| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- #include "ggml.h"
- #include "llama.h"
- #include "common.h"
- #include "ngram-cache.h"
- #include <cstdint>
- #include <cstdio>
- #include <fstream>
- #include <string>
- #include <vector>
- int main(int argc, char ** argv){
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- gpt_params_print_usage(argc, argv, params);
- return 1;
- }
- // max. number of additional tokens to draft if match is found
- const int n_draft = params.n_draft;
- const bool dump_kv_cache = params.dump_kv_cache;
- #ifndef LOG_DISABLE_LOGS
- log_set_target(log_filename_generator("lookup", "log"));
- LOG_TEE("Log start\n");
- log_dump_cmdline(argc, argv);
- #endif // LOG_DISABLE_LOGS
- // init llama.cpp
- llama_backend_init();
- llama_numa_init(params.numa);
- // load the model
- llama_init_result llama_init = llama_init_from_gpt_params(params);
- llama_model * model = llama_init.model;
- llama_context * ctx = llama_init.context;
- // tokenize the prompt
- std::vector<llama_token> inp;
- inp = ::llama_tokenize(ctx, params.prompt, true, true);
- llama_ngram_cache ngram_cache_context;
- llama_ngram_cache ngram_cache_dynamic;
- llama_ngram_cache ngram_cache_static;
- int64_t t_draft_flat_us = 0;
- int64_t t_draft_us = 0;
- {
- // Fill up context ngram cache with tokens from user input:
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, inp.size(), false);
- if (!params.lookup_cache_static.empty()) {
- try {
- ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
- } catch (std::ifstream::failure const &) {
- fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
- exit(1);
- }
- }
- if (!params.lookup_cache_dynamic.empty()) {
- try {
- ngram_cache_dynamic = llama_ngram_cache_load(params.lookup_cache_dynamic);
- } catch (std::ifstream::failure const &) {} // if the file does not exist it will simply be created at the end of the program
- }
- t_draft_flat_us += ggml_time_us() - t_start_draft_us;
- }
- const int max_context_size = llama_n_ctx(ctx);
- const int max_tokens_list_size = max_context_size - 4;
- if ((int) inp.size() > max_tokens_list_size) {
- fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
- return 1;
- }
- fprintf(stderr, "\n\n");
- for (auto id : inp) {
- fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
- }
- fflush(stderr);
- const int n_input = inp.size();
- const auto t_enc_start = ggml_time_us();
- llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
- llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
- const auto t_enc_end = ggml_time_us();
- int n_predict = 0;
- int n_drafted = 0;
- int n_accept = 0;
- int n_past = inp.size();
- bool has_eos = false;
- struct gpt_sampler * smpl = gpt_sampler_init(model, params.sparams);
- std::vector<llama_token> draft;
- llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
- // debug
- struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
- const auto t_dec_start = ggml_time_us();
- while (true) {
- // debug
- if (dump_kv_cache) {
- llama_kv_cache_view_update(ctx, &kvc_view);
- llama_kv_cache_dump_view_seqs(kvc_view, 40);
- }
- // print current draft sequence
- LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
- int i_dft = 0;
- while (true) {
- // sample from the target model
- llama_token id = gpt_sampler_sample(smpl, ctx, i_dft);
- gpt_sampler_accept(smpl, id, true);
- const std::string token_str = llama_token_to_piece(ctx, id);
- if (!params.use_color) {
- printf("%s", token_str.c_str());
- }
- if (llama_token_is_eog(model, id)) {
- has_eos = true;
- }
- ++n_predict;
- // check if the target token matches the draft
- if (i_dft < (int) draft.size() && id == draft[i_dft]) {
- LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
- ++n_accept;
- ++n_past;
- ++i_dft;
- inp.push_back(id);
- {
- // Update context ngram cache with the newly accepted token:
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
- t_draft_us += ggml_time_us() - t_start_draft_us;
- }
- if (params.use_color) {
- // color accepted draft token
- printf("\033[34m%s\033[0m", token_str.c_str());
- fflush(stdout);
- }
- continue;
- }
- if (params.use_color) {
- printf("%s", token_str.c_str());
- }
- fflush(stdout);
- LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
- draft.clear();
- draft.push_back(id);
- inp.push_back(id);
- {
- // Update context ngram cache with the newly accepted token:
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_update(ngram_cache_context, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, inp, 1, false);
- t_draft_us += ggml_time_us() - t_start_draft_us;
- }
- break;
- }
- if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
- break;
- }
- // KV cache management
- // clean the cache of draft tokens that weren't accepted
- llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
- llama_batch_clear(batch_tgt);
- llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
- // Draft already contains a single token sampled from the model:
- GGML_ASSERT(draft.size() == 1);
- GGML_ASSERT(draft[0] == inp.back());
- const int64_t t_start_draft_us = ggml_time_us();
- llama_ngram_cache_draft(inp, draft, n_draft, LLAMA_NGRAM_MIN, LLAMA_NGRAM_MAX, ngram_cache_context, ngram_cache_dynamic, ngram_cache_static);
- for (size_t i = 1; i < draft.size(); ++i) {
- llama_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
- }
- t_draft_us += ggml_time_us() - t_start_draft_us;
- n_drafted += draft.size() - 1;
- llama_decode(ctx, batch_tgt);
- ++n_past;
- draft.erase(draft.begin());
- }
- auto t_dec_end = ggml_time_us();
- // Update dynamic ngram cache with context ngram cache and save it to disk:
- llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
- llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
- LOG_TEE("\n\n");
- LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
- LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
- LOG_TEE("\n");
- LOG_TEE("n_draft = %d\n", n_draft);
- LOG_TEE("n_predict = %d\n", n_predict);
- LOG_TEE("n_drafted = %d\n", n_drafted);
- LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
- LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
- t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
- LOG_TEE("n_accept = %d\n", n_accept);
- LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
- LOG_TEE("\ntarget:\n\n");
- llama_perf_print(smpl, LLAMA_PERF_TYPE_SAMPLER_CHAIN);
- llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
- gpt_sampler_free(smpl);
- llama_batch_free(batch_tgt);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|