llama-bench.cpp 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  36. if (a.pattern != b.pattern) {
  37. // cString comparison that may be null
  38. if (a.pattern == nullptr || b.pattern == nullptr) {
  39. return false;
  40. }
  41. if (strcmp(a.pattern, b.pattern) != 0) {
  42. return false;
  43. }
  44. }
  45. if (a.buft != b.buft) {
  46. return false;
  47. }
  48. return true;
  49. }
  50. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  51. if (a.size() != b.size()) {
  52. return false;
  53. }
  54. for (size_t i = 0; i < a.size(); i++) {
  55. if (!tensor_buft_override_equal(a[i], b[i])) {
  56. return false;
  57. }
  58. }
  59. return true;
  60. }
  61. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  62. if (a.size() != b.size()) {
  63. return false;
  64. }
  65. for (size_t i = 0; i < a.size(); i++) {
  66. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  67. return false;
  68. }
  69. }
  70. return true;
  71. }
  72. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  73. std::ostringstream str;
  74. for (size_t i = 0; i < values.size(); i++) {
  75. str << values[i];
  76. if (i < values.size() - 1) {
  77. str << delim;
  78. }
  79. }
  80. return str.str();
  81. }
  82. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  83. std::vector<std::string> str_values;
  84. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  85. return str_values;
  86. }
  87. template <typename T> static T avg(const std::vector<T> & v) {
  88. if (v.empty()) {
  89. return 0;
  90. }
  91. T sum = std::accumulate(v.begin(), v.end(), T(0));
  92. return sum / (T) v.size();
  93. }
  94. template <typename T> static T stdev(const std::vector<T> & v) {
  95. if (v.size() <= 1) {
  96. return 0;
  97. }
  98. T mean = avg(v);
  99. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  100. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  101. return stdev;
  102. }
  103. static std::string get_cpu_info() {
  104. std::vector<std::string> cpu_list;
  105. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  106. auto * dev = ggml_backend_dev_get(i);
  107. auto dev_type = ggml_backend_dev_type(dev);
  108. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  109. cpu_list.push_back(ggml_backend_dev_description(dev));
  110. }
  111. }
  112. return join(cpu_list, ", ");
  113. }
  114. static std::string get_gpu_info() {
  115. std::vector<std::string> gpu_list;
  116. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  117. auto * dev = ggml_backend_dev_get(i);
  118. auto dev_type = ggml_backend_dev_type(dev);
  119. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  120. gpu_list.push_back(ggml_backend_dev_description(dev));
  121. }
  122. }
  123. return join(gpu_list, ", ");
  124. }
  125. // command line params
  126. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  127. static const char * output_format_str(output_formats format) {
  128. switch (format) {
  129. case NONE:
  130. return "none";
  131. case CSV:
  132. return "csv";
  133. case JSON:
  134. return "json";
  135. case JSONL:
  136. return "jsonl";
  137. case MARKDOWN:
  138. return "md";
  139. case SQL:
  140. return "sql";
  141. default:
  142. GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "jsonl") {
  153. format = JSONL;
  154. } else if (s == "md") {
  155. format = MARKDOWN;
  156. } else if (s == "sql") {
  157. format = SQL;
  158. } else {
  159. return false;
  160. }
  161. return true;
  162. }
  163. static const char * split_mode_str(llama_split_mode mode) {
  164. switch (mode) {
  165. case LLAMA_SPLIT_MODE_NONE:
  166. return "none";
  167. case LLAMA_SPLIT_MODE_LAYER:
  168. return "layer";
  169. case LLAMA_SPLIT_MODE_ROW:
  170. return "row";
  171. default:
  172. GGML_ABORT("invalid split mode");
  173. }
  174. }
  175. static std::string pair_str(const std::pair<int, int> & p) {
  176. static char buf[32];
  177. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  178. return buf;
  179. }
  180. struct cmd_params {
  181. std::vector<std::string> model;
  182. std::vector<int> n_prompt;
  183. std::vector<int> n_gen;
  184. std::vector<std::pair<int, int>> n_pg;
  185. std::vector<int> n_depth;
  186. std::vector<int> n_batch;
  187. std::vector<int> n_ubatch;
  188. std::vector<ggml_type> type_k;
  189. std::vector<ggml_type> type_v;
  190. std::vector<int> n_threads;
  191. std::vector<std::string> cpu_mask;
  192. std::vector<bool> cpu_strict;
  193. std::vector<int> poll;
  194. std::vector<int> n_gpu_layers;
  195. std::vector<std::string> rpc_servers;
  196. std::vector<llama_split_mode> split_mode;
  197. std::vector<int> main_gpu;
  198. std::vector<bool> no_kv_offload;
  199. std::vector<bool> flash_attn;
  200. std::vector<std::vector<float>> tensor_split;
  201. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  202. std::vector<bool> use_mmap;
  203. std::vector<bool> embeddings;
  204. std::vector<bool> no_op_offload;
  205. ggml_numa_strategy numa;
  206. int reps;
  207. ggml_sched_priority prio;
  208. int delay;
  209. bool verbose;
  210. bool progress;
  211. output_formats output_format;
  212. output_formats output_format_stderr;
  213. };
  214. static const cmd_params cmd_params_defaults = {
  215. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  216. /* n_prompt */ { 512 },
  217. /* n_gen */ { 128 },
  218. /* n_pg */ {},
  219. /* n_depth */ { 0 },
  220. /* n_batch */ { 2048 },
  221. /* n_ubatch */ { 512 },
  222. /* type_k */ { GGML_TYPE_F16 },
  223. /* type_v */ { GGML_TYPE_F16 },
  224. /* n_threads */ { cpu_get_num_math() },
  225. /* cpu_mask */ { "0x0" },
  226. /* cpu_strict */ { false },
  227. /* poll */ { 50 },
  228. /* n_gpu_layers */ { 99 },
  229. /* rpc_servers */ { "" },
  230. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  231. /* main_gpu */ { 0 },
  232. /* no_kv_offload */ { false },
  233. /* flash_attn */ { false },
  234. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  235. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{{nullptr,nullptr}} },
  236. /* use_mmap */ { true },
  237. /* embeddings */ { false },
  238. /* no_op_offload */ { false },
  239. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  240. /* reps */ 5,
  241. /* prio */ GGML_SCHED_PRIO_NORMAL,
  242. /* delay */ 0,
  243. /* verbose */ false,
  244. /* progress */ false,
  245. /* output_format */ MARKDOWN,
  246. /* output_format_stderr */ NONE,
  247. };
  248. static void print_usage(int /* argc */, char ** argv) {
  249. printf("usage: %s [options]\n", argv[0]);
  250. printf("\n");
  251. printf("options:\n");
  252. printf(" -h, --help\n");
  253. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  254. printf(" -p, --n-prompt <n> (default: %s)\n",
  255. join(cmd_params_defaults.n_prompt, ",").c_str());
  256. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  257. printf(" -pg <pp,tg> (default: %s)\n",
  258. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  259. printf(" -d, --n-depth <n> (default: %s)\n", join(cmd_params_defaults.n_depth, ",").c_str());
  260. printf(" -b, --batch-size <n> (default: %s)\n",
  261. join(cmd_params_defaults.n_batch, ",").c_str());
  262. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  263. join(cmd_params_defaults.n_ubatch, ",").c_str());
  264. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  265. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  266. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  267. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  268. printf(" -t, --threads <n> (default: %s)\n",
  269. join(cmd_params_defaults.n_threads, ",").c_str());
  270. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  271. join(cmd_params_defaults.cpu_mask, ",").c_str());
  272. printf(" --cpu-strict <0|1> (default: %s)\n",
  273. join(cmd_params_defaults.cpu_strict, ",").c_str());
  274. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  275. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  276. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  277. if (llama_supports_rpc()) {
  278. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  279. join(cmd_params_defaults.rpc_servers, ",").c_str());
  280. }
  281. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  282. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  283. printf(" -mg, --main-gpu <i> (default: %s)\n",
  284. join(cmd_params_defaults.main_gpu, ",").c_str());
  285. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  286. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  287. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  288. join(cmd_params_defaults.flash_attn, ",").c_str());
  289. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  290. join(cmd_params_defaults.use_mmap, ",").c_str());
  291. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  292. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  293. join(cmd_params_defaults.embeddings, ",").c_str());
  294. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  295. printf(" -ot --override-tensors <tensor name pattern>=<buffer type>;... (default: disabled)\n");
  296. printf(" -nopo, --no-op-offload <i> (default: 0)\n");
  297. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  298. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  299. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  300. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
  301. output_format_str(cmd_params_defaults.output_format));
  302. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
  303. output_format_str(cmd_params_defaults.output_format_stderr));
  304. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  305. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  306. printf("\n");
  307. printf(
  308. "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
  309. "multiple times.\n");
  310. }
  311. static ggml_type ggml_type_from_name(const std::string & s) {
  312. if (s == "f16") {
  313. return GGML_TYPE_F16;
  314. }
  315. if (s == "bf16") {
  316. return GGML_TYPE_BF16;
  317. }
  318. if (s == "q8_0") {
  319. return GGML_TYPE_Q8_0;
  320. }
  321. if (s == "q4_0") {
  322. return GGML_TYPE_Q4_0;
  323. }
  324. if (s == "q4_1") {
  325. return GGML_TYPE_Q4_1;
  326. }
  327. if (s == "q5_0") {
  328. return GGML_TYPE_Q5_0;
  329. }
  330. if (s == "q5_1") {
  331. return GGML_TYPE_Q5_1;
  332. }
  333. if (s == "iq4_nl") {
  334. return GGML_TYPE_IQ4_NL;
  335. }
  336. return GGML_TYPE_COUNT;
  337. }
  338. static cmd_params parse_cmd_params(int argc, char ** argv) {
  339. cmd_params params;
  340. std::string arg;
  341. bool invalid_param = false;
  342. const std::string arg_prefix = "--";
  343. const char split_delim = ',';
  344. params.verbose = cmd_params_defaults.verbose;
  345. params.output_format = cmd_params_defaults.output_format;
  346. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  347. params.reps = cmd_params_defaults.reps;
  348. params.numa = cmd_params_defaults.numa;
  349. params.prio = cmd_params_defaults.prio;
  350. params.delay = cmd_params_defaults.delay;
  351. params.progress = cmd_params_defaults.progress;
  352. for (int i = 1; i < argc; i++) {
  353. arg = argv[i];
  354. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  355. std::replace(arg.begin(), arg.end(), '_', '-');
  356. }
  357. if (arg == "-h" || arg == "--help") {
  358. print_usage(argc, argv);
  359. exit(0);
  360. } else if (arg == "-m" || arg == "--model") {
  361. if (++i >= argc) {
  362. invalid_param = true;
  363. break;
  364. }
  365. auto p = string_split<std::string>(argv[i], split_delim);
  366. params.model.insert(params.model.end(), p.begin(), p.end());
  367. } else if (arg == "-p" || arg == "--n-prompt") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. auto p = string_split<int>(argv[i], split_delim);
  373. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  374. } else if (arg == "-n" || arg == "--n-gen") {
  375. if (++i >= argc) {
  376. invalid_param = true;
  377. break;
  378. }
  379. auto p = string_split<int>(argv[i], split_delim);
  380. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  381. } else if (arg == "-pg") {
  382. if (++i >= argc) {
  383. invalid_param = true;
  384. break;
  385. }
  386. auto p = string_split<std::string>(argv[i], ',');
  387. if (p.size() != 2) {
  388. invalid_param = true;
  389. break;
  390. }
  391. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  392. } else if (arg == "-d" || arg == "--n-depth") {
  393. if (++i >= argc) {
  394. invalid_param = true;
  395. break;
  396. }
  397. auto p = string_split<int>(argv[i], split_delim);
  398. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  399. } else if (arg == "-b" || arg == "--batch-size") {
  400. if (++i >= argc) {
  401. invalid_param = true;
  402. break;
  403. }
  404. auto p = string_split<int>(argv[i], split_delim);
  405. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  406. } else if (arg == "-ub" || arg == "--ubatch-size") {
  407. if (++i >= argc) {
  408. invalid_param = true;
  409. break;
  410. }
  411. auto p = string_split<int>(argv[i], split_delim);
  412. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  413. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  414. if (++i >= argc) {
  415. invalid_param = true;
  416. break;
  417. }
  418. auto p = string_split<std::string>(argv[i], split_delim);
  419. std::vector<ggml_type> types;
  420. for (const auto & t : p) {
  421. ggml_type gt = ggml_type_from_name(t);
  422. if (gt == GGML_TYPE_COUNT) {
  423. invalid_param = true;
  424. break;
  425. }
  426. types.push_back(gt);
  427. }
  428. if (invalid_param) {
  429. break;
  430. }
  431. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  432. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  433. if (++i >= argc) {
  434. invalid_param = true;
  435. break;
  436. }
  437. auto p = string_split<std::string>(argv[i], split_delim);
  438. std::vector<ggml_type> types;
  439. for (const auto & t : p) {
  440. ggml_type gt = ggml_type_from_name(t);
  441. if (gt == GGML_TYPE_COUNT) {
  442. invalid_param = true;
  443. break;
  444. }
  445. types.push_back(gt);
  446. }
  447. if (invalid_param) {
  448. break;
  449. }
  450. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  451. } else if (arg == "-t" || arg == "--threads") {
  452. if (++i >= argc) {
  453. invalid_param = true;
  454. break;
  455. }
  456. auto p = string_split<int>(argv[i], split_delim);
  457. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  458. } else if (arg == "-C" || arg == "--cpu-mask") {
  459. if (++i >= argc) {
  460. invalid_param = true;
  461. break;
  462. }
  463. auto p = string_split<std::string>(argv[i], split_delim);
  464. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  465. } else if (arg == "--cpu-strict") {
  466. if (++i >= argc) {
  467. invalid_param = true;
  468. break;
  469. }
  470. auto p = string_split<bool>(argv[i], split_delim);
  471. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  472. } else if (arg == "--poll") {
  473. if (++i >= argc) {
  474. invalid_param = true;
  475. break;
  476. }
  477. auto p = string_split<int>(argv[i], split_delim);
  478. params.poll.insert(params.poll.end(), p.begin(), p.end());
  479. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  480. if (++i >= argc) {
  481. invalid_param = true;
  482. break;
  483. }
  484. auto p = string_split<int>(argv[i], split_delim);
  485. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  486. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  487. if (++i >= argc) {
  488. invalid_param = true;
  489. break;
  490. }
  491. params.rpc_servers.push_back(argv[i]);
  492. } else if (arg == "-sm" || arg == "--split-mode") {
  493. if (++i >= argc) {
  494. invalid_param = true;
  495. break;
  496. }
  497. auto p = string_split<std::string>(argv[i], split_delim);
  498. std::vector<llama_split_mode> modes;
  499. for (const auto & m : p) {
  500. llama_split_mode mode;
  501. if (m == "none") {
  502. mode = LLAMA_SPLIT_MODE_NONE;
  503. } else if (m == "layer") {
  504. mode = LLAMA_SPLIT_MODE_LAYER;
  505. } else if (m == "row") {
  506. mode = LLAMA_SPLIT_MODE_ROW;
  507. } else {
  508. invalid_param = true;
  509. break;
  510. }
  511. modes.push_back(mode);
  512. }
  513. if (invalid_param) {
  514. break;
  515. }
  516. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  517. } else if (arg == "-mg" || arg == "--main-gpu") {
  518. if (++i >= argc) {
  519. invalid_param = true;
  520. break;
  521. }
  522. params.main_gpu = string_split<int>(argv[i], split_delim);
  523. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  524. if (++i >= argc) {
  525. invalid_param = true;
  526. break;
  527. }
  528. auto p = string_split<bool>(argv[i], split_delim);
  529. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  530. } else if (arg == "--numa") {
  531. if (++i >= argc) {
  532. invalid_param = true;
  533. break;
  534. } else {
  535. std::string value(argv[i]);
  536. /**/ if (value == "distribute" || value == "") {
  537. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  538. } else if (value == "isolate") {
  539. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  540. } else if (value == "numactl") {
  541. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  542. } else {
  543. invalid_param = true;
  544. break;
  545. }
  546. }
  547. } else if (arg == "-fa" || arg == "--flash-attn") {
  548. if (++i >= argc) {
  549. invalid_param = true;
  550. break;
  551. }
  552. auto p = string_split<bool>(argv[i], split_delim);
  553. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  554. } else if (arg == "-mmp" || arg == "--mmap") {
  555. if (++i >= argc) {
  556. invalid_param = true;
  557. break;
  558. }
  559. auto p = string_split<bool>(argv[i], split_delim);
  560. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  561. } else if (arg == "-embd" || arg == "--embeddings") {
  562. if (++i >= argc) {
  563. invalid_param = true;
  564. break;
  565. }
  566. auto p = string_split<bool>(argv[i], split_delim);
  567. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  568. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  569. if (++i >= argc) {
  570. invalid_param = true;
  571. break;
  572. }
  573. auto p = string_split<bool>(argv[i], split_delim);
  574. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  575. } else if (arg == "-ts" || arg == "--tensor-split") {
  576. if (++i >= argc) {
  577. invalid_param = true;
  578. break;
  579. }
  580. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  581. // split string by ; and /
  582. const std::regex regex{ R"([;/]+)" };
  583. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  584. std::vector<std::string> split_arg{ it, {} };
  585. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  586. std::vector<float> tensor_split(llama_max_devices());
  587. for (size_t i = 0; i < llama_max_devices(); ++i) {
  588. if (i < split_arg.size()) {
  589. tensor_split[i] = std::stof(split_arg[i]);
  590. } else {
  591. tensor_split[i] = 0.0f;
  592. }
  593. }
  594. params.tensor_split.push_back(tensor_split);
  595. }
  596. } else if (arg == "-ot" || arg == "--override-tensor") {
  597. if (++i >= argc) {
  598. invalid_param = true;
  599. break;
  600. }
  601. auto value = argv[i];
  602. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  603. if (buft_list.empty()) {
  604. // enumerate all the devices and add their buffer types to the list
  605. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  606. auto * dev = ggml_backend_dev_get(i);
  607. auto * buft = ggml_backend_dev_buffer_type(dev);
  608. if (buft) {
  609. buft_list[ggml_backend_buft_name(buft)] = buft;
  610. }
  611. }
  612. }
  613. auto override_group_span_len = std::strcspn(value, ",");
  614. bool last_group = false;
  615. do {
  616. if (override_group_span_len == 0) {
  617. // Adds an empty override-tensors for an empty span
  618. params.tensor_buft_overrides.push_back({{}});
  619. if (value[override_group_span_len] == '\0') {
  620. value = &value[override_group_span_len];
  621. last_group = true;
  622. } else {
  623. value = &value[override_group_span_len + 1];
  624. override_group_span_len = std::strcspn(value, ",");
  625. }
  626. continue;
  627. }
  628. // Stamps null terminators into the argv
  629. // value for this option to avoid the
  630. // memory leak present in the implementation
  631. // over in arg.cpp. Acceptable because we
  632. // only parse these args once in this program.
  633. auto override_group = value;
  634. if (value[override_group_span_len] == '\0') {
  635. value = &value[override_group_span_len];
  636. last_group = true;
  637. } else {
  638. value[override_group_span_len] = '\0';
  639. value = &value[override_group_span_len + 1];
  640. }
  641. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  642. auto override_span_len = std::strcspn(override_group, ";");
  643. while (override_span_len > 0) {
  644. auto override = override_group;
  645. if (override_group[override_span_len] != '\0') {
  646. override_group[override_span_len] = '\0';
  647. override_group = &override_group[override_span_len + 1];
  648. } else {
  649. override_group = &override_group[override_span_len];
  650. }
  651. auto tensor_name_span_len = std::strcspn(override, "=");
  652. if (tensor_name_span_len >= override_span_len) {
  653. invalid_param = true;
  654. break;
  655. }
  656. override[tensor_name_span_len] = '\0';
  657. auto tensor_name = override;
  658. auto buffer_type = &override[tensor_name_span_len + 1];
  659. if (buft_list.find(buffer_type) == buft_list.end()) {
  660. printf("Available buffer types:\n");
  661. for (const auto & it : buft_list) {
  662. printf(" %s\n", ggml_backend_buft_name(it.second));
  663. }
  664. invalid_param = true;
  665. break;
  666. }
  667. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  668. override_span_len = std::strcspn(override_group, ";");
  669. }
  670. if (invalid_param) {
  671. break;
  672. }
  673. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  674. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  675. override_group_span_len = std::strcspn(value, ",");
  676. } while (!last_group);
  677. } else if (arg == "-r" || arg == "--repetitions") {
  678. if (++i >= argc) {
  679. invalid_param = true;
  680. break;
  681. }
  682. params.reps = std::stoi(argv[i]);
  683. } else if (arg == "--prio") {
  684. if (++i >= argc) {
  685. invalid_param = true;
  686. break;
  687. }
  688. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  689. } else if (arg == "--delay") {
  690. if (++i >= argc) {
  691. invalid_param = true;
  692. break;
  693. }
  694. params.delay = std::stoi(argv[i]);
  695. } else if (arg == "-o" || arg == "--output") {
  696. if (++i >= argc) {
  697. invalid_param = true;
  698. break;
  699. }
  700. invalid_param = !output_format_from_str(argv[i], params.output_format);
  701. } else if (arg == "-oe" || arg == "--output-err") {
  702. if (++i >= argc) {
  703. invalid_param = true;
  704. break;
  705. }
  706. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  707. } else if (arg == "-v" || arg == "--verbose") {
  708. params.verbose = true;
  709. } else if (arg == "--progress") {
  710. params.progress = true;
  711. } else {
  712. invalid_param = true;
  713. break;
  714. }
  715. }
  716. if (invalid_param) {
  717. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  718. print_usage(argc, argv);
  719. exit(1);
  720. }
  721. // set defaults
  722. if (params.model.empty()) {
  723. params.model = cmd_params_defaults.model;
  724. }
  725. if (params.n_prompt.empty()) {
  726. params.n_prompt = cmd_params_defaults.n_prompt;
  727. }
  728. if (params.n_gen.empty()) {
  729. params.n_gen = cmd_params_defaults.n_gen;
  730. }
  731. if (params.n_pg.empty()) {
  732. params.n_pg = cmd_params_defaults.n_pg;
  733. }
  734. if (params.n_depth.empty()) {
  735. params.n_depth = cmd_params_defaults.n_depth;
  736. }
  737. if (params.n_batch.empty()) {
  738. params.n_batch = cmd_params_defaults.n_batch;
  739. }
  740. if (params.n_ubatch.empty()) {
  741. params.n_ubatch = cmd_params_defaults.n_ubatch;
  742. }
  743. if (params.type_k.empty()) {
  744. params.type_k = cmd_params_defaults.type_k;
  745. }
  746. if (params.type_v.empty()) {
  747. params.type_v = cmd_params_defaults.type_v;
  748. }
  749. if (params.n_gpu_layers.empty()) {
  750. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  751. }
  752. if (params.rpc_servers.empty()) {
  753. params.rpc_servers = cmd_params_defaults.rpc_servers;
  754. }
  755. if (params.split_mode.empty()) {
  756. params.split_mode = cmd_params_defaults.split_mode;
  757. }
  758. if (params.main_gpu.empty()) {
  759. params.main_gpu = cmd_params_defaults.main_gpu;
  760. }
  761. if (params.no_kv_offload.empty()) {
  762. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  763. }
  764. if (params.flash_attn.empty()) {
  765. params.flash_attn = cmd_params_defaults.flash_attn;
  766. }
  767. if (params.tensor_split.empty()) {
  768. params.tensor_split = cmd_params_defaults.tensor_split;
  769. }
  770. if (params.tensor_buft_overrides.empty()) {
  771. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  772. }
  773. if (params.use_mmap.empty()) {
  774. params.use_mmap = cmd_params_defaults.use_mmap;
  775. }
  776. if (params.embeddings.empty()) {
  777. params.embeddings = cmd_params_defaults.embeddings;
  778. }
  779. if (params.no_op_offload.empty()) {
  780. params.no_op_offload = cmd_params_defaults.no_op_offload;
  781. }
  782. if (params.n_threads.empty()) {
  783. params.n_threads = cmd_params_defaults.n_threads;
  784. }
  785. if (params.cpu_mask.empty()) {
  786. params.cpu_mask = cmd_params_defaults.cpu_mask;
  787. }
  788. if (params.cpu_strict.empty()) {
  789. params.cpu_strict = cmd_params_defaults.cpu_strict;
  790. }
  791. if (params.poll.empty()) {
  792. params.poll = cmd_params_defaults.poll;
  793. }
  794. return params;
  795. }
  796. struct cmd_params_instance {
  797. std::string model;
  798. int n_prompt;
  799. int n_gen;
  800. int n_depth;
  801. int n_batch;
  802. int n_ubatch;
  803. ggml_type type_k;
  804. ggml_type type_v;
  805. int n_threads;
  806. std::string cpu_mask;
  807. bool cpu_strict;
  808. int poll;
  809. int n_gpu_layers;
  810. std::string rpc_servers_str;
  811. llama_split_mode split_mode;
  812. int main_gpu;
  813. bool no_kv_offload;
  814. bool flash_attn;
  815. std::vector<float> tensor_split;
  816. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  817. bool use_mmap;
  818. bool embeddings;
  819. bool no_op_offload;
  820. llama_model_params to_llama_mparams() const {
  821. llama_model_params mparams = llama_model_default_params();
  822. mparams.n_gpu_layers = n_gpu_layers;
  823. if (!rpc_servers_str.empty()) {
  824. auto rpc_servers = string_split<std::string>(rpc_servers_str, ',');
  825. // add RPC devices
  826. if (!rpc_servers.empty()) {
  827. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  828. if (!rpc_reg) {
  829. fprintf(stderr, "%s: failed to find RPC backend\n", __func__);
  830. exit(1);
  831. }
  832. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  833. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  834. if (!ggml_backend_rpc_add_device_fn) {
  835. fprintf(stderr, "%s: failed to find RPC device add function\n", __func__);
  836. exit(1);
  837. }
  838. static std::vector<ggml_backend_dev_t> devices;
  839. devices.clear();
  840. for (const std::string & server : rpc_servers) {
  841. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  842. if (dev) {
  843. devices.push_back(dev);
  844. } else {
  845. fprintf(stderr, "%s: failed to add RPC device for server '%s'\n", __func__, server.c_str());
  846. exit(1);
  847. }
  848. }
  849. devices.push_back(nullptr);
  850. mparams.devices = devices.data();
  851. }
  852. }
  853. mparams.split_mode = split_mode;
  854. mparams.main_gpu = main_gpu;
  855. mparams.tensor_split = tensor_split.data();
  856. mparams.use_mmap = use_mmap;
  857. if (tensor_buft_overrides.empty()) {
  858. mparams.tensor_buft_overrides = nullptr;
  859. } else {
  860. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr && "Tensor buffer overrides not terminated with empty pattern");
  861. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  862. }
  863. return mparams;
  864. }
  865. bool equal_mparams(const cmd_params_instance & other) const {
  866. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers_str == other.rpc_servers_str &&
  867. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  868. tensor_split == other.tensor_split && vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  869. }
  870. llama_context_params to_llama_cparams() const {
  871. llama_context_params cparams = llama_context_default_params();
  872. cparams.n_ctx = n_prompt + n_gen + n_depth;
  873. cparams.n_batch = n_batch;
  874. cparams.n_ubatch = n_ubatch;
  875. cparams.type_k = type_k;
  876. cparams.type_v = type_v;
  877. cparams.offload_kqv = !no_kv_offload;
  878. cparams.flash_attn = flash_attn;
  879. cparams.embeddings = embeddings;
  880. cparams.op_offload = !no_op_offload;
  881. return cparams;
  882. }
  883. };
  884. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  885. std::vector<cmd_params_instance> instances;
  886. // this ordering minimizes the number of times that each model needs to be reloaded
  887. // clang-format off
  888. for (const auto & m : params.model)
  889. for (const auto & nl : params.n_gpu_layers)
  890. for (const auto & rpc : params.rpc_servers)
  891. for (const auto & sm : params.split_mode)
  892. for (const auto & mg : params.main_gpu)
  893. for (const auto & ts : params.tensor_split)
  894. for (const auto & ot : params.tensor_buft_overrides)
  895. for (const auto & mmp : params.use_mmap)
  896. for (const auto & embd : params.embeddings)
  897. for (const auto & nopo : params.no_op_offload)
  898. for (const auto & nb : params.n_batch)
  899. for (const auto & nub : params.n_ubatch)
  900. for (const auto & tk : params.type_k)
  901. for (const auto & tv : params.type_v)
  902. for (const auto & nkvo : params.no_kv_offload)
  903. for (const auto & fa : params.flash_attn)
  904. for (const auto & nt : params.n_threads)
  905. for (const auto & cm : params.cpu_mask)
  906. for (const auto & cs : params.cpu_strict)
  907. for (const auto & nd : params.n_depth)
  908. for (const auto & pl : params.poll) {
  909. for (const auto & n_prompt : params.n_prompt) {
  910. if (n_prompt == 0) {
  911. continue;
  912. }
  913. cmd_params_instance instance = {
  914. /* .model = */ m,
  915. /* .n_prompt = */ n_prompt,
  916. /* .n_gen = */ 0,
  917. /* .n_depth = */ nd,
  918. /* .n_batch = */ nb,
  919. /* .n_ubatch = */ nub,
  920. /* .type_k = */ tk,
  921. /* .type_v = */ tv,
  922. /* .n_threads = */ nt,
  923. /* .cpu_mask = */ cm,
  924. /* .cpu_strict = */ cs,
  925. /* .poll = */ pl,
  926. /* .n_gpu_layers = */ nl,
  927. /* .rpc_servers = */ rpc,
  928. /* .split_mode = */ sm,
  929. /* .main_gpu = */ mg,
  930. /* .no_kv_offload= */ nkvo,
  931. /* .flash_attn = */ fa,
  932. /* .tensor_split = */ ts,
  933. /* .tensor_buft_overrides = */ ot,
  934. /* .use_mmap = */ mmp,
  935. /* .embeddings = */ embd,
  936. /* .no_op_offload= */ nopo,
  937. };
  938. instances.push_back(instance);
  939. }
  940. for (const auto & n_gen : params.n_gen) {
  941. if (n_gen == 0) {
  942. continue;
  943. }
  944. cmd_params_instance instance = {
  945. /* .model = */ m,
  946. /* .n_prompt = */ 0,
  947. /* .n_gen = */ n_gen,
  948. /* .n_depth = */ nd,
  949. /* .n_batch = */ nb,
  950. /* .n_ubatch = */ nub,
  951. /* .type_k = */ tk,
  952. /* .type_v = */ tv,
  953. /* .n_threads = */ nt,
  954. /* .cpu_mask = */ cm,
  955. /* .cpu_strict = */ cs,
  956. /* .poll = */ pl,
  957. /* .n_gpu_layers = */ nl,
  958. /* .rpc_servers = */ rpc,
  959. /* .split_mode = */ sm,
  960. /* .main_gpu = */ mg,
  961. /* .no_kv_offload= */ nkvo,
  962. /* .flash_attn = */ fa,
  963. /* .tensor_split = */ ts,
  964. /* .tensor_buft_overrides = */ ot,
  965. /* .use_mmap = */ mmp,
  966. /* .embeddings = */ embd,
  967. /* .no_op_offload= */ nopo,
  968. };
  969. instances.push_back(instance);
  970. }
  971. for (const auto & n_pg : params.n_pg) {
  972. if (n_pg.first == 0 && n_pg.second == 0) {
  973. continue;
  974. }
  975. cmd_params_instance instance = {
  976. /* .model = */ m,
  977. /* .n_prompt = */ n_pg.first,
  978. /* .n_gen = */ n_pg.second,
  979. /* .n_depth = */ nd,
  980. /* .n_batch = */ nb,
  981. /* .n_ubatch = */ nub,
  982. /* .type_k = */ tk,
  983. /* .type_v = */ tv,
  984. /* .n_threads = */ nt,
  985. /* .cpu_mask = */ cm,
  986. /* .cpu_strict = */ cs,
  987. /* .poll = */ pl,
  988. /* .n_gpu_layers = */ nl,
  989. /* .rpc_servers = */ rpc,
  990. /* .split_mode = */ sm,
  991. /* .main_gpu = */ mg,
  992. /* .no_kv_offload= */ nkvo,
  993. /* .flash_attn = */ fa,
  994. /* .tensor_split = */ ts,
  995. /* .tensor_buft_overrides = */ ot,
  996. /* .use_mmap = */ mmp,
  997. /* .embeddings = */ embd,
  998. /* .no_op_offload= */ nopo,
  999. };
  1000. instances.push_back(instance);
  1001. }
  1002. }
  1003. // clang-format on
  1004. return instances;
  1005. }
  1006. struct test {
  1007. static const std::string build_commit;
  1008. static const int build_number;
  1009. const std::string cpu_info;
  1010. const std::string gpu_info;
  1011. std::string model_filename;
  1012. std::string model_type;
  1013. uint64_t model_size;
  1014. uint64_t model_n_params;
  1015. int n_batch;
  1016. int n_ubatch;
  1017. int n_threads;
  1018. std::string cpu_mask;
  1019. bool cpu_strict;
  1020. int poll;
  1021. ggml_type type_k;
  1022. ggml_type type_v;
  1023. int n_gpu_layers;
  1024. llama_split_mode split_mode;
  1025. int main_gpu;
  1026. bool no_kv_offload;
  1027. bool flash_attn;
  1028. std::vector<float> tensor_split;
  1029. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1030. bool use_mmap;
  1031. bool embeddings;
  1032. bool no_op_offload;
  1033. int n_prompt;
  1034. int n_gen;
  1035. int n_depth;
  1036. std::string test_time;
  1037. std::vector<uint64_t> samples_ns;
  1038. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1039. cpu_info(get_cpu_info()),
  1040. gpu_info(get_gpu_info()) {
  1041. model_filename = inst.model;
  1042. char buf[128];
  1043. llama_model_desc(lmodel, buf, sizeof(buf));
  1044. model_type = buf;
  1045. model_size = llama_model_size(lmodel);
  1046. model_n_params = llama_model_n_params(lmodel);
  1047. n_batch = inst.n_batch;
  1048. n_ubatch = inst.n_ubatch;
  1049. n_threads = inst.n_threads;
  1050. cpu_mask = inst.cpu_mask;
  1051. cpu_strict = inst.cpu_strict;
  1052. poll = inst.poll;
  1053. type_k = inst.type_k;
  1054. type_v = inst.type_v;
  1055. n_gpu_layers = inst.n_gpu_layers;
  1056. split_mode = inst.split_mode;
  1057. main_gpu = inst.main_gpu;
  1058. no_kv_offload = inst.no_kv_offload;
  1059. flash_attn = inst.flash_attn;
  1060. tensor_split = inst.tensor_split;
  1061. tensor_buft_overrides = inst.tensor_buft_overrides;
  1062. use_mmap = inst.use_mmap;
  1063. embeddings = inst.embeddings;
  1064. no_op_offload = inst.no_op_offload;
  1065. n_prompt = inst.n_prompt;
  1066. n_gen = inst.n_gen;
  1067. n_depth = inst.n_depth;
  1068. // RFC 3339 date-time format
  1069. time_t t = time(NULL);
  1070. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1071. test_time = buf;
  1072. (void) ctx;
  1073. }
  1074. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1075. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1076. std::vector<double> get_ts() const {
  1077. int n_tokens = n_prompt + n_gen;
  1078. std::vector<double> ts;
  1079. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1080. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1081. return ts;
  1082. }
  1083. double avg_ts() const { return ::avg(get_ts()); }
  1084. double stdev_ts() const { return ::stdev(get_ts()); }
  1085. static std::string get_backend() {
  1086. std::vector<std::string> backends;
  1087. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1088. auto * reg = ggml_backend_reg_get(i);
  1089. std::string name = ggml_backend_reg_name(reg);
  1090. if (name != "CPU") {
  1091. backends.push_back(ggml_backend_reg_name(reg));
  1092. }
  1093. }
  1094. return backends.empty() ? "CPU" : join(backends, ",");
  1095. }
  1096. static const std::vector<std::string> & get_fields() {
  1097. static const std::vector<std::string> fields = {
  1098. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  1099. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  1100. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  1101. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "tensor_buft_overrides",
  1102. "use_mmap", "embeddings", "no_op_offload", "n_prompt", "n_gen", "n_depth", "test_time",
  1103. "avg_ns", "stddev_ns", "avg_ts", "stddev_ts",
  1104. };
  1105. return fields;
  1106. }
  1107. enum field_type { STRING, BOOL, INT, FLOAT };
  1108. static field_type get_field_type(const std::string & field) {
  1109. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1110. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1111. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" ||
  1112. field == "avg_ns" || field == "stddev_ns" || field == "no_op_offload") {
  1113. return INT;
  1114. }
  1115. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1116. field == "use_mmap" || field == "embeddings") {
  1117. return BOOL;
  1118. }
  1119. if (field == "avg_ts" || field == "stddev_ts") {
  1120. return FLOAT;
  1121. }
  1122. return STRING;
  1123. }
  1124. std::vector<std::string> get_values() const {
  1125. std::string tensor_split_str;
  1126. std::string tensor_buft_overrides_str;
  1127. int max_nonzero = 0;
  1128. for (size_t i = 0; i < llama_max_devices(); i++) {
  1129. if (tensor_split[i] > 0) {
  1130. max_nonzero = i;
  1131. }
  1132. }
  1133. for (int i = 0; i <= max_nonzero; i++) {
  1134. char buf[32];
  1135. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1136. tensor_split_str += buf;
  1137. if (i < max_nonzero) {
  1138. tensor_split_str += "/";
  1139. }
  1140. }
  1141. if (tensor_buft_overrides.size() == 1) {
  1142. // Last element of tensor_buft_overrides is always a null pattern
  1143. // so if it is only one element long, it must be a null pattern.
  1144. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1145. tensor_buft_overrides_str += "none";
  1146. } else {
  1147. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1148. // Last element of tensor_buft_overrides is always a null pattern
  1149. if (tensor_buft_overrides[i].pattern == nullptr) {
  1150. tensor_buft_overrides_str += "none";
  1151. } else {
  1152. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1153. tensor_buft_overrides_str += "=";
  1154. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1155. }
  1156. if (i + 2 < tensor_buft_overrides.size()) {
  1157. tensor_buft_overrides_str += ";";
  1158. }
  1159. }
  1160. }
  1161. std::vector<std::string> values = { build_commit,
  1162. std::to_string(build_number),
  1163. cpu_info,
  1164. gpu_info,
  1165. get_backend(),
  1166. model_filename,
  1167. model_type,
  1168. std::to_string(model_size),
  1169. std::to_string(model_n_params),
  1170. std::to_string(n_batch),
  1171. std::to_string(n_ubatch),
  1172. std::to_string(n_threads),
  1173. cpu_mask,
  1174. std::to_string(cpu_strict),
  1175. std::to_string(poll),
  1176. ggml_type_name(type_k),
  1177. ggml_type_name(type_v),
  1178. std::to_string(n_gpu_layers),
  1179. split_mode_str(split_mode),
  1180. std::to_string(main_gpu),
  1181. std::to_string(no_kv_offload),
  1182. std::to_string(flash_attn),
  1183. tensor_split_str,
  1184. tensor_buft_overrides_str,
  1185. std::to_string(use_mmap),
  1186. std::to_string(embeddings),
  1187. std::to_string(no_op_offload),
  1188. std::to_string(n_prompt),
  1189. std::to_string(n_gen),
  1190. std::to_string(n_depth),
  1191. test_time,
  1192. std::to_string(avg_ns()),
  1193. std::to_string(stdev_ns()),
  1194. std::to_string(avg_ts()),
  1195. std::to_string(stdev_ts()) };
  1196. return values;
  1197. }
  1198. std::map<std::string, std::string> get_map() const {
  1199. std::map<std::string, std::string> map;
  1200. auto fields = get_fields();
  1201. auto values = get_values();
  1202. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1203. std::make_pair<const std::string &, const std::string &>);
  1204. return map;
  1205. }
  1206. };
  1207. const std::string test::build_commit = LLAMA_COMMIT;
  1208. const int test::build_number = LLAMA_BUILD_NUMBER;
  1209. struct printer {
  1210. virtual ~printer() {}
  1211. FILE * fout;
  1212. virtual void print_header(const cmd_params & params) { (void) params; }
  1213. virtual void print_test(const test & t) = 0;
  1214. virtual void print_footer() {}
  1215. };
  1216. struct csv_printer : public printer {
  1217. static std::string escape_csv(const std::string & field) {
  1218. std::string escaped = "\"";
  1219. for (auto c : field) {
  1220. if (c == '"') {
  1221. escaped += "\"";
  1222. }
  1223. escaped += c;
  1224. }
  1225. escaped += "\"";
  1226. return escaped;
  1227. }
  1228. void print_header(const cmd_params & params) override {
  1229. std::vector<std::string> fields = test::get_fields();
  1230. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1231. (void) params;
  1232. }
  1233. void print_test(const test & t) override {
  1234. std::vector<std::string> values = t.get_values();
  1235. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1236. fprintf(fout, "%s\n", join(values, ",").c_str());
  1237. }
  1238. };
  1239. static std::string escape_json(const std::string & value) {
  1240. std::string escaped;
  1241. for (auto c : value) {
  1242. if (c == '"') {
  1243. escaped += "\\\"";
  1244. } else if (c == '\\') {
  1245. escaped += "\\\\";
  1246. } else if (c <= 0x1f) {
  1247. char buf[8];
  1248. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1249. escaped += buf;
  1250. } else {
  1251. escaped += c;
  1252. }
  1253. }
  1254. return escaped;
  1255. }
  1256. static std::string format_json_value(const std::string & field, const std::string & value) {
  1257. switch (test::get_field_type(field)) {
  1258. case test::STRING:
  1259. return "\"" + escape_json(value) + "\"";
  1260. case test::BOOL:
  1261. return value == "0" ? "false" : "true";
  1262. default:
  1263. return value;
  1264. }
  1265. }
  1266. struct json_printer : public printer {
  1267. bool first = true;
  1268. void print_header(const cmd_params & params) override {
  1269. fprintf(fout, "[\n");
  1270. (void) params;
  1271. }
  1272. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1273. assert(fields.size() == values.size());
  1274. for (size_t i = 0; i < fields.size(); i++) {
  1275. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1276. format_json_value(fields.at(i), values.at(i)).c_str());
  1277. }
  1278. }
  1279. void print_test(const test & t) override {
  1280. if (first) {
  1281. first = false;
  1282. } else {
  1283. fprintf(fout, ",\n");
  1284. }
  1285. fprintf(fout, " {\n");
  1286. print_fields(test::get_fields(), t.get_values());
  1287. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1288. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1289. fprintf(fout, " }");
  1290. fflush(fout);
  1291. }
  1292. void print_footer() override { fprintf(fout, "\n]\n"); }
  1293. };
  1294. struct jsonl_printer : public printer {
  1295. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1296. assert(fields.size() == values.size());
  1297. for (size_t i = 0; i < fields.size(); i++) {
  1298. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1299. }
  1300. }
  1301. void print_test(const test & t) override {
  1302. fprintf(fout, "{");
  1303. print_fields(test::get_fields(), t.get_values());
  1304. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1305. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1306. fprintf(fout, "}\n");
  1307. fflush(fout);
  1308. }
  1309. };
  1310. struct markdown_printer : public printer {
  1311. std::vector<std::string> fields;
  1312. static int get_field_width(const std::string & field) {
  1313. if (field == "model") {
  1314. return -30;
  1315. }
  1316. if (field == "t/s") {
  1317. return 20;
  1318. }
  1319. if (field == "size" || field == "params") {
  1320. return 10;
  1321. }
  1322. if (field == "n_gpu_layers") {
  1323. return 3;
  1324. }
  1325. if (field == "n_threads") {
  1326. return 7;
  1327. }
  1328. if (field == "n_batch") {
  1329. return 7;
  1330. }
  1331. if (field == "n_ubatch") {
  1332. return 8;
  1333. }
  1334. if (field == "type_k" || field == "type_v") {
  1335. return 6;
  1336. }
  1337. if (field == "split_mode") {
  1338. return 5;
  1339. }
  1340. if (field == "flash_attn") {
  1341. return 2;
  1342. }
  1343. if (field == "use_mmap") {
  1344. return 4;
  1345. }
  1346. if (field == "test") {
  1347. return 15;
  1348. }
  1349. if (field == "no_op_offload") {
  1350. return 4;
  1351. }
  1352. int width = std::max((int) field.length(), 10);
  1353. if (test::get_field_type(field) == test::STRING) {
  1354. return -width;
  1355. }
  1356. return width;
  1357. }
  1358. static std::string get_field_display_name(const std::string & field) {
  1359. if (field == "n_gpu_layers") {
  1360. return "ngl";
  1361. }
  1362. if (field == "split_mode") {
  1363. return "sm";
  1364. }
  1365. if (field == "n_threads") {
  1366. return "threads";
  1367. }
  1368. if (field == "no_kv_offload") {
  1369. return "nkvo";
  1370. }
  1371. if (field == "flash_attn") {
  1372. return "fa";
  1373. }
  1374. if (field == "use_mmap") {
  1375. return "mmap";
  1376. }
  1377. if (field == "embeddings") {
  1378. return "embd";
  1379. }
  1380. if (field == "no_op_offload") {
  1381. return "nopo";
  1382. }
  1383. if (field == "tensor_split") {
  1384. return "ts";
  1385. }
  1386. if (field == "tensor_buft_overrides") {
  1387. return "ot";
  1388. }
  1389. return field;
  1390. }
  1391. void print_header(const cmd_params & params) override {
  1392. // select fields to print
  1393. fields.emplace_back("model");
  1394. fields.emplace_back("size");
  1395. fields.emplace_back("params");
  1396. fields.emplace_back("backend");
  1397. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1398. test::get_backend().find("BLAS") != std::string::npos;
  1399. if (!is_cpu_backend) {
  1400. fields.emplace_back("n_gpu_layers");
  1401. }
  1402. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1403. fields.emplace_back("n_threads");
  1404. }
  1405. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1406. fields.emplace_back("cpu_mask");
  1407. }
  1408. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1409. fields.emplace_back("cpu_strict");
  1410. }
  1411. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1412. fields.emplace_back("poll");
  1413. }
  1414. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1415. fields.emplace_back("n_batch");
  1416. }
  1417. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1418. fields.emplace_back("n_ubatch");
  1419. }
  1420. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1421. fields.emplace_back("type_k");
  1422. }
  1423. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1424. fields.emplace_back("type_v");
  1425. }
  1426. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1427. fields.emplace_back("main_gpu");
  1428. }
  1429. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1430. fields.emplace_back("split_mode");
  1431. }
  1432. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1433. fields.emplace_back("no_kv_offload");
  1434. }
  1435. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1436. fields.emplace_back("flash_attn");
  1437. }
  1438. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1439. fields.emplace_back("tensor_split");
  1440. }
  1441. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1442. fields.emplace_back("tensor_buft_overrides");
  1443. }
  1444. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1445. fields.emplace_back("use_mmap");
  1446. }
  1447. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1448. fields.emplace_back("embeddings");
  1449. }
  1450. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1451. fields.emplace_back("no_op_offload");
  1452. }
  1453. fields.emplace_back("test");
  1454. fields.emplace_back("t/s");
  1455. fprintf(fout, "|");
  1456. for (const auto & field : fields) {
  1457. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1458. }
  1459. fprintf(fout, "\n");
  1460. fprintf(fout, "|");
  1461. for (const auto & field : fields) {
  1462. int width = get_field_width(field);
  1463. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1464. }
  1465. fprintf(fout, "\n");
  1466. }
  1467. void print_test(const test & t) override {
  1468. std::map<std::string, std::string> vmap = t.get_map();
  1469. fprintf(fout, "|");
  1470. for (const auto & field : fields) {
  1471. std::string value;
  1472. char buf[128];
  1473. if (field == "model") {
  1474. value = t.model_type;
  1475. } else if (field == "size") {
  1476. if (t.model_size < 1024 * 1024 * 1024) {
  1477. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1478. } else {
  1479. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1480. }
  1481. value = buf;
  1482. } else if (field == "params") {
  1483. if (t.model_n_params < 1000 * 1000 * 1000) {
  1484. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1485. } else {
  1486. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1487. }
  1488. value = buf;
  1489. } else if (field == "backend") {
  1490. value = test::get_backend();
  1491. } else if (field == "test") {
  1492. if (t.n_prompt > 0 && t.n_gen == 0) {
  1493. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1494. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1495. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1496. } else {
  1497. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1498. }
  1499. if (t.n_depth > 0) {
  1500. int len = strlen(buf);
  1501. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1502. }
  1503. value = buf;
  1504. } else if (field == "t/s") {
  1505. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1506. value = buf;
  1507. } else if (vmap.find(field) != vmap.end()) {
  1508. value = vmap.at(field);
  1509. } else {
  1510. assert(false);
  1511. exit(1);
  1512. }
  1513. int width = get_field_width(field);
  1514. if (field == "t/s") {
  1515. // HACK: the utf-8 character is 2 bytes
  1516. width += 1;
  1517. }
  1518. fprintf(fout, " %*s |", width, value.c_str());
  1519. }
  1520. fprintf(fout, "\n");
  1521. }
  1522. void print_footer() override {
  1523. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1524. }
  1525. };
  1526. struct sql_printer : public printer {
  1527. static std::string get_sql_field_type(const std::string & field) {
  1528. switch (test::get_field_type(field)) {
  1529. case test::STRING:
  1530. return "TEXT";
  1531. case test::BOOL:
  1532. case test::INT:
  1533. return "INTEGER";
  1534. case test::FLOAT:
  1535. return "REAL";
  1536. default:
  1537. assert(false);
  1538. exit(1);
  1539. }
  1540. }
  1541. void print_header(const cmd_params & params) override {
  1542. std::vector<std::string> fields = test::get_fields();
  1543. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1544. for (size_t i = 0; i < fields.size(); i++) {
  1545. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1546. i < fields.size() - 1 ? "," : "");
  1547. }
  1548. fprintf(fout, ");\n");
  1549. fprintf(fout, "\n");
  1550. (void) params;
  1551. }
  1552. void print_test(const test & t) override {
  1553. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1554. fprintf(fout, "VALUES (");
  1555. std::vector<std::string> values = t.get_values();
  1556. for (size_t i = 0; i < values.size(); i++) {
  1557. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1558. }
  1559. fprintf(fout, ");\n");
  1560. }
  1561. };
  1562. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1563. llama_set_n_threads(ctx, n_threads, n_threads);
  1564. const llama_model * model = llama_get_model(ctx);
  1565. const llama_vocab * vocab = llama_model_get_vocab(model);
  1566. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1567. std::vector<llama_token> tokens(n_batch);
  1568. int n_processed = 0;
  1569. while (n_processed < n_prompt) {
  1570. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1571. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1572. for (int i = 1; i < n_tokens; i++) {
  1573. tokens[i] = std::rand() % n_vocab;
  1574. }
  1575. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1576. n_processed += n_tokens;
  1577. }
  1578. llama_synchronize(ctx);
  1579. }
  1580. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1581. llama_set_n_threads(ctx, n_threads, n_threads);
  1582. const llama_model * model = llama_get_model(ctx);
  1583. const llama_vocab * vocab = llama_model_get_vocab(model);
  1584. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1585. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1586. for (int i = 0; i < n_gen; i++) {
  1587. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1588. llama_synchronize(ctx);
  1589. token = std::rand() % n_vocab;
  1590. }
  1591. }
  1592. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1593. (void) level;
  1594. (void) text;
  1595. (void) user_data;
  1596. }
  1597. static std::unique_ptr<printer> create_printer(output_formats format) {
  1598. switch (format) {
  1599. case NONE:
  1600. return nullptr;
  1601. case CSV:
  1602. return std::unique_ptr<printer>(new csv_printer());
  1603. case JSON:
  1604. return std::unique_ptr<printer>(new json_printer());
  1605. case JSONL:
  1606. return std::unique_ptr<printer>(new jsonl_printer());
  1607. case MARKDOWN:
  1608. return std::unique_ptr<printer>(new markdown_printer());
  1609. case SQL:
  1610. return std::unique_ptr<printer>(new sql_printer());
  1611. }
  1612. GGML_ABORT("fatal error");
  1613. }
  1614. int main(int argc, char ** argv) {
  1615. // try to set locale for unicode characters in markdown
  1616. setlocale(LC_CTYPE, ".UTF-8");
  1617. #if !defined(NDEBUG)
  1618. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1619. #endif
  1620. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1621. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1622. #endif
  1623. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1624. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1625. #endif
  1626. cmd_params params = parse_cmd_params(argc, argv);
  1627. // initialize backends
  1628. ggml_backend_load_all();
  1629. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1630. if (!cpu_dev) {
  1631. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1632. return 1;
  1633. }
  1634. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1635. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1636. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1637. // initialize llama.cpp
  1638. if (!params.verbose) {
  1639. llama_log_set(llama_null_log_callback, NULL);
  1640. }
  1641. llama_backend_init();
  1642. llama_numa_init(params.numa);
  1643. set_process_priority(params.prio);
  1644. // initialize printer
  1645. std::unique_ptr<printer> p = create_printer(params.output_format);
  1646. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1647. if (p) {
  1648. p->fout = stdout;
  1649. p->print_header(params);
  1650. }
  1651. if (p_err) {
  1652. p_err->fout = stderr;
  1653. p_err->print_header(params);
  1654. }
  1655. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1656. llama_model * lmodel = nullptr;
  1657. const cmd_params_instance * prev_inst = nullptr;
  1658. int params_idx = 0;
  1659. auto params_count = params_instances.size();
  1660. for (const auto & inst : params_instances) {
  1661. params_idx++;
  1662. if (params.progress) {
  1663. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1664. }
  1665. // keep the same model between tests when possible
  1666. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1667. if (lmodel) {
  1668. llama_model_free(lmodel);
  1669. }
  1670. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1671. if (lmodel == NULL) {
  1672. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1673. return 1;
  1674. }
  1675. prev_inst = &inst;
  1676. }
  1677. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1678. if (ctx == NULL) {
  1679. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1680. llama_model_free(lmodel);
  1681. return 1;
  1682. }
  1683. test t(inst, lmodel, ctx);
  1684. llama_kv_self_clear(ctx);
  1685. // cool off before the test
  1686. if (params.delay) {
  1687. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1688. }
  1689. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1690. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1691. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1692. exit(1);
  1693. }
  1694. tpp.strict_cpu = t.cpu_strict;
  1695. tpp.poll = t.poll;
  1696. tpp.prio = params.prio;
  1697. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1698. if (!threadpool) {
  1699. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1700. exit(1);
  1701. }
  1702. llama_attach_threadpool(ctx, threadpool, NULL);
  1703. // warmup run
  1704. if (t.n_prompt > 0) {
  1705. if (params.progress) {
  1706. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1707. }
  1708. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1709. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1710. }
  1711. if (t.n_gen > 0) {
  1712. if (params.progress) {
  1713. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1714. }
  1715. test_gen(ctx, 1, t.n_threads);
  1716. }
  1717. for (int i = 0; i < params.reps; i++) {
  1718. llama_kv_self_clear(ctx);
  1719. if (t.n_depth > 0) {
  1720. if (params.progress) {
  1721. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1722. i + 1, params.reps);
  1723. }
  1724. test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1725. }
  1726. uint64_t t_start = get_time_ns();
  1727. if (t.n_prompt > 0) {
  1728. if (params.progress) {
  1729. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1730. i + 1, params.reps);
  1731. }
  1732. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1733. }
  1734. if (t.n_gen > 0) {
  1735. if (params.progress) {
  1736. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1737. i + 1, params.reps);
  1738. }
  1739. test_gen(ctx, t.n_gen, t.n_threads);
  1740. }
  1741. uint64_t t_ns = get_time_ns() - t_start;
  1742. t.samples_ns.push_back(t_ns);
  1743. }
  1744. if (p) {
  1745. p->print_test(t);
  1746. fflush(p->fout);
  1747. }
  1748. if (p_err) {
  1749. p_err->print_test(t);
  1750. fflush(p_err->fout);
  1751. }
  1752. llama_perf_context_print(ctx);
  1753. llama_free(ctx);
  1754. ggml_threadpool_free_fn(threadpool);
  1755. }
  1756. llama_model_free(lmodel);
  1757. if (p) {
  1758. p->print_footer();
  1759. }
  1760. if (p_err) {
  1761. p_err->print_footer();
  1762. }
  1763. llama_backend_free();
  1764. return 0;
  1765. }