| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- #pragma once
- #include "llama.h"
- #include <string>
- #include <vector>
- enum gpt_sampler_type {
- GPT_SAMPLER_TYPE_NONE = 0,
- GPT_SAMPLER_TYPE_TOP_K = 1,
- GPT_SAMPLER_TYPE_TOP_P = 2,
- GPT_SAMPLER_TYPE_MIN_P = 3,
- GPT_SAMPLER_TYPE_TFS_Z = 4,
- GPT_SAMPLER_TYPE_TYPICAL_P = 5,
- GPT_SAMPLER_TYPE_TEMPERATURE = 6,
- };
- // sampling parameters
- struct gpt_sampler_params {
- uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
- int32_t n_prev = 64; // number of previous tokens to remember
- int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
- int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
- int32_t top_k = 40; // <= 0 to use vocab size
- float top_p = 0.95f; // 1.0 = disabled
- float min_p = 0.05f; // 0.0 = disabled
- float tfs_z = 1.00f; // 1.0 = disabled
- float typ_p = 1.00f; // typical_p, 1.0 = disabled
- float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
- float dynatemp_range = 0.00f; // 0.0 = disabled
- float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
- int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
- float penalty_repeat = 1.00f; // 1.0 = disabled
- float penalty_freq = 0.00f; // 0.0 = disabled
- float penalty_present = 0.00f; // 0.0 = disabled
- int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
- float mirostat_tau = 5.00f; // target entropy
- float mirostat_eta = 0.10f; // learning rate
- bool penalize_nl = false; // consider newlines as a repeatable token
- bool ignore_eos = false;
- std::vector<enum gpt_sampler_type> samplers = {
- GPT_SAMPLER_TYPE_TOP_K,
- GPT_SAMPLER_TYPE_TFS_Z,
- GPT_SAMPLER_TYPE_TYPICAL_P,
- GPT_SAMPLER_TYPE_TOP_P,
- GPT_SAMPLER_TYPE_MIN_P,
- GPT_SAMPLER_TYPE_TEMPERATURE
- };
- std::string grammar; // optional BNF-like grammar to constrain sampling
- std::vector<llama_logit_bias> logit_bias; // logit biases to apply
- // print the parameters into a string
- std::string print() const;
- };
- // gpt_sampler extends llama_sampler with additional functionality:
- //
- // - grammar support
- // - custom sampler logic based on the parameters
- // - history of the last accepted tokens
- // - performance metrics
- //
- // This goal is to have a common implementation of the sampling logic shared across the examples.
- // For example, depending on the temperature, the sampling chain can be very simple (greedy) or more
- // complex (top-k, top-p, etc).
- //
- // Another example is related to the grammar. In general, the grammar constraints applied on the full
- // vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled
- // token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the
- // grammar constraints are applied to the full vocabulary and the token is resampled.
- //
- // The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can
- // be moved into the core llama library.
- //
- // For convenience, the gpt_sampler also maintains a container with the current candidate tokens.
- // This can be used to access the probabilities of the rest of the non-sampled tokens.
- //
- // TODO: measure grammar performance
- //
- struct gpt_sampler;
- // llama_sampler API overloads
- struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params);
- void gpt_sampler_free(struct gpt_sampler * gsmpl);
- // if accept_grammar is true, the token is accepted both by the sampling chain and the grammar
- void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar);
- void gpt_sampler_reset (struct gpt_sampler * gsmpl);
- struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl);
- // arguments can be nullptr to skip printing
- void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl);
- // extended sampling implementation:
- //
- // - set logits
- // - apply the configured sampler chain
- // - check if the token fits the grammar (if any)
- // - if not: resample by first applying the grammar constraints and then sampling again (slower path)
- //
- // if grammar_first is true, the grammar is applied before the samplers (slower)
- // useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar
- //
- llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false);
- // helpers
- // access the internal list of current candidate tokens
- llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl);
- // get the last accepted token
- llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl);
- // print the sampler chain into a string
- std::string gpt_sampler_print(const struct gpt_sampler * gsmpl);
- // get a string representation of the last accepted tokens
- std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n);
- char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr);
- std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr);
- std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
- std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);
|