tensor_mapping.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "shared", # t5
  24. ),
  25. # Token type embeddings
  26. MODEL_TENSOR.TOKEN_TYPES: (
  27. "embeddings.token_type_embeddings", # bert nomic-bert
  28. ),
  29. # Normalization of token embeddings
  30. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  31. "word_embeddings_layernorm", # bloom
  32. "embeddings.LayerNorm", # bert
  33. "emb_ln", # nomic-bert
  34. ),
  35. # Position embeddings
  36. MODEL_TENSOR.POS_EMBD: (
  37. "transformer.wpe", # gpt2
  38. "embeddings.position_embeddings", # bert
  39. "wpe", # gpt2
  40. ),
  41. # Output
  42. MODEL_TENSOR.OUTPUT: (
  43. "embed_out", # gptneox
  44. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais
  45. "output", # llama-pth bloom internlm2
  46. "word_embeddings_for_head", # persimmon
  47. "lm_head.linear", # phi2
  48. ),
  49. # Output norm
  50. MODEL_TENSOR.OUTPUT_NORM: (
  51. "gpt_neox.final_layer_norm", # gptneox
  52. "transformer.ln_f", # gpt2 gpt-j falcon jais
  53. "model.norm", # llama-hf baichuan internlm2
  54. "norm", # llama-pth
  55. "transformer.norm_f", # mpt dbrx
  56. "ln_f", # refact bloom qwen gpt2
  57. "language_model.encoder.final_layernorm", # persimmon
  58. "model.final_layernorm", # persimmon
  59. "lm_head.ln", # phi2
  60. "model.norm_f", # mamba-qbert
  61. "backbone.norm_f", # mamba
  62. "transformer.rms_norm", # Grok
  63. ),
  64. # Rope frequencies
  65. MODEL_TENSOR.ROPE_FREQS: (
  66. "rope.freqs", # llama-pth
  67. ),
  68. }
  69. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  70. # Attention norm
  71. MODEL_TENSOR.ATTN_NORM: (
  72. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  73. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais
  74. "transformer.blocks.{bid}.norm_1", # mpt
  75. "transformer.h.{bid}.input_layernorm", # falcon7b
  76. "h.{bid}.input_layernorm", # bloom
  77. "transformer.h.{bid}.ln_mlp", # falcon40b
  78. "model.layers.{bid}.input_layernorm", # llama-hf
  79. "layers.{bid}.attention_norm", # llama-pth
  80. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  81. "model.layers.{bid}.ln1", # yi
  82. "h.{bid}.ln_1", # gpt2
  83. "transformer.h.{bid}.ln", # phi2
  84. "model.layers.layers.{bid}.norm", # plamo
  85. "model.layers.{bid}.attention_norm", # internlm2
  86. "model.layers.{bid}.norm", # mamba-qbert
  87. "backbone.layers.{bid}.norm", # mamba
  88. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  89. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  90. ),
  91. # Attention norm 2
  92. MODEL_TENSOR.ATTN_NORM_2: (
  93. "transformer.h.{bid}.ln_attn", # falcon40b
  94. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  95. ),
  96. # Attention query-key-value
  97. MODEL_TENSOR.ATTN_QKV: (
  98. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  99. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  100. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  101. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  102. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  103. "h.{bid}.self_attention.query_key_value", # bloom
  104. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  105. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  106. "h.{bid}.attn.c_attn", # gpt2
  107. "transformer.h.{bid}.mixer.Wqkv", # phi2
  108. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  109. "model.layers.{bid}.self_attn.qkv_proj" # phi3
  110. ),
  111. # Attention query
  112. MODEL_TENSOR.ATTN_Q: (
  113. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  114. "layers.{bid}.attention.wq", # llama-pth
  115. "encoder.layer.{bid}.attention.self.query", # bert
  116. "transformer.h.{bid}.attn.q_proj", # gpt-j
  117. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  118. "model.layers.{bid}.attention.wq", # internlm2
  119. "transformer.decoder_layer.{bid}.multi_head_attention.query" # Grok
  120. ),
  121. # Attention key
  122. MODEL_TENSOR.ATTN_K: (
  123. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  124. "layers.{bid}.attention.wk", # llama-pth
  125. "encoder.layer.{bid}.attention.self.key", # bert
  126. "transformer.h.{bid}.attn.k_proj", # gpt-j
  127. "transformer.h.{bid}.attn.k", # refact
  128. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  129. "model.layers.{bid}.attention.wk", # internlm2
  130. "transformer.decoder_layer.{bid}.multi_head_attention.key" # Grok
  131. ),
  132. # Attention value
  133. MODEL_TENSOR.ATTN_V: (
  134. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  135. "layers.{bid}.attention.wv", # llama-pth
  136. "encoder.layer.{bid}.attention.self.value", # bert
  137. "transformer.h.{bid}.attn.v_proj", # gpt-j
  138. "transformer.h.{bid}.attn.v", # refact
  139. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  140. "model.layers.{bid}.attention.wv", # internlm2
  141. "transformer.decoder_layer.{bid}.multi_head_attention.value" # Grok
  142. ),
  143. # Attention output
  144. MODEL_TENSOR.ATTN_OUT: (
  145. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  146. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  147. "transformer.blocks.{bid}.attn.out_proj", # mpt
  148. "transformer.h.{bid}.self_attention.dense", # falcon
  149. "h.{bid}.self_attention.dense", # bloom
  150. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  151. "layers.{bid}.attention.wo", # llama-pth
  152. "encoder.layer.{bid}.attention.output.dense", # bert
  153. "transformer.h.{bid}.attn.out_proj", # gpt-j
  154. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  155. "model.layers.{bid}.self_attn.dense", # persimmon
  156. "h.{bid}.attn.c_proj", # gpt2
  157. "transformer.h.{bid}.mixer.out_proj", # phi2
  158. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  159. "model.layers.{bid}.attention.wo", # internlm2
  160. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  161. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  162. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  163. ),
  164. # Attention output norm
  165. MODEL_TENSOR.ATTN_OUT_NORM: (
  166. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  167. "encoder.layers.{bid}.norm1", # nomic-bert
  168. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  169. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  170. ),
  171. MODEL_TENSOR.ATTN_POST_NORM: (
  172. "model.layers.{bid}.post_attention_layernorm", # gemma2
  173. ),
  174. # Rotary embeddings
  175. MODEL_TENSOR.ATTN_ROT_EMBD: (
  176. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  177. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  178. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  179. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  180. ),
  181. # Feed-forward norm
  182. MODEL_TENSOR.FFN_NORM: (
  183. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  184. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais
  185. "h.{bid}.post_attention_layernorm", # bloom
  186. "transformer.blocks.{bid}.norm_2", # mpt
  187. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  188. "layers.{bid}.ffn_norm", # llama-pth
  189. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  190. "model.layers.{bid}.ln2", # yi
  191. "h.{bid}.ln_2", # gpt2
  192. "model.layers.{bid}.ffn_norm", # internlm2
  193. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  194. ),
  195. # Post feed-forward norm
  196. MODEL_TENSOR.FFN_PRE_NORM: (
  197. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  198. ),
  199. # Post feed-forward norm
  200. MODEL_TENSOR.FFN_POST_NORM: (
  201. "model.layers.{bid}.post_feedforward_layernorm", # gemma2
  202. ),
  203. MODEL_TENSOR.FFN_GATE_INP: (
  204. "layers.{bid}.feed_forward.gate", # mixtral
  205. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  206. "model.layers.{bid}.mlp.gate", # qwen2moe
  207. "transformer.decoder_layer.{bid}.router", # Grok
  208. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  209. ),
  210. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  211. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  212. ),
  213. # Feed-forward up
  214. MODEL_TENSOR.FFN_UP: (
  215. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  216. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  217. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  218. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  219. "h.{bid}.mlp.dense_h_to_4h", # bloom
  220. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  221. "layers.{bid}.feed_forward.w3", # llama-pth
  222. "encoder.layer.{bid}.intermediate.dense", # bert
  223. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  224. "transformer.h.{bid}.mlp.linear_3", # refact
  225. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  226. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  227. "transformer.h.{bid}.mlp.w1", # qwen
  228. "h.{bid}.mlp.c_fc", # gpt2
  229. "transformer.h.{bid}.mlp.fc1", # phi2
  230. "model.layers.{bid}.mlp.fc1", # phi2
  231. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  232. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  233. "model.layers.{bid}.feed_forward.w3", # internlm2
  234. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  235. "model.layers.{bid}.mlp.c_fc", # starcoder2
  236. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  237. "model.layers.{bid}.residual_mlp.w3", # arctic
  238. ),
  239. MODEL_TENSOR.FFN_UP_EXP: (
  240. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  241. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  242. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  243. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe (merged)
  244. ),
  245. MODEL_TENSOR.FFN_UP_SHEXP: (
  246. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  247. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek2
  248. ),
  249. # AWQ-activation gate
  250. MODEL_TENSOR.FFN_ACT: (
  251. "transformer.blocks.{bid}.ffn.act", # mpt
  252. ),
  253. # Feed-forward gate
  254. MODEL_TENSOR.FFN_GATE: (
  255. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  256. "layers.{bid}.feed_forward.w1", # llama-pth
  257. "transformer.h.{bid}.mlp.w2", # qwen
  258. "transformer.h.{bid}.mlp.c_fc2", # jais
  259. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  260. "model.layers.{bid}.feed_forward.w1", # internlm2
  261. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  262. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  263. "transformer.h.{bid}.mlp.linear_1", # refact
  264. "model.layers.{bid}.residual_mlp.w1", # arctic
  265. ),
  266. MODEL_TENSOR.FFN_GATE_EXP: (
  267. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  268. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  269. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  270. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe (merged)
  271. ),
  272. MODEL_TENSOR.FFN_GATE_SHEXP: (
  273. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  274. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek2
  275. ),
  276. # Feed-forward down
  277. MODEL_TENSOR.FFN_DOWN: (
  278. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  279. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  280. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  281. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  282. "h.{bid}.mlp.dense_4h_to_h", # bloom
  283. "model.layers.{bid}.mlp.down_proj", # llama-hf
  284. "layers.{bid}.feed_forward.w2", # llama-pth
  285. "encoder.layer.{bid}.output.dense", # bert
  286. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  287. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  288. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  289. "h.{bid}.mlp.c_proj", # gpt2
  290. "transformer.h.{bid}.mlp.fc2", # phi2
  291. "model.layers.{bid}.mlp.fc2", # phi2
  292. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  293. "model.layers.{bid}.feed_forward.w2", # internlm2
  294. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  295. "model.layers.{bid}.mlp.c_proj", # starcoder2
  296. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  297. "model.layers.{bid}.residual_mlp.w2", # arctic
  298. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  299. ),
  300. MODEL_TENSOR.FFN_DOWN_EXP: (
  301. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  302. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  303. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  304. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe (merged)
  305. ),
  306. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  307. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  308. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek2
  309. ),
  310. MODEL_TENSOR.ATTN_Q_NORM: (
  311. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  312. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  313. "model.layers.{bid}.self_attn.q_norm", # cohere
  314. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  315. "encoder.layer.{bid}.attention.self.layer_norm_q" # jina-bert-v2
  316. ),
  317. MODEL_TENSOR.ATTN_K_NORM: (
  318. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  319. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  320. "model.layers.{bid}.self_attn.k_norm", # cohere
  321. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  322. "encoder.layer.{bid}.attention.self.layer_norm_k" # jina-bert-v2
  323. ),
  324. MODEL_TENSOR.ROPE_FREQS: (
  325. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  326. ),
  327. MODEL_TENSOR.LAYER_OUT_NORM: (
  328. "encoder.layer.{bid}.output.LayerNorm", # bert
  329. "encoder.layers.{bid}.norm2", # nomic-bert
  330. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  331. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  332. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  333. ),
  334. MODEL_TENSOR.SSM_IN: (
  335. "model.layers.{bid}.in_proj",
  336. "backbone.layers.{bid}.mixer.in_proj",
  337. ),
  338. MODEL_TENSOR.SSM_CONV1D: (
  339. "model.layers.{bid}.conv1d",
  340. "backbone.layers.{bid}.mixer.conv1d",
  341. ),
  342. MODEL_TENSOR.SSM_X: (
  343. "model.layers.{bid}.x_proj",
  344. "backbone.layers.{bid}.mixer.x_proj",
  345. ),
  346. MODEL_TENSOR.SSM_DT: (
  347. "model.layers.{bid}.dt_proj",
  348. "backbone.layers.{bid}.mixer.dt_proj",
  349. ),
  350. MODEL_TENSOR.SSM_A: (
  351. "model.layers.{bid}.A_log",
  352. "backbone.layers.{bid}.mixer.A_log",
  353. ),
  354. MODEL_TENSOR.SSM_D: (
  355. "model.layers.{bid}.D",
  356. "backbone.layers.{bid}.mixer.D",
  357. ),
  358. MODEL_TENSOR.SSM_OUT: (
  359. "model.layers.{bid}.out_proj",
  360. "backbone.layers.{bid}.mixer.out_proj",
  361. ),
  362. MODEL_TENSOR.ATTN_Q_A: (
  363. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  364. ),
  365. MODEL_TENSOR.ATTN_Q_B: (
  366. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  367. ),
  368. MODEL_TENSOR.ATTN_KV_A_MQA: (
  369. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  370. ),
  371. MODEL_TENSOR.ATTN_KV_B: (
  372. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  373. ),
  374. MODEL_TENSOR.ATTN_Q_A_NORM: (
  375. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  376. ),
  377. MODEL_TENSOR.ATTN_KV_A_NORM: (
  378. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  379. ),
  380. MODEL_TENSOR.ATTN_SUB_NORM: (
  381. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  382. ),
  383. MODEL_TENSOR.FFN_SUB_NORM: (
  384. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  385. ),
  386. MODEL_TENSOR.DEC_ATTN_NORM: (
  387. "decoder.block.{bid}.layer.0.layer_norm", # t5
  388. ),
  389. MODEL_TENSOR.DEC_ATTN_Q: (
  390. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  391. ),
  392. MODEL_TENSOR.DEC_ATTN_K: (
  393. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  394. ),
  395. MODEL_TENSOR.DEC_ATTN_V: (
  396. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  397. ),
  398. MODEL_TENSOR.DEC_ATTN_OUT: (
  399. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  400. ),
  401. MODEL_TENSOR.DEC_ATTN_REL_B: (
  402. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  403. ),
  404. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  405. "decoder.block.{bid}.layer.1.layer_norm", # t5
  406. ),
  407. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  408. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  409. ),
  410. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  411. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  412. ),
  413. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  414. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  415. ),
  416. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  417. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  418. ),
  419. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  420. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  421. ),
  422. MODEL_TENSOR.DEC_FFN_NORM: (
  423. "decoder.block.{bid}.layer.2.layer_norm", # t5
  424. ),
  425. MODEL_TENSOR.DEC_FFN_GATE: (
  426. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  427. ),
  428. MODEL_TENSOR.DEC_FFN_UP: (
  429. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  430. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  431. ),
  432. MODEL_TENSOR.DEC_FFN_DOWN: (
  433. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  434. ),
  435. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  436. "decoder.final_layer_norm", # t5
  437. ),
  438. MODEL_TENSOR.ENC_ATTN_NORM: (
  439. "encoder.block.{bid}.layer.0.layer_norm", # t5
  440. ),
  441. MODEL_TENSOR.ENC_ATTN_Q: (
  442. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  443. ),
  444. MODEL_TENSOR.ENC_ATTN_K: (
  445. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  446. ),
  447. MODEL_TENSOR.ENC_ATTN_V: (
  448. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  449. ),
  450. MODEL_TENSOR.ENC_ATTN_OUT: (
  451. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  452. ),
  453. MODEL_TENSOR.ENC_ATTN_REL_B: (
  454. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  455. ),
  456. MODEL_TENSOR.ENC_FFN_NORM: (
  457. "encoder.block.{bid}.layer.1.layer_norm", # t5
  458. ),
  459. MODEL_TENSOR.ENC_FFN_GATE: (
  460. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  461. ),
  462. MODEL_TENSOR.ENC_FFN_UP: (
  463. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  464. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  465. ),
  466. MODEL_TENSOR.ENC_FFN_DOWN: (
  467. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  468. ),
  469. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  470. "encoder.final_layer_norm", # t5
  471. ),
  472. }
  473. # architecture-specific block mappings
  474. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  475. MODEL_ARCH.ARCTIC: {
  476. MODEL_TENSOR.FFN_NORM: (
  477. "model.layers.{bid}.residual_layernorm",
  478. ),
  479. MODEL_TENSOR.FFN_NORM_EXP: (
  480. "model.layers.{bid}.post_attention_layernorm",
  481. ),
  482. },
  483. }
  484. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  485. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  486. self.mapping = {}
  487. for tensor, keys in self.mappings_cfg.items():
  488. if tensor not in MODEL_TENSORS[arch]:
  489. continue
  490. tensor_name = TENSOR_NAMES[tensor]
  491. self.mapping[tensor_name] = (tensor, tensor_name)
  492. for key in keys:
  493. self.mapping[key] = (tensor, tensor_name)
  494. if arch in self.arch_block_mappings_cfg:
  495. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  496. for bid in range(n_blocks):
  497. for tensor, keys in self.block_mappings_cfg.items():
  498. if tensor not in MODEL_TENSORS[arch]:
  499. continue
  500. # TODO: make this configurable
  501. n_experts = 160
  502. for xid in range(n_experts):
  503. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  504. self.mapping[tensor_name] = (tensor, tensor_name)
  505. for key in keys:
  506. key = key.format(bid = bid, xid = xid)
  507. self.mapping[key] = (tensor, tensor_name)
  508. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  509. result = self.mapping.get(key)
  510. if result is not None:
  511. return result
  512. for suffix in try_suffixes:
  513. if key.endswith(suffix):
  514. result = self.mapping.get(key[:-len(suffix)])
  515. if result is not None:
  516. return result[0], result[1] + suffix
  517. return None
  518. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  519. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  520. if result is None:
  521. return None
  522. return result[1]
  523. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  524. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  525. if result is None:
  526. return None
  527. return result[0]
  528. def __getitem__(self, key: str) -> str:
  529. try:
  530. return self.mapping[key][1]
  531. except KeyError:
  532. raise KeyError(key)
  533. def __contains__(self, key: str) -> bool:
  534. return key in self.mapping
  535. def __repr__(self) -> str:
  536. return repr(self.mapping)
  537. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  538. return TensorNameMap(arch, n_blocks)