ggml.c 585 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #include <cblas.h>
  209. #elif defined(GGML_USE_CUBLAS)
  210. #include "ggml-cuda.h"
  211. #elif defined(GGML_USE_CLBLAST)
  212. #include "ggml-opencl.h"
  213. #endif
  214. #undef MIN
  215. #undef MAX
  216. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  217. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  218. // floating point type used to accumulate sums
  219. typedef double ggml_float;
  220. // 16-bit float
  221. // on Arm, we use __fp16
  222. // on x86, we use uint16_t
  223. #ifdef __ARM_NEON
  224. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  225. //
  226. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  227. //
  228. #include <arm_neon.h>
  229. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  230. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  231. #define GGML_FP16_TO_FP32(x) ((float) (x))
  232. #define GGML_FP32_TO_FP16(x) (x)
  233. #else
  234. #ifdef __wasm_simd128__
  235. #include <wasm_simd128.h>
  236. #else
  237. #ifdef __POWER9_VECTOR__
  238. #include <altivec.h>
  239. #undef bool
  240. #define bool _Bool
  241. #else
  242. #if defined(_MSC_VER) || defined(__MINGW32__)
  243. #include <intrin.h>
  244. #else
  245. #if !defined(__riscv)
  246. #include <immintrin.h>
  247. #endif
  248. #endif
  249. #endif
  250. #endif
  251. #ifdef __F16C__
  252. #ifdef _MSC_VER
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  255. #else
  256. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  257. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  258. #endif
  259. #elif defined(__POWER9_VECTOR__)
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. /* the inline asm below is about 12% faster than the lookup method */
  263. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  264. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  265. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  266. register float f;
  267. register double d;
  268. __asm__(
  269. "mtfprd %0,%2\n"
  270. "xscvhpdp %0,%0\n"
  271. "frsp %1,%0\n" :
  272. /* temp */ "=d"(d),
  273. /* out */ "=f"(f):
  274. /* in */ "r"(h));
  275. return f;
  276. }
  277. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  278. register double d;
  279. register ggml_fp16_t r;
  280. __asm__( /* xscvdphp can work on double or single precision */
  281. "xscvdphp %0,%2\n"
  282. "mffprd %1,%0\n" :
  283. /* temp */ "=d"(d),
  284. /* out */ "=r"(r):
  285. /* in */ "f"(f));
  286. return r;
  287. }
  288. #else
  289. // FP16 <-> FP32
  290. // ref: https://github.com/Maratyszcza/FP16
  291. static inline float fp32_from_bits(uint32_t w) {
  292. union {
  293. uint32_t as_bits;
  294. float as_value;
  295. } fp32;
  296. fp32.as_bits = w;
  297. return fp32.as_value;
  298. }
  299. static inline uint32_t fp32_to_bits(float f) {
  300. union {
  301. float as_value;
  302. uint32_t as_bits;
  303. } fp32;
  304. fp32.as_value = f;
  305. return fp32.as_bits;
  306. }
  307. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  308. const uint32_t w = (uint32_t) h << 16;
  309. const uint32_t sign = w & UINT32_C(0x80000000);
  310. const uint32_t two_w = w + w;
  311. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  312. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  313. const float exp_scale = 0x1.0p-112f;
  314. #else
  315. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  316. #endif
  317. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  318. const uint32_t magic_mask = UINT32_C(126) << 23;
  319. const float magic_bias = 0.5f;
  320. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  321. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  322. const uint32_t result = sign |
  323. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  324. return fp32_from_bits(result);
  325. }
  326. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  327. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  328. const float scale_to_inf = 0x1.0p+112f;
  329. const float scale_to_zero = 0x1.0p-110f;
  330. #else
  331. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  332. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  333. #endif
  334. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  335. const uint32_t w = fp32_to_bits(f);
  336. const uint32_t shl1_w = w + w;
  337. const uint32_t sign = w & UINT32_C(0x80000000);
  338. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  339. if (bias < UINT32_C(0x71000000)) {
  340. bias = UINT32_C(0x71000000);
  341. }
  342. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  343. const uint32_t bits = fp32_to_bits(base);
  344. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  345. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  346. const uint32_t nonsign = exp_bits + mantissa_bits;
  347. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  348. }
  349. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  350. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  351. #endif // __F16C__
  352. #endif // __ARM_NEON
  353. //
  354. // global data
  355. //
  356. // precomputed gelu table for f16 (128 KB)
  357. static ggml_fp16_t table_gelu_f16[1 << 16];
  358. // precomputed quick gelu table for f16 (128 KB)
  359. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  360. // precomputed silu table for f16 (128 KB)
  361. static ggml_fp16_t table_silu_f16[1 << 16];
  362. // precomputed exp table for f16 (128 KB)
  363. static ggml_fp16_t table_exp_f16[1 << 16];
  364. // precomputed f32 table for f16 (256 KB)
  365. static float table_f32_f16[1 << 16];
  366. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  367. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  368. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  369. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  370. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  371. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  372. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  373. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  374. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  375. // precomputed tables for expanding 8bits to 8 bytes:
  376. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  377. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  378. #endif
  379. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  380. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  381. // This is also true for POWER9.
  382. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  383. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  384. uint16_t s;
  385. memcpy(&s, &f, sizeof(uint16_t));
  386. return table_f32_f16[s];
  387. }
  388. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  389. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  390. #endif
  391. // note: do not use these inside ggml.c
  392. // these are meant to be used via the ggml.h API
  393. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  394. return (float) GGML_FP16_TO_FP32(x);
  395. }
  396. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  397. return GGML_FP32_TO_FP16(x);
  398. }
  399. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  400. for (int i = 0; i < n; i++) {
  401. y[i] = GGML_FP16_TO_FP32(x[i]);
  402. }
  403. }
  404. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  405. int i = 0;
  406. #if defined(__F16C__)
  407. for (; i + 7 < n; i += 8) {
  408. __m256 x_vec = _mm256_loadu_ps(x + i);
  409. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  410. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  411. }
  412. for(; i + 3 < n; i += 4) {
  413. __m128 x_vec = _mm_loadu_ps(x + i);
  414. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  415. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  416. }
  417. #endif
  418. for (; i < n; i++) {
  419. y[i] = GGML_FP32_TO_FP16(x[i]);
  420. }
  421. }
  422. //
  423. // timing
  424. //
  425. #if defined(_MSC_VER) || defined(__MINGW32__)
  426. static int64_t timer_freq, timer_start;
  427. void ggml_time_init(void) {
  428. LARGE_INTEGER t;
  429. QueryPerformanceFrequency(&t);
  430. timer_freq = t.QuadPart;
  431. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  432. // and the uptime is high enough.
  433. // We subtract the program start time to reduce the likelihood of that happening.
  434. QueryPerformanceCounter(&t);
  435. timer_start = t.QuadPart;
  436. }
  437. int64_t ggml_time_ms(void) {
  438. LARGE_INTEGER t;
  439. QueryPerformanceCounter(&t);
  440. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  441. }
  442. int64_t ggml_time_us(void) {
  443. LARGE_INTEGER t;
  444. QueryPerformanceCounter(&t);
  445. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  446. }
  447. #else
  448. void ggml_time_init(void) {}
  449. int64_t ggml_time_ms(void) {
  450. struct timespec ts;
  451. clock_gettime(CLOCK_MONOTONIC, &ts);
  452. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  453. }
  454. int64_t ggml_time_us(void) {
  455. struct timespec ts;
  456. clock_gettime(CLOCK_MONOTONIC, &ts);
  457. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  458. }
  459. #endif
  460. int64_t ggml_cycles(void) {
  461. return clock();
  462. }
  463. int64_t ggml_cycles_per_ms(void) {
  464. return CLOCKS_PER_SEC/1000;
  465. }
  466. #ifdef GGML_PERF
  467. #define ggml_perf_time_ms() ggml_time_ms()
  468. #define ggml_perf_time_us() ggml_time_us()
  469. #define ggml_perf_cycles() ggml_cycles()
  470. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  471. #else
  472. #define ggml_perf_time_ms() 0
  473. #define ggml_perf_time_us() 0
  474. #define ggml_perf_cycles() 0
  475. #define ggml_perf_cycles_per_ms() 0
  476. #endif
  477. //
  478. // cache line
  479. //
  480. #if defined(__cpp_lib_hardware_interference_size)
  481. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  482. #else
  483. #if defined(__POWER9_VECTOR__)
  484. #define CACHE_LINE_SIZE 128
  485. #else
  486. #define CACHE_LINE_SIZE 64
  487. #endif
  488. #endif
  489. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  490. //
  491. // quantization
  492. //
  493. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  494. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  495. // multiply int8_t, add results pairwise twice
  496. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  497. // Get absolute values of x vectors
  498. const __m128i ax = _mm_sign_epi8(x, x);
  499. // Sign the values of the y vectors
  500. const __m128i sy = _mm_sign_epi8(y, x);
  501. // Perform multiplication and create 16-bit values
  502. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  503. const __m128i ones = _mm_set1_epi16(1);
  504. return _mm_madd_epi16(ones, dot);
  505. }
  506. #if __AVX__ || __AVX2__ || __AVX512F__
  507. // horizontally add 8 floats
  508. static inline float hsum_float_8(const __m256 x) {
  509. __m128 res = _mm256_extractf128_ps(x, 1);
  510. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  511. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  512. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  513. return _mm_cvtss_f32(res);
  514. }
  515. // horizontally add 8 int32_t
  516. static inline int hsum_i32_8(const __m256i a) {
  517. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  518. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  519. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  520. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  521. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  522. }
  523. // horizontally add 4 int32_t
  524. static inline int hsum_i32_4(const __m128i a) {
  525. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  526. const __m128i sum64 = _mm_add_epi32(hi64, a);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. #if defined(__AVX2__) || defined(__AVX512F__)
  531. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  532. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  533. uint32_t x32;
  534. memcpy(&x32, x, sizeof(uint32_t));
  535. const __m256i shuf_mask = _mm256_set_epi64x(
  536. 0x0303030303030303, 0x0202020202020202,
  537. 0x0101010101010101, 0x0000000000000000);
  538. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  539. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  540. bytes = _mm256_or_si256(bytes, bit_mask);
  541. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  542. }
  543. // Unpack 32 4-bit fields into 32 bytes
  544. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  545. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  546. {
  547. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  548. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  549. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  550. return _mm256_and_si256(lowMask, bytes);
  551. }
  552. // add int16_t pairwise and return as float vector
  553. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  554. const __m256i ones = _mm256_set1_epi16(1);
  555. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  556. return _mm256_cvtepi32_ps(summed_pairs);
  557. }
  558. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  559. #if __AVXVNNI__
  560. const __m256i zero = _mm256_setzero_si256();
  561. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  562. return _mm256_cvtepi32_ps(summed_pairs);
  563. #else
  564. // Perform multiplication and create 16-bit values
  565. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  566. return sum_i16_pairs_float(dot);
  567. #endif
  568. }
  569. // multiply int8_t, add results pairwise twice and return as float vector
  570. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  571. #if __AVXVNNIINT8__
  572. const __m256i zero = _mm256_setzero_si256();
  573. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  574. return _mm256_cvtepi32_ps(summed_pairs);
  575. #else
  576. // Get absolute values of x vectors
  577. const __m256i ax = _mm256_sign_epi8(x, x);
  578. // Sign the values of the y vectors
  579. const __m256i sy = _mm256_sign_epi8(y, x);
  580. return mul_sum_us8_pairs_float(ax, sy);
  581. #endif
  582. }
  583. static inline __m128i packNibbles( __m256i bytes )
  584. {
  585. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  586. #if __AVX512F__
  587. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  588. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  589. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  590. #else
  591. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  592. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  593. __m256i low = _mm256_and_si256( lowByte, bytes );
  594. high = _mm256_srli_epi16( high, 4 );
  595. bytes = _mm256_or_si256( low, high );
  596. // Compress uint16_t lanes into bytes
  597. __m128i r0 = _mm256_castsi256_si128( bytes );
  598. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  599. return _mm_packus_epi16( r0, r1 );
  600. #endif
  601. }
  602. #elif defined(__AVX__)
  603. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  604. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  605. uint32_t x32;
  606. memcpy(&x32, x, sizeof(uint32_t));
  607. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  608. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  609. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  610. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  611. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  612. bytesl = _mm_or_si128(bytesl, bit_mask);
  613. bytesh = _mm_or_si128(bytesh, bit_mask);
  614. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  615. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  616. return MM256_SET_M128I(bytesh, bytesl);
  617. }
  618. // Unpack 32 4-bit fields into 32 bytes
  619. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  620. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  621. {
  622. // Load 16 bytes from memory
  623. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  624. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  625. const __m128i lowMask = _mm_set1_epi8(0xF);
  626. tmpl = _mm_and_si128(lowMask, tmpl);
  627. tmph = _mm_and_si128(lowMask, tmph);
  628. return MM256_SET_M128I(tmph, tmpl);
  629. }
  630. // add int16_t pairwise and return as float vector
  631. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  632. const __m128i ones = _mm_set1_epi16(1);
  633. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  634. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  635. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  636. return _mm256_cvtepi32_ps(summed_pairs);
  637. }
  638. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  639. const __m128i axl = _mm256_castsi256_si128(ax);
  640. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  641. const __m128i syl = _mm256_castsi256_si128(sy);
  642. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  643. // Perform multiplication and create 16-bit values
  644. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  645. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  646. return sum_i16_pairs_float(doth, dotl);
  647. }
  648. // multiply int8_t, add results pairwise twice and return as float vector
  649. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  650. const __m128i xl = _mm256_castsi256_si128(x);
  651. const __m128i xh = _mm256_extractf128_si256(x, 1);
  652. const __m128i yl = _mm256_castsi256_si128(y);
  653. const __m128i yh = _mm256_extractf128_si256(y, 1);
  654. // Get absolute values of x vectors
  655. const __m128i axl = _mm_sign_epi8(xl, xl);
  656. const __m128i axh = _mm_sign_epi8(xh, xh);
  657. // Sign the values of the y vectors
  658. const __m128i syl = _mm_sign_epi8(yl, xl);
  659. const __m128i syh = _mm_sign_epi8(yh, xh);
  660. // Perform multiplication and create 16-bit values
  661. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  662. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  663. return sum_i16_pairs_float(doth, dotl);
  664. }
  665. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  666. {
  667. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  668. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  669. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  670. __m128i low = _mm_and_si128( lowByte, bytes1 );
  671. high = _mm_srli_epi16( high, 4 );
  672. bytes1 = _mm_or_si128( low, high );
  673. high = _mm_andnot_si128( lowByte, bytes2 );
  674. low = _mm_and_si128( lowByte, bytes2 );
  675. high = _mm_srli_epi16( high, 4 );
  676. bytes2 = _mm_or_si128( low, high );
  677. return _mm_packus_epi16( bytes1, bytes2);
  678. }
  679. #endif
  680. #elif defined(__SSSE3__)
  681. // horizontally add 4x4 floats
  682. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  683. __m128 res_0 =_mm_hadd_ps(a, b);
  684. __m128 res_1 =_mm_hadd_ps(c, d);
  685. __m128 res =_mm_hadd_ps(res_0, res_1);
  686. res =_mm_hadd_ps(res, res);
  687. res =_mm_hadd_ps(res, res);
  688. return _mm_cvtss_f32(res);
  689. }
  690. #endif // __AVX__ || __AVX2__ || __AVX512F__
  691. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  692. #if defined(__ARM_NEON)
  693. #if !defined(__aarch64__)
  694. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  695. return
  696. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  697. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  698. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  699. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  700. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  701. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  702. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  703. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  704. }
  705. inline static int16_t vaddvq_s8(int8x16_t v) {
  706. return
  707. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  708. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  709. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  710. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  711. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  712. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  713. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  714. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  715. }
  716. inline static int32_t vaddvq_s16(int16x8_t v) {
  717. return
  718. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  719. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  720. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  721. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  722. }
  723. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  724. return
  725. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  726. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  727. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  728. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  729. }
  730. inline static int32_t vaddvq_s32(int32x4_t v) {
  731. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  732. }
  733. inline static float vaddvq_f32(float32x4_t v) {
  734. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  735. }
  736. inline static float vminvq_f32(float32x4_t v) {
  737. return
  738. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  739. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  740. }
  741. inline static float vmaxvq_f32(float32x4_t v) {
  742. return
  743. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  744. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  745. }
  746. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  747. int32x4_t res;
  748. res[0] = roundf(vgetq_lane_f32(v, 0));
  749. res[1] = roundf(vgetq_lane_f32(v, 1));
  750. res[2] = roundf(vgetq_lane_f32(v, 2));
  751. res[3] = roundf(vgetq_lane_f32(v, 3));
  752. return res;
  753. }
  754. #endif
  755. #endif
  756. #define QK4_0 32
  757. typedef struct {
  758. ggml_fp16_t d; // delta
  759. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  760. } block_q4_0;
  761. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  762. #define QK4_1 32
  763. typedef struct {
  764. ggml_fp16_t d; // delta
  765. ggml_fp16_t m; // min
  766. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  767. } block_q4_1;
  768. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  769. #define QK5_0 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. uint8_t qh[4]; // 5-th bit of quants
  773. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  774. } block_q5_0;
  775. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  776. #define QK5_1 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. ggml_fp16_t m; // min
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  782. } block_q5_1;
  783. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  784. #define QK8_0 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. int8_t qs[QK8_0]; // quants
  788. } block_q8_0;
  789. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  790. #define QK8_1 32
  791. typedef struct {
  792. float d; // delta
  793. float s; // d * sum(qs[i])
  794. int8_t qs[QK8_1]; // quants
  795. } block_q8_1;
  796. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  797. // reference implementation for deterministic creation of model files
  798. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  799. static const int qk = QK4_0;
  800. assert(k % qk == 0);
  801. const int nb = k / qk;
  802. for (int i = 0; i < nb; i++) {
  803. float amax = 0.0f; // absolute max
  804. float max = 0.0f;
  805. for (int j = 0; j < qk; j++) {
  806. const float v = x[i*qk + j];
  807. if (amax < fabsf(v)) {
  808. amax = fabsf(v);
  809. max = v;
  810. }
  811. }
  812. const float d = max / -8;
  813. const float id = d ? 1.0f/d : 0.0f;
  814. y[i].d = GGML_FP32_TO_FP16(d);
  815. for (int j = 0; j < qk/2; ++j) {
  816. const float x0 = x[i*qk + 0 + j]*id;
  817. const float x1 = x[i*qk + qk/2 + j]*id;
  818. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  819. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  820. y[i].qs[j] = xi0;
  821. y[i].qs[j] |= xi1 << 4;
  822. }
  823. }
  824. }
  825. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  826. quantize_row_q4_0_reference(x, y, k);
  827. }
  828. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  829. const int qk = QK4_1;
  830. assert(k % qk == 0);
  831. const int nb = k / qk;
  832. for (int i = 0; i < nb; i++) {
  833. float min = FLT_MAX;
  834. float max = -FLT_MAX;
  835. for (int j = 0; j < qk; j++) {
  836. const float v = x[i*qk + j];
  837. if (v < min) min = v;
  838. if (v > max) max = v;
  839. }
  840. const float d = (max - min) / ((1 << 4) - 1);
  841. const float id = d ? 1.0f/d : 0.0f;
  842. y[i].d = GGML_FP32_TO_FP16(d);
  843. y[i].m = GGML_FP32_TO_FP16(min);
  844. for (int j = 0; j < qk/2; ++j) {
  845. const float x0 = (x[i*qk + 0 + j] - min)*id;
  846. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  847. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  848. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  849. y[i].qs[j] = xi0;
  850. y[i].qs[j] |= xi1 << 4;
  851. }
  852. }
  853. }
  854. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  855. quantize_row_q4_1_reference(x, y, k);
  856. }
  857. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  858. static const int qk = QK5_0;
  859. assert(k % qk == 0);
  860. const int nb = k / qk;
  861. for (int i = 0; i < nb; i++) {
  862. float amax = 0.0f; // absolute max
  863. float max = 0.0f;
  864. for (int j = 0; j < qk; j++) {
  865. const float v = x[i*qk + j];
  866. if (amax < fabsf(v)) {
  867. amax = fabsf(v);
  868. max = v;
  869. }
  870. }
  871. const float d = max / -16;
  872. const float id = d ? 1.0f/d : 0.0f;
  873. y[i].d = GGML_FP32_TO_FP16(d);
  874. uint32_t qh = 0;
  875. for (int j = 0; j < qk/2; ++j) {
  876. const float x0 = x[i*qk + 0 + j]*id;
  877. const float x1 = x[i*qk + qk/2 + j]*id;
  878. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  879. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  880. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  881. // get the 5-th bit and store it in qh at the right position
  882. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  883. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  884. }
  885. memcpy(&y[i].qh, &qh, sizeof(qh));
  886. }
  887. }
  888. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  889. quantize_row_q5_0_reference(x, y, k);
  890. }
  891. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  892. const int qk = QK5_1;
  893. assert(k % qk == 0);
  894. const int nb = k / qk;
  895. for (int i = 0; i < nb; i++) {
  896. float min = FLT_MAX;
  897. float max = -FLT_MAX;
  898. for (int j = 0; j < qk; j++) {
  899. const float v = x[i*qk + j];
  900. if (v < min) min = v;
  901. if (v > max) max = v;
  902. }
  903. const float d = (max - min) / ((1 << 5) - 1);
  904. const float id = d ? 1.0f/d : 0.0f;
  905. y[i].d = GGML_FP32_TO_FP16(d);
  906. y[i].m = GGML_FP32_TO_FP16(min);
  907. uint32_t qh = 0;
  908. for (int j = 0; j < qk/2; ++j) {
  909. const float x0 = (x[i*qk + 0 + j] - min)*id;
  910. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  911. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  912. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  913. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  914. // get the 5-th bit and store it in qh at the right position
  915. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  916. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  917. }
  918. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  919. }
  920. }
  921. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  922. quantize_row_q5_1_reference(x, y, k);
  923. }
  924. // reference implementation for deterministic creation of model files
  925. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  926. assert(k % QK8_0 == 0);
  927. const int nb = k / QK8_0;
  928. for (int i = 0; i < nb; i++) {
  929. float amax = 0.0f; // absolute max
  930. for (int j = 0; j < QK8_0; j++) {
  931. const float v = x[i*QK8_0 + j];
  932. amax = MAX(amax, fabsf(v));
  933. }
  934. const float d = amax / ((1 << 7) - 1);
  935. const float id = d ? 1.0f/d : 0.0f;
  936. y[i].d = GGML_FP32_TO_FP16(d);
  937. for (int j = 0; j < QK8_0; ++j) {
  938. const float x0 = x[i*QK8_0 + j]*id;
  939. y[i].qs[j] = roundf(x0);
  940. }
  941. }
  942. }
  943. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  944. assert(QK8_0 == 32);
  945. assert(k % QK8_0 == 0);
  946. const int nb = k / QK8_0;
  947. block_q8_0 * restrict y = vy;
  948. #if defined(__ARM_NEON)
  949. for (int i = 0; i < nb; i++) {
  950. float32x4_t srcv [8];
  951. float32x4_t asrcv[8];
  952. float32x4_t amaxv[8];
  953. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  954. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  955. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  956. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  957. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  958. const float amax = vmaxvq_f32(amaxv[0]);
  959. const float d = amax / ((1 << 7) - 1);
  960. const float id = d ? 1.0f/d : 0.0f;
  961. y[i].d = GGML_FP32_TO_FP16(d);
  962. for (int j = 0; j < 8; j++) {
  963. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  964. const int32x4_t vi = vcvtnq_s32_f32(v);
  965. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  966. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  967. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  968. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  969. }
  970. }
  971. #elif defined(__wasm_simd128__)
  972. for (int i = 0; i < nb; i++) {
  973. v128_t srcv [8];
  974. v128_t asrcv[8];
  975. v128_t amaxv[8];
  976. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  977. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  978. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  979. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  980. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  981. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  982. wasm_f32x4_extract_lane(amaxv[0], 1)),
  983. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  984. wasm_f32x4_extract_lane(amaxv[0], 3)));
  985. const float d = amax / ((1 << 7) - 1);
  986. const float id = d ? 1.0f/d : 0.0f;
  987. y[i].d = GGML_FP32_TO_FP16(d);
  988. for (int j = 0; j < 8; j++) {
  989. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  990. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  991. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  992. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  993. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  994. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  995. }
  996. }
  997. #elif defined(__AVX2__) || defined(__AVX__)
  998. for (int i = 0; i < nb; i++) {
  999. // Load elements into 4 AVX vectors
  1000. __m256 v0 = _mm256_loadu_ps( x );
  1001. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1002. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1003. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1004. x += 32;
  1005. // Compute max(abs(e)) for the block
  1006. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1007. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1008. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1009. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1010. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1011. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1012. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1013. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1014. const float maxScalar = _mm_cvtss_f32( max4 );
  1015. // Quantize these floats
  1016. const float d = maxScalar / 127.f;
  1017. y[i].d = GGML_FP32_TO_FP16(d);
  1018. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1019. const __m256 mul = _mm256_set1_ps( id );
  1020. // Apply the multiplier
  1021. v0 = _mm256_mul_ps( v0, mul );
  1022. v1 = _mm256_mul_ps( v1, mul );
  1023. v2 = _mm256_mul_ps( v2, mul );
  1024. v3 = _mm256_mul_ps( v3, mul );
  1025. // Round to nearest integer
  1026. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1027. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1028. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1029. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1030. // Convert floats to integers
  1031. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1032. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1033. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1034. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1035. #if defined(__AVX2__)
  1036. // Convert int32 to int16
  1037. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1038. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1039. // Convert int16 to int8
  1040. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1041. // We got our precious signed bytes, but the order is now wrong
  1042. // These AVX2 pack instructions process 16-byte pieces independently
  1043. // The following instruction is fixing the order
  1044. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1045. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1046. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1047. #else
  1048. // Since we don't have in AVX some necessary functions,
  1049. // we split the registers in half and call AVX2 analogs from SSE
  1050. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1051. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1052. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1053. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1054. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1055. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1056. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1057. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1058. // Convert int32 to int16
  1059. ni0 = _mm_packs_epi32( ni0, ni1 );
  1060. ni2 = _mm_packs_epi32( ni2, ni3 );
  1061. ni4 = _mm_packs_epi32( ni4, ni5 );
  1062. ni6 = _mm_packs_epi32( ni6, ni7 );
  1063. // Convert int16 to int8
  1064. ni0 = _mm_packs_epi16( ni0, ni2 );
  1065. ni4 = _mm_packs_epi16( ni4, ni6 );
  1066. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1067. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1068. #endif
  1069. }
  1070. #else
  1071. // scalar
  1072. quantize_row_q8_0_reference(x, y, k);
  1073. #endif
  1074. }
  1075. // reference implementation for deterministic creation of model files
  1076. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1077. assert(QK8_1 == 32);
  1078. assert(k % QK8_1 == 0);
  1079. const int nb = k / QK8_1;
  1080. for (int i = 0; i < nb; i++) {
  1081. float amax = 0.0f; // absolute max
  1082. for (int j = 0; j < QK8_1; j++) {
  1083. const float v = x[i*QK8_1 + j];
  1084. amax = MAX(amax, fabsf(v));
  1085. }
  1086. const float d = amax / ((1 << 7) - 1);
  1087. const float id = d ? 1.0f/d : 0.0f;
  1088. y[i].d = d;
  1089. int sum = 0;
  1090. for (int j = 0; j < QK8_1/2; ++j) {
  1091. const float v0 = x[i*QK8_1 + j]*id;
  1092. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1093. y[i].qs[ j] = roundf(v0);
  1094. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1095. sum += y[i].qs[ j];
  1096. sum += y[i].qs[QK8_1/2 + j];
  1097. }
  1098. y[i].s = sum*d;
  1099. }
  1100. }
  1101. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1102. assert(k % QK8_1 == 0);
  1103. const int nb = k / QK8_1;
  1104. block_q8_1 * restrict y = vy;
  1105. #if defined(__ARM_NEON)
  1106. for (int i = 0; i < nb; i++) {
  1107. float32x4_t srcv [8];
  1108. float32x4_t asrcv[8];
  1109. float32x4_t amaxv[8];
  1110. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1111. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1112. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1113. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1114. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1115. const float amax = vmaxvq_f32(amaxv[0]);
  1116. const float d = amax / ((1 << 7) - 1);
  1117. const float id = d ? 1.0f/d : 0.0f;
  1118. y[i].d = d;
  1119. int32x4_t accv = vdupq_n_s32(0);
  1120. for (int j = 0; j < 8; j++) {
  1121. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1122. const int32x4_t vi = vcvtnq_s32_f32(v);
  1123. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1124. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1125. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1126. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1127. accv = vaddq_s32(accv, vi);
  1128. }
  1129. y[i].s = d * vaddvq_s32(accv);
  1130. }
  1131. #elif defined(__wasm_simd128__)
  1132. for (int i = 0; i < nb; i++) {
  1133. v128_t srcv [8];
  1134. v128_t asrcv[8];
  1135. v128_t amaxv[8];
  1136. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1137. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1138. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1139. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1140. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1141. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1142. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1143. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1144. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1145. const float d = amax / ((1 << 7) - 1);
  1146. const float id = d ? 1.0f/d : 0.0f;
  1147. y[i].d = d;
  1148. v128_t accv = wasm_i32x4_splat(0);
  1149. for (int j = 0; j < 8; j++) {
  1150. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1151. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1152. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1153. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1154. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1155. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1156. accv = wasm_i32x4_add(accv, vi);
  1157. }
  1158. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1159. wasm_i32x4_extract_lane(accv, 1) +
  1160. wasm_i32x4_extract_lane(accv, 2) +
  1161. wasm_i32x4_extract_lane(accv, 3));
  1162. }
  1163. #elif defined(__AVX2__) || defined(__AVX__)
  1164. for (int i = 0; i < nb; i++) {
  1165. // Load elements into 4 AVX vectors
  1166. __m256 v0 = _mm256_loadu_ps( x );
  1167. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1168. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1169. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1170. x += 32;
  1171. // Compute max(abs(e)) for the block
  1172. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1173. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1174. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1175. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1176. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1177. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1178. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1179. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1180. const float maxScalar = _mm_cvtss_f32( max4 );
  1181. // Quantize these floats
  1182. const float d = maxScalar / 127.f;
  1183. y[i].d = d;
  1184. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1185. const __m256 mul = _mm256_set1_ps( id );
  1186. // Apply the multiplier
  1187. v0 = _mm256_mul_ps( v0, mul );
  1188. v1 = _mm256_mul_ps( v1, mul );
  1189. v2 = _mm256_mul_ps( v2, mul );
  1190. v3 = _mm256_mul_ps( v3, mul );
  1191. // Round to nearest integer
  1192. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1193. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1194. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1195. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1196. // Convert floats to integers
  1197. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1198. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1199. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1200. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1201. #if defined(__AVX2__)
  1202. // Compute the sum of the quants and set y[i].s
  1203. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1204. // Convert int32 to int16
  1205. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1206. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1207. // Convert int16 to int8
  1208. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1209. // We got our precious signed bytes, but the order is now wrong
  1210. // These AVX2 pack instructions process 16-byte pieces independently
  1211. // The following instruction is fixing the order
  1212. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1213. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1214. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1215. #else
  1216. // Since we don't have in AVX some necessary functions,
  1217. // we split the registers in half and call AVX2 analogs from SSE
  1218. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1219. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1220. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1221. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1222. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1223. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1224. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1225. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1226. // Compute the sum of the quants and set y[i].s
  1227. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1228. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1229. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1230. // Convert int32 to int16
  1231. ni0 = _mm_packs_epi32( ni0, ni1 );
  1232. ni2 = _mm_packs_epi32( ni2, ni3 );
  1233. ni4 = _mm_packs_epi32( ni4, ni5 );
  1234. ni6 = _mm_packs_epi32( ni6, ni7 );
  1235. // Convert int16 to int8
  1236. ni0 = _mm_packs_epi16( ni0, ni2 );
  1237. ni4 = _mm_packs_epi16( ni4, ni6 );
  1238. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1239. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1240. #endif
  1241. }
  1242. #else
  1243. // scalar
  1244. quantize_row_q8_1_reference(x, y, k);
  1245. #endif
  1246. }
  1247. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1248. static const int qk = QK4_0;
  1249. assert(k % qk == 0);
  1250. const int nb = k / qk;
  1251. for (int i = 0; i < nb; i++) {
  1252. const float d = GGML_FP16_TO_FP32(x[i].d);
  1253. for (int j = 0; j < qk/2; ++j) {
  1254. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1255. const int x1 = (x[i].qs[j] >> 4) - 8;
  1256. y[i*qk + j + 0 ] = x0*d;
  1257. y[i*qk + j + qk/2] = x1*d;
  1258. }
  1259. }
  1260. }
  1261. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1262. static const int qk = QK4_1;
  1263. assert(k % qk == 0);
  1264. const int nb = k / qk;
  1265. for (int i = 0; i < nb; i++) {
  1266. const float d = GGML_FP16_TO_FP32(x[i].d);
  1267. const float m = GGML_FP16_TO_FP32(x[i].m);
  1268. for (int j = 0; j < qk/2; ++j) {
  1269. const int x0 = (x[i].qs[j] & 0x0F);
  1270. const int x1 = (x[i].qs[j] >> 4);
  1271. y[i*qk + j + 0 ] = x0*d + m;
  1272. y[i*qk + j + qk/2] = x1*d + m;
  1273. }
  1274. }
  1275. }
  1276. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1277. static const int qk = QK5_0;
  1278. assert(k % qk == 0);
  1279. const int nb = k / qk;
  1280. for (int i = 0; i < nb; i++) {
  1281. const float d = GGML_FP16_TO_FP32(x[i].d);
  1282. uint32_t qh;
  1283. memcpy(&qh, x[i].qh, sizeof(qh));
  1284. for (int j = 0; j < qk/2; ++j) {
  1285. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1286. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1287. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1288. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1289. y[i*qk + j + 0 ] = x0*d;
  1290. y[i*qk + j + qk/2] = x1*d;
  1291. }
  1292. }
  1293. }
  1294. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1295. static const int qk = QK5_1;
  1296. assert(k % qk == 0);
  1297. const int nb = k / qk;
  1298. for (int i = 0; i < nb; i++) {
  1299. const float d = GGML_FP16_TO_FP32(x[i].d);
  1300. const float m = GGML_FP16_TO_FP32(x[i].m);
  1301. uint32_t qh;
  1302. memcpy(&qh, x[i].qh, sizeof(qh));
  1303. for (int j = 0; j < qk/2; ++j) {
  1304. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1305. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1306. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1307. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1308. y[i*qk + j + 0 ] = x0*d + m;
  1309. y[i*qk + j + qk/2] = x1*d + m;
  1310. }
  1311. }
  1312. }
  1313. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1314. static const int qk = QK8_0;
  1315. assert(k % qk == 0);
  1316. const int nb = k / qk;
  1317. const block_q8_0 * restrict x = vx;
  1318. for (int i = 0; i < nb; i++) {
  1319. const float d = GGML_FP16_TO_FP32(x[i].d);
  1320. for (int j = 0; j < qk; ++j) {
  1321. y[i*qk + j] = x[i].qs[j]*d;
  1322. }
  1323. }
  1324. }
  1325. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1326. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1327. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1328. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1329. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1330. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1331. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1332. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1333. [GGML_TYPE_F32] = {
  1334. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1335. .vec_dot_type = GGML_TYPE_F32,
  1336. },
  1337. [GGML_TYPE_F16] = {
  1338. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1339. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1340. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1341. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1342. .vec_dot_type = GGML_TYPE_F16,
  1343. },
  1344. [GGML_TYPE_Q4_0] = {
  1345. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1346. .from_float = quantize_row_q4_0,
  1347. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1348. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1349. .vec_dot_type = GGML_TYPE_Q8_0,
  1350. },
  1351. [GGML_TYPE_Q4_1] = {
  1352. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1353. .from_float = quantize_row_q4_1,
  1354. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1355. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1356. .vec_dot_type = GGML_TYPE_Q8_1,
  1357. },
  1358. [GGML_TYPE_Q5_0] = {
  1359. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1360. .from_float = quantize_row_q5_0,
  1361. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1362. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1363. .vec_dot_type = GGML_TYPE_Q8_0,
  1364. },
  1365. [GGML_TYPE_Q5_1] = {
  1366. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1367. .from_float = quantize_row_q5_1,
  1368. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1369. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1370. .vec_dot_type = GGML_TYPE_Q8_1,
  1371. },
  1372. [GGML_TYPE_Q8_0] = {
  1373. .to_float = dequantize_row_q8_0,
  1374. .from_float = quantize_row_q8_0,
  1375. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1376. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1377. .vec_dot_type = GGML_TYPE_Q8_0,
  1378. },
  1379. [GGML_TYPE_Q8_1] = {
  1380. .from_float = quantize_row_q8_1,
  1381. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1382. .vec_dot_type = GGML_TYPE_Q8_1,
  1383. },
  1384. #ifdef GGML_USE_K_QUANTS
  1385. [GGML_TYPE_Q2_K] = {
  1386. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1387. .from_float = quantize_row_q2_K,
  1388. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1389. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1390. .vec_dot_type = GGML_TYPE_Q8_K,
  1391. },
  1392. [GGML_TYPE_Q3_K] = {
  1393. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1394. .from_float = quantize_row_q3_K,
  1395. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1396. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1397. .vec_dot_type = GGML_TYPE_Q8_K,
  1398. },
  1399. [GGML_TYPE_Q4_K] = {
  1400. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1401. .from_float = quantize_row_q4_K,
  1402. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1403. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1404. .vec_dot_type = GGML_TYPE_Q8_K,
  1405. },
  1406. [GGML_TYPE_Q5_K] = {
  1407. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1408. .from_float = quantize_row_q5_K,
  1409. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1410. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1411. .vec_dot_type = GGML_TYPE_Q8_K,
  1412. },
  1413. [GGML_TYPE_Q6_K] = {
  1414. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1415. .from_float = quantize_row_q6_K,
  1416. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1417. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1418. .vec_dot_type = GGML_TYPE_Q8_K,
  1419. },
  1420. [GGML_TYPE_Q8_K] = {
  1421. .from_float = quantize_row_q8_K,
  1422. }
  1423. #endif
  1424. };
  1425. // For internal test use
  1426. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1427. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1428. return type_traits[i];
  1429. }
  1430. //
  1431. // simd mappings
  1432. //
  1433. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1434. // we then implement the fundamental computation operations below using only these macros
  1435. // adding support for new architectures requires to define the corresponding SIMD macros
  1436. //
  1437. // GGML_F32_STEP / GGML_F16_STEP
  1438. // number of elements to process in a single step
  1439. //
  1440. // GGML_F32_EPR / GGML_F16_EPR
  1441. // number of elements to fit in a single register
  1442. //
  1443. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1444. #define GGML_SIMD
  1445. // F32 NEON
  1446. #define GGML_F32_STEP 16
  1447. #define GGML_F32_EPR 4
  1448. #define GGML_F32x4 float32x4_t
  1449. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1450. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1451. #define GGML_F32x4_LOAD vld1q_f32
  1452. #define GGML_F32x4_STORE vst1q_f32
  1453. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1454. #define GGML_F32x4_ADD vaddq_f32
  1455. #define GGML_F32x4_MUL vmulq_f32
  1456. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1457. #define GGML_F32x4_REDUCE(res, x) \
  1458. { \
  1459. int offset = GGML_F32_ARR >> 1; \
  1460. for (int i = 0; i < offset; ++i) { \
  1461. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1462. } \
  1463. offset >>= 1; \
  1464. for (int i = 0; i < offset; ++i) { \
  1465. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1466. } \
  1467. offset >>= 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1472. }
  1473. #define GGML_F32_VEC GGML_F32x4
  1474. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1475. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1476. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1477. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1478. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1479. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1480. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1481. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1482. // F16 NEON
  1483. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1484. #define GGML_F16_STEP 32
  1485. #define GGML_F16_EPR 8
  1486. #define GGML_F16x8 float16x8_t
  1487. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1488. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1489. #define GGML_F16x8_LOAD vld1q_f16
  1490. #define GGML_F16x8_STORE vst1q_f16
  1491. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1492. #define GGML_F16x8_ADD vaddq_f16
  1493. #define GGML_F16x8_MUL vmulq_f16
  1494. #define GGML_F16x8_REDUCE(res, x) \
  1495. { \
  1496. int offset = GGML_F16_ARR >> 1; \
  1497. for (int i = 0; i < offset; ++i) { \
  1498. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1499. } \
  1500. offset >>= 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1503. } \
  1504. offset >>= 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1509. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1510. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1511. }
  1512. #define GGML_F16_VEC GGML_F16x8
  1513. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1514. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1515. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1516. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1517. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1518. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1519. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1520. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1521. #else
  1522. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1523. // and take advantage of the vcvt_ functions to convert to/from FP16
  1524. #define GGML_F16_STEP 16
  1525. #define GGML_F16_EPR 4
  1526. #define GGML_F32Cx4 float32x4_t
  1527. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1528. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1529. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1530. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1531. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1532. #define GGML_F32Cx4_ADD vaddq_f32
  1533. #define GGML_F32Cx4_MUL vmulq_f32
  1534. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1535. #define GGML_F16_VEC GGML_F32Cx4
  1536. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1537. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1538. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1539. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1540. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1541. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1542. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1543. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1544. #endif
  1545. #elif defined(__AVX__)
  1546. #define GGML_SIMD
  1547. // F32 AVX
  1548. #define GGML_F32_STEP 32
  1549. #define GGML_F32_EPR 8
  1550. #define GGML_F32x8 __m256
  1551. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1552. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1553. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1554. #define GGML_F32x8_STORE _mm256_storeu_ps
  1555. #if defined(__FMA__)
  1556. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1557. #else
  1558. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1559. #endif
  1560. #define GGML_F32x8_ADD _mm256_add_ps
  1561. #define GGML_F32x8_MUL _mm256_mul_ps
  1562. #define GGML_F32x8_REDUCE(res, x) \
  1563. { \
  1564. int offset = GGML_F32_ARR >> 1; \
  1565. for (int i = 0; i < offset; ++i) { \
  1566. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1567. } \
  1568. offset >>= 1; \
  1569. for (int i = 0; i < offset; ++i) { \
  1570. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1571. } \
  1572. offset >>= 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1577. _mm256_extractf128_ps(x[0], 1)); \
  1578. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1579. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1580. }
  1581. // TODO: is this optimal ?
  1582. #define GGML_F32_VEC GGML_F32x8
  1583. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1584. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1585. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1586. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1587. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1588. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1589. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1590. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1591. // F16 AVX
  1592. #define GGML_F16_STEP 32
  1593. #define GGML_F16_EPR 8
  1594. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1595. #define GGML_F32Cx8 __m256
  1596. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1597. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1598. #if defined(__F16C__)
  1599. // the _mm256_cvt intrinsics require F16C
  1600. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1601. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1602. #else
  1603. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1604. float tmp[8];
  1605. for (int i = 0; i < 8; i++) {
  1606. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1607. }
  1608. return _mm256_loadu_ps(tmp);
  1609. }
  1610. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1611. float arr[8];
  1612. _mm256_storeu_ps(arr, y);
  1613. for (int i = 0; i < 8; i++)
  1614. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1615. }
  1616. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1617. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1618. #endif
  1619. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1620. #define GGML_F32Cx8_ADD _mm256_add_ps
  1621. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1622. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1623. #define GGML_F16_VEC GGML_F32Cx8
  1624. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1625. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1626. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1627. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1628. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1629. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1630. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1631. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1632. #elif defined(__POWER9_VECTOR__)
  1633. #define GGML_SIMD
  1634. // F32 POWER9
  1635. #define GGML_F32_STEP 32
  1636. #define GGML_F32_EPR 4
  1637. #define GGML_F32x4 vector float
  1638. #define GGML_F32x4_ZERO 0.0f
  1639. #define GGML_F32x4_SET1 vec_splats
  1640. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1641. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1642. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1643. #define GGML_F32x4_ADD vec_add
  1644. #define GGML_F32x4_MUL vec_mul
  1645. #define GGML_F32x4_REDUCE(res, x) \
  1646. { \
  1647. int offset = GGML_F32_ARR >> 1; \
  1648. for (int i = 0; i < offset; ++i) { \
  1649. x[i] = vec_add(x[i], x[offset+i]); \
  1650. } \
  1651. offset >>= 1; \
  1652. for (int i = 0; i < offset; ++i) { \
  1653. x[i] = vec_add(x[i], x[offset+i]); \
  1654. } \
  1655. offset >>= 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. res = vec_extract(x[0], 0) + \
  1660. vec_extract(x[0], 1) + \
  1661. vec_extract(x[0], 2) + \
  1662. vec_extract(x[0], 3); \
  1663. }
  1664. #define GGML_F32_VEC GGML_F32x4
  1665. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1666. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1667. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1668. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1669. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1670. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1671. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1672. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1673. // F16 POWER9
  1674. #define GGML_F16_STEP GGML_F32_STEP
  1675. #define GGML_F16_EPR GGML_F32_EPR
  1676. #define GGML_F16_VEC GGML_F32x4
  1677. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1678. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1679. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1680. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1681. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1682. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1683. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1684. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1685. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1686. #define GGML_F16_VEC_STORE(p, r, i) \
  1687. if (i & 0x1) \
  1688. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1689. r[i - GGML_ENDIAN_BYTE(0)]), \
  1690. 0, p - GGML_F16_EPR)
  1691. #elif defined(__wasm_simd128__)
  1692. #define GGML_SIMD
  1693. // F32 WASM
  1694. #define GGML_F32_STEP 16
  1695. #define GGML_F32_EPR 4
  1696. #define GGML_F32x4 v128_t
  1697. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1698. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1699. #define GGML_F32x4_LOAD wasm_v128_load
  1700. #define GGML_F32x4_STORE wasm_v128_store
  1701. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1702. #define GGML_F32x4_ADD wasm_f32x4_add
  1703. #define GGML_F32x4_MUL wasm_f32x4_mul
  1704. #define GGML_F32x4_REDUCE(res, x) \
  1705. { \
  1706. int offset = GGML_F32_ARR >> 1; \
  1707. for (int i = 0; i < offset; ++i) { \
  1708. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1709. } \
  1710. offset >>= 1; \
  1711. for (int i = 0; i < offset; ++i) { \
  1712. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1713. } \
  1714. offset >>= 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1719. wasm_f32x4_extract_lane(x[0], 1) + \
  1720. wasm_f32x4_extract_lane(x[0], 2) + \
  1721. wasm_f32x4_extract_lane(x[0], 3); \
  1722. }
  1723. #define GGML_F32_VEC GGML_F32x4
  1724. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1725. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1726. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1727. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1728. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1729. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1730. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1731. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1732. // F16 WASM
  1733. #define GGML_F16_STEP 16
  1734. #define GGML_F16_EPR 4
  1735. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1736. float tmp[4];
  1737. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1738. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1739. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1740. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1741. return wasm_v128_load(tmp);
  1742. }
  1743. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1744. float tmp[4];
  1745. wasm_v128_store(tmp, x);
  1746. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1747. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1748. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1749. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1750. }
  1751. #define GGML_F16x4 v128_t
  1752. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1753. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1754. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1755. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1756. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1757. #define GGML_F16x4_ADD wasm_f32x4_add
  1758. #define GGML_F16x4_MUL wasm_f32x4_mul
  1759. #define GGML_F16x4_REDUCE(res, x) \
  1760. { \
  1761. int offset = GGML_F16_ARR >> 1; \
  1762. for (int i = 0; i < offset; ++i) { \
  1763. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1764. } \
  1765. offset >>= 1; \
  1766. for (int i = 0; i < offset; ++i) { \
  1767. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1768. } \
  1769. offset >>= 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1774. wasm_f32x4_extract_lane(x[0], 1) + \
  1775. wasm_f32x4_extract_lane(x[0], 2) + \
  1776. wasm_f32x4_extract_lane(x[0], 3); \
  1777. }
  1778. #define GGML_F16_VEC GGML_F16x4
  1779. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1780. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1781. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1782. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1783. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1784. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1785. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1786. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1787. #elif defined(__SSE3__)
  1788. #define GGML_SIMD
  1789. // F32 SSE
  1790. #define GGML_F32_STEP 32
  1791. #define GGML_F32_EPR 4
  1792. #define GGML_F32x4 __m128
  1793. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1794. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1795. #define GGML_F32x4_LOAD _mm_loadu_ps
  1796. #define GGML_F32x4_STORE _mm_storeu_ps
  1797. #if defined(__FMA__)
  1798. // TODO: Does this work?
  1799. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1800. #else
  1801. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1802. #endif
  1803. #define GGML_F32x4_ADD _mm_add_ps
  1804. #define GGML_F32x4_MUL _mm_mul_ps
  1805. #define GGML_F32x4_REDUCE(res, x) \
  1806. { \
  1807. int offset = GGML_F32_ARR >> 1; \
  1808. for (int i = 0; i < offset; ++i) { \
  1809. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1810. } \
  1811. offset >>= 1; \
  1812. for (int i = 0; i < offset; ++i) { \
  1813. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1814. } \
  1815. offset >>= 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1820. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1821. }
  1822. // TODO: is this optimal ?
  1823. #define GGML_F32_VEC GGML_F32x4
  1824. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1825. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1826. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1827. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1828. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1829. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1830. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1831. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1832. // F16 SSE
  1833. #define GGML_F16_STEP 32
  1834. #define GGML_F16_EPR 4
  1835. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1836. float tmp[4];
  1837. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1838. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1839. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1840. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1841. return _mm_loadu_ps(tmp);
  1842. }
  1843. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1844. float arr[4];
  1845. _mm_storeu_ps(arr, y);
  1846. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1847. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1848. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1849. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1850. }
  1851. #define GGML_F32Cx4 __m128
  1852. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1853. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1854. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1855. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1856. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1857. #define GGML_F32Cx4_ADD _mm_add_ps
  1858. #define GGML_F32Cx4_MUL _mm_mul_ps
  1859. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1860. #define GGML_F16_VEC GGML_F32Cx4
  1861. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1862. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1863. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1864. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1865. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1866. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1867. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1868. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1869. #endif
  1870. // GGML_F32_ARR / GGML_F16_ARR
  1871. // number of registers to use per step
  1872. #ifdef GGML_SIMD
  1873. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1874. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1875. #endif
  1876. //
  1877. // fundamental operations
  1878. //
  1879. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1880. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1881. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1882. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1883. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1884. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1885. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1886. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1887. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1888. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1889. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1890. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1891. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1892. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1893. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1894. #ifdef GGML_SIMD
  1895. float sumf = 0.0f;
  1896. const int np = (n & ~(GGML_F32_STEP - 1));
  1897. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1898. GGML_F32_VEC ax[GGML_F32_ARR];
  1899. GGML_F32_VEC ay[GGML_F32_ARR];
  1900. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1901. for (int j = 0; j < GGML_F32_ARR; j++) {
  1902. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1903. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1904. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1905. }
  1906. }
  1907. // reduce sum0..sum3 to sum0
  1908. GGML_F32_VEC_REDUCE(sumf, sum);
  1909. // leftovers
  1910. for (int i = np; i < n; ++i) {
  1911. sumf += x[i]*y[i];
  1912. }
  1913. #else
  1914. // scalar
  1915. ggml_float sumf = 0.0;
  1916. for (int i = 0; i < n; ++i) {
  1917. sumf += (ggml_float)(x[i]*y[i]);
  1918. }
  1919. #endif
  1920. *s = sumf;
  1921. }
  1922. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1923. ggml_float sumf = 0.0;
  1924. #if defined(GGML_SIMD)
  1925. const int np = (n & ~(GGML_F16_STEP - 1));
  1926. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1927. GGML_F16_VEC ax[GGML_F16_ARR];
  1928. GGML_F16_VEC ay[GGML_F16_ARR];
  1929. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1930. for (int j = 0; j < GGML_F16_ARR; j++) {
  1931. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1932. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1933. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1934. }
  1935. }
  1936. // reduce sum0..sum3 to sum0
  1937. GGML_F16_VEC_REDUCE(sumf, sum);
  1938. // leftovers
  1939. for (int i = np; i < n; ++i) {
  1940. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1941. }
  1942. #else
  1943. for (int i = 0; i < n; ++i) {
  1944. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1945. }
  1946. #endif
  1947. *s = sumf;
  1948. }
  1949. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1950. const int qk = QK8_0;
  1951. const int nb = n / qk;
  1952. assert(n % qk == 0);
  1953. assert(nb % 2 == 0);
  1954. const block_q4_0 * restrict x = vx;
  1955. const block_q8_0 * restrict y = vy;
  1956. #if defined(__ARM_NEON)
  1957. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1958. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1959. for (int i = 0; i < nb; i += 2) {
  1960. const block_q4_0 * restrict x0 = &x[i + 0];
  1961. const block_q4_0 * restrict x1 = &x[i + 1];
  1962. const block_q8_0 * restrict y0 = &y[i + 0];
  1963. const block_q8_0 * restrict y1 = &y[i + 1];
  1964. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1965. const int8x16_t s8b = vdupq_n_s8(0x8);
  1966. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1967. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1968. // 4-bit -> 8-bit
  1969. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1970. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1971. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1972. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1973. // sub 8
  1974. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1975. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1976. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1977. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1978. // load y
  1979. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1980. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1981. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1982. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1983. #if defined(__ARM_FEATURE_DOTPROD)
  1984. // dot product into int32x4_t
  1985. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1986. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1987. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1988. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1989. #else
  1990. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1991. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1992. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1993. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1994. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1995. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1996. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1997. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1998. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1999. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2000. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2001. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2002. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2003. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2004. #endif
  2005. }
  2006. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2007. #elif defined(__AVX2__)
  2008. // Initialize accumulator with zeros
  2009. __m256 acc = _mm256_setzero_ps();
  2010. // Main loop
  2011. for (int i = 0; i < nb; ++i) {
  2012. /* Compute combined scale for the block */
  2013. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2014. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2015. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2016. const __m256i off = _mm256_set1_epi8( 8 );
  2017. bx = _mm256_sub_epi8( bx, off );
  2018. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2019. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2020. /* Multiply q with scale and accumulate */
  2021. acc = _mm256_fmadd_ps( d, q, acc );
  2022. }
  2023. *s = hsum_float_8(acc);
  2024. #elif defined(__AVX__)
  2025. // Initialize accumulator with zeros
  2026. __m256 acc = _mm256_setzero_ps();
  2027. // Main loop
  2028. for (int i = 0; i < nb; ++i) {
  2029. // Compute combined scale for the block
  2030. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2031. const __m128i lowMask = _mm_set1_epi8(0xF);
  2032. const __m128i off = _mm_set1_epi8(8);
  2033. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2034. __m128i bx = _mm_and_si128(lowMask, tmp);
  2035. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2036. bx = _mm_sub_epi8(bx, off);
  2037. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2038. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2039. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2040. bx = _mm_sub_epi8(bx, off);
  2041. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2042. // Convert int32_t to float
  2043. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2044. // Apply the scale, and accumulate
  2045. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2046. }
  2047. *s = hsum_float_8(acc);
  2048. #elif defined(__SSSE3__)
  2049. // set constants
  2050. const __m128i lowMask = _mm_set1_epi8(0xF);
  2051. const __m128i off = _mm_set1_epi8(8);
  2052. // Initialize accumulator with zeros
  2053. __m128 acc_0 = _mm_setzero_ps();
  2054. __m128 acc_1 = _mm_setzero_ps();
  2055. __m128 acc_2 = _mm_setzero_ps();
  2056. __m128 acc_3 = _mm_setzero_ps();
  2057. // First round without accumulation
  2058. {
  2059. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2060. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2061. // Compute combined scale for the block 0 and 1
  2062. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2063. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2064. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2065. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2066. bx_0 = _mm_sub_epi8(bx_0, off);
  2067. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2068. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2069. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2070. bx_1 = _mm_sub_epi8(bx_1, off);
  2071. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2072. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2073. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2074. // Compute combined scale for the block 2 and 3
  2075. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2076. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2077. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2078. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2079. bx_2 = _mm_sub_epi8(bx_2, off);
  2080. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2081. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2082. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2083. bx_3 = _mm_sub_epi8(bx_3, off);
  2084. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2085. // Convert int32_t to float
  2086. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2087. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2088. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2089. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2090. // Apply the scale
  2091. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2092. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2093. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2094. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2095. }
  2096. // Main loop
  2097. for (int i = 2; i < nb; i+=2) {
  2098. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2099. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2100. // Compute combined scale for the block 0 and 1
  2101. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2102. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2103. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2104. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2105. bx_0 = _mm_sub_epi8(bx_0, off);
  2106. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2107. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2108. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2109. bx_1 = _mm_sub_epi8(bx_1, off);
  2110. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2111. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2112. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2113. // Compute combined scale for the block 2 and 3
  2114. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2115. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2116. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2117. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2118. bx_2 = _mm_sub_epi8(bx_2, off);
  2119. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2120. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2121. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2122. bx_3 = _mm_sub_epi8(bx_3, off);
  2123. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2124. // Convert int32_t to float
  2125. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2126. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2127. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2128. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2129. // Apply the scale
  2130. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2131. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2132. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2133. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2134. // Acummulate
  2135. acc_0 = _mm_add_ps(p0_d, acc_0);
  2136. acc_1 = _mm_add_ps(p1_d, acc_1);
  2137. acc_2 = _mm_add_ps(p2_d, acc_2);
  2138. acc_3 = _mm_add_ps(p3_d, acc_3);
  2139. }
  2140. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2141. #else
  2142. // scalar
  2143. float sumf = 0.0;
  2144. for (int i = 0; i < nb; i++) {
  2145. int sumi = 0;
  2146. for (int j = 0; j < qk/2; ++j) {
  2147. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2148. const int v1 = (x[i].qs[j] >> 4) - 8;
  2149. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2150. }
  2151. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2152. }
  2153. *s = sumf;
  2154. #endif
  2155. }
  2156. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2157. const int qk = QK8_1;
  2158. const int nb = n / qk;
  2159. assert(n % qk == 0);
  2160. assert(nb % 2 == 0);
  2161. const block_q4_1 * restrict x = vx;
  2162. const block_q8_1 * restrict y = vy;
  2163. // TODO: add WASM SIMD
  2164. #if defined(__ARM_NEON)
  2165. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2166. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2167. float summs = 0;
  2168. for (int i = 0; i < nb; i += 2) {
  2169. const block_q4_1 * restrict x0 = &x[i + 0];
  2170. const block_q4_1 * restrict x1 = &x[i + 1];
  2171. const block_q8_1 * restrict y0 = &y[i + 0];
  2172. const block_q8_1 * restrict y1 = &y[i + 1];
  2173. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2174. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2175. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2176. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2177. // 4-bit -> 8-bit
  2178. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2179. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2180. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2181. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2182. // load y
  2183. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2184. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2185. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2186. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2187. #if defined(__ARM_FEATURE_DOTPROD)
  2188. // dot product into int32x4_t
  2189. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2190. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2191. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2192. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2193. #else
  2194. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2195. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2196. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2197. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2198. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2199. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2200. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2201. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2202. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2203. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2204. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2205. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2206. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2207. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2208. #endif
  2209. }
  2210. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2211. #elif defined(__AVX2__) || defined(__AVX__)
  2212. // Initialize accumulator with zeros
  2213. __m256 acc = _mm256_setzero_ps();
  2214. float summs = 0;
  2215. // Main loop
  2216. for (int i = 0; i < nb; ++i) {
  2217. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2218. const float d1 = y[i].d;
  2219. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2220. const __m256 d0v = _mm256_set1_ps( d0 );
  2221. const __m256 d1v = _mm256_set1_ps( d1 );
  2222. // Compute combined scales
  2223. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2224. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2225. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2226. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2227. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2228. // Accumulate d0*d1*x*y
  2229. #if defined(__AVX2__)
  2230. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2231. #else
  2232. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2233. #endif
  2234. }
  2235. *s = hsum_float_8(acc) + summs;
  2236. #else
  2237. // scalar
  2238. float sumf = 0.0;
  2239. for (int i = 0; i < nb; i++) {
  2240. int sumi = 0;
  2241. for (int j = 0; j < qk/2; ++j) {
  2242. const int v0 = (x[i].qs[j] & 0x0F);
  2243. const int v1 = (x[i].qs[j] >> 4);
  2244. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2245. }
  2246. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2247. }
  2248. *s = sumf;
  2249. #endif
  2250. }
  2251. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2252. const int qk = QK8_0;
  2253. const int nb = n / qk;
  2254. assert(n % qk == 0);
  2255. assert(nb % 2 == 0);
  2256. assert(qk == QK5_0);
  2257. const block_q5_0 * restrict x = vx;
  2258. const block_q8_0 * restrict y = vy;
  2259. #if defined(__ARM_NEON)
  2260. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2261. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2262. uint32_t qh0;
  2263. uint32_t qh1;
  2264. uint64_t tmp0[4];
  2265. uint64_t tmp1[4];
  2266. for (int i = 0; i < nb; i += 2) {
  2267. const block_q5_0 * restrict x0 = &x[i];
  2268. const block_q5_0 * restrict x1 = &x[i + 1];
  2269. const block_q8_0 * restrict y0 = &y[i];
  2270. const block_q8_0 * restrict y1 = &y[i + 1];
  2271. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2272. // extract the 5th bit via lookup table ((!b) << 4)
  2273. memcpy(&qh0, x0->qh, sizeof(qh0));
  2274. memcpy(&qh1, x1->qh, sizeof(qh1));
  2275. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2276. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2277. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2278. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2279. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2280. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2281. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2282. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2283. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2284. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2285. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2286. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2287. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2288. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2289. // 4-bit -> 8-bit
  2290. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2291. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2292. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2293. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2294. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2295. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2296. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2297. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2298. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2299. // load y
  2300. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2301. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2302. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2303. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2304. #if defined(__ARM_FEATURE_DOTPROD)
  2305. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2306. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2307. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2308. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2309. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2310. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2311. #else
  2312. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2313. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2314. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2315. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2316. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2317. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2318. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2319. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2320. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2321. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2322. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2323. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2324. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2325. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2326. #endif
  2327. }
  2328. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2329. #elif defined(__wasm_simd128__)
  2330. v128_t sumv = wasm_f32x4_splat(0.0f);
  2331. uint32_t qh;
  2332. uint64_t tmp[4];
  2333. // TODO: check if unrolling this is better
  2334. for (int i = 0; i < nb; ++i) {
  2335. const block_q5_0 * restrict x0 = &x[i];
  2336. const block_q8_0 * restrict y0 = &y[i];
  2337. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2338. // extract the 5th bit
  2339. memcpy(&qh, x0->qh, sizeof(qh));
  2340. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2341. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2342. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2343. tmp[3] = table_b2b_1[(qh >> 24) ];
  2344. const v128_t qhl = wasm_v128_load(tmp + 0);
  2345. const v128_t qhh = wasm_v128_load(tmp + 2);
  2346. const v128_t v0 = wasm_v128_load(x0->qs);
  2347. // 4-bit -> 8-bit
  2348. const v128_t v0l = wasm_v128_and (v0, m4b);
  2349. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2350. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2351. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2352. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2353. // load y
  2354. const v128_t v1l = wasm_v128_load(y0->qs);
  2355. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2356. // int8x16 -> int16x8
  2357. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2358. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2359. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2360. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2361. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2362. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2363. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2364. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2365. // dot product
  2366. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2367. wasm_i32x4_add(
  2368. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2369. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2370. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2371. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2372. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2373. }
  2374. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2375. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2376. #elif defined(__AVX2__)
  2377. // Initialize accumulator with zeros
  2378. __m256 acc = _mm256_setzero_ps();
  2379. // Main loop
  2380. for (int i = 0; i < nb; i++) {
  2381. /* Compute combined scale for the block */
  2382. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2383. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2384. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2385. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2386. bx = _mm256_or_si256(bx, bxhi);
  2387. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2388. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2389. /* Multiply q with scale and accumulate */
  2390. acc = _mm256_fmadd_ps(d, q, acc);
  2391. }
  2392. *s = hsum_float_8(acc);
  2393. #elif defined(__AVX__)
  2394. // Initialize accumulator with zeros
  2395. __m256 acc = _mm256_setzero_ps();
  2396. __m128i mask = _mm_set1_epi8((char)0xF0);
  2397. // Main loop
  2398. for (int i = 0; i < nb; i++) {
  2399. /* Compute combined scale for the block */
  2400. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2401. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2402. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2403. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2404. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2405. bxhil = _mm_andnot_si128(bxhil, mask);
  2406. bxhih = _mm_andnot_si128(bxhih, mask);
  2407. __m128i bxl = _mm256_castsi256_si128(bx);
  2408. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2409. bxl = _mm_or_si128(bxl, bxhil);
  2410. bxh = _mm_or_si128(bxh, bxhih);
  2411. bx = MM256_SET_M128I(bxh, bxl);
  2412. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2413. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2414. /* Multiply q with scale and accumulate */
  2415. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2416. }
  2417. *s = hsum_float_8(acc);
  2418. #else
  2419. // scalar
  2420. float sumf = 0.0;
  2421. for (int i = 0; i < nb; i++) {
  2422. uint32_t qh;
  2423. memcpy(&qh, x[i].qh, sizeof(qh));
  2424. int sumi = 0;
  2425. for (int j = 0; j < qk/2; ++j) {
  2426. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2427. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2428. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2429. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2430. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2431. }
  2432. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2433. }
  2434. *s = sumf;
  2435. #endif
  2436. }
  2437. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2438. const int qk = QK8_1;
  2439. const int nb = n / qk;
  2440. assert(n % qk == 0);
  2441. assert(nb % 2 == 0);
  2442. assert(qk == QK5_1);
  2443. const block_q5_1 * restrict x = vx;
  2444. const block_q8_1 * restrict y = vy;
  2445. #if defined(__ARM_NEON)
  2446. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2447. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2448. float summs0 = 0.0f;
  2449. float summs1 = 0.0f;
  2450. uint32_t qh0;
  2451. uint32_t qh1;
  2452. uint64_t tmp0[4];
  2453. uint64_t tmp1[4];
  2454. for (int i = 0; i < nb; i += 2) {
  2455. const block_q5_1 * restrict x0 = &x[i];
  2456. const block_q5_1 * restrict x1 = &x[i + 1];
  2457. const block_q8_1 * restrict y0 = &y[i];
  2458. const block_q8_1 * restrict y1 = &y[i + 1];
  2459. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2460. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2461. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2462. // extract the 5th bit via lookup table ((b) << 4)
  2463. memcpy(&qh0, x0->qh, sizeof(qh0));
  2464. memcpy(&qh1, x1->qh, sizeof(qh1));
  2465. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2466. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2467. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2468. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2469. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2470. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2471. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2472. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2473. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2474. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2475. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2476. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2477. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2478. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2479. // 4-bit -> 8-bit
  2480. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2481. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2482. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2483. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2484. // add high bit
  2485. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2486. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2487. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2488. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2489. // load y
  2490. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2491. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2492. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2493. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2494. #if defined(__ARM_FEATURE_DOTPROD)
  2495. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2496. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2497. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2498. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2499. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2500. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2501. #else
  2502. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2503. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2504. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2505. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2506. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2507. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2508. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2509. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2510. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2511. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2512. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2513. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2514. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2515. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2516. #endif
  2517. }
  2518. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2519. #elif defined(__wasm_simd128__)
  2520. v128_t sumv = wasm_f32x4_splat(0.0f);
  2521. float summs = 0.0f;
  2522. uint32_t qh;
  2523. uint64_t tmp[4];
  2524. // TODO: check if unrolling this is better
  2525. for (int i = 0; i < nb; ++i) {
  2526. const block_q5_1 * restrict x0 = &x[i];
  2527. const block_q8_1 * restrict y0 = &y[i];
  2528. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2529. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2530. // extract the 5th bit
  2531. memcpy(&qh, x0->qh, sizeof(qh));
  2532. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2533. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2534. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2535. tmp[3] = table_b2b_0[(qh >> 24) ];
  2536. const v128_t qhl = wasm_v128_load(tmp + 0);
  2537. const v128_t qhh = wasm_v128_load(tmp + 2);
  2538. const v128_t v0 = wasm_v128_load(x0->qs);
  2539. // 4-bit -> 8-bit
  2540. const v128_t v0l = wasm_v128_and (v0, m4b);
  2541. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2542. // add high bit
  2543. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2544. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2545. // load y
  2546. const v128_t v1l = wasm_v128_load(y0->qs);
  2547. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2548. // int8x16 -> int16x8
  2549. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2550. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2551. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2552. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2553. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2554. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2555. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2556. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2557. // dot product
  2558. sumv = wasm_f32x4_add(sumv,
  2559. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2560. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2561. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2562. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2563. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2564. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2565. }
  2566. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2567. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2568. #elif defined(__AVX2__)
  2569. // Initialize accumulator with zeros
  2570. __m256 acc = _mm256_setzero_ps();
  2571. float summs = 0.0f;
  2572. // Main loop
  2573. for (int i = 0; i < nb; i++) {
  2574. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2575. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2576. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2577. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2578. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2579. bx = _mm256_or_si256(bx, bxhi);
  2580. const __m256 dy = _mm256_set1_ps(y[i].d);
  2581. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2582. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2583. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2584. }
  2585. *s = hsum_float_8(acc) + summs;
  2586. #elif defined(__AVX__)
  2587. // Initialize accumulator with zeros
  2588. __m256 acc = _mm256_setzero_ps();
  2589. __m128i mask = _mm_set1_epi8(0x10);
  2590. float summs = 0.0f;
  2591. // Main loop
  2592. for (int i = 0; i < nb; i++) {
  2593. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2594. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2595. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2596. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2597. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2598. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2599. bxhil = _mm_and_si128(bxhil, mask);
  2600. bxhih = _mm_and_si128(bxhih, mask);
  2601. __m128i bxl = _mm256_castsi256_si128(bx);
  2602. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2603. bxl = _mm_or_si128(bxl, bxhil);
  2604. bxh = _mm_or_si128(bxh, bxhih);
  2605. bx = MM256_SET_M128I(bxh, bxl);
  2606. const __m256 dy = _mm256_set1_ps(y[i].d);
  2607. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2608. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2609. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2610. }
  2611. *s = hsum_float_8(acc) + summs;
  2612. #else
  2613. // scalar
  2614. float sumf = 0.0;
  2615. for (int i = 0; i < nb; i++) {
  2616. uint32_t qh;
  2617. memcpy(&qh, x[i].qh, sizeof(qh));
  2618. int sumi = 0;
  2619. for (int j = 0; j < qk/2; ++j) {
  2620. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2621. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2622. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2623. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2624. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2625. }
  2626. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2627. }
  2628. *s = sumf;
  2629. #endif
  2630. }
  2631. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2632. const int qk = QK8_0;
  2633. const int nb = n / qk;
  2634. assert(n % qk == 0);
  2635. assert(nb % 2 == 0);
  2636. const block_q8_0 * restrict x = vx;
  2637. const block_q8_0 * restrict y = vy;
  2638. #if defined(__ARM_NEON)
  2639. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2640. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2641. for (int i = 0; i < nb; i += 2) {
  2642. const block_q8_0 * restrict x0 = &x[i + 0];
  2643. const block_q8_0 * restrict x1 = &x[i + 1];
  2644. const block_q8_0 * restrict y0 = &y[i + 0];
  2645. const block_q8_0 * restrict y1 = &y[i + 1];
  2646. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2647. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2648. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2649. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2650. // load y
  2651. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2652. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2653. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2654. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2655. #if defined(__ARM_FEATURE_DOTPROD)
  2656. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2657. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2658. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2659. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2660. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2661. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2662. #else
  2663. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2664. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2665. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2666. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2667. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2668. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2669. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2670. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2671. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2672. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2673. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2674. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2675. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2676. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2677. #endif
  2678. }
  2679. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2680. #elif defined(__AVX2__) || defined(__AVX__)
  2681. // Initialize accumulator with zeros
  2682. __m256 acc = _mm256_setzero_ps();
  2683. // Main loop
  2684. for (int i = 0; i < nb; ++i) {
  2685. // Compute combined scale for the block
  2686. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2687. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2688. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2689. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2690. // Multiply q with scale and accumulate
  2691. #if defined(__AVX2__)
  2692. acc = _mm256_fmadd_ps( d, q, acc );
  2693. #else
  2694. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2695. #endif
  2696. }
  2697. *s = hsum_float_8(acc);
  2698. #else
  2699. // scalar
  2700. float sumf = 0.0;
  2701. for (int i = 0; i < nb; i++) {
  2702. int sumi = 0;
  2703. for (int j = 0; j < qk; j++) {
  2704. sumi += x[i].qs[j]*y[i].qs[j];
  2705. }
  2706. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2707. }
  2708. *s = sumf;
  2709. #endif
  2710. }
  2711. // compute GGML_VEC_DOT_UNROLL dot products at once
  2712. // xs - x row stride in bytes
  2713. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2714. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2715. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2716. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2717. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2718. }
  2719. #if defined(GGML_SIMD)
  2720. const int np = (n & ~(GGML_F16_STEP - 1));
  2721. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2722. GGML_F16_VEC ax[GGML_F16_ARR];
  2723. GGML_F16_VEC ay[GGML_F16_ARR];
  2724. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2725. for (int j = 0; j < GGML_F16_ARR; j++) {
  2726. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2727. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2728. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2729. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2730. }
  2731. }
  2732. }
  2733. // reduce sum0..sum3 to sum0
  2734. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2735. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2736. }
  2737. // leftovers
  2738. for (int i = np; i < n; ++i) {
  2739. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2740. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2741. }
  2742. }
  2743. #else
  2744. for (int i = 0; i < n; ++i) {
  2745. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2746. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2747. }
  2748. }
  2749. #endif
  2750. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2751. s[i] = sumf[i];
  2752. }
  2753. }
  2754. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2755. #if defined(GGML_SIMD)
  2756. const int np = (n & ~(GGML_F32_STEP - 1));
  2757. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2758. GGML_F32_VEC ax[GGML_F32_ARR];
  2759. GGML_F32_VEC ay[GGML_F32_ARR];
  2760. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2761. for (int j = 0; j < GGML_F32_ARR; j++) {
  2762. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2763. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2764. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2765. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2766. }
  2767. }
  2768. // leftovers
  2769. for (int i = np; i < n; ++i) {
  2770. y[i] += x[i]*v;
  2771. }
  2772. #else
  2773. // scalar
  2774. for (int i = 0; i < n; ++i) {
  2775. y[i] += x[i]*v;
  2776. }
  2777. #endif
  2778. }
  2779. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2780. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2781. #if defined(GGML_SIMD)
  2782. const int np = (n & ~(GGML_F32_STEP - 1));
  2783. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2784. GGML_F32_VEC ay[GGML_F32_ARR];
  2785. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2786. for (int j = 0; j < GGML_F32_ARR; j++) {
  2787. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2788. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2789. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2790. }
  2791. }
  2792. // leftovers
  2793. for (int i = np; i < n; ++i) {
  2794. y[i] *= v;
  2795. }
  2796. #else
  2797. // scalar
  2798. for (int i = 0; i < n; ++i) {
  2799. y[i] *= v;
  2800. }
  2801. #endif
  2802. }
  2803. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2804. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2805. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2806. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2807. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2808. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2809. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2810. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2811. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2812. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2813. static const float GELU_COEF_A = 0.044715f;
  2814. static const float GELU_QUICK_COEF = -1.702f;
  2815. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2816. inline static float ggml_gelu_f32(float x) {
  2817. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2818. }
  2819. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2820. const uint16_t * i16 = (const uint16_t *) x;
  2821. for (int i = 0; i < n; ++i) {
  2822. y[i] = table_gelu_f16[i16[i]];
  2823. }
  2824. }
  2825. #ifdef GGML_GELU_FP16
  2826. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2827. uint16_t t;
  2828. for (int i = 0; i < n; ++i) {
  2829. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2830. memcpy(&t, &fp16, sizeof(uint16_t));
  2831. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2832. }
  2833. }
  2834. #else
  2835. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2836. for (int i = 0; i < n; ++i) {
  2837. y[i] = ggml_gelu_f32(x[i]);
  2838. }
  2839. }
  2840. #endif
  2841. inline static float ggml_gelu_quick_f32(float x) {
  2842. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2843. }
  2844. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2845. // const uint16_t * i16 = (const uint16_t *) x;
  2846. // for (int i = 0; i < n; ++i) {
  2847. // y[i] = table_gelu_quick_f16[i16[i]];
  2848. // }
  2849. //}
  2850. #ifdef GGML_GELU_QUICK_FP16
  2851. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2852. uint16_t t;
  2853. for (int i = 0; i < n; ++i) {
  2854. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2855. memcpy(&t, &fp16, sizeof(uint16_t));
  2856. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2857. }
  2858. }
  2859. #else
  2860. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2861. for (int i = 0; i < n; ++i) {
  2862. y[i] = ggml_gelu_quick_f32(x[i]);
  2863. }
  2864. }
  2865. #endif
  2866. // Sigmoid Linear Unit (SiLU) function
  2867. inline static float ggml_silu_f32(float x) {
  2868. return x/(1.0f + expf(-x));
  2869. }
  2870. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2871. // const uint16_t * i16 = (const uint16_t *) x;
  2872. // for (int i = 0; i < n; ++i) {
  2873. // y[i] = table_silu_f16[i16[i]];
  2874. // }
  2875. //}
  2876. #ifdef GGML_SILU_FP16
  2877. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2878. uint16_t t;
  2879. for (int i = 0; i < n; ++i) {
  2880. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2881. memcpy(&t, &fp16, sizeof(uint16_t));
  2882. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2883. }
  2884. }
  2885. #else
  2886. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2887. for (int i = 0; i < n; ++i) {
  2888. y[i] = ggml_silu_f32(x[i]);
  2889. }
  2890. }
  2891. #endif
  2892. inline static float ggml_silu_backward_f32(float x, float dy) {
  2893. const float s = 1.0f/(1.0f + expf(-x));
  2894. return dy*s*(1.0f + x*(1.0f - s));
  2895. }
  2896. #ifdef GGML_SILU_FP16
  2897. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2898. for (int i = 0; i < n; ++i) {
  2899. // we did not use x[i] to compute forward silu but its f16 equivalent
  2900. // take derivative at f16 of x[i]:
  2901. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2902. float usedx = GGML_FP16_TO_FP32(fp16);
  2903. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2904. }
  2905. }
  2906. #else
  2907. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2908. for (int i = 0; i < n; ++i) {
  2909. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2910. }
  2911. }
  2912. #endif
  2913. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2914. #ifndef GGML_USE_ACCELERATE
  2915. ggml_float sum = 0.0;
  2916. for (int i = 0; i < n; ++i) {
  2917. sum += (ggml_float)x[i];
  2918. }
  2919. *s = sum;
  2920. #else
  2921. vDSP_sve(x, 1, s, n);
  2922. #endif
  2923. }
  2924. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2925. ggml_float sum = 0.0;
  2926. for (int i = 0; i < n; ++i) {
  2927. sum += (ggml_float)x[i];
  2928. }
  2929. *s = sum;
  2930. }
  2931. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2932. #ifndef GGML_USE_ACCELERATE
  2933. float max = -INFINITY;
  2934. for (int i = 0; i < n; ++i) {
  2935. max = MAX(max, x[i]);
  2936. }
  2937. *s = max;
  2938. #else
  2939. vDSP_maxv(x, 1, s, n);
  2940. #endif
  2941. }
  2942. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2943. ggml_vec_norm_f32(n, s, x);
  2944. *s = 1.f/(*s);
  2945. }
  2946. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2947. float max = -INFINITY;
  2948. int idx = 0;
  2949. for (int i = 0; i < n; ++i) {
  2950. max = MAX(max, x[i]);
  2951. if (max == x[i]) { idx = i; }
  2952. }
  2953. *s = idx;
  2954. }
  2955. //
  2956. // data types
  2957. //
  2958. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2959. [GGML_TYPE_F32] = 1,
  2960. [GGML_TYPE_F16] = 1,
  2961. [GGML_TYPE_Q4_0] = QK4_0,
  2962. [GGML_TYPE_Q4_1] = QK4_1,
  2963. [GGML_TYPE_Q5_0] = QK5_0,
  2964. [GGML_TYPE_Q5_1] = QK5_1,
  2965. [GGML_TYPE_Q8_0] = QK8_0,
  2966. [GGML_TYPE_Q8_1] = QK8_1,
  2967. #ifdef GGML_USE_K_QUANTS
  2968. [GGML_TYPE_Q2_K] = QK_K,
  2969. [GGML_TYPE_Q3_K] = QK_K,
  2970. [GGML_TYPE_Q4_K] = QK_K,
  2971. [GGML_TYPE_Q5_K] = QK_K,
  2972. [GGML_TYPE_Q6_K] = QK_K,
  2973. [GGML_TYPE_Q8_K] = QK_K,
  2974. #endif
  2975. [GGML_TYPE_I8] = 1,
  2976. [GGML_TYPE_I16] = 1,
  2977. [GGML_TYPE_I32] = 1,
  2978. };
  2979. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2980. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2981. [GGML_TYPE_F32] = sizeof(float),
  2982. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2983. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2984. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2985. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2986. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2987. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2988. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2989. #ifdef GGML_USE_K_QUANTS
  2990. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2991. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2992. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2993. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2994. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2995. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2996. #endif
  2997. [GGML_TYPE_I8] = sizeof(int8_t),
  2998. [GGML_TYPE_I16] = sizeof(int16_t),
  2999. [GGML_TYPE_I32] = sizeof(int32_t),
  3000. };
  3001. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3002. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3003. [GGML_TYPE_F32] = "f32",
  3004. [GGML_TYPE_F16] = "f16",
  3005. [GGML_TYPE_Q4_0] = "q4_0",
  3006. [GGML_TYPE_Q4_1] = "q4_1",
  3007. [GGML_TYPE_Q5_0] = "q5_0",
  3008. [GGML_TYPE_Q5_1] = "q5_1",
  3009. [GGML_TYPE_Q8_0] = "q8_0",
  3010. [GGML_TYPE_Q8_1] = "q8_1",
  3011. [GGML_TYPE_Q2_K] = "q2_K",
  3012. [GGML_TYPE_Q3_K] = "q3_K",
  3013. [GGML_TYPE_Q4_K] = "q4_K",
  3014. [GGML_TYPE_Q5_K] = "q5_K",
  3015. [GGML_TYPE_Q6_K] = "q6_K",
  3016. [GGML_TYPE_Q8_K] = "q8_K",
  3017. [GGML_TYPE_I8] = "i8",
  3018. [GGML_TYPE_I16] = "i16",
  3019. [GGML_TYPE_I32] = "i32",
  3020. };
  3021. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3022. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3023. [GGML_TYPE_F32] = false,
  3024. [GGML_TYPE_F16] = false,
  3025. [GGML_TYPE_Q4_0] = true,
  3026. [GGML_TYPE_Q4_1] = true,
  3027. [GGML_TYPE_Q5_0] = true,
  3028. [GGML_TYPE_Q5_1] = true,
  3029. [GGML_TYPE_Q8_0] = true,
  3030. [GGML_TYPE_Q8_1] = true,
  3031. [GGML_TYPE_Q2_K] = true,
  3032. [GGML_TYPE_Q3_K] = true,
  3033. [GGML_TYPE_Q4_K] = true,
  3034. [GGML_TYPE_Q5_K] = true,
  3035. [GGML_TYPE_Q6_K] = true,
  3036. [GGML_TYPE_Q8_K] = true,
  3037. [GGML_TYPE_I8] = false,
  3038. [GGML_TYPE_I16] = false,
  3039. [GGML_TYPE_I32] = false,
  3040. };
  3041. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3042. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3043. "NONE",
  3044. "DUP",
  3045. "ADD",
  3046. "ADD1",
  3047. "ACC",
  3048. "SUB",
  3049. "MUL",
  3050. "DIV",
  3051. "SQR",
  3052. "SQRT",
  3053. "LOG",
  3054. "SUM",
  3055. "SUM_ROWS",
  3056. "MEAN",
  3057. "ARGMAX",
  3058. "REPEAT",
  3059. "REPEAT_BACK",
  3060. "ABS",
  3061. "SGN",
  3062. "NEG",
  3063. "STEP",
  3064. "TANH",
  3065. "ELU",
  3066. "RELU",
  3067. "GELU",
  3068. "GELU_QUICK",
  3069. "SILU",
  3070. "SILU_BACK",
  3071. "NORM",
  3072. "RMS_NORM",
  3073. "RMS_NORM_BACK",
  3074. "MUL_MAT",
  3075. "OUT_PROD",
  3076. "SCALE",
  3077. "SET",
  3078. "CPY",
  3079. "CONT",
  3080. "RESHAPE",
  3081. "VIEW",
  3082. "PERMUTE",
  3083. "TRANSPOSE",
  3084. "GET_ROWS",
  3085. "GET_ROWS_BACK",
  3086. "DIAG",
  3087. "DIAG_MASK_INF",
  3088. "DIAG_MASK_ZERO",
  3089. "SOFT_MAX",
  3090. "SOFT_MAX_BACK",
  3091. "ROPE",
  3092. "ROPE_BACK",
  3093. "ALIBI",
  3094. "CLAMP",
  3095. "CONV_1D",
  3096. "CONV_2D",
  3097. "FLASH_ATTN",
  3098. "FLASH_FF",
  3099. "FLASH_ATTN_BACK",
  3100. "WIN_PART",
  3101. "WIN_UNPART",
  3102. "MAP_UNARY",
  3103. "MAP_BINARY",
  3104. "MAP_CUSTOM1",
  3105. "MAP_CUSTOM2",
  3106. "MAP_CUSTOM3",
  3107. "CROSS_ENTROPY_LOSS",
  3108. "CROSS_ENTROPY_LOSS_BACK",
  3109. };
  3110. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3111. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3112. "none",
  3113. "x",
  3114. "x+y",
  3115. "x+y",
  3116. "view(x,nb,offset)+=y->x",
  3117. "x-y",
  3118. "x*y",
  3119. "x/y",
  3120. "x^2",
  3121. "√x",
  3122. "log(x)",
  3123. "Σx",
  3124. "Σx_k",
  3125. "Σx/n",
  3126. "argmax(x)",
  3127. "repeat(x)",
  3128. "repeat_back(x)",
  3129. "abs(x)",
  3130. "sgn(x)",
  3131. "-x",
  3132. "step(x)",
  3133. "tanh(x)",
  3134. "elu(x)",
  3135. "relu(x)",
  3136. "gelu(x)",
  3137. "gelu_quick(x)",
  3138. "silu(x)",
  3139. "silu_back(x)",
  3140. "norm(x)",
  3141. "rms_norm(x)",
  3142. "rms_norm_back(x)",
  3143. "X*Y",
  3144. "X*Y",
  3145. "x*v",
  3146. "y-\\>view(x)",
  3147. "x-\\>y",
  3148. "cont(x)",
  3149. "reshape(x)",
  3150. "view(x)",
  3151. "permute(x)",
  3152. "transpose(x)",
  3153. "get_rows(x)",
  3154. "get_rows_back(x)",
  3155. "diag(x)",
  3156. "diag_mask_inf(x)",
  3157. "diag_mask_zero(x)",
  3158. "soft_max(x)",
  3159. "soft_max_back(x)",
  3160. "rope(x)",
  3161. "rope_back(x)",
  3162. "alibi(x)",
  3163. "clamp(x)",
  3164. "conv_1d(x)",
  3165. "conv_2d(x)",
  3166. "flash_attn(x)",
  3167. "flash_ff(x)",
  3168. "flash_attn_back(x)",
  3169. "win_part(x)",
  3170. "win_unpart(x)",
  3171. "f(x)",
  3172. "f(x,y)",
  3173. "custom(x)",
  3174. "custom(x,y)",
  3175. "custom(x,y,z)",
  3176. "cross_entropy_loss(x,y)",
  3177. "cross_entropy_loss_back(x,y)",
  3178. };
  3179. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3180. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3181. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3182. // WARN:
  3183. // Mis-confguration can lead to problem that's hard to reason about:
  3184. // * At best it crash or talks nosense.
  3185. // * At worst it talks slightly difference but hard to perceive.
  3186. //
  3187. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3188. // Take care about compile options (e.g., GGML_USE_xxx).
  3189. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3190. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3191. static void ggml_setup_op_has_task_pass(void) {
  3192. { // INIT
  3193. bool * p = GGML_OP_HAS_INIT;
  3194. p[GGML_OP_ACC ] = true;
  3195. p[GGML_OP_MUL_MAT ] = true;
  3196. p[GGML_OP_OUT_PROD ] = true;
  3197. p[GGML_OP_SET ] = true;
  3198. p[GGML_OP_GET_ROWS_BACK ] = true;
  3199. p[GGML_OP_DIAG_MASK_INF ] = true;
  3200. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3201. p[GGML_OP_CONV_1D ] = true;
  3202. p[GGML_OP_CONV_2D ] = true;
  3203. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3204. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3205. }
  3206. { // FINALIZE
  3207. bool * p = GGML_OP_HAS_FINALIZE;
  3208. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3209. }
  3210. }
  3211. //
  3212. // ggml context
  3213. //
  3214. struct ggml_context {
  3215. size_t mem_size;
  3216. void * mem_buffer;
  3217. bool mem_buffer_owned;
  3218. bool no_alloc;
  3219. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3220. int n_objects;
  3221. struct ggml_object * objects_begin;
  3222. struct ggml_object * objects_end;
  3223. struct ggml_scratch scratch;
  3224. struct ggml_scratch scratch_save;
  3225. };
  3226. struct ggml_context_container {
  3227. bool used;
  3228. struct ggml_context context;
  3229. };
  3230. //
  3231. // NUMA support
  3232. //
  3233. #define GGML_NUMA_MAX_NODES 8
  3234. #define GGML_NUMA_MAX_CPUS 512
  3235. struct ggml_numa_node {
  3236. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3237. uint32_t n_cpus;
  3238. };
  3239. struct ggml_numa_nodes {
  3240. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3241. uint32_t n_nodes;
  3242. uint32_t total_cpus; // hardware threads on system
  3243. };
  3244. //
  3245. // ggml state
  3246. //
  3247. struct ggml_state {
  3248. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3249. struct ggml_numa_nodes numa;
  3250. };
  3251. // global state
  3252. static struct ggml_state g_state;
  3253. static atomic_int g_state_barrier = 0;
  3254. // barrier via spin lock
  3255. inline static void ggml_critical_section_start(void) {
  3256. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3257. while (processing > 0) {
  3258. // wait for other threads to finish
  3259. atomic_fetch_sub(&g_state_barrier, 1);
  3260. sched_yield(); // TODO: reconsider this
  3261. processing = atomic_fetch_add(&g_state_barrier, 1);
  3262. }
  3263. }
  3264. // TODO: make this somehow automatically executed
  3265. // some sort of "sentry" mechanism
  3266. inline static void ggml_critical_section_end(void) {
  3267. atomic_fetch_sub(&g_state_barrier, 1);
  3268. }
  3269. void ggml_numa_init(void) {
  3270. if (g_state.numa.n_nodes > 0) {
  3271. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3272. return;
  3273. }
  3274. #ifdef __linux__
  3275. struct stat st;
  3276. char path[256];
  3277. int rv;
  3278. // enumerate nodes
  3279. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3280. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3281. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3282. if (stat(path, &st) != 0) { break; }
  3283. ++g_state.numa.n_nodes;
  3284. }
  3285. // enumerate CPUs
  3286. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3287. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3288. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3289. if (stat(path, &st) != 0) { break; }
  3290. ++g_state.numa.total_cpus;
  3291. }
  3292. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3293. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3294. g_state.numa.n_nodes = 0;
  3295. return;
  3296. }
  3297. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3298. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3299. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3300. node->n_cpus = 0;
  3301. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3302. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3303. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3304. if (stat(path, &st) == 0) {
  3305. node->cpus[node->n_cpus++] = c;
  3306. GGML_PRINT_DEBUG(" %u", c);
  3307. }
  3308. }
  3309. GGML_PRINT_DEBUG("\n");
  3310. }
  3311. if (ggml_is_numa()) {
  3312. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3313. if (fptr != NULL) {
  3314. char buf[42];
  3315. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3316. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3317. }
  3318. fclose(fptr);
  3319. }
  3320. }
  3321. #else
  3322. // TODO
  3323. #endif
  3324. }
  3325. bool ggml_is_numa(void) {
  3326. return g_state.numa.n_nodes > 1;
  3327. }
  3328. ////////////////////////////////////////////////////////////////////////////////
  3329. void ggml_print_object(const struct ggml_object * obj) {
  3330. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3331. obj->offs, obj->size, (const void *) obj->next);
  3332. }
  3333. void ggml_print_objects(const struct ggml_context * ctx) {
  3334. struct ggml_object * obj = ctx->objects_begin;
  3335. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3336. while (obj != NULL) {
  3337. ggml_print_object(obj);
  3338. obj = obj->next;
  3339. }
  3340. GGML_PRINT("%s: --- end ---\n", __func__);
  3341. }
  3342. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3343. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3344. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3345. }
  3346. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3349. }
  3350. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. // this should handle cases where the tensor is not contiguous in memory
  3353. // probaby just:
  3354. //
  3355. // return tensor->ne[3]*tensor->nb[3]
  3356. //
  3357. // is enough, but just in case, adding the second part
  3358. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3359. }
  3360. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3361. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3362. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3363. }
  3364. int ggml_blck_size(enum ggml_type type) {
  3365. return GGML_BLCK_SIZE[type];
  3366. }
  3367. size_t ggml_type_size(enum ggml_type type) {
  3368. return GGML_TYPE_SIZE[type];
  3369. }
  3370. float ggml_type_sizef(enum ggml_type type) {
  3371. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3372. }
  3373. const char * ggml_type_name(enum ggml_type type) {
  3374. return GGML_TYPE_NAME[type];
  3375. }
  3376. const char * ggml_op_name(enum ggml_op op) {
  3377. return GGML_OP_NAME[op];
  3378. }
  3379. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3380. return GGML_TYPE_SIZE[tensor->type];
  3381. }
  3382. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3383. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3384. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3385. }
  3386. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3389. }
  3390. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3391. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3392. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3393. }
  3394. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3395. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3396. return
  3397. (t0->ne[0] == t1->ne[0]) &&
  3398. (t0->ne[2] == t1->ne[2]) &&
  3399. (t0->ne[3] == t1->ne[3]);
  3400. }
  3401. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3402. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3403. return
  3404. (t0->ne[1] == t1->ne[1]) &&
  3405. (t0->ne[2] == t1->ne[2]) &&
  3406. (t0->ne[3] == t1->ne[3]);
  3407. }
  3408. bool ggml_is_quantized(enum ggml_type type) {
  3409. return GGML_IS_QUANTIZED[type];
  3410. }
  3411. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3412. enum ggml_type wtype = GGML_TYPE_COUNT;
  3413. switch (ftype) {
  3414. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3415. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3416. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3417. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3418. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3419. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3420. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3421. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3422. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3423. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3424. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3425. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3426. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3427. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3428. }
  3429. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3430. return wtype;
  3431. }
  3432. size_t ggml_tensor_overhead(void) {
  3433. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3434. }
  3435. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3436. return tensor->nb[0] > tensor->nb[1];
  3437. }
  3438. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3439. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3440. return
  3441. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3442. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3443. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3444. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3445. }
  3446. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3447. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3448. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3449. }
  3450. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return
  3453. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3454. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3455. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3456. }
  3457. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3458. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3459. return
  3460. (t0->ne[0] == t1->ne[0] ) &&
  3461. (t0->ne[1] == t1->ne[1] ) &&
  3462. (t0->ne[2] == t1->ne[2] ) &&
  3463. (t0->ne[3] == t1->ne[3] );
  3464. }
  3465. // check if t1 can be represented as a repeatition of t0
  3466. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3467. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3468. return
  3469. (t1->ne[0]%t0->ne[0] == 0) &&
  3470. (t1->ne[1]%t0->ne[1] == 0) &&
  3471. (t1->ne[2]%t0->ne[2] == 0) &&
  3472. (t1->ne[3]%t0->ne[3] == 0);
  3473. }
  3474. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3475. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3476. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3477. }
  3478. static inline int ggml_up32(int n) {
  3479. return (n + 31) & ~31;
  3480. }
  3481. //static inline int ggml_up64(int n) {
  3482. // return (n + 63) & ~63;
  3483. //}
  3484. static inline int ggml_up(int n, int m) {
  3485. // assert m is a power of 2
  3486. GGML_ASSERT((m & (m - 1)) == 0);
  3487. return (n + m - 1) & ~(m - 1);
  3488. }
  3489. // assert that pointer is aligned to GGML_MEM_ALIGN
  3490. #define ggml_assert_aligned(ptr) \
  3491. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3492. ////////////////////////////////////////////////////////////////////////////////
  3493. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3494. // make this function thread safe
  3495. ggml_critical_section_start();
  3496. static bool is_first_call = true;
  3497. if (is_first_call) {
  3498. // initialize time system (required on Windows)
  3499. ggml_time_init();
  3500. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3501. {
  3502. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3503. ggml_fp16_t ii;
  3504. for (int i = 0; i < (1 << 16); ++i) {
  3505. uint16_t ui = i;
  3506. memcpy(&ii, &ui, sizeof(ii));
  3507. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3508. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3509. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3510. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3511. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3512. }
  3513. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3514. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3515. }
  3516. // initialize g_state
  3517. {
  3518. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3519. g_state = (struct ggml_state) {
  3520. /*.contexts =*/ { { 0 } },
  3521. /*.numa =*/ {
  3522. .n_nodes = 0,
  3523. .total_cpus = 0,
  3524. },
  3525. };
  3526. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3527. g_state.contexts[i].used = false;
  3528. }
  3529. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3530. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3531. }
  3532. #if defined(GGML_USE_CUBLAS)
  3533. ggml_init_cublas();
  3534. #elif defined(GGML_USE_CLBLAST)
  3535. ggml_cl_init();
  3536. #endif
  3537. ggml_setup_op_has_task_pass();
  3538. is_first_call = false;
  3539. }
  3540. // find non-used context in g_state
  3541. struct ggml_context * ctx = NULL;
  3542. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3543. if (!g_state.contexts[i].used) {
  3544. g_state.contexts[i].used = true;
  3545. ctx = &g_state.contexts[i].context;
  3546. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3547. break;
  3548. }
  3549. }
  3550. if (ctx == NULL) {
  3551. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3552. ggml_critical_section_end();
  3553. return NULL;
  3554. }
  3555. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3556. *ctx = (struct ggml_context) {
  3557. /*.mem_size =*/ mem_size,
  3558. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3559. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3560. /*.no_alloc =*/ params.no_alloc,
  3561. /*.no_alloc_save =*/ params.no_alloc,
  3562. /*.n_objects =*/ 0,
  3563. /*.objects_begin =*/ NULL,
  3564. /*.objects_end =*/ NULL,
  3565. /*.scratch =*/ { 0, 0, NULL, },
  3566. /*.scratch_save =*/ { 0, 0, NULL, },
  3567. };
  3568. GGML_ASSERT(ctx->mem_buffer != NULL);
  3569. ggml_assert_aligned(ctx->mem_buffer);
  3570. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3571. ggml_critical_section_end();
  3572. return ctx;
  3573. }
  3574. void ggml_free(struct ggml_context * ctx) {
  3575. // make this function thread safe
  3576. ggml_critical_section_start();
  3577. bool found = false;
  3578. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3579. if (&g_state.contexts[i].context == ctx) {
  3580. g_state.contexts[i].used = false;
  3581. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3582. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3583. if (ctx->mem_buffer_owned) {
  3584. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3585. }
  3586. found = true;
  3587. break;
  3588. }
  3589. }
  3590. if (!found) {
  3591. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3592. }
  3593. ggml_critical_section_end();
  3594. }
  3595. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3596. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3597. }
  3598. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3599. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3600. ctx->scratch = scratch;
  3601. return result;
  3602. }
  3603. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3604. ctx->no_alloc = no_alloc;
  3605. }
  3606. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3607. return ctx->mem_buffer;
  3608. }
  3609. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3610. return ctx->mem_size;
  3611. }
  3612. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3613. size_t max_size = 0;
  3614. struct ggml_object * obj = ctx->objects_begin;
  3615. while (obj != NULL) {
  3616. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3617. const size_t size = ggml_nbytes(tensor);
  3618. if (max_size < size) {
  3619. max_size = size;
  3620. }
  3621. obj = obj->next;
  3622. }
  3623. return max_size;
  3624. }
  3625. // IMPORTANT:
  3626. // when creating "opt" tensors, always save and load the scratch buffer
  3627. // this is an error prone process, but it is necessary to support inplace
  3628. // operators when using scratch buffers
  3629. // TODO: implement a better way
  3630. void ggml_scratch_save(struct ggml_context * ctx) {
  3631. // this is needed to allow opt tensors to store their data
  3632. // TODO: again, need to find a better way
  3633. ctx->no_alloc_save = ctx->no_alloc;
  3634. ctx->no_alloc = false;
  3635. ctx->scratch_save = ctx->scratch;
  3636. ctx->scratch.data = NULL;
  3637. }
  3638. void ggml_scratch_load(struct ggml_context * ctx) {
  3639. ctx->no_alloc = ctx->no_alloc_save;
  3640. ctx->scratch = ctx->scratch_save;
  3641. }
  3642. ////////////////////////////////////////////////////////////////////////////////
  3643. struct ggml_tensor * ggml_new_tensor_impl(
  3644. struct ggml_context * ctx,
  3645. enum ggml_type type,
  3646. int n_dims,
  3647. const int64_t* ne,
  3648. void* data) {
  3649. // always insert objects at the end of the context's memory pool
  3650. struct ggml_object * obj_cur = ctx->objects_end;
  3651. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3652. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3653. const size_t cur_end = cur_offs + cur_size;
  3654. size_t size_needed = 0;
  3655. if (data == NULL && !ctx->no_alloc) {
  3656. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3657. for (int i = 1; i < n_dims; i++) {
  3658. size_needed *= ne[i];
  3659. }
  3660. // align to GGML_MEM_ALIGN
  3661. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3662. }
  3663. char * const mem_buffer = ctx->mem_buffer;
  3664. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3665. if (ctx->scratch.data == NULL || data != NULL) {
  3666. size_needed += GGML_TENSOR_SIZE;
  3667. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3668. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3669. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3670. assert(false);
  3671. return NULL;
  3672. }
  3673. *obj_new = (struct ggml_object) {
  3674. .offs = cur_end + GGML_OBJECT_SIZE,
  3675. .size = size_needed,
  3676. .next = NULL,
  3677. };
  3678. } else {
  3679. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3680. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3681. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3682. assert(false);
  3683. return NULL;
  3684. }
  3685. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3686. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3687. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3688. assert(false);
  3689. return NULL;
  3690. }
  3691. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3692. *obj_new = (struct ggml_object) {
  3693. .offs = cur_end + GGML_OBJECT_SIZE,
  3694. .size = GGML_TENSOR_SIZE,
  3695. .next = NULL,
  3696. };
  3697. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3698. ctx->scratch.offs += size_needed;
  3699. }
  3700. if (obj_cur != NULL) {
  3701. obj_cur->next = obj_new;
  3702. } else {
  3703. // this is the first object in this context
  3704. ctx->objects_begin = obj_new;
  3705. }
  3706. ctx->objects_end = obj_new;
  3707. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3708. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3709. ggml_assert_aligned(result);
  3710. *result = (struct ggml_tensor) {
  3711. /*.type =*/ type,
  3712. /*.backend =*/ GGML_BACKEND_CPU,
  3713. /*.n_dims =*/ n_dims,
  3714. /*.ne =*/ { 1, 1, 1, 1 },
  3715. /*.nb =*/ { 0, 0, 0, 0 },
  3716. /*.op =*/ GGML_OP_NONE,
  3717. /*.is_param =*/ false,
  3718. /*.grad =*/ NULL,
  3719. /*.src0 =*/ NULL,
  3720. /*.src1 =*/ NULL,
  3721. /*.opt =*/ { NULL },
  3722. /*.n_tasks =*/ 0,
  3723. /*.perf_runs =*/ 0,
  3724. /*.perf_cycles =*/ 0,
  3725. /*.perf_time_us =*/ 0,
  3726. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3727. /*.name =*/ { 0 },
  3728. /*.extra =*/ NULL,
  3729. /*.pad =*/ { 0 },
  3730. };
  3731. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3732. //ggml_assert_aligned(result->data);
  3733. for (int i = 0; i < n_dims; i++) {
  3734. result->ne[i] = ne[i];
  3735. }
  3736. result->nb[0] = GGML_TYPE_SIZE[type];
  3737. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3738. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3739. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3740. }
  3741. ctx->n_objects++;
  3742. return result;
  3743. }
  3744. struct ggml_tensor * ggml_new_tensor(
  3745. struct ggml_context * ctx,
  3746. enum ggml_type type,
  3747. int n_dims,
  3748. const int64_t * ne) {
  3749. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3750. }
  3751. struct ggml_tensor * ggml_new_tensor_1d(
  3752. struct ggml_context * ctx,
  3753. enum ggml_type type,
  3754. int64_t ne0) {
  3755. return ggml_new_tensor(ctx, type, 1, &ne0);
  3756. }
  3757. struct ggml_tensor * ggml_new_tensor_2d(
  3758. struct ggml_context * ctx,
  3759. enum ggml_type type,
  3760. int64_t ne0,
  3761. int64_t ne1) {
  3762. const int64_t ne[2] = { ne0, ne1 };
  3763. return ggml_new_tensor(ctx, type, 2, ne);
  3764. }
  3765. struct ggml_tensor * ggml_new_tensor_3d(
  3766. struct ggml_context * ctx,
  3767. enum ggml_type type,
  3768. int64_t ne0,
  3769. int64_t ne1,
  3770. int64_t ne2) {
  3771. const int64_t ne[3] = { ne0, ne1, ne2 };
  3772. return ggml_new_tensor(ctx, type, 3, ne);
  3773. }
  3774. struct ggml_tensor * ggml_new_tensor_4d(
  3775. struct ggml_context * ctx,
  3776. enum ggml_type type,
  3777. int64_t ne0,
  3778. int64_t ne1,
  3779. int64_t ne2,
  3780. int64_t ne3) {
  3781. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3782. return ggml_new_tensor(ctx, type, 4, ne);
  3783. }
  3784. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3785. ggml_scratch_save(ctx);
  3786. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3787. ggml_scratch_load(ctx);
  3788. ggml_set_i32(result, value);
  3789. return result;
  3790. }
  3791. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3792. ggml_scratch_save(ctx);
  3793. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3794. ggml_scratch_load(ctx);
  3795. ggml_set_f32(result, value);
  3796. return result;
  3797. }
  3798. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3799. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3800. }
  3801. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3802. memset(tensor->data, 0, ggml_nbytes(tensor));
  3803. return tensor;
  3804. }
  3805. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3806. const int n = ggml_nrows(tensor);
  3807. const int nc = tensor->ne[0];
  3808. const size_t n1 = tensor->nb[1];
  3809. char * const data = tensor->data;
  3810. switch (tensor->type) {
  3811. case GGML_TYPE_I8:
  3812. {
  3813. assert(tensor->nb[0] == sizeof(int8_t));
  3814. for (int i = 0; i < n; i++) {
  3815. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3816. }
  3817. } break;
  3818. case GGML_TYPE_I16:
  3819. {
  3820. assert(tensor->nb[0] == sizeof(int16_t));
  3821. for (int i = 0; i < n; i++) {
  3822. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3823. }
  3824. } break;
  3825. case GGML_TYPE_I32:
  3826. {
  3827. assert(tensor->nb[0] == sizeof(int32_t));
  3828. for (int i = 0; i < n; i++) {
  3829. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3830. }
  3831. } break;
  3832. case GGML_TYPE_F16:
  3833. {
  3834. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3835. for (int i = 0; i < n; i++) {
  3836. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3837. }
  3838. } break;
  3839. case GGML_TYPE_F32:
  3840. {
  3841. assert(tensor->nb[0] == sizeof(float));
  3842. for (int i = 0; i < n; i++) {
  3843. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3844. }
  3845. } break;
  3846. default:
  3847. {
  3848. GGML_ASSERT(false);
  3849. } break;
  3850. }
  3851. return tensor;
  3852. }
  3853. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3854. const int n = ggml_nrows(tensor);
  3855. const int nc = tensor->ne[0];
  3856. const size_t n1 = tensor->nb[1];
  3857. char * const data = tensor->data;
  3858. switch (tensor->type) {
  3859. case GGML_TYPE_I8:
  3860. {
  3861. assert(tensor->nb[0] == sizeof(int8_t));
  3862. for (int i = 0; i < n; i++) {
  3863. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3864. }
  3865. } break;
  3866. case GGML_TYPE_I16:
  3867. {
  3868. assert(tensor->nb[0] == sizeof(int16_t));
  3869. for (int i = 0; i < n; i++) {
  3870. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3871. }
  3872. } break;
  3873. case GGML_TYPE_I32:
  3874. {
  3875. assert(tensor->nb[0] == sizeof(int32_t));
  3876. for (int i = 0; i < n; i++) {
  3877. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3878. }
  3879. } break;
  3880. case GGML_TYPE_F16:
  3881. {
  3882. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3883. for (int i = 0; i < n; i++) {
  3884. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3885. }
  3886. } break;
  3887. case GGML_TYPE_F32:
  3888. {
  3889. assert(tensor->nb[0] == sizeof(float));
  3890. for (int i = 0; i < n; i++) {
  3891. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3892. }
  3893. } break;
  3894. default:
  3895. {
  3896. GGML_ASSERT(false);
  3897. } break;
  3898. }
  3899. return tensor;
  3900. }
  3901. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3902. switch (tensor->type) {
  3903. case GGML_TYPE_I8:
  3904. {
  3905. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3906. return ((int8_t *)(tensor->data))[i];
  3907. } break;
  3908. case GGML_TYPE_I16:
  3909. {
  3910. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3911. return ((int16_t *)(tensor->data))[i];
  3912. } break;
  3913. case GGML_TYPE_I32:
  3914. {
  3915. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3916. return ((int32_t *)(tensor->data))[i];
  3917. } break;
  3918. case GGML_TYPE_F16:
  3919. {
  3920. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3921. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3922. } break;
  3923. case GGML_TYPE_F32:
  3924. {
  3925. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3926. return ((float *)(tensor->data))[i];
  3927. } break;
  3928. default:
  3929. {
  3930. GGML_ASSERT(false);
  3931. } break;
  3932. }
  3933. return 0.0f;
  3934. }
  3935. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3936. switch (tensor->type) {
  3937. case GGML_TYPE_I8:
  3938. {
  3939. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3940. ((int8_t *)(tensor->data))[i] = value;
  3941. } break;
  3942. case GGML_TYPE_I16:
  3943. {
  3944. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3945. ((int16_t *)(tensor->data))[i] = value;
  3946. } break;
  3947. case GGML_TYPE_I32:
  3948. {
  3949. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3950. ((int32_t *)(tensor->data))[i] = value;
  3951. } break;
  3952. case GGML_TYPE_F16:
  3953. {
  3954. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3955. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3956. } break;
  3957. case GGML_TYPE_F32:
  3958. {
  3959. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3960. ((float *)(tensor->data))[i] = value;
  3961. } break;
  3962. default:
  3963. {
  3964. GGML_ASSERT(false);
  3965. } break;
  3966. }
  3967. }
  3968. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3969. switch (tensor->type) {
  3970. case GGML_TYPE_I8:
  3971. {
  3972. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3973. return ((int8_t *)(tensor->data))[i];
  3974. } break;
  3975. case GGML_TYPE_I16:
  3976. {
  3977. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3978. return ((int16_t *)(tensor->data))[i];
  3979. } break;
  3980. case GGML_TYPE_I32:
  3981. {
  3982. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3983. return ((int32_t *)(tensor->data))[i];
  3984. } break;
  3985. case GGML_TYPE_F16:
  3986. {
  3987. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3988. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3989. } break;
  3990. case GGML_TYPE_F32:
  3991. {
  3992. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3993. return ((float *)(tensor->data))[i];
  3994. } break;
  3995. default:
  3996. {
  3997. GGML_ASSERT(false);
  3998. } break;
  3999. }
  4000. return 0.0f;
  4001. }
  4002. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4003. switch (tensor->type) {
  4004. case GGML_TYPE_I8:
  4005. {
  4006. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4007. ((int8_t *)(tensor->data))[i] = value;
  4008. } break;
  4009. case GGML_TYPE_I16:
  4010. {
  4011. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4012. ((int16_t *)(tensor->data))[i] = value;
  4013. } break;
  4014. case GGML_TYPE_I32:
  4015. {
  4016. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4017. ((int32_t *)(tensor->data))[i] = value;
  4018. } break;
  4019. case GGML_TYPE_F16:
  4020. {
  4021. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4022. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4023. } break;
  4024. case GGML_TYPE_F32:
  4025. {
  4026. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4027. ((float *)(tensor->data))[i] = value;
  4028. } break;
  4029. default:
  4030. {
  4031. GGML_ASSERT(false);
  4032. } break;
  4033. }
  4034. }
  4035. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4036. return tensor->data;
  4037. }
  4038. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4039. assert(tensor->type == GGML_TYPE_F32);
  4040. return (float *)(tensor->data);
  4041. }
  4042. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4043. return tensor->name;
  4044. }
  4045. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4046. strncpy(tensor->name, name, sizeof(tensor->name));
  4047. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4048. return tensor;
  4049. }
  4050. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4051. va_list args;
  4052. va_start(args, fmt);
  4053. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4054. va_end(args);
  4055. return tensor;
  4056. }
  4057. struct ggml_tensor * ggml_view_tensor(
  4058. struct ggml_context * ctx,
  4059. const struct ggml_tensor * src) {
  4060. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4061. ggml_format_name(result, "%s (view)", src->name);
  4062. result->nb[0] = src->nb[0];
  4063. result->nb[1] = src->nb[1];
  4064. result->nb[2] = src->nb[2];
  4065. result->nb[3] = src->nb[3];
  4066. return result;
  4067. }
  4068. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4069. struct ggml_object * obj = ctx->objects_begin;
  4070. char * const mem_buffer = ctx->mem_buffer;
  4071. while (obj != NULL) {
  4072. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4073. if (strcmp(cur->name, name) == 0) {
  4074. return cur;
  4075. }
  4076. obj = obj->next;
  4077. }
  4078. return NULL;
  4079. }
  4080. ////////////////////////////////////////////////////////////////////////////////
  4081. // ggml_dup
  4082. struct ggml_tensor * ggml_dup_impl(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a,
  4085. bool inplace) {
  4086. bool is_node = false;
  4087. if (!inplace && (a->grad)) {
  4088. is_node = true;
  4089. }
  4090. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4091. result->op = GGML_OP_DUP;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src0 = a;
  4094. result->src1 = NULL;
  4095. return result;
  4096. }
  4097. struct ggml_tensor * ggml_dup(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a) {
  4100. return ggml_dup_impl(ctx, a, false);
  4101. }
  4102. struct ggml_tensor * ggml_dup_inplace(
  4103. struct ggml_context * ctx,
  4104. struct ggml_tensor * a) {
  4105. return ggml_dup_impl(ctx, a, true);
  4106. }
  4107. // ggml_add
  4108. struct ggml_tensor * ggml_add_impl(
  4109. struct ggml_context * ctx,
  4110. struct ggml_tensor * a,
  4111. struct ggml_tensor * b,
  4112. bool inplace) {
  4113. GGML_ASSERT(ggml_are_same_shape(a, b));
  4114. bool is_node = false;
  4115. if (a->grad || b->grad) {
  4116. is_node = true;
  4117. }
  4118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4119. result->op = GGML_OP_ADD;
  4120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4121. result->src0 = a;
  4122. result->src1 = b;
  4123. return result;
  4124. }
  4125. struct ggml_tensor * ggml_add(
  4126. struct ggml_context * ctx,
  4127. struct ggml_tensor * a,
  4128. struct ggml_tensor * b) {
  4129. return ggml_add_impl(ctx, a, b, false);
  4130. }
  4131. struct ggml_tensor * ggml_add_inplace(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b) {
  4135. return ggml_add_impl(ctx, a, b, true);
  4136. }
  4137. // ggml_add1
  4138. struct ggml_tensor * ggml_add1_impl(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. struct ggml_tensor * b,
  4142. bool inplace) {
  4143. GGML_ASSERT(ggml_is_scalar(b));
  4144. GGML_ASSERT(ggml_is_padded_1d(a));
  4145. bool is_node = false;
  4146. if (a->grad || b->grad) {
  4147. is_node = true;
  4148. }
  4149. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4150. result->op = GGML_OP_ADD1;
  4151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4152. result->src0 = a;
  4153. result->src1 = b;
  4154. return result;
  4155. }
  4156. struct ggml_tensor * ggml_add1(
  4157. struct ggml_context * ctx,
  4158. struct ggml_tensor * a,
  4159. struct ggml_tensor * b) {
  4160. return ggml_add1_impl(ctx, a, b, false);
  4161. }
  4162. struct ggml_tensor * ggml_add1_inplace(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b) {
  4166. return ggml_add1_impl(ctx, a, b, true);
  4167. }
  4168. // ggml_acc
  4169. struct ggml_tensor * ggml_acc_impl(
  4170. struct ggml_context * ctx,
  4171. struct ggml_tensor * a,
  4172. struct ggml_tensor * b,
  4173. size_t nb1,
  4174. size_t nb2,
  4175. size_t nb3,
  4176. size_t offset,
  4177. bool inplace) {
  4178. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4179. GGML_ASSERT(ggml_is_contiguous(a));
  4180. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4181. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4182. bool is_node = false;
  4183. if (!inplace && (a->grad || b->grad)) {
  4184. is_node = true;
  4185. }
  4186. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4187. ggml_scratch_save(ctx);
  4188. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4189. ((int32_t *) c->data)[0] = nb1;
  4190. ((int32_t *) c->data)[1] = nb2;
  4191. ((int32_t *) c->data)[2] = nb3;
  4192. ((int32_t *) c->data)[3] = offset;
  4193. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4194. ggml_scratch_load(ctx);
  4195. result->op = GGML_OP_ACC;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src0 = a;
  4198. result->src1 = b;
  4199. result->opt[0] = c;
  4200. return result;
  4201. }
  4202. struct ggml_tensor * ggml_acc(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. struct ggml_tensor * b,
  4206. size_t nb1,
  4207. size_t nb2,
  4208. size_t nb3,
  4209. size_t offset) {
  4210. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4211. }
  4212. struct ggml_tensor * ggml_acc_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a,
  4215. struct ggml_tensor * b,
  4216. size_t nb1,
  4217. size_t nb2,
  4218. size_t nb3,
  4219. size_t offset) {
  4220. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4221. }
  4222. // ggml_sub
  4223. struct ggml_tensor * ggml_sub_impl(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a,
  4226. struct ggml_tensor * b,
  4227. bool inplace) {
  4228. GGML_ASSERT(ggml_are_same_shape(a, b));
  4229. bool is_node = false;
  4230. if (!inplace && (a->grad || b->grad)) {
  4231. is_node = true;
  4232. }
  4233. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4234. result->op = GGML_OP_SUB;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src0 = a;
  4237. result->src1 = b;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_sub(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b) {
  4244. return ggml_sub_impl(ctx, a, b, false);
  4245. }
  4246. struct ggml_tensor * ggml_sub_inplace(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. struct ggml_tensor * b) {
  4250. return ggml_sub_impl(ctx, a, b, true);
  4251. }
  4252. // ggml_mul
  4253. struct ggml_tensor * ggml_mul_impl(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b,
  4257. bool inplace) {
  4258. // TODO: support less-strict constraint
  4259. // GGML_ASSERT(ggml_can_repeat(b, a));
  4260. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4261. bool is_node = false;
  4262. if (!inplace && (a->grad || b->grad)) {
  4263. // TODO: support backward pass for broadcasting
  4264. GGML_ASSERT(ggml_are_same_shape(a, b));
  4265. is_node = true;
  4266. }
  4267. if (inplace) {
  4268. GGML_ASSERT(is_node == false);
  4269. }
  4270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4271. result->op = GGML_OP_MUL;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src0 = a;
  4274. result->src1 = b;
  4275. return result;
  4276. }
  4277. struct ggml_tensor * ggml_mul(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. struct ggml_tensor * b) {
  4281. return ggml_mul_impl(ctx, a, b, false);
  4282. }
  4283. struct ggml_tensor * ggml_mul_inplace(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. struct ggml_tensor * b) {
  4287. return ggml_mul_impl(ctx, a, b, true);
  4288. }
  4289. // ggml_div
  4290. struct ggml_tensor * ggml_div_impl(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b,
  4294. bool inplace) {
  4295. GGML_ASSERT(ggml_are_same_shape(a, b));
  4296. bool is_node = false;
  4297. if (!inplace && (a->grad || b->grad)) {
  4298. is_node = true;
  4299. }
  4300. if (inplace) {
  4301. GGML_ASSERT(is_node == false);
  4302. }
  4303. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4304. result->op = GGML_OP_DIV;
  4305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4306. result->src0 = a;
  4307. result->src1 = b;
  4308. return result;
  4309. }
  4310. struct ggml_tensor * ggml_div(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. struct ggml_tensor * b) {
  4314. return ggml_div_impl(ctx, a, b, false);
  4315. }
  4316. struct ggml_tensor * ggml_div_inplace(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. return ggml_div_impl(ctx, a, b, true);
  4321. }
  4322. // ggml_sqr
  4323. struct ggml_tensor * ggml_sqr_impl(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. bool inplace) {
  4327. bool is_node = false;
  4328. if (!inplace && (a->grad)) {
  4329. is_node = true;
  4330. }
  4331. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4332. result->op = GGML_OP_SQR;
  4333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4334. result->src0 = a;
  4335. result->src1 = NULL;
  4336. return result;
  4337. }
  4338. struct ggml_tensor * ggml_sqr(
  4339. struct ggml_context * ctx,
  4340. struct ggml_tensor * a) {
  4341. return ggml_sqr_impl(ctx, a, false);
  4342. }
  4343. struct ggml_tensor * ggml_sqr_inplace(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a) {
  4346. return ggml_sqr_impl(ctx, a, true);
  4347. }
  4348. // ggml_sqrt
  4349. struct ggml_tensor * ggml_sqrt_impl(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. bool inplace) {
  4353. bool is_node = false;
  4354. if (!inplace && (a->grad)) {
  4355. is_node = true;
  4356. }
  4357. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4358. result->op = GGML_OP_SQRT;
  4359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4360. result->src0 = a;
  4361. result->src1 = NULL;
  4362. return result;
  4363. }
  4364. struct ggml_tensor * ggml_sqrt(
  4365. struct ggml_context * ctx,
  4366. struct ggml_tensor * a) {
  4367. return ggml_sqrt_impl(ctx, a, false);
  4368. }
  4369. struct ggml_tensor * ggml_sqrt_inplace(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a) {
  4372. return ggml_sqrt_impl(ctx, a, true);
  4373. }
  4374. // ggml_log
  4375. struct ggml_tensor * ggml_log_impl(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. bool inplace) {
  4379. bool is_node = false;
  4380. if (!inplace && (a->grad)) {
  4381. is_node = true;
  4382. }
  4383. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4384. result->op = GGML_OP_LOG;
  4385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4386. result->src0 = a;
  4387. result->src1 = NULL;
  4388. return result;
  4389. }
  4390. struct ggml_tensor * ggml_log(
  4391. struct ggml_context * ctx,
  4392. struct ggml_tensor * a) {
  4393. return ggml_log_impl(ctx, a, false);
  4394. }
  4395. struct ggml_tensor * ggml_log_inplace(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a) {
  4398. return ggml_log_impl(ctx, a, true);
  4399. }
  4400. // ggml_sum
  4401. struct ggml_tensor * ggml_sum(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. bool is_node = false;
  4405. if (a->grad) {
  4406. is_node = true;
  4407. }
  4408. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4409. result->op = GGML_OP_SUM;
  4410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4411. result->src0 = a;
  4412. result->src1 = NULL;
  4413. return result;
  4414. }
  4415. // ggml_sum_rows
  4416. struct ggml_tensor * ggml_sum_rows(
  4417. struct ggml_context * ctx,
  4418. struct ggml_tensor * a) {
  4419. bool is_node = false;
  4420. if (a->grad) {
  4421. is_node = true;
  4422. }
  4423. int64_t ne[4] = {1,1,1,1};
  4424. for (int i=1; i<a->n_dims; ++i) {
  4425. ne[i] = a->ne[i];
  4426. }
  4427. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4428. result->op = GGML_OP_SUM_ROWS;
  4429. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4430. result->src0 = a;
  4431. result->src1 = NULL;
  4432. return result;
  4433. }
  4434. // ggml_mean
  4435. struct ggml_tensor * ggml_mean(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a) {
  4438. bool is_node = false;
  4439. if (a->grad) {
  4440. GGML_ASSERT(false); // TODO: implement
  4441. is_node = true;
  4442. }
  4443. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4444. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4445. result->op = GGML_OP_MEAN;
  4446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4447. result->src0 = a;
  4448. result->src1 = NULL;
  4449. return result;
  4450. }
  4451. // ggml_argmax
  4452. struct ggml_tensor * ggml_argmax(
  4453. struct ggml_context * ctx,
  4454. struct ggml_tensor * a) {
  4455. GGML_ASSERT(ggml_is_matrix(a));
  4456. bool is_node = false;
  4457. if (a->grad) {
  4458. GGML_ASSERT(false);
  4459. is_node = true;
  4460. }
  4461. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4462. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4463. result->op = GGML_OP_ARGMAX;
  4464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4465. result->src0 = a;
  4466. result->src1 = NULL;
  4467. return result;
  4468. }
  4469. // ggml_repeat
  4470. struct ggml_tensor * ggml_repeat(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. struct ggml_tensor * b) {
  4474. GGML_ASSERT(ggml_can_repeat(a, b));
  4475. bool is_node = false;
  4476. if (a->grad) {
  4477. is_node = true;
  4478. }
  4479. if (ggml_are_same_shape(a, b) && !is_node) {
  4480. return a;
  4481. }
  4482. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4483. result->op = GGML_OP_REPEAT;
  4484. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4485. result->src0 = a;
  4486. result->src1 = b;
  4487. return result;
  4488. }
  4489. // ggml_repeat_back
  4490. struct ggml_tensor * ggml_repeat_back(
  4491. struct ggml_context * ctx,
  4492. struct ggml_tensor * a,
  4493. struct ggml_tensor * b) {
  4494. GGML_ASSERT(ggml_can_repeat(b, a));
  4495. bool is_node = false;
  4496. if (a->grad) {
  4497. is_node = true;
  4498. }
  4499. if (ggml_are_same_shape(a, b) && !is_node) {
  4500. return a;
  4501. }
  4502. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4503. result->op = GGML_OP_REPEAT_BACK;
  4504. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4505. result->src0 = a;
  4506. result->src1 = b;
  4507. return result;
  4508. }
  4509. // ggml_abs
  4510. struct ggml_tensor * ggml_abs_impl(
  4511. struct ggml_context * ctx,
  4512. struct ggml_tensor * a,
  4513. bool inplace) {
  4514. bool is_node = false;
  4515. if (!inplace && (a->grad)) {
  4516. is_node = true;
  4517. }
  4518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4519. result->op = GGML_OP_ABS;
  4520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4521. result->src0 = a;
  4522. result->src1 = NULL;
  4523. return result;
  4524. }
  4525. struct ggml_tensor * ggml_abs(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a) {
  4528. return ggml_abs_impl(ctx, a, false);
  4529. }
  4530. struct ggml_tensor * ggml_abs_inplace(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a) {
  4533. return ggml_abs_impl(ctx, a, true);
  4534. }
  4535. // ggml_sgn
  4536. struct ggml_tensor * ggml_sgn_impl(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. bool inplace) {
  4540. bool is_node = false;
  4541. if (!inplace && (a->grad)) {
  4542. is_node = true;
  4543. }
  4544. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4545. result->op = GGML_OP_SGN;
  4546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4547. result->src0 = a;
  4548. result->src1 = NULL;
  4549. return result;
  4550. }
  4551. struct ggml_tensor * ggml_sgn(
  4552. struct ggml_context * ctx,
  4553. struct ggml_tensor * a) {
  4554. return ggml_sgn_impl(ctx, a, false);
  4555. }
  4556. struct ggml_tensor * ggml_sgn_inplace(
  4557. struct ggml_context * ctx,
  4558. struct ggml_tensor * a) {
  4559. return ggml_sgn_impl(ctx, a, true);
  4560. }
  4561. // ggml_neg
  4562. struct ggml_tensor * ggml_neg_impl(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. bool inplace) {
  4566. bool is_node = false;
  4567. if (!inplace && (a->grad)) {
  4568. is_node = true;
  4569. }
  4570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4571. result->op = GGML_OP_NEG;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src0 = a;
  4574. result->src1 = NULL;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_neg(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a) {
  4580. return ggml_neg_impl(ctx, a, false);
  4581. }
  4582. struct ggml_tensor * ggml_neg_inplace(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a) {
  4585. return ggml_neg_impl(ctx, a, true);
  4586. }
  4587. // ggml_step
  4588. struct ggml_tensor * ggml_step_impl(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. bool inplace) {
  4592. bool is_node = false;
  4593. if (!inplace && (a->grad)) {
  4594. is_node = true;
  4595. }
  4596. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4597. result->op = GGML_OP_STEP;
  4598. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4599. result->src0 = a;
  4600. result->src1 = NULL;
  4601. return result;
  4602. }
  4603. struct ggml_tensor * ggml_step(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a) {
  4606. return ggml_step_impl(ctx, a, false);
  4607. }
  4608. struct ggml_tensor * ggml_step_inplace(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. return ggml_step_impl(ctx, a, true);
  4612. }
  4613. // ggml_tanh
  4614. struct ggml_tensor * ggml_tanh_impl(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a,
  4617. bool inplace) {
  4618. bool is_node = false;
  4619. if (!inplace && (a->grad)) {
  4620. is_node = true;
  4621. }
  4622. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4623. result->op = GGML_OP_TANH;
  4624. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4625. result->src0 = a;
  4626. result->src1 = NULL;
  4627. return result;
  4628. }
  4629. struct ggml_tensor * ggml_tanh(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a) {
  4632. return ggml_tanh_impl(ctx, a, false);
  4633. }
  4634. struct ggml_tensor * ggml_tanh_inplace(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a) {
  4637. return ggml_tanh_impl(ctx, a, true);
  4638. }
  4639. // ggml_elu
  4640. struct ggml_tensor * ggml_elu_impl(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. bool inplace) {
  4644. bool is_node = false;
  4645. if (!inplace && (a->grad)) {
  4646. is_node = true;
  4647. }
  4648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4649. result->op = GGML_OP_ELU;
  4650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4651. result->src0 = a;
  4652. result->src1 = NULL;
  4653. return result;
  4654. }
  4655. struct ggml_tensor * ggml_elu(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a) {
  4658. return ggml_elu_impl(ctx, a, false);
  4659. }
  4660. struct ggml_tensor * ggml_elu_inplace(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a) {
  4663. return ggml_elu_impl(ctx, a, true);
  4664. }
  4665. // ggml_relu
  4666. struct ggml_tensor * ggml_relu_impl(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. bool inplace) {
  4670. bool is_node = false;
  4671. if (!inplace && (a->grad)) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4675. result->op = GGML_OP_RELU;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src0 = a;
  4678. result->src1 = NULL;
  4679. return result;
  4680. }
  4681. struct ggml_tensor * ggml_relu(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a) {
  4684. return ggml_relu_impl(ctx, a, false);
  4685. }
  4686. struct ggml_tensor * ggml_relu_inplace(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * a) {
  4689. return ggml_relu_impl(ctx, a, true);
  4690. }
  4691. // ggml_gelu
  4692. struct ggml_tensor * ggml_gelu_impl(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. bool inplace) {
  4696. bool is_node = false;
  4697. if (!inplace && (a->grad)) {
  4698. is_node = true;
  4699. }
  4700. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4701. result->op = GGML_OP_GELU;
  4702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4703. result->src0 = a;
  4704. result->src1 = NULL;
  4705. return result;
  4706. }
  4707. struct ggml_tensor * ggml_gelu(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a) {
  4710. return ggml_gelu_impl(ctx, a, false);
  4711. }
  4712. struct ggml_tensor * ggml_gelu_inplace(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a) {
  4715. return ggml_gelu_impl(ctx, a, true);
  4716. }
  4717. // ggml_gelu_quick
  4718. struct ggml_tensor * ggml_gelu_quick_impl(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a,
  4721. bool inplace) {
  4722. bool is_node = false;
  4723. if (!inplace && (a->grad)) {
  4724. is_node = true;
  4725. }
  4726. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4727. result->op = GGML_OP_GELU_QUICK;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src0 = a;
  4730. result->src1 = NULL;
  4731. return result;
  4732. }
  4733. struct ggml_tensor * ggml_gelu_quick(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a) {
  4736. return ggml_gelu_quick_impl(ctx, a, false);
  4737. }
  4738. struct ggml_tensor * ggml_gelu_quick_inplace(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a) {
  4741. return ggml_gelu_quick_impl(ctx, a, true);
  4742. }
  4743. // ggml_silu
  4744. struct ggml_tensor * ggml_silu_impl(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. bool inplace) {
  4748. bool is_node = false;
  4749. if (!inplace && (a->grad)) {
  4750. is_node = true;
  4751. }
  4752. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4753. result->op = GGML_OP_SILU;
  4754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4755. result->src0 = a;
  4756. result->src1 = NULL;
  4757. return result;
  4758. }
  4759. struct ggml_tensor * ggml_silu(
  4760. struct ggml_context * ctx,
  4761. struct ggml_tensor * a) {
  4762. return ggml_silu_impl(ctx, a, false);
  4763. }
  4764. struct ggml_tensor * ggml_silu_inplace(
  4765. struct ggml_context * ctx,
  4766. struct ggml_tensor * a) {
  4767. return ggml_silu_impl(ctx, a, true);
  4768. }
  4769. // ggml_silu_back
  4770. struct ggml_tensor * ggml_silu_back(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. struct ggml_tensor * b) {
  4774. bool is_node = false;
  4775. if (a->grad || b->grad) {
  4776. // TODO: implement backward
  4777. is_node = true;
  4778. }
  4779. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4780. result->op = GGML_OP_SILU_BACK;
  4781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4782. result->src0 = a;
  4783. result->src1 = b;
  4784. return result;
  4785. }
  4786. // ggml_norm
  4787. struct ggml_tensor * ggml_norm_impl(
  4788. struct ggml_context * ctx,
  4789. struct ggml_tensor * a,
  4790. bool inplace) {
  4791. bool is_node = false;
  4792. if (!inplace && (a->grad)) {
  4793. GGML_ASSERT(false); // TODO: implement backward
  4794. is_node = true;
  4795. }
  4796. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4797. result->op = GGML_OP_NORM;
  4798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4799. result->src0 = a;
  4800. result->src1 = NULL; // TODO: maybe store epsilon here?
  4801. return result;
  4802. }
  4803. struct ggml_tensor * ggml_norm(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a) {
  4806. return ggml_norm_impl(ctx, a, false);
  4807. }
  4808. struct ggml_tensor * ggml_norm_inplace(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a) {
  4811. return ggml_norm_impl(ctx, a, true);
  4812. }
  4813. struct ggml_tensor * ggml_rms_norm_impl(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. bool inplace) {
  4817. bool is_node = false;
  4818. if (!inplace && (a->grad)) {
  4819. is_node = true;
  4820. }
  4821. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4822. result->op = GGML_OP_RMS_NORM;
  4823. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4824. result->src0 = a;
  4825. result->src1 = NULL; // TODO: maybe store epsilon here?
  4826. return result;
  4827. }
  4828. struct ggml_tensor * ggml_rms_norm(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a) {
  4831. return ggml_rms_norm_impl(ctx, a, false);
  4832. }
  4833. struct ggml_tensor * ggml_rms_norm_inplace(
  4834. struct ggml_context * ctx,
  4835. struct ggml_tensor * a) {
  4836. return ggml_rms_norm_impl(ctx, a, true);
  4837. }
  4838. struct ggml_tensor * ggml_rms_norm_back(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. struct ggml_tensor * b) {
  4842. bool is_node = false;
  4843. if (a->grad) {
  4844. // TODO: implement backward
  4845. is_node = true;
  4846. }
  4847. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4848. result->op = GGML_OP_RMS_NORM_BACK;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src0 = a;
  4851. result->src1 = b;
  4852. return result;
  4853. }
  4854. // ggml_mul_mat
  4855. struct ggml_tensor * ggml_mul_mat(
  4856. struct ggml_context * ctx,
  4857. struct ggml_tensor * a,
  4858. struct ggml_tensor * b) {
  4859. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4860. GGML_ASSERT(!ggml_is_transposed(a));
  4861. bool is_node = false;
  4862. if (a->grad || b->grad) {
  4863. is_node = true;
  4864. }
  4865. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4866. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4867. result->op = GGML_OP_MUL_MAT;
  4868. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4869. result->src0 = a;
  4870. result->src1 = b;
  4871. return result;
  4872. }
  4873. // ggml_out_prod
  4874. struct ggml_tensor * ggml_out_prod(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. struct ggml_tensor * b) {
  4878. GGML_ASSERT(ggml_can_out_prod(a, b));
  4879. GGML_ASSERT(!ggml_is_transposed(a));
  4880. bool is_node = false;
  4881. if (a->grad || b->grad) {
  4882. is_node = true;
  4883. }
  4884. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4885. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4886. result->op = GGML_OP_OUT_PROD;
  4887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4888. result->src0 = a;
  4889. result->src1 = b;
  4890. return result;
  4891. }
  4892. // ggml_scale
  4893. struct ggml_tensor * ggml_scale_impl(
  4894. struct ggml_context * ctx,
  4895. struct ggml_tensor * a,
  4896. struct ggml_tensor * b,
  4897. bool inplace) {
  4898. GGML_ASSERT(ggml_is_scalar(b));
  4899. GGML_ASSERT(ggml_is_padded_1d(a));
  4900. bool is_node = false;
  4901. if (a->grad || b->grad) {
  4902. is_node = true;
  4903. }
  4904. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4905. result->op = GGML_OP_SCALE;
  4906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4907. result->src0 = a;
  4908. result->src1 = b;
  4909. return result;
  4910. }
  4911. struct ggml_tensor * ggml_scale(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. struct ggml_tensor * b) {
  4915. return ggml_scale_impl(ctx, a, b, false);
  4916. }
  4917. struct ggml_tensor * ggml_scale_inplace(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b) {
  4921. return ggml_scale_impl(ctx, a, b, true);
  4922. }
  4923. // ggml_set
  4924. struct ggml_tensor * ggml_set_impl(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b,
  4928. size_t nb1,
  4929. size_t nb2,
  4930. size_t nb3,
  4931. size_t offset,
  4932. bool inplace) {
  4933. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4934. bool is_node = false;
  4935. if (a->grad || b->grad) {
  4936. is_node = true;
  4937. }
  4938. // make a view of the destination
  4939. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4940. ggml_scratch_save(ctx);
  4941. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4942. (( int32_t * ) c->data)[0] = nb1;
  4943. (( int32_t * ) c->data)[1] = nb2;
  4944. (( int32_t * ) c->data)[2] = nb3;
  4945. (( int32_t * ) c->data)[3] = offset;
  4946. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4947. ggml_scratch_load(ctx);
  4948. result->op = GGML_OP_SET;
  4949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4950. result->src0 = a;
  4951. result->src1 = b;
  4952. result->opt[0] = c;
  4953. return result;
  4954. }
  4955. struct ggml_tensor * ggml_set(
  4956. struct ggml_context * ctx,
  4957. struct ggml_tensor * a,
  4958. struct ggml_tensor * b,
  4959. size_t nb1,
  4960. size_t nb2,
  4961. size_t nb3,
  4962. size_t offset) {
  4963. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4964. }
  4965. struct ggml_tensor * ggml_set_inplace(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a,
  4968. struct ggml_tensor * b,
  4969. size_t nb1,
  4970. size_t nb2,
  4971. size_t nb3,
  4972. size_t offset) {
  4973. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4974. }
  4975. struct ggml_tensor * ggml_set_1d(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. struct ggml_tensor * b,
  4979. size_t offset) {
  4980. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4981. }
  4982. struct ggml_tensor * ggml_set_1d_inplace(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. size_t offset) {
  4987. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4988. }
  4989. struct ggml_tensor * ggml_set_2d(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a,
  4992. struct ggml_tensor * b,
  4993. size_t nb1,
  4994. size_t offset) {
  4995. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4996. }
  4997. struct ggml_tensor * ggml_set_2d_inplace(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. struct ggml_tensor * b,
  5001. size_t nb1,
  5002. size_t offset) {
  5003. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5004. }
  5005. // ggml_cpy
  5006. struct ggml_tensor * ggml_cpy_impl(
  5007. struct ggml_context * ctx,
  5008. struct ggml_tensor * a,
  5009. struct ggml_tensor * b,
  5010. bool inplace) {
  5011. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5012. bool is_node = false;
  5013. if (!inplace && (a->grad || b->grad)) {
  5014. is_node = true;
  5015. }
  5016. // make a view of the destination
  5017. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5018. if (strlen(b->name) > 0) {
  5019. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5020. } else {
  5021. ggml_format_name(result, "%s (copy)", a->name);
  5022. }
  5023. result->op = GGML_OP_CPY;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src0 = a;
  5026. result->src1 = b;
  5027. return result;
  5028. }
  5029. struct ggml_tensor * ggml_cpy(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. struct ggml_tensor * b) {
  5033. return ggml_cpy_impl(ctx, a, b, false);
  5034. }
  5035. struct ggml_tensor * ggml_cpy_inplace(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * b) {
  5039. return ggml_cpy_impl(ctx, a, b, true);
  5040. }
  5041. // ggml_cont
  5042. struct ggml_tensor * ggml_cont_impl(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. bool inplace) {
  5046. bool is_node = false;
  5047. if (!inplace && a->grad) {
  5048. is_node = true;
  5049. }
  5050. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5051. ggml_format_name(result, "%s (cont)", a->name);
  5052. result->op = GGML_OP_CONT;
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src0 = a;
  5055. result->src1 = NULL;
  5056. return result;
  5057. }
  5058. struct ggml_tensor * ggml_cont(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a) {
  5061. return ggml_cont_impl(ctx, a, false);
  5062. }
  5063. struct ggml_tensor * ggml_cont_inplace(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a) {
  5066. return ggml_cont_impl(ctx, a, true);
  5067. }
  5068. // ggml_reshape
  5069. struct ggml_tensor * ggml_reshape(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a,
  5072. struct ggml_tensor * b) {
  5073. GGML_ASSERT(ggml_is_contiguous(a));
  5074. GGML_ASSERT(ggml_is_contiguous(b));
  5075. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5076. bool is_node = false;
  5077. if (a->grad) {
  5078. is_node = true;
  5079. }
  5080. if (b->grad) {
  5081. // gradient propagation is not supported
  5082. //GGML_ASSERT(false);
  5083. }
  5084. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5085. ggml_format_name(result, "%s (reshaped)", a->name);
  5086. result->op = GGML_OP_RESHAPE;
  5087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5088. result->src0 = a;
  5089. result->src1 = NULL;
  5090. return result;
  5091. }
  5092. struct ggml_tensor * ggml_reshape_1d(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. int64_t ne0) {
  5096. GGML_ASSERT(ggml_is_contiguous(a));
  5097. GGML_ASSERT(ggml_nelements(a) == ne0);
  5098. bool is_node = false;
  5099. if (a->grad) {
  5100. is_node = true;
  5101. }
  5102. const int64_t ne[1] = { ne0 };
  5103. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5104. ggml_format_name(result, "%s (reshaped)", a->name);
  5105. result->op = GGML_OP_RESHAPE;
  5106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5107. result->src0 = a;
  5108. result->src1 = NULL;
  5109. return result;
  5110. }
  5111. struct ggml_tensor * ggml_reshape_2d(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int64_t ne0,
  5115. int64_t ne1) {
  5116. GGML_ASSERT(ggml_is_contiguous(a));
  5117. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5118. bool is_node = false;
  5119. if (a->grad) {
  5120. is_node = true;
  5121. }
  5122. const int64_t ne[2] = { ne0, ne1 };
  5123. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5124. ggml_format_name(result, "%s (reshaped)", a->name);
  5125. result->op = GGML_OP_RESHAPE;
  5126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5127. result->src0 = a;
  5128. result->src1 = NULL;
  5129. return result;
  5130. }
  5131. struct ggml_tensor * ggml_reshape_3d(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. int64_t ne0,
  5135. int64_t ne1,
  5136. int64_t ne2) {
  5137. GGML_ASSERT(ggml_is_contiguous(a));
  5138. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5139. bool is_node = false;
  5140. if (a->grad) {
  5141. is_node = true;
  5142. }
  5143. const int64_t ne[3] = { ne0, ne1, ne2 };
  5144. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5145. ggml_format_name(result, "%s (reshaped)", a->name);
  5146. result->op = GGML_OP_RESHAPE;
  5147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5148. result->src0 = a;
  5149. result->src1 = NULL;
  5150. return result;
  5151. }
  5152. struct ggml_tensor * ggml_reshape_4d(
  5153. struct ggml_context * ctx,
  5154. struct ggml_tensor * a,
  5155. int64_t ne0,
  5156. int64_t ne1,
  5157. int64_t ne2,
  5158. int64_t ne3) {
  5159. GGML_ASSERT(ggml_is_contiguous(a));
  5160. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5161. bool is_node = false;
  5162. if (a->grad) {
  5163. is_node = true;
  5164. }
  5165. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5166. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5167. ggml_format_name(result, "%s (reshaped)", a->name);
  5168. result->op = GGML_OP_RESHAPE;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src0 = a;
  5171. result->src1 = NULL;
  5172. return result;
  5173. }
  5174. // ggml_view_1d
  5175. struct ggml_tensor * ggml_view_1d(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. int64_t ne0,
  5179. size_t offset) {
  5180. bool is_node = false;
  5181. if (a->grad) {
  5182. is_node = true;
  5183. }
  5184. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5185. ggml_format_name(result, "%s (view)", a->name);
  5186. ggml_scratch_save(ctx);
  5187. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5188. ggml_set_name(offs, "offset");
  5189. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5190. ggml_scratch_load(ctx);
  5191. result->op = GGML_OP_VIEW;
  5192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5193. result->src0 = a;
  5194. result->src1 = NULL;
  5195. result->opt[0] = offs;
  5196. return result;
  5197. }
  5198. // ggml_view_2d
  5199. struct ggml_tensor * ggml_view_2d(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. int64_t ne0,
  5203. int64_t ne1,
  5204. size_t nb1,
  5205. size_t offset) {
  5206. bool is_node = false;
  5207. if (a->grad) {
  5208. is_node = true;
  5209. }
  5210. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5211. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5212. ggml_format_name(result, "%s (view)", a->name);
  5213. ggml_scratch_save(ctx);
  5214. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5215. ggml_set_name(offs, "offset");
  5216. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5217. ggml_scratch_load(ctx);
  5218. result->nb[1] = nb1;
  5219. result->nb[2] = result->nb[1]*ne1;
  5220. result->nb[3] = result->nb[2];
  5221. result->op = GGML_OP_VIEW;
  5222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5223. result->src0 = a;
  5224. result->src1 = NULL;
  5225. result->opt[0] = offs;
  5226. return result;
  5227. }
  5228. // ggml_view_3d
  5229. struct ggml_tensor * ggml_view_3d(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. int64_t ne0,
  5233. int64_t ne1,
  5234. int64_t ne2,
  5235. size_t nb1,
  5236. size_t nb2,
  5237. size_t offset) {
  5238. bool is_node = false;
  5239. if (a->grad) {
  5240. is_node = true;
  5241. }
  5242. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5243. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5244. ggml_format_name(result, "%s (view)", a->name);
  5245. ggml_scratch_save(ctx);
  5246. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5247. ggml_set_name(offs, "offset");
  5248. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5249. ggml_scratch_load(ctx);
  5250. result->nb[1] = nb1;
  5251. result->nb[2] = nb2;
  5252. result->nb[3] = result->nb[2]*ne2;
  5253. result->op = GGML_OP_VIEW;
  5254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5255. result->src0 = a;
  5256. result->src1 = NULL;
  5257. result->opt[0] = offs;
  5258. return result;
  5259. }
  5260. // ggml_view_4d
  5261. struct ggml_tensor * ggml_view_4d(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. int64_t ne0,
  5265. int64_t ne1,
  5266. int64_t ne2,
  5267. int64_t ne3,
  5268. size_t nb1,
  5269. size_t nb2,
  5270. size_t nb3,
  5271. size_t offset) {
  5272. bool is_node = false;
  5273. if (a->grad) {
  5274. is_node = true;
  5275. }
  5276. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5277. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5278. ggml_format_name(result, "%s (view)", a->name);
  5279. ggml_scratch_save(ctx);
  5280. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5281. ggml_set_name(offs, "offset");
  5282. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5283. ggml_scratch_load(ctx);
  5284. result->nb[1] = nb1;
  5285. result->nb[2] = nb2;
  5286. result->nb[3] = nb3;
  5287. result->op = GGML_OP_VIEW;
  5288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5289. result->src0 = a;
  5290. result->src1 = NULL;
  5291. result->opt[0] = offs;
  5292. return result;
  5293. }
  5294. // ggml_permute
  5295. struct ggml_tensor * ggml_permute(
  5296. struct ggml_context * ctx,
  5297. struct ggml_tensor * a,
  5298. int axis0,
  5299. int axis1,
  5300. int axis2,
  5301. int axis3) {
  5302. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5303. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5304. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5305. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5306. GGML_ASSERT(axis0 != axis1);
  5307. GGML_ASSERT(axis0 != axis2);
  5308. GGML_ASSERT(axis0 != axis3);
  5309. GGML_ASSERT(axis1 != axis2);
  5310. GGML_ASSERT(axis1 != axis3);
  5311. GGML_ASSERT(axis2 != axis3);
  5312. bool is_node = false;
  5313. if (a->grad) {
  5314. is_node = true;
  5315. }
  5316. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5317. ggml_format_name(result, "%s (permuted)", a->name);
  5318. int ne[GGML_MAX_DIMS];
  5319. int nb[GGML_MAX_DIMS];
  5320. ne[axis0] = a->ne[0];
  5321. ne[axis1] = a->ne[1];
  5322. ne[axis2] = a->ne[2];
  5323. ne[axis3] = a->ne[3];
  5324. nb[axis0] = a->nb[0];
  5325. nb[axis1] = a->nb[1];
  5326. nb[axis2] = a->nb[2];
  5327. nb[axis3] = a->nb[3];
  5328. result->ne[0] = ne[0];
  5329. result->ne[1] = ne[1];
  5330. result->ne[2] = ne[2];
  5331. result->ne[3] = ne[3];
  5332. result->nb[0] = nb[0];
  5333. result->nb[1] = nb[1];
  5334. result->nb[2] = nb[2];
  5335. result->nb[3] = nb[3];
  5336. result->op = GGML_OP_PERMUTE;
  5337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5338. result->src0 = a;
  5339. result->src1 = NULL;
  5340. if (is_node) {
  5341. ggml_scratch_save(ctx);
  5342. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5343. ((int32_t *) b->data)[0] = axis0;
  5344. ((int32_t *) b->data)[1] = axis1;
  5345. ((int32_t *) b->data)[2] = axis2;
  5346. ((int32_t *) b->data)[3] = axis3;
  5347. ggml_scratch_load(ctx);
  5348. result->opt[0] = b;
  5349. }
  5350. return result;
  5351. }
  5352. // ggml_transpose
  5353. struct ggml_tensor * ggml_transpose(
  5354. struct ggml_context * ctx,
  5355. struct ggml_tensor * a) {
  5356. bool is_node = false;
  5357. if (a->grad) {
  5358. is_node = true;
  5359. }
  5360. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5361. ggml_format_name(result, "%s (transposed)", a->name);
  5362. result->ne[0] = a->ne[1];
  5363. result->ne[1] = a->ne[0];
  5364. result->nb[0] = a->nb[1];
  5365. result->nb[1] = a->nb[0];
  5366. result->op = GGML_OP_TRANSPOSE;
  5367. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5368. result->src0 = a;
  5369. result->src1 = NULL;
  5370. return result;
  5371. }
  5372. // ggml_get_rows
  5373. struct ggml_tensor * ggml_get_rows(
  5374. struct ggml_context * ctx,
  5375. struct ggml_tensor * a,
  5376. struct ggml_tensor * b) {
  5377. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5378. bool is_node = false;
  5379. if (a->grad || b->grad) {
  5380. is_node = true;
  5381. }
  5382. // TODO: implement non F32 return
  5383. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5384. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5385. result->op = GGML_OP_GET_ROWS;
  5386. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5387. result->src0 = a;
  5388. result->src1 = b;
  5389. return result;
  5390. }
  5391. // ggml_get_rows_back
  5392. struct ggml_tensor * ggml_get_rows_back(
  5393. struct ggml_context * ctx,
  5394. struct ggml_tensor * a,
  5395. struct ggml_tensor * b,
  5396. struct ggml_tensor * c) {
  5397. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5398. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5399. bool is_node = false;
  5400. if (a->grad || b->grad) {
  5401. is_node = true;
  5402. }
  5403. // TODO: implement non F32 return
  5404. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5405. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5406. result->op = GGML_OP_GET_ROWS_BACK;
  5407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5408. result->src0 = a;
  5409. result->src1 = b;
  5410. result->opt[0] = c;
  5411. return result;
  5412. }
  5413. // ggml_diag
  5414. struct ggml_tensor * ggml_diag(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a) {
  5417. GGML_ASSERT(a->ne[1] == 1);
  5418. bool is_node = false;
  5419. if (a->grad) {
  5420. is_node = true;
  5421. }
  5422. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5423. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5424. result->op = GGML_OP_DIAG;
  5425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5426. result->src0 = a;
  5427. result->src1 = NULL;
  5428. return result;
  5429. }
  5430. // ggml_diag_mask_inf
  5431. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5432. struct ggml_context * ctx,
  5433. struct ggml_tensor * a,
  5434. int n_past,
  5435. bool inplace) {
  5436. bool is_node = false;
  5437. if (a->grad) {
  5438. is_node = true;
  5439. }
  5440. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5441. ggml_scratch_save(ctx);
  5442. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5443. ((int32_t *) b->data)[0] = n_past;
  5444. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5445. ggml_scratch_load(ctx);
  5446. result->op = GGML_OP_DIAG_MASK_INF;
  5447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5448. result->src0 = a;
  5449. result->src1 = b;
  5450. return result;
  5451. }
  5452. struct ggml_tensor * ggml_diag_mask_inf(
  5453. struct ggml_context * ctx,
  5454. struct ggml_tensor * a,
  5455. int n_past) {
  5456. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5457. }
  5458. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5459. struct ggml_context * ctx,
  5460. struct ggml_tensor * a,
  5461. int n_past) {
  5462. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5463. }
  5464. // ggml_diag_mask_zero
  5465. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5466. struct ggml_context * ctx,
  5467. struct ggml_tensor * a,
  5468. int n_past,
  5469. bool inplace) {
  5470. bool is_node = false;
  5471. if (a->grad) {
  5472. is_node = true;
  5473. }
  5474. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5475. ggml_scratch_save(ctx);
  5476. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5477. ggml_set_name(b, "n_past, inplace");
  5478. ((int32_t *) b->data)[0] = n_past;
  5479. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5480. ggml_scratch_load(ctx);
  5481. result->op = GGML_OP_DIAG_MASK_ZERO;
  5482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5483. result->src0 = a;
  5484. result->src1 = b;
  5485. return result;
  5486. }
  5487. struct ggml_tensor * ggml_diag_mask_zero(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. int n_past) {
  5491. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5492. }
  5493. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. int n_past) {
  5497. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5498. }
  5499. // ggml_soft_max
  5500. struct ggml_tensor * ggml_soft_max_impl(
  5501. struct ggml_context * ctx,
  5502. struct ggml_tensor * a,
  5503. bool inplace) {
  5504. bool is_node = false;
  5505. if (a->grad) {
  5506. is_node = true;
  5507. }
  5508. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5509. result->op = GGML_OP_SOFT_MAX;
  5510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5511. result->src0 = a;
  5512. result->src1 = NULL;
  5513. return result;
  5514. }
  5515. struct ggml_tensor * ggml_soft_max(
  5516. struct ggml_context * ctx,
  5517. struct ggml_tensor * a) {
  5518. return ggml_soft_max_impl(ctx, a, false);
  5519. }
  5520. struct ggml_tensor * ggml_soft_max_inplace(
  5521. struct ggml_context * ctx,
  5522. struct ggml_tensor * a) {
  5523. return ggml_soft_max_impl(ctx, a, true);
  5524. }
  5525. // ggml_soft_max_back
  5526. struct ggml_tensor * ggml_soft_max_back_impl(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. struct ggml_tensor * b,
  5530. bool inplace) {
  5531. bool is_node = false;
  5532. if (a->grad || b->grad) {
  5533. is_node = true; // TODO : implement backward pass
  5534. }
  5535. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5536. result->op = GGML_OP_SOFT_MAX_BACK;
  5537. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5538. result->src0 = a;
  5539. result->src1 = b;
  5540. return result;
  5541. }
  5542. struct ggml_tensor * ggml_soft_max_back(
  5543. struct ggml_context * ctx,
  5544. struct ggml_tensor * a,
  5545. struct ggml_tensor * b) {
  5546. return ggml_soft_max_back_impl(ctx, a, b, false);
  5547. }
  5548. struct ggml_tensor * ggml_soft_max_back_inplace(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. struct ggml_tensor * b) {
  5552. return ggml_soft_max_back_impl(ctx, a, b, true);
  5553. }
  5554. // ggml_rope
  5555. struct ggml_tensor * ggml_rope_impl(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. int n_past,
  5559. int n_dims,
  5560. int mode,
  5561. int n_ctx,
  5562. bool inplace) {
  5563. GGML_ASSERT(n_past >= 0);
  5564. bool is_node = false;
  5565. if (a->grad) {
  5566. is_node = true;
  5567. }
  5568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5569. ggml_scratch_save(ctx);
  5570. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5571. ((int32_t *) b->data)[0] = n_past;
  5572. ((int32_t *) b->data)[1] = n_dims;
  5573. ((int32_t *) b->data)[2] = mode;
  5574. ((int32_t *) b->data)[3] = n_ctx;
  5575. ggml_scratch_load(ctx);
  5576. result->op = GGML_OP_ROPE;
  5577. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5578. result->src0 = a;
  5579. result->src1 = b;
  5580. return result;
  5581. }
  5582. struct ggml_tensor * ggml_rope(
  5583. struct ggml_context * ctx,
  5584. struct ggml_tensor * a,
  5585. int n_past,
  5586. int n_dims,
  5587. int mode,
  5588. int n_ctx) {
  5589. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5590. }
  5591. struct ggml_tensor * ggml_rope_inplace(
  5592. struct ggml_context * ctx,
  5593. struct ggml_tensor * a,
  5594. int n_past,
  5595. int n_dims,
  5596. int mode,
  5597. int n_ctx) {
  5598. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5599. }
  5600. // ggml_rope_back
  5601. struct ggml_tensor * ggml_rope_back(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * a,
  5604. int n_past,
  5605. int n_dims,
  5606. int mode) {
  5607. GGML_ASSERT(n_past >= 0);
  5608. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5609. bool is_node = false;
  5610. if (a->grad) {
  5611. is_node = false; // TODO: implement backward
  5612. }
  5613. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5614. ggml_scratch_save(ctx);
  5615. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5616. ggml_set_name(b, "n_past, n_dims, mode");
  5617. ((int32_t *) b->data)[0] = n_past;
  5618. ((int32_t *) b->data)[1] = n_dims;
  5619. ((int32_t *) b->data)[2] = mode;
  5620. ggml_scratch_load(ctx);
  5621. result->op = GGML_OP_ROPE_BACK;
  5622. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5623. result->src0 = a;
  5624. result->src1 = b;
  5625. return result;
  5626. }
  5627. // ggml_alibi
  5628. struct ggml_tensor * ggml_alibi(
  5629. struct ggml_context * ctx,
  5630. struct ggml_tensor * a,
  5631. int n_past,
  5632. int n_head,
  5633. float bias_max) {
  5634. GGML_ASSERT(n_past >= 0);
  5635. bool is_node = false;
  5636. if (a->grad) {
  5637. GGML_ASSERT(false); // TODO: implement backward
  5638. is_node = true;
  5639. }
  5640. // TODO: when implement backward, fix this:
  5641. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5642. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5643. ggml_scratch_save(ctx);
  5644. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5645. ((int32_t *) b->data)[0] = n_past;
  5646. ((int32_t *) b->data)[1] = n_head;
  5647. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5648. (((float *) b->data)[2]) = bias_max;
  5649. ggml_scratch_load(ctx);
  5650. result->op = GGML_OP_ALIBI;
  5651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5652. result->src0 = a;
  5653. result->src1 = b;
  5654. return result;
  5655. }
  5656. // ggml_clamp
  5657. struct ggml_tensor * ggml_clamp(
  5658. struct ggml_context * ctx,
  5659. struct ggml_tensor * a,
  5660. float min,
  5661. float max) {
  5662. bool is_node = false;
  5663. if (a->grad) {
  5664. GGML_ASSERT(false); // TODO: implement backward
  5665. is_node = true;
  5666. }
  5667. // TODO: when implement backward, fix this:
  5668. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5669. ggml_scratch_save(ctx);
  5670. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5671. ((float *) b->data)[0] = min;
  5672. ((float *) b->data)[1] = max;
  5673. ggml_scratch_load(ctx);
  5674. result->op = GGML_OP_CLAMP;
  5675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5676. result->src0 = a;
  5677. result->src1 = b;
  5678. return result;
  5679. }
  5680. // ggml_conv_1d
  5681. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5682. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5683. }
  5684. GGML_API struct ggml_tensor * ggml_conv_1d(
  5685. struct ggml_context * ctx,
  5686. struct ggml_tensor * a,
  5687. struct ggml_tensor * b,
  5688. int s0,
  5689. int p0,
  5690. int d0) {
  5691. GGML_ASSERT(ggml_is_matrix(b));
  5692. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5693. bool is_node = false;
  5694. if (a->grad || b->grad) {
  5695. GGML_ASSERT(false); // TODO: implement backward
  5696. is_node = true;
  5697. }
  5698. const int64_t ne[4] = {
  5699. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5700. a->ne[2], 1, 1,
  5701. };
  5702. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5703. ggml_scratch_save(ctx);
  5704. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5705. ((int32_t*)c->data)[0] = s0;
  5706. ((int32_t*)c->data)[1] = p0;
  5707. ((int32_t*)c->data)[2] = d0;
  5708. ggml_scratch_load(ctx);
  5709. result->op = GGML_OP_CONV_1D;
  5710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5711. result->src0 = a;
  5712. result->src1 = b;
  5713. result->opt[0] = c;
  5714. return result;
  5715. }
  5716. // ggml_conv_2d
  5717. struct ggml_tensor* ggml_conv_2d(
  5718. struct ggml_context* ctx,
  5719. struct ggml_tensor * a,
  5720. struct ggml_tensor * b,
  5721. int s0,
  5722. int s1,
  5723. int p0,
  5724. int p1,
  5725. int d0,
  5726. int d1) {
  5727. GGML_ASSERT(b->ne[3] == 1);
  5728. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5729. bool is_node = false;
  5730. if (a->grad || b->grad) {
  5731. GGML_ASSERT(false); // TODO: implement backward
  5732. is_node = true;
  5733. }
  5734. const int64_t ne[4] = {
  5735. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5736. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5737. a->ne[3], 1,
  5738. };
  5739. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5740. ggml_scratch_save(ctx);
  5741. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5742. ((int32_t*)c->data)[0] = s0;
  5743. ((int32_t*)c->data)[1] = s1;
  5744. ((int32_t*)c->data)[2] = p0;
  5745. ((int32_t*)c->data)[3] = p1;
  5746. ((int32_t*)c->data)[4] = d0;
  5747. ((int32_t*)c->data)[5] = d1;
  5748. ggml_scratch_load(ctx);
  5749. result->op = GGML_OP_CONV_2D;
  5750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5751. result->src0 = a;
  5752. result->src1 = b;
  5753. result->opt[0] = c;
  5754. return result;
  5755. }
  5756. // ggml_conv_1d_ph
  5757. struct ggml_tensor* ggml_conv_1d_ph(
  5758. struct ggml_context * ctx,
  5759. struct ggml_tensor * a,
  5760. struct ggml_tensor * b,
  5761. int s,
  5762. int d) {
  5763. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5764. }
  5765. // ggml_flash_attn
  5766. struct ggml_tensor * ggml_flash_attn(
  5767. struct ggml_context * ctx,
  5768. struct ggml_tensor * q,
  5769. struct ggml_tensor * k,
  5770. struct ggml_tensor * v,
  5771. bool masked) {
  5772. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5773. // TODO: check if vT can be multiplied by (k*qT)
  5774. bool is_node = false;
  5775. if (q->grad || k->grad || v->grad) {
  5776. is_node = true;
  5777. }
  5778. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5779. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5780. result->op = GGML_OP_FLASH_ATTN;
  5781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5782. result->src0 = q;
  5783. result->src1 = k;
  5784. result->opt[0] = v;
  5785. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5786. return result;
  5787. }
  5788. // ggml_flash_ff
  5789. struct ggml_tensor * ggml_flash_ff(
  5790. struct ggml_context * ctx,
  5791. struct ggml_tensor * a,
  5792. struct ggml_tensor * b0,
  5793. struct ggml_tensor * b1,
  5794. struct ggml_tensor * c0,
  5795. struct ggml_tensor * c1) {
  5796. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5797. // TODO: more checks
  5798. bool is_node = false;
  5799. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5800. is_node = true;
  5801. }
  5802. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5803. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5804. result->op = GGML_OP_FLASH_FF;
  5805. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5806. result->src0 = a;
  5807. result->src1 = b0;
  5808. result->opt[0] = b1;
  5809. result->opt[1] = c0;
  5810. result->opt[2] = c1;
  5811. return result;
  5812. }
  5813. // ggml_flash_attn_back
  5814. struct ggml_tensor * ggml_flash_attn_back(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * q,
  5817. struct ggml_tensor * k,
  5818. struct ggml_tensor * v,
  5819. struct ggml_tensor * d,
  5820. bool masked) {
  5821. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5822. // TODO: check if vT can be multiplied by (k*qT)
  5823. // d shape [D,N,ne2,ne3]
  5824. // q shape [D,N,ne2,ne3]
  5825. // k shape [D,M,ne2,ne3]
  5826. // v shape [M,D,ne2,ne3]
  5827. const int64_t D = q->ne[0];
  5828. const int64_t N = q->ne[1];
  5829. const int64_t M = k->ne[1];
  5830. const int64_t ne2 = q->ne[2];
  5831. const int64_t ne3 = q->ne[3];
  5832. GGML_ASSERT(k->ne[0] == D);
  5833. GGML_ASSERT(v->ne[0] == M);
  5834. GGML_ASSERT(v->ne[1] == D);
  5835. GGML_ASSERT(d->ne[0] == D);
  5836. GGML_ASSERT(d->ne[1] == N);
  5837. GGML_ASSERT(k->ne[2] == ne2);
  5838. GGML_ASSERT(k->ne[3] == ne3);
  5839. GGML_ASSERT(v->ne[2] == ne2);
  5840. GGML_ASSERT(v->ne[3] == ne3);
  5841. GGML_ASSERT(d->ne[2] == ne2);
  5842. GGML_ASSERT(d->ne[3] == ne3);
  5843. bool is_node = false;
  5844. if (q->grad || k->grad || v->grad) {
  5845. // when using this operation (in backwards pass) these grads are set.
  5846. // we don't want to create (big) grad of our result, so is_node is false.
  5847. is_node = false;
  5848. }
  5849. // store gradients of q, k and v as continuous tensors concatenated in result.
  5850. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5851. // gradq->data = result->data
  5852. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5853. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5854. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5855. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5856. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5857. result->op = GGML_OP_FLASH_ATTN_BACK;
  5858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5859. result->src0 = q;
  5860. result->src1 = k;
  5861. result->opt[0] = v;
  5862. result->opt[1] = d;
  5863. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5864. return result;
  5865. }
  5866. // ggml_win_part
  5867. struct ggml_tensor * ggml_win_part(
  5868. struct ggml_context * ctx,
  5869. struct ggml_tensor * a,
  5870. int w) {
  5871. GGML_ASSERT(a->ne[3] == 1);
  5872. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5873. bool is_node = false;
  5874. if (a->grad) {
  5875. GGML_ASSERT(false); // TODO: implement backward
  5876. is_node = true;
  5877. }
  5878. // padding
  5879. const int px = (w - a->ne[1]%w)%w;
  5880. const int py = (w - a->ne[2]%w)%w;
  5881. const int npx = (px + a->ne[1])/w;
  5882. const int npy = (py + a->ne[2])/w;
  5883. const int np = npx*npy;
  5884. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5885. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5886. ggml_scratch_save(ctx);
  5887. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5888. ((int32_t *) b->data)[0] = npx;
  5889. ((int32_t *) b->data)[1] = npy;
  5890. ((int32_t *) b->data)[2] = w;
  5891. ggml_scratch_load(ctx);
  5892. result->op = GGML_OP_WIN_PART;
  5893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5894. result->src0 = a;
  5895. result->src1 = NULL;
  5896. result->opt[0] = b;
  5897. return result;
  5898. }
  5899. // ggml_win_unpart
  5900. struct ggml_tensor * ggml_win_unpart(
  5901. struct ggml_context * ctx,
  5902. struct ggml_tensor * a,
  5903. int w0,
  5904. int h0,
  5905. int w) {
  5906. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5907. bool is_node = false;
  5908. if (a->grad) {
  5909. GGML_ASSERT(false); // TODO: implement backward
  5910. is_node = true;
  5911. }
  5912. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5913. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5914. ggml_scratch_save(ctx);
  5915. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5916. ((int32_t *) b->data)[0] = w;
  5917. ggml_scratch_load(ctx);
  5918. result->op = GGML_OP_WIN_UNPART;
  5919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5920. result->src0 = a;
  5921. result->src1 = NULL;
  5922. result->opt[0] = b;
  5923. return result;
  5924. }
  5925. // ggml_map_unary
  5926. struct ggml_tensor * ggml_map_unary_impl_f32(
  5927. struct ggml_context * ctx,
  5928. struct ggml_tensor * a,
  5929. const ggml_unary_op_f32_t fun,
  5930. bool inplace) {
  5931. bool is_node = false;
  5932. if (!inplace && a->grad) {
  5933. is_node = true;
  5934. }
  5935. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5936. ggml_scratch_save(ctx);
  5937. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5938. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5939. ggml_scratch_load(ctx);
  5940. result->op = GGML_OP_MAP_UNARY;
  5941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5942. result->src0 = a;
  5943. result->opt[0] = addr_tensor;
  5944. return result;
  5945. }
  5946. struct ggml_tensor * ggml_map_unary_f32(
  5947. struct ggml_context * ctx,
  5948. struct ggml_tensor * a,
  5949. const ggml_unary_op_f32_t fun) {
  5950. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5951. }
  5952. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5953. struct ggml_context * ctx,
  5954. struct ggml_tensor * a,
  5955. const ggml_unary_op_f32_t fun) {
  5956. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5957. }
  5958. // ggml_map_binary
  5959. struct ggml_tensor * ggml_map_binary_impl_f32(
  5960. struct ggml_context * ctx,
  5961. struct ggml_tensor * a,
  5962. struct ggml_tensor * b,
  5963. const ggml_binary_op_f32_t fun,
  5964. bool inplace) {
  5965. GGML_ASSERT(ggml_are_same_shape(a, b));
  5966. bool is_node = false;
  5967. if (!inplace && (a->grad || b->grad)) {
  5968. is_node = true;
  5969. }
  5970. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5971. ggml_scratch_save(ctx);
  5972. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5973. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5974. ggml_scratch_load(ctx);
  5975. result->op = GGML_OP_MAP_BINARY;
  5976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5977. result->src0 = a;
  5978. result->src1 = b;
  5979. result->opt[0] = addr_tensor;
  5980. return result;
  5981. }
  5982. struct ggml_tensor * ggml_map_binary_f32(
  5983. struct ggml_context * ctx,
  5984. struct ggml_tensor * a,
  5985. struct ggml_tensor * b,
  5986. const ggml_binary_op_f32_t fun) {
  5987. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5988. }
  5989. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5990. struct ggml_context * ctx,
  5991. struct ggml_tensor * a,
  5992. struct ggml_tensor * b,
  5993. const ggml_binary_op_f32_t fun) {
  5994. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5995. }
  5996. // ggml_map_custom1
  5997. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5998. struct ggml_context * ctx,
  5999. struct ggml_tensor * a,
  6000. const ggml_custom1_op_f32_t fun,
  6001. bool inplace) {
  6002. bool is_node = false;
  6003. if (!inplace && a->grad) {
  6004. is_node = true;
  6005. }
  6006. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6007. ggml_scratch_save(ctx);
  6008. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6009. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6010. ggml_scratch_load(ctx);
  6011. result->op = GGML_OP_MAP_CUSTOM1;
  6012. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6013. result->src0 = a;
  6014. result->opt[0] = addr_tensor;
  6015. return result;
  6016. }
  6017. struct ggml_tensor * ggml_map_custom1_f32(
  6018. struct ggml_context * ctx,
  6019. struct ggml_tensor * a,
  6020. const ggml_custom1_op_f32_t fun) {
  6021. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6022. }
  6023. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6024. struct ggml_context * ctx,
  6025. struct ggml_tensor * a,
  6026. const ggml_custom1_op_f32_t fun) {
  6027. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6028. }
  6029. // ggml_map_custom2
  6030. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6031. struct ggml_context * ctx,
  6032. struct ggml_tensor * a,
  6033. struct ggml_tensor * b,
  6034. const ggml_custom2_op_f32_t fun,
  6035. bool inplace) {
  6036. bool is_node = false;
  6037. if (!inplace && (a->grad || b->grad)) {
  6038. is_node = true;
  6039. }
  6040. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6041. ggml_scratch_save(ctx);
  6042. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6043. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6044. ggml_scratch_load(ctx);
  6045. result->op = GGML_OP_MAP_CUSTOM2;
  6046. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6047. result->src0 = a;
  6048. result->src1 = b;
  6049. result->opt[0] = addr_tensor;
  6050. return result;
  6051. }
  6052. struct ggml_tensor * ggml_map_custom2_f32(
  6053. struct ggml_context * ctx,
  6054. struct ggml_tensor * a,
  6055. struct ggml_tensor * b,
  6056. const ggml_custom2_op_f32_t fun) {
  6057. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6058. }
  6059. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6060. struct ggml_context * ctx,
  6061. struct ggml_tensor * a,
  6062. struct ggml_tensor * b,
  6063. const ggml_custom2_op_f32_t fun) {
  6064. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6065. }
  6066. // ggml_map_custom3
  6067. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6068. struct ggml_context * ctx,
  6069. struct ggml_tensor * a,
  6070. struct ggml_tensor * b,
  6071. struct ggml_tensor * c,
  6072. const ggml_custom3_op_f32_t fun,
  6073. bool inplace) {
  6074. bool is_node = false;
  6075. if (!inplace && (a->grad || b->grad || c->grad)) {
  6076. is_node = true;
  6077. }
  6078. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6079. ggml_scratch_save(ctx);
  6080. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6081. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6082. ggml_scratch_load(ctx);
  6083. result->op = GGML_OP_MAP_CUSTOM3;
  6084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6085. result->src0 = a;
  6086. result->src1 = b;
  6087. result->opt[0] = addr_tensor;
  6088. result->opt[1] = c;
  6089. return result;
  6090. }
  6091. struct ggml_tensor * ggml_map_custom3_f32(
  6092. struct ggml_context * ctx,
  6093. struct ggml_tensor * a,
  6094. struct ggml_tensor * b,
  6095. struct ggml_tensor * c,
  6096. const ggml_custom3_op_f32_t fun) {
  6097. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6098. }
  6099. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6100. struct ggml_context * ctx,
  6101. struct ggml_tensor * a,
  6102. struct ggml_tensor * b,
  6103. struct ggml_tensor * c,
  6104. const ggml_custom3_op_f32_t fun) {
  6105. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6106. }
  6107. // ggml_cross_entropy_loss
  6108. struct ggml_tensor * ggml_cross_entropy_loss(
  6109. struct ggml_context * ctx,
  6110. struct ggml_tensor * a,
  6111. struct ggml_tensor * b) {
  6112. GGML_ASSERT(ggml_are_same_shape(a, b));
  6113. bool is_node = false;
  6114. if (a->grad || b->grad) {
  6115. is_node = true;
  6116. }
  6117. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6118. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6120. result->src0 = a;
  6121. result->src1 = b;
  6122. return result;
  6123. }
  6124. // ggml_cross_entropy_loss_back
  6125. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6126. struct ggml_context * ctx,
  6127. struct ggml_tensor * a,
  6128. struct ggml_tensor * b,
  6129. struct ggml_tensor * c) {
  6130. GGML_ASSERT(ggml_are_same_shape(a, b));
  6131. GGML_ASSERT(ggml_is_scalar(c));
  6132. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6133. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6134. result->grad = NULL;
  6135. result->src0 = a;
  6136. result->src1 = b;
  6137. result->opt[0] = c;
  6138. return result;
  6139. }
  6140. ////////////////////////////////////////////////////////////////////////////////
  6141. void ggml_set_param(
  6142. struct ggml_context * ctx,
  6143. struct ggml_tensor * tensor) {
  6144. tensor->is_param = true;
  6145. GGML_ASSERT(tensor->grad == NULL);
  6146. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6147. }
  6148. // ggml_compute_forward_dup
  6149. static void ggml_compute_forward_dup_same_cont(
  6150. const struct ggml_compute_params * params,
  6151. const struct ggml_tensor * src0,
  6152. struct ggml_tensor * dst) {
  6153. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6154. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6155. GGML_ASSERT(src0->type == dst->type);
  6156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6157. return;
  6158. }
  6159. const size_t nb00 = src0->nb[0];
  6160. const size_t nb0 = dst->nb[0];
  6161. const int ith = params->ith; // thread index
  6162. const int nth = params->nth; // number of threads
  6163. // parallelize by elements
  6164. const int ne = ggml_nelements(dst);
  6165. const int dr = (ne + nth - 1) / nth;
  6166. const int ie0 = dr * ith;
  6167. const int ie1 = MIN(ie0 + dr, ne);
  6168. if (ie0 < ie1) {
  6169. memcpy(
  6170. ((char *) dst->data + ie0*nb0),
  6171. ((char *) src0->data + ie0*nb00),
  6172. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6173. }
  6174. }
  6175. static void ggml_compute_forward_dup_f16(
  6176. const struct ggml_compute_params * params,
  6177. const struct ggml_tensor * src0,
  6178. struct ggml_tensor * dst) {
  6179. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6180. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6181. return;
  6182. }
  6183. GGML_TENSOR_UNARY_OP_LOCALS;
  6184. const int ith = params->ith; // thread index
  6185. const int nth = params->nth; // number of threads
  6186. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6187. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6188. return;
  6189. }
  6190. // parallelize by rows
  6191. const int nr = ne01;
  6192. // number of rows per thread
  6193. const int dr = (nr + nth - 1) / nth;
  6194. // row range for this thread
  6195. const int ir0 = dr * ith;
  6196. const int ir1 = MIN(ir0 + dr, nr);
  6197. if (src0->type == dst->type &&
  6198. ne00 == ne0 &&
  6199. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6200. // copy by rows
  6201. const size_t rs = ne00*nb00;
  6202. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6203. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6204. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6205. memcpy(
  6206. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6207. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6208. rs);
  6209. }
  6210. }
  6211. }
  6212. return;
  6213. }
  6214. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6215. if (ggml_is_contiguous(dst)) {
  6216. if (nb00 == sizeof(ggml_fp16_t)) {
  6217. if (dst->type == GGML_TYPE_F16) {
  6218. size_t id = 0;
  6219. const size_t rs = ne00 * nb00;
  6220. char * dst_ptr = (char *) dst->data;
  6221. for (int i03 = 0; i03 < ne03; i03++) {
  6222. for (int i02 = 0; i02 < ne02; i02++) {
  6223. id += rs * ir0;
  6224. for (int i01 = ir0; i01 < ir1; i01++) {
  6225. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6226. memcpy(dst_ptr + id, src0_ptr, rs);
  6227. id += rs;
  6228. }
  6229. id += rs * (ne01 - ir1);
  6230. }
  6231. }
  6232. } else if (dst->type == GGML_TYPE_F32) {
  6233. size_t id = 0;
  6234. float * dst_ptr = (float *) dst->data;
  6235. for (int i03 = 0; i03 < ne03; i03++) {
  6236. for (int i02 = 0; i02 < ne02; i02++) {
  6237. id += ne00 * ir0;
  6238. for (int i01 = ir0; i01 < ir1; i01++) {
  6239. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6240. for (int i00 = 0; i00 < ne00; i00++) {
  6241. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6242. id++;
  6243. }
  6244. }
  6245. id += ne00 * (ne01 - ir1);
  6246. }
  6247. }
  6248. } else if (type_traits[dst->type].from_float) {
  6249. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6250. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6251. size_t id = 0;
  6252. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6253. char * dst_ptr = (char *) dst->data;
  6254. for (int i03 = 0; i03 < ne03; i03++) {
  6255. for (int i02 = 0; i02 < ne02; i02++) {
  6256. id += rs * ir0;
  6257. for (int i01 = ir0; i01 < ir1; i01++) {
  6258. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6259. for (int i00 = 0; i00 < ne00; i00++) {
  6260. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6261. }
  6262. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6263. id += rs;
  6264. }
  6265. id += rs * (ne01 - ir1);
  6266. }
  6267. }
  6268. } else {
  6269. GGML_ASSERT(false); // TODO: implement
  6270. }
  6271. } else {
  6272. //printf("%s: this is not optimal - fix me\n", __func__);
  6273. if (dst->type == GGML_TYPE_F32) {
  6274. size_t id = 0;
  6275. float * dst_ptr = (float *) dst->data;
  6276. for (int i03 = 0; i03 < ne03; i03++) {
  6277. for (int i02 = 0; i02 < ne02; i02++) {
  6278. id += ne00 * ir0;
  6279. for (int i01 = ir0; i01 < ir1; i01++) {
  6280. for (int i00 = 0; i00 < ne00; i00++) {
  6281. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6282. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6283. id++;
  6284. }
  6285. }
  6286. id += ne00 * (ne01 - ir1);
  6287. }
  6288. }
  6289. } else if (dst->type == GGML_TYPE_F16) {
  6290. size_t id = 0;
  6291. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6292. for (int i03 = 0; i03 < ne03; i03++) {
  6293. for (int i02 = 0; i02 < ne02; i02++) {
  6294. id += ne00 * ir0;
  6295. for (int i01 = ir0; i01 < ir1; i01++) {
  6296. for (int i00 = 0; i00 < ne00; i00++) {
  6297. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6298. dst_ptr[id] = *src0_ptr;
  6299. id++;
  6300. }
  6301. }
  6302. id += ne00 * (ne01 - ir1);
  6303. }
  6304. }
  6305. } else {
  6306. GGML_ASSERT(false); // TODO: implement
  6307. }
  6308. }
  6309. return;
  6310. }
  6311. // dst counters
  6312. int64_t i10 = 0;
  6313. int64_t i11 = 0;
  6314. int64_t i12 = 0;
  6315. int64_t i13 = 0;
  6316. if (dst->type == GGML_TYPE_F16) {
  6317. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6318. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6319. i10 += ne00 * ir0;
  6320. while (i10 >= ne0) {
  6321. i10 -= ne0;
  6322. if (++i11 == ne1) {
  6323. i11 = 0;
  6324. if (++i12 == ne2) {
  6325. i12 = 0;
  6326. if (++i13 == ne3) {
  6327. i13 = 0;
  6328. }
  6329. }
  6330. }
  6331. }
  6332. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6333. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6334. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6335. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6336. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6337. if (++i10 == ne00) {
  6338. i10 = 0;
  6339. if (++i11 == ne01) {
  6340. i11 = 0;
  6341. if (++i12 == ne02) {
  6342. i12 = 0;
  6343. if (++i13 == ne03) {
  6344. i13 = 0;
  6345. }
  6346. }
  6347. }
  6348. }
  6349. }
  6350. }
  6351. i10 += ne00 * (ne01 - ir1);
  6352. while (i10 >= ne0) {
  6353. i10 -= ne0;
  6354. if (++i11 == ne1) {
  6355. i11 = 0;
  6356. if (++i12 == ne2) {
  6357. i12 = 0;
  6358. if (++i13 == ne3) {
  6359. i13 = 0;
  6360. }
  6361. }
  6362. }
  6363. }
  6364. }
  6365. }
  6366. } else if (dst->type == GGML_TYPE_F32) {
  6367. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6368. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6369. i10 += ne00 * ir0;
  6370. while (i10 >= ne0) {
  6371. i10 -= ne0;
  6372. if (++i11 == ne1) {
  6373. i11 = 0;
  6374. if (++i12 == ne2) {
  6375. i12 = 0;
  6376. if (++i13 == ne3) {
  6377. i13 = 0;
  6378. }
  6379. }
  6380. }
  6381. }
  6382. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6383. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6384. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6385. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6386. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6387. if (++i10 == ne0) {
  6388. i10 = 0;
  6389. if (++i11 == ne1) {
  6390. i11 = 0;
  6391. if (++i12 == ne2) {
  6392. i12 = 0;
  6393. if (++i13 == ne3) {
  6394. i13 = 0;
  6395. }
  6396. }
  6397. }
  6398. }
  6399. }
  6400. }
  6401. i10 += ne00 * (ne01 - ir1);
  6402. while (i10 >= ne0) {
  6403. i10 -= ne0;
  6404. if (++i11 == ne1) {
  6405. i11 = 0;
  6406. if (++i12 == ne2) {
  6407. i12 = 0;
  6408. if (++i13 == ne3) {
  6409. i13 = 0;
  6410. }
  6411. }
  6412. }
  6413. }
  6414. }
  6415. }
  6416. } else {
  6417. GGML_ASSERT(false); // TODO: implement
  6418. }
  6419. }
  6420. static void ggml_compute_forward_dup_f32(
  6421. const struct ggml_compute_params * params,
  6422. const struct ggml_tensor * src0,
  6423. struct ggml_tensor * dst) {
  6424. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6426. return;
  6427. }
  6428. GGML_TENSOR_UNARY_OP_LOCALS;
  6429. const int ith = params->ith; // thread index
  6430. const int nth = params->nth; // number of threads
  6431. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6432. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6433. return;
  6434. }
  6435. // parallelize by rows
  6436. const int nr = ne01;
  6437. // number of rows per thread
  6438. const int dr = (nr + nth - 1) / nth;
  6439. // row range for this thread
  6440. const int ir0 = dr * ith;
  6441. const int ir1 = MIN(ir0 + dr, nr);
  6442. if (src0->type == dst->type &&
  6443. ne00 == ne0 &&
  6444. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6445. // copy by rows
  6446. const size_t rs = ne00*nb00;
  6447. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6448. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6449. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6450. memcpy(
  6451. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6452. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6453. rs);
  6454. }
  6455. }
  6456. }
  6457. return;
  6458. }
  6459. if (ggml_is_contiguous(dst)) {
  6460. // TODO: simplify
  6461. if (nb00 == sizeof(float)) {
  6462. if (dst->type == GGML_TYPE_F32) {
  6463. size_t id = 0;
  6464. const size_t rs = ne00 * nb00;
  6465. char * dst_ptr = (char *) dst->data;
  6466. for (int i03 = 0; i03 < ne03; i03++) {
  6467. for (int i02 = 0; i02 < ne02; i02++) {
  6468. id += rs * ir0;
  6469. for (int i01 = ir0; i01 < ir1; i01++) {
  6470. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6471. memcpy(dst_ptr + id, src0_ptr, rs);
  6472. id += rs;
  6473. }
  6474. id += rs * (ne01 - ir1);
  6475. }
  6476. }
  6477. } else if (type_traits[dst->type].from_float) {
  6478. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6479. size_t id = 0;
  6480. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6481. char * dst_ptr = (char *) dst->data;
  6482. for (int i03 = 0; i03 < ne03; i03++) {
  6483. for (int i02 = 0; i02 < ne02; i02++) {
  6484. id += rs * ir0;
  6485. for (int i01 = ir0; i01 < ir1; i01++) {
  6486. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6487. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6488. id += rs;
  6489. }
  6490. id += rs * (ne01 - ir1);
  6491. }
  6492. }
  6493. } else {
  6494. GGML_ASSERT(false); // TODO: implement
  6495. }
  6496. } else {
  6497. //printf("%s: this is not optimal - fix me\n", __func__);
  6498. if (dst->type == GGML_TYPE_F32) {
  6499. size_t id = 0;
  6500. float * dst_ptr = (float *) dst->data;
  6501. for (int i03 = 0; i03 < ne03; i03++) {
  6502. for (int i02 = 0; i02 < ne02; i02++) {
  6503. id += ne00 * ir0;
  6504. for (int i01 = ir0; i01 < ir1; i01++) {
  6505. for (int i00 = 0; i00 < ne00; i00++) {
  6506. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6507. dst_ptr[id] = *src0_ptr;
  6508. id++;
  6509. }
  6510. }
  6511. id += ne00 * (ne01 - ir1);
  6512. }
  6513. }
  6514. } else if (dst->type == GGML_TYPE_F16) {
  6515. size_t id = 0;
  6516. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6517. for (int i03 = 0; i03 < ne03; i03++) {
  6518. for (int i02 = 0; i02 < ne02; i02++) {
  6519. id += ne00 * ir0;
  6520. for (int i01 = ir0; i01 < ir1; i01++) {
  6521. for (int i00 = 0; i00 < ne00; i00++) {
  6522. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6523. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6524. id++;
  6525. }
  6526. }
  6527. id += ne00 * (ne01 - ir1);
  6528. }
  6529. }
  6530. } else {
  6531. GGML_ASSERT(false); // TODO: implement
  6532. }
  6533. }
  6534. return;
  6535. }
  6536. // dst counters
  6537. int64_t i10 = 0;
  6538. int64_t i11 = 0;
  6539. int64_t i12 = 0;
  6540. int64_t i13 = 0;
  6541. if (dst->type == GGML_TYPE_F32) {
  6542. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6543. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6544. i10 += ne00 * ir0;
  6545. while (i10 >= ne0) {
  6546. i10 -= ne0;
  6547. if (++i11 == ne1) {
  6548. i11 = 0;
  6549. if (++i12 == ne2) {
  6550. i12 = 0;
  6551. if (++i13 == ne3) {
  6552. i13 = 0;
  6553. }
  6554. }
  6555. }
  6556. }
  6557. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6558. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6559. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6560. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6561. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6562. if (++i10 == ne0) {
  6563. i10 = 0;
  6564. if (++i11 == ne1) {
  6565. i11 = 0;
  6566. if (++i12 == ne2) {
  6567. i12 = 0;
  6568. if (++i13 == ne3) {
  6569. i13 = 0;
  6570. }
  6571. }
  6572. }
  6573. }
  6574. }
  6575. }
  6576. i10 += ne00 * (ne01 - ir1);
  6577. while (i10 >= ne0) {
  6578. i10 -= ne0;
  6579. if (++i11 == ne1) {
  6580. i11 = 0;
  6581. if (++i12 == ne2) {
  6582. i12 = 0;
  6583. if (++i13 == ne3) {
  6584. i13 = 0;
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. }
  6591. } else if (dst->type == GGML_TYPE_F16) {
  6592. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6593. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6594. i10 += ne00 * ir0;
  6595. while (i10 >= ne0) {
  6596. i10 -= ne0;
  6597. if (++i11 == ne1) {
  6598. i11 = 0;
  6599. if (++i12 == ne2) {
  6600. i12 = 0;
  6601. if (++i13 == ne3) {
  6602. i13 = 0;
  6603. }
  6604. }
  6605. }
  6606. }
  6607. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6608. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6609. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6610. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6611. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6612. if (++i10 == ne0) {
  6613. i10 = 0;
  6614. if (++i11 == ne1) {
  6615. i11 = 0;
  6616. if (++i12 == ne2) {
  6617. i12 = 0;
  6618. if (++i13 == ne3) {
  6619. i13 = 0;
  6620. }
  6621. }
  6622. }
  6623. }
  6624. }
  6625. }
  6626. i10 += ne00 * (ne01 - ir1);
  6627. while (i10 >= ne0) {
  6628. i10 -= ne0;
  6629. if (++i11 == ne1) {
  6630. i11 = 0;
  6631. if (++i12 == ne2) {
  6632. i12 = 0;
  6633. if (++i13 == ne3) {
  6634. i13 = 0;
  6635. }
  6636. }
  6637. }
  6638. }
  6639. }
  6640. }
  6641. } else {
  6642. GGML_ASSERT(false); // TODO: implement
  6643. }
  6644. }
  6645. static void ggml_compute_forward_dup(
  6646. const struct ggml_compute_params * params,
  6647. const struct ggml_tensor * src0,
  6648. struct ggml_tensor * dst) {
  6649. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6650. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6651. return;
  6652. }
  6653. switch (src0->type) {
  6654. case GGML_TYPE_F16:
  6655. {
  6656. ggml_compute_forward_dup_f16(params, src0, dst);
  6657. } break;
  6658. case GGML_TYPE_F32:
  6659. {
  6660. ggml_compute_forward_dup_f32(params, src0, dst);
  6661. } break;
  6662. default:
  6663. {
  6664. GGML_ASSERT(false);
  6665. } break;
  6666. }
  6667. }
  6668. // ggml_compute_forward_add
  6669. static void ggml_compute_forward_add_f32(
  6670. const struct ggml_compute_params * params,
  6671. const struct ggml_tensor * src0,
  6672. const struct ggml_tensor * src1,
  6673. struct ggml_tensor * dst) {
  6674. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6675. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6676. return;
  6677. }
  6678. const int ith = params->ith;
  6679. const int nth = params->nth;
  6680. const int nr = ggml_nrows(src0);
  6681. GGML_TENSOR_BINARY_OP_LOCALS;
  6682. GGML_ASSERT( nb0 == sizeof(float));
  6683. GGML_ASSERT(nb00 == sizeof(float));
  6684. // rows per thread
  6685. const int dr = (nr + nth - 1)/nth;
  6686. // row range for this thread
  6687. const int ir0 = dr*ith;
  6688. const int ir1 = MIN(ir0 + dr, nr);
  6689. if (nb10 == sizeof(float)) {
  6690. for (int ir = ir0; ir < ir1; ++ir) {
  6691. // src0, src1 and dst are same shape => same indices
  6692. const int i3 = ir/(ne2*ne1);
  6693. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6694. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6695. #ifdef GGML_USE_ACCELERATE
  6696. vDSP_vadd(
  6697. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6698. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6699. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6700. ne0);
  6701. #else
  6702. ggml_vec_add_f32(ne0,
  6703. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6704. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6705. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6706. #endif
  6707. // }
  6708. // }
  6709. }
  6710. } else {
  6711. // src1 is not contiguous
  6712. for (int ir = ir0; ir < ir1; ++ir) {
  6713. // src0, src1 and dst are same shape => same indices
  6714. const int i3 = ir/(ne2*ne1);
  6715. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6716. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6717. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6718. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6719. for (int i0 = 0; i0 < ne0; i0++) {
  6720. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6721. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6722. }
  6723. }
  6724. }
  6725. }
  6726. static void ggml_compute_forward_add_f16_f32(
  6727. const struct ggml_compute_params * params,
  6728. const struct ggml_tensor * src0,
  6729. const struct ggml_tensor * src1,
  6730. struct ggml_tensor * dst) {
  6731. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6732. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6733. return;
  6734. }
  6735. const int ith = params->ith;
  6736. const int nth = params->nth;
  6737. const int nr = ggml_nrows(src0);
  6738. GGML_TENSOR_BINARY_OP_LOCALS;
  6739. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6740. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6741. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6742. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6743. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6744. // rows per thread
  6745. const int dr = (nr + nth - 1)/nth;
  6746. // row range for this thread
  6747. const int ir0 = dr*ith;
  6748. const int ir1 = MIN(ir0 + dr, nr);
  6749. if (nb10 == sizeof(float)) {
  6750. for (int ir = ir0; ir < ir1; ++ir) {
  6751. // src0, src1 and dst are same shape => same indices
  6752. const int i3 = ir/(ne2*ne1);
  6753. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6754. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6755. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6756. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6757. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6758. for (int i = 0; i < ne0; i++) {
  6759. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6760. }
  6761. }
  6762. }
  6763. else {
  6764. // src1 is not contiguous
  6765. GGML_ASSERT(false);
  6766. }
  6767. }
  6768. static void ggml_compute_forward_add_f16_f16(
  6769. const struct ggml_compute_params * params,
  6770. const struct ggml_tensor * src0,
  6771. const struct ggml_tensor * src1,
  6772. struct ggml_tensor * dst) {
  6773. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6775. return;
  6776. }
  6777. const int ith = params->ith;
  6778. const int nth = params->nth;
  6779. const int nr = ggml_nrows(src0);
  6780. GGML_TENSOR_BINARY_OP_LOCALS;
  6781. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6782. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6783. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6784. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6785. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6786. // rows per thread
  6787. const int dr = (nr + nth - 1)/nth;
  6788. // row range for this thread
  6789. const int ir0 = dr*ith;
  6790. const int ir1 = MIN(ir0 + dr, nr);
  6791. if (nb10 == sizeof(ggml_fp16_t)) {
  6792. for (int ir = ir0; ir < ir1; ++ir) {
  6793. // src0, src1 and dst are same shape => same indices
  6794. const int i3 = ir/(ne2*ne1);
  6795. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6796. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6797. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6798. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6799. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6800. for (int i = 0; i < ne0; i++) {
  6801. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6802. }
  6803. }
  6804. }
  6805. else {
  6806. // src1 is not contiguous
  6807. GGML_ASSERT(false);
  6808. }
  6809. }
  6810. static void ggml_compute_forward_add_q_f32(
  6811. const struct ggml_compute_params * params,
  6812. const struct ggml_tensor * src0,
  6813. const struct ggml_tensor * src1,
  6814. struct ggml_tensor * dst) {
  6815. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6817. return;
  6818. }
  6819. const int nr = ggml_nrows(src0);
  6820. GGML_TENSOR_BINARY_OP_LOCALS;
  6821. const int ith = params->ith;
  6822. const int nth = params->nth;
  6823. const enum ggml_type type = src0->type;
  6824. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6825. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6826. // we don't support permuted src0 or src1
  6827. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6828. GGML_ASSERT(nb10 == sizeof(float));
  6829. // dst cannot be transposed or permuted
  6830. GGML_ASSERT(nb0 <= nb1);
  6831. GGML_ASSERT(nb1 <= nb2);
  6832. GGML_ASSERT(nb2 <= nb3);
  6833. GGML_ASSERT(ggml_is_quantized(src0->type));
  6834. GGML_ASSERT(dst->type == src0->type);
  6835. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6836. // rows per thread
  6837. const int dr = (nr + nth - 1)/nth;
  6838. // row range for this thread
  6839. const int ir0 = dr*ith;
  6840. const int ir1 = MIN(ir0 + dr, nr);
  6841. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6842. for (int ir = ir0; ir < ir1; ++ir) {
  6843. // src0 indices
  6844. const int i03 = ir/(ne02*ne01);
  6845. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6846. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6847. // src1 and dst are same shape as src0 => same indices
  6848. const int i13 = i03;
  6849. const int i12 = i02;
  6850. const int i11 = i01;
  6851. const int i3 = i03;
  6852. const int i2 = i02;
  6853. const int i1 = i01;
  6854. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6855. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6856. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6857. assert(ne00 % 32 == 0);
  6858. // unquantize row from src0 to temp buffer
  6859. dequantize_row_q(src0_row, wdata, ne00);
  6860. // add src1
  6861. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6862. // quantize row to dst
  6863. quantize_row_q(wdata, dst_row, ne00);
  6864. }
  6865. }
  6866. static void ggml_compute_forward_add(
  6867. const struct ggml_compute_params * params,
  6868. const struct ggml_tensor * src0,
  6869. const struct ggml_tensor * src1,
  6870. struct ggml_tensor * dst) {
  6871. switch (src0->type) {
  6872. case GGML_TYPE_F32:
  6873. {
  6874. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6875. } break;
  6876. case GGML_TYPE_F16:
  6877. {
  6878. if (src1->type == GGML_TYPE_F16) {
  6879. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6880. }
  6881. else if (src1->type == GGML_TYPE_F32) {
  6882. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6883. }
  6884. else {
  6885. GGML_ASSERT(false);
  6886. }
  6887. } break;
  6888. case GGML_TYPE_Q4_0:
  6889. case GGML_TYPE_Q4_1:
  6890. case GGML_TYPE_Q5_0:
  6891. case GGML_TYPE_Q5_1:
  6892. case GGML_TYPE_Q8_0:
  6893. case GGML_TYPE_Q2_K:
  6894. case GGML_TYPE_Q3_K:
  6895. case GGML_TYPE_Q4_K:
  6896. case GGML_TYPE_Q5_K:
  6897. case GGML_TYPE_Q6_K:
  6898. {
  6899. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6900. } break;
  6901. default:
  6902. {
  6903. GGML_ASSERT(false);
  6904. } break;
  6905. }
  6906. }
  6907. // ggml_compute_forward_add1
  6908. static void ggml_compute_forward_add1_f32(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. const struct ggml_tensor * src1,
  6912. struct ggml_tensor * dst) {
  6913. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6914. GGML_ASSERT(ggml_is_scalar(src1));
  6915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6916. return;
  6917. }
  6918. const int ith = params->ith;
  6919. const int nth = params->nth;
  6920. const int nr = ggml_nrows(src0);
  6921. GGML_TENSOR_UNARY_OP_LOCALS;
  6922. GGML_ASSERT( nb0 == sizeof(float));
  6923. GGML_ASSERT(nb00 == sizeof(float));
  6924. // rows per thread
  6925. const int dr = (nr + nth - 1)/nth;
  6926. // row range for this thread
  6927. const int ir0 = dr*ith;
  6928. const int ir1 = MIN(ir0 + dr, nr);
  6929. for (int ir = ir0; ir < ir1; ++ir) {
  6930. // src0 and dst are same shape => same indices
  6931. const int i3 = ir/(ne2*ne1);
  6932. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6933. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6934. #ifdef GGML_USE_ACCELERATE
  6935. UNUSED(ggml_vec_add1_f32);
  6936. vDSP_vadd(
  6937. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6938. (float *) ((char *) src1->data), 0,
  6939. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6940. ne0);
  6941. #else
  6942. ggml_vec_add1_f32(ne0,
  6943. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6944. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6945. *(float *) src1->data);
  6946. #endif
  6947. }
  6948. }
  6949. static void ggml_compute_forward_add1_f16_f32(
  6950. const struct ggml_compute_params * params,
  6951. const struct ggml_tensor * src0,
  6952. const struct ggml_tensor * src1,
  6953. struct ggml_tensor * dst) {
  6954. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6955. GGML_ASSERT(ggml_is_scalar(src1));
  6956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6957. return;
  6958. }
  6959. // scalar to add
  6960. const float v = *(float *) src1->data;
  6961. const int ith = params->ith;
  6962. const int nth = params->nth;
  6963. const int nr = ggml_nrows(src0);
  6964. GGML_TENSOR_UNARY_OP_LOCALS;
  6965. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6966. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6967. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6968. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6969. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6970. // rows per thread
  6971. const int dr = (nr + nth - 1)/nth;
  6972. // row range for this thread
  6973. const int ir0 = dr*ith;
  6974. const int ir1 = MIN(ir0 + dr, nr);
  6975. for (int ir = ir0; ir < ir1; ++ir) {
  6976. // src0 and dst are same shape => same indices
  6977. const int i3 = ir/(ne2*ne1);
  6978. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6979. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6980. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6981. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6982. for (int i = 0; i < ne0; i++) {
  6983. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6984. }
  6985. }
  6986. }
  6987. static void ggml_compute_forward_add1_f16_f16(
  6988. const struct ggml_compute_params * params,
  6989. const struct ggml_tensor * src0,
  6990. const struct ggml_tensor * src1,
  6991. struct ggml_tensor * dst) {
  6992. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6993. GGML_ASSERT(ggml_is_scalar(src1));
  6994. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6995. return;
  6996. }
  6997. // scalar to add
  6998. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6999. const int ith = params->ith;
  7000. const int nth = params->nth;
  7001. const int nr = ggml_nrows(src0);
  7002. GGML_TENSOR_UNARY_OP_LOCALS;
  7003. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7004. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7005. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7006. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7007. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7008. // rows per thread
  7009. const int dr = (nr + nth - 1)/nth;
  7010. // row range for this thread
  7011. const int ir0 = dr*ith;
  7012. const int ir1 = MIN(ir0 + dr, nr);
  7013. for (int ir = ir0; ir < ir1; ++ir) {
  7014. // src0 and dst are same shape => same indices
  7015. const int i3 = ir/(ne2*ne1);
  7016. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7017. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7018. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7019. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7020. for (int i = 0; i < ne0; i++) {
  7021. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7022. }
  7023. }
  7024. }
  7025. static void ggml_compute_forward_add1_q_f32(
  7026. const struct ggml_compute_params * params,
  7027. const struct ggml_tensor * src0,
  7028. const struct ggml_tensor * src1,
  7029. struct ggml_tensor * dst) {
  7030. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7031. GGML_ASSERT(ggml_is_scalar(src1));
  7032. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7033. return;
  7034. }
  7035. // scalar to add
  7036. const float v = *(float *) src1->data;
  7037. const int ith = params->ith;
  7038. const int nth = params->nth;
  7039. const int nr = ggml_nrows(src0);
  7040. GGML_TENSOR_UNARY_OP_LOCALS;
  7041. const enum ggml_type type = src0->type;
  7042. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7043. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7044. // we don't support permuted src0
  7045. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7046. // dst cannot be transposed or permuted
  7047. GGML_ASSERT(nb0 <= nb1);
  7048. GGML_ASSERT(nb1 <= nb2);
  7049. GGML_ASSERT(nb2 <= nb3);
  7050. GGML_ASSERT(ggml_is_quantized(src0->type));
  7051. GGML_ASSERT(dst->type == src0->type);
  7052. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7053. // rows per thread
  7054. const int dr = (nr + nth - 1)/nth;
  7055. // row range for this thread
  7056. const int ir0 = dr*ith;
  7057. const int ir1 = MIN(ir0 + dr, nr);
  7058. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7059. for (int ir = ir0; ir < ir1; ++ir) {
  7060. // src0 and dst are same shape => same indices
  7061. const int i3 = ir/(ne2*ne1);
  7062. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7063. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7064. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7065. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7066. assert(ne0 % 32 == 0);
  7067. // unquantize row from src0 to temp buffer
  7068. dequantize_row_q(src0_row, wdata, ne0);
  7069. // add src1
  7070. ggml_vec_acc1_f32(ne0, wdata, v);
  7071. // quantize row to dst
  7072. quantize_row_q(wdata, dst_row, ne0);
  7073. }
  7074. }
  7075. static void ggml_compute_forward_add1(
  7076. const struct ggml_compute_params * params,
  7077. const struct ggml_tensor * src0,
  7078. const struct ggml_tensor * src1,
  7079. struct ggml_tensor * dst) {
  7080. switch (src0->type) {
  7081. case GGML_TYPE_F32:
  7082. {
  7083. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7084. } break;
  7085. case GGML_TYPE_F16:
  7086. {
  7087. if (src1->type == GGML_TYPE_F16) {
  7088. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7089. }
  7090. else if (src1->type == GGML_TYPE_F32) {
  7091. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7092. }
  7093. else {
  7094. GGML_ASSERT(false);
  7095. }
  7096. } break;
  7097. case GGML_TYPE_Q4_0:
  7098. case GGML_TYPE_Q4_1:
  7099. case GGML_TYPE_Q5_0:
  7100. case GGML_TYPE_Q5_1:
  7101. case GGML_TYPE_Q8_0:
  7102. case GGML_TYPE_Q8_1:
  7103. case GGML_TYPE_Q2_K:
  7104. case GGML_TYPE_Q3_K:
  7105. case GGML_TYPE_Q4_K:
  7106. case GGML_TYPE_Q5_K:
  7107. case GGML_TYPE_Q6_K:
  7108. {
  7109. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7110. } break;
  7111. default:
  7112. {
  7113. GGML_ASSERT(false);
  7114. } break;
  7115. }
  7116. }
  7117. // ggml_compute_forward_acc
  7118. static void ggml_compute_forward_acc_f32(
  7119. const struct ggml_compute_params * params,
  7120. const struct ggml_tensor * src0,
  7121. const struct ggml_tensor * src1,
  7122. const struct ggml_tensor * opt0,
  7123. struct ggml_tensor * dst) {
  7124. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7125. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7126. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7127. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7128. // view src0 and dst with these strides and data offset inbytes during acc
  7129. // nb0 is implicitely element_size because src0 and dst are contiguous
  7130. size_t nb1 = ((int32_t *) opt0->data)[0];
  7131. size_t nb2 = ((int32_t *) opt0->data)[1];
  7132. size_t nb3 = ((int32_t *) opt0->data)[2];
  7133. size_t offset = ((int32_t *) opt0->data)[3];
  7134. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7135. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7136. // memcpy needs to be synchronized across threads to avoid race conditions.
  7137. // => do it in INIT phase
  7138. memcpy(
  7139. ((char *) dst->data),
  7140. ((char *) src0->data),
  7141. ggml_nbytes(dst));
  7142. }
  7143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7144. return;
  7145. }
  7146. const int ith = params->ith;
  7147. const int nth = params->nth;
  7148. const int nr = ggml_nrows(src1);
  7149. const int nc = src1->ne[0];
  7150. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7151. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7152. // src0 and dst as viewed during acc
  7153. const size_t nb0 = ggml_element_size(src0);
  7154. const size_t nb00 = nb0;
  7155. const size_t nb01 = nb1;
  7156. const size_t nb02 = nb2;
  7157. const size_t nb03 = nb3;
  7158. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7159. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7160. GGML_ASSERT(nb10 == sizeof(float));
  7161. // rows per thread
  7162. const int dr = (nr + nth - 1)/nth;
  7163. // row range for this thread
  7164. const int ir0 = dr*ith;
  7165. const int ir1 = MIN(ir0 + dr, nr);
  7166. for (int ir = ir0; ir < ir1; ++ir) {
  7167. // src0 and dst are viewed with shape of src1 and offset
  7168. // => same indices
  7169. const int i3 = ir/(ne12*ne11);
  7170. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7171. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7172. #ifdef GGML_USE_ACCELERATE
  7173. vDSP_vadd(
  7174. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7175. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7176. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7177. #else
  7178. ggml_vec_add_f32(nc,
  7179. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7180. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7181. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7182. #endif
  7183. }
  7184. }
  7185. static void ggml_compute_forward_acc(
  7186. const struct ggml_compute_params * params,
  7187. const struct ggml_tensor * src0,
  7188. const struct ggml_tensor * src1,
  7189. const struct ggml_tensor * opt0,
  7190. struct ggml_tensor * dst) {
  7191. switch (src0->type) {
  7192. case GGML_TYPE_F32:
  7193. {
  7194. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7195. } break;
  7196. case GGML_TYPE_F16:
  7197. case GGML_TYPE_Q4_0:
  7198. case GGML_TYPE_Q4_1:
  7199. case GGML_TYPE_Q5_0:
  7200. case GGML_TYPE_Q5_1:
  7201. case GGML_TYPE_Q8_0:
  7202. case GGML_TYPE_Q8_1:
  7203. case GGML_TYPE_Q2_K:
  7204. case GGML_TYPE_Q3_K:
  7205. case GGML_TYPE_Q4_K:
  7206. case GGML_TYPE_Q5_K:
  7207. case GGML_TYPE_Q6_K:
  7208. default:
  7209. {
  7210. GGML_ASSERT(false);
  7211. } break;
  7212. }
  7213. }
  7214. // ggml_compute_forward_sub
  7215. static void ggml_compute_forward_sub_f32(
  7216. const struct ggml_compute_params * params,
  7217. const struct ggml_tensor * src0,
  7218. const struct ggml_tensor * src1,
  7219. struct ggml_tensor * dst) {
  7220. assert(params->ith == 0);
  7221. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7222. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7223. return;
  7224. }
  7225. const int nr = ggml_nrows(src0);
  7226. GGML_TENSOR_BINARY_OP_LOCALS;
  7227. GGML_ASSERT( nb0 == sizeof(float));
  7228. GGML_ASSERT(nb00 == sizeof(float));
  7229. if (nb10 == sizeof(float)) {
  7230. for (int ir = 0; ir < nr; ++ir) {
  7231. // src0, src1 and dst are same shape => same indices
  7232. const int i3 = ir/(ne2*ne1);
  7233. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7234. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7235. #ifdef GGML_USE_ACCELERATE
  7236. vDSP_vsub(
  7237. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7238. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7239. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7240. ne0);
  7241. #else
  7242. ggml_vec_sub_f32(ne0,
  7243. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7244. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7245. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7246. #endif
  7247. // }
  7248. // }
  7249. }
  7250. } else {
  7251. // src1 is not contiguous
  7252. for (int ir = 0; ir < nr; ++ir) {
  7253. // src0, src1 and dst are same shape => same indices
  7254. const int i3 = ir/(ne2*ne1);
  7255. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7256. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7257. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7258. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7259. for (int i0 = 0; i0 < ne0; i0++) {
  7260. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7261. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7262. }
  7263. }
  7264. }
  7265. }
  7266. static void ggml_compute_forward_sub(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. const struct ggml_tensor * src1,
  7270. struct ggml_tensor * dst) {
  7271. switch (src0->type) {
  7272. case GGML_TYPE_F32:
  7273. {
  7274. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7275. } break;
  7276. default:
  7277. {
  7278. GGML_ASSERT(false);
  7279. } break;
  7280. }
  7281. }
  7282. // ggml_compute_forward_mul
  7283. static void ggml_compute_forward_mul_f32(
  7284. const struct ggml_compute_params * params,
  7285. const struct ggml_tensor * src0,
  7286. const struct ggml_tensor * src1,
  7287. struct ggml_tensor * dst) {
  7288. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7289. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7290. return;
  7291. }
  7292. const int ith = params->ith;
  7293. const int nth = params->nth;
  7294. #ifdef GGML_USE_CLBLAST
  7295. if (src1->backend == GGML_BACKEND_GPU) {
  7296. if (ith == 0) {
  7297. ggml_cl_mul(src0, src1, dst);
  7298. }
  7299. return;
  7300. }
  7301. #endif
  7302. const int64_t nr = ggml_nrows(src0);
  7303. GGML_TENSOR_BINARY_OP_LOCALS;
  7304. GGML_ASSERT( nb0 == sizeof(float));
  7305. GGML_ASSERT(nb00 == sizeof(float));
  7306. GGML_ASSERT(ne00 == ne10);
  7307. if (nb10 == sizeof(float)) {
  7308. for (int64_t ir = ith; ir < nr; ir += nth) {
  7309. // src0 and dst are same shape => same indices
  7310. const int64_t i03 = ir/(ne02*ne01);
  7311. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7312. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7313. const int64_t i13 = i03 % ne13;
  7314. const int64_t i12 = i02 % ne12;
  7315. const int64_t i11 = i01 % ne11;
  7316. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7317. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7318. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7319. #ifdef GGML_USE_ACCELERATE
  7320. UNUSED(ggml_vec_mul_f32);
  7321. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7322. #else
  7323. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7324. #endif
  7325. // }
  7326. // }
  7327. }
  7328. } else {
  7329. // src1 is not contiguous
  7330. for (int64_t ir = ith; ir < nr; ir += nth) {
  7331. // src0 and dst are same shape => same indices
  7332. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7333. const int64_t i03 = ir/(ne02*ne01);
  7334. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7335. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7336. const int64_t i13 = i03 % ne13;
  7337. const int64_t i12 = i02 % ne12;
  7338. const int64_t i11 = i01 % ne11;
  7339. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7340. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7341. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7342. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7343. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7344. }
  7345. }
  7346. }
  7347. }
  7348. static void ggml_compute_forward_mul(
  7349. const struct ggml_compute_params * params,
  7350. const struct ggml_tensor * src0,
  7351. const struct ggml_tensor * src1,
  7352. struct ggml_tensor * dst) {
  7353. switch (src0->type) {
  7354. case GGML_TYPE_F32:
  7355. {
  7356. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7357. } break;
  7358. default:
  7359. {
  7360. GGML_ASSERT(false);
  7361. } break;
  7362. }
  7363. }
  7364. // ggml_compute_forward_div
  7365. static void ggml_compute_forward_div_f32(
  7366. const struct ggml_compute_params * params,
  7367. const struct ggml_tensor * src0,
  7368. const struct ggml_tensor * src1,
  7369. struct ggml_tensor * dst) {
  7370. assert(params->ith == 0);
  7371. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. const int nr = ggml_nrows(src0);
  7376. GGML_TENSOR_BINARY_OP_LOCALS;
  7377. GGML_ASSERT( nb0 == sizeof(float));
  7378. GGML_ASSERT(nb00 == sizeof(float));
  7379. if (nb10 == sizeof(float)) {
  7380. for (int ir = 0; ir < nr; ++ir) {
  7381. // src0, src1 and dst are same shape => same indices
  7382. const int i3 = ir/(ne2*ne1);
  7383. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7384. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7385. #ifdef GGML_USE_ACCELERATE
  7386. vDSP_vdiv(
  7387. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7388. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7389. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7390. ne0);
  7391. #else
  7392. ggml_vec_div_f32(ne0,
  7393. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7394. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7396. #endif
  7397. // }
  7398. // }
  7399. }
  7400. } else {
  7401. // src1 is not contiguous
  7402. for (int ir = 0; ir < nr; ++ir) {
  7403. // src0, src1 and dst are same shape => same indices
  7404. const int i3 = ir/(ne2*ne1);
  7405. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7406. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7407. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7408. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7409. for (int i0 = 0; i0 < ne0; i0++) {
  7410. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7411. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7412. }
  7413. }
  7414. }
  7415. }
  7416. static void ggml_compute_forward_div(
  7417. const struct ggml_compute_params * params,
  7418. const struct ggml_tensor * src0,
  7419. const struct ggml_tensor * src1,
  7420. struct ggml_tensor * dst) {
  7421. switch (src0->type) {
  7422. case GGML_TYPE_F32:
  7423. {
  7424. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7425. } break;
  7426. default:
  7427. {
  7428. GGML_ASSERT(false);
  7429. } break;
  7430. }
  7431. }
  7432. // ggml_compute_forward_sqr
  7433. static void ggml_compute_forward_sqr_f32(
  7434. const struct ggml_compute_params * params,
  7435. const struct ggml_tensor * src0,
  7436. struct ggml_tensor * dst) {
  7437. assert(params->ith == 0);
  7438. assert(ggml_are_same_shape(src0, dst));
  7439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7440. return;
  7441. }
  7442. const int n = ggml_nrows(src0);
  7443. const int nc = src0->ne[0];
  7444. assert( dst->nb[0] == sizeof(float));
  7445. assert(src0->nb[0] == sizeof(float));
  7446. for (int i = 0; i < n; i++) {
  7447. ggml_vec_sqr_f32(nc,
  7448. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7449. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7450. }
  7451. }
  7452. static void ggml_compute_forward_sqr(
  7453. const struct ggml_compute_params * params,
  7454. const struct ggml_tensor * src0,
  7455. struct ggml_tensor * dst) {
  7456. switch (src0->type) {
  7457. case GGML_TYPE_F32:
  7458. {
  7459. ggml_compute_forward_sqr_f32(params, src0, dst);
  7460. } break;
  7461. default:
  7462. {
  7463. GGML_ASSERT(false);
  7464. } break;
  7465. }
  7466. }
  7467. // ggml_compute_forward_sqrt
  7468. static void ggml_compute_forward_sqrt_f32(
  7469. const struct ggml_compute_params * params,
  7470. const struct ggml_tensor * src0,
  7471. struct ggml_tensor * dst) {
  7472. assert(params->ith == 0);
  7473. assert(ggml_are_same_shape(src0, dst));
  7474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7475. return;
  7476. }
  7477. const int n = ggml_nrows(src0);
  7478. const int nc = src0->ne[0];
  7479. assert( dst->nb[0] == sizeof(float));
  7480. assert(src0->nb[0] == sizeof(float));
  7481. for (int i = 0; i < n; i++) {
  7482. ggml_vec_sqrt_f32(nc,
  7483. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7484. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7485. }
  7486. }
  7487. static void ggml_compute_forward_sqrt(
  7488. const struct ggml_compute_params * params,
  7489. const struct ggml_tensor * src0,
  7490. struct ggml_tensor * dst) {
  7491. switch (src0->type) {
  7492. case GGML_TYPE_F32:
  7493. {
  7494. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7495. } break;
  7496. default:
  7497. {
  7498. GGML_ASSERT(false);
  7499. } break;
  7500. }
  7501. }
  7502. // ggml_compute_forward_log
  7503. static void ggml_compute_forward_log_f32(
  7504. const struct ggml_compute_params * params,
  7505. const struct ggml_tensor * src0,
  7506. struct ggml_tensor * dst) {
  7507. GGML_ASSERT(params->ith == 0);
  7508. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7509. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7510. return;
  7511. }
  7512. const int n = ggml_nrows(src0);
  7513. const int nc = src0->ne[0];
  7514. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7515. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7516. for (int i = 0; i < n; i++) {
  7517. ggml_vec_log_f32(nc,
  7518. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7519. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7520. }
  7521. }
  7522. static void ggml_compute_forward_log(
  7523. const struct ggml_compute_params * params,
  7524. const struct ggml_tensor * src0,
  7525. struct ggml_tensor * dst) {
  7526. switch (src0->type) {
  7527. case GGML_TYPE_F32:
  7528. {
  7529. ggml_compute_forward_log_f32(params, src0, dst);
  7530. } break;
  7531. default:
  7532. {
  7533. GGML_ASSERT(false);
  7534. } break;
  7535. }
  7536. }
  7537. // ggml_compute_forward_sum
  7538. static void ggml_compute_forward_sum_f32(
  7539. const struct ggml_compute_params * params,
  7540. const struct ggml_tensor * src0,
  7541. struct ggml_tensor * dst) {
  7542. assert(params->ith == 0);
  7543. assert(ggml_is_scalar(dst));
  7544. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7545. return;
  7546. }
  7547. assert(ggml_is_scalar(dst));
  7548. assert(src0->nb[0] == sizeof(float));
  7549. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7550. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7551. ggml_float sum = 0;
  7552. ggml_float row_sum = 0;
  7553. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7554. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7555. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7556. ggml_vec_sum_ggf(ne00,
  7557. &row_sum,
  7558. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7559. sum += row_sum;
  7560. }
  7561. }
  7562. }
  7563. ((float *) dst->data)[0] = sum;
  7564. }
  7565. static void ggml_compute_forward_sum(
  7566. const struct ggml_compute_params * params,
  7567. const struct ggml_tensor * src0,
  7568. struct ggml_tensor * dst) {
  7569. switch (src0->type) {
  7570. case GGML_TYPE_F32:
  7571. {
  7572. ggml_compute_forward_sum_f32(params, src0, dst);
  7573. } break;
  7574. default:
  7575. {
  7576. GGML_ASSERT(false);
  7577. } break;
  7578. }
  7579. }
  7580. // ggml_compute_forward_sum_rows
  7581. static void ggml_compute_forward_sum_rows_f32(
  7582. const struct ggml_compute_params * params,
  7583. const struct ggml_tensor * src0,
  7584. struct ggml_tensor * dst) {
  7585. GGML_ASSERT(params->ith == 0);
  7586. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7587. return;
  7588. }
  7589. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7590. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7591. GGML_TENSOR_UNARY_OP_LOCALS;
  7592. GGML_ASSERT(ne0 == 1);
  7593. GGML_ASSERT(ne1 == ne01);
  7594. GGML_ASSERT(ne2 == ne02);
  7595. GGML_ASSERT(ne3 == ne03);
  7596. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7597. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7598. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7599. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7600. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7601. float row_sum = 0;
  7602. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7603. dst_row[0] = row_sum;
  7604. }
  7605. }
  7606. }
  7607. }
  7608. static void ggml_compute_forward_sum_rows(
  7609. const struct ggml_compute_params * params,
  7610. const struct ggml_tensor * src0,
  7611. struct ggml_tensor * dst) {
  7612. switch (src0->type) {
  7613. case GGML_TYPE_F32:
  7614. {
  7615. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7616. } break;
  7617. default:
  7618. {
  7619. GGML_ASSERT(false);
  7620. } break;
  7621. }
  7622. }
  7623. // ggml_compute_forward_mean
  7624. static void ggml_compute_forward_mean_f32(
  7625. const struct ggml_compute_params * params,
  7626. const struct ggml_tensor * src0,
  7627. struct ggml_tensor * dst) {
  7628. assert(params->ith == 0);
  7629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7630. return;
  7631. }
  7632. assert(src0->nb[0] == sizeof(float));
  7633. GGML_TENSOR_UNARY_OP_LOCALS;
  7634. assert(ne0 == 1);
  7635. assert(ne1 == ne01);
  7636. assert(ne2 == ne02);
  7637. assert(ne3 == ne03);
  7638. UNUSED(ne0);
  7639. UNUSED(ne1);
  7640. UNUSED(ne2);
  7641. UNUSED(ne3);
  7642. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7643. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7644. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7645. ggml_vec_sum_f32(ne00,
  7646. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7647. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7648. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7649. }
  7650. }
  7651. }
  7652. }
  7653. static void ggml_compute_forward_mean(
  7654. const struct ggml_compute_params * params,
  7655. const struct ggml_tensor * src0,
  7656. struct ggml_tensor * dst) {
  7657. switch (src0->type) {
  7658. case GGML_TYPE_F32:
  7659. {
  7660. ggml_compute_forward_mean_f32(params, src0, dst);
  7661. } break;
  7662. default:
  7663. {
  7664. GGML_ASSERT(false);
  7665. } break;
  7666. }
  7667. }
  7668. // ggml_compute_forward_argmax
  7669. static void ggml_compute_forward_argmax_f32(
  7670. const struct ggml_compute_params * params,
  7671. const struct ggml_tensor * src0,
  7672. struct ggml_tensor * dst) {
  7673. assert(params->ith == 0);
  7674. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7675. return;
  7676. }
  7677. assert(src0->nb[0] == sizeof(float));
  7678. assert(dst->nb[0] == sizeof(float));
  7679. const int64_t ne00 = src0->ne[0];
  7680. const int64_t ne01 = src0->ne[1];
  7681. const size_t nb01 = src0->nb[1];
  7682. const size_t nb0 = dst->nb[0];
  7683. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7684. float * src = (float *) ((char *) src0->data + i1*nb01);
  7685. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7686. int v = 0;
  7687. ggml_vec_argmax_f32(ne00, &v, src);
  7688. dst_[0] = v;
  7689. }
  7690. }
  7691. static void ggml_compute_forward_argmax(
  7692. const struct ggml_compute_params * params,
  7693. const struct ggml_tensor * src0,
  7694. struct ggml_tensor * dst) {
  7695. switch (src0->type) {
  7696. case GGML_TYPE_F32:
  7697. {
  7698. ggml_compute_forward_argmax_f32(params, src0, dst);
  7699. } break;
  7700. default:
  7701. {
  7702. GGML_ASSERT(false);
  7703. } break;
  7704. }
  7705. }
  7706. // ggml_compute_forward_repeat
  7707. static void ggml_compute_forward_repeat_f32(
  7708. const struct ggml_compute_params * params,
  7709. const struct ggml_tensor * src0,
  7710. struct ggml_tensor * dst) {
  7711. GGML_ASSERT(params->ith == 0);
  7712. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7713. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7714. return;
  7715. }
  7716. GGML_TENSOR_UNARY_OP_LOCALS;
  7717. // guaranteed to be an integer due to the check in ggml_can_repeat
  7718. const int nr0 = (int)(ne0/ne00);
  7719. const int nr1 = (int)(ne1/ne01);
  7720. const int nr2 = (int)(ne2/ne02);
  7721. const int nr3 = (int)(ne3/ne03);
  7722. // TODO: support for transposed / permuted tensors
  7723. GGML_ASSERT(nb0 == sizeof(float));
  7724. GGML_ASSERT(nb00 == sizeof(float));
  7725. // TODO: maybe this is not optimal?
  7726. for (int i3 = 0; i3 < nr3; i3++) {
  7727. for (int k3 = 0; k3 < ne03; k3++) {
  7728. for (int i2 = 0; i2 < nr2; i2++) {
  7729. for (int k2 = 0; k2 < ne02; k2++) {
  7730. for (int i1 = 0; i1 < nr1; i1++) {
  7731. for (int k1 = 0; k1 < ne01; k1++) {
  7732. for (int i0 = 0; i0 < nr0; i0++) {
  7733. ggml_vec_cpy_f32(ne00,
  7734. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7735. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7736. }
  7737. }
  7738. }
  7739. }
  7740. }
  7741. }
  7742. }
  7743. }
  7744. static void ggml_compute_forward_repeat(
  7745. const struct ggml_compute_params * params,
  7746. const struct ggml_tensor * src0,
  7747. struct ggml_tensor * dst) {
  7748. switch (src0->type) {
  7749. case GGML_TYPE_F32:
  7750. {
  7751. ggml_compute_forward_repeat_f32(params, src0, dst);
  7752. } break;
  7753. default:
  7754. {
  7755. GGML_ASSERT(false);
  7756. } break;
  7757. }
  7758. }
  7759. // ggml_compute_forward_repeat_back
  7760. static void ggml_compute_forward_repeat_back_f32(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. struct ggml_tensor * dst) {
  7764. GGML_ASSERT(params->ith == 0);
  7765. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7767. return;
  7768. }
  7769. GGML_TENSOR_UNARY_OP_LOCALS;
  7770. // guaranteed to be an integer due to the check in ggml_can_repeat
  7771. const int nr0 = (int)(ne00/ne0);
  7772. const int nr1 = (int)(ne01/ne1);
  7773. const int nr2 = (int)(ne02/ne2);
  7774. const int nr3 = (int)(ne03/ne3);
  7775. // TODO: support for transposed / permuted tensors
  7776. GGML_ASSERT(nb0 == sizeof(float));
  7777. GGML_ASSERT(nb00 == sizeof(float));
  7778. if (ggml_is_contiguous(dst)) {
  7779. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7780. } else {
  7781. for (int k3 = 0; k3 < ne3; k3++) {
  7782. for (int k2 = 0; k2 < ne2; k2++) {
  7783. for (int k1 = 0; k1 < ne1; k1++) {
  7784. ggml_vec_set_f32(ne0,
  7785. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7786. 0);
  7787. }
  7788. }
  7789. }
  7790. }
  7791. // TODO: maybe this is not optimal?
  7792. for (int i3 = 0; i3 < nr3; i3++) {
  7793. for (int k3 = 0; k3 < ne3; k3++) {
  7794. for (int i2 = 0; i2 < nr2; i2++) {
  7795. for (int k2 = 0; k2 < ne2; k2++) {
  7796. for (int i1 = 0; i1 < nr1; i1++) {
  7797. for (int k1 = 0; k1 < ne1; k1++) {
  7798. for (int i0 = 0; i0 < nr0; i0++) {
  7799. ggml_vec_acc_f32(ne0,
  7800. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7801. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7802. }
  7803. }
  7804. }
  7805. }
  7806. }
  7807. }
  7808. }
  7809. }
  7810. static void ggml_compute_forward_repeat_back(
  7811. const struct ggml_compute_params * params,
  7812. const struct ggml_tensor * src0,
  7813. struct ggml_tensor * dst) {
  7814. switch (src0->type) {
  7815. case GGML_TYPE_F32:
  7816. {
  7817. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7818. } break;
  7819. default:
  7820. {
  7821. GGML_ASSERT(false);
  7822. } break;
  7823. }
  7824. }
  7825. // ggml_compute_forward_abs
  7826. static void ggml_compute_forward_abs_f32(
  7827. const struct ggml_compute_params * params,
  7828. const struct ggml_tensor * src0,
  7829. struct ggml_tensor * dst) {
  7830. assert(params->ith == 0);
  7831. assert(ggml_are_same_shape(src0, dst));
  7832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7833. return;
  7834. }
  7835. const int n = ggml_nrows(src0);
  7836. const int nc = src0->ne[0];
  7837. assert(dst->nb[0] == sizeof(float));
  7838. assert(src0->nb[0] == sizeof(float));
  7839. for (int i = 0; i < n; i++) {
  7840. ggml_vec_abs_f32(nc,
  7841. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7842. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7843. }
  7844. }
  7845. static void ggml_compute_forward_abs(
  7846. const struct ggml_compute_params * params,
  7847. const struct ggml_tensor * src0,
  7848. struct ggml_tensor * dst) {
  7849. switch (src0->type) {
  7850. case GGML_TYPE_F32:
  7851. {
  7852. ggml_compute_forward_abs_f32(params, src0, dst);
  7853. } break;
  7854. default:
  7855. {
  7856. GGML_ASSERT(false);
  7857. } break;
  7858. }
  7859. }
  7860. // ggml_compute_forward_sgn
  7861. static void ggml_compute_forward_sgn_f32(
  7862. const struct ggml_compute_params * params,
  7863. const struct ggml_tensor * src0,
  7864. struct ggml_tensor * dst) {
  7865. assert(params->ith == 0);
  7866. assert(ggml_are_same_shape(src0, dst));
  7867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7868. return;
  7869. }
  7870. const int n = ggml_nrows(src0);
  7871. const int nc = src0->ne[0];
  7872. assert(dst->nb[0] == sizeof(float));
  7873. assert(src0->nb[0] == sizeof(float));
  7874. for (int i = 0; i < n; i++) {
  7875. ggml_vec_sgn_f32(nc,
  7876. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7877. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7878. }
  7879. }
  7880. static void ggml_compute_forward_sgn(
  7881. const struct ggml_compute_params * params,
  7882. const struct ggml_tensor * src0,
  7883. struct ggml_tensor * dst) {
  7884. switch (src0->type) {
  7885. case GGML_TYPE_F32:
  7886. {
  7887. ggml_compute_forward_sgn_f32(params, src0, dst);
  7888. } break;
  7889. default:
  7890. {
  7891. GGML_ASSERT(false);
  7892. } break;
  7893. }
  7894. }
  7895. // ggml_compute_forward_neg
  7896. static void ggml_compute_forward_neg_f32(
  7897. const struct ggml_compute_params * params,
  7898. const struct ggml_tensor * src0,
  7899. struct ggml_tensor * dst) {
  7900. assert(params->ith == 0);
  7901. assert(ggml_are_same_shape(src0, dst));
  7902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7903. return;
  7904. }
  7905. const int n = ggml_nrows(src0);
  7906. const int nc = src0->ne[0];
  7907. assert(dst->nb[0] == sizeof(float));
  7908. assert(src0->nb[0] == sizeof(float));
  7909. for (int i = 0; i < n; i++) {
  7910. ggml_vec_neg_f32(nc,
  7911. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7912. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7913. }
  7914. }
  7915. static void ggml_compute_forward_neg(
  7916. const struct ggml_compute_params * params,
  7917. const struct ggml_tensor * src0,
  7918. struct ggml_tensor * dst) {
  7919. switch (src0->type) {
  7920. case GGML_TYPE_F32:
  7921. {
  7922. ggml_compute_forward_neg_f32(params, src0, dst);
  7923. } break;
  7924. default:
  7925. {
  7926. GGML_ASSERT(false);
  7927. } break;
  7928. }
  7929. }
  7930. // ggml_compute_forward_step
  7931. static void ggml_compute_forward_step_f32(
  7932. const struct ggml_compute_params * params,
  7933. const struct ggml_tensor * src0,
  7934. struct ggml_tensor * dst) {
  7935. assert(params->ith == 0);
  7936. assert(ggml_are_same_shape(src0, dst));
  7937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7938. return;
  7939. }
  7940. const int n = ggml_nrows(src0);
  7941. const int nc = src0->ne[0];
  7942. assert(dst->nb[0] == sizeof(float));
  7943. assert(src0->nb[0] == sizeof(float));
  7944. for (int i = 0; i < n; i++) {
  7945. ggml_vec_step_f32(nc,
  7946. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7947. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7948. }
  7949. }
  7950. static void ggml_compute_forward_step(
  7951. const struct ggml_compute_params * params,
  7952. const struct ggml_tensor * src0,
  7953. struct ggml_tensor * dst) {
  7954. switch (src0->type) {
  7955. case GGML_TYPE_F32:
  7956. {
  7957. ggml_compute_forward_step_f32(params, src0, dst);
  7958. } break;
  7959. default:
  7960. {
  7961. GGML_ASSERT(false);
  7962. } break;
  7963. }
  7964. }
  7965. // ggml_compute_forward_tanh
  7966. static void ggml_compute_forward_tanh_f32(
  7967. const struct ggml_compute_params * params,
  7968. const struct ggml_tensor * src0,
  7969. struct ggml_tensor * dst) {
  7970. assert(params->ith == 0);
  7971. assert(ggml_are_same_shape(src0, dst));
  7972. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7973. return;
  7974. }
  7975. const int n = ggml_nrows(src0);
  7976. const int nc = src0->ne[0];
  7977. assert(dst->nb[0] == sizeof(float));
  7978. assert(src0->nb[0] == sizeof(float));
  7979. for (int i = 0; i < n; i++) {
  7980. ggml_vec_tanh_f32(nc,
  7981. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7982. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7983. }
  7984. }
  7985. static void ggml_compute_forward_tanh(
  7986. const struct ggml_compute_params * params,
  7987. const struct ggml_tensor * src0,
  7988. struct ggml_tensor * dst) {
  7989. switch (src0->type) {
  7990. case GGML_TYPE_F32:
  7991. {
  7992. ggml_compute_forward_tanh_f32(params, src0, dst);
  7993. } break;
  7994. default:
  7995. {
  7996. GGML_ASSERT(false);
  7997. } break;
  7998. }
  7999. }
  8000. // ggml_compute_forward_elu
  8001. static void ggml_compute_forward_elu_f32(
  8002. const struct ggml_compute_params * params,
  8003. const struct ggml_tensor * src0,
  8004. struct ggml_tensor * dst) {
  8005. assert(params->ith == 0);
  8006. assert(ggml_are_same_shape(src0, dst));
  8007. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8008. return;
  8009. }
  8010. const int n = ggml_nrows(src0);
  8011. const int nc = src0->ne[0];
  8012. assert(dst->nb[0] == sizeof(float));
  8013. assert(src0->nb[0] == sizeof(float));
  8014. for (int i = 0; i < n; i++) {
  8015. ggml_vec_elu_f32(nc,
  8016. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8017. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8018. }
  8019. }
  8020. static void ggml_compute_forward_elu(
  8021. const struct ggml_compute_params * params,
  8022. const struct ggml_tensor * src0,
  8023. struct ggml_tensor * dst) {
  8024. switch (src0->type) {
  8025. case GGML_TYPE_F32:
  8026. {
  8027. ggml_compute_forward_elu_f32(params, src0, dst);
  8028. } break;
  8029. default:
  8030. {
  8031. GGML_ASSERT(false);
  8032. } break;
  8033. }
  8034. }
  8035. // ggml_compute_forward_relu
  8036. static void ggml_compute_forward_relu_f32(
  8037. const struct ggml_compute_params * params,
  8038. const struct ggml_tensor * src0,
  8039. struct ggml_tensor * dst) {
  8040. assert(params->ith == 0);
  8041. assert(ggml_are_same_shape(src0, dst));
  8042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8043. return;
  8044. }
  8045. const int n = ggml_nrows(src0);
  8046. const int nc = src0->ne[0];
  8047. assert(dst->nb[0] == sizeof(float));
  8048. assert(src0->nb[0] == sizeof(float));
  8049. for (int i = 0; i < n; i++) {
  8050. ggml_vec_relu_f32(nc,
  8051. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8052. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8053. }
  8054. }
  8055. static void ggml_compute_forward_relu(
  8056. const struct ggml_compute_params * params,
  8057. const struct ggml_tensor * src0,
  8058. struct ggml_tensor * dst) {
  8059. switch (src0->type) {
  8060. case GGML_TYPE_F32:
  8061. {
  8062. ggml_compute_forward_relu_f32(params, src0, dst);
  8063. } break;
  8064. default:
  8065. {
  8066. GGML_ASSERT(false);
  8067. } break;
  8068. }
  8069. }
  8070. // ggml_compute_forward_gelu
  8071. static void ggml_compute_forward_gelu_f32(
  8072. const struct ggml_compute_params * params,
  8073. const struct ggml_tensor * src0,
  8074. struct ggml_tensor * dst) {
  8075. GGML_ASSERT(ggml_is_contiguous(src0));
  8076. GGML_ASSERT(ggml_is_contiguous(dst));
  8077. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8079. return;
  8080. }
  8081. const int ith = params->ith;
  8082. const int nth = params->nth;
  8083. const int nc = src0->ne[0];
  8084. const int nr = ggml_nrows(src0);
  8085. // rows per thread
  8086. const int dr = (nr + nth - 1)/nth;
  8087. // row range for this thread
  8088. const int ir0 = dr*ith;
  8089. const int ir1 = MIN(ir0 + dr, nr);
  8090. for (int i1 = ir0; i1 < ir1; i1++) {
  8091. ggml_vec_gelu_f32(nc,
  8092. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8093. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8094. #ifndef NDEBUG
  8095. for (int k = 0; k < nc; k++) {
  8096. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8097. UNUSED(x);
  8098. assert(!isnan(x));
  8099. assert(!isinf(x));
  8100. }
  8101. #endif
  8102. }
  8103. }
  8104. static void ggml_compute_forward_gelu(
  8105. const struct ggml_compute_params * params,
  8106. const struct ggml_tensor * src0,
  8107. struct ggml_tensor * dst) {
  8108. switch (src0->type) {
  8109. case GGML_TYPE_F32:
  8110. {
  8111. ggml_compute_forward_gelu_f32(params, src0, dst);
  8112. } break;
  8113. default:
  8114. {
  8115. GGML_ASSERT(false);
  8116. } break;
  8117. }
  8118. }
  8119. // ggml_compute_forward_gelu_quick
  8120. static void ggml_compute_forward_gelu_quick_f32(
  8121. const struct ggml_compute_params * params,
  8122. const struct ggml_tensor * src0,
  8123. struct ggml_tensor * dst) {
  8124. GGML_ASSERT(ggml_is_contiguous(src0));
  8125. GGML_ASSERT(ggml_is_contiguous(dst));
  8126. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8128. return;
  8129. }
  8130. const int ith = params->ith;
  8131. const int nth = params->nth;
  8132. const int nc = src0->ne[0];
  8133. const int nr = ggml_nrows(src0);
  8134. // rows per thread
  8135. const int dr = (nr + nth - 1)/nth;
  8136. // row range for this thread
  8137. const int ir0 = dr*ith;
  8138. const int ir1 = MIN(ir0 + dr, nr);
  8139. for (int i1 = ir0; i1 < ir1; i1++) {
  8140. ggml_vec_gelu_quick_f32(nc,
  8141. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8142. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8143. #ifndef NDEBUG
  8144. for (int k = 0; k < nc; k++) {
  8145. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8146. UNUSED(x);
  8147. assert(!isnan(x));
  8148. assert(!isinf(x));
  8149. }
  8150. #endif
  8151. }
  8152. }
  8153. static void ggml_compute_forward_gelu_quick(
  8154. const struct ggml_compute_params * params,
  8155. const struct ggml_tensor * src0,
  8156. struct ggml_tensor * dst) {
  8157. switch (src0->type) {
  8158. case GGML_TYPE_F32:
  8159. {
  8160. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8161. } break;
  8162. default:
  8163. {
  8164. GGML_ASSERT(false);
  8165. } break;
  8166. }
  8167. }
  8168. // ggml_compute_forward_silu
  8169. static void ggml_compute_forward_silu_f32(
  8170. const struct ggml_compute_params * params,
  8171. const struct ggml_tensor * src0,
  8172. struct ggml_tensor * dst) {
  8173. GGML_ASSERT(ggml_is_contiguous(src0));
  8174. GGML_ASSERT(ggml_is_contiguous(dst));
  8175. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8176. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8177. return;
  8178. }
  8179. const int ith = params->ith;
  8180. const int nth = params->nth;
  8181. const int nc = src0->ne[0];
  8182. const int nr = ggml_nrows(src0);
  8183. // rows per thread
  8184. const int dr = (nr + nth - 1)/nth;
  8185. // row range for this thread
  8186. const int ir0 = dr*ith;
  8187. const int ir1 = MIN(ir0 + dr, nr);
  8188. for (int i1 = ir0; i1 < ir1; i1++) {
  8189. ggml_vec_silu_f32(nc,
  8190. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8191. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8192. #ifndef NDEBUG
  8193. for (int k = 0; k < nc; k++) {
  8194. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8195. UNUSED(x);
  8196. assert(!isnan(x));
  8197. assert(!isinf(x));
  8198. }
  8199. #endif
  8200. }
  8201. }
  8202. static void ggml_compute_forward_silu(
  8203. const struct ggml_compute_params * params,
  8204. const struct ggml_tensor * src0,
  8205. struct ggml_tensor * dst) {
  8206. switch (src0->type) {
  8207. case GGML_TYPE_F32:
  8208. {
  8209. ggml_compute_forward_silu_f32(params, src0, dst);
  8210. } break;
  8211. default:
  8212. {
  8213. GGML_ASSERT(false);
  8214. } break;
  8215. }
  8216. }
  8217. // ggml_compute_forward_silu_back
  8218. static void ggml_compute_forward_silu_back_f32(
  8219. const struct ggml_compute_params * params,
  8220. const struct ggml_tensor * src0,
  8221. const struct ggml_tensor * grad,
  8222. struct ggml_tensor * dst) {
  8223. GGML_ASSERT(ggml_is_contiguous(grad));
  8224. GGML_ASSERT(ggml_is_contiguous(src0));
  8225. GGML_ASSERT(ggml_is_contiguous(dst));
  8226. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8227. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8228. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8229. return;
  8230. }
  8231. const int ith = params->ith;
  8232. const int nth = params->nth;
  8233. const int nc = src0->ne[0];
  8234. const int nr = ggml_nrows(src0);
  8235. // rows per thread
  8236. const int dr = (nr + nth - 1)/nth;
  8237. // row range for this thread
  8238. const int ir0 = dr*ith;
  8239. const int ir1 = MIN(ir0 + dr, nr);
  8240. for (int i1 = ir0; i1 < ir1; i1++) {
  8241. ggml_vec_silu_backward_f32(nc,
  8242. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8243. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8244. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8245. #ifndef NDEBUG
  8246. for (int k = 0; k < nc; k++) {
  8247. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8248. UNUSED(x);
  8249. assert(!isnan(x));
  8250. assert(!isinf(x));
  8251. }
  8252. #endif
  8253. }
  8254. }
  8255. static void ggml_compute_forward_silu_back(
  8256. const struct ggml_compute_params * params,
  8257. const struct ggml_tensor * src0,
  8258. const struct ggml_tensor * grad,
  8259. struct ggml_tensor * dst) {
  8260. switch (src0->type) {
  8261. case GGML_TYPE_F32:
  8262. {
  8263. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8264. } break;
  8265. default:
  8266. {
  8267. GGML_ASSERT(false);
  8268. } break;
  8269. }
  8270. }
  8271. // ggml_compute_forward_norm
  8272. static void ggml_compute_forward_norm_f32(
  8273. const struct ggml_compute_params * params,
  8274. const struct ggml_tensor * src0,
  8275. struct ggml_tensor * dst) {
  8276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8278. return;
  8279. }
  8280. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8281. const int ith = params->ith;
  8282. const int nth = params->nth;
  8283. GGML_TENSOR_UNARY_OP_LOCALS;
  8284. const float eps = 1e-5f; // TODO: make this a parameter
  8285. // TODO: optimize
  8286. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8287. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8288. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8289. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8290. ggml_float sum = 0.0;
  8291. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8292. sum += (ggml_float)x[i00];
  8293. }
  8294. float mean = sum/ne00;
  8295. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8296. ggml_float sum2 = 0.0;
  8297. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8298. float v = x[i00] - mean;
  8299. y[i00] = v;
  8300. sum2 += (ggml_float)(v*v);
  8301. }
  8302. float variance = sum2/ne00;
  8303. const float scale = 1.0f/sqrtf(variance + eps);
  8304. ggml_vec_scale_f32(ne00, y, scale);
  8305. }
  8306. }
  8307. }
  8308. }
  8309. static void ggml_compute_forward_norm(
  8310. const struct ggml_compute_params * params,
  8311. const struct ggml_tensor * src0,
  8312. struct ggml_tensor * dst) {
  8313. switch (src0->type) {
  8314. case GGML_TYPE_F32:
  8315. {
  8316. ggml_compute_forward_norm_f32(params, src0, dst);
  8317. } break;
  8318. default:
  8319. {
  8320. GGML_ASSERT(false);
  8321. } break;
  8322. }
  8323. }
  8324. static void ggml_compute_forward_rms_norm_f32(
  8325. const struct ggml_compute_params * params,
  8326. const struct ggml_tensor * src0,
  8327. struct ggml_tensor * dst) {
  8328. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8330. return;
  8331. }
  8332. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8333. const int ith = params->ith;
  8334. const int nth = params->nth;
  8335. GGML_TENSOR_UNARY_OP_LOCALS;
  8336. const float eps = 1e-6f; // TODO: make this a parameter
  8337. // TODO: optimize
  8338. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8339. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8340. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8341. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8342. ggml_float sum = 0.0;
  8343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8344. sum += (ggml_float)(x[i00] * x[i00]);
  8345. }
  8346. const float mean = sum/ne00;
  8347. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8348. memcpy(y, x, ne00 * sizeof(float));
  8349. // for (int i00 = 0; i00 < ne00; i00++) {
  8350. // y[i00] = x[i00];
  8351. // }
  8352. const float scale = 1.0f/sqrtf(mean + eps);
  8353. ggml_vec_scale_f32(ne00, y, scale);
  8354. }
  8355. }
  8356. }
  8357. }
  8358. static void ggml_compute_forward_rms_norm(
  8359. const struct ggml_compute_params * params,
  8360. const struct ggml_tensor * src0,
  8361. struct ggml_tensor * dst) {
  8362. switch (src0->type) {
  8363. case GGML_TYPE_F32:
  8364. {
  8365. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8366. } break;
  8367. default:
  8368. {
  8369. GGML_ASSERT(false);
  8370. } break;
  8371. }
  8372. }
  8373. static void ggml_compute_forward_rms_norm_back_f32(
  8374. const struct ggml_compute_params * params,
  8375. const struct ggml_tensor * src0,
  8376. const struct ggml_tensor * src1,
  8377. struct ggml_tensor * dst) {
  8378. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8379. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8380. return;
  8381. }
  8382. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8383. const int ith = params->ith;
  8384. const int nth = params->nth;
  8385. GGML_TENSOR_BINARY_OP_LOCALS;
  8386. const float eps = 1e-6f; // TODO: make this a parameter
  8387. // TODO: optimize
  8388. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8389. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8390. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8391. // src1 is same shape as src0 => same indices
  8392. const int64_t i11 = i01;
  8393. const int64_t i12 = i02;
  8394. const int64_t i13 = i03;
  8395. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8396. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8397. ggml_float sum_xx = 0.0;
  8398. ggml_float sum_xdz = 0.0;
  8399. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8400. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8401. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8402. }
  8403. //const float mean = (float)(sum_xx)/ne00;
  8404. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8405. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8406. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8407. // we could cache rms from forward pass to improve performance.
  8408. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8409. //const float rms = sqrtf(mean_eps);
  8410. const float rrms = 1.0f / sqrtf(mean_eps);
  8411. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8412. {
  8413. // z = rms_norm(x)
  8414. //
  8415. // rms_norm(src0) =
  8416. // scale(
  8417. // src0,
  8418. // div(
  8419. // 1,
  8420. // sqrt(
  8421. // add(
  8422. // scale(
  8423. // sum(
  8424. // sqr(
  8425. // src0)),
  8426. // (1.0/N)),
  8427. // eps))));
  8428. // postorder:
  8429. // ## op args grad
  8430. // 00 param src0 grad[#00]
  8431. // 01 const 1
  8432. // 02 sqr (#00) grad[#02]
  8433. // 03 sum (#02) grad[#03]
  8434. // 04 const 1/N
  8435. // 05 scale (#03, #04) grad[#05]
  8436. // 06 const eps
  8437. // 07 add (#05, #06) grad[#07]
  8438. // 08 sqrt (#07) grad[#08]
  8439. // 09 div (#01,#08) grad[#09]
  8440. // 10 scale (#00,#09) grad[#10]
  8441. //
  8442. // backward pass, given grad[#10]
  8443. // #10: scale
  8444. // grad[#00] += scale(grad[#10],#09)
  8445. // grad[#09] += sum(mul(grad[#10],#00))
  8446. // #09: div
  8447. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8448. // #08: sqrt
  8449. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8450. // #07: add
  8451. // grad[#05] += grad[#07]
  8452. // #05: scale
  8453. // grad[#03] += scale(grad[#05],#04)
  8454. // #03: sum
  8455. // grad[#02] += repeat(grad[#03], #02)
  8456. // #02:
  8457. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8458. //
  8459. // substitute and simplify:
  8460. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8461. // grad[#02] = repeat(grad[#03], #02)
  8462. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8463. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8464. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8465. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8466. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8467. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8468. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8469. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8470. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8471. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8472. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8473. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8474. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8475. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8476. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8477. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8478. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8479. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8480. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8481. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8482. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8483. // a = b*c + d*e
  8484. // a = b*c*f/f + d*e*f/f
  8485. // a = (b*c*f + d*e*f)*(1/f)
  8486. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8487. // a = (b + d*e/c)*c
  8488. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8489. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8490. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8491. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8492. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8493. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8494. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8495. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8496. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8497. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8498. }
  8499. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8500. // post-order:
  8501. // dx := x
  8502. // dx := scale(dx,-mean_xdz/mean_eps)
  8503. // dx := add(dx, dz)
  8504. // dx := scale(dx, rrms)
  8505. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8506. ggml_vec_cpy_f32 (ne00, dx, x);
  8507. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8508. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8509. ggml_vec_acc_f32 (ne00, dx, dz);
  8510. ggml_vec_scale_f32(ne00, dx, rrms);
  8511. }
  8512. }
  8513. }
  8514. }
  8515. static void ggml_compute_forward_rms_norm_back(
  8516. const struct ggml_compute_params * params,
  8517. const struct ggml_tensor * src0,
  8518. const struct ggml_tensor * src1,
  8519. struct ggml_tensor * dst) {
  8520. switch (src0->type) {
  8521. case GGML_TYPE_F32:
  8522. {
  8523. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8524. } break;
  8525. default:
  8526. {
  8527. GGML_ASSERT(false);
  8528. } break;
  8529. }
  8530. }
  8531. // ggml_compute_forward_mul_mat
  8532. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8533. // helper function to determine if it is better to use BLAS or not
  8534. // for large matrices, BLAS is faster
  8535. static bool ggml_compute_forward_mul_mat_use_blas(
  8536. const struct ggml_tensor * src0,
  8537. const struct ggml_tensor * src1,
  8538. struct ggml_tensor * dst) {
  8539. //const int64_t ne00 = src0->ne[0];
  8540. //const int64_t ne01 = src0->ne[1];
  8541. const int64_t ne10 = src1->ne[0];
  8542. const int64_t ne0 = dst->ne[0];
  8543. const int64_t ne1 = dst->ne[1];
  8544. // TODO: find the optimal values for these
  8545. if (ggml_is_contiguous(src0) &&
  8546. ggml_is_contiguous(src1) &&
  8547. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8548. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8549. return true;
  8550. }
  8551. return false;
  8552. }
  8553. #endif
  8554. static void ggml_compute_forward_mul_mat(
  8555. const struct ggml_compute_params * params,
  8556. const struct ggml_tensor * src0,
  8557. const struct ggml_tensor * src1,
  8558. struct ggml_tensor * dst) {
  8559. int64_t t0 = ggml_perf_time_us();
  8560. UNUSED(t0);
  8561. GGML_TENSOR_BINARY_OP_LOCALS;
  8562. const int ith = params->ith;
  8563. const int nth = params->nth;
  8564. GGML_ASSERT(ne02 == ne12);
  8565. GGML_ASSERT(ne03 == ne13);
  8566. GGML_ASSERT(ne2 == ne12);
  8567. GGML_ASSERT(ne3 == ne13);
  8568. const enum ggml_type type = src0->type;
  8569. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8570. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8571. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8572. // we don't support permuted src0 or src1
  8573. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8574. GGML_ASSERT(nb10 == sizeof(float));
  8575. // dst cannot be transposed or permuted
  8576. GGML_ASSERT(nb0 == sizeof(float));
  8577. GGML_ASSERT(nb0 <= nb1);
  8578. GGML_ASSERT(nb1 <= nb2);
  8579. GGML_ASSERT(nb2 <= nb3);
  8580. GGML_ASSERT(ne0 == ne01);
  8581. GGML_ASSERT(ne1 == ne11);
  8582. GGML_ASSERT(ne2 == ne02);
  8583. GGML_ASSERT(ne3 == ne03);
  8584. // nb01 >= nb00 - src0 is not transposed
  8585. // compute by src0 rows
  8586. #if defined(GGML_USE_CLBLAST)
  8587. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8588. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8589. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8590. }
  8591. return;
  8592. }
  8593. #endif
  8594. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8595. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8596. if (params->ith != 0) {
  8597. return;
  8598. }
  8599. if (params->type == GGML_TASK_INIT) {
  8600. return;
  8601. }
  8602. if (params->type == GGML_TASK_FINALIZE) {
  8603. return;
  8604. }
  8605. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8606. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8607. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8608. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8609. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8610. if (type != GGML_TYPE_F32) {
  8611. float * const wdata = params->wdata;
  8612. ggml_to_float_t const to_float = type_traits[type].to_float;
  8613. size_t id = 0;
  8614. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8615. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8616. id += ne00;
  8617. }
  8618. assert(id*sizeof(float) <= params->wsize);
  8619. x = wdata;
  8620. }
  8621. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8622. ne11, ne01, ne10,
  8623. 1.0f, y, ne10,
  8624. x, ne00,
  8625. 0.0f, d, ne01);
  8626. }
  8627. }
  8628. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8629. return;
  8630. }
  8631. #endif
  8632. if (params->type == GGML_TASK_INIT) {
  8633. if (src1->type != vec_dot_type) {
  8634. char * wdata = params->wdata;
  8635. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8636. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8637. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8638. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8639. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8640. wdata += row_size;
  8641. }
  8642. }
  8643. }
  8644. }
  8645. return;
  8646. }
  8647. if (params->type == GGML_TASK_FINALIZE) {
  8648. return;
  8649. }
  8650. // parallelize by src0 rows using ggml_vec_dot_q
  8651. // total rows in src0
  8652. const int nr = ne01*ne02*ne03;
  8653. // rows per thread
  8654. const int dr = (nr + nth - 1)/nth;
  8655. // row range for this thread
  8656. const int ir0 = dr*ith;
  8657. const int ir1 = MIN(ir0 + dr, nr);
  8658. void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8659. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8660. for (int ir = ir0; ir < ir1; ++ir) {
  8661. // src0 indices
  8662. const int i03 = ir/(ne02*ne01);
  8663. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8664. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8665. const int i13 = i03;
  8666. const int i12 = i02;
  8667. const int i0 = i01;
  8668. const int i2 = i02;
  8669. const int i3 = i03;
  8670. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8671. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8672. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8673. assert(ne00 % 32 == 0);
  8674. for (int64_t ic = 0; ic < ne11; ++ic) {
  8675. vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8676. }
  8677. }
  8678. //int64_t t1 = ggml_time_us();
  8679. //static int64_t acc = 0;
  8680. //acc += t1 - t0;
  8681. //if (t1 - t0 > 10) {
  8682. // printf("\n");
  8683. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8684. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8685. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8686. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8687. //}
  8688. }
  8689. // ggml_compute_forward_out_prod
  8690. static void ggml_compute_forward_out_prod_f32(
  8691. const struct ggml_compute_params * params,
  8692. const struct ggml_tensor * src0,
  8693. const struct ggml_tensor * src1,
  8694. struct ggml_tensor * dst) {
  8695. int64_t t0 = ggml_perf_time_us();
  8696. UNUSED(t0);
  8697. GGML_TENSOR_BINARY_OP_LOCALS;
  8698. const int ith = params->ith;
  8699. const int nth = params->nth;
  8700. GGML_ASSERT(ne02 == ne12);
  8701. GGML_ASSERT(ne03 == ne13);
  8702. GGML_ASSERT(ne2 == ne12);
  8703. GGML_ASSERT(ne3 == ne13);
  8704. // we don't support permuted src0 or src1
  8705. GGML_ASSERT(nb00 == sizeof(float));
  8706. // dst cannot be transposed or permuted
  8707. GGML_ASSERT(nb0 == sizeof(float));
  8708. // GGML_ASSERT(nb0 <= nb1);
  8709. // GGML_ASSERT(nb1 <= nb2);
  8710. // GGML_ASSERT(nb2 <= nb3);
  8711. GGML_ASSERT(ne0 == ne00);
  8712. GGML_ASSERT(ne1 == ne10);
  8713. GGML_ASSERT(ne2 == ne02);
  8714. GGML_ASSERT(ne3 == ne03);
  8715. // nb01 >= nb00 - src0 is not transposed
  8716. // compute by src0 rows
  8717. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8718. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8719. if (params->type == GGML_TASK_INIT) {
  8720. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8721. return;
  8722. }
  8723. if (params->type == GGML_TASK_FINALIZE) {
  8724. return;
  8725. }
  8726. // parallelize by last three dimensions
  8727. // total rows in dst
  8728. const int64_t nr = ne1*ne2*ne3;
  8729. // rows per thread
  8730. const int64_t dr = (nr + nth - 1)/nth;
  8731. // row range for this thread
  8732. const int64_t ir0 = dr*ith;
  8733. const int64_t ir1 = MIN(ir0 + dr, nr);
  8734. // dst[:,:,:,:] = 0
  8735. // for i2,i3:
  8736. // for i1:
  8737. // for i01:
  8738. // for i0:
  8739. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8740. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8741. // dst indices
  8742. const int64_t i3 = ir/(ne2*ne1);
  8743. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8744. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8745. const int64_t i02 = i2;
  8746. const int64_t i03 = i3;
  8747. //const int64_t i10 = i1;
  8748. const int64_t i12 = i2;
  8749. const int64_t i13 = i3;
  8750. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8751. const int64_t i11 = i01;
  8752. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8753. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8754. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8755. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8756. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8757. // d[i0] += s0[i0] * s1[i1];
  8758. // }
  8759. }
  8760. }
  8761. //int64_t t1 = ggml_perf_time_us();
  8762. //static int64_t acc = 0;
  8763. //acc += t1 - t0;
  8764. //if (t1 - t0 > 10) {
  8765. // printf("\n");
  8766. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8767. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8768. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8769. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8770. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8771. //}
  8772. }
  8773. static void ggml_compute_forward_out_prod(
  8774. const struct ggml_compute_params * params,
  8775. const struct ggml_tensor * src0,
  8776. const struct ggml_tensor * src1,
  8777. struct ggml_tensor * dst) {
  8778. switch (src0->type) {
  8779. case GGML_TYPE_Q4_0:
  8780. case GGML_TYPE_Q4_1:
  8781. case GGML_TYPE_Q5_0:
  8782. case GGML_TYPE_Q5_1:
  8783. case GGML_TYPE_Q8_0:
  8784. case GGML_TYPE_Q8_1:
  8785. {
  8786. GGML_ASSERT(false); // todo
  8787. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8788. } break;
  8789. case GGML_TYPE_F16:
  8790. {
  8791. GGML_ASSERT(false); // todo
  8792. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8793. } break;
  8794. case GGML_TYPE_F32:
  8795. {
  8796. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8797. } break;
  8798. default:
  8799. {
  8800. GGML_ASSERT(false);
  8801. } break;
  8802. }
  8803. }
  8804. // ggml_compute_forward_scale
  8805. static void ggml_compute_forward_scale_f32(
  8806. const struct ggml_compute_params * params,
  8807. const struct ggml_tensor * src0,
  8808. const struct ggml_tensor * src1,
  8809. struct ggml_tensor * dst) {
  8810. GGML_ASSERT(ggml_is_contiguous(src0));
  8811. GGML_ASSERT(ggml_is_contiguous(dst));
  8812. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8813. GGML_ASSERT(ggml_is_scalar(src1));
  8814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8815. return;
  8816. }
  8817. // scale factor
  8818. const float v = *(float *) src1->data;
  8819. const int ith = params->ith;
  8820. const int nth = params->nth;
  8821. const int nc = src0->ne[0];
  8822. const int nr = ggml_nrows(src0);
  8823. // rows per thread
  8824. const int dr = (nr + nth - 1)/nth;
  8825. // row range for this thread
  8826. const int ir0 = dr*ith;
  8827. const int ir1 = MIN(ir0 + dr, nr);
  8828. const size_t nb01 = src0->nb[1];
  8829. const size_t nb1 = dst->nb[1];
  8830. for (int i1 = ir0; i1 < ir1; i1++) {
  8831. if (dst->data != src0->data) {
  8832. // src0 is same shape as dst => same indices
  8833. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8834. }
  8835. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8836. }
  8837. }
  8838. static void ggml_compute_forward_scale(
  8839. const struct ggml_compute_params * params,
  8840. const struct ggml_tensor * src0,
  8841. const struct ggml_tensor * src1,
  8842. struct ggml_tensor * dst) {
  8843. switch (src0->type) {
  8844. case GGML_TYPE_F32:
  8845. {
  8846. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8847. } break;
  8848. default:
  8849. {
  8850. GGML_ASSERT(false);
  8851. } break;
  8852. }
  8853. }
  8854. // ggml_compute_forward_set
  8855. static void ggml_compute_forward_set_f32(
  8856. const struct ggml_compute_params * params,
  8857. const struct ggml_tensor * src0,
  8858. const struct ggml_tensor * src1,
  8859. const struct ggml_tensor * opt0,
  8860. struct ggml_tensor * dst) {
  8861. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8862. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8863. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8864. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8865. // view src0 and dst with these strides and data offset inbytes during set
  8866. // nb0 is implicitely element_size because src0 and dst are contiguous
  8867. size_t nb1 = ((int32_t *) opt0->data)[0];
  8868. size_t nb2 = ((int32_t *) opt0->data)[1];
  8869. size_t nb3 = ((int32_t *) opt0->data)[2];
  8870. size_t offset = ((int32_t *) opt0->data)[3];
  8871. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8872. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8873. // memcpy needs to be synchronized across threads to avoid race conditions.
  8874. // => do it in INIT phase
  8875. memcpy(
  8876. ((char *) dst->data),
  8877. ((char *) src0->data),
  8878. ggml_nbytes(dst));
  8879. }
  8880. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8881. return;
  8882. }
  8883. const int ith = params->ith;
  8884. const int nth = params->nth;
  8885. const int nr = ggml_nrows(src1);
  8886. const int nc = src1->ne[0];
  8887. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8888. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8889. // src0 and dst as viewed during set
  8890. const size_t nb0 = ggml_element_size(src0);
  8891. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8892. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8893. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8894. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8895. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8896. GGML_ASSERT(nb10 == sizeof(float));
  8897. // rows per thread
  8898. const int dr = (nr + nth - 1)/nth;
  8899. // row range for this thread
  8900. const int ir0 = dr*ith;
  8901. const int ir1 = MIN(ir0 + dr, nr);
  8902. for (int ir = ir0; ir < ir1; ++ir) {
  8903. // src0 and dst are viewed with shape of src1 and offset
  8904. // => same indices
  8905. const int i3 = ir/(ne12*ne11);
  8906. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8907. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8908. ggml_vec_cpy_f32(nc,
  8909. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8910. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8911. }
  8912. }
  8913. static void ggml_compute_forward_set(
  8914. const struct ggml_compute_params * params,
  8915. const struct ggml_tensor * src0,
  8916. const struct ggml_tensor * src1,
  8917. const struct ggml_tensor * opt0,
  8918. struct ggml_tensor * dst) {
  8919. switch (src0->type) {
  8920. case GGML_TYPE_F32:
  8921. {
  8922. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8923. } break;
  8924. case GGML_TYPE_F16:
  8925. case GGML_TYPE_Q4_0:
  8926. case GGML_TYPE_Q4_1:
  8927. case GGML_TYPE_Q5_0:
  8928. case GGML_TYPE_Q5_1:
  8929. case GGML_TYPE_Q8_0:
  8930. case GGML_TYPE_Q8_1:
  8931. case GGML_TYPE_Q2_K:
  8932. case GGML_TYPE_Q3_K:
  8933. case GGML_TYPE_Q4_K:
  8934. case GGML_TYPE_Q5_K:
  8935. case GGML_TYPE_Q6_K:
  8936. default:
  8937. {
  8938. GGML_ASSERT(false);
  8939. } break;
  8940. }
  8941. }
  8942. // ggml_compute_forward_cpy
  8943. static void ggml_compute_forward_cpy(
  8944. const struct ggml_compute_params * params,
  8945. const struct ggml_tensor * src0,
  8946. struct ggml_tensor * dst) {
  8947. ggml_compute_forward_dup(params, src0, dst);
  8948. }
  8949. // ggml_compute_forward_cont
  8950. static void ggml_compute_forward_cont(
  8951. const struct ggml_compute_params * params,
  8952. const struct ggml_tensor * src0,
  8953. struct ggml_tensor * dst) {
  8954. ggml_compute_forward_dup(params, src0, dst);
  8955. }
  8956. // ggml_compute_forward_reshape
  8957. static void ggml_compute_forward_reshape(
  8958. const struct ggml_compute_params * params,
  8959. const struct ggml_tensor * src0,
  8960. struct ggml_tensor * dst) {
  8961. // NOP
  8962. UNUSED(params);
  8963. UNUSED(src0);
  8964. UNUSED(dst);
  8965. }
  8966. // ggml_compute_forward_view
  8967. static void ggml_compute_forward_view(
  8968. const struct ggml_compute_params * params,
  8969. const struct ggml_tensor * src0) {
  8970. // NOP
  8971. UNUSED(params);
  8972. UNUSED(src0);
  8973. }
  8974. // ggml_compute_forward_permute
  8975. static void ggml_compute_forward_permute(
  8976. const struct ggml_compute_params * params,
  8977. const struct ggml_tensor * src0) {
  8978. // NOP
  8979. UNUSED(params);
  8980. UNUSED(src0);
  8981. }
  8982. // ggml_compute_forward_transpose
  8983. static void ggml_compute_forward_transpose(
  8984. const struct ggml_compute_params * params,
  8985. const struct ggml_tensor * src0) {
  8986. // NOP
  8987. UNUSED(params);
  8988. UNUSED(src0);
  8989. }
  8990. // ggml_compute_forward_get_rows
  8991. static void ggml_compute_forward_get_rows_q(
  8992. const struct ggml_compute_params * params,
  8993. const struct ggml_tensor * src0,
  8994. const struct ggml_tensor * src1,
  8995. struct ggml_tensor * dst) {
  8996. assert(params->ith == 0);
  8997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8998. return;
  8999. }
  9000. const int nc = src0->ne[0];
  9001. const int nr = ggml_nelements(src1);
  9002. const enum ggml_type type = src0->type;
  9003. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9004. assert( dst->ne[0] == nc);
  9005. assert( dst->ne[1] == nr);
  9006. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9007. for (int i = 0; i < nr; ++i) {
  9008. const int r = ((int32_t *) src1->data)[i];
  9009. dequantize_row_q(
  9010. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9011. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9012. }
  9013. }
  9014. static void ggml_compute_forward_get_rows_f16(
  9015. const struct ggml_compute_params * params,
  9016. const struct ggml_tensor * src0,
  9017. const struct ggml_tensor * src1,
  9018. struct ggml_tensor * dst) {
  9019. assert(params->ith == 0);
  9020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9021. return;
  9022. }
  9023. const int nc = src0->ne[0];
  9024. const int nr = ggml_nelements(src1);
  9025. assert( dst->ne[0] == nc);
  9026. assert( dst->ne[1] == nr);
  9027. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9028. for (int i = 0; i < nr; ++i) {
  9029. const int r = ((int32_t *) src1->data)[i];
  9030. for (int j = 0; j < nc; ++j) {
  9031. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9032. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9033. }
  9034. }
  9035. }
  9036. static void ggml_compute_forward_get_rows_f32(
  9037. const struct ggml_compute_params * params,
  9038. const struct ggml_tensor * src0,
  9039. const struct ggml_tensor * src1,
  9040. struct ggml_tensor * dst) {
  9041. assert(params->ith == 0);
  9042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9043. return;
  9044. }
  9045. const int nc = src0->ne[0];
  9046. const int nr = ggml_nelements(src1);
  9047. assert( dst->ne[0] == nc);
  9048. assert( dst->ne[1] == nr);
  9049. assert(src0->nb[0] == sizeof(float));
  9050. for (int i = 0; i < nr; ++i) {
  9051. const int r = ((int32_t *) src1->data)[i];
  9052. ggml_vec_cpy_f32(nc,
  9053. (float *) ((char *) dst->data + i*dst->nb[1]),
  9054. (float *) ((char *) src0->data + r*src0->nb[1]));
  9055. }
  9056. }
  9057. static void ggml_compute_forward_get_rows(
  9058. const struct ggml_compute_params * params,
  9059. const struct ggml_tensor * src0,
  9060. const struct ggml_tensor * src1,
  9061. struct ggml_tensor * dst) {
  9062. switch (src0->type) {
  9063. case GGML_TYPE_Q4_0:
  9064. case GGML_TYPE_Q4_1:
  9065. case GGML_TYPE_Q5_0:
  9066. case GGML_TYPE_Q5_1:
  9067. case GGML_TYPE_Q8_0:
  9068. case GGML_TYPE_Q8_1:
  9069. case GGML_TYPE_Q2_K:
  9070. case GGML_TYPE_Q3_K:
  9071. case GGML_TYPE_Q4_K:
  9072. case GGML_TYPE_Q5_K:
  9073. case GGML_TYPE_Q6_K:
  9074. {
  9075. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9076. } break;
  9077. case GGML_TYPE_F16:
  9078. {
  9079. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9080. } break;
  9081. case GGML_TYPE_F32:
  9082. {
  9083. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9084. } break;
  9085. default:
  9086. {
  9087. GGML_ASSERT(false);
  9088. } break;
  9089. }
  9090. //static bool first = true;
  9091. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9092. //if (first) {
  9093. // first = false;
  9094. //} else {
  9095. // for (int k = 0; k < dst->ne[1]; ++k) {
  9096. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9097. // for (int i = 0; i < 16; ++i) {
  9098. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9099. // }
  9100. // printf("\n");
  9101. // }
  9102. // printf("\n");
  9103. // }
  9104. // printf("\n");
  9105. // exit(0);
  9106. //}
  9107. }
  9108. // ggml_compute_forward_get_rows_back
  9109. static void ggml_compute_forward_get_rows_back_f32_f16(
  9110. const struct ggml_compute_params * params,
  9111. const struct ggml_tensor * src0,
  9112. const struct ggml_tensor * src1,
  9113. const struct ggml_tensor * opt0,
  9114. struct ggml_tensor * dst) {
  9115. GGML_ASSERT(params->ith == 0);
  9116. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9117. GGML_ASSERT(ggml_is_contiguous(opt0));
  9118. GGML_ASSERT(ggml_is_contiguous(dst));
  9119. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9120. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9121. return;
  9122. }
  9123. const int nc = src0->ne[0];
  9124. const int nr = ggml_nelements(src1);
  9125. GGML_ASSERT( dst->ne[0] == nc);
  9126. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9127. for (int i = 0; i < nr; ++i) {
  9128. const int r = ((int32_t *) src1->data)[i];
  9129. for (int j = 0; j < nc; ++j) {
  9130. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9131. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9132. }
  9133. }
  9134. }
  9135. static void ggml_compute_forward_get_rows_back_f32(
  9136. const struct ggml_compute_params * params,
  9137. const struct ggml_tensor * src0,
  9138. const struct ggml_tensor * src1,
  9139. const struct ggml_tensor * opt0,
  9140. struct ggml_tensor * dst) {
  9141. GGML_ASSERT(params->ith == 0);
  9142. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9143. GGML_ASSERT(ggml_is_contiguous(opt0));
  9144. GGML_ASSERT(ggml_is_contiguous(dst));
  9145. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9146. if (params->type == GGML_TASK_INIT) {
  9147. memset(dst->data, 0, ggml_nbytes(dst));
  9148. }
  9149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9150. return;
  9151. }
  9152. const int nc = src0->ne[0];
  9153. const int nr = ggml_nelements(src1);
  9154. GGML_ASSERT( dst->ne[0] == nc);
  9155. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9156. for (int i = 0; i < nr; ++i) {
  9157. const int r = ((int32_t *) src1->data)[i];
  9158. ggml_vec_add_f32(nc,
  9159. (float *) ((char *) dst->data + r*dst->nb[1]),
  9160. (float *) ((char *) dst->data + r*dst->nb[1]),
  9161. (float *) ((char *) src0->data + i*src0->nb[1]));
  9162. }
  9163. }
  9164. static void ggml_compute_forward_get_rows_back(
  9165. const struct ggml_compute_params * params,
  9166. const struct ggml_tensor * src0,
  9167. const struct ggml_tensor * src1,
  9168. const struct ggml_tensor * opt0,
  9169. struct ggml_tensor * dst) {
  9170. switch (src0->type) {
  9171. case GGML_TYPE_F16:
  9172. {
  9173. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9174. } break;
  9175. case GGML_TYPE_F32:
  9176. {
  9177. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9178. } break;
  9179. default:
  9180. {
  9181. GGML_ASSERT(false);
  9182. } break;
  9183. }
  9184. //static bool first = true;
  9185. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9186. //if (first) {
  9187. // first = false;
  9188. //} else {
  9189. // for (int k = 0; k < dst->ne[1]; ++k) {
  9190. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9191. // for (int i = 0; i < 16; ++i) {
  9192. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9193. // }
  9194. // printf("\n");
  9195. // }
  9196. // printf("\n");
  9197. // }
  9198. // printf("\n");
  9199. // exit(0);
  9200. //}
  9201. }
  9202. // ggml_compute_forward_diag
  9203. static void ggml_compute_forward_diag_f32(
  9204. const struct ggml_compute_params * params,
  9205. const struct ggml_tensor * src0,
  9206. struct ggml_tensor * dst) {
  9207. GGML_ASSERT(params->ith == 0);
  9208. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9209. return;
  9210. }
  9211. // TODO: handle transposed/permuted matrices
  9212. GGML_TENSOR_UNARY_OP_LOCALS;
  9213. GGML_ASSERT(ne00 == ne0);
  9214. GGML_ASSERT(ne00 == ne1);
  9215. GGML_ASSERT(ne01 == 1);
  9216. GGML_ASSERT(ne02 == ne2);
  9217. GGML_ASSERT(ne03 == ne3);
  9218. GGML_ASSERT(nb00 == sizeof(float));
  9219. GGML_ASSERT(nb0 == sizeof(float));
  9220. for (int i3 = 0; i3 < ne3; i3++) {
  9221. for (int i2 = 0; i2 < ne2; i2++) {
  9222. for (int i1 = 0; i1 < ne1; i1++) {
  9223. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9224. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9225. for (int i0 = 0; i0 < i1; i0++) {
  9226. d[i0] = 0;
  9227. }
  9228. d[i1] = s[i1];
  9229. for (int i0 = i1+1; i0 < ne0; i0++) {
  9230. d[i0] = 0;
  9231. }
  9232. }
  9233. }
  9234. }
  9235. }
  9236. static void ggml_compute_forward_diag(
  9237. const struct ggml_compute_params * params,
  9238. const struct ggml_tensor * src0,
  9239. struct ggml_tensor * dst) {
  9240. switch (src0->type) {
  9241. case GGML_TYPE_F32:
  9242. {
  9243. ggml_compute_forward_diag_f32(params, src0, dst);
  9244. } break;
  9245. default:
  9246. {
  9247. GGML_ASSERT(false);
  9248. } break;
  9249. }
  9250. }
  9251. // ggml_compute_forward_diag_mask_inf
  9252. static void ggml_compute_forward_diag_mask_f32(
  9253. const struct ggml_compute_params * params,
  9254. const struct ggml_tensor * src0,
  9255. const struct ggml_tensor * src1,
  9256. struct ggml_tensor * dst,
  9257. const float value) {
  9258. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9259. GGML_ASSERT(ggml_nelements(src1) == 2);
  9260. const int ith = params->ith;
  9261. const int nth = params->nth;
  9262. const int n_past = ((int32_t *) src1->data)[0];
  9263. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9264. GGML_ASSERT(n_past >= 0);
  9265. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9266. // memcpy needs to be synchronized across threads to avoid race conditions.
  9267. // => do it in INIT phase
  9268. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9269. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9270. memcpy(
  9271. ((char *) dst->data),
  9272. ((char *) src0->data),
  9273. ggml_nbytes(dst));
  9274. }
  9275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9276. return;
  9277. }
  9278. // TODO: handle transposed/permuted matrices
  9279. const int n = ggml_nrows(src0);
  9280. const int nc = src0->ne[0];
  9281. const int nr = src0->ne[1];
  9282. const int nz = n/nr;
  9283. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9284. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9285. for (int k = 0; k < nz; k++) {
  9286. for (int j = ith; j < nr; j += nth) {
  9287. for (int i = n_past; i < nc; i++) {
  9288. if (i > n_past + j) {
  9289. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9290. }
  9291. }
  9292. }
  9293. }
  9294. }
  9295. static void ggml_compute_forward_diag_mask_inf(
  9296. const struct ggml_compute_params * params,
  9297. const struct ggml_tensor * src0,
  9298. const struct ggml_tensor * src1,
  9299. struct ggml_tensor * dst) {
  9300. switch (src0->type) {
  9301. case GGML_TYPE_F32:
  9302. {
  9303. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9304. } break;
  9305. default:
  9306. {
  9307. GGML_ASSERT(false);
  9308. } break;
  9309. }
  9310. }
  9311. static void ggml_compute_forward_diag_mask_zero(
  9312. const struct ggml_compute_params * params,
  9313. const struct ggml_tensor * src0,
  9314. const struct ggml_tensor * src1,
  9315. struct ggml_tensor * dst) {
  9316. switch (src0->type) {
  9317. case GGML_TYPE_F32:
  9318. {
  9319. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9320. } break;
  9321. default:
  9322. {
  9323. GGML_ASSERT(false);
  9324. } break;
  9325. }
  9326. }
  9327. // ggml_compute_forward_soft_max
  9328. static void ggml_compute_forward_soft_max_f32(
  9329. const struct ggml_compute_params * params,
  9330. const struct ggml_tensor * src0,
  9331. struct ggml_tensor * dst) {
  9332. GGML_ASSERT(ggml_is_contiguous(src0));
  9333. GGML_ASSERT(ggml_is_contiguous(dst));
  9334. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9336. return;
  9337. }
  9338. // TODO: handle transposed/permuted matrices
  9339. const int ith = params->ith;
  9340. const int nth = params->nth;
  9341. const int nc = src0->ne[0];
  9342. const int nr = ggml_nrows(src0);
  9343. // rows per thread
  9344. const int dr = (nr + nth - 1)/nth;
  9345. // row range for this thread
  9346. const int ir0 = dr*ith;
  9347. const int ir1 = MIN(ir0 + dr, nr);
  9348. for (int i1 = ir0; i1 < ir1; i1++) {
  9349. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9350. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9351. #ifndef NDEBUG
  9352. for (int i = 0; i < nc; ++i) {
  9353. //printf("p[%d] = %f\n", i, p[i]);
  9354. assert(!isnan(sp[i]));
  9355. }
  9356. #endif
  9357. float max = -INFINITY;
  9358. ggml_vec_max_f32(nc, &max, sp);
  9359. ggml_float sum = 0.0;
  9360. uint16_t scvt;
  9361. for (int i = 0; i < nc; i++) {
  9362. if (sp[i] == -INFINITY) {
  9363. dp[i] = 0.0f;
  9364. } else {
  9365. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9366. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9367. memcpy(&scvt, &s, sizeof(scvt));
  9368. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9369. sum += (ggml_float)val;
  9370. dp[i] = val;
  9371. }
  9372. }
  9373. assert(sum > 0.0);
  9374. sum = 1.0/sum;
  9375. ggml_vec_scale_f32(nc, dp, sum);
  9376. #ifndef NDEBUG
  9377. for (int i = 0; i < nc; ++i) {
  9378. assert(!isnan(dp[i]));
  9379. assert(!isinf(dp[i]));
  9380. }
  9381. #endif
  9382. }
  9383. }
  9384. static void ggml_compute_forward_soft_max(
  9385. const struct ggml_compute_params * params,
  9386. const struct ggml_tensor * src0,
  9387. struct ggml_tensor * dst) {
  9388. switch (src0->type) {
  9389. case GGML_TYPE_F32:
  9390. {
  9391. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9392. } break;
  9393. default:
  9394. {
  9395. GGML_ASSERT(false);
  9396. } break;
  9397. }
  9398. }
  9399. // ggml_compute_forward_soft_max_back
  9400. static void ggml_compute_forward_soft_max_back_f32(
  9401. const struct ggml_compute_params * params,
  9402. const struct ggml_tensor * src0,
  9403. const struct ggml_tensor * src1,
  9404. struct ggml_tensor * dst) {
  9405. GGML_ASSERT(ggml_is_contiguous(src0));
  9406. GGML_ASSERT(ggml_is_contiguous(src1));
  9407. GGML_ASSERT(ggml_is_contiguous(dst));
  9408. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9409. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9410. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9411. return;
  9412. }
  9413. // TODO: handle transposed/permuted matrices
  9414. const int ith = params->ith;
  9415. const int nth = params->nth;
  9416. const int nc = src0->ne[0];
  9417. const int nr = ggml_nrows(src0);
  9418. // rows per thread
  9419. const int dr = (nr + nth - 1)/nth;
  9420. // row range for this thread
  9421. const int ir0 = dr*ith;
  9422. const int ir1 = MIN(ir0 + dr, nr);
  9423. for (int i1 = ir0; i1 < ir1; i1++) {
  9424. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9425. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9426. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9427. #ifndef NDEBUG
  9428. for (int i = 0; i < nc; ++i) {
  9429. //printf("p[%d] = %f\n", i, p[i]);
  9430. assert(!isnan(dy[i]));
  9431. assert(!isnan(y[i]));
  9432. }
  9433. #endif
  9434. // Jii = yi - yi*yi
  9435. // Jij = -yi*yj
  9436. // J = diag(y)-y.T*y
  9437. // dx = J * dy
  9438. // dxk = sum_i(Jki * dyi)
  9439. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9440. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9441. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9442. // dxk = -yk * dot(y, dy) + yk*dyk
  9443. // dxk = yk * (- dot(y, dy) + dyk)
  9444. // dxk = yk * (dyk - dot(y, dy))
  9445. //
  9446. // post-order:
  9447. // dot_y_dy := dot(y, dy)
  9448. // dx := dy
  9449. // dx := dx - dot_y_dy
  9450. // dx := dx * y
  9451. // linear runtime, no additional memory
  9452. float dot_y_dy = 0;
  9453. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9454. ggml_vec_cpy_f32 (nc, dx, dy);
  9455. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9456. ggml_vec_mul_f32 (nc, dx, dx, y);
  9457. #ifndef NDEBUG
  9458. for (int i = 0; i < nc; ++i) {
  9459. assert(!isnan(dx[i]));
  9460. assert(!isinf(dx[i]));
  9461. }
  9462. #endif
  9463. }
  9464. }
  9465. static void ggml_compute_forward_soft_max_back(
  9466. const struct ggml_compute_params * params,
  9467. const struct ggml_tensor * src0,
  9468. const struct ggml_tensor * src1,
  9469. struct ggml_tensor * dst) {
  9470. switch (src0->type) {
  9471. case GGML_TYPE_F32:
  9472. {
  9473. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9474. } break;
  9475. default:
  9476. {
  9477. GGML_ASSERT(false);
  9478. } break;
  9479. }
  9480. }
  9481. // ggml_compute_forward_alibi
  9482. static void ggml_compute_forward_alibi_f32(
  9483. const struct ggml_compute_params * params,
  9484. const struct ggml_tensor * src0,
  9485. const struct ggml_tensor * src1,
  9486. struct ggml_tensor * dst) {
  9487. assert(params->ith == 0);
  9488. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9489. GGML_ASSERT(ggml_nelements(src1) == 3);
  9490. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9491. return;
  9492. }
  9493. const int n_past = ((int32_t *) src1->data)[0];
  9494. const int n_head = ((int32_t *) src1->data)[1];
  9495. const float max_bias = ((float *) src1->data)[2];
  9496. assert(n_past >= 0);
  9497. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9498. const int ne1 = src0->ne[1]; // seq_len_without_past
  9499. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9500. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9501. const int n = ggml_nrows(src0);
  9502. const int ne2_ne3 = n/ne1; // ne2*ne3
  9503. const int nb0 = src0->nb[0];
  9504. const int nb1 = src0->nb[1];
  9505. const int nb2 = src0->nb[2];
  9506. //const int nb3 = src0->nb[3];
  9507. assert(nb0 == sizeof(float));
  9508. assert(ne1 + n_past == ne0); (void) n_past;
  9509. // add alibi to src0 (KQ_scaled)
  9510. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9511. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9512. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9513. for (int i = 0; i < ne0; i++) {
  9514. for (int j = 0; j < ne1; j++) {
  9515. for (int k = 0; k < ne2_ne3; k++) {
  9516. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9517. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9518. // TODO: k*nb2 or k*nb3
  9519. float m_k;
  9520. if (k < n_heads_log2_floor) {
  9521. m_k = powf(m0, k + 1);
  9522. } else {
  9523. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9524. }
  9525. pdst[0] = (i-ne0+1) * m_k + src[0];
  9526. }
  9527. }
  9528. }
  9529. }
  9530. static void ggml_compute_forward_alibi_f16(
  9531. const struct ggml_compute_params * params,
  9532. const struct ggml_tensor * src0,
  9533. const struct ggml_tensor * src1,
  9534. struct ggml_tensor * dst) {
  9535. assert(params->ith == 0);
  9536. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9537. GGML_ASSERT(ggml_nelements(src1) == 3);
  9538. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9539. return;
  9540. }
  9541. const int n_past = ((int32_t *) src1->data)[0];
  9542. const int n_head = ((int32_t *) src1->data)[1];
  9543. const float max_bias = ((float *) src1->data)[2];
  9544. assert(n_past >= 0);
  9545. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9546. const int ne1 = src0->ne[1]; // seq_len_without_past
  9547. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9548. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9549. const int n = ggml_nrows(src0);
  9550. const int ne2_ne3 = n/ne1; // ne2*ne3
  9551. const int nb0 = src0->nb[0];
  9552. const int nb1 = src0->nb[1];
  9553. const int nb2 = src0->nb[2];
  9554. //const int nb3 = src0->nb[3];
  9555. assert(nb0 == sizeof(ggml_fp16_t));
  9556. assert(ne1 + n_past == ne0); (void) n_past;
  9557. // add alibi to src0 (KQ_scaled)
  9558. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9559. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9560. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9561. for (int i = 0; i < ne0; i++) {
  9562. for (int j = 0; j < ne1; j++) {
  9563. for (int k = 0; k < ne2_ne3; k++) {
  9564. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9565. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9566. // TODO: k*nb2 or k*nb3
  9567. float m_k;
  9568. if (k < n_heads_log2_floor) {
  9569. m_k = powf(m0, k + 1);
  9570. } else {
  9571. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9572. }
  9573. // we return F32
  9574. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9575. }
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_alibi(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. const struct ggml_tensor * src1,
  9583. struct ggml_tensor * dst) {
  9584. switch (src0->type) {
  9585. case GGML_TYPE_F16:
  9586. {
  9587. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9588. } break;
  9589. case GGML_TYPE_F32:
  9590. {
  9591. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9592. } break;
  9593. case GGML_TYPE_Q4_0:
  9594. case GGML_TYPE_Q4_1:
  9595. case GGML_TYPE_Q5_0:
  9596. case GGML_TYPE_Q5_1:
  9597. case GGML_TYPE_Q8_0:
  9598. case GGML_TYPE_Q8_1:
  9599. case GGML_TYPE_Q2_K:
  9600. case GGML_TYPE_Q3_K:
  9601. case GGML_TYPE_Q4_K:
  9602. case GGML_TYPE_Q5_K:
  9603. case GGML_TYPE_Q6_K:
  9604. case GGML_TYPE_Q8_K:
  9605. case GGML_TYPE_I8:
  9606. case GGML_TYPE_I16:
  9607. case GGML_TYPE_I32:
  9608. case GGML_TYPE_COUNT:
  9609. {
  9610. GGML_ASSERT(false);
  9611. } break;
  9612. }
  9613. }
  9614. // ggml_compute_forward_clamp
  9615. static void ggml_compute_forward_clamp_f32(
  9616. const struct ggml_compute_params * params,
  9617. const struct ggml_tensor * src0,
  9618. const struct ggml_tensor * src1,
  9619. struct ggml_tensor * dst) {
  9620. assert(params->ith == 0);
  9621. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9622. GGML_ASSERT(ggml_nelements(src1) == 2);
  9623. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9624. return;
  9625. }
  9626. const float min = ((float *) src1->data)[0];
  9627. const float max = ((float *) src1->data)[1];
  9628. const int ith = params->ith;
  9629. const int nth = params->nth;
  9630. const int n = ggml_nrows(src0);
  9631. const int nc = src0->ne[0];
  9632. const size_t nb00 = src0->nb[0];
  9633. const size_t nb01 = src0->nb[1];
  9634. const size_t nb0 = dst->nb[0];
  9635. const size_t nb1 = dst->nb[1];
  9636. GGML_ASSERT( nb0 == sizeof(float));
  9637. GGML_ASSERT(nb00 == sizeof(float));
  9638. for (int j = ith; j < n; j += nth) {
  9639. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9640. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9641. for (int i = 0; i < nc; i++) {
  9642. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9643. }
  9644. }
  9645. }
  9646. static void ggml_compute_forward_clamp(
  9647. const struct ggml_compute_params * params,
  9648. const struct ggml_tensor * src0,
  9649. const struct ggml_tensor * src1,
  9650. struct ggml_tensor * dst) {
  9651. switch (src0->type) {
  9652. case GGML_TYPE_F32:
  9653. {
  9654. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9655. } break;
  9656. case GGML_TYPE_F16:
  9657. case GGML_TYPE_Q4_0:
  9658. case GGML_TYPE_Q4_1:
  9659. case GGML_TYPE_Q5_0:
  9660. case GGML_TYPE_Q5_1:
  9661. case GGML_TYPE_Q8_0:
  9662. case GGML_TYPE_Q8_1:
  9663. case GGML_TYPE_Q2_K:
  9664. case GGML_TYPE_Q3_K:
  9665. case GGML_TYPE_Q4_K:
  9666. case GGML_TYPE_Q5_K:
  9667. case GGML_TYPE_Q6_K:
  9668. case GGML_TYPE_Q8_K:
  9669. case GGML_TYPE_I8:
  9670. case GGML_TYPE_I16:
  9671. case GGML_TYPE_I32:
  9672. case GGML_TYPE_COUNT:
  9673. {
  9674. GGML_ASSERT(false);
  9675. } break;
  9676. }
  9677. }
  9678. // ggml_compute_forward_rope
  9679. static void ggml_compute_forward_rope_f32(
  9680. const struct ggml_compute_params * params,
  9681. const struct ggml_tensor * src0,
  9682. const struct ggml_tensor * src1,
  9683. struct ggml_tensor * dst) {
  9684. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9685. GGML_ASSERT(ggml_nelements(src1) == 4);
  9686. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9687. return;
  9688. }
  9689. const int n_past = ((int32_t *) src1->data)[0];
  9690. const int n_dims = ((int32_t *) src1->data)[1];
  9691. const int mode = ((int32_t *) src1->data)[2];
  9692. const int n_ctx = ((int32_t *) src1->data)[3];
  9693. assert(n_past >= 0);
  9694. GGML_TENSOR_UNARY_OP_LOCALS;
  9695. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9696. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9697. GGML_ASSERT(nb00 == sizeof(float));
  9698. const int ith = params->ith;
  9699. const int nth = params->nth;
  9700. const int nr = ggml_nrows(dst);
  9701. GGML_ASSERT(n_dims <= ne0);
  9702. GGML_ASSERT(n_dims % 2 == 0);
  9703. // rows per thread
  9704. const int dr = (nr + nth - 1)/nth;
  9705. // row range for this thread
  9706. const int ir0 = dr*ith;
  9707. const int ir1 = MIN(ir0 + dr, nr);
  9708. // row index used to determine which thread to use
  9709. int ir = 0;
  9710. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9711. const bool is_neox = mode & 2;
  9712. const bool is_glm = mode & 4;
  9713. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9714. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9715. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9716. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9717. if (ir++ < ir0) continue;
  9718. if (ir > ir1) break;
  9719. float theta = (float)p;
  9720. if (is_glm) {
  9721. theta = MIN(p, n_ctx - 2);
  9722. float block_theta = MAX(p - (n_ctx - 2), 0);
  9723. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9724. const float cos_theta = cosf(theta);
  9725. const float sin_theta = sinf(theta);
  9726. const float cos_block_theta = cosf(block_theta);
  9727. const float sin_block_theta = sinf(block_theta);
  9728. theta *= theta_scale;
  9729. block_theta *= theta_scale;
  9730. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9731. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9732. const float x0 = src[0];
  9733. const float x1 = src[n_dims/2];
  9734. const float x2 = src[n_dims];
  9735. const float x3 = src[n_dims/2*3];
  9736. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9737. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9738. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9739. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9740. }
  9741. } else if (!is_neox) {
  9742. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9743. const float cos_theta = cosf(theta);
  9744. const float sin_theta = sinf(theta);
  9745. theta *= theta_scale;
  9746. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9747. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9748. const float x0 = src[0];
  9749. const float x1 = src[1];
  9750. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9751. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9752. }
  9753. } else {
  9754. // TODO: this is probably wrong, but I can't figure it out ..
  9755. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9756. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9757. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9758. const float cos_theta = cosf(theta);
  9759. const float sin_theta = sinf(theta);
  9760. theta *= theta_scale;
  9761. const int64_t i0 = ib*n_dims + ic/2;
  9762. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9763. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9764. const float x0 = src[0];
  9765. const float x1 = src[n_dims/2];
  9766. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9767. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9768. }
  9769. }
  9770. }
  9771. }
  9772. }
  9773. }
  9774. }
  9775. static void ggml_compute_forward_rope_f16(
  9776. const struct ggml_compute_params * params,
  9777. const struct ggml_tensor * src0,
  9778. const struct ggml_tensor * src1,
  9779. struct ggml_tensor * dst) {
  9780. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9781. GGML_ASSERT(ggml_nelements(src1) == 4);
  9782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9783. return;
  9784. }
  9785. const int n_past = ((int32_t *) src1->data)[0];
  9786. const int n_dims = ((int32_t *) src1->data)[1];
  9787. const int mode = ((int32_t *) src1->data)[2];
  9788. const int n_ctx = ((int32_t *) src1->data)[3];
  9789. assert(n_past >= 0);
  9790. GGML_TENSOR_UNARY_OP_LOCALS;
  9791. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9792. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9793. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9794. const int ith = params->ith;
  9795. const int nth = params->nth;
  9796. const int nr = ggml_nrows(dst);
  9797. GGML_ASSERT(n_dims <= ne0);
  9798. GGML_ASSERT(n_dims % 2 == 0);
  9799. // rows per thread
  9800. const int dr = (nr + nth - 1)/nth;
  9801. // row range for this thread
  9802. const int ir0 = dr*ith;
  9803. const int ir1 = MIN(ir0 + dr, nr);
  9804. // row index used to determine which thread to use
  9805. int ir = 0;
  9806. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9807. const bool is_neox = mode & 2;
  9808. const bool is_glm = mode & 4;
  9809. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9810. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9811. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9812. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9813. if (ir++ < ir0) continue;
  9814. if (ir > ir1) break;
  9815. float theta = (float)p;
  9816. if (is_glm) {
  9817. theta = MIN(p, n_ctx - 2);
  9818. float block_theta = MAX(p - (n_ctx - 2), 0);
  9819. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9820. const float cos_theta = cosf(theta);
  9821. const float sin_theta = sinf(theta);
  9822. const float cos_block_theta = cosf(block_theta);
  9823. const float sin_block_theta = sinf(block_theta);
  9824. theta *= theta_scale;
  9825. block_theta *= theta_scale;
  9826. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9827. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9828. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9829. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9830. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9831. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9832. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9833. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9834. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9835. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9836. }
  9837. } if (!is_neox) {
  9838. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9839. const float cos_theta = cosf(theta);
  9840. const float sin_theta = sinf(theta);
  9841. theta *= theta_scale;
  9842. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9843. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9844. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9845. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9846. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9847. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9848. }
  9849. } else {
  9850. // TODO: this is probably wrong, but I can't figure it out ..
  9851. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9852. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9853. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9854. const float cos_theta = cosf(theta);
  9855. const float sin_theta = sinf(theta);
  9856. theta *= theta_scale;
  9857. const int64_t i0 = ib*n_dims + ic/2;
  9858. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9859. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9860. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9861. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9862. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9863. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9864. }
  9865. }
  9866. }
  9867. }
  9868. }
  9869. }
  9870. }
  9871. static void ggml_compute_forward_rope(
  9872. const struct ggml_compute_params * params,
  9873. const struct ggml_tensor * src0,
  9874. const struct ggml_tensor * src1,
  9875. struct ggml_tensor * dst) {
  9876. switch (src0->type) {
  9877. case GGML_TYPE_F16:
  9878. {
  9879. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9880. } break;
  9881. case GGML_TYPE_F32:
  9882. {
  9883. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9884. } break;
  9885. default:
  9886. {
  9887. GGML_ASSERT(false);
  9888. } break;
  9889. }
  9890. }
  9891. // ggml_compute_forward_rope_back
  9892. static void ggml_compute_forward_rope_back_f32(
  9893. const struct ggml_compute_params * params,
  9894. const struct ggml_tensor * src0,
  9895. const struct ggml_tensor * src1,
  9896. struct ggml_tensor * dst) {
  9897. assert(src1->type == GGML_TYPE_I32);
  9898. assert(ggml_nelements(src1) == 3);
  9899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9900. return;
  9901. }
  9902. // y = rope(x, src1)
  9903. // dx = rope_back(dy, src1)
  9904. // src0 is dy, src1 contains options
  9905. const int n_past = ((int32_t *) src1->data)[0];
  9906. const int n_dims = ((int32_t *) src1->data)[1];
  9907. const int mode = ((int32_t *) src1->data)[2];
  9908. assert(n_past >= 0);
  9909. GGML_TENSOR_UNARY_OP_LOCALS;
  9910. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9911. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9912. assert(nb0 == sizeof(float));
  9913. const int ith = params->ith;
  9914. const int nth = params->nth;
  9915. const int nr = ggml_nrows(dst);
  9916. // rows per thread
  9917. const int dr = (nr + nth - 1)/nth;
  9918. // row range for this thread
  9919. const int ir0 = dr*ith;
  9920. const int ir1 = MIN(ir0 + dr, nr);
  9921. // row index used to determine which thread to use
  9922. int ir = 0;
  9923. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9924. const bool is_neox = mode & 2;
  9925. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9926. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9927. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9928. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9929. if (ir++ < ir0) continue;
  9930. if (ir > ir1) break;
  9931. float theta = (float)p;
  9932. if (!is_neox) {
  9933. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9934. const float cos_theta = cosf(theta);
  9935. const float sin_theta = sinf(theta);
  9936. theta *= theta_scale;
  9937. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9938. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9939. const float dy0 = dy[0];
  9940. const float dy1 = dy[1];
  9941. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9942. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9943. }
  9944. } else {
  9945. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9946. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9947. const float cos_theta = cosf(theta);
  9948. const float sin_theta = sinf(theta);
  9949. theta *= theta_scale;
  9950. const int64_t i0 = ib*n_dims + ic/2;
  9951. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9952. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9953. const float dy0 = dy[0];
  9954. const float dy1 = dy[n_dims/2];
  9955. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9956. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9957. }
  9958. }
  9959. }
  9960. }
  9961. }
  9962. }
  9963. }
  9964. static void ggml_compute_forward_rope_back_f16(
  9965. const struct ggml_compute_params * params,
  9966. const struct ggml_tensor * src0,
  9967. const struct ggml_tensor * src1,
  9968. struct ggml_tensor * dst) {
  9969. assert(src1->type == GGML_TYPE_I32);
  9970. assert(ggml_nelements(src1) == 3);
  9971. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9972. return;
  9973. }
  9974. // y = rope(x, src1)
  9975. // dx = rope_back(dy, src1)
  9976. // src0 is dy, src1 contains options
  9977. const int n_past = ((int32_t *) src1->data)[0];
  9978. const int n_dims = ((int32_t *) src1->data)[1];
  9979. const int mode = ((int32_t *) src1->data)[2];
  9980. assert(n_past >= 0);
  9981. GGML_TENSOR_UNARY_OP_LOCALS;
  9982. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9983. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9984. assert(nb0 == sizeof(ggml_fp16_t));
  9985. const int ith = params->ith;
  9986. const int nth = params->nth;
  9987. const int nr = ggml_nrows(dst);
  9988. // rows per thread
  9989. const int dr = (nr + nth - 1)/nth;
  9990. // row range for this thread
  9991. const int ir0 = dr*ith;
  9992. const int ir1 = MIN(ir0 + dr, nr);
  9993. // row index used to determine which thread to use
  9994. int ir = 0;
  9995. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9996. const bool is_neox = mode & 2;
  9997. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9998. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9999. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10000. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10001. if (ir++ < ir0) continue;
  10002. if (ir > ir1) break;
  10003. float theta = (float)p;
  10004. if (!is_neox) {
  10005. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10006. const float cos_theta = cosf(theta);
  10007. const float sin_theta = sinf(theta);
  10008. theta *= theta_scale;
  10009. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10010. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10011. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10012. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10013. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10014. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10015. }
  10016. } else {
  10017. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10018. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10019. const float cos_theta = cosf(theta);
  10020. const float sin_theta = sinf(theta);
  10021. theta *= theta_scale;
  10022. const int64_t i0 = ib*n_dims + ic/2;
  10023. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10024. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10025. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10026. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10027. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10028. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10029. }
  10030. }
  10031. }
  10032. }
  10033. }
  10034. }
  10035. }
  10036. static void ggml_compute_forward_rope_back(
  10037. const struct ggml_compute_params * params,
  10038. const struct ggml_tensor * src0,
  10039. const struct ggml_tensor * src1,
  10040. struct ggml_tensor * dst) {
  10041. switch (src0->type) {
  10042. case GGML_TYPE_F16:
  10043. {
  10044. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10045. } break;
  10046. case GGML_TYPE_F32:
  10047. {
  10048. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10049. } break;
  10050. default:
  10051. {
  10052. GGML_ASSERT(false);
  10053. } break;
  10054. }
  10055. }
  10056. // ggml_compute_forward_conv_1d
  10057. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10058. const struct ggml_compute_params * params,
  10059. const struct ggml_tensor * src0,
  10060. const struct ggml_tensor * src1,
  10061. struct ggml_tensor * dst) {
  10062. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10063. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10064. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10065. int64_t t0 = ggml_perf_time_us();
  10066. UNUSED(t0);
  10067. GGML_TENSOR_BINARY_OP_LOCALS;
  10068. const int ith = params->ith;
  10069. const int nth = params->nth;
  10070. const int nk = ne00;
  10071. const int nh = nk/2;
  10072. const int ew0 = ggml_up32(ne01);
  10073. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10074. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10075. GGML_ASSERT(nb10 == sizeof(float));
  10076. if (params->type == GGML_TASK_INIT) {
  10077. // TODO: fix this memset (wsize is overestimated)
  10078. memset(params->wdata, 0, params->wsize);
  10079. // prepare kernel data (src0)
  10080. {
  10081. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10082. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10083. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10084. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10085. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10086. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10087. dst_data[i00*ew0 + i01] = src[i00];
  10088. }
  10089. }
  10090. }
  10091. }
  10092. // prepare source data (src1)
  10093. {
  10094. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10095. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10096. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10097. ggml_fp16_t * dst_data = wdata;
  10098. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10099. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10100. }
  10101. }
  10102. }
  10103. return;
  10104. }
  10105. if (params->type == GGML_TASK_FINALIZE) {
  10106. return;
  10107. }
  10108. // total rows in dst
  10109. const int nr = ne02;
  10110. // rows per thread
  10111. const int dr = (nr + nth - 1)/nth;
  10112. // row range for this thread
  10113. const int ir0 = dr*ith;
  10114. const int ir1 = MIN(ir0 + dr, nr);
  10115. for (int i1 = ir0; i1 < ir1; i1++) {
  10116. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10117. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10118. dst_data[i0] = 0;
  10119. for (int k = -nh; k <= nh; k++) {
  10120. float v = 0.0f;
  10121. ggml_vec_dot_f16(ew0, &v,
  10122. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10123. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10124. dst_data[i0] += v;
  10125. }
  10126. }
  10127. }
  10128. }
  10129. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10130. const struct ggml_compute_params * params,
  10131. const struct ggml_tensor * src0,
  10132. const struct ggml_tensor * src1,
  10133. struct ggml_tensor * dst) {
  10134. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10135. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10136. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10137. int64_t t0 = ggml_perf_time_us();
  10138. UNUSED(t0);
  10139. GGML_TENSOR_BINARY_OP_LOCALS;
  10140. const int ith = params->ith;
  10141. const int nth = params->nth;
  10142. const int nk = ne00;
  10143. const int nh = nk/2;
  10144. const int ew0 = ggml_up32(ne01);
  10145. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10146. GGML_ASSERT(nb00 == sizeof(float));
  10147. GGML_ASSERT(nb10 == sizeof(float));
  10148. if (params->type == GGML_TASK_INIT) {
  10149. // TODO: fix this memset (wsize is overestimated)
  10150. memset(params->wdata, 0, params->wsize);
  10151. // prepare kernel data (src0)
  10152. {
  10153. float * const wdata = (float *) params->wdata + 0;
  10154. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10155. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10156. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10157. float * dst_data = wdata + i02*ew0*ne00;
  10158. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10159. dst_data[i00*ew0 + i01] = src[i00];
  10160. }
  10161. }
  10162. }
  10163. }
  10164. // prepare source data (src1)
  10165. {
  10166. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10167. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10168. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10169. float * dst_data = wdata;
  10170. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10171. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10172. }
  10173. }
  10174. }
  10175. return;
  10176. }
  10177. if (params->type == GGML_TASK_FINALIZE) {
  10178. return;
  10179. }
  10180. // total rows in dst
  10181. const int nr = ne02;
  10182. // rows per thread
  10183. const int dr = (nr + nth - 1)/nth;
  10184. // row range for this thread
  10185. const int ir0 = dr*ith;
  10186. const int ir1 = MIN(ir0 + dr, nr);
  10187. for (int i1 = ir0; i1 < ir1; i1++) {
  10188. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10189. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10190. dst_data[i0] = 0;
  10191. for (int k = -nh; k <= nh; k++) {
  10192. float v = 0.0f;
  10193. ggml_vec_dot_f32(ew0, &v,
  10194. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10195. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10196. dst_data[i0] += v;
  10197. }
  10198. }
  10199. }
  10200. }
  10201. static void ggml_compute_forward_conv_1d_s1_ph(
  10202. const struct ggml_compute_params * params,
  10203. const struct ggml_tensor * src0,
  10204. const struct ggml_tensor * src1,
  10205. struct ggml_tensor * dst) {
  10206. switch (src0->type) {
  10207. case GGML_TYPE_F16:
  10208. {
  10209. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10210. } break;
  10211. case GGML_TYPE_F32:
  10212. {
  10213. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10214. } break;
  10215. default:
  10216. {
  10217. GGML_ASSERT(false);
  10218. } break;
  10219. }
  10220. }
  10221. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10222. const struct ggml_compute_params * params,
  10223. const struct ggml_tensor * src0,
  10224. const struct ggml_tensor * src1,
  10225. struct ggml_tensor * dst) {
  10226. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10227. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10228. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10229. int64_t t0 = ggml_perf_time_us();
  10230. UNUSED(t0);
  10231. GGML_TENSOR_BINARY_OP_LOCALS;
  10232. const int ith = params->ith;
  10233. const int nth = params->nth;
  10234. const int nk = ne00;
  10235. const int nh = nk/2;
  10236. const int ew0 = ggml_up32(ne01);
  10237. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10238. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10239. GGML_ASSERT(nb10 == sizeof(float));
  10240. if (params->type == GGML_TASK_INIT) {
  10241. // TODO: fix this memset (wsize is overestimated)
  10242. memset(params->wdata, 0, params->wsize);
  10243. // prepare kernel data (src0)
  10244. {
  10245. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10246. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10247. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10248. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10249. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10250. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10251. dst_data[i00*ew0 + i01] = src[i00];
  10252. }
  10253. }
  10254. }
  10255. }
  10256. // prepare source data (src1)
  10257. {
  10258. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10259. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10260. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10261. ggml_fp16_t * dst_data = wdata;
  10262. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10263. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10264. }
  10265. }
  10266. }
  10267. return;
  10268. }
  10269. if (params->type == GGML_TASK_FINALIZE) {
  10270. return;
  10271. }
  10272. // total rows in dst
  10273. const int nr = ne02;
  10274. // rows per thread
  10275. const int dr = (nr + nth - 1)/nth;
  10276. // row range for this thread
  10277. const int ir0 = dr*ith;
  10278. const int ir1 = MIN(ir0 + dr, nr);
  10279. for (int i1 = ir0; i1 < ir1; i1++) {
  10280. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10281. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10282. dst_data[i0/2] = 0;
  10283. for (int k = -nh; k <= nh; k++) {
  10284. float v = 0.0f;
  10285. ggml_vec_dot_f16(ew0, &v,
  10286. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10287. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10288. dst_data[i0/2] += v;
  10289. }
  10290. }
  10291. }
  10292. }
  10293. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10294. const struct ggml_compute_params * params,
  10295. const struct ggml_tensor * src0,
  10296. const struct ggml_tensor * src1,
  10297. struct ggml_tensor * dst) {
  10298. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10299. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10300. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10301. int64_t t0 = ggml_perf_time_us();
  10302. UNUSED(t0);
  10303. GGML_TENSOR_BINARY_OP_LOCALS;
  10304. const int ith = params->ith;
  10305. const int nth = params->nth;
  10306. const int nk = ne00;
  10307. const int nh = nk/2;
  10308. const int ew0 = ggml_up32(ne01);
  10309. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10310. GGML_ASSERT(nb00 == sizeof(float));
  10311. GGML_ASSERT(nb10 == sizeof(float));
  10312. if (params->type == GGML_TASK_INIT) {
  10313. // TODO: fix this memset (wsize is overestimated)
  10314. memset(params->wdata, 0, params->wsize);
  10315. // prepare kernel data (src0)
  10316. {
  10317. float * const wdata = (float *) params->wdata + 0;
  10318. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10319. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10320. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10321. float * dst_data = wdata + i02*ew0*ne00;
  10322. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10323. dst_data[i00*ew0 + i01] = src[i00];
  10324. }
  10325. }
  10326. }
  10327. }
  10328. // prepare source data (src1)
  10329. {
  10330. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10331. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10332. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10333. float * dst_data = wdata;
  10334. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10335. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10336. }
  10337. }
  10338. }
  10339. return;
  10340. }
  10341. if (params->type == GGML_TASK_FINALIZE) {
  10342. return;
  10343. }
  10344. // total rows in dst
  10345. const int nr = ne02;
  10346. // rows per thread
  10347. const int dr = (nr + nth - 1)/nth;
  10348. // row range for this thread
  10349. const int ir0 = dr*ith;
  10350. const int ir1 = MIN(ir0 + dr, nr);
  10351. for (int i1 = ir0; i1 < ir1; i1++) {
  10352. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10353. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10354. dst_data[i0/2] = 0;
  10355. for (int k = -nh; k <= nh; k++) {
  10356. float v = 0.0f;
  10357. ggml_vec_dot_f32(ew0, &v,
  10358. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10359. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10360. dst_data[i0/2] += v;
  10361. }
  10362. }
  10363. }
  10364. }
  10365. static void ggml_compute_forward_conv_1d_s2_ph(
  10366. const struct ggml_compute_params * params,
  10367. const struct ggml_tensor * src0,
  10368. const struct ggml_tensor * src1,
  10369. struct ggml_tensor * dst) {
  10370. switch (src0->type) {
  10371. case GGML_TYPE_F16:
  10372. {
  10373. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10374. } break;
  10375. case GGML_TYPE_F32:
  10376. {
  10377. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10378. } break;
  10379. default:
  10380. {
  10381. GGML_ASSERT(false);
  10382. } break;
  10383. }
  10384. }
  10385. // ggml_compute_forward_conv_1d
  10386. static void ggml_compute_forward_conv_1d(
  10387. const struct ggml_compute_params * params,
  10388. const struct ggml_tensor * src0,
  10389. const struct ggml_tensor * src1,
  10390. const struct ggml_tensor * opt0,
  10391. struct ggml_tensor * dst) {
  10392. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10393. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10394. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10395. GGML_ASSERT(d0 == 1); // dilation not supported
  10396. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10397. if (s0 == 1) {
  10398. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10399. } else if (s0 == 2) {
  10400. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10401. } else {
  10402. GGML_ASSERT(false); // only stride 1 and 2 supported
  10403. };
  10404. }
  10405. // ggml_compute_forward_conv_2d_sk_p0
  10406. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10407. const struct ggml_compute_params * params,
  10408. const struct ggml_tensor * src0,
  10409. const struct ggml_tensor * src1,
  10410. struct ggml_tensor * dst) {
  10411. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10412. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10413. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10414. int64_t t0 = ggml_perf_time_us();
  10415. UNUSED(t0);
  10416. GGML_TENSOR_BINARY_OP_LOCALS;
  10417. const int ith = params->ith;
  10418. const int nth = params->nth;
  10419. const int nk0 = ne00;
  10420. const int nk1 = ne01;
  10421. // size of the convolution row - the kernel size unrolled across all channels
  10422. const int ew0 = nk0*nk1*ne02;
  10423. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10424. GGML_ASSERT(nb10 == sizeof(float));
  10425. if (params->type == GGML_TASK_INIT) {
  10426. // TODO: fix this memset (wsize is overestimated)
  10427. memset(params->wdata, 0, params->wsize);
  10428. // prepare source data (src1)
  10429. {
  10430. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10431. for (int i12 = 0; i12 < ne12; i12++) {
  10432. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10433. ggml_fp16_t * dst_data = wdata;
  10434. for (int i1 = 0; i1 < ne1; i1++) {
  10435. for (int i0 = 0; i0 < ne0; i0++) {
  10436. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10437. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10438. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10439. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10440. }
  10441. }
  10442. }
  10443. }
  10444. }
  10445. }
  10446. return;
  10447. }
  10448. if (params->type == GGML_TASK_FINALIZE) {
  10449. return;
  10450. }
  10451. // total patches in dst
  10452. const int np = ne2;
  10453. // patches per thread
  10454. const int dp = (np + nth - 1)/nth;
  10455. // patch range for this thread
  10456. const int ip0 = dp*ith;
  10457. const int ip1 = MIN(ip0 + dp, np);
  10458. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10459. for (int i2 = ip0; i2 < ip1; i2++) {
  10460. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10461. for (int i1 = 0; i1 < ne1; ++i1) {
  10462. for (int i0 = 0; i0 < ne0; ++i0) {
  10463. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10464. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10465. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10466. }
  10467. }
  10468. }
  10469. }
  10470. static void ggml_compute_forward_conv_2d_sk_p0(
  10471. const struct ggml_compute_params * params,
  10472. const struct ggml_tensor * src0,
  10473. const struct ggml_tensor * src1,
  10474. struct ggml_tensor * dst) {
  10475. switch (src0->type) {
  10476. case GGML_TYPE_F16:
  10477. {
  10478. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10479. } break;
  10480. case GGML_TYPE_F32:
  10481. {
  10482. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10483. GGML_ASSERT(false);
  10484. } break;
  10485. default:
  10486. {
  10487. GGML_ASSERT(false);
  10488. } break;
  10489. }
  10490. }
  10491. // ggml_compute_forward_conv_2d
  10492. static void ggml_compute_forward_conv_2d(
  10493. const struct ggml_compute_params* params,
  10494. const struct ggml_tensor* src0,
  10495. const struct ggml_tensor* src1,
  10496. const struct ggml_tensor* opt0,
  10497. struct ggml_tensor* dst) {
  10498. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10499. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10500. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10501. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10502. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10503. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10504. GGML_ASSERT(d0 == 1); // dilation not supported
  10505. GGML_ASSERT(d1 == 1);
  10506. GGML_ASSERT(p0 == 0); // padding not supported
  10507. GGML_ASSERT(p1 == 0);
  10508. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10509. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10510. }
  10511. else {
  10512. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10513. };
  10514. }
  10515. // ggml_compute_forward_flash_attn
  10516. static void ggml_compute_forward_flash_attn_f32(
  10517. const struct ggml_compute_params * params,
  10518. const struct ggml_tensor * q,
  10519. const struct ggml_tensor * k,
  10520. const struct ggml_tensor * v,
  10521. const bool masked,
  10522. struct ggml_tensor * dst) {
  10523. int64_t t0 = ggml_perf_time_us();
  10524. UNUSED(t0);
  10525. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10526. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10527. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10528. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10529. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10530. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10531. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10532. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10533. const int ith = params->ith;
  10534. const int nth = params->nth;
  10535. const int64_t D = neq0;
  10536. const int64_t N = neq1;
  10537. const int64_t P = nek1 - N;
  10538. const int64_t M = P + N;
  10539. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10540. GGML_ASSERT(ne0 == D);
  10541. GGML_ASSERT(ne1 == N);
  10542. GGML_ASSERT(P >= 0);
  10543. GGML_ASSERT(nbq0 == sizeof(float));
  10544. GGML_ASSERT(nbk0 == sizeof(float));
  10545. GGML_ASSERT(nbv0 == sizeof(float));
  10546. GGML_ASSERT(neq0 == D);
  10547. GGML_ASSERT(nek0 == D);
  10548. GGML_ASSERT(nev1 == D);
  10549. GGML_ASSERT(neq1 == N);
  10550. GGML_ASSERT(nek1 == N + P);
  10551. GGML_ASSERT(nev1 == D);
  10552. // dst cannot be transposed or permuted
  10553. GGML_ASSERT(nb0 == sizeof(float));
  10554. GGML_ASSERT(nb0 <= nb1);
  10555. GGML_ASSERT(nb1 <= nb2);
  10556. GGML_ASSERT(nb2 <= nb3);
  10557. if (params->type == GGML_TASK_INIT) {
  10558. return;
  10559. }
  10560. if (params->type == GGML_TASK_FINALIZE) {
  10561. return;
  10562. }
  10563. // parallelize by q rows using ggml_vec_dot_f32
  10564. // total rows in q
  10565. const int nr = neq1*neq2*neq3;
  10566. // rows per thread
  10567. const int dr = (nr + nth - 1)/nth;
  10568. // row range for this thread
  10569. const int ir0 = dr*ith;
  10570. const int ir1 = MIN(ir0 + dr, nr);
  10571. const float scale = 1.0f/sqrtf(D);
  10572. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10573. for (int ir = ir0; ir < ir1; ++ir) {
  10574. // q indices
  10575. const int iq3 = ir/(neq2*neq1);
  10576. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10577. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10578. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10579. for (int i = M; i < Mup; ++i) {
  10580. S[i] = -INFINITY;
  10581. }
  10582. for (int64_t ic = 0; ic < nek1; ++ic) {
  10583. // k indices
  10584. const int ik3 = iq3;
  10585. const int ik2 = iq2;
  10586. const int ik1 = ic;
  10587. // S indices
  10588. const int i1 = ik1;
  10589. ggml_vec_dot_f32(neq0,
  10590. S + i1,
  10591. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10592. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10593. }
  10594. // scale
  10595. ggml_vec_scale_f32(nek1, S, scale);
  10596. if (masked) {
  10597. for (int64_t i = P; i < M; i++) {
  10598. if (i > P + iq1) {
  10599. S[i] = -INFINITY;
  10600. }
  10601. }
  10602. }
  10603. // softmax
  10604. {
  10605. float max = -INFINITY;
  10606. ggml_vec_max_f32(M, &max, S);
  10607. ggml_float sum = 0.0;
  10608. {
  10609. #ifdef GGML_SOFT_MAX_ACCELERATE
  10610. max = -max;
  10611. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10612. vvexpf(S, S, &Mup);
  10613. ggml_vec_sum_f32(Mup, &sum, S);
  10614. #else
  10615. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10616. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10617. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10618. float * SS = S + i;
  10619. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10620. if (SS[j] == -INFINITY) {
  10621. SS[j] = 0.0f;
  10622. } else {
  10623. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10624. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10625. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10626. sump[j] += (ggml_float)val;
  10627. SS[j] = val;
  10628. }
  10629. }
  10630. }
  10631. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10632. sum += sump[i];
  10633. }
  10634. #endif
  10635. }
  10636. assert(sum > 0.0);
  10637. sum = 1.0/sum;
  10638. ggml_vec_scale_f32(M, S, sum);
  10639. #ifndef NDEBUG
  10640. for (int i = 0; i < M; ++i) {
  10641. assert(!isnan(S[i]));
  10642. assert(!isinf(S[i]));
  10643. }
  10644. #endif
  10645. }
  10646. for (int64_t ic = 0; ic < nev1; ++ic) {
  10647. // dst indices
  10648. const int i1 = iq1;
  10649. const int i2 = iq2;
  10650. const int i3 = iq3;
  10651. ggml_vec_dot_f32(nek1,
  10652. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10653. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10654. S);
  10655. }
  10656. }
  10657. }
  10658. static void ggml_compute_forward_flash_attn_f16(
  10659. const struct ggml_compute_params * params,
  10660. const struct ggml_tensor * q,
  10661. const struct ggml_tensor * k,
  10662. const struct ggml_tensor * v,
  10663. const bool masked,
  10664. struct ggml_tensor * dst) {
  10665. int64_t t0 = ggml_perf_time_us();
  10666. UNUSED(t0);
  10667. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10668. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10669. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10670. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10671. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10672. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10673. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10674. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10675. const int ith = params->ith;
  10676. const int nth = params->nth;
  10677. const int64_t D = neq0;
  10678. const int64_t N = neq1;
  10679. const int64_t P = nek1 - N;
  10680. const int64_t M = P + N;
  10681. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10682. GGML_ASSERT(ne0 == D);
  10683. GGML_ASSERT(ne1 == N);
  10684. GGML_ASSERT(P >= 0);
  10685. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10686. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10687. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10688. GGML_ASSERT(neq0 == D);
  10689. GGML_ASSERT(nek0 == D);
  10690. GGML_ASSERT(nev1 == D);
  10691. GGML_ASSERT(neq1 == N);
  10692. GGML_ASSERT(nek1 == N + P);
  10693. GGML_ASSERT(nev1 == D);
  10694. // dst cannot be transposed or permuted
  10695. GGML_ASSERT(nb0 == sizeof(float));
  10696. GGML_ASSERT(nb0 <= nb1);
  10697. GGML_ASSERT(nb1 <= nb2);
  10698. GGML_ASSERT(nb2 <= nb3);
  10699. if (params->type == GGML_TASK_INIT) {
  10700. return;
  10701. }
  10702. if (params->type == GGML_TASK_FINALIZE) {
  10703. return;
  10704. }
  10705. // parallelize by q rows using ggml_vec_dot_f32
  10706. // total rows in q
  10707. const int nr = neq1*neq2*neq3;
  10708. // rows per thread
  10709. const int dr = (nr + nth - 1)/nth;
  10710. // row range for this thread
  10711. const int ir0 = dr*ith;
  10712. const int ir1 = MIN(ir0 + dr, nr);
  10713. const float scale = 1.0f/sqrtf(D);
  10714. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10715. for (int ir = ir0; ir < ir1; ++ir) {
  10716. // q indices
  10717. const int iq3 = ir/(neq2*neq1);
  10718. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10719. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10720. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10721. for (int i = M; i < Mup; ++i) {
  10722. S[i] = -INFINITY;
  10723. }
  10724. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10725. for (int64_t ic = 0; ic < nek1; ++ic) {
  10726. // k indices
  10727. const int ik3 = iq3;
  10728. const int ik2 = iq2;
  10729. const int ik1 = ic;
  10730. // S indices
  10731. const int i1 = ik1;
  10732. ggml_vec_dot_f16(neq0,
  10733. S + i1,
  10734. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10735. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10736. }
  10737. } else {
  10738. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10739. // k indices
  10740. const int ik3 = iq3;
  10741. const int ik2 = iq2;
  10742. const int ik1 = ic;
  10743. // S indices
  10744. const int i1 = ik1;
  10745. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10746. S + i1,
  10747. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10748. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10749. }
  10750. }
  10751. // scale
  10752. ggml_vec_scale_f32(nek1, S, scale);
  10753. if (masked) {
  10754. for (int64_t i = P; i < M; i++) {
  10755. if (i > P + iq1) {
  10756. S[i] = -INFINITY;
  10757. }
  10758. }
  10759. }
  10760. // softmax
  10761. {
  10762. float max = -INFINITY;
  10763. ggml_vec_max_f32(M, &max, S);
  10764. ggml_float sum = 0.0;
  10765. {
  10766. #ifdef GGML_SOFT_MAX_ACCELERATE
  10767. max = -max;
  10768. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10769. vvexpf(S, S, &Mup);
  10770. ggml_vec_sum_f32(Mup, &sum, S);
  10771. #else
  10772. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10773. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10774. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10775. float * SS = S + i;
  10776. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10777. if (SS[j] == -INFINITY) {
  10778. SS[j] = 0.0f;
  10779. } else {
  10780. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10781. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10782. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10783. sump[j] += (ggml_float)val;
  10784. SS[j] = val;
  10785. }
  10786. }
  10787. }
  10788. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10789. sum += sump[i];
  10790. }
  10791. #endif
  10792. }
  10793. assert(sum > 0.0);
  10794. sum = 1.0/sum;
  10795. ggml_vec_scale_f32(M, S, sum);
  10796. #ifndef NDEBUG
  10797. for (int i = 0; i < M; ++i) {
  10798. assert(!isnan(S[i]));
  10799. assert(!isinf(S[i]));
  10800. }
  10801. #endif
  10802. }
  10803. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10804. for (int64_t i = 0; i < M; i++) {
  10805. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10806. }
  10807. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10808. for (int64_t ic = 0; ic < nev1; ++ic) {
  10809. // dst indices
  10810. const int i1 = iq1;
  10811. const int i2 = iq2;
  10812. const int i3 = iq3;
  10813. ggml_vec_dot_f16(nek1,
  10814. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10815. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10816. S16);
  10817. }
  10818. } else {
  10819. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10820. // dst indices
  10821. const int i1 = iq1;
  10822. const int i2 = iq2;
  10823. const int i3 = iq3;
  10824. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10825. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10826. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10827. S16);
  10828. }
  10829. }
  10830. }
  10831. }
  10832. static void ggml_compute_forward_flash_attn(
  10833. const struct ggml_compute_params * params,
  10834. const struct ggml_tensor * q,
  10835. const struct ggml_tensor * k,
  10836. const struct ggml_tensor * v,
  10837. const bool masked,
  10838. struct ggml_tensor * dst) {
  10839. switch (q->type) {
  10840. case GGML_TYPE_F16:
  10841. {
  10842. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10843. } break;
  10844. case GGML_TYPE_F32:
  10845. {
  10846. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10847. } break;
  10848. default:
  10849. {
  10850. GGML_ASSERT(false);
  10851. } break;
  10852. }
  10853. }
  10854. // ggml_compute_forward_flash_ff
  10855. static void ggml_compute_forward_flash_ff_f16(
  10856. const struct ggml_compute_params * params,
  10857. const struct ggml_tensor * a, // F16
  10858. const struct ggml_tensor * b0, // F16 fc_w
  10859. const struct ggml_tensor * b1, // F32 fc_b
  10860. const struct ggml_tensor * c0, // F16 proj_w
  10861. const struct ggml_tensor * c1, // F32 proj_b
  10862. struct ggml_tensor * dst) {
  10863. int64_t t0 = ggml_perf_time_us();
  10864. UNUSED(t0);
  10865. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10866. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10867. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10868. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10869. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10870. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10871. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10872. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10873. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10874. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10875. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10876. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10877. const int ith = params->ith;
  10878. const int nth = params->nth;
  10879. const int64_t D = nea0;
  10880. //const int64_t N = nea1;
  10881. const int64_t M = neb01;
  10882. GGML_ASSERT(ne0 == nea0);
  10883. GGML_ASSERT(ne1 == nea1);
  10884. GGML_ASSERT(ne2 == nea2);
  10885. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10886. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10887. GGML_ASSERT(nbb10 == sizeof(float));
  10888. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10889. GGML_ASSERT(nbc10 == sizeof(float));
  10890. GGML_ASSERT(neb00 == D);
  10891. GGML_ASSERT(neb01 == M);
  10892. GGML_ASSERT(neb10 == M);
  10893. GGML_ASSERT(neb11 == 1);
  10894. GGML_ASSERT(nec00 == M);
  10895. GGML_ASSERT(nec01 == D);
  10896. GGML_ASSERT(nec10 == D);
  10897. GGML_ASSERT(nec11 == 1);
  10898. // dst cannot be transposed or permuted
  10899. GGML_ASSERT(nb0 == sizeof(float));
  10900. GGML_ASSERT(nb0 <= nb1);
  10901. GGML_ASSERT(nb1 <= nb2);
  10902. GGML_ASSERT(nb2 <= nb3);
  10903. if (params->type == GGML_TASK_INIT) {
  10904. return;
  10905. }
  10906. if (params->type == GGML_TASK_FINALIZE) {
  10907. return;
  10908. }
  10909. // parallelize by a rows using ggml_vec_dot_f32
  10910. // total rows in a
  10911. const int nr = nea1*nea2*nea3;
  10912. // rows per thread
  10913. const int dr = (nr + nth - 1)/nth;
  10914. // row range for this thread
  10915. const int ir0 = dr*ith;
  10916. const int ir1 = MIN(ir0 + dr, nr);
  10917. for (int ir = ir0; ir < ir1; ++ir) {
  10918. // a indices
  10919. const int ia3 = ir/(nea2*nea1);
  10920. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10921. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10922. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10923. for (int64_t ic = 0; ic < neb01; ++ic) {
  10924. // b0 indices
  10925. const int ib03 = ia3;
  10926. const int ib02 = ia2;
  10927. const int ib01 = ic;
  10928. // S indices
  10929. const int i1 = ib01;
  10930. ggml_vec_dot_f16(nea0,
  10931. S + i1,
  10932. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10933. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10934. }
  10935. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10936. //ggml_vec_gelu_f32(neb01, S, S);
  10937. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10938. for (int64_t i = 0; i < M; i++) {
  10939. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10940. }
  10941. ggml_vec_gelu_f16(neb01, S16, S16);
  10942. {
  10943. // dst indices
  10944. const int i1 = ia1;
  10945. const int i2 = ia2;
  10946. const int i3 = ia3;
  10947. for (int64_t ic = 0; ic < nec01; ++ic) {
  10948. ggml_vec_dot_f16(neb01,
  10949. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10950. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10951. S16);
  10952. }
  10953. ggml_vec_add_f32(nec01,
  10954. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10955. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10956. (float *) c1->data);
  10957. }
  10958. }
  10959. }
  10960. static void ggml_compute_forward_flash_ff(
  10961. const struct ggml_compute_params * params,
  10962. const struct ggml_tensor * a,
  10963. const struct ggml_tensor * b0,
  10964. const struct ggml_tensor * b1,
  10965. const struct ggml_tensor * c0,
  10966. const struct ggml_tensor * c1,
  10967. struct ggml_tensor * dst) {
  10968. switch (b0->type) {
  10969. case GGML_TYPE_F16:
  10970. {
  10971. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10972. } break;
  10973. case GGML_TYPE_F32:
  10974. {
  10975. GGML_ASSERT(false); // TODO
  10976. } break;
  10977. default:
  10978. {
  10979. GGML_ASSERT(false);
  10980. } break;
  10981. }
  10982. }
  10983. // ggml_compute_forward_flash_attn_back
  10984. static void ggml_compute_forward_flash_attn_back_f32(
  10985. const struct ggml_compute_params * params,
  10986. const struct ggml_tensor * q,
  10987. const struct ggml_tensor * k,
  10988. const struct ggml_tensor * v,
  10989. const struct ggml_tensor * d,
  10990. const bool masked,
  10991. struct ggml_tensor * dst) {
  10992. int64_t t0 = ggml_perf_time_us();
  10993. UNUSED(t0);
  10994. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10995. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10996. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10997. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10998. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10999. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11000. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11001. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11002. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11003. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11004. const int ith = params->ith;
  11005. const int nth = params->nth;
  11006. const int64_t D = neq0;
  11007. const int64_t N = neq1;
  11008. const int64_t P = nek1 - N;
  11009. const int64_t M = P + N;
  11010. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11011. const int mxDM = MAX(D, Mup);
  11012. // GGML_ASSERT(ne0 == D);
  11013. // GGML_ASSERT(ne1 == N);
  11014. GGML_ASSERT(P >= 0);
  11015. GGML_ASSERT(nbq0 == sizeof(float));
  11016. GGML_ASSERT(nbk0 == sizeof(float));
  11017. GGML_ASSERT(nbv0 == sizeof(float));
  11018. GGML_ASSERT(neq0 == D);
  11019. GGML_ASSERT(nek0 == D);
  11020. GGML_ASSERT(nev1 == D);
  11021. GGML_ASSERT(ned0 == D);
  11022. GGML_ASSERT(neq1 == N);
  11023. GGML_ASSERT(nek1 == N + P);
  11024. GGML_ASSERT(nev1 == D);
  11025. GGML_ASSERT(ned1 == N);
  11026. // dst cannot be transposed or permuted
  11027. GGML_ASSERT(nb0 == sizeof(float));
  11028. GGML_ASSERT(nb0 <= nb1);
  11029. GGML_ASSERT(nb1 <= nb2);
  11030. GGML_ASSERT(nb2 <= nb3);
  11031. if (params->type == GGML_TASK_INIT) {
  11032. if (ith == 0) {
  11033. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11034. }
  11035. return;
  11036. }
  11037. if (params->type == GGML_TASK_FINALIZE) {
  11038. return;
  11039. }
  11040. // parallelize by q rows using ggml_vec_dot_f32
  11041. // total rows in q
  11042. const int nr = neq2*neq3;
  11043. // rows per thread
  11044. const int dr = (nr + nth - 1)/nth;
  11045. // row range for this thread
  11046. const int ir0 = dr*ith;
  11047. const int ir1 = MIN(ir0 + dr, nr);
  11048. const float scale = 1.0f/sqrtf(D);
  11049. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11050. for (int ir = ir0; ir < ir1; ++ir) {
  11051. // q indices
  11052. const int iq3 = ir/(neq2);
  11053. const int iq2 = ir - iq3*neq2;
  11054. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11055. // not sure about CACHE_LINE_SIZE_F32..
  11056. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11057. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11058. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11059. for (int i = M; i < Mup; ++i) {
  11060. S[i] = -INFINITY;
  11061. }
  11062. for (int64_t ic = 0; ic < nek1; ++ic) {
  11063. // k indices
  11064. const int ik3 = iq3;
  11065. const int ik2 = iq2;
  11066. const int ik1 = ic;
  11067. // S indices
  11068. const int i1 = ik1;
  11069. ggml_vec_dot_f32(neq0,
  11070. S + i1,
  11071. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11072. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11073. }
  11074. // scale
  11075. ggml_vec_scale_f32(nek1, S, scale);
  11076. if (masked) {
  11077. for (int64_t i = P; i < M; i++) {
  11078. if (i > P + iq1) {
  11079. S[i] = -INFINITY;
  11080. }
  11081. }
  11082. }
  11083. // softmax
  11084. {
  11085. float max = -INFINITY;
  11086. ggml_vec_max_f32(M, &max, S);
  11087. ggml_float sum = 0.0;
  11088. {
  11089. #ifdef GGML_SOFT_MAX_ACCELERATE
  11090. max = -max;
  11091. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11092. vvexpf(SM, SM, &Mup);
  11093. ggml_vec_sum_f32(Mup, &sum, SM);
  11094. #else
  11095. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11096. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11097. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11098. float * SR = S + i;
  11099. float * SW = SM + i;
  11100. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11101. if (SR[j] == -INFINITY) {
  11102. SW[j] = 0.0f;
  11103. } else {
  11104. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11105. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11106. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11107. sump[j] += (ggml_float)val;
  11108. SW[j] = val;
  11109. }
  11110. }
  11111. }
  11112. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11113. sum += sump[i];
  11114. }
  11115. #endif
  11116. }
  11117. assert(sum > 0.0);
  11118. sum = 1.0/sum;
  11119. ggml_vec_scale_f32(M, SM, sum);
  11120. }
  11121. // step-by-step explanation
  11122. {
  11123. // forward-process shape grads from backward process
  11124. // parallel_for iq2,iq3:
  11125. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11126. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11127. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11128. // for iq1:
  11129. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11130. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11131. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11132. // S0 = -Inf [D,1,1,1]
  11133. // ~S1[i] = dot(kcur[:D,i], qcur)
  11134. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11135. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11136. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11137. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11138. // ~S5[i] = dot(vcur[:,i], S4)
  11139. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11140. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11141. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11142. // dst backward-/ grad[dst] = d
  11143. //
  11144. // output gradients with their dependencies:
  11145. //
  11146. // grad[kcur] = grad[S1].T @ qcur
  11147. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11148. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11149. // grad[S4] = grad[S5] @ vcur
  11150. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11151. // grad[qcur] = grad[S1] @ kcur
  11152. // grad[vcur] = grad[S5].T @ S4
  11153. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11154. //
  11155. // in post-order:
  11156. //
  11157. // S1 = qcur @ kcur.T
  11158. // S2 = S1 * scale
  11159. // S3 = diag_mask_inf(S2, P)
  11160. // S4 = softmax(S3)
  11161. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11162. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11163. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11164. // grad[qcur] = grad[S1] @ kcur
  11165. // grad[kcur] = grad[S1].T @ qcur
  11166. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11167. //
  11168. // using less variables (SM=S4):
  11169. //
  11170. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11171. // SM = softmax(S)
  11172. // S = d[:D,iq1,iq2,iq3] @ vcur
  11173. // dot_SM_gradSM = dot(SM, S)
  11174. // S = SM * (S - dot(SM, S))
  11175. // S = diag_mask_zero(S, P) * scale
  11176. //
  11177. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11178. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11179. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11180. }
  11181. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11182. // S = d[:D,iq1,iq2,iq3] @ vcur
  11183. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11184. ggml_vec_set_f32(M, S, 0);
  11185. for (int64_t ic = 0; ic < D; ++ic) {
  11186. // dst indices
  11187. const int i1 = iq1;
  11188. const int i2 = iq2;
  11189. const int i3 = iq3;
  11190. ggml_vec_mad_f32(M,
  11191. S,
  11192. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11193. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11194. }
  11195. // S = SM * (S - dot(SM, S))
  11196. float dot_SM_gradSM = 0;
  11197. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11198. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11199. ggml_vec_mul_f32 (M, S, S, SM);
  11200. // S = diag_mask_zero(S, P) * scale
  11201. if (masked) {
  11202. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11203. // S[i] = 0;
  11204. // }
  11205. for (int64_t i = P; i < M; i++) {
  11206. if (i > P + iq1) {
  11207. S[i] = 0;
  11208. }
  11209. }
  11210. }
  11211. ggml_vec_scale_f32(M, S, scale);
  11212. void * grad_q = (char *) dst->data;
  11213. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11214. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11215. const size_t nbgq1 = nb0*neq0;
  11216. const size_t nbgq2 = nb0*neq0*neq1;
  11217. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11218. const size_t nbgk1 = nb0*nek0;
  11219. const size_t nbgk2 = nb0*nek0*nek1;
  11220. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11221. const size_t nbgv1 = nb0*nev0;
  11222. const size_t nbgv2 = nb0*nev0*nev1;
  11223. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11224. // S shape [M,1]
  11225. // SM shape [M,1]
  11226. // kcur shape [D,M]
  11227. // qcur shape [D,1]
  11228. // vcur shape [M,D]
  11229. //
  11230. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11231. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11232. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11233. //
  11234. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11235. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11236. for (int64_t ic = 0; ic < M; ++ic) {
  11237. // dst indices
  11238. const int i1 = iq1;
  11239. const int i2 = iq2;
  11240. const int i3 = iq3;
  11241. ggml_vec_mad_f32(D,
  11242. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11243. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11244. S[ic]);
  11245. }
  11246. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11247. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11248. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11249. for (int64_t ic = 0; ic < M; ++ic) {
  11250. // dst indices
  11251. const int i1 = iq1;
  11252. const int i2 = iq2;
  11253. const int i3 = iq3;
  11254. // ggml_vec_set_f32(D,
  11255. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11256. // 0);
  11257. ggml_vec_mad_f32(D,
  11258. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11259. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11260. S[ic]);
  11261. }
  11262. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11263. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11264. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11265. for (int64_t ic = 0; ic < D; ++ic) {
  11266. // dst indices
  11267. const int i1 = iq1;
  11268. const int i2 = iq2;
  11269. const int i3 = iq3;
  11270. // ggml_vec_set_f32(M,
  11271. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11272. // 0);
  11273. ggml_vec_mad_f32(M,
  11274. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11275. SM,
  11276. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11277. }
  11278. }
  11279. }
  11280. }
  11281. static void ggml_compute_forward_flash_attn_back(
  11282. const struct ggml_compute_params * params,
  11283. const struct ggml_tensor * q,
  11284. const struct ggml_tensor * k,
  11285. const struct ggml_tensor * v,
  11286. const struct ggml_tensor * d,
  11287. const bool masked,
  11288. struct ggml_tensor * dst) {
  11289. switch (q->type) {
  11290. case GGML_TYPE_F32:
  11291. {
  11292. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11293. } break;
  11294. default:
  11295. {
  11296. GGML_ASSERT(false);
  11297. } break;
  11298. }
  11299. }
  11300. // ggml_compute_forward_win_part
  11301. static void ggml_compute_forward_win_part_f32(
  11302. const struct ggml_compute_params * params,
  11303. const struct ggml_tensor * src0,
  11304. const struct ggml_tensor * opt0,
  11305. struct ggml_tensor * dst) {
  11306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11307. return;
  11308. }
  11309. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11310. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11311. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11312. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11313. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11314. assert(ne00 == ne0);
  11315. assert(ne3 == nep0*nep1);
  11316. // TODO: optimize / multi-thread
  11317. for (int py = 0; py < nep1; ++py) {
  11318. for (int px = 0; px < nep0; ++px) {
  11319. const int64_t i3 = py*nep0 + px;
  11320. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11321. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11322. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11323. const int64_t i02 = py*w + i2;
  11324. const int64_t i01 = px*w + i1;
  11325. const int64_t i00 = i0;
  11326. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11327. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11328. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11329. ((float *) dst->data)[i] = 0.0f;
  11330. } else {
  11331. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11332. }
  11333. }
  11334. }
  11335. }
  11336. }
  11337. }
  11338. }
  11339. static void ggml_compute_forward_win_part(
  11340. const struct ggml_compute_params * params,
  11341. const struct ggml_tensor * src0,
  11342. const struct ggml_tensor * opt0,
  11343. struct ggml_tensor * dst) {
  11344. switch (src0->type) {
  11345. case GGML_TYPE_F32:
  11346. {
  11347. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11348. } break;
  11349. default:
  11350. {
  11351. GGML_ASSERT(false);
  11352. } break;
  11353. }
  11354. }
  11355. // ggml_compute_forward_win_unpart
  11356. static void ggml_compute_forward_win_unpart_f32(
  11357. const struct ggml_compute_params * params,
  11358. const struct ggml_tensor * src0,
  11359. const struct ggml_tensor * opt0,
  11360. struct ggml_tensor * dst) {
  11361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11362. return;
  11363. }
  11364. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11365. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11366. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11367. // padding
  11368. const int px = (w - ne1%w)%w;
  11369. //const int py = (w - ne2%w)%w;
  11370. const int npx = (px + ne1)/w;
  11371. //const int npy = (py + ne2)/w;
  11372. assert(ne0 == ne00);
  11373. // TODO: optimize / multi-thread
  11374. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11375. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11376. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11377. const int ip2 = i2/w;
  11378. const int ip1 = i1/w;
  11379. const int64_t i02 = i2%w;
  11380. const int64_t i01 = i1%w;
  11381. const int64_t i00 = i0;
  11382. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11383. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11384. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11385. }
  11386. }
  11387. }
  11388. }
  11389. static void ggml_compute_forward_win_unpart(
  11390. const struct ggml_compute_params * params,
  11391. const struct ggml_tensor * src0,
  11392. const struct ggml_tensor * opt0,
  11393. struct ggml_tensor * dst) {
  11394. switch (src0->type) {
  11395. case GGML_TYPE_F32:
  11396. {
  11397. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11398. } break;
  11399. default:
  11400. {
  11401. GGML_ASSERT(false);
  11402. } break;
  11403. }
  11404. }
  11405. // ggml_compute_forward_map_unary
  11406. static void ggml_compute_forward_map_unary_f32(
  11407. const struct ggml_compute_params * params,
  11408. const struct ggml_tensor * src0,
  11409. struct ggml_tensor * dst,
  11410. const ggml_unary_op_f32_t fun) {
  11411. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11413. return;
  11414. }
  11415. const int n = ggml_nrows(src0);
  11416. const int nc = src0->ne[0];
  11417. assert( dst->nb[0] == sizeof(float));
  11418. assert(src0->nb[0] == sizeof(float));
  11419. for (int i = 0; i < n; i++) {
  11420. fun(nc,
  11421. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11422. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11423. }
  11424. }
  11425. static void ggml_compute_forward_map_unary(
  11426. const struct ggml_compute_params * params,
  11427. const struct ggml_tensor * src0,
  11428. struct ggml_tensor * dst,
  11429. const ggml_unary_op_f32_t fun) {
  11430. switch (src0->type) {
  11431. case GGML_TYPE_F32:
  11432. {
  11433. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11434. } break;
  11435. default:
  11436. {
  11437. GGML_ASSERT(false);
  11438. } break;
  11439. }
  11440. }
  11441. // ggml_compute_forward_map_binary
  11442. static void ggml_compute_forward_map_binary_f32(
  11443. const struct ggml_compute_params * params,
  11444. const struct ggml_tensor * src0,
  11445. const struct ggml_tensor * src1,
  11446. struct ggml_tensor * dst,
  11447. const ggml_binary_op_f32_t fun) {
  11448. assert(params->ith == 0);
  11449. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11451. return;
  11452. }
  11453. const int n = ggml_nrows(src0);
  11454. const int nc = src0->ne[0];
  11455. assert( dst->nb[0] == sizeof(float));
  11456. assert(src0->nb[0] == sizeof(float));
  11457. assert(src1->nb[0] == sizeof(float));
  11458. for (int i = 0; i < n; i++) {
  11459. fun(nc,
  11460. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11461. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11462. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11463. }
  11464. }
  11465. static void ggml_compute_forward_map_binary(
  11466. const struct ggml_compute_params * params,
  11467. const struct ggml_tensor * src0,
  11468. const struct ggml_tensor * src1,
  11469. struct ggml_tensor * dst,
  11470. const ggml_binary_op_f32_t fun) {
  11471. switch (src0->type) {
  11472. case GGML_TYPE_F32:
  11473. {
  11474. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11475. } break;
  11476. default:
  11477. {
  11478. GGML_ASSERT(false);
  11479. } break;
  11480. }
  11481. }
  11482. // ggml_compute_forward_map_custom1
  11483. static void ggml_compute_forward_map_custom1_f32(
  11484. const struct ggml_compute_params * params,
  11485. const struct ggml_tensor * a,
  11486. struct ggml_tensor * dst,
  11487. const ggml_custom1_op_f32_t fun) {
  11488. assert(params->ith == 0);
  11489. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11490. return;
  11491. }
  11492. fun(dst, a);
  11493. }
  11494. static void ggml_compute_forward_map_custom1(
  11495. const struct ggml_compute_params * params,
  11496. const struct ggml_tensor * a,
  11497. struct ggml_tensor * dst,
  11498. const ggml_custom1_op_f32_t fun) {
  11499. switch (a->type) {
  11500. case GGML_TYPE_F32:
  11501. {
  11502. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11503. } break;
  11504. default:
  11505. {
  11506. GGML_ASSERT(false);
  11507. } break;
  11508. }
  11509. }
  11510. // ggml_compute_forward_map_custom2
  11511. static void ggml_compute_forward_map_custom2_f32(
  11512. const struct ggml_compute_params * params,
  11513. const struct ggml_tensor * a,
  11514. const struct ggml_tensor * b,
  11515. struct ggml_tensor * dst,
  11516. const ggml_custom2_op_f32_t fun) {
  11517. assert(params->ith == 0);
  11518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11519. return;
  11520. }
  11521. fun(dst, a, b);
  11522. }
  11523. static void ggml_compute_forward_map_custom2(
  11524. const struct ggml_compute_params * params,
  11525. const struct ggml_tensor * a,
  11526. const struct ggml_tensor * b,
  11527. struct ggml_tensor * dst,
  11528. const ggml_custom2_op_f32_t fun) {
  11529. switch (a->type) {
  11530. case GGML_TYPE_F32:
  11531. {
  11532. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11533. } break;
  11534. default:
  11535. {
  11536. GGML_ASSERT(false);
  11537. } break;
  11538. }
  11539. }
  11540. // ggml_compute_forward_map_custom3
  11541. static void ggml_compute_forward_map_custom3_f32(
  11542. const struct ggml_compute_params * params,
  11543. const struct ggml_tensor * a,
  11544. const struct ggml_tensor * b,
  11545. const struct ggml_tensor * c,
  11546. struct ggml_tensor * dst,
  11547. const ggml_custom3_op_f32_t fun) {
  11548. assert(params->ith == 0);
  11549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11550. return;
  11551. }
  11552. fun(dst, a, b, c);
  11553. }
  11554. static void ggml_compute_forward_map_custom3(
  11555. const struct ggml_compute_params * params,
  11556. const struct ggml_tensor * a,
  11557. const struct ggml_tensor * b,
  11558. const struct ggml_tensor * c,
  11559. struct ggml_tensor * dst,
  11560. const ggml_custom3_op_f32_t fun) {
  11561. switch (a->type) {
  11562. case GGML_TYPE_F32:
  11563. {
  11564. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11565. } break;
  11566. default:
  11567. {
  11568. GGML_ASSERT(false);
  11569. } break;
  11570. }
  11571. }
  11572. // ggml_compute_forward_cross_entropy_loss
  11573. static void ggml_compute_forward_cross_entropy_loss_f32(
  11574. const struct ggml_compute_params * params,
  11575. const struct ggml_tensor * src0,
  11576. const struct ggml_tensor * src1,
  11577. struct ggml_tensor * dst) {
  11578. GGML_ASSERT(ggml_is_contiguous(src0));
  11579. GGML_ASSERT(ggml_is_contiguous(src1));
  11580. GGML_ASSERT(ggml_is_scalar(dst));
  11581. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11582. const int ith = params->ith;
  11583. const int nth = params->nth;
  11584. float * sums = (float *) params->wdata;
  11585. // TODO: handle transposed/permuted matrices
  11586. const int nc = src0->ne[0];
  11587. const int nr = ggml_nrows(src0);
  11588. if (params->type == GGML_TASK_INIT) {
  11589. if (ith == 0) {
  11590. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11591. }
  11592. return;
  11593. }
  11594. if (params->type == GGML_TASK_FINALIZE) {
  11595. if (ith == 0) {
  11596. float * dp = (float *) dst->data;
  11597. ggml_vec_sum_f32(nth, dp, sums);
  11598. dp[0] *= -1.0f;
  11599. }
  11600. return;
  11601. }
  11602. const double eps = 1e-9;
  11603. // rows per thread
  11604. const int dr = (nr + nth - 1)/nth;
  11605. // row range for this thread
  11606. const int ir0 = dr*ith;
  11607. const int ir1 = MIN(ir0 + dr, nr);
  11608. for (int i1 = ir0; i1 < ir1; i1++) {
  11609. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11610. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11611. float * st = (float *) params->wdata + nth + ith*nc;
  11612. #ifndef NDEBUG
  11613. for (int i = 0; i < nc; ++i) {
  11614. //printf("p[%d] = %f\n", i, p[i]);
  11615. assert(!isnan(s0[i]));
  11616. assert(!isnan(s1[i]));
  11617. }
  11618. #endif
  11619. // soft_max
  11620. ggml_float sum = 0.0;
  11621. {
  11622. float max = -INFINITY;
  11623. ggml_vec_max_f32(nc, &max, s0);
  11624. uint16_t scvt;
  11625. for (int i = 0; i < nc; i++) {
  11626. if (s0[i] == -INFINITY) {
  11627. st[i] = 0.0f;
  11628. } else {
  11629. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11630. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11631. memcpy(&scvt, &s, sizeof(scvt));
  11632. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11633. sum += (ggml_float)val;
  11634. st[i] = val;
  11635. }
  11636. }
  11637. assert(sum > 0.0);
  11638. // sum = 1.0/sum;
  11639. }
  11640. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11641. sum = (1.0 - eps) / sum;
  11642. ggml_vec_scale_f32(nc, st, sum);
  11643. ggml_vec_add1_f32(nc, st, st, eps);
  11644. ggml_vec_log_f32(nc, st, st);
  11645. ggml_vec_mul_f32(nc, st, st, s1);
  11646. ggml_vec_sum_f32(nc, sums + ith, st);
  11647. #ifndef NDEBUG
  11648. for (int i = 0; i < nc; ++i) {
  11649. assert(!isnan(st[i]));
  11650. assert(!isinf(st[i]));
  11651. }
  11652. #endif
  11653. }
  11654. }
  11655. static void ggml_compute_forward_cross_entropy_loss(
  11656. const struct ggml_compute_params * params,
  11657. const struct ggml_tensor * src0,
  11658. const struct ggml_tensor * src1,
  11659. struct ggml_tensor * dst) {
  11660. switch (src0->type) {
  11661. case GGML_TYPE_F32:
  11662. {
  11663. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11664. } break;
  11665. default:
  11666. {
  11667. GGML_ASSERT(false);
  11668. } break;
  11669. }
  11670. }
  11671. // ggml_compute_forward_cross_entropy_loss_back
  11672. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11673. const struct ggml_compute_params * params,
  11674. const struct ggml_tensor * src0,
  11675. const struct ggml_tensor * src1,
  11676. const struct ggml_tensor * opt0,
  11677. struct ggml_tensor * dst) {
  11678. GGML_ASSERT(ggml_is_contiguous(dst));
  11679. GGML_ASSERT(ggml_is_contiguous(src0));
  11680. GGML_ASSERT(ggml_is_contiguous(src1));
  11681. GGML_ASSERT(ggml_is_contiguous(opt0));
  11682. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11683. const int64_t ith = params->ith;
  11684. const int64_t nth = params->nth;
  11685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11686. return;
  11687. }
  11688. const float eps = 1e-9f;
  11689. // TODO: handle transposed/permuted matrices
  11690. const int64_t nc = src0->ne[0];
  11691. const int64_t nr = ggml_nrows(src0);
  11692. // rows per thread
  11693. const int64_t dr = (nr + nth - 1)/nth;
  11694. // row range for this thread
  11695. const int64_t ir0 = dr*ith;
  11696. const int64_t ir1 = MIN(ir0 + dr, nr);
  11697. float * d = (float *) opt0->data;
  11698. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11699. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11700. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11701. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11702. float * sm = (float *) params->wdata + ith*nc;
  11703. #ifndef NDEBUG
  11704. for (int i = 0; i < nc; ++i) {
  11705. //printf("p[%d] = %f\n", i, p[i]);
  11706. assert(!isnan(s0[i]));
  11707. assert(!isnan(s1[i]));
  11708. }
  11709. #endif
  11710. // step by step explanation:
  11711. {
  11712. //float * sums = (float *) params->wdata;
  11713. // forward pass with annotated gradients from backward pass
  11714. // (built by going in reverse operation order, adding to gradients of current operation args)
  11715. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11716. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11717. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11718. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11719. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11720. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11721. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11722. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11723. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11724. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11725. // postorder:
  11726. // grad[st1] := softmax(s0)
  11727. // grad[st1] := grad[st1]*(1.0 - eps)
  11728. // grad[st1] := grad[st1] + eps
  11729. // grad[st1] := s1 / grad[st1]
  11730. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11731. // src0 gradients by going through softmax_back
  11732. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11733. // from softmax_back:
  11734. // dxk = yk * (dyk - dot(y, dy))
  11735. // dot_y_dy := dot(y, dy)
  11736. // dx := dy
  11737. // dx := dx - dot_y_dy
  11738. // dx := dx * y
  11739. // postorder:
  11740. // dot_st1_dst1 := dot(st1, grad[st1])
  11741. // grad[s0] := grad[st1]
  11742. // grad[s0] := grad[s0] - dot_st1_dst1
  11743. // grad[s0] := grad[s0] * st1
  11744. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11745. // sm := softmax(s0)
  11746. // grad[s0] := sm*(1.0 - eps)
  11747. // grad[s0] := grad[s0] + eps
  11748. // grad[s0] := s1 / grad[s0]
  11749. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11750. // dot_st1_dst1 := dot(sm, grad[s0])
  11751. // grad[s0] := grad[s0] - dot_st1_dst1
  11752. // grad[s0] := grad[s0] * sm
  11753. }
  11754. // soft_max
  11755. ggml_float sum = 0.0;
  11756. {
  11757. float max = -INFINITY;
  11758. ggml_vec_max_f32(nc, &max, s0);
  11759. uint16_t scvt;
  11760. for (int i = 0; i < nc; i++) {
  11761. if (s0[i] == -INFINITY) {
  11762. sm[i] = 0.0f;
  11763. } else {
  11764. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11765. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11766. memcpy(&scvt, &s, sizeof(scvt));
  11767. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11768. sum += (ggml_float)val;
  11769. sm[i] = val;
  11770. }
  11771. }
  11772. assert(sum > 0.0);
  11773. sum = 1.0/sum;
  11774. }
  11775. float dot_st1_dst1 = 0;
  11776. ggml_vec_scale_f32(nc, sm, sum);
  11777. ggml_vec_cpy_f32 (nc, ds0, sm);
  11778. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11779. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11780. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11781. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11782. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11783. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11784. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11785. #ifndef NDEBUG
  11786. for (int i = 0; i < nc; ++i) {
  11787. assert(!isnan(sm[i]));
  11788. assert(!isinf(sm[i]));
  11789. assert(!isnan(ds0[i]));
  11790. assert(!isinf(ds0[i]));
  11791. }
  11792. #endif
  11793. }
  11794. }
  11795. static void ggml_compute_forward_cross_entropy_loss_back(
  11796. const struct ggml_compute_params * params,
  11797. const struct ggml_tensor * src0,
  11798. const struct ggml_tensor * src1,
  11799. const struct ggml_tensor * opt0,
  11800. struct ggml_tensor * dst) {
  11801. switch (src0->type) {
  11802. case GGML_TYPE_F32:
  11803. {
  11804. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11805. } break;
  11806. default:
  11807. {
  11808. GGML_ASSERT(false);
  11809. } break;
  11810. }
  11811. }
  11812. /////////////////////////////////
  11813. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11814. GGML_ASSERT(params);
  11815. #ifdef GGML_USE_CUBLAS
  11816. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11817. if (skip_cpu) {
  11818. return;
  11819. }
  11820. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  11821. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  11822. #endif // GGML_USE_CUBLAS
  11823. switch (tensor->op) {
  11824. case GGML_OP_DUP:
  11825. {
  11826. ggml_compute_forward_dup(params, tensor->src0, tensor);
  11827. } break;
  11828. case GGML_OP_ADD:
  11829. {
  11830. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  11831. } break;
  11832. case GGML_OP_ADD1:
  11833. {
  11834. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  11835. } break;
  11836. case GGML_OP_ACC:
  11837. {
  11838. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11839. } break;
  11840. case GGML_OP_SUB:
  11841. {
  11842. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  11843. } break;
  11844. case GGML_OP_MUL:
  11845. {
  11846. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  11847. } break;
  11848. case GGML_OP_DIV:
  11849. {
  11850. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  11851. } break;
  11852. case GGML_OP_SQR:
  11853. {
  11854. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  11855. } break;
  11856. case GGML_OP_SQRT:
  11857. {
  11858. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  11859. } break;
  11860. case GGML_OP_LOG:
  11861. {
  11862. ggml_compute_forward_log(params, tensor->src0, tensor);
  11863. } break;
  11864. case GGML_OP_SUM:
  11865. {
  11866. ggml_compute_forward_sum(params, tensor->src0, tensor);
  11867. } break;
  11868. case GGML_OP_SUM_ROWS:
  11869. {
  11870. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  11871. } break;
  11872. case GGML_OP_MEAN:
  11873. {
  11874. ggml_compute_forward_mean(params, tensor->src0, tensor);
  11875. } break;
  11876. case GGML_OP_ARGMAX:
  11877. {
  11878. ggml_compute_forward_argmax(params, tensor->src0, tensor);
  11879. } break;
  11880. case GGML_OP_REPEAT:
  11881. {
  11882. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  11883. } break;
  11884. case GGML_OP_REPEAT_BACK:
  11885. {
  11886. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  11887. } break;
  11888. case GGML_OP_ABS:
  11889. {
  11890. ggml_compute_forward_abs(params, tensor->src0, tensor);
  11891. } break;
  11892. case GGML_OP_SGN:
  11893. {
  11894. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  11895. } break;
  11896. case GGML_OP_NEG:
  11897. {
  11898. ggml_compute_forward_neg(params, tensor->src0, tensor);
  11899. } break;
  11900. case GGML_OP_STEP:
  11901. {
  11902. ggml_compute_forward_step(params, tensor->src0, tensor);
  11903. } break;
  11904. case GGML_OP_TANH:
  11905. {
  11906. ggml_compute_forward_tanh(params, tensor->src0, tensor);
  11907. } break;
  11908. case GGML_OP_ELU:
  11909. {
  11910. ggml_compute_forward_elu(params, tensor->src0, tensor);
  11911. } break;
  11912. case GGML_OP_RELU:
  11913. {
  11914. ggml_compute_forward_relu(params, tensor->src0, tensor);
  11915. } break;
  11916. case GGML_OP_GELU:
  11917. {
  11918. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  11919. } break;
  11920. case GGML_OP_GELU_QUICK:
  11921. {
  11922. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  11923. } break;
  11924. case GGML_OP_SILU:
  11925. {
  11926. ggml_compute_forward_silu(params, tensor->src0, tensor);
  11927. } break;
  11928. case GGML_OP_SILU_BACK:
  11929. {
  11930. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  11931. } break;
  11932. case GGML_OP_NORM:
  11933. {
  11934. ggml_compute_forward_norm(params, tensor->src0, tensor);
  11935. } break;
  11936. case GGML_OP_RMS_NORM:
  11937. {
  11938. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  11939. } break;
  11940. case GGML_OP_RMS_NORM_BACK:
  11941. {
  11942. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  11943. } break;
  11944. case GGML_OP_MUL_MAT:
  11945. {
  11946. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  11947. } break;
  11948. case GGML_OP_OUT_PROD:
  11949. {
  11950. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  11951. } break;
  11952. case GGML_OP_SCALE:
  11953. {
  11954. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  11955. } break;
  11956. case GGML_OP_SET:
  11957. {
  11958. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11959. } break;
  11960. case GGML_OP_CPY:
  11961. {
  11962. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  11963. } break;
  11964. case GGML_OP_CONT:
  11965. {
  11966. ggml_compute_forward_cont(params, tensor->src0, tensor);
  11967. } break;
  11968. case GGML_OP_RESHAPE:
  11969. {
  11970. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  11971. } break;
  11972. case GGML_OP_VIEW:
  11973. {
  11974. ggml_compute_forward_view(params, tensor->src0);
  11975. } break;
  11976. case GGML_OP_PERMUTE:
  11977. {
  11978. ggml_compute_forward_permute(params, tensor->src0);
  11979. } break;
  11980. case GGML_OP_TRANSPOSE:
  11981. {
  11982. ggml_compute_forward_transpose(params, tensor->src0);
  11983. } break;
  11984. case GGML_OP_GET_ROWS:
  11985. {
  11986. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  11987. } break;
  11988. case GGML_OP_GET_ROWS_BACK:
  11989. {
  11990. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11991. } break;
  11992. case GGML_OP_DIAG:
  11993. {
  11994. ggml_compute_forward_diag(params, tensor->src0, tensor);
  11995. } break;
  11996. case GGML_OP_DIAG_MASK_INF:
  11997. {
  11998. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  11999. } break;
  12000. case GGML_OP_DIAG_MASK_ZERO:
  12001. {
  12002. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12003. } break;
  12004. case GGML_OP_SOFT_MAX:
  12005. {
  12006. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12007. } break;
  12008. case GGML_OP_SOFT_MAX_BACK:
  12009. {
  12010. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12011. } break;
  12012. case GGML_OP_ROPE:
  12013. {
  12014. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12015. } break;
  12016. case GGML_OP_ROPE_BACK:
  12017. {
  12018. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12019. } break;
  12020. case GGML_OP_ALIBI:
  12021. {
  12022. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12023. } break;
  12024. case GGML_OP_CLAMP:
  12025. {
  12026. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12027. } break;
  12028. case GGML_OP_CONV_1D:
  12029. {
  12030. ggml_compute_forward_conv_1d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12031. } break;
  12032. case GGML_OP_CONV_2D:
  12033. {
  12034. ggml_compute_forward_conv_2d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12035. } break;
  12036. case GGML_OP_FLASH_ATTN:
  12037. {
  12038. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12039. GGML_ASSERT(t == 0 || t == 1);
  12040. const bool masked = t != 0;
  12041. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12042. } break;
  12043. case GGML_OP_FLASH_FF:
  12044. {
  12045. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12046. } break;
  12047. case GGML_OP_FLASH_ATTN_BACK:
  12048. {
  12049. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12050. GGML_ASSERT(t == 0 || t == 1);
  12051. bool masked = t != 0;
  12052. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12053. } break;
  12054. case GGML_OP_WIN_PART:
  12055. {
  12056. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12057. } break;
  12058. case GGML_OP_WIN_UNPART:
  12059. {
  12060. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12061. } break;
  12062. case GGML_OP_MAP_UNARY:
  12063. {
  12064. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12065. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12066. }
  12067. break;
  12068. case GGML_OP_MAP_BINARY:
  12069. {
  12070. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12071. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12072. }
  12073. break;
  12074. case GGML_OP_MAP_CUSTOM1:
  12075. {
  12076. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12077. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12078. }
  12079. break;
  12080. case GGML_OP_MAP_CUSTOM2:
  12081. {
  12082. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12083. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12084. }
  12085. break;
  12086. case GGML_OP_MAP_CUSTOM3:
  12087. {
  12088. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12089. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12090. }
  12091. break;
  12092. case GGML_OP_CROSS_ENTROPY_LOSS:
  12093. {
  12094. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12095. }
  12096. break;
  12097. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12098. {
  12099. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12100. }
  12101. break;
  12102. case GGML_OP_NONE:
  12103. {
  12104. // nop
  12105. } break;
  12106. case GGML_OP_COUNT:
  12107. {
  12108. GGML_ASSERT(false);
  12109. } break;
  12110. }
  12111. }
  12112. ////////////////////////////////////////////////////////////////////////////////
  12113. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12114. struct ggml_tensor * src0 = tensor->src0;
  12115. struct ggml_tensor * src1 = tensor->src1;
  12116. switch (tensor->op) {
  12117. case GGML_OP_DUP:
  12118. {
  12119. if (src0->grad) {
  12120. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12121. }
  12122. } break;
  12123. case GGML_OP_ADD:
  12124. {
  12125. if (src0->grad) {
  12126. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12127. }
  12128. if (src1->grad) {
  12129. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12130. }
  12131. } break;
  12132. case GGML_OP_ADD1:
  12133. {
  12134. if (src0->grad) {
  12135. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12136. }
  12137. if (src1->grad) {
  12138. src1->grad = ggml_add_impl(ctx,
  12139. src1->grad,
  12140. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12141. inplace);
  12142. }
  12143. } break;
  12144. case GGML_OP_ACC:
  12145. {
  12146. if (src0->grad) {
  12147. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12148. }
  12149. if (src1->grad) {
  12150. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12151. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12152. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12153. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12154. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12155. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12156. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12157. tensor->grad,
  12158. src1->grad->ne[0],
  12159. src1->grad->ne[1],
  12160. src1->grad->ne[2],
  12161. src1->grad->ne[3],
  12162. nb1, nb2, nb3, offset);
  12163. src1->grad =
  12164. ggml_add_impl(ctx,
  12165. src1->grad,
  12166. ggml_reshape(ctx,
  12167. ggml_cont(ctx, tensor_grad_view),
  12168. src1->grad),
  12169. inplace);
  12170. }
  12171. } break;
  12172. case GGML_OP_SUB:
  12173. {
  12174. if (src0->grad) {
  12175. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12176. }
  12177. if (src1->grad) {
  12178. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12179. }
  12180. } break;
  12181. case GGML_OP_MUL:
  12182. {
  12183. if (src0->grad) {
  12184. src0->grad =
  12185. ggml_add_impl(ctx,
  12186. src0->grad,
  12187. ggml_mul(ctx, src1, tensor->grad),
  12188. inplace);
  12189. }
  12190. if (src1->grad) {
  12191. src1->grad =
  12192. ggml_add_impl(ctx,
  12193. src1->grad,
  12194. ggml_mul(ctx, src0, tensor->grad),
  12195. inplace);
  12196. }
  12197. } break;
  12198. case GGML_OP_DIV:
  12199. {
  12200. if (src0->grad) {
  12201. src0->grad =
  12202. ggml_add_impl(ctx,
  12203. src0->grad,
  12204. ggml_div(ctx, tensor->grad, src1),
  12205. inplace);
  12206. }
  12207. if (src1->grad) {
  12208. src1->grad =
  12209. ggml_sub_impl(ctx,
  12210. src1->grad,
  12211. ggml_mul(ctx,
  12212. tensor->grad,
  12213. ggml_div(ctx, tensor, src1)),
  12214. inplace);
  12215. }
  12216. } break;
  12217. case GGML_OP_SQR:
  12218. {
  12219. if (src0->grad) {
  12220. src0->grad =
  12221. ggml_add_impl(ctx,
  12222. src0->grad,
  12223. ggml_scale(ctx,
  12224. ggml_mul(ctx, src0, tensor->grad),
  12225. ggml_new_f32(ctx, 2.0f)),
  12226. inplace);
  12227. }
  12228. } break;
  12229. case GGML_OP_SQRT:
  12230. {
  12231. if (src0->grad) {
  12232. src0->grad =
  12233. ggml_add_impl(ctx,
  12234. src0->grad,
  12235. ggml_scale(ctx,
  12236. ggml_div(ctx,
  12237. tensor->grad,
  12238. tensor),
  12239. ggml_new_f32(ctx, 0.5f)),
  12240. inplace);
  12241. }
  12242. } break;
  12243. case GGML_OP_LOG:
  12244. {
  12245. if (src0->grad) {
  12246. src0->grad =
  12247. ggml_add_impl(ctx,
  12248. src0->grad,
  12249. ggml_div(ctx,
  12250. tensor->grad,
  12251. src0),
  12252. inplace);
  12253. }
  12254. } break;
  12255. case GGML_OP_SUM:
  12256. {
  12257. if (src0->grad) {
  12258. src0->grad =
  12259. ggml_add1_impl(ctx,
  12260. src0->grad,
  12261. tensor->grad,
  12262. inplace);
  12263. }
  12264. } break;
  12265. case GGML_OP_SUM_ROWS:
  12266. {
  12267. if (src0->grad) {
  12268. src0->grad =
  12269. ggml_add_impl(ctx,
  12270. src0->grad,
  12271. ggml_repeat(ctx,
  12272. tensor->grad,
  12273. src0->grad),
  12274. inplace);
  12275. }
  12276. } break;
  12277. case GGML_OP_MEAN:
  12278. case GGML_OP_ARGMAX:
  12279. {
  12280. GGML_ASSERT(false); // TODO: implement
  12281. } break;
  12282. case GGML_OP_REPEAT:
  12283. {
  12284. // necessary for llama
  12285. if (src0->grad) {
  12286. src0->grad = ggml_add_impl(ctx,
  12287. src0->grad,
  12288. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12289. inplace);
  12290. }
  12291. } break;
  12292. case GGML_OP_REPEAT_BACK:
  12293. {
  12294. if (src0->grad) {
  12295. // TODO: test this
  12296. src0->grad = ggml_add_impl(ctx,
  12297. src0->grad,
  12298. ggml_repeat(ctx, tensor->grad, src0->grad),
  12299. inplace);
  12300. }
  12301. } break;
  12302. case GGML_OP_ABS:
  12303. {
  12304. if (src0->grad) {
  12305. src0->grad =
  12306. ggml_add_impl(ctx,
  12307. src0->grad,
  12308. ggml_mul(ctx,
  12309. ggml_sgn(ctx, src0),
  12310. tensor->grad),
  12311. inplace);
  12312. }
  12313. } break;
  12314. case GGML_OP_SGN:
  12315. {
  12316. if (src0->grad) {
  12317. // noop
  12318. }
  12319. } break;
  12320. case GGML_OP_NEG:
  12321. {
  12322. if (src0->grad) {
  12323. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12324. }
  12325. } break;
  12326. case GGML_OP_STEP:
  12327. {
  12328. if (src0->grad) {
  12329. // noop
  12330. }
  12331. } break;
  12332. case GGML_OP_TANH:
  12333. {
  12334. GGML_ASSERT(false); // TODO: not implemented
  12335. } break;
  12336. case GGML_OP_ELU:
  12337. {
  12338. GGML_ASSERT(false); // TODO: not implemented
  12339. } break;
  12340. case GGML_OP_RELU:
  12341. {
  12342. if (src0->grad) {
  12343. src0->grad = ggml_sub_impl(ctx,
  12344. src0->grad,
  12345. ggml_mul(ctx,
  12346. ggml_step(ctx, src0),
  12347. tensor->grad),
  12348. inplace);
  12349. }
  12350. } break;
  12351. case GGML_OP_GELU:
  12352. {
  12353. GGML_ASSERT(false); // TODO: not implemented
  12354. } break;
  12355. case GGML_OP_GELU_QUICK:
  12356. {
  12357. GGML_ASSERT(false); // TODO: not implemented
  12358. } break;
  12359. case GGML_OP_SILU:
  12360. {
  12361. // necessary for llama
  12362. if (src0->grad) {
  12363. src0->grad = ggml_add_impl(ctx,
  12364. src0->grad,
  12365. ggml_silu_back(ctx, src0, tensor->grad),
  12366. inplace);
  12367. }
  12368. } break;
  12369. case GGML_OP_SILU_BACK:
  12370. {
  12371. GGML_ASSERT(false); // TODO: not implemented
  12372. } break;
  12373. case GGML_OP_NORM:
  12374. {
  12375. GGML_ASSERT(false); // TODO: not implemented
  12376. } break;
  12377. case GGML_OP_RMS_NORM:
  12378. {
  12379. // necessary for llama
  12380. if (src0->grad) {
  12381. src0->grad = ggml_add_impl(ctx,
  12382. src0->grad,
  12383. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12384. inplace);
  12385. }
  12386. } break;
  12387. case GGML_OP_RMS_NORM_BACK:
  12388. {
  12389. GGML_ASSERT(false); // TODO: not implemented
  12390. } break;
  12391. case GGML_OP_MUL_MAT:
  12392. {
  12393. // https://cs231n.github.io/optimization-2/#staged
  12394. // # forward pass
  12395. // s0 = np.random.randn(5, 10)
  12396. // s1 = np.random.randn(10, 3)
  12397. // t = s0.dot(s1)
  12398. // # now suppose we had the gradient on t from above in the circuit
  12399. // dt = np.random.randn(*t.shape) # same shape as t
  12400. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12401. // ds1 = t.T.dot(dt)
  12402. // tensor.shape [m,p]
  12403. // src0.shape [n,m]
  12404. // src1.shape [n,p]
  12405. // necessary for llama
  12406. if (src0->grad) {
  12407. src0->grad =
  12408. ggml_add_impl(ctx,
  12409. src0->grad,
  12410. ggml_out_prod(ctx, // [n,m]
  12411. src1, // [n,p]
  12412. tensor->grad), // [m,p]
  12413. inplace);
  12414. }
  12415. if (src1->grad) {
  12416. src1->grad =
  12417. ggml_add_impl(ctx,
  12418. src1->grad,
  12419. // ggml_mul_mat(ctx, // [n,p]
  12420. // ggml_cont(ctx, // [m,n]
  12421. // ggml_transpose(ctx, src0)), // [m,n]
  12422. // tensor->grad), // [m,p]
  12423. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12424. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12425. // // and then use ggml_out_prod
  12426. ggml_out_prod(ctx, // [n,p]
  12427. src0, // [n,m]
  12428. ggml_transpose(ctx, // [p,m]
  12429. tensor->grad)), // [m,p]
  12430. inplace);
  12431. }
  12432. } break;
  12433. case GGML_OP_OUT_PROD:
  12434. {
  12435. GGML_ASSERT(false); // TODO: not implemented
  12436. } break;
  12437. case GGML_OP_SCALE:
  12438. {
  12439. // necessary for llama
  12440. if (src0->grad) {
  12441. src0->grad =
  12442. ggml_add_impl(ctx,
  12443. src0->grad,
  12444. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12445. inplace);
  12446. }
  12447. if (src1->grad) {
  12448. src1->grad =
  12449. ggml_add_impl(ctx,
  12450. src1->grad,
  12451. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12452. inplace);
  12453. }
  12454. } break;
  12455. case GGML_OP_SET:
  12456. {
  12457. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12458. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12459. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12460. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12461. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12462. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12463. struct ggml_tensor * tensor_grad_view = NULL;
  12464. if (src0->grad || src1->grad) {
  12465. GGML_ASSERT(src0->type == tensor->type);
  12466. GGML_ASSERT(tensor->grad->type == tensor->type);
  12467. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12468. tensor_grad_view = ggml_view_4d(ctx,
  12469. tensor->grad,
  12470. src1->grad->ne[0],
  12471. src1->grad->ne[1],
  12472. src1->grad->ne[2],
  12473. src1->grad->ne[3],
  12474. nb1, nb2, nb3, offset);
  12475. }
  12476. if (src0->grad) {
  12477. src0->grad = ggml_add_impl(ctx,
  12478. src0->grad,
  12479. ggml_acc_impl(ctx,
  12480. tensor->grad,
  12481. ggml_neg(ctx, tensor_grad_view),
  12482. nb1, nb2, nb3, offset, false),
  12483. inplace);
  12484. }
  12485. if (src1->grad) {
  12486. src1->grad =
  12487. ggml_add_impl(ctx,
  12488. src1->grad,
  12489. ggml_reshape(ctx,
  12490. ggml_cont(ctx, tensor_grad_view),
  12491. src1->grad),
  12492. inplace);
  12493. }
  12494. } break;
  12495. case GGML_OP_CPY:
  12496. {
  12497. // necessary for llama
  12498. // cpy overwrites value of src1 by src0 and returns view(src1)
  12499. // the overwriting is mathematically equivalent to:
  12500. // tensor = src0 * 1 + src1 * 0
  12501. if (src0->grad) {
  12502. // dsrc0 = dtensor * 1
  12503. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12504. }
  12505. if (src1->grad) {
  12506. // dsrc1 = dtensor * 0 -> noop
  12507. }
  12508. } break;
  12509. case GGML_OP_CONT:
  12510. {
  12511. // same as cpy
  12512. if (src0->grad) {
  12513. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12514. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12515. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12516. }
  12517. } break;
  12518. case GGML_OP_RESHAPE:
  12519. {
  12520. // necessary for llama
  12521. if (src0->grad) {
  12522. src0->grad =
  12523. ggml_add_impl(ctx, src0->grad,
  12524. ggml_reshape(ctx, tensor->grad, src0->grad),
  12525. inplace);
  12526. }
  12527. } break;
  12528. case GGML_OP_VIEW:
  12529. {
  12530. // necessary for llama
  12531. if (src0->grad) {
  12532. size_t offset;
  12533. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12534. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12535. size_t nb1 = tensor->nb[1];
  12536. size_t nb2 = tensor->nb[2];
  12537. size_t nb3 = tensor->nb[3];
  12538. if (src0->type != src0->grad->type) {
  12539. // gradient is typically F32, but src0 could be other type
  12540. size_t ng = ggml_element_size(src0->grad);
  12541. size_t n0 = ggml_element_size(src0);
  12542. GGML_ASSERT(offset % n0 == 0);
  12543. GGML_ASSERT(nb1 % n0 == 0);
  12544. GGML_ASSERT(nb2 % n0 == 0);
  12545. GGML_ASSERT(nb3 % n0 == 0);
  12546. offset = (offset / n0) * ng;
  12547. nb1 = (nb1 / n0) * ng;
  12548. nb2 = (nb2 / n0) * ng;
  12549. nb3 = (nb3 / n0) * ng;
  12550. }
  12551. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12552. }
  12553. } break;
  12554. case GGML_OP_PERMUTE:
  12555. {
  12556. // necessary for llama
  12557. if (src0->grad) {
  12558. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12559. int axis0 = axes[0] & 0x3;
  12560. int axis1 = axes[1] & 0x3;
  12561. int axis2 = axes[2] & 0x3;
  12562. int axis3 = axes[3] & 0x3;
  12563. int axes_backward[4] = {0,0,0,0};
  12564. axes_backward[axis0] = 0;
  12565. axes_backward[axis1] = 1;
  12566. axes_backward[axis2] = 2;
  12567. axes_backward[axis3] = 3;
  12568. src0->grad =
  12569. ggml_add_impl(ctx, src0->grad,
  12570. ggml_permute(ctx,
  12571. tensor->grad,
  12572. axes_backward[0],
  12573. axes_backward[1],
  12574. axes_backward[2],
  12575. axes_backward[3]),
  12576. inplace);
  12577. }
  12578. } break;
  12579. case GGML_OP_TRANSPOSE:
  12580. {
  12581. // necessary for llama
  12582. if (src0->grad) {
  12583. src0->grad =
  12584. ggml_add_impl(ctx, src0->grad,
  12585. ggml_transpose(ctx, tensor->grad),
  12586. inplace);
  12587. }
  12588. } break;
  12589. case GGML_OP_GET_ROWS:
  12590. {
  12591. // necessary for llama (only for tokenizer)
  12592. if (src0->grad) {
  12593. src0->grad =
  12594. ggml_add_impl(ctx, src0->grad,
  12595. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12596. inplace);
  12597. }
  12598. if (src1->grad) {
  12599. // noop
  12600. }
  12601. } break;
  12602. case GGML_OP_GET_ROWS_BACK:
  12603. {
  12604. GGML_ASSERT(false); // TODO: not implemented
  12605. } break;
  12606. case GGML_OP_DIAG:
  12607. {
  12608. GGML_ASSERT(false); // TODO: not implemented
  12609. } break;
  12610. case GGML_OP_DIAG_MASK_INF:
  12611. {
  12612. // necessary for llama
  12613. if (src0->grad) {
  12614. assert(src1->type == GGML_TYPE_I32);
  12615. assert(ggml_nelements(src1) == 2);
  12616. const int n_past = ((int32_t *) src1->data)[0];
  12617. src0->grad =
  12618. ggml_add_impl(ctx, src0->grad,
  12619. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12620. inplace);
  12621. }
  12622. if (src1->grad) {
  12623. // noop
  12624. }
  12625. } break;
  12626. case GGML_OP_DIAG_MASK_ZERO:
  12627. {
  12628. // necessary for llama
  12629. if (src0->grad) {
  12630. assert(src1->type == GGML_TYPE_I32);
  12631. assert(ggml_nelements(src1) == 2);
  12632. const int n_past = ((int32_t *) src1->data)[0];
  12633. src0->grad =
  12634. ggml_add_impl(ctx, src0->grad,
  12635. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12636. inplace);
  12637. }
  12638. if (src1->grad) {
  12639. // noop
  12640. }
  12641. } break;
  12642. case GGML_OP_SOFT_MAX:
  12643. {
  12644. // necessary for llama
  12645. if (src0->grad) {
  12646. src0->grad =
  12647. ggml_add_impl(ctx, src0->grad,
  12648. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12649. inplace);
  12650. }
  12651. } break;
  12652. case GGML_OP_SOFT_MAX_BACK:
  12653. {
  12654. GGML_ASSERT(false); // TODO: not implemented
  12655. } break;
  12656. case GGML_OP_ROPE:
  12657. {
  12658. // necessary for llama
  12659. if (src0->grad) {
  12660. assert(src1->type == GGML_TYPE_I32);
  12661. assert(ggml_nelements(src1) == 4);
  12662. const int n_past = ((int32_t *) src1->data)[0];
  12663. const int n_dims = ((int32_t *) src1->data)[1];
  12664. const int mode = ((int32_t *) src1->data)[2];
  12665. src0->grad = ggml_add_impl(ctx,
  12666. src0->grad,
  12667. ggml_rope_back(ctx,
  12668. tensor->grad,
  12669. n_past,
  12670. n_dims,
  12671. mode),
  12672. inplace);
  12673. }
  12674. if (src1->grad) {
  12675. // noop
  12676. }
  12677. } break;
  12678. case GGML_OP_ROPE_BACK:
  12679. {
  12680. if (src0->grad) {
  12681. assert(src1->type == GGML_TYPE_I32);
  12682. assert(ggml_nelements(src1) == 4);
  12683. const int n_past = ((int32_t *) src1->data)[0];
  12684. const int n_dims = ((int32_t *) src1->data)[1];
  12685. const int mode = ((int32_t *) src1->data)[2];
  12686. const int n_ctx = ((int32_t *) src1->data)[3];
  12687. src0->grad = ggml_add_impl(ctx,
  12688. src0->grad,
  12689. ggml_rope(ctx,
  12690. tensor->grad,
  12691. n_past,
  12692. n_dims,
  12693. mode,
  12694. n_ctx),
  12695. inplace);
  12696. }
  12697. if (src1->grad) {
  12698. // noop
  12699. }
  12700. } break;
  12701. case GGML_OP_ALIBI:
  12702. {
  12703. GGML_ASSERT(false); // TODO: not implemented
  12704. } break;
  12705. case GGML_OP_CLAMP:
  12706. {
  12707. GGML_ASSERT(false); // TODO: not implemented
  12708. } break;
  12709. case GGML_OP_CONV_1D:
  12710. {
  12711. GGML_ASSERT(false); // TODO: not implemented
  12712. } break;
  12713. case GGML_OP_CONV_2D:
  12714. {
  12715. GGML_ASSERT(false); // TODO: not implemented
  12716. } break;
  12717. case GGML_OP_FLASH_ATTN:
  12718. {
  12719. struct ggml_tensor * flash_grad = NULL;
  12720. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12721. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12722. GGML_ASSERT(t == 0 || t == 1);
  12723. bool masked = t != 0;
  12724. flash_grad =
  12725. ggml_flash_attn_back(ctx,
  12726. src0,
  12727. src1,
  12728. tensor->opt[0],
  12729. tensor->grad,
  12730. masked);
  12731. }
  12732. if (src0->grad) {
  12733. struct ggml_tensor * grad_q = NULL;
  12734. const size_t nb0 = flash_grad->nb[0];
  12735. const size_t offset = 0;
  12736. switch(src0->n_dims) {
  12737. case 2:
  12738. {
  12739. grad_q = ggml_view_2d(ctx,
  12740. flash_grad,
  12741. src0->ne[0],
  12742. src0->ne[1],
  12743. nb0*src0->ne[0],
  12744. offset);
  12745. } break;
  12746. case 3:
  12747. {
  12748. grad_q = ggml_view_3d(ctx,
  12749. flash_grad,
  12750. src0->ne[0],
  12751. src0->ne[1],
  12752. src0->ne[2],
  12753. nb0*src0->ne[0],
  12754. nb0*src0->ne[0]*src0->ne[1],
  12755. offset);
  12756. } break;
  12757. case 4:
  12758. {
  12759. grad_q = ggml_view_4d(ctx,
  12760. flash_grad,
  12761. src0->ne[0],
  12762. src0->ne[1],
  12763. src0->ne[2],
  12764. src0->ne[3],
  12765. nb0*src0->ne[0],
  12766. nb0*src0->ne[0]*src0->ne[1],
  12767. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12768. offset);
  12769. } break;
  12770. }
  12771. src0->grad = ggml_add_impl(ctx,
  12772. src0->grad,
  12773. grad_q,
  12774. inplace);
  12775. }
  12776. if (src1->grad) {
  12777. struct ggml_tensor * grad_k = NULL;
  12778. const size_t nb0 = flash_grad->nb[0];
  12779. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12780. switch(src1->n_dims) {
  12781. case 2:
  12782. {
  12783. grad_k = ggml_view_2d(ctx,
  12784. flash_grad,
  12785. src1->ne[0],
  12786. src1->ne[1],
  12787. nb0*src1->ne[0],
  12788. offset);
  12789. } break;
  12790. case 3:
  12791. {
  12792. grad_k = ggml_view_3d(ctx,
  12793. flash_grad,
  12794. src1->ne[0],
  12795. src1->ne[1],
  12796. src1->ne[2],
  12797. nb0*src1->ne[0],
  12798. nb0*src1->ne[0]*src1->ne[1],
  12799. offset);
  12800. } break;
  12801. case 4:
  12802. {
  12803. grad_k = ggml_view_4d(ctx,
  12804. flash_grad,
  12805. src1->ne[0],
  12806. src1->ne[1],
  12807. src1->ne[2],
  12808. src1->ne[3],
  12809. nb0*src1->ne[0],
  12810. nb0*src1->ne[0]*src1->ne[1],
  12811. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12812. offset);
  12813. } break;
  12814. }
  12815. src1->grad = ggml_add_impl(ctx,
  12816. src1->grad,
  12817. grad_k,
  12818. inplace);
  12819. }
  12820. struct ggml_tensor * opt0 = tensor->opt[0];
  12821. if (opt0->grad) {
  12822. struct ggml_tensor * grad_v = NULL;
  12823. const size_t nb0 = flash_grad->nb[0];
  12824. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12825. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12826. switch(opt0->n_dims) {
  12827. case 2:
  12828. {
  12829. grad_v = ggml_view_2d(ctx,
  12830. flash_grad,
  12831. opt0->ne[0],
  12832. opt0->ne[1],
  12833. nb0*opt0->ne[0],
  12834. offset);
  12835. } break;
  12836. case 3:
  12837. {
  12838. grad_v = ggml_view_3d(ctx,
  12839. flash_grad,
  12840. opt0->ne[0],
  12841. opt0->ne[1],
  12842. opt0->ne[2],
  12843. nb0*opt0->ne[0],
  12844. nb0*opt0->ne[0]*opt0->ne[1],
  12845. offset);
  12846. } break;
  12847. case 4:
  12848. {
  12849. grad_v = ggml_view_4d(ctx,
  12850. flash_grad,
  12851. opt0->ne[0],
  12852. opt0->ne[1],
  12853. opt0->ne[2],
  12854. opt0->ne[3],
  12855. nb0*opt0->ne[0],
  12856. nb0*opt0->ne[0]*opt0->ne[1],
  12857. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12858. offset);
  12859. } break;
  12860. }
  12861. opt0->grad = ggml_add_impl(ctx,
  12862. opt0->grad,
  12863. grad_v,
  12864. inplace);
  12865. }
  12866. } break;
  12867. case GGML_OP_FLASH_FF:
  12868. {
  12869. GGML_ASSERT(false); // not supported
  12870. } break;
  12871. case GGML_OP_FLASH_ATTN_BACK:
  12872. {
  12873. GGML_ASSERT(false); // not supported
  12874. } break;
  12875. case GGML_OP_WIN_PART:
  12876. case GGML_OP_WIN_UNPART:
  12877. case GGML_OP_MAP_UNARY:
  12878. case GGML_OP_MAP_BINARY:
  12879. case GGML_OP_MAP_CUSTOM1:
  12880. case GGML_OP_MAP_CUSTOM2:
  12881. case GGML_OP_MAP_CUSTOM3:
  12882. {
  12883. GGML_ASSERT(false); // not supported
  12884. } break;
  12885. case GGML_OP_CROSS_ENTROPY_LOSS:
  12886. {
  12887. if (src0->grad) {
  12888. src0->grad = ggml_add_impl(ctx,
  12889. src0->grad,
  12890. ggml_cross_entropy_loss_back(ctx,
  12891. src0,
  12892. src1,
  12893. tensor->grad),
  12894. inplace);
  12895. }
  12896. } break;
  12897. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12898. {
  12899. GGML_ASSERT(false); // not supported
  12900. } break;
  12901. case GGML_OP_NONE:
  12902. {
  12903. // nop
  12904. } break;
  12905. case GGML_OP_COUNT:
  12906. {
  12907. GGML_ASSERT(false);
  12908. } break;
  12909. }
  12910. }
  12911. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12912. if (node->grad == NULL) {
  12913. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12914. // it can also happen during forward pass, if the user performs computations with constants
  12915. if (node->op != GGML_OP_NONE) {
  12916. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12917. }
  12918. }
  12919. // check if already visited
  12920. for (int i = 0; i < cgraph->n_nodes; i++) {
  12921. if (cgraph->nodes[i] == node) {
  12922. return;
  12923. }
  12924. }
  12925. for (int i = 0; i < cgraph->n_leafs; i++) {
  12926. if (cgraph->leafs[i] == node) {
  12927. return;
  12928. }
  12929. }
  12930. if (node->src0) {
  12931. ggml_visit_parents(cgraph, node->src0);
  12932. }
  12933. if (node->src1) {
  12934. ggml_visit_parents(cgraph, node->src1);
  12935. }
  12936. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  12937. if (node->opt[i]) {
  12938. ggml_visit_parents(cgraph, node->opt[i]);
  12939. }
  12940. }
  12941. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12942. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12943. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12944. if (strlen(node->name) == 0) {
  12945. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12946. }
  12947. cgraph->leafs[cgraph->n_leafs] = node;
  12948. cgraph->n_leafs++;
  12949. } else {
  12950. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12951. if (strlen(node->name) == 0) {
  12952. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12953. }
  12954. cgraph->nodes[cgraph->n_nodes] = node;
  12955. cgraph->grads[cgraph->n_nodes] = node->grad;
  12956. cgraph->n_nodes++;
  12957. }
  12958. }
  12959. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12960. if (!expand) {
  12961. cgraph->n_nodes = 0;
  12962. cgraph->n_leafs = 0;
  12963. }
  12964. const int n0 = cgraph->n_nodes;
  12965. UNUSED(n0);
  12966. ggml_visit_parents(cgraph, tensor);
  12967. const int n_new = cgraph->n_nodes - n0;
  12968. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12969. if (n_new > 0) {
  12970. // the last added node should always be starting point
  12971. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12972. }
  12973. }
  12974. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12975. ggml_build_forward_impl(cgraph, tensor, true);
  12976. }
  12977. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12978. struct ggml_cgraph result = {
  12979. /*.n_nodes =*/ 0,
  12980. /*.n_leafs =*/ 0,
  12981. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  12982. /*.work_size =*/ 0,
  12983. /*.work =*/ NULL,
  12984. /*.nodes =*/ { NULL },
  12985. /*.grads =*/ { NULL },
  12986. /*.leafs =*/ { NULL },
  12987. /*.perf_runs =*/ 0,
  12988. /*.perf_cycles =*/ 0,
  12989. /*.perf_time_us =*/ 0,
  12990. };
  12991. ggml_build_forward_impl(&result, tensor, false);
  12992. return result;
  12993. }
  12994. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12995. struct ggml_cgraph result = *gf;
  12996. GGML_ASSERT(gf->n_nodes > 0);
  12997. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12998. if (keep) {
  12999. for (int i = 0; i < gf->n_nodes; i++) {
  13000. struct ggml_tensor * node = gf->nodes[i];
  13001. if (node->grad) {
  13002. node->grad = ggml_dup_tensor(ctx, node);
  13003. gf->grads[i] = node->grad;
  13004. }
  13005. }
  13006. }
  13007. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13008. struct ggml_tensor * node = gf->nodes[i];
  13009. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13010. if (node->grad) {
  13011. ggml_compute_backward(ctx, node, keep);
  13012. }
  13013. }
  13014. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13015. struct ggml_tensor * node = gf->nodes[i];
  13016. if (node->is_param) {
  13017. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13018. ggml_build_forward_impl(&result, node->grad, true);
  13019. }
  13020. }
  13021. return result;
  13022. }
  13023. //
  13024. // thread data
  13025. //
  13026. // synchronization is done via busy loops
  13027. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13028. //
  13029. #ifdef __APPLE__
  13030. //#include <os/lock.h>
  13031. //
  13032. //typedef os_unfair_lock ggml_lock_t;
  13033. //
  13034. //#define ggml_lock_init(x) UNUSED(x)
  13035. //#define ggml_lock_destroy(x) UNUSED(x)
  13036. //#define ggml_lock_lock os_unfair_lock_lock
  13037. //#define ggml_lock_unlock os_unfair_lock_unlock
  13038. //
  13039. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13040. typedef int ggml_lock_t;
  13041. #define ggml_lock_init(x) UNUSED(x)
  13042. #define ggml_lock_destroy(x) UNUSED(x)
  13043. #define ggml_lock_lock(x) UNUSED(x)
  13044. #define ggml_lock_unlock(x) UNUSED(x)
  13045. #define GGML_LOCK_INITIALIZER 0
  13046. typedef pthread_t ggml_thread_t;
  13047. #define ggml_thread_create pthread_create
  13048. #define ggml_thread_join pthread_join
  13049. #else
  13050. //typedef pthread_spinlock_t ggml_lock_t;
  13051. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13052. //#define ggml_lock_destroy pthread_spin_destroy
  13053. //#define ggml_lock_lock pthread_spin_lock
  13054. //#define ggml_lock_unlock pthread_spin_unlock
  13055. typedef int ggml_lock_t;
  13056. #define ggml_lock_init(x) UNUSED(x)
  13057. #define ggml_lock_destroy(x) UNUSED(x)
  13058. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13059. #define ggml_lock_lock(x) _mm_pause()
  13060. #else
  13061. #define ggml_lock_lock(x) UNUSED(x)
  13062. #endif
  13063. #define ggml_lock_unlock(x) UNUSED(x)
  13064. #define GGML_LOCK_INITIALIZER 0
  13065. typedef pthread_t ggml_thread_t;
  13066. #define ggml_thread_create pthread_create
  13067. #define ggml_thread_join pthread_join
  13068. #endif
  13069. // Android's libc implementation "bionic" does not support setting affinity
  13070. #if defined(__linux__) && !defined(__BIONIC__)
  13071. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13072. if (!ggml_is_numa()) {
  13073. return;
  13074. }
  13075. // run thread on node_num thread_n / (threads per node)
  13076. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13077. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13078. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13079. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13080. CPU_ZERO_S(setsize, cpus);
  13081. for (size_t i = 0; i < node->n_cpus; ++i) {
  13082. CPU_SET_S(node->cpus[i], setsize, cpus);
  13083. }
  13084. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13085. if (rv) {
  13086. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13087. strerror(rv));
  13088. }
  13089. CPU_FREE(cpus);
  13090. }
  13091. void clear_numa_thread_affinity(void) {
  13092. if (!ggml_is_numa()) {
  13093. return;
  13094. }
  13095. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13096. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13097. CPU_ZERO_S(setsize, cpus);
  13098. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13099. CPU_SET_S(i, setsize, cpus);
  13100. }
  13101. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13102. if (rv) {
  13103. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13104. strerror(rv));
  13105. }
  13106. CPU_FREE(cpus);
  13107. }
  13108. #else
  13109. // TODO: Windows etc.
  13110. // (the linux implementation may also work on BSD, someone should test)
  13111. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13112. void clear_numa_thread_affinity(void) {}
  13113. #endif
  13114. struct ggml_compute_state_shared {
  13115. struct ggml_cgraph * cgraph;
  13116. int64_t perf_node_start_cycles;
  13117. int64_t perf_node_start_time_us;
  13118. int n_threads;
  13119. // synchronization primitives
  13120. atomic_int n_active; // num active threads
  13121. atomic_int node_n; // active graph node
  13122. };
  13123. struct ggml_compute_state {
  13124. ggml_thread_t thrd;
  13125. int ith;
  13126. struct ggml_compute_state_shared * shared;
  13127. };
  13128. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13129. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13130. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13131. node->perf_runs++;
  13132. node->perf_cycles += cycles_cur;
  13133. node->perf_time_us += time_us_cur;
  13134. }
  13135. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13136. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13137. struct ggml_cgraph * cgraph = state->shared->cgraph;
  13138. const int n_threads = state->shared->n_threads;
  13139. set_numa_thread_affinity(state->ith, n_threads);
  13140. int node_n = -1;
  13141. while (true) {
  13142. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13143. // all other threads are finished and spinning
  13144. // do finalize and init here so we don't have synchronize again
  13145. struct ggml_compute_params params = {
  13146. /*.type =*/ GGML_TASK_FINALIZE,
  13147. /*.ith =*/ 0,
  13148. /*.nth =*/ 0,
  13149. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13150. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13151. };
  13152. if (node_n != -1) {
  13153. /* FINALIZE */
  13154. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13155. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13156. params.nth = node->n_tasks;
  13157. ggml_compute_forward(&params, node);
  13158. ggml_graph_compute_perf_stats_node(node, state->shared);
  13159. }
  13160. }
  13161. // distribute new work or execute it direct if 1T
  13162. while (++node_n < cgraph->n_nodes) {
  13163. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13164. struct ggml_tensor * node = cgraph->nodes[node_n];
  13165. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13166. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13167. params.nth = node->n_tasks;
  13168. /* INIT */
  13169. if (GGML_OP_HAS_INIT[node->op]) {
  13170. params.type = GGML_TASK_INIT;
  13171. ggml_compute_forward(&params, node);
  13172. }
  13173. if (node->n_tasks == 1) {
  13174. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13175. // they do something more efficient than spinning (?)
  13176. params.type = GGML_TASK_COMPUTE;
  13177. ggml_compute_forward(&params, node);
  13178. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13179. params.type = GGML_TASK_FINALIZE;
  13180. ggml_compute_forward(&params, node);
  13181. ggml_graph_compute_perf_stats_node(node, state->shared);
  13182. }
  13183. } else {
  13184. break;
  13185. }
  13186. }
  13187. atomic_store(&state->shared->n_active, n_threads);
  13188. atomic_store(&state->shared->node_n, node_n);
  13189. } else {
  13190. // wait for other threads to finish
  13191. const int last = node_n;
  13192. do {
  13193. sched_yield();
  13194. node_n = atomic_load(&state->shared->node_n);
  13195. } while (node_n == last);
  13196. }
  13197. // check if we should stop
  13198. if (node_n >= cgraph->n_nodes) break;
  13199. /* COMPUTE */
  13200. struct ggml_tensor * node = cgraph->nodes[node_n];
  13201. struct ggml_compute_params params = {
  13202. /*.type =*/ GGML_TASK_COMPUTE,
  13203. /*.ith =*/ state->ith,
  13204. /*.nth =*/ node->n_tasks,
  13205. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13206. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13207. };
  13208. if (state->ith < node->n_tasks) {
  13209. ggml_compute_forward(&params, node);
  13210. }
  13211. }
  13212. return 0;
  13213. }
  13214. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13215. const int n_threads = cgraph->n_threads;
  13216. struct ggml_compute_state_shared state_shared = {
  13217. /*.cgraph =*/ cgraph,
  13218. /*.perf_node_start_cycles =*/ 0,
  13219. /*.perf_node_start_time_us =*/ 0,
  13220. /*.n_threads =*/ n_threads,
  13221. /*.n_active =*/ n_threads,
  13222. /*.node_n =*/ -1,
  13223. };
  13224. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13225. // initialize tasks + work buffer
  13226. {
  13227. size_t work_size = 0;
  13228. // thread scheduling for the different operations
  13229. for (int i = 0; i < cgraph->n_nodes; i++) {
  13230. struct ggml_tensor * node = cgraph->nodes[i];
  13231. switch (node->op) {
  13232. case GGML_OP_CPY:
  13233. case GGML_OP_DUP:
  13234. {
  13235. node->n_tasks = n_threads;
  13236. size_t cur = 0;
  13237. if (ggml_is_quantized(node->type)) {
  13238. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13239. }
  13240. work_size = MAX(work_size, cur);
  13241. } break;
  13242. case GGML_OP_ADD:
  13243. case GGML_OP_ADD1:
  13244. {
  13245. node->n_tasks = n_threads;
  13246. size_t cur = 0;
  13247. if (ggml_is_quantized(node->src0->type)) {
  13248. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13249. }
  13250. work_size = MAX(work_size, cur);
  13251. } break;
  13252. case GGML_OP_ACC:
  13253. {
  13254. node->n_tasks = n_threads;
  13255. size_t cur = 0;
  13256. if (ggml_is_quantized(node->src0->type)) {
  13257. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13258. }
  13259. work_size = MAX(work_size, cur);
  13260. } break;
  13261. case GGML_OP_SUB:
  13262. case GGML_OP_DIV:
  13263. case GGML_OP_SQR:
  13264. case GGML_OP_SQRT:
  13265. case GGML_OP_LOG:
  13266. case GGML_OP_SUM:
  13267. case GGML_OP_SUM_ROWS:
  13268. case GGML_OP_MEAN:
  13269. case GGML_OP_ARGMAX:
  13270. case GGML_OP_REPEAT:
  13271. case GGML_OP_REPEAT_BACK:
  13272. case GGML_OP_ABS:
  13273. case GGML_OP_SGN:
  13274. case GGML_OP_NEG:
  13275. case GGML_OP_STEP:
  13276. case GGML_OP_TANH:
  13277. case GGML_OP_ELU:
  13278. case GGML_OP_RELU:
  13279. {
  13280. node->n_tasks = 1;
  13281. } break;
  13282. case GGML_OP_MUL:
  13283. case GGML_OP_GELU:
  13284. case GGML_OP_GELU_QUICK:
  13285. case GGML_OP_SILU:
  13286. case GGML_OP_SILU_BACK:
  13287. case GGML_OP_NORM:
  13288. case GGML_OP_RMS_NORM:
  13289. case GGML_OP_RMS_NORM_BACK:
  13290. {
  13291. node->n_tasks = n_threads;
  13292. } break;
  13293. case GGML_OP_MUL_MAT:
  13294. case GGML_OP_OUT_PROD:
  13295. {
  13296. node->n_tasks = n_threads;
  13297. // TODO: use different scheduling for different matrix sizes
  13298. //const int nr0 = ggml_nrows(node->src0);
  13299. //const int nr1 = ggml_nrows(node->src1);
  13300. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13301. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13302. size_t cur = 0;
  13303. const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
  13304. #if defined(GGML_USE_CUBLAS)
  13305. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13306. node->n_tasks = 1; // TODO: this actually is doing nothing
  13307. // the threads are still spinning
  13308. }
  13309. else
  13310. #elif defined(GGML_USE_CLBLAST)
  13311. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13312. node->n_tasks = 1; // TODO: this actually is doing nothing
  13313. // the threads are still spinning
  13314. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13315. }
  13316. else
  13317. #endif
  13318. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13319. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13320. node->n_tasks = 1; // TODO: this actually is doing nothing
  13321. // the threads are still spinning
  13322. if (node->src0->type != GGML_TYPE_F32) {
  13323. // here we need memory just for single 2D matrix from src0
  13324. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13325. }
  13326. } else
  13327. #endif
  13328. if (node->src1->type != vec_dot_type) {
  13329. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
  13330. } else {
  13331. cur = 0;
  13332. }
  13333. work_size = MAX(work_size, cur);
  13334. } break;
  13335. case GGML_OP_SCALE:
  13336. {
  13337. node->n_tasks = 1;
  13338. } break;
  13339. case GGML_OP_SET:
  13340. case GGML_OP_CONT:
  13341. case GGML_OP_RESHAPE:
  13342. case GGML_OP_VIEW:
  13343. case GGML_OP_PERMUTE:
  13344. case GGML_OP_TRANSPOSE:
  13345. case GGML_OP_GET_ROWS:
  13346. case GGML_OP_GET_ROWS_BACK:
  13347. case GGML_OP_DIAG:
  13348. case GGML_OP_DIAG_MASK_ZERO:
  13349. {
  13350. node->n_tasks = 1;
  13351. } break;
  13352. case GGML_OP_DIAG_MASK_INF:
  13353. case GGML_OP_SOFT_MAX:
  13354. case GGML_OP_SOFT_MAX_BACK:
  13355. case GGML_OP_ROPE:
  13356. case GGML_OP_ROPE_BACK:
  13357. {
  13358. node->n_tasks = n_threads;
  13359. } break;
  13360. case GGML_OP_ALIBI:
  13361. {
  13362. node->n_tasks = 1; //TODO
  13363. } break;
  13364. case GGML_OP_CLAMP:
  13365. {
  13366. node->n_tasks = 1; //TODO
  13367. } break;
  13368. case GGML_OP_CONV_1D:
  13369. {
  13370. node->n_tasks = n_threads;
  13371. GGML_ASSERT(node->src0->ne[3] == 1);
  13372. GGML_ASSERT(node->src1->ne[2] == 1);
  13373. GGML_ASSERT(node->src1->ne[3] == 1);
  13374. size_t cur = 0;
  13375. const int nk = node->src0->ne[0];
  13376. if (node->src0->type == GGML_TYPE_F16 &&
  13377. node->src1->type == GGML_TYPE_F32) {
  13378. cur = sizeof(ggml_fp16_t)*(
  13379. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13380. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13381. );
  13382. } else if (node->src0->type == GGML_TYPE_F32 &&
  13383. node->src1->type == GGML_TYPE_F32) {
  13384. cur = sizeof(float)*(
  13385. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13386. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13387. );
  13388. } else {
  13389. GGML_ASSERT(false);
  13390. }
  13391. work_size = MAX(work_size, cur);
  13392. } break;
  13393. case GGML_OP_CONV_2D:
  13394. {
  13395. node->n_tasks = n_threads;
  13396. GGML_ASSERT(node->src1->ne[3] == 1);
  13397. const int64_t ne00 = node->src0->ne[0]; // W
  13398. const int64_t ne01 = node->src0->ne[1]; // H
  13399. const int64_t ne02 = node->src0->ne[2]; // C
  13400. const int64_t ne03 = node->src0->ne[3]; // N
  13401. const int64_t ne10 = node->src1->ne[0]; // W
  13402. const int64_t ne11 = node->src1->ne[1]; // H
  13403. const int64_t ne12 = node->src1->ne[2]; // C
  13404. const int64_t nk = ne00*ne01;
  13405. UNUSED(ne02);
  13406. UNUSED(ne03);
  13407. UNUSED(nk);
  13408. size_t cur = 0;
  13409. if (node->src0->type == GGML_TYPE_F16 &&
  13410. node->src1->type == GGML_TYPE_F32) {
  13411. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13412. } else if (node->src0->type == GGML_TYPE_F32 &&
  13413. node->src1->type == GGML_TYPE_F32) {
  13414. cur = sizeof(float)* (ne10*ne11*ne12);
  13415. } else {
  13416. GGML_ASSERT(false);
  13417. }
  13418. work_size = MAX(work_size, cur);
  13419. } break;
  13420. case GGML_OP_FLASH_ATTN:
  13421. {
  13422. node->n_tasks = n_threads;
  13423. size_t cur = 0;
  13424. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13425. if (node->src1->type == GGML_TYPE_F32) {
  13426. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13427. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13428. }
  13429. if (node->src1->type == GGML_TYPE_F16) {
  13430. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13431. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13432. }
  13433. work_size = MAX(work_size, cur);
  13434. } break;
  13435. case GGML_OP_FLASH_FF:
  13436. {
  13437. node->n_tasks = n_threads;
  13438. size_t cur = 0;
  13439. if (node->src1->type == GGML_TYPE_F32) {
  13440. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13441. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13442. }
  13443. if (node->src1->type == GGML_TYPE_F16) {
  13444. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13445. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13446. }
  13447. work_size = MAX(work_size, cur);
  13448. } break;
  13449. case GGML_OP_FLASH_ATTN_BACK:
  13450. {
  13451. node->n_tasks = n_threads;
  13452. size_t cur = 0;
  13453. const int64_t D = node->src0->ne[0];
  13454. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13455. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13456. if (node->src1->type == GGML_TYPE_F32) {
  13457. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13458. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13459. }
  13460. if (node->src1->type == GGML_TYPE_F16) {
  13461. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13462. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13463. }
  13464. work_size = MAX(work_size, cur);
  13465. } break;
  13466. case GGML_OP_WIN_PART:
  13467. case GGML_OP_WIN_UNPART:
  13468. case GGML_OP_MAP_UNARY:
  13469. case GGML_OP_MAP_BINARY:
  13470. case GGML_OP_MAP_CUSTOM1:
  13471. case GGML_OP_MAP_CUSTOM2:
  13472. case GGML_OP_MAP_CUSTOM3:
  13473. {
  13474. node->n_tasks = 1;
  13475. } break;
  13476. case GGML_OP_CROSS_ENTROPY_LOSS:
  13477. {
  13478. node->n_tasks = n_threads;
  13479. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13480. work_size = MAX(work_size, cur);
  13481. } break;
  13482. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13483. {
  13484. node->n_tasks = n_threads;
  13485. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13486. work_size = MAX(work_size, cur);
  13487. } break;
  13488. case GGML_OP_NONE:
  13489. {
  13490. node->n_tasks = 1;
  13491. } break;
  13492. case GGML_OP_COUNT:
  13493. {
  13494. GGML_ASSERT(false);
  13495. } break;
  13496. }
  13497. }
  13498. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13499. GGML_ASSERT(false); // TODO: better handling
  13500. }
  13501. if (work_size > 0 && cgraph->work == NULL) {
  13502. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13503. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13504. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13505. }
  13506. }
  13507. // create thread pool
  13508. if (n_threads > 1) {
  13509. for (int j = 1; j < n_threads; ++j) {
  13510. workers[j] = (struct ggml_compute_state) {
  13511. .thrd = 0,
  13512. .ith = j,
  13513. .shared = &state_shared,
  13514. };
  13515. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13516. GGML_ASSERT(rc == 0);
  13517. }
  13518. }
  13519. workers[0].ith = 0;
  13520. workers[0].shared = &state_shared;
  13521. const int64_t perf_start_cycles = ggml_perf_cycles();
  13522. const int64_t perf_start_time_us = ggml_perf_time_us();
  13523. // this is a work thread too
  13524. ggml_graph_compute_thread(&workers[0]);
  13525. // don't leave affinity set on the main thread
  13526. clear_numa_thread_affinity();
  13527. // join thread pool
  13528. if (n_threads > 1) {
  13529. for (int j = 1; j < n_threads; j++) {
  13530. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13531. GGML_ASSERT(rc == 0);
  13532. }
  13533. }
  13534. // performance stats (graph)
  13535. {
  13536. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13537. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13538. cgraph->perf_runs++;
  13539. cgraph->perf_cycles += perf_cycles_cur;
  13540. cgraph->perf_time_us += perf_time_us_cur;
  13541. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13542. __func__, cgraph->perf_runs,
  13543. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13544. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13545. (double) perf_time_us_cur / 1000.0,
  13546. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13547. }
  13548. }
  13549. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13550. for (int i = 0; i < cgraph->n_nodes; i++) {
  13551. struct ggml_tensor * grad = cgraph->grads[i];
  13552. if (grad) {
  13553. ggml_set_zero(grad);
  13554. }
  13555. }
  13556. }
  13557. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13558. for (int i = 0; i < cgraph->n_leafs; i++) {
  13559. struct ggml_tensor * leaf = cgraph->leafs[i];
  13560. if (strcmp(leaf->name, name) == 0) {
  13561. return leaf;
  13562. }
  13563. }
  13564. for (int i = 0; i < cgraph->n_nodes; i++) {
  13565. struct ggml_tensor * node = cgraph->nodes[i];
  13566. if (strcmp(node->name, name) == 0) {
  13567. return node;
  13568. }
  13569. }
  13570. return NULL;
  13571. }
  13572. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13573. const int64_t * ne = tensor->ne;
  13574. const size_t * nb = tensor->nb;
  13575. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13576. ggml_type_name(tensor->type),
  13577. ggml_op_name (tensor->op),
  13578. tensor->n_dims,
  13579. ne[0], ne[1], ne[2], ne[3],
  13580. nb[0], nb[1], nb[2], nb[3],
  13581. tensor->data,
  13582. tensor->name);
  13583. }
  13584. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13585. const int64_t * ne = tensor->ne;
  13586. const size_t * nb = tensor->nb;
  13587. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13588. arg,
  13589. ggml_type_name(tensor->type),
  13590. ggml_op_name (tensor->op),
  13591. tensor->n_dims,
  13592. ne[0], ne[1], ne[2], ne[3],
  13593. nb[0], nb[1], nb[2], nb[3],
  13594. tensor->n_tasks,
  13595. tensor->data,
  13596. tensor->name);
  13597. }
  13598. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13599. //assert(cgraph->work == NULL);
  13600. //assert(cgraph->work_size == 0);
  13601. uint64_t size_eval = 0;
  13602. // compute size of intermediate results
  13603. // TODO: does not take into account scratch buffers !!!!
  13604. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13605. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13606. }
  13607. // print
  13608. {
  13609. FILE * fout = stdout;
  13610. fprintf(fout, "\n");
  13611. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13612. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13613. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13614. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13615. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13616. // header
  13617. fprintf(fout, "\n");
  13618. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13619. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13620. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13621. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13622. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13623. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13624. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13625. }
  13626. // header
  13627. fprintf(fout, "\n");
  13628. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13629. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13630. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13631. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13632. if (cgraph->nodes[i]->src0) {
  13633. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13634. }
  13635. if (cgraph->nodes[i]->src1) {
  13636. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13637. }
  13638. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13639. if (cgraph->nodes[i]->opt[j]) {
  13640. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13641. }
  13642. }
  13643. fprintf(fout, "\n");
  13644. }
  13645. fprintf(fout, "\n");
  13646. }
  13647. // write binary data
  13648. {
  13649. FILE * fout = fopen(fname, "wb");
  13650. if (!fout) {
  13651. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13652. return;
  13653. }
  13654. // header
  13655. {
  13656. const uint32_t magic = GGML_FILE_MAGIC;
  13657. const uint32_t version = GGML_FILE_VERSION;
  13658. const uint32_t n_leafs = cgraph->n_leafs;
  13659. const uint32_t nodes = cgraph->n_nodes;
  13660. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13661. fwrite(&version, sizeof(uint32_t), 1, fout);
  13662. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13663. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13664. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13665. }
  13666. // leafs
  13667. {
  13668. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13669. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13670. const uint32_t type = tensor->type;
  13671. const uint32_t op = tensor->op;
  13672. const uint32_t n_dims = tensor->n_dims;
  13673. fwrite(&type, sizeof(uint32_t), 1, fout);
  13674. fwrite(&op, sizeof(uint32_t), 1, fout);
  13675. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13676. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13677. const uint64_t ne = tensor->ne[j];
  13678. const uint64_t nb = tensor->nb[j];
  13679. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13680. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13681. }
  13682. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13683. // dump the data
  13684. // TODO: pad this to 32 byte boundary
  13685. {
  13686. const size_t size = ggml_nbytes(tensor);
  13687. fwrite(tensor->data, sizeof(char), size, fout);
  13688. }
  13689. }
  13690. }
  13691. // nodes
  13692. {
  13693. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13694. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13695. const uint32_t type = tensor->type;
  13696. const uint32_t op = tensor->op;
  13697. const uint32_t n_dims = tensor->n_dims;
  13698. fwrite(&type, sizeof(uint32_t), 1, fout);
  13699. fwrite(&op, sizeof(uint32_t), 1, fout);
  13700. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13701. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13702. const uint64_t ne = tensor->ne[j];
  13703. const uint64_t nb = tensor->nb[j];
  13704. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13705. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13706. }
  13707. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13708. // output the op arguments
  13709. {
  13710. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13711. args[0] = tensor->src0;
  13712. args[1] = tensor->src1;
  13713. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13714. args[2 + j] = tensor->opt[j];
  13715. }
  13716. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13717. if (args[j]) {
  13718. int32_t idx = -1;
  13719. // check if leaf
  13720. {
  13721. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13722. if (args[j] == cgraph->leafs[k]) {
  13723. idx = k;
  13724. break;
  13725. }
  13726. }
  13727. }
  13728. // check if node
  13729. if (idx == -1) {
  13730. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13731. if (args[j] == cgraph->nodes[k]) {
  13732. idx = GGML_MAX_NODES + k;
  13733. break;
  13734. }
  13735. }
  13736. }
  13737. if (idx == -1) {
  13738. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13739. return;
  13740. }
  13741. fwrite(&idx, sizeof(int32_t), 1, fout);
  13742. } else {
  13743. const int32_t nul = -1;
  13744. fwrite(&nul, sizeof(int32_t), 1, fout);
  13745. }
  13746. }
  13747. }
  13748. }
  13749. }
  13750. fclose(fout);
  13751. }
  13752. }
  13753. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13754. assert(*ctx_data == NULL);
  13755. assert(*ctx_eval == NULL);
  13756. struct ggml_cgraph result = { 0 };
  13757. struct ggml_tensor * data = NULL;
  13758. // read file into data
  13759. {
  13760. FILE * fin = fopen(fname, "rb");
  13761. if (!fin) {
  13762. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13763. return result;
  13764. }
  13765. size_t fsize = 0;
  13766. fseek(fin, 0, SEEK_END);
  13767. fsize = ftell(fin);
  13768. fseek(fin, 0, SEEK_SET);
  13769. // create the data context
  13770. {
  13771. const size_t overhead = 1*ggml_tensor_overhead();
  13772. struct ggml_init_params params = {
  13773. .mem_size = fsize + overhead,
  13774. .mem_buffer = NULL,
  13775. .no_alloc = false,
  13776. };
  13777. *ctx_data = ggml_init(params);
  13778. if (!*ctx_data) {
  13779. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13780. fclose(fin);
  13781. return result;
  13782. }
  13783. }
  13784. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13785. {
  13786. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13787. if (ret != fsize) {
  13788. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13789. fclose(fin);
  13790. return result;
  13791. }
  13792. }
  13793. fclose(fin);
  13794. }
  13795. // populate result
  13796. {
  13797. char * ptr = (char *) data->data;
  13798. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13799. if (magic != GGML_FILE_MAGIC) {
  13800. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13801. return result;
  13802. }
  13803. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13804. if (version != GGML_FILE_VERSION) {
  13805. fprintf(stderr, "%s: invalid version number\n", __func__);
  13806. return result;
  13807. }
  13808. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13809. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13810. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13811. result.n_leafs = n_leafs;
  13812. result.n_nodes = n_nodes;
  13813. // create the data context
  13814. {
  13815. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13816. struct ggml_init_params params = {
  13817. .mem_size = size_eval + overhead,
  13818. .mem_buffer = NULL,
  13819. .no_alloc = true,
  13820. };
  13821. *ctx_eval = ggml_init(params);
  13822. if (!*ctx_eval) {
  13823. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13824. return result;
  13825. }
  13826. }
  13827. // leafs
  13828. {
  13829. uint32_t type;
  13830. uint32_t op;
  13831. uint32_t n_dims;
  13832. for (uint32_t i = 0; i < n_leafs; ++i) {
  13833. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13834. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13835. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13836. int64_t ne[GGML_MAX_DIMS];
  13837. size_t nb[GGML_MAX_DIMS];
  13838. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13839. uint64_t ne_cur;
  13840. uint64_t nb_cur;
  13841. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13842. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13843. ne[j] = ne_cur;
  13844. nb[j] = nb_cur;
  13845. }
  13846. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13847. tensor->op = (enum ggml_op) op;
  13848. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13849. tensor->data = (void *) ptr;
  13850. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13851. tensor->nb[j] = nb[j];
  13852. }
  13853. result.leafs[i] = tensor;
  13854. ptr += ggml_nbytes(tensor);
  13855. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13856. }
  13857. }
  13858. ggml_set_no_alloc(*ctx_eval, false);
  13859. // nodes
  13860. {
  13861. uint32_t type;
  13862. uint32_t op;
  13863. uint32_t n_dims;
  13864. for (uint32_t i = 0; i < n_nodes; ++i) {
  13865. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13866. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13867. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13868. enum ggml_op eop = (enum ggml_op) op;
  13869. int64_t ne[GGML_MAX_DIMS];
  13870. size_t nb[GGML_MAX_DIMS];
  13871. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13872. uint64_t ne_cur;
  13873. uint64_t nb_cur;
  13874. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13875. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13876. ne[j] = ne_cur;
  13877. nb[j] = nb_cur;
  13878. }
  13879. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13880. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  13881. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13882. // parse args
  13883. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13884. const int32_t arg_idx = ptr_arg_idx[j];
  13885. if (arg_idx == -1) {
  13886. continue;
  13887. }
  13888. if (arg_idx < GGML_MAX_NODES) {
  13889. args[j] = result.leafs[arg_idx];
  13890. } else {
  13891. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13892. }
  13893. }
  13894. // create the tensor
  13895. // "view" operations are handled differently
  13896. // TODO: handle inplace ops - currently a copy is always made
  13897. struct ggml_tensor * tensor = NULL;
  13898. switch (eop) {
  13899. // TODO: implement other view ops
  13900. case GGML_OP_RESHAPE:
  13901. {
  13902. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13903. } break;
  13904. case GGML_OP_VIEW:
  13905. {
  13906. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13907. uint64_t offs;
  13908. memcpy(&offs, args[2]->data, sizeof(offs));
  13909. tensor->data = ((char *) tensor->data) + offs;
  13910. } break;
  13911. case GGML_OP_TRANSPOSE:
  13912. {
  13913. tensor = ggml_transpose(*ctx_eval, args[0]);
  13914. } break;
  13915. case GGML_OP_PERMUTE:
  13916. {
  13917. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13918. } break;
  13919. default:
  13920. {
  13921. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13922. tensor->op = eop;
  13923. } break;
  13924. }
  13925. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13926. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13927. tensor->nb[j] = nb[j];
  13928. }
  13929. tensor->src0 = args[0];
  13930. tensor->src1 = args[1];
  13931. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13932. tensor->opt[j] = args[2 + j];
  13933. }
  13934. result.nodes[i] = tensor;
  13935. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13936. }
  13937. }
  13938. }
  13939. return result;
  13940. }
  13941. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13942. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13943. GGML_PRINT("=== GRAPH ===\n");
  13944. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13945. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13946. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13947. for (int i = 0; i < cgraph->n_nodes; i++) {
  13948. struct ggml_tensor * node = cgraph->nodes[i];
  13949. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13950. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13951. i,
  13952. node->ne[0], node->ne[1], node->ne[2],
  13953. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13954. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13955. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13956. (double) node->perf_time_us / 1000.0,
  13957. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13958. }
  13959. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13960. for (int i = 0; i < cgraph->n_leafs; i++) {
  13961. struct ggml_tensor * node = cgraph->leafs[i];
  13962. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13963. i,
  13964. node->ne[0], node->ne[1],
  13965. GGML_OP_NAME[node->op]);
  13966. }
  13967. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13968. if (perf_total_per_op_us[i] == 0) {
  13969. continue;
  13970. }
  13971. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13972. }
  13973. GGML_PRINT("========================================\n");
  13974. }
  13975. // check if node is part of the graph
  13976. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13977. if (cgraph == NULL) {
  13978. return true;
  13979. }
  13980. for (int i = 0; i < cgraph->n_nodes; i++) {
  13981. if (cgraph->nodes[i] == node) {
  13982. return true;
  13983. }
  13984. }
  13985. return false;
  13986. }
  13987. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13988. for (int i = 0; i < cgraph->n_nodes; i++) {
  13989. struct ggml_tensor * parent = cgraph->nodes[i];
  13990. if (parent->grad == node) {
  13991. return parent;
  13992. }
  13993. }
  13994. return NULL;
  13995. }
  13996. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  13997. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  13998. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  13999. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14000. gparent0 ? (void *) gparent0 : (void *) parent,
  14001. gparent0 ? "g" : "x",
  14002. gparent ? (void *) gparent : (void *) node,
  14003. gparent ? "g" : "x",
  14004. gparent ? "empty" : "vee",
  14005. gparent ? "dashed" : "solid",
  14006. label);
  14007. }
  14008. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14009. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14010. (void *) parent, "x",
  14011. (void *) node, "x",
  14012. label);
  14013. }
  14014. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14015. char color[16];
  14016. FILE * fp = fopen(filename, "w");
  14017. GGML_ASSERT(fp);
  14018. fprintf(fp, "digraph G {\n");
  14019. fprintf(fp, " newrank = true;\n");
  14020. fprintf(fp, " rankdir = LR;\n");
  14021. for (int i = 0; i < gb->n_nodes; i++) {
  14022. struct ggml_tensor * node = gb->nodes[i];
  14023. if (ggml_graph_get_parent(gb, node) != NULL) {
  14024. continue;
  14025. }
  14026. if (node->is_param) {
  14027. snprintf(color, sizeof(color), "yellow");
  14028. } else if (node->grad) {
  14029. if (ggml_graph_find(gf, node)) {
  14030. snprintf(color, sizeof(color), "green");
  14031. } else {
  14032. snprintf(color, sizeof(color), "lightblue");
  14033. }
  14034. } else {
  14035. snprintf(color, sizeof(color), "white");
  14036. }
  14037. fprintf(fp, " \"%p\" [ "
  14038. "style = filled; fillcolor = %s; shape = record; "
  14039. "label=\"",
  14040. (void *) node, color);
  14041. if (strlen(node->name) > 0) {
  14042. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14043. } else {
  14044. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14045. }
  14046. if (node->n_dims == 2) {
  14047. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14048. } else {
  14049. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14050. }
  14051. if (node->grad) {
  14052. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14053. } else {
  14054. fprintf(fp, "\"; ]\n");
  14055. }
  14056. }
  14057. for (int i = 0; i < gb->n_leafs; i++) {
  14058. struct ggml_tensor * node = gb->leafs[i];
  14059. snprintf(color, sizeof(color), "pink");
  14060. fprintf(fp, " \"%p\" [ "
  14061. "style = filled; fillcolor = %s; shape = record; "
  14062. "label=\"<x>",
  14063. (void *) node, color);
  14064. if (strlen(node->name) > 0) {
  14065. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14066. } else {
  14067. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14068. }
  14069. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14070. if (ggml_nelements(node) < 5) {
  14071. fprintf(fp, " | (");
  14072. for (int j = 0; j < ggml_nelements(node); j++) {
  14073. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14074. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14075. }
  14076. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14077. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14078. }
  14079. else {
  14080. fprintf(fp, "#");
  14081. }
  14082. if (j < ggml_nelements(node) - 1) {
  14083. fprintf(fp, ", ");
  14084. }
  14085. }
  14086. fprintf(fp, ")");
  14087. }
  14088. fprintf(fp, "\"; ]\n");
  14089. }
  14090. for (int i = 0; i < gb->n_nodes; i++) {
  14091. struct ggml_tensor * node = gb->nodes[i];
  14092. if (node->src0) {
  14093. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14094. }
  14095. if (node->src1) {
  14096. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14097. }
  14098. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14099. if (node->opt[j]) {
  14100. char label[16];
  14101. snprintf(label, sizeof(label), "opt %d", j);
  14102. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14103. }
  14104. }
  14105. }
  14106. for (int i = 0; i < gb->n_leafs; i++) {
  14107. struct ggml_tensor * node = gb->leafs[i];
  14108. if (node->src0) {
  14109. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14110. }
  14111. if (node->src1) {
  14112. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14113. }
  14114. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14115. if (node->opt[j]) {
  14116. char label[16];
  14117. snprintf(label, sizeof(label), "opt %d", j);
  14118. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14119. }
  14120. }
  14121. }
  14122. fprintf(fp, "}\n");
  14123. fclose(fp);
  14124. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14125. }
  14126. ////////////////////////////////////////////////////////////////////////////////
  14127. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14128. int i = 0;
  14129. for (int p = 0; p < np; ++p) {
  14130. const int64_t ne = ggml_nelements(ps[p]) ;
  14131. // TODO: add function to set tensor from array
  14132. for (int64_t j = 0; j < ne; ++j) {
  14133. ggml_set_f32_1d(ps[p], j, x[i++]);
  14134. }
  14135. }
  14136. }
  14137. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14138. int i = 0;
  14139. for (int p = 0; p < np; ++p) {
  14140. const int64_t ne = ggml_nelements(ps[p]) ;
  14141. // TODO: add function to get all elements at once
  14142. for (int64_t j = 0; j < ne; ++j) {
  14143. x[i++] = ggml_get_f32_1d(ps[p], j);
  14144. }
  14145. }
  14146. }
  14147. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14148. int i = 0;
  14149. for (int p = 0; p < np; ++p) {
  14150. const int64_t ne = ggml_nelements(ps[p]) ;
  14151. // TODO: add function to get all elements at once
  14152. for (int64_t j = 0; j < ne; ++j) {
  14153. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14154. }
  14155. }
  14156. }
  14157. //
  14158. // ADAM
  14159. //
  14160. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14161. //
  14162. static enum ggml_opt_result ggml_opt_adam(
  14163. struct ggml_context * ctx,
  14164. struct ggml_opt_context * opt,
  14165. struct ggml_opt_params params,
  14166. struct ggml_tensor * f,
  14167. struct ggml_cgraph * gf,
  14168. struct ggml_cgraph * gb) {
  14169. GGML_ASSERT(ggml_is_scalar(f));
  14170. gf->n_threads = params.n_threads;
  14171. gb->n_threads = params.n_threads;
  14172. // these will store the parameters we want to optimize
  14173. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14174. int np = 0;
  14175. int nx = 0;
  14176. for (int i = 0; i < gf->n_nodes; ++i) {
  14177. if (gf->nodes[i]->is_param) {
  14178. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14179. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14180. ps[np++] = gf->nodes[i];
  14181. nx += ggml_nelements(gf->nodes[i]);
  14182. }
  14183. }
  14184. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14185. int iter = opt->iter;
  14186. ggml_opt_init(opt->ctx, opt, params, nx);
  14187. opt->iter = iter;
  14188. }
  14189. // constants
  14190. const float sched = params.adam.sched;
  14191. const float decay = params.adam.decay * sched;
  14192. const float alpha = params.adam.alpha * sched;
  14193. const float beta1 = params.adam.beta1;
  14194. const float beta2 = params.adam.beta2;
  14195. const float eps = params.adam.eps;
  14196. float * x = opt->adam.x->data; // view of the parameters
  14197. float * g1 = opt->adam.g1->data; // gradient
  14198. float * g2 = opt->adam.g2->data; // gradient squared
  14199. float * m = opt->adam.m->data; // first moment
  14200. float * v = opt->adam.v->data; // second moment
  14201. float * mh = opt->adam.mh->data; // first moment hat
  14202. float * vh = opt->adam.vh->data; // second moment hat
  14203. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14204. // update view
  14205. ggml_opt_get_params(np, ps, x);
  14206. // compute the function value
  14207. ggml_graph_reset (gf);
  14208. ggml_set_f32 (f->grad, 1.0f);
  14209. ggml_graph_compute(ctx, gb);
  14210. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14211. opt->adam.fx_best = opt->adam.fx_prev;
  14212. if (pf) {
  14213. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14214. }
  14215. // initialize
  14216. if (opt->just_initialized) {
  14217. opt->adam.n_no_improvement = 0;
  14218. opt->just_initialized = false;
  14219. }
  14220. float * fx_best = &opt->adam.fx_best;
  14221. float * fx_prev = &opt->adam.fx_prev;
  14222. int * n_no_improvement = &opt->adam.n_no_improvement;
  14223. int iter0 = opt->iter;
  14224. // run the optimizer
  14225. for (int t = 0; t < params.adam.n_iter; ++t) {
  14226. opt->iter = iter0 + t + 1;
  14227. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14228. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14229. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14230. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14231. for (int i = 0; i < np; ++i) {
  14232. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14233. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14234. }
  14235. const int64_t t_start_wall = ggml_time_us();
  14236. const int64_t t_start_cpu = ggml_cycles();
  14237. UNUSED(t_start_wall);
  14238. UNUSED(t_start_cpu);
  14239. {
  14240. // update the gradient
  14241. ggml_opt_get_grad(np, ps, g1);
  14242. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14243. ggml_vec_scale_f32(nx, m, beta1);
  14244. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14245. // g2 = g1^2
  14246. ggml_vec_sqr_f32 (nx, g2, g1);
  14247. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14248. ggml_vec_scale_f32(nx, v, beta2);
  14249. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14250. // m^hat = m_t / (1 - beta1^t)
  14251. // v^hat = v_t / (1 - beta2^t)
  14252. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14253. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14254. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14255. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14256. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14257. ggml_vec_cpy_f32 (nx, mh, m);
  14258. ggml_vec_cpy_f32 (nx, vh, v);
  14259. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14260. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14261. ggml_vec_sqrt_f32 (nx, vh, vh);
  14262. ggml_vec_acc1_f32 (nx, vh, eps);
  14263. ggml_vec_div_f32 (nx, mh, mh, vh);
  14264. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14265. ggml_vec_sub_f32 (nx, x, x, mh);
  14266. // update the parameters
  14267. ggml_opt_set_params(np, ps, x);
  14268. }
  14269. ggml_graph_reset (gf);
  14270. ggml_set_f32 (f->grad, 1.0f);
  14271. ggml_graph_compute(ctx, gb);
  14272. const float fx = ggml_get_f32_1d(f, 0);
  14273. // check convergence
  14274. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14275. GGML_PRINT_DEBUG("converged\n");
  14276. return GGML_OPT_OK;
  14277. }
  14278. // delta-based convergence test
  14279. if (pf != NULL) {
  14280. // need at least params.past iterations to start checking for convergence
  14281. if (params.past <= iter0 + t) {
  14282. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14283. if (fabsf(rate) < params.delta) {
  14284. return GGML_OPT_OK;
  14285. }
  14286. }
  14287. pf[(iter0 + t)%params.past] = fx;
  14288. }
  14289. // check for improvement
  14290. if (params.max_no_improvement > 0) {
  14291. if (fx_best[0] > fx) {
  14292. fx_best[0] = fx;
  14293. n_no_improvement[0] = 0;
  14294. } else {
  14295. ++n_no_improvement[0];
  14296. if (n_no_improvement[0] >= params.max_no_improvement) {
  14297. return GGML_OPT_OK;
  14298. }
  14299. }
  14300. }
  14301. fx_prev[0] = fx;
  14302. {
  14303. const int64_t t_end_cpu = ggml_cycles();
  14304. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14305. UNUSED(t_end_cpu);
  14306. const int64_t t_end_wall = ggml_time_us();
  14307. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14308. UNUSED(t_end_wall);
  14309. }
  14310. }
  14311. return GGML_OPT_DID_NOT_CONVERGE;
  14312. }
  14313. //
  14314. // L-BFGS
  14315. //
  14316. // the L-BFGS implementation below is based on the following implementation:
  14317. //
  14318. // https://github.com/chokkan/liblbfgs
  14319. //
  14320. struct ggml_lbfgs_iteration_data {
  14321. float alpha;
  14322. float ys;
  14323. float * s;
  14324. float * y;
  14325. };
  14326. static enum ggml_opt_result linesearch_backtracking(
  14327. struct ggml_context * ctx,
  14328. const struct ggml_opt_params * params,
  14329. int nx,
  14330. float * x,
  14331. float * fx,
  14332. float * g,
  14333. float * d,
  14334. float * step,
  14335. const float * xp,
  14336. struct ggml_tensor * f,
  14337. struct ggml_cgraph * gf,
  14338. struct ggml_cgraph * gb,
  14339. const int np,
  14340. struct ggml_tensor * ps[]) {
  14341. int count = 0;
  14342. float width = 0.0f;
  14343. float dg = 0.0f;
  14344. float finit = 0.0f;
  14345. float dginit = 0.0f;
  14346. float dgtest = 0.0f;
  14347. const float dec = 0.5f;
  14348. const float inc = 2.1f;
  14349. if (*step <= 0.f) {
  14350. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14351. }
  14352. // compute the initial gradient in the search direction
  14353. ggml_vec_dot_f32(nx, &dginit, g, d);
  14354. // make sure that d points to a descent direction
  14355. if (0 < dginit) {
  14356. return GGML_LINESEARCH_FAIL;
  14357. }
  14358. // initialize local variables
  14359. finit = *fx;
  14360. dgtest = params->lbfgs.ftol*dginit;
  14361. while (true) {
  14362. ggml_vec_cpy_f32(nx, x, xp);
  14363. ggml_vec_mad_f32(nx, x, d, *step);
  14364. // evaluate the function and gradient values
  14365. {
  14366. ggml_opt_set_params(np, ps, x);
  14367. ggml_graph_reset (gf);
  14368. ggml_set_f32 (f->grad, 1.0f);
  14369. ggml_graph_compute(ctx, gb);
  14370. ggml_opt_get_grad(np, ps, g);
  14371. *fx = ggml_get_f32_1d(f, 0);
  14372. }
  14373. ++count;
  14374. if (*fx > finit + (*step)*dgtest) {
  14375. width = dec;
  14376. } else {
  14377. // Armijo condition is satisfied
  14378. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14379. return count;
  14380. }
  14381. ggml_vec_dot_f32(nx, &dg, g, d);
  14382. // check the Wolfe condition
  14383. if (dg < params->lbfgs.wolfe * dginit) {
  14384. width = inc;
  14385. } else {
  14386. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14387. // regular Wolfe conditions
  14388. return count;
  14389. }
  14390. if(dg > -params->lbfgs.wolfe*dginit) {
  14391. width = dec;
  14392. } else {
  14393. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14394. return count;
  14395. }
  14396. return count;
  14397. }
  14398. }
  14399. if (*step < params->lbfgs.min_step) {
  14400. return GGML_LINESEARCH_MINIMUM_STEP;
  14401. }
  14402. if (*step > params->lbfgs.max_step) {
  14403. return GGML_LINESEARCH_MAXIMUM_STEP;
  14404. }
  14405. if (params->lbfgs.max_linesearch <= count) {
  14406. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14407. }
  14408. (*step) *= width;
  14409. }
  14410. return GGML_LINESEARCH_FAIL;
  14411. }
  14412. static enum ggml_opt_result ggml_opt_lbfgs(
  14413. struct ggml_context * ctx,
  14414. struct ggml_opt_context * opt,
  14415. struct ggml_opt_params params,
  14416. struct ggml_tensor * f,
  14417. struct ggml_cgraph * gf,
  14418. struct ggml_cgraph * gb) {
  14419. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14420. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14421. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14422. return GGML_OPT_INVALID_WOLFE;
  14423. }
  14424. }
  14425. gf->n_threads = params.n_threads;
  14426. gb->n_threads = params.n_threads;
  14427. const int m = params.lbfgs.m;
  14428. // these will store the parameters we want to optimize
  14429. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14430. int np = 0;
  14431. int nx = 0;
  14432. for (int i = 0; i < gf->n_nodes; ++i) {
  14433. if (gf->nodes[i]->is_param) {
  14434. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14435. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14436. ps[np++] = gf->nodes[i];
  14437. nx += ggml_nelements(gf->nodes[i]);
  14438. }
  14439. }
  14440. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14441. int iter = opt->iter;
  14442. ggml_opt_init(ctx, opt, params, nx);
  14443. opt->iter = iter;
  14444. }
  14445. float * x = opt->lbfgs.x->data; // current parameters
  14446. float * xp = opt->lbfgs.xp->data; // previous parameters
  14447. float * g = opt->lbfgs.g->data; // current gradient
  14448. float * gp = opt->lbfgs.gp->data; // previous gradient
  14449. float * d = opt->lbfgs.d->data; // search direction
  14450. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14451. float fx = 0.0f; // cost function value
  14452. float xnorm = 0.0f; // ||x||
  14453. float gnorm = 0.0f; // ||g||
  14454. // initialize x from the graph nodes
  14455. ggml_opt_get_params(np, ps, x);
  14456. // the L-BFGS memory
  14457. float * lm_alpha = opt->lbfgs.lmal->data;
  14458. float * lm_ys = opt->lbfgs.lmys->data;
  14459. float * lm_s = opt->lbfgs.lms->data;
  14460. float * lm_y = opt->lbfgs.lmy->data;
  14461. // evaluate the function value and its gradient
  14462. {
  14463. ggml_opt_set_params(np, ps, x);
  14464. ggml_graph_reset (gf);
  14465. ggml_set_f32 (f->grad, 1.0f);
  14466. ggml_graph_compute(ctx, gb);
  14467. ggml_opt_get_grad(np, ps, g);
  14468. fx = ggml_get_f32_1d(f, 0);
  14469. }
  14470. // search direction = -gradient
  14471. ggml_vec_neg_f32(nx, d, g);
  14472. // ||x||, ||g||
  14473. ggml_vec_norm_f32(nx, &xnorm, x);
  14474. ggml_vec_norm_f32(nx, &gnorm, g);
  14475. if (xnorm < 1.0f) {
  14476. xnorm = 1.0f;
  14477. }
  14478. // already optimized
  14479. if (gnorm/xnorm <= params.lbfgs.eps) {
  14480. return GGML_OPT_OK;
  14481. }
  14482. if (opt->just_initialized) {
  14483. if (pf) {
  14484. pf[0] = fx;
  14485. }
  14486. opt->lbfgs.fx_best = fx;
  14487. // initial step
  14488. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14489. opt->lbfgs.j = 0;
  14490. opt->lbfgs.k = 1;
  14491. opt->lbfgs.end = 0;
  14492. opt->lbfgs.n_no_improvement = 0;
  14493. opt->just_initialized = false;
  14494. }
  14495. float * fx_best = &opt->lbfgs.fx_best;
  14496. float * step = &opt->lbfgs.step;
  14497. int * j = &opt->lbfgs.j;
  14498. int * k = &opt->lbfgs.k;
  14499. int * end = &opt->lbfgs.end;
  14500. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14501. int ls = 0;
  14502. int bound = 0;
  14503. float ys = 0.0f;
  14504. float yy = 0.0f;
  14505. float beta = 0.0f;
  14506. int it = 0;
  14507. while (true) {
  14508. // store the current position and gradient vectors
  14509. ggml_vec_cpy_f32(nx, xp, x);
  14510. ggml_vec_cpy_f32(nx, gp, g);
  14511. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14512. if (ls < 0) {
  14513. // linesearch failed - go back to the previous point and return
  14514. ggml_vec_cpy_f32(nx, x, xp);
  14515. ggml_vec_cpy_f32(nx, g, gp);
  14516. return ls;
  14517. }
  14518. ggml_vec_norm_f32(nx, &xnorm, x);
  14519. ggml_vec_norm_f32(nx, &gnorm, g);
  14520. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14521. if (xnorm < 1.0f) {
  14522. xnorm = 1.0f;
  14523. }
  14524. if (gnorm/xnorm <= params.lbfgs.eps) {
  14525. // converged
  14526. return GGML_OPT_OK;
  14527. }
  14528. // delta-based convergence test
  14529. if (pf != NULL) {
  14530. // need at least params.past iterations to start checking for convergence
  14531. if (params.past <= k[0]) {
  14532. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14533. if (fabsf(rate) < params.delta) {
  14534. return GGML_OPT_OK;
  14535. }
  14536. }
  14537. pf[k[0]%params.past] = fx;
  14538. }
  14539. // check for improvement
  14540. if (params.max_no_improvement > 0) {
  14541. if (fx < fx_best[0]) {
  14542. fx_best[0] = fx;
  14543. n_no_improvement[0] = 0;
  14544. } else {
  14545. n_no_improvement[0]++;
  14546. if (n_no_improvement[0] >= params.max_no_improvement) {
  14547. return GGML_OPT_OK;
  14548. }
  14549. }
  14550. }
  14551. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14552. // reached the maximum number of iterations
  14553. return GGML_OPT_DID_NOT_CONVERGE;
  14554. }
  14555. // update vectors s and y:
  14556. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14557. // y_{k+1} = g_{k+1} - g_{k}.
  14558. //
  14559. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14560. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14561. // compute scalars ys and yy:
  14562. // ys = y^t \cdot s -> 1 / \rho.
  14563. // yy = y^t \cdot y.
  14564. //
  14565. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14566. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14567. lm_ys[end[0]] = ys;
  14568. // find new search direction
  14569. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14570. bound = (m <= k[0]) ? m : k[0];
  14571. k[0]++;
  14572. it++;
  14573. end[0] = (end[0] + 1)%m;
  14574. // initialize search direction with -g
  14575. ggml_vec_neg_f32(nx, d, g);
  14576. j[0] = end[0];
  14577. for (int i = 0; i < bound; ++i) {
  14578. j[0] = (j[0] + m - 1) % m;
  14579. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14580. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14581. lm_alpha[j[0]] /= lm_ys[j[0]];
  14582. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14583. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14584. }
  14585. ggml_vec_scale_f32(nx, d, ys/yy);
  14586. for (int i = 0; i < bound; ++i) {
  14587. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14588. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14589. beta /= lm_ys[j[0]];
  14590. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14591. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14592. j[0] = (j[0] + 1)%m;
  14593. }
  14594. step[0] = 1.0;
  14595. }
  14596. return GGML_OPT_DID_NOT_CONVERGE;
  14597. }
  14598. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14599. struct ggml_opt_params result;
  14600. switch (type) {
  14601. case GGML_OPT_ADAM:
  14602. {
  14603. result = (struct ggml_opt_params) {
  14604. .type = GGML_OPT_ADAM,
  14605. .n_threads = 1,
  14606. .past = 0,
  14607. .delta = 1e-5f,
  14608. .max_no_improvement = 100,
  14609. .print_forward_graph = true,
  14610. .print_backward_graph = true,
  14611. .adam = {
  14612. .n_iter = 10000,
  14613. .sched = 1.000f,
  14614. .decay = 0.001f,
  14615. .alpha = 0.001f,
  14616. .beta1 = 0.9f,
  14617. .beta2 = 0.999f,
  14618. .eps = 1e-8f,
  14619. .eps_f = 1e-5f,
  14620. .eps_g = 1e-3f,
  14621. },
  14622. };
  14623. } break;
  14624. case GGML_OPT_LBFGS:
  14625. {
  14626. result = (struct ggml_opt_params) {
  14627. .type = GGML_OPT_LBFGS,
  14628. .n_threads = 1,
  14629. .past = 0,
  14630. .delta = 1e-5f,
  14631. .max_no_improvement = 0,
  14632. .print_forward_graph = true,
  14633. .print_backward_graph = true,
  14634. .lbfgs = {
  14635. .m = 6,
  14636. .n_iter = 100,
  14637. .max_linesearch = 20,
  14638. .eps = 1e-5f,
  14639. .ftol = 1e-4f,
  14640. .wolfe = 0.9f,
  14641. .min_step = 1e-20f,
  14642. .max_step = 1e+20f,
  14643. .linesearch = GGML_LINESEARCH_DEFAULT,
  14644. },
  14645. };
  14646. } break;
  14647. }
  14648. return result;
  14649. }
  14650. GGML_API void ggml_opt_init(
  14651. struct ggml_context * ctx,
  14652. struct ggml_opt_context * opt,
  14653. struct ggml_opt_params params,
  14654. int64_t nx) {
  14655. opt->ctx = ctx;
  14656. opt->params = params;
  14657. opt->iter = 0;
  14658. opt->nx = nx;
  14659. opt->just_initialized = true;
  14660. switch (opt->params.type) {
  14661. case GGML_OPT_ADAM:
  14662. {
  14663. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14664. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14665. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14666. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14667. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14668. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14669. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14670. opt->adam.pf = params.past > 0
  14671. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14672. : NULL;
  14673. ggml_set_zero(opt->adam.x);
  14674. ggml_set_zero(opt->adam.g1);
  14675. ggml_set_zero(opt->adam.g2);
  14676. ggml_set_zero(opt->adam.m);
  14677. ggml_set_zero(opt->adam.v);
  14678. ggml_set_zero(opt->adam.mh);
  14679. ggml_set_zero(opt->adam.vh);
  14680. if (opt->adam.pf) {
  14681. ggml_set_zero(opt->adam.pf);
  14682. }
  14683. } break;
  14684. case GGML_OPT_LBFGS:
  14685. {
  14686. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14687. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14688. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14689. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14690. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14691. opt->lbfgs.pf = params.past > 0
  14692. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14693. : NULL;
  14694. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14695. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14696. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14697. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14698. ggml_set_zero(opt->lbfgs.x);
  14699. ggml_set_zero(opt->lbfgs.xp);
  14700. ggml_set_zero(opt->lbfgs.g);
  14701. ggml_set_zero(opt->lbfgs.gp);
  14702. ggml_set_zero(opt->lbfgs.d);
  14703. if (opt->lbfgs.pf) {
  14704. ggml_set_zero(opt->lbfgs.pf);
  14705. }
  14706. ggml_set_zero(opt->lbfgs.lmal);
  14707. ggml_set_zero(opt->lbfgs.lmys);
  14708. ggml_set_zero(opt->lbfgs.lms);
  14709. ggml_set_zero(opt->lbfgs.lmy);
  14710. } break;
  14711. }
  14712. }
  14713. enum ggml_opt_result ggml_opt(
  14714. struct ggml_context * ctx,
  14715. struct ggml_opt_params params,
  14716. struct ggml_tensor * f) {
  14717. bool free_ctx = false;
  14718. if (ctx == NULL) {
  14719. struct ggml_init_params params_ctx = {
  14720. .mem_size = 16*1024*1024,
  14721. .mem_buffer = NULL,
  14722. .no_alloc = false,
  14723. };
  14724. ctx = ggml_init(params_ctx);
  14725. if (ctx == NULL) {
  14726. return GGML_OPT_NO_CONTEXT;
  14727. }
  14728. free_ctx = true;
  14729. }
  14730. enum ggml_opt_result result = GGML_OPT_OK;
  14731. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14732. ggml_opt_init(ctx, opt, params, 0);
  14733. result = ggml_opt_resume(ctx, opt, f);
  14734. if (free_ctx) {
  14735. ggml_free(ctx);
  14736. }
  14737. return result;
  14738. }
  14739. enum ggml_opt_result ggml_opt_resume(
  14740. struct ggml_context * ctx,
  14741. struct ggml_opt_context * opt,
  14742. struct ggml_tensor * f) {
  14743. // build forward + backward compute graphs
  14744. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14745. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14746. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14747. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14748. *gf = ggml_build_forward (f);
  14749. *gb = ggml_build_backward(ctx, gf, true);
  14750. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14751. }
  14752. enum ggml_opt_result ggml_opt_resume_g(
  14753. struct ggml_context * ctx,
  14754. struct ggml_opt_context * opt,
  14755. struct ggml_tensor * f,
  14756. struct ggml_cgraph * gf,
  14757. struct ggml_cgraph * gb) {
  14758. // build forward + backward compute graphs
  14759. enum ggml_opt_result result = GGML_OPT_OK;
  14760. switch (opt->params.type) {
  14761. case GGML_OPT_ADAM:
  14762. {
  14763. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14764. } break;
  14765. case GGML_OPT_LBFGS:
  14766. {
  14767. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14768. } break;
  14769. }
  14770. if (opt->params.print_forward_graph) {
  14771. ggml_graph_print (gf);
  14772. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14773. }
  14774. if (opt->params.print_backward_graph) {
  14775. ggml_graph_print (gb);
  14776. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14777. }
  14778. return result;
  14779. }
  14780. ////////////////////////////////////////////////////////////////////////////////
  14781. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14782. assert(k % QK4_0 == 0);
  14783. const int nb = k / QK4_0;
  14784. for (int b = 0; b < n; b += k) {
  14785. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14786. quantize_row_q4_0_reference(src + b, y, k);
  14787. for (int i = 0; i < nb; i++) {
  14788. for (int j = 0; j < QK4_0; j += 2) {
  14789. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14790. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14791. hist[vi0]++;
  14792. hist[vi1]++;
  14793. }
  14794. }
  14795. }
  14796. return (n/QK4_0*sizeof(block_q4_0));
  14797. }
  14798. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14799. assert(k % QK4_1 == 0);
  14800. const int nb = k / QK4_1;
  14801. for (int b = 0; b < n; b += k) {
  14802. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14803. quantize_row_q4_1_reference(src + b, y, k);
  14804. for (int i = 0; i < nb; i++) {
  14805. for (int j = 0; j < QK4_1; j += 2) {
  14806. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14807. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14808. hist[vi0]++;
  14809. hist[vi1]++;
  14810. }
  14811. }
  14812. }
  14813. return (n/QK4_1*sizeof(block_q4_1));
  14814. }
  14815. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14816. assert(k % QK5_0 == 0);
  14817. const int nb = k / QK5_0;
  14818. for (int b = 0; b < n; b += k) {
  14819. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14820. quantize_row_q5_0_reference(src + b, y, k);
  14821. for (int i = 0; i < nb; i++) {
  14822. uint32_t qh;
  14823. memcpy(&qh, &y[i].qh, sizeof(qh));
  14824. for (int j = 0; j < QK5_0; j += 2) {
  14825. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14826. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14827. // cast to 16 bins
  14828. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14829. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14830. hist[vi0]++;
  14831. hist[vi1]++;
  14832. }
  14833. }
  14834. }
  14835. return (n/QK5_0*sizeof(block_q5_0));
  14836. }
  14837. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14838. assert(k % QK5_1 == 0);
  14839. const int nb = k / QK5_1;
  14840. for (int b = 0; b < n; b += k) {
  14841. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14842. quantize_row_q5_1_reference(src + b, y, k);
  14843. for (int i = 0; i < nb; i++) {
  14844. uint32_t qh;
  14845. memcpy(&qh, &y[i].qh, sizeof(qh));
  14846. for (int j = 0; j < QK5_1; j += 2) {
  14847. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14848. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14849. // cast to 16 bins
  14850. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14851. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14852. hist[vi0]++;
  14853. hist[vi1]++;
  14854. }
  14855. }
  14856. }
  14857. return (n/QK5_1*sizeof(block_q5_1));
  14858. }
  14859. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14860. assert(k % QK8_0 == 0);
  14861. const int nb = k / QK8_0;
  14862. for (int b = 0; b < n; b += k) {
  14863. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14864. quantize_row_q8_0_reference(src + b, y, k);
  14865. for (int i = 0; i < nb; i++) {
  14866. for (int j = 0; j < QK8_0; ++j) {
  14867. const int8_t vi = y[i].qs[j];
  14868. hist[vi/16 + 8]++;
  14869. }
  14870. }
  14871. }
  14872. return (n/QK8_0*sizeof(block_q8_0));
  14873. }
  14874. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14875. size_t result = 0;
  14876. switch (type) {
  14877. case GGML_TYPE_Q4_0:
  14878. {
  14879. GGML_ASSERT(start % QK4_0 == 0);
  14880. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14881. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14882. } break;
  14883. case GGML_TYPE_Q4_1:
  14884. {
  14885. GGML_ASSERT(start % QK4_1 == 0);
  14886. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14887. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14888. } break;
  14889. case GGML_TYPE_Q5_0:
  14890. {
  14891. GGML_ASSERT(start % QK5_0 == 0);
  14892. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14893. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14894. } break;
  14895. case GGML_TYPE_Q5_1:
  14896. {
  14897. GGML_ASSERT(start % QK5_1 == 0);
  14898. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14899. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14900. } break;
  14901. case GGML_TYPE_Q8_0:
  14902. {
  14903. GGML_ASSERT(start % QK8_0 == 0);
  14904. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14905. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14906. } break;
  14907. #ifdef GGML_USE_K_QUANTS
  14908. case GGML_TYPE_Q2_K:
  14909. {
  14910. GGML_ASSERT(start % QK_K == 0);
  14911. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14912. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14913. } break;
  14914. case GGML_TYPE_Q3_K:
  14915. {
  14916. GGML_ASSERT(start % QK_K == 0);
  14917. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14918. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14919. } break;
  14920. case GGML_TYPE_Q4_K:
  14921. {
  14922. GGML_ASSERT(start % QK_K == 0);
  14923. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14924. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14925. } break;
  14926. case GGML_TYPE_Q5_K:
  14927. {
  14928. GGML_ASSERT(start % QK_K == 0);
  14929. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14930. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14931. } break;
  14932. case GGML_TYPE_Q6_K:
  14933. {
  14934. GGML_ASSERT(start % QK_K == 0);
  14935. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14936. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14937. } break;
  14938. #endif
  14939. case GGML_TYPE_F16:
  14940. {
  14941. int elemsize = sizeof(ggml_fp16_t);
  14942. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14943. result = n * elemsize;
  14944. } break;
  14945. case GGML_TYPE_F32:
  14946. {
  14947. int elemsize = sizeof(float);
  14948. result = n * elemsize;
  14949. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14950. } break;
  14951. default:
  14952. assert(false);
  14953. }
  14954. return result;
  14955. }
  14956. ////////////////////////////////////////////////////////////////////////////////
  14957. int ggml_cpu_has_avx(void) {
  14958. #if defined(__AVX__)
  14959. return 1;
  14960. #else
  14961. return 0;
  14962. #endif
  14963. }
  14964. int ggml_cpu_has_avx2(void) {
  14965. #if defined(__AVX2__)
  14966. return 1;
  14967. #else
  14968. return 0;
  14969. #endif
  14970. }
  14971. int ggml_cpu_has_avx512(void) {
  14972. #if defined(__AVX512F__)
  14973. return 1;
  14974. #else
  14975. return 0;
  14976. #endif
  14977. }
  14978. int ggml_cpu_has_avx512_vbmi(void) {
  14979. #if defined(__AVX512VBMI__)
  14980. return 1;
  14981. #else
  14982. return 0;
  14983. #endif
  14984. }
  14985. int ggml_cpu_has_avx512_vnni(void) {
  14986. #if defined(__AVX512VNNI__)
  14987. return 1;
  14988. #else
  14989. return 0;
  14990. #endif
  14991. }
  14992. int ggml_cpu_has_fma(void) {
  14993. #if defined(__FMA__)
  14994. return 1;
  14995. #else
  14996. return 0;
  14997. #endif
  14998. }
  14999. int ggml_cpu_has_neon(void) {
  15000. #if defined(__ARM_NEON)
  15001. return 1;
  15002. #else
  15003. return 0;
  15004. #endif
  15005. }
  15006. int ggml_cpu_has_arm_fma(void) {
  15007. #if defined(__ARM_FEATURE_FMA)
  15008. return 1;
  15009. #else
  15010. return 0;
  15011. #endif
  15012. }
  15013. int ggml_cpu_has_f16c(void) {
  15014. #if defined(__F16C__)
  15015. return 1;
  15016. #else
  15017. return 0;
  15018. #endif
  15019. }
  15020. int ggml_cpu_has_fp16_va(void) {
  15021. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15022. return 1;
  15023. #else
  15024. return 0;
  15025. #endif
  15026. }
  15027. int ggml_cpu_has_wasm_simd(void) {
  15028. #if defined(__wasm_simd128__)
  15029. return 1;
  15030. #else
  15031. return 0;
  15032. #endif
  15033. }
  15034. int ggml_cpu_has_blas(void) {
  15035. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15036. return 1;
  15037. #else
  15038. return 0;
  15039. #endif
  15040. }
  15041. int ggml_cpu_has_cublas(void) {
  15042. #if defined(GGML_USE_CUBLAS)
  15043. return 1;
  15044. #else
  15045. return 0;
  15046. #endif
  15047. }
  15048. int ggml_cpu_has_clblast(void) {
  15049. #if defined(GGML_USE_CLBLAST)
  15050. return 1;
  15051. #else
  15052. return 0;
  15053. #endif
  15054. }
  15055. int ggml_cpu_has_gpublas(void) {
  15056. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15057. }
  15058. int ggml_cpu_has_sse3(void) {
  15059. #if defined(__SSE3__)
  15060. return 1;
  15061. #else
  15062. return 0;
  15063. #endif
  15064. }
  15065. int ggml_cpu_has_vsx(void) {
  15066. #if defined(__POWER9_VECTOR__)
  15067. return 1;
  15068. #else
  15069. return 0;
  15070. #endif
  15071. }
  15072. ////////////////////////////////////////////////////////////////////////////////