN2
  1358. def set_vocab(self):
  1359. try:
  1360. self._set_vocab_sentencepiece()
  1361. except FileNotFoundError:
  1362. self._set_vocab_gpt2()
  1363. @Model.register("Qwen2MoeForCausalLM")
  1364. class Qwen2MoeModel(Model):
  1365. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1366. def set_gguf_parameters(self):
  1367. super().set_gguf_parameters()
  1368. if (n_experts := self.hparams.get("num_experts")) is not None:
  1369. self.gguf_writer.add_expert_count(n_experts)
  1370. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1371. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1372. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1373. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1374. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1375. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1376. _experts: list[dict[str, Tensor]] | None = None
  1377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1378. # process the experts separately
  1379. if name.find("experts") != -1:
  1380. n_experts = self.hparams["num_experts"]
  1381. assert bid is not None
  1382. if self._experts is None:
  1383. self._experts = [{} for _ in range(self.block_count)]
  1384. self._experts[bid][name] = data_torch
  1385. if len(self._experts[bid]) >= n_experts * 3:
  1386. tensors: list[tuple[str, Tensor]] = []
  1387. # merge the experts into a single 3d tensor
  1388. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1389. datas: list[Tensor] = []
  1390. for xid in range(n_experts):
  1391. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1392. datas.append(self._experts[bid][ename])
  1393. del self._experts[bid][ename]
  1394. data_torch = torch.stack(datas, dim=0)
  1395. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1396. new_name = self.map_tensor_name(merged_name)
  1397. tensors.append((new_name, data_torch))
  1398. return tensors
  1399. else:
  1400. return []
  1401. return [(self.map_tensor_name(name), data_torch)]
  1402. def write_tensors(self):
  1403. super().write_tensors()
  1404. if self._experts is not None:
  1405. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1406. experts = [k for d in self._experts for k in d.keys()]
  1407. if len(experts) > 0:
  1408. raise ValueError(f"Unprocessed experts: {experts}")
  1409. @Model.register("GPT2LMHeadModel")
  1410. class GPT2Model(Model):
  1411. model_arch = gguf.MODEL_ARCH.GPT2
  1412. def set_gguf_parameters(self):
  1413. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1414. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1415. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1416. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1417. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1418. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1419. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1420. self.gguf_writer.add_file_type(self.ftype)
  1421. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1422. del bid # unused
  1423. tensors: list[tuple[str, Tensor]] = []
  1424. # we don't need these
  1425. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1426. return tensors
  1427. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1428. data_torch = data_torch.transpose(1, 0)
  1429. new_name = self.map_tensor_name(name)
  1430. tensors.append((new_name, data_torch))
  1431. # note: GPT2 output is tied to (same as) wte in original model
  1432. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1433. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1434. return tensors
  1435. @Model.register("PhiForCausalLM")
  1436. class Phi2Model(Model):
  1437. model_arch = gguf.MODEL_ARCH.PHI2
  1438. def set_gguf_parameters(self):
  1439. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1440. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1441. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1442. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1443. self.gguf_writer.add_name("Phi2")
  1444. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1445. self.gguf_writer.add_embedding_length(n_embd)
  1446. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1447. self.gguf_writer.add_block_count(block_count)
  1448. self.gguf_writer.add_head_count(n_head)
  1449. self.gguf_writer.add_head_count_kv(n_head)
  1450. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1451. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1452. self.gguf_writer.add_file_type(self.ftype)
  1453. self.gguf_writer.add_add_bos_token(False)
  1454. @Model.register("Phi3ForCausalLM")
  1455. class Phi3MiniModel(Model):
  1456. model_arch = gguf.MODEL_ARCH.PHI3
  1457. def set_vocab(self):
  1458. from sentencepiece import SentencePieceProcessor
  1459. tokenizer_path = self.dir_model / 'tokenizer.model'
  1460. if not tokenizer_path.is_file():
  1461. raise ValueError(f'Error: Missing {tokenizer_path}')
  1462. tokenizer = SentencePieceProcessor()
  1463. tokenizer.LoadFromFile(str(tokenizer_path))
  1464. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1465. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1466. scores: list[float] = [-10000.0] * vocab_size
  1467. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  1468. for token_id in range(tokenizer.vocab_size()):
  1469. piece = tokenizer.IdToPiece(token_id)
  1470. text = piece.encode("utf-8")
  1471. score = tokenizer.GetScore(token_id)
  1472. toktype = SentencePieceTokenTypes.NORMAL
  1473. if tokenizer.IsUnknown(token_id):
  1474. toktype = SentencePieceTokenTypes.UNKNOWN
  1475. elif tokenizer.IsControl(token_id):
  1476. toktype = SentencePieceTokenTypes.CONTROL
  1477. elif tokenizer.IsUnused(token_id):
  1478. toktype = SentencePieceTokenTypes.UNUSED
  1479. elif tokenizer.IsByte(token_id):
  1480. toktype = SentencePieceTokenTypes.BYTE
  1481. tokens[token_id] = text
  1482. scores[token_id] = score
  1483. toktypes[token_id] = toktype
  1484. added_tokens_file = self.dir_model / 'added_tokens.json'
  1485. if added_tokens_file.is_file():
  1486. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1487. added_tokens_json = json.load(f)
  1488. for key in added_tokens_json:
  1489. token_id = added_tokens_json[key]
  1490. if (token_id >= vocab_size):
  1491. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1492. continue
  1493. tokens[token_id] = key.encode("utf-8")
  1494. scores[token_id] = -1000.0
  1495. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1496. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1497. if tokenizer_config_file.is_file():
  1498. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1499. tokenizer_config_json = json.load(f)
  1500. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1501. for token_id, foken_data in added_tokens_decoder.items():
  1502. token_id = int(token_id)
  1503. token = foken_data["content"].encode("utf-8")
  1504. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1505. assert tokens[token_id] == token
  1506. tokens[token_id] = token
  1507. scores[token_id] = -1000.0
  1508. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1509. if foken_data.get("special"):
  1510. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1511. tokenizer_file = self.dir_model / 'tokenizer.json'
  1512. if tokenizer_file.is_file():
  1513. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1514. tokenizer_json = json.load(f)
  1515. added_tokens = tokenizer_json.get("added_tokens", [])
  1516. for foken_data in added_tokens:
  1517. token_id = int(foken_data["id"])
  1518. token = foken_data["content"].encode("utf-8")
  1519. if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
  1520. assert tokens[token_id] == token
  1521. tokens[token_id] = token
  1522. scores[token_id] = -1000.0
  1523. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1524. if foken_data.get("special"):
  1525. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1526. self.gguf_writer.add_tokenizer_model("llama")
  1527. self.gguf_writer.add_tokenizer_pre("default")
  1528. self.gguf_writer.add_token_list(tokens)
  1529. self.gguf_writer.add_token_scores(scores)
  1530. self.gguf_writer.add_token_types(toktypes)
  1531. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1532. special_vocab.add_to_gguf(self.gguf_writer)
  1533. def set_gguf_parameters(self):
  1534. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1535. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1536. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1537. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1538. rms_eps = self.find_hparam(["rms_norm_eps"])
  1539. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1540. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1541. rope_dims = n_embd // n_head
  1542. self.gguf_writer.add_name("Phi3")
  1543. self.gguf_writer.add_context_length(max_pos_embds)
  1544. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1545. self.gguf_writer.add_embedding_length(n_embd)
  1546. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1547. self.gguf_writer.add_block_count(block_count)
  1548. self.gguf_writer.add_head_count(n_head)
  1549. self.gguf_writer.add_head_count_kv(n_head_kv)
  1550. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1551. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1552. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1553. self.gguf_writer.add_file_type(self.ftype)
  1554. # write rope scaling for long context (128k) model
  1555. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1556. if (rope_scaling is None):
  1557. return
  1558. scale = max_pos_embds / orig_max_pos_embds
  1559. rope_scaling_type = rope_scaling.get('type', '').lower()
  1560. if len(rope_scaling_type) == 0:
  1561. raise KeyError('Missing the required key rope_scaling.type')
  1562. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1563. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1564. elif rope_scaling_type == 'yarn':
  1565. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1566. else:
  1567. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1568. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1569. long_factors = rope_scaling.get('long_factor', None)
  1570. short_factors = rope_scaling.get('short_factor', None)
  1571. if long_factors is None or short_factors is None:
  1572. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1573. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1574. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1575. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1576. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1577. @Model.register("PlamoForCausalLM")
  1578. class PlamoModel(Model):
  1579. model_arch = gguf.MODEL_ARCH.PLAMO
  1580. def set_vocab(self):
  1581. self._set_vocab_sentencepiece()
  1582. def set_gguf_parameters(self):
  1583. hparams = self.hparams
  1584. block_count = hparams["num_hidden_layers"]
  1585. self.gguf_writer.add_name("PLaMo")
  1586. self.gguf_writer.add_context_length(4096) # not in config.json
  1587. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1588. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1589. self.gguf_writer.add_block_count(block_count)
  1590. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1591. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1592. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1593. self.gguf_writer.add_file_type(self.ftype)
  1594. def shuffle_attn_q_weight(self, data_torch):
  1595. assert data_torch.size() == (5120, 5120)
  1596. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1597. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1598. data_torch = torch.reshape(data_torch, (5120, 5120))
  1599. return data_torch
  1600. def shuffle_attn_output_weight(self, data_torch):
  1601. assert data_torch.size() == (5120, 5120)
  1602. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1603. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1604. data_torch = torch.reshape(data_torch, (5120, 5120))
  1605. return data_torch
  1606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1607. del bid # unused
  1608. new_name = self.map_tensor_name(name)
  1609. # shuffle for broadcasting of gqa in ggml_mul_mat
  1610. if new_name.endswith("attn_q.weight"):
  1611. data_torch = self.shuffle_attn_q_weight(data_torch)
  1612. elif new_name.endswith("attn_output.weight"):
  1613. data_torch = self.shuffle_attn_output_weight(data_torch)
  1614. return [(new_name, data_torch)]
  1615. @Model.register("CodeShellForCausalLM")
  1616. class CodeShellModel(Model):
  1617. model_arch = gguf.MODEL_ARCH.CODESHELL
  1618. def set_gguf_parameters(self):
  1619. block_count = self.hparams["n_layer"]
  1620. self.gguf_writer.add_name("CodeShell")
  1621. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1622. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1623. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1624. self.gguf_writer.add_block_count(block_count)
  1625. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1626. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1627. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1628. self.gguf_writer.add_file_type(self.ftype)
  1629. self.gguf_writer.add_rope_freq_base(10000.0)
  1630. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1631. self.gguf_writer.add_rope_scaling_factor(1.0)
  1632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1633. del bid # unused
  1634. new_name = self.map_tensor_name(name)
  1635. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1636. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1637. assert self.tensor_names is not None
  1638. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1639. # copy tok_embd.weight to output.weight
  1640. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1641. return tensors
  1642. @Model.register("InternLM2ForCausalLM")
  1643. class InternLM2Model(Model):
  1644. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1645. def set_vocab(self):
  1646. # (TODO): Is there a better way?
  1647. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1648. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1649. # recognized as an empty string in C++.
  1650. from sentencepiece import SentencePieceProcessor
  1651. from sentencepiece import sentencepiece_model_pb2 as model
  1652. tokenizer_path = self.dir_model / 'tokenizer.model'
  1653. tokens: list[bytes] = []
  1654. scores: list[float] = []
  1655. toktypes: list[int] = []
  1656. if not tokenizer_path.is_file():
  1657. logger.error(f'Error: Missing {tokenizer_path}')
  1658. sys.exit(1)
  1659. sentencepiece_model = model.ModelProto()
  1660. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1661. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1662. tokenizer = SentencePieceProcessor()
  1663. tokenizer.LoadFromFile(str(tokenizer_path))
  1664. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1665. for token_id in range(vocab_size):
  1666. piece = tokenizer.IdToPiece(token_id)
  1667. text = piece.encode("utf-8")
  1668. score = tokenizer.GetScore(token_id)
  1669. if text == b"\x00":
  1670. # (TODO): fixme
  1671. # Hack here and replace the \x00 characters.
  1672. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1673. text = "🐉".encode("utf-8")
  1674. toktype = SentencePieceTokenTypes.NORMAL
  1675. if tokenizer.IsUnknown(token_id):
  1676. toktype = SentencePieceTokenTypes.UNKNOWN
  1677. elif tokenizer.IsControl(token_id):
  1678. toktype = SentencePieceTokenTypes.CONTROL
  1679. elif tokenizer.IsUnused(token_id):
  1680. toktype = SentencePieceTokenTypes.UNUSED
  1681. elif tokenizer.IsByte(token_id):
  1682. toktype = SentencePieceTokenTypes.BYTE
  1683. tokens.append(text)
  1684. scores.append(score)
  1685. toktypes.append(toktype)
  1686. added_tokens_file = self.dir_model / 'added_tokens.json'
  1687. if added_tokens_file.is_file():
  1688. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1689. added_tokens_json = json.load(f)
  1690. for key in added_tokens_json:
  1691. tokens.append(key.encode("utf-8"))
  1692. scores.append(-1000.0)
  1693. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1694. self.gguf_writer.add_tokenizer_model("llama")
  1695. self.gguf_writer.add_tokenizer_pre("default")
  1696. self.gguf_writer.add_token_list(tokens)
  1697. self.gguf_writer.add_token_scores(scores)
  1698. self.gguf_writer.add_token_types(toktypes)
  1699. self.gguf_writer.add_add_space_prefix(add_prefix)
  1700. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1701. old_eos = special_vocab.special_token_ids["eos"]
  1702. if "chat" in os.path.basename(self.dir_model.absolute()):
  1703. # For the chat model, we replace the eos with '<|im_end|>'.
  1704. # TODO: this is a hack, should be fixed
  1705. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1706. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1707. logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1708. in chat mode so that the conversation can end normally.")
  1709. special_vocab.add_to_gguf(self.gguf_writer)
  1710. def _try_get_sft_eos(self, tokenizer):
  1711. unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
  1712. im_end_list = tokenizer.Encode('<|im_end|>')
  1713. eos_token = None
  1714. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1715. if len(unused_145_list) == 1:
  1716. eos_token = unused_145_list[0]
  1717. if len(im_end_list) == 1:
  1718. eos_token = im_end_list[0]
  1719. assert eos_token
  1720. return eos_token
  1721. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1722. if n_head_kv is not None and n_head != n_head_kv:
  1723. n_head = n_head_kv
  1724. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1725. .swapaxes(1, 2)
  1726. .reshape(weights.shape))
  1727. def set_gguf_parameters(self):
  1728. self.gguf_writer.add_name("InternLM2")
  1729. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1730. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1731. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1732. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1733. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1734. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1735. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1736. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1737. self.gguf_writer.add_file_type(self.ftype)
  1738. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1739. num_heads = self.hparams["num_attention_heads"]
  1740. num_kv_heads = self.hparams["num_key_value_heads"]
  1741. hidden_size = self.hparams["hidden_size"]
  1742. q_per_kv = num_heads // num_kv_heads
  1743. head_dim = hidden_size // num_heads
  1744. num_groups = num_heads // q_per_kv
  1745. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1746. if re.match(qkv_pattern, name):
  1747. bid = re.findall(qkv_pattern, name)[0]
  1748. qkv = data_torch
  1749. # qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1750. qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
  1751. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1752. # The model weights of q and k equire additional reshape.
  1753. # q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1754. q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
  1755. # k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1756. k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
  1757. # v = rearrange(v, " o g n i -> o (g n i)").T
  1758. v = v.reshape((v.shape[0], -1)).T
  1759. return [
  1760. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1761. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1762. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1763. ]
  1764. else:
  1765. return [(self.map_tensor_name(name), data_torch)]
  1766. @Model.register("BertModel", "CamembertModel")
  1767. class BertModel(Model):
  1768. model_arch = gguf.MODEL_ARCH.BERT
  1769. def __init__(self, *args, **kwargs):
  1770. super().__init__(*args, **kwargs)
  1771. self.vocab_size = None
  1772. def set_gguf_parameters(self):
  1773. super().set_gguf_parameters()
  1774. self.gguf_writer.add_causal_attention(False)
  1775. # get pooling path
  1776. pooling_path = None
  1777. module_path = self.dir_model / "modules.json"
  1778. if module_path.is_file():
  1779. with open(module_path, encoding="utf-8") as f:
  1780. modules = json.load(f)
  1781. for mod in modules:
  1782. if mod["type"] == "sentence_transformers.models.Pooling":
  1783. pooling_path = mod["path"]
  1784. break
  1785. # get pooling type
  1786. if pooling_path is not None:
  1787. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1788. pooling = json.load(f)
  1789. if pooling["pooling_mode_mean_tokens"]:
  1790. pooling_type = gguf.PoolingType.MEAN
  1791. elif pooling["pooling_mode_cls_token"]:
  1792. pooling_type = gguf.PoolingType.CLS
  1793. else:
  1794. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1795. self.gguf_writer.add_pooling_type(pooling_type)
  1796. def set_vocab(self):
  1797. tokens, toktypes, tokpre = self.get_vocab_base()
  1798. self.vocab_size = len(tokens)
  1799. # we need this to validate the size of the token_type embeddings
  1800. # though currently we are passing all zeros to the token_type embeddings
  1801. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1802. # convert to phantom space vocab
  1803. def phantom(tok):
  1804. if tok.startswith("[") and tok.endswith("]"):
  1805. return tok
  1806. if tok.startswith("##"):
  1807. return tok[2:]
  1808. return "\u2581" + tok
  1809. tokens = list(map(phantom, tokens))
  1810. # add vocab to gguf
  1811. self.gguf_writer.add_tokenizer_model("bert")
  1812. self.gguf_writer.add_tokenizer_pre(tokpre)
  1813. self.gguf_writer.add_token_list(tokens)
  1814. self.gguf_writer.add_token_types(toktypes)
  1815. # handle special tokens
  1816. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1817. special_vocab.add_to_gguf(self.gguf_writer)
  1818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1819. del bid # unused
  1820. # we are only using BERT for embeddings so we don't need the pooling layer
  1821. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1822. return [] # we don't need these
  1823. return [(self.map_tensor_name(name), data_torch)]
  1824. @Model.register("NomicBertModel")
  1825. class NomicBertModel(BertModel):
  1826. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1827. def __init__(self, *args, **kwargs):
  1828. super().__init__(*args, **kwargs)
  1829. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1830. self.hparams["n_ctx"] = 2048
  1831. # SwigLU activation
  1832. assert self.hparams["activation_function"] == "swiglu"
  1833. # this doesn't do anything in the HF version
  1834. assert self.hparams["causal"] is False
  1835. # no bias tensors
  1836. assert self.hparams["qkv_proj_bias"] is False
  1837. assert self.hparams["mlp_fc1_bias"] is False
  1838. assert self.hparams["mlp_fc2_bias"] is False
  1839. # norm at end of layer
  1840. assert self.hparams["prenorm"] is False
  1841. # standard RoPE
  1842. assert self.hparams["rotary_emb_fraction"] == 1.0
  1843. assert self.hparams["rotary_emb_interleaved"] is False
  1844. assert self.hparams["rotary_emb_scale_base"] is None
  1845. def set_gguf_parameters(self):
  1846. super().set_gguf_parameters()
  1847. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1848. @Model.register("GemmaForCausalLM")
  1849. class GemmaModel(Model):
  1850. model_arch = gguf.MODEL_ARCH.GEMMA
  1851. def set_vocab(self):
  1852. self._set_vocab_sentencepiece()
  1853. # TODO: these special tokens should be exported only for the CodeGemma family
  1854. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1855. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1856. special_vocab._set_special_token("prefix", 67)
  1857. special_vocab._set_special_token("suffix", 69)
  1858. special_vocab._set_special_token("middle", 68)
  1859. special_vocab._set_special_token("fsep", 70)
  1860. special_vocab._set_special_token("eot", 107)
  1861. special_vocab.add_to_gguf(self.gguf_writer)
  1862. self.gguf_writer.add_add_space_prefix(False)
  1863. def set_gguf_parameters(self):
  1864. hparams = self.hparams
  1865. block_count = hparams["num_hidden_layers"]
  1866. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1867. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1868. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1869. self.gguf_writer.add_block_count(block_count)
  1870. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1871. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1872. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1873. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1874. self.gguf_writer.add_key_length(hparams["head_dim"])
  1875. self.gguf_writer.add_value_length(hparams["head_dim"])
  1876. self.gguf_writer.add_file_type(self.ftype)
  1877. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1878. del bid # unused
  1879. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1880. # To prevent errors, skip loading lm_head.weight.
  1881. if name == "lm_head.weight":
  1882. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1883. return []
  1884. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1885. if name.endswith("norm.weight"):
  1886. data_torch = data_torch + 1
  1887. return [(self.map_tensor_name(name), data_torch)]
  1888. @Model.register("Gemma2ForCausalLM")
  1889. class Gemma2Model(Model):
  1890. model_arch = gguf.MODEL_ARCH.GEMMA2
  1891. def set_vocab(self):
  1892. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1893. # hack: This is required so that we can properly use start/end-of-turn for chat template
  1894. for i in range(108):
  1895. # including <unusedX>, <start_of_turn>, <end_of_turn>
  1896. toktypes[i] = SentencePieceTokenTypes.CONTROL
  1897. self.gguf_writer.add_tokenizer_model("llama")
  1898. self.gguf_writer.add_tokenizer_pre("default")
  1899. self.gguf_writer.add_token_list(tokens)
  1900. self.gguf_writer.add_token_scores(scores)
  1901. self.gguf_writer.add_token_types(toktypes)
  1902. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1903. special_vocab.add_to_gguf(self.gguf_writer)
  1904. self.gguf_writer.add_add_space_prefix(False)
  1905. def set_gguf_parameters(self):
  1906. hparams = self.hparams
  1907. block_count = hparams["num_hidden_layers"]
  1908. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1909. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1910. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1911. self.gguf_writer.add_block_count(block_count)
  1912. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1913. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1914. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1915. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1916. self.gguf_writer.add_key_length(hparams["head_dim"])
  1917. self.gguf_writer.add_value_length(hparams["head_dim"])
  1918. self.gguf_writer.add_file_type(self.ftype)
  1919. self.gguf_writer.add_attn_logit_softcapping(
  1920. self.hparams["attn_logit_softcapping"]
  1921. )
  1922. self.gguf_writer.add_final_logit_softcapping(
  1923. self.hparams["final_logit_softcapping"]
  1924. )
  1925. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  1926. # sanity check
  1927. attn_scalar = self.hparams["query_pre_attn_scalar"]
  1928. if attn_scalar != hparams["hidden_size"] / hparams["num_attention_heads"]:
  1929. raise ValueError("query_pre_attn_scalar must be equal to n_embd / n_head")
  1930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1931. del bid # unusem
  1932. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1933. # To prevent errors, skip loading lm_head.weight.
  1934. if name == "lm_head.weight":
  1935. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1936. return []
  1937. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1938. if name.endswith("norm.weight"):
  1939. data_torch = data_torch + 1
  1940. return [(self.map_tensor_name(name), data_torch)]
  1941. @Model.register("Starcoder2ForCausalLM")
  1942. class StarCoder2Model(Model):
  1943. model_arch = gguf.MODEL_ARCH.STARCODER2
  1944. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1945. class MambaModel(Model):
  1946. model_arch = gguf.MODEL_ARCH.MAMBA
  1947. def set_vocab(self):
  1948. vocab_size = self.hparams["vocab_size"]
  1949. # Round vocab size to next multiple of 8
  1950. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1951. # pad using ceiling division
  1952. # ref: https://stackoverflow.com/a/17511341/22827863
  1953. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1954. self.hparams["vocab_size"] = vocab_size
  1955. if (self.dir_model / "tokenizer.json").is_file():
  1956. self._set_vocab_gpt2()
  1957. elif (self.dir_model / "tokenizer.model").is_file():
  1958. self._set_vocab_sentencepiece()
  1959. else:
  1960. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1961. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1962. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1963. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1964. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1965. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
  1966. field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1967. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
  1968. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1969. assert field
  1970. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1971. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1972. assert field
  1973. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1974. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1975. assert field
  1976. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1977. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1978. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
  1979. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1980. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
  1981. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1982. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
  1983. field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
  1984. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
  1985. def set_gguf_parameters(self):
  1986. d_model = self.find_hparam(["hidden_size", "d_model"])
  1987. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1988. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1989. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1990. # ceiling division
  1991. # ref: https://stackoverflow.com/a/17511341/22827863
  1992. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1993. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1994. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1995. # Fail early for models which don't have a block expansion factor of 2
  1996. assert d_inner == 2 * d_model
  1997. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1998. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1999. self.gguf_writer.add_embedding_length(d_model)
  2000. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2001. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2002. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2003. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2004. self.gguf_writer.add_ssm_inner_size(d_inner)
  2005. self.gguf_writer.add_ssm_state_size(d_state)
  2006. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2007. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2008. self.gguf_writer.add_file_type(self.ftype)
  2009. _tok_embd = None
  2010. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2011. del bid # unused
  2012. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2013. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2014. new_name = self.map_tensor_name(name)
  2015. if name.endswith(".A_log"):
  2016. logger.debug("A_log --> A ==> " + new_name)
  2017. data_torch = -torch.exp(data_torch)
  2018. # assuming token_embd.weight is seen before output.weight
  2019. if self._tok_embd is not None and new_name == output_name:
  2020. if torch.equal(self._tok_embd, data_torch):
  2021. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2022. return []
  2023. elif new_name == tok_embd_name:
  2024. self._tok_embd = data_torch
  2025. return [(new_name, data_torch)]
  2026. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2027. del n_dims # unused
  2028. return bid is not None and new_name in (
  2029. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2030. gguf.MODEL_TENSOR.SSM_CONV1D,
  2031. gguf.MODEL_TENSOR.SSM_X,
  2032. gguf.MODEL_TENSOR.SSM_DT,
  2033. gguf.MODEL_TENSOR.SSM_A,
  2034. gguf.MODEL_TENSOR.SSM_D,
  2035. ]
  2036. )
  2037. @Model.register("CohereForCausalLM")
  2038. class CommandR2Model(Model):
  2039. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2040. def __init__(self, *args, **kwargs):
  2041. super().__init__(*args, **kwargs)
  2042. # max_position_embeddings = 8192 in config.json but model was actually
  2043. # trained on 128k context length
  2044. # aya-23 models don't have model_max_length specified
  2045. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2046. def set_gguf_parameters(self):
  2047. super().set_gguf_parameters()
  2048. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2049. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2050. @Model.register("OlmoForCausalLM")
  2051. @Model.register("OLMoForCausalLM")
  2052. class OlmoModel(Model):
  2053. model_arch = gguf.MODEL_ARCH.OLMO
  2054. def set_gguf_parameters(self):
  2055. super().set_gguf_parameters()
  2056. self.gguf_writer.add_layer_norm_eps(1e-5)
  2057. clip_qkv = self.hparams.get("clip_qkv")
  2058. if clip_qkv is not None:
  2059. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2060. # Same as super class, but permuting q_proj, k_proj
  2061. # Copied from: LlamaModel
  2062. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2063. del bid # unused
  2064. n_head = self.hparams["num_attention_heads"]
  2065. n_kv_head = self.hparams.get("num_key_value_heads")
  2066. if name.endswith("q_proj.weight"):
  2067. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2068. if name.endswith("k_proj.weight"):
  2069. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2070. return [(self.map_tensor_name(name), data_torch)]
  2071. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2072. class JinaBertV2Model(BertModel):
  2073. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2074. def __init__(self, *args, **kwargs):
  2075. super().__init__(*args, **kwargs)
  2076. self.intermediate_size = self.hparams["intermediate_size"]
  2077. def get_tensors(self):
  2078. for name, data in super().get_tensors():
  2079. if 'gated_layer' in name:
  2080. d1 = data[:self.intermediate_size, :]
  2081. name1 = name.replace('gated_layers', 'gated_layers_w')
  2082. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2083. d2 = data[self.intermediate_size:, :]
  2084. name2 = name.replace('gated_layers', 'gated_layers_v')
  2085. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2086. yield name1, d1
  2087. yield name2, d2
  2088. continue
  2089. yield name, data
  2090. def set_vocab(self, *args, **kwargs):
  2091. tokenizer_class = 'BertTokenizer'
  2092. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2093. tokenizer_class = json.load(f)['tokenizer_class']
  2094. if tokenizer_class == 'BertTokenizer':
  2095. super().set_vocab()
  2096. elif tokenizer_class == 'RobertaTokenizer':
  2097. self._set_vocab_gpt2()
  2098. self.gguf_writer.add_token_type_count(2)
  2099. else:
  2100. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2101. self.gguf_writer.add_add_bos_token(True)
  2102. self.gguf_writer.add_add_eos_token(True)
  2103. @Model.register("ArcticForCausalLM")
  2104. class ArcticModel(Model):
  2105. model_arch = gguf.MODEL_ARCH.ARCTIC
  2106. def set_vocab(self):
  2107. # The reason for using a custom implementation here is that the
  2108. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2109. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2110. from sentencepiece import SentencePieceProcessor
  2111. tokenizer_path = self.dir_model / 'tokenizer.model'
  2112. if not tokenizer_path.is_file():
  2113. logger.error(f'Error: Missing {tokenizer_path}')
  2114. sys.exit(1)
  2115. # Read the whole vocabulary from the tokenizer.model file
  2116. tokenizer = SentencePieceProcessor()
  2117. tokenizer.LoadFromFile(str(tokenizer_path))
  2118. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2119. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2120. scores: list[float] = [-10000.0] * vocab_size
  2121. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2122. for token_id in range(tokenizer.vocab_size()):
  2123. piece = tokenizer.IdToPiece(token_id)
  2124. text = piece.encode("utf-8")
  2125. score = tokenizer.GetScore(token_id)
  2126. toktype = SentencePieceTokenTypes.NORMAL
  2127. if tokenizer.IsUnknown(token_id):
  2128. toktype = SentencePieceTokenTypes.UNKNOWN
  2129. elif tokenizer.IsControl(token_id):
  2130. toktype = SentencePieceTokenTypes.CONTROL
  2131. elif tokenizer.IsUnused(token_id):
  2132. toktype = SentencePieceTokenTypes.UNUSED
  2133. elif tokenizer.IsByte(token_id):
  2134. toktype = SentencePieceTokenTypes.BYTE
  2135. tokens[token_id] = text
  2136. scores[token_id] = score
  2137. toktypes[token_id] = toktype
  2138. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2139. # of information about added/redefined tokens and modify them accordingly.
  2140. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2141. if tokenizer_config_file.is_file():
  2142. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2143. tokenizer_config_json = json.load(f)
  2144. if "added_tokens_decoder" in tokenizer_config_json:
  2145. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2146. for token_id, token_json in added_tokens_decoder.items():
  2147. token_id = int(token_id)
  2148. if (token_id >= vocab_size):
  2149. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2150. continue
  2151. token_content = token_json["content"]
  2152. token_type = SentencePieceTokenTypes.USER_DEFINED
  2153. token_score = -10000.0
  2154. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2155. # Set the score to 0.0 as in the original tokenizer.model
  2156. if ("special" in token_json) and token_json["special"]:
  2157. if token_content == tokenizer_config_json["unk_token"]:
  2158. token_type = SentencePieceTokenTypes.UNKNOWN
  2159. else:
  2160. token_type = SentencePieceTokenTypes.CONTROL
  2161. token_score = 0.0
  2162. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2163. tokens[token_id] = token_content.encode("utf-8")
  2164. toktypes[token_id] = token_type
  2165. scores[token_id] = token_score
  2166. self.gguf_writer.add_tokenizer_model("llama")
  2167. self.gguf_writer.add_tokenizer_pre("default")
  2168. self.gguf_writer.add_token_list(tokens)
  2169. self.gguf_writer.add_token_scores(scores)
  2170. self.gguf_writer.add_token_types(toktypes)
  2171. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2172. special_vocab.add_to_gguf(self.gguf_writer)
  2173. def set_gguf_parameters(self):
  2174. super().set_gguf_parameters()
  2175. hparams = self.hparams
  2176. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2177. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2178. _experts: list[dict[str, Tensor]] | None = None
  2179. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2180. n_head = self.hparams["num_attention_heads"]
  2181. n_kv_head = self.hparams.get("num_key_value_heads")
  2182. if name.endswith("q_proj.weight"):
  2183. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2184. if name.endswith("k_proj.weight"):
  2185. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2186. # process the experts separately
  2187. if name.find("block_sparse_moe.experts") != -1:
  2188. n_experts = self.hparams["num_local_experts"]
  2189. assert bid is not None
  2190. if self._experts is None:
  2191. self._experts = [{} for _ in range(self.block_count)]
  2192. self._experts[bid][name] = data_torch
  2193. if len(self._experts[bid]) >= n_experts * 3:
  2194. tensors: list[tuple[str, Tensor]] = []
  2195. # merge the experts into a single 3d tensor
  2196. for wid in ["w1", "w2", "w3"]:
  2197. datas: list[Tensor] = []
  2198. for xid in range(n_experts):
  2199. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2200. datas.append(self._experts[bid][ename])
  2201. del self._experts[bid][ename]
  2202. data_torch = torch.stack(datas, dim=0)
  2203. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2204. new_name = self.map_tensor_name(merged_name)
  2205. tensors.append((new_name, data_torch))
  2206. return tensors
  2207. else:
  2208. return []
  2209. return [(self.map_tensor_name(name), data_torch)]
  2210. def write_tensors(self):
  2211. super().write_tensors()
  2212. if self._experts is not None:
  2213. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2214. experts = [k for d in self._experts for k in d.keys()]
  2215. if len(experts) > 0:
  2216. raise ValueError(f"Unprocessed experts: {experts}")
  2217. @Model.register("DeepseekV2ForCausalLM")
  2218. class DeepseekV2Model(Model):
  2219. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2220. def set_vocab(self):
  2221. self._set_vocab_gpt2()
  2222. def set_gguf_parameters(self):
  2223. super().set_gguf_parameters()
  2224. hparams = self.hparams
  2225. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2226. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2227. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2228. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2229. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2230. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2231. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2232. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2233. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2234. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2235. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2236. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2237. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2238. if self.hparams["rope_scaling"].get("type") == "yarn":
  2239. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2240. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2241. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2242. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2243. _experts: list[dict[str, Tensor]] | None = None
  2244. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2245. # process the experts separately
  2246. if name.find("mlp.experts") != -1:
  2247. n_experts = self.hparams["n_routed_experts"]
  2248. assert bid is not None
  2249. if self._experts is None:
  2250. self._experts = [{} for _ in range(self.block_count)]
  2251. self._experts[bid][name] = data_torch
  2252. if len(self._experts[bid]) >= n_experts * 3:
  2253. tensors: list[tuple[str, Tensor]] = []
  2254. # merge the experts into a single 3d tensor
  2255. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2256. datas: list[Tensor] = []
  2257. for xid in range(n_experts):
  2258. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2259. datas.append(self._experts[bid][ename])
  2260. del self._experts[bid][ename]
  2261. data_torch = torch.stack(datas, dim=0)
  2262. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2263. new_name = self.map_tensor_name(merged_name)
  2264. tensors.append((new_name, data_torch))
  2265. return tensors
  2266. else:
  2267. return []
  2268. return [(self.map_tensor_name(name), data_torch)]
  2269. def write_tensors(self):
  2270. super().write_tensors()
  2271. if self._experts is not None:
  2272. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2273. experts = [k for d in self._experts for k in d.keys()]
  2274. if len(experts) > 0:
  2275. raise ValueError(f"Unprocessed experts: {experts}")
  2276. @Model.register("T5WithLMHeadModel")
  2277. @Model.register("T5ForConditionalGeneration")
  2278. @Model.register("MT5ForConditionalGeneration")
  2279. @Model.register("UMT5ForConditionalGeneration")
  2280. class T5Model(Model):
  2281. model_arch = gguf.MODEL_ARCH.T5
  2282. def __init__(self, *args, **kwargs):
  2283. super().__init__(*args, **kwargs)
  2284. self.shared_token_embeddings_found = False
  2285. def set_vocab(self):
  2286. # to avoid TypeError: Descriptors cannot be created directly
  2287. # exception when importing sentencepiece_model_pb2
  2288. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2289. from sentencepiece import SentencePieceProcessor
  2290. from sentencepiece import sentencepiece_model_pb2 as model
  2291. tokenizer_path = self.dir_model / 'tokenizer.model'
  2292. # many older models use spiece.model tokenizer model filename
  2293. if not tokenizer_path.is_file():
  2294. tokenizer_path = self.dir_model / 'spiece.model'
  2295. if not tokenizer_path.is_file():
  2296. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2297. sentencepiece_model = model.ModelProto()
  2298. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2299. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2300. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2301. # assure the tokenizer model file name is correct
  2302. assert tokenizer_path.name == 'tokenizer.model'
  2303. return self._set_vocab_sentencepiece()
  2304. else:
  2305. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2306. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2307. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2308. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2309. tokenizer = SentencePieceProcessor()
  2310. tokenizer.LoadFromFile(str(tokenizer_path))
  2311. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2312. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2313. scores: list[float] = [-10000.0] * vocab_size
  2314. toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
  2315. for token_id in range(tokenizer.vocab_size()):
  2316. piece = tokenizer.IdToPiece(token_id)
  2317. text = piece.encode("utf-8")
  2318. score = tokenizer.GetScore(token_id)
  2319. toktype = SentencePieceTokenTypes.NORMAL
  2320. if tokenizer.IsUnknown(token_id):
  2321. toktype = SentencePieceTokenTypes.UNKNOWN
  2322. elif tokenizer.IsControl(token_id):
  2323. toktype = SentencePieceTokenTypes.CONTROL
  2324. elif tokenizer.IsUnused(token_id):
  2325. toktype = SentencePieceTokenTypes.UNUSED
  2326. elif tokenizer.IsByte(token_id):
  2327. toktype = SentencePieceTokenTypes.BYTE
  2328. tokens[token_id] = text
  2329. scores[token_id] = score
  2330. toktypes[token_id] = toktype
  2331. added_tokens_file = self.dir_model / 'added_tokens.json'
  2332. if added_tokens_file.is_file():
  2333. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2334. added_tokens_json = json.load(f)
  2335. for key in added_tokens_json:
  2336. token_id = added_tokens_json[key]
  2337. if (token_id >= vocab_size):
  2338. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2339. continue
  2340. tokens[token_id] = key.encode("utf-8")
  2341. scores[token_id] = -1000.0
  2342. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2343. if vocab_size > len(tokens):
  2344. pad_count = vocab_size - len(tokens)
  2345. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2346. for i in range(1, pad_count + 1):
  2347. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2348. scores.append(-1000.0)
  2349. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2350. self.gguf_writer.add_tokenizer_model("t5")
  2351. self.gguf_writer.add_tokenizer_pre("default")
  2352. self.gguf_writer.add_token_list(tokens)
  2353. self.gguf_writer.add_token_scores(scores)
  2354. self.gguf_writer.add_token_types(toktypes)
  2355. self.gguf_writer.add_add_space_prefix(add_prefix)
  2356. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2357. if precompiled_charsmap:
  2358. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2359. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2360. special_vocab.add_to_gguf(self.gguf_writer)
  2361. self.gguf_writer.add_add_bos_token(False)
  2362. self.gguf_writer.add_add_eos_token(True)
  2363. def set_gguf_parameters(self):
  2364. self.gguf_writer.add_name("T5")
  2365. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2366. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2367. n_ctx = 512
  2368. self.gguf_writer.add_context_length(n_ctx)
  2369. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2370. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2371. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2372. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2373. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2374. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2375. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2376. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2377. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2378. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2379. self.gguf_writer.add_file_type(self.ftype)
  2380. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2381. del bid # unused
  2382. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2383. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2384. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2385. # and decoder and ignore the remaining ones.
  2386. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2387. if not self.shared_token_embeddings_found:
  2388. name = "shared.weight"
  2389. self.shared_token_embeddings_found = True
  2390. else:
  2391. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2392. return []
  2393. return [(self.map_tensor_name(name), data_torch)]
  2394. @Model.register("JAISLMHeadModel")
  2395. class JaisModel(Model):
  2396. model_arch = gguf.MODEL_ARCH.JAIS
  2397. def __init__(self, *args, **kwargs):
  2398. super().__init__(*args, **kwargs)
  2399. # SwigLU activation
  2400. assert self.hparams["activation_function"] == "swiglu"
  2401. # ALiBi position embedding
  2402. assert self.hparams["position_embedding_type"] == "alibi"
  2403. # Embeddings scale
  2404. self.embeddings_scale = 1.0
  2405. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2406. self.output_is_wte = False
  2407. if 'mup_embeddings_scale' in self.hparams:
  2408. self.output_is_wte = True # Hack (?)
  2409. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2410. elif 'embeddings_scale' in self.hparams:
  2411. self.embeddings_scale = self.hparams['embeddings_scale']
  2412. else:
  2413. assert False
  2414. self.width_scale = 1.0
  2415. if 'mup_output_alpha' in self.hparams:
  2416. assert 'mup_width_scale' in self.hparams
  2417. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2418. elif 'width_scale' in self.hparams:
  2419. self.width_scale = self.hparams['width_scale']
  2420. else:
  2421. assert False
  2422. self.max_alibi_bias = 8.0
  2423. def set_vocab(self):
  2424. self._set_vocab_gpt2()
  2425. def set_gguf_parameters(self):
  2426. self.gguf_writer.add_name(self.dir_model.name)
  2427. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2428. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2429. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2430. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2431. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2432. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2433. self.gguf_writer.add_file_type(self.ftype)
  2434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2435. del bid # unused
  2436. tensors: list[tuple[str, Tensor]] = []
  2437. # we don't need these
  2438. if name.endswith((".attn.bias")):
  2439. return tensors
  2440. if name.endswith(("relative_pe.slopes")):
  2441. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2442. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2443. # but Jais's PyTorch model simply precalculates the slope values and places them
  2444. # in relative_pes.slopes
  2445. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2446. first_val = float(data_torch._data[0])
  2447. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2448. return tensors
  2449. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2450. data_torch = data_torch.transpose(1, 0)
  2451. new_name = self.map_tensor_name(name)
  2452. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2453. tensors.append((new_name, data_torch * self.embeddings_scale))
  2454. if self.output_is_wte:
  2455. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2456. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2457. assert not self.output_is_wte
  2458. tensors.append((new_name, data_torch * self.width_scale))
  2459. else:
  2460. tensors.append((new_name, data_torch))
  2461. return tensors
  2462. def write_tensors(self):
  2463. super().write_tensors()
  2464. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2465. ###### CONVERSION LOGIC ######
  2466. # tree of lazy tensors
  2467. class LazyTorchTensor(gguf.LazyBase):
  2468. _tensor_type = torch.Tensor
  2469. # to keep the type-checker happy
  2470. dtype: torch.dtype
  2471. shape: torch.Size
  2472. # only used when converting a torch.Tensor to a np.ndarray
  2473. _dtype_map: dict[torch.dtype, type] = {
  2474. torch.float16: np.float16,
  2475. torch.float32: np.float32,
  2476. }
  2477. def numpy(self) -> gguf.LazyNumpyTensor:
  2478. dtype = self._dtype_map[self.dtype]
  2479. return gguf.LazyNumpyTensor(
  2480. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2481. lazy=self._lazy,
  2482. args=(self,),
  2483. func=(lambda s: s[0].numpy())
  2484. )
  2485. @classmethod
  2486. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
  2487. return torch.empty(size=shape, dtype=dtype, device="meta")
  2488. @classmethod
  2489. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2490. del types # unused
  2491. if kwargs is None:
  2492. kwargs = {}
  2493. if func is torch.Tensor.numpy:
  2494. return args[0].numpy()
  2495. return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
  2496. def parse_args() -> argparse.Namespace:
  2497. parser = argparse.ArgumentParser(
  2498. description="Convert a huggingface model to a GGML compatible file")
  2499. parser.add_argument(
  2500. "--vocab-only", action="store_true",
  2501. help="extract only the vocab",
  2502. )
  2503. parser.add_argument(
  2504. "--awq-path", type=Path, default=None,
  2505. help="Path to scale awq cache file",
  2506. )
  2507. parser.add_argument(
  2508. "--outfile", type=Path,
  2509. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2510. )
  2511. parser.add_argument(
  2512. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2513. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2514. )
  2515. parser.add_argument(
  2516. "--bigendian", action="store_true",
  2517. help="model is executed on big endian machine",
  2518. )
  2519. parser.add_argument(
  2520. "model", type=Path,
  2521. help="directory containing model file",
  2522. )
  2523. parser.add_argument(
  2524. "--use-temp-file", action="store_true",
  2525. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2526. )
  2527. parser.add_argument(
  2528. "--no-lazy", action="store_true",
  2529. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2530. )
  2531. parser.add_argument(
  2532. "--model-name", type=str, default=None,
  2533. help="name of the model",
  2534. )
  2535. parser.add_argument(
  2536. "--verbose", action="store_true",
  2537. help="increase output verbosity",
  2538. )
  2539. parser.add_argument(
  2540. "--split-max-tensors", type=int, default=0,
  2541. help="max tensors in each split",
  2542. )
  2543. parser.add_argument(
  2544. "--split-max-size", type=str, default="0",
  2545. help="max size per split N(M|G)",
  2546. )
  2547. parser.add_argument(
  2548. "--dry-run", action="store_true",
  2549. help="only print out a split plan and exit, without writing any new files",
  2550. )
  2551. parser.add_argument(
  2552. "--no-tensor-first-split", action="store_true",
  2553. help="do not add tensors to the first split (disabled by default)"
  2554. )
  2555. return parser.parse_args()
  2556. def split_str_to_n_bytes(split_str: str) -> int:
  2557. if split_str.endswith("K"):
  2558. n = int(split_str[:-1]) * 1000
  2559. elif split_str.endswith("M"):
  2560. n = int(split_str[:-1]) * 1000 * 1000
  2561. elif split_str.endswith("G"):
  2562. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2563. elif split_str.isnumeric():
  2564. n = int(split_str)
  2565. else:
  2566. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2567. if n < 0:
  2568. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2569. return n
  2570. def main() -> None:
  2571. args = parse_args()
  2572. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2573. dir_model = args.model
  2574. if args.awq_path:
  2575. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  2576. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  2577. tmp_model_path = args.model / "weighted_model"
  2578. dir_model = tmp_model_path
  2579. if tmp_model_path.is_dir():
  2580. logger.info(f"{tmp_model_path} exists as a weighted model.")
  2581. else:
  2582. tmp_model_path.mkdir(parents=True, exist_ok=True)
  2583. logger.info("Saving new weighted model ...")
  2584. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  2585. logger.info(f"Saved weighted model at {tmp_model_path}.")
  2586. if not dir_model.is_dir():
  2587. logger.error(f'Error: {args.model} is not a directory')
  2588. sys.exit(1)
  2589. ftype_map: dict[str, gguf.LlamaFileType] = {
  2590. "f32": gguf.LlamaFileType.ALL_F32,
  2591. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2592. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2593. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2594. "auto": gguf.LlamaFileType.GUESSED,
  2595. }
  2596. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2597. if args.use_temp_file and is_split:
  2598. logger.error("Error: Cannot use temp file when splitting")
  2599. sys.exit(1)
  2600. if args.outfile is not None:
  2601. fname_out = args.outfile
  2602. else:
  2603. # output in the same directory as the model by default
  2604. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2605. logger.info(f"Loading model: {dir_model.name}")
  2606. hparams = Model.load_hparams(dir_model)
  2607. with torch.inference_mode():
  2608. try:
  2609. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2610. except NotImplementedError:
  2611. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2612. sys.exit(1)
  2613. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
  2614. args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
  2615. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2616. small_first_shard=args.no_tensor_first_split)
  2617. logger.info("Set model parameters")
  2618. model_instance.set_gguf_parameters()
  2619. logger.info("Set model tokenizer")
  2620. model_instance.set_vocab()
  2621. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2622. if args.vocab_only:
  2623. logger.info("Exporting model vocab...")
  2624. model_instance.write_vocab()
  2625. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2626. else:
  2627. logger.info("Exporting model...")
  2628. model_instance.write()
  2629. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2630. logger.info(f"Model successfully exported to {out_path}")
  2631. if __name__ == '__main__':
  2632. main()