ggml.c 660 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. (char *) NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. GGML_ASSERT(false);
  185. return NULL;
  186. }
  187. return aligned_memory;
  188. }
  189. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  190. #ifdef GGML_USE_CPU_HBM
  191. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  192. #else
  193. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  194. #endif
  195. #endif
  196. inline static void * ggml_malloc(size_t size) {
  197. if (size == 0) {
  198. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  199. return NULL;
  200. }
  201. void * result = malloc(size);
  202. if (result == NULL) {
  203. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  204. GGML_ASSERT(false);
  205. }
  206. return result;
  207. }
  208. // calloc
  209. inline static void * ggml_calloc(size_t num, size_t size) {
  210. if (num == 0 || size == 0) {
  211. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  212. return NULL;
  213. }
  214. void * result = calloc(num, size);
  215. if (result == NULL) {
  216. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  217. GGML_ASSERT(false);
  218. }
  219. return result;
  220. }
  221. #define GGML_MALLOC(size) ggml_malloc(size)
  222. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  223. #define GGML_FREE(ptr) free(ptr)
  224. #define UNUSED GGML_UNUSED
  225. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  226. #if defined(GGML_USE_ACCELERATE)
  227. #include <Accelerate/Accelerate.h>
  228. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  229. #include "ggml-opencl.h"
  230. #endif
  231. #elif defined(GGML_USE_OPENBLAS)
  232. #if defined(GGML_BLAS_USE_MKL)
  233. #include <mkl.h>
  234. #else
  235. #include <cblas.h>
  236. #endif
  237. #elif defined(GGML_USE_CUBLAS)
  238. #include "ggml-cuda.h"
  239. #elif defined(GGML_USE_CLBLAST)
  240. #include "ggml-opencl.h"
  241. #elif defined(GGML_USE_VULKAN)
  242. #include "ggml-vulkan.h"
  243. #elif defined(GGML_USE_SYCL)
  244. #include "ggml-sycl.h"
  245. #endif
  246. // floating point type used to accumulate sums
  247. typedef double ggml_float;
  248. #undef MIN
  249. #undef MAX
  250. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  251. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  252. //
  253. // global data
  254. //
  255. // precomputed gelu table for f16 (128 KB)
  256. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  257. // precomputed quick gelu table for f16 (128 KB)
  258. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  264. float ggml_table_f32_f16[1 << 16];
  265. // note: do not use these inside ggml.c
  266. // these are meant to be used via the ggml.h API
  267. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  268. return (float) GGML_FP16_TO_FP32(x);
  269. }
  270. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  271. return GGML_FP32_TO_FP16(x);
  272. }
  273. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  274. for (int i = 0; i < n; i++) {
  275. y[i] = GGML_FP16_TO_FP32(x[i]);
  276. }
  277. }
  278. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  279. int i = 0;
  280. #if defined(__F16C__)
  281. for (; i + 7 < n; i += 8) {
  282. __m256 x_vec = _mm256_loadu_ps(x + i);
  283. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  284. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  285. }
  286. for(; i + 3 < n; i += 4) {
  287. __m128 x_vec = _mm_loadu_ps(x + i);
  288. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  290. }
  291. #endif
  292. for (; i < n; i++) {
  293. y[i] = GGML_FP32_TO_FP16(x[i]);
  294. }
  295. }
  296. //
  297. // timing
  298. //
  299. #if defined(_MSC_VER) || defined(__MINGW32__)
  300. static int64_t timer_freq, timer_start;
  301. void ggml_time_init(void) {
  302. LARGE_INTEGER t;
  303. QueryPerformanceFrequency(&t);
  304. timer_freq = t.QuadPart;
  305. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  306. // and the uptime is high enough.
  307. // We subtract the program start time to reduce the likelihood of that happening.
  308. QueryPerformanceCounter(&t);
  309. timer_start = t.QuadPart;
  310. }
  311. int64_t ggml_time_ms(void) {
  312. LARGE_INTEGER t;
  313. QueryPerformanceCounter(&t);
  314. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  315. }
  316. int64_t ggml_time_us(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  320. }
  321. #else
  322. void ggml_time_init(void) {}
  323. int64_t ggml_time_ms(void) {
  324. struct timespec ts;
  325. clock_gettime(CLOCK_MONOTONIC, &ts);
  326. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  327. }
  328. int64_t ggml_time_us(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  332. }
  333. #endif
  334. int64_t ggml_cycles(void) {
  335. return clock();
  336. }
  337. int64_t ggml_cycles_per_ms(void) {
  338. return CLOCKS_PER_SEC/1000;
  339. }
  340. #ifdef GGML_PERF
  341. #define ggml_perf_time_ms() ggml_time_ms()
  342. #define ggml_perf_time_us() ggml_time_us()
  343. #define ggml_perf_cycles() ggml_cycles()
  344. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  345. #else
  346. #define ggml_perf_time_ms() 0
  347. #define ggml_perf_time_us() 0
  348. #define ggml_perf_cycles() 0
  349. #define ggml_perf_cycles_per_ms() 0
  350. #endif
  351. //
  352. // cache line
  353. //
  354. #if defined(__cpp_lib_hardware_interference_size)
  355. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  356. #else
  357. #if defined(__POWER9_VECTOR__)
  358. #define CACHE_LINE_SIZE 128
  359. #else
  360. #define CACHE_LINE_SIZE 64
  361. #endif
  362. #endif
  363. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  364. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  365. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  366. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  367. [GGML_TYPE_I8] = {
  368. .type_name = "i8",
  369. .blck_size = 1,
  370. .type_size = sizeof(int8_t),
  371. .is_quantized = false,
  372. },
  373. [GGML_TYPE_I16] = {
  374. .type_name = "i16",
  375. .blck_size = 1,
  376. .type_size = sizeof(int16_t),
  377. .is_quantized = false,
  378. },
  379. [GGML_TYPE_I32] = {
  380. .type_name = "i32",
  381. .blck_size = 1,
  382. .type_size = sizeof(int32_t),
  383. .is_quantized = false,
  384. },
  385. [GGML_TYPE_F32] = {
  386. .type_name = "f32",
  387. .blck_size = 1,
  388. .type_size = sizeof(float),
  389. .is_quantized = false,
  390. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  391. .vec_dot_type = GGML_TYPE_F32,
  392. },
  393. [GGML_TYPE_F16] = {
  394. .type_name = "f16",
  395. .blck_size = 1,
  396. .type_size = sizeof(ggml_fp16_t),
  397. .is_quantized = false,
  398. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  399. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  400. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  401. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  402. .vec_dot_type = GGML_TYPE_F16,
  403. },
  404. [GGML_TYPE_Q4_0] = {
  405. .type_name = "q4_0",
  406. .blck_size = QK4_0,
  407. .type_size = sizeof(block_q4_0),
  408. .is_quantized = true,
  409. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  410. .from_float = quantize_row_q4_0,
  411. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  412. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  413. .vec_dot_type = GGML_TYPE_Q8_0,
  414. },
  415. [GGML_TYPE_Q4_1] = {
  416. .type_name = "q4_1",
  417. .blck_size = QK4_1,
  418. .type_size = sizeof(block_q4_1),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  421. .from_float = quantize_row_q4_1,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  423. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  424. .vec_dot_type = GGML_TYPE_Q8_1,
  425. },
  426. [4] = { // GGML_TYPE_Q4_2
  427. .type_name = "DEPRECATED",
  428. .blck_size = 0,
  429. .type_size = 0,
  430. .is_quantized = false,
  431. .to_float = NULL,
  432. .from_float = NULL,
  433. .from_float_reference = NULL,
  434. .vec_dot = NULL,
  435. .vec_dot_type = GGML_TYPE_COUNT,
  436. },
  437. [5] = { // GGML_TYPE_Q4_3
  438. .type_name = "DEPRECATED",
  439. .blck_size = 0,
  440. .type_size = 0,
  441. .is_quantized = false,
  442. .to_float = NULL,
  443. .from_float = NULL,
  444. .from_float_reference = NULL,
  445. .vec_dot = NULL,
  446. .vec_dot_type = GGML_TYPE_COUNT,
  447. },
  448. [GGML_TYPE_Q5_0] = {
  449. .type_name = "q5_0",
  450. .blck_size = QK5_0,
  451. .type_size = sizeof(block_q5_0),
  452. .is_quantized = true,
  453. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  454. .from_float = quantize_row_q5_0,
  455. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  456. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  457. .vec_dot_type = GGML_TYPE_Q8_0,
  458. },
  459. [GGML_TYPE_Q5_1] = {
  460. .type_name = "q5_1",
  461. .blck_size = QK5_1,
  462. .type_size = sizeof(block_q5_1),
  463. .is_quantized = true,
  464. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  465. .from_float = quantize_row_q5_1,
  466. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  467. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  468. .vec_dot_type = GGML_TYPE_Q8_1,
  469. },
  470. [GGML_TYPE_Q8_0] = {
  471. .type_name = "q8_0",
  472. .blck_size = QK8_0,
  473. .type_size = sizeof(block_q8_0),
  474. .is_quantized = true,
  475. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  476. .from_float = quantize_row_q8_0,
  477. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  478. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  479. .vec_dot_type = GGML_TYPE_Q8_0,
  480. },
  481. [GGML_TYPE_Q8_1] = {
  482. .type_name = "q8_1",
  483. .blck_size = QK8_1,
  484. .type_size = sizeof(block_q8_1),
  485. .is_quantized = true,
  486. .from_float = quantize_row_q8_1,
  487. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. },
  490. [GGML_TYPE_Q2_K] = {
  491. .type_name = "q2_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q2_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  496. .from_float = quantize_row_q2_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  498. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q3_K] = {
  502. .type_name = "q3_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q3_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  507. .from_float = quantize_row_q3_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  509. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q4_K] = {
  513. .type_name = "q4_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q4_K),
  516. .is_quantized = true,
  517. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  518. .from_float = quantize_row_q4_K,
  519. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  520. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  521. .vec_dot_type = GGML_TYPE_Q8_K,
  522. },
  523. [GGML_TYPE_Q5_K] = {
  524. .type_name = "q5_K",
  525. .blck_size = QK_K,
  526. .type_size = sizeof(block_q5_K),
  527. .is_quantized = true,
  528. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  529. .from_float = quantize_row_q5_K,
  530. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  531. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  532. .vec_dot_type = GGML_TYPE_Q8_K,
  533. },
  534. [GGML_TYPE_Q6_K] = {
  535. .type_name = "q6_K",
  536. .blck_size = QK_K,
  537. .type_size = sizeof(block_q6_K),
  538. .is_quantized = true,
  539. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  540. .from_float = quantize_row_q6_K,
  541. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  542. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  543. .vec_dot_type = GGML_TYPE_Q8_K,
  544. },
  545. [GGML_TYPE_IQ2_XXS] = {
  546. .type_name = "iq2_xxs",
  547. .blck_size = QK_K,
  548. .type_size = sizeof(block_iq2_xxs),
  549. .is_quantized = true,
  550. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  551. .from_float = NULL,
  552. .from_float_reference = NULL,
  553. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  554. .vec_dot_type = GGML_TYPE_Q8_K,
  555. },
  556. [GGML_TYPE_IQ2_XS] = {
  557. .type_name = "iq2_xs",
  558. .blck_size = QK_K,
  559. .type_size = sizeof(block_iq2_xs),
  560. .is_quantized = true,
  561. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  562. .from_float = NULL,
  563. .from_float_reference = NULL,
  564. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  565. .vec_dot_type = GGML_TYPE_Q8_K,
  566. },
  567. [GGML_TYPE_IQ3_XXS] = {
  568. .type_name = "iq3_xxs",
  569. .blck_size = QK_K,
  570. .type_size = sizeof(block_iq3_xxs),
  571. .is_quantized = true,
  572. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  573. .from_float = quantize_row_iq3_xxs,
  574. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  575. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  576. .vec_dot_type = GGML_TYPE_Q8_K,
  577. },
  578. [GGML_TYPE_Q8_K] = {
  579. .type_name = "q8_K",
  580. .blck_size = QK_K,
  581. .type_size = sizeof(block_q8_K),
  582. .is_quantized = true,
  583. .from_float = quantize_row_q8_K,
  584. }
  585. };
  586. // For internal test use
  587. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  588. GGML_ASSERT(type < GGML_TYPE_COUNT);
  589. return type_traits[type];
  590. }
  591. //
  592. // simd mappings
  593. //
  594. #if defined(__ARM_NEON)
  595. #if !defined(__aarch64__)
  596. // 64-bit compatibility
  597. inline static float vaddvq_f32(float32x4_t v) {
  598. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  599. }
  600. #endif
  601. #endif
  602. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  603. // we then implement the fundamental computation operations below using only these macros
  604. // adding support for new architectures requires to define the corresponding SIMD macros
  605. //
  606. // GGML_F32_STEP / GGML_F16_STEP
  607. // number of elements to process in a single step
  608. //
  609. // GGML_F32_EPR / GGML_F16_EPR
  610. // number of elements to fit in a single register
  611. //
  612. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  613. #define GGML_SIMD
  614. // F32 NEON
  615. #define GGML_F32_STEP 16
  616. #define GGML_F32_EPR 4
  617. #define GGML_F32x4 float32x4_t
  618. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  619. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  620. #define GGML_F32x4_LOAD vld1q_f32
  621. #define GGML_F32x4_STORE vst1q_f32
  622. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  623. #define GGML_F32x4_ADD vaddq_f32
  624. #define GGML_F32x4_MUL vmulq_f32
  625. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  626. #define GGML_F32x4_REDUCE(res, x) \
  627. { \
  628. int offset = GGML_F32_ARR >> 1; \
  629. for (int i = 0; i < offset; ++i) { \
  630. x[i] = vaddq_f32(x[i], x[offset+i]); \
  631. } \
  632. offset >>= 1; \
  633. for (int i = 0; i < offset; ++i) { \
  634. x[i] = vaddq_f32(x[i], x[offset+i]); \
  635. } \
  636. offset >>= 1; \
  637. for (int i = 0; i < offset; ++i) { \
  638. x[i] = vaddq_f32(x[i], x[offset+i]); \
  639. } \
  640. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  641. }
  642. #define GGML_F32_VEC GGML_F32x4
  643. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  644. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  645. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  646. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  647. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  648. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  649. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  650. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  651. // F16 NEON
  652. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  653. #define GGML_F16_STEP 32
  654. #define GGML_F16_EPR 8
  655. #define GGML_F16x8 float16x8_t
  656. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  657. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  658. #define GGML_F16x8_LOAD vld1q_f16
  659. #define GGML_F16x8_STORE vst1q_f16
  660. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  661. #define GGML_F16x8_ADD vaddq_f16
  662. #define GGML_F16x8_MUL vmulq_f16
  663. #define GGML_F16x8_REDUCE(res, x) \
  664. do { \
  665. int offset = GGML_F16_ARR >> 1; \
  666. for (int i = 0; i < offset; ++i) { \
  667. x[i] = vaddq_f16(x[i], x[offset+i]); \
  668. } \
  669. offset >>= 1; \
  670. for (int i = 0; i < offset; ++i) { \
  671. x[i] = vaddq_f16(x[i], x[offset+i]); \
  672. } \
  673. offset >>= 1; \
  674. for (int i = 0; i < offset; ++i) { \
  675. x[i] = vaddq_f16(x[i], x[offset+i]); \
  676. } \
  677. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  678. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  679. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  680. } while (0)
  681. #define GGML_F16_VEC GGML_F16x8
  682. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  683. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  684. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  685. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  686. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  687. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  688. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  689. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  690. #else
  691. // if FP16 vector arithmetic is not supported, we use FP32 instead
  692. // and take advantage of the vcvt_ functions to convert to/from FP16
  693. #define GGML_F16_STEP 16
  694. #define GGML_F16_EPR 4
  695. #define GGML_F32Cx4 float32x4_t
  696. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  697. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  698. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  699. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  700. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  701. #define GGML_F32Cx4_ADD vaddq_f32
  702. #define GGML_F32Cx4_MUL vmulq_f32
  703. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  704. #define GGML_F16_VEC GGML_F32Cx4
  705. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  706. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  709. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  710. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  711. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  712. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  713. #endif
  714. #elif defined(__AVX__)
  715. #define GGML_SIMD
  716. // F32 AVX
  717. #define GGML_F32_STEP 32
  718. #define GGML_F32_EPR 8
  719. #define GGML_F32x8 __m256
  720. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  721. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  722. #define GGML_F32x8_LOAD _mm256_loadu_ps
  723. #define GGML_F32x8_STORE _mm256_storeu_ps
  724. #if defined(__FMA__)
  725. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  726. #else
  727. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  728. #endif
  729. #define GGML_F32x8_ADD _mm256_add_ps
  730. #define GGML_F32x8_MUL _mm256_mul_ps
  731. #define GGML_F32x8_REDUCE(res, x) \
  732. do { \
  733. int offset = GGML_F32_ARR >> 1; \
  734. for (int i = 0; i < offset; ++i) { \
  735. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  736. } \
  737. offset >>= 1; \
  738. for (int i = 0; i < offset; ++i) { \
  739. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  740. } \
  741. offset >>= 1; \
  742. for (int i = 0; i < offset; ++i) { \
  743. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  744. } \
  745. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  746. _mm256_extractf128_ps(x[0], 1)); \
  747. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  748. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  749. } while (0)
  750. // TODO: is this optimal ?
  751. #define GGML_F32_VEC GGML_F32x8
  752. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  753. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  754. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  755. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  756. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  757. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  758. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  759. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  760. // F16 AVX
  761. #define GGML_F16_STEP 32
  762. #define GGML_F16_EPR 8
  763. // F16 arithmetic is not supported by AVX, so we use F32 instead
  764. #define GGML_F32Cx8 __m256
  765. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  766. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  767. #if defined(__F16C__)
  768. // the _mm256_cvt intrinsics require F16C
  769. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  770. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  771. #else
  772. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  773. float tmp[8];
  774. for (int i = 0; i < 8; i++) {
  775. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  776. }
  777. return _mm256_loadu_ps(tmp);
  778. }
  779. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  780. float arr[8];
  781. _mm256_storeu_ps(arr, y);
  782. for (int i = 0; i < 8; i++)
  783. x[i] = GGML_FP32_TO_FP16(arr[i]);
  784. }
  785. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  786. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  787. #endif
  788. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  789. #define GGML_F32Cx8_ADD _mm256_add_ps
  790. #define GGML_F32Cx8_MUL _mm256_mul_ps
  791. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  792. #define GGML_F16_VEC GGML_F32Cx8
  793. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  794. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  795. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  796. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  797. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  798. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  799. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  800. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  801. #elif defined(__POWER9_VECTOR__)
  802. #define GGML_SIMD
  803. // F32 POWER9
  804. #define GGML_F32_STEP 32
  805. #define GGML_F32_EPR 4
  806. #define GGML_F32x4 vector float
  807. #define GGML_F32x4_ZERO 0.0f
  808. #define GGML_F32x4_SET1 vec_splats
  809. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  810. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  811. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  812. #define GGML_F32x4_ADD vec_add
  813. #define GGML_F32x4_MUL vec_mul
  814. #define GGML_F32x4_REDUCE(res, x) \
  815. { \
  816. int offset = GGML_F32_ARR >> 1; \
  817. for (int i = 0; i < offset; ++i) { \
  818. x[i] = vec_add(x[i], x[offset+i]); \
  819. } \
  820. offset >>= 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = vec_add(x[i], x[offset+i]); \
  823. } \
  824. offset >>= 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = vec_add(x[i], x[offset+i]); \
  827. } \
  828. res = vec_extract(x[0], 0) + \
  829. vec_extract(x[0], 1) + \
  830. vec_extract(x[0], 2) + \
  831. vec_extract(x[0], 3); \
  832. }
  833. #define GGML_F32_VEC GGML_F32x4
  834. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  835. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  836. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  837. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  838. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  839. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  840. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  841. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  842. // F16 POWER9
  843. #define GGML_F16_STEP GGML_F32_STEP
  844. #define GGML_F16_EPR GGML_F32_EPR
  845. #define GGML_F16_VEC GGML_F32x4
  846. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  847. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  848. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  849. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  850. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  851. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  852. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  853. vec_extract_fp32_from_shortl(vec_xl(0, p))
  854. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  855. #define GGML_F16_VEC_STORE(p, r, i) \
  856. if (i & 0x1) \
  857. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  858. r[i - GGML_ENDIAN_BYTE(0)]), \
  859. 0, p - GGML_F16_EPR)
  860. #elif defined(__wasm_simd128__)
  861. #define GGML_SIMD
  862. // F32 WASM
  863. #define GGML_F32_STEP 16
  864. #define GGML_F32_EPR 4
  865. #define GGML_F32x4 v128_t
  866. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  867. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  868. #define GGML_F32x4_LOAD wasm_v128_load
  869. #define GGML_F32x4_STORE wasm_v128_store
  870. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  871. #define GGML_F32x4_ADD wasm_f32x4_add
  872. #define GGML_F32x4_MUL wasm_f32x4_mul
  873. #define GGML_F32x4_REDUCE(res, x) \
  874. { \
  875. int offset = GGML_F32_ARR >> 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  878. } \
  879. offset >>= 1; \
  880. for (int i = 0; i < offset; ++i) { \
  881. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  882. } \
  883. offset >>= 1; \
  884. for (int i = 0; i < offset; ++i) { \
  885. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  886. } \
  887. res = wasm_f32x4_extract_lane(x[0], 0) + \
  888. wasm_f32x4_extract_lane(x[0], 1) + \
  889. wasm_f32x4_extract_lane(x[0], 2) + \
  890. wasm_f32x4_extract_lane(x[0], 3); \
  891. }
  892. #define GGML_F32_VEC GGML_F32x4
  893. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  894. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  895. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  896. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  897. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  898. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  899. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  900. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  901. // F16 WASM
  902. #define GGML_F16_STEP 16
  903. #define GGML_F16_EPR 4
  904. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  905. float tmp[4];
  906. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  907. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  908. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  909. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  910. return wasm_v128_load(tmp);
  911. }
  912. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  913. float tmp[4];
  914. wasm_v128_store(tmp, x);
  915. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  916. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  917. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  918. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  919. }
  920. #define GGML_F16x4 v128_t
  921. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  922. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  923. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  924. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  925. #define GGML_F16x4_FMA GGML_F32x4_FMA
  926. #define GGML_F16x4_ADD wasm_f32x4_add
  927. #define GGML_F16x4_MUL wasm_f32x4_mul
  928. #define GGML_F16x4_REDUCE(res, x) \
  929. { \
  930. int offset = GGML_F16_ARR >> 1; \
  931. for (int i = 0; i < offset; ++i) { \
  932. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  933. } \
  934. offset >>= 1; \
  935. for (int i = 0; i < offset; ++i) { \
  936. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  937. } \
  938. offset >>= 1; \
  939. for (int i = 0; i < offset; ++i) { \
  940. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  941. } \
  942. res = wasm_f32x4_extract_lane(x[0], 0) + \
  943. wasm_f32x4_extract_lane(x[0], 1) + \
  944. wasm_f32x4_extract_lane(x[0], 2) + \
  945. wasm_f32x4_extract_lane(x[0], 3); \
  946. }
  947. #define GGML_F16_VEC GGML_F16x4
  948. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  949. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  950. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  951. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  952. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  953. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  954. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  955. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  956. #elif defined(__SSE3__)
  957. #define GGML_SIMD
  958. // F32 SSE
  959. #define GGML_F32_STEP 32
  960. #define GGML_F32_EPR 4
  961. #define GGML_F32x4 __m128
  962. #define GGML_F32x4_ZERO _mm_setzero_ps()
  963. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  964. #define GGML_F32x4_LOAD _mm_loadu_ps
  965. #define GGML_F32x4_STORE _mm_storeu_ps
  966. #if defined(__FMA__)
  967. // TODO: Does this work?
  968. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  969. #else
  970. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  971. #endif
  972. #define GGML_F32x4_ADD _mm_add_ps
  973. #define GGML_F32x4_MUL _mm_mul_ps
  974. #define GGML_F32x4_REDUCE(res, x) \
  975. { \
  976. int offset = GGML_F32_ARR >> 1; \
  977. for (int i = 0; i < offset; ++i) { \
  978. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  979. } \
  980. offset >>= 1; \
  981. for (int i = 0; i < offset; ++i) { \
  982. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  983. } \
  984. offset >>= 1; \
  985. for (int i = 0; i < offset; ++i) { \
  986. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  987. } \
  988. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  989. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  990. }
  991. // TODO: is this optimal ?
  992. #define GGML_F32_VEC GGML_F32x4
  993. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  994. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  995. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  996. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  997. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  998. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  999. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1000. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1001. // F16 SSE
  1002. #define GGML_F16_STEP 32
  1003. #define GGML_F16_EPR 4
  1004. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1005. float tmp[4];
  1006. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1007. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1008. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1009. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1010. return _mm_loadu_ps(tmp);
  1011. }
  1012. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1013. float arr[4];
  1014. _mm_storeu_ps(arr, y);
  1015. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1016. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1017. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1018. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1019. }
  1020. #define GGML_F32Cx4 __m128
  1021. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1022. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1023. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1024. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1025. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1026. #define GGML_F32Cx4_ADD _mm_add_ps
  1027. #define GGML_F32Cx4_MUL _mm_mul_ps
  1028. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1029. #define GGML_F16_VEC GGML_F32Cx4
  1030. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1031. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1032. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1033. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1034. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1035. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1036. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1037. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1038. #endif
  1039. // GGML_F32_ARR / GGML_F16_ARR
  1040. // number of registers to use per step
  1041. #ifdef GGML_SIMD
  1042. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1043. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1044. #endif
  1045. //
  1046. // fundamental operations
  1047. //
  1048. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1049. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1050. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1051. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1052. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1053. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1054. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1055. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1056. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1057. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1058. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1059. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1060. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1061. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1062. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1063. #ifdef GGML_SIMD
  1064. float sumf = 0.0f;
  1065. const int np = (n & ~(GGML_F32_STEP - 1));
  1066. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1067. GGML_F32_VEC ax[GGML_F32_ARR];
  1068. GGML_F32_VEC ay[GGML_F32_ARR];
  1069. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1070. for (int j = 0; j < GGML_F32_ARR; j++) {
  1071. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1072. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1073. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1074. }
  1075. }
  1076. // reduce sum0..sum3 to sum0
  1077. GGML_F32_VEC_REDUCE(sumf, sum);
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. sumf += x[i]*y[i];
  1081. }
  1082. #else
  1083. // scalar
  1084. ggml_float sumf = 0.0;
  1085. for (int i = 0; i < n; ++i) {
  1086. sumf += (ggml_float)(x[i]*y[i]);
  1087. }
  1088. #endif
  1089. *s = sumf;
  1090. }
  1091. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1092. ggml_float sumf = 0.0;
  1093. #if defined(GGML_SIMD)
  1094. const int np = (n & ~(GGML_F16_STEP - 1));
  1095. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1096. GGML_F16_VEC ax[GGML_F16_ARR];
  1097. GGML_F16_VEC ay[GGML_F16_ARR];
  1098. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1099. for (int j = 0; j < GGML_F16_ARR; j++) {
  1100. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1101. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1102. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1103. }
  1104. }
  1105. // reduce sum0..sum3 to sum0
  1106. GGML_F16_VEC_REDUCE(sumf, sum);
  1107. // leftovers
  1108. for (int i = np; i < n; ++i) {
  1109. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1110. }
  1111. #else
  1112. for (int i = 0; i < n; ++i) {
  1113. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1114. }
  1115. #endif
  1116. *s = sumf;
  1117. }
  1118. // compute GGML_VEC_DOT_UNROLL dot products at once
  1119. // xs - x row stride in bytes
  1120. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1121. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1122. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1123. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1124. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1125. }
  1126. #if defined(GGML_SIMD)
  1127. const int np = (n & ~(GGML_F16_STEP - 1));
  1128. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1129. GGML_F16_VEC ax[GGML_F16_ARR];
  1130. GGML_F16_VEC ay[GGML_F16_ARR];
  1131. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1132. for (int j = 0; j < GGML_F16_ARR; j++) {
  1133. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1134. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1135. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1136. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1137. }
  1138. }
  1139. }
  1140. // reduce sum0..sum3 to sum0
  1141. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1142. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1143. }
  1144. // leftovers
  1145. for (int i = np; i < n; ++i) {
  1146. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1147. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1148. }
  1149. }
  1150. #else
  1151. for (int i = 0; i < n; ++i) {
  1152. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1153. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1154. }
  1155. }
  1156. #endif
  1157. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1158. s[i] = sumf[i];
  1159. }
  1160. }
  1161. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1162. #if defined(GGML_SIMD)
  1163. const int np = (n & ~(GGML_F32_STEP - 1));
  1164. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1165. GGML_F32_VEC ax[GGML_F32_ARR];
  1166. GGML_F32_VEC ay[GGML_F32_ARR];
  1167. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1168. for (int j = 0; j < GGML_F32_ARR; j++) {
  1169. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1170. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1171. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1172. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1173. }
  1174. }
  1175. // leftovers
  1176. for (int i = np; i < n; ++i) {
  1177. y[i] += x[i]*v;
  1178. }
  1179. #else
  1180. // scalar
  1181. for (int i = 0; i < n; ++i) {
  1182. y[i] += x[i]*v;
  1183. }
  1184. #endif
  1185. }
  1186. // xs and vs are byte strides of x and v
  1187. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1188. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1189. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1190. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1191. x[i] = (const float *) ((const char *) xv + i*xs);
  1192. v[i] = (const float *) ((const char *) vv + i*vs);
  1193. }
  1194. #if defined(GGML_SIMD)
  1195. const int np = (n & ~(GGML_F32_STEP - 1));
  1196. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1197. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1198. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1199. }
  1200. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1201. GGML_F32_VEC ay[GGML_F32_ARR];
  1202. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1203. for (int j = 0; j < GGML_F32_ARR; j++) {
  1204. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1205. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1206. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1207. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1208. }
  1209. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1210. }
  1211. }
  1212. // leftovers
  1213. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1214. for (int i = np; i < n; ++i) {
  1215. y[i] += x[k][i]*v[k][0];
  1216. }
  1217. }
  1218. #else
  1219. // scalar
  1220. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] += x[k][i]*v[k][0];
  1223. }
  1224. }
  1225. #endif
  1226. }
  1227. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1228. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1229. #if defined(GGML_USE_ACCELERATE)
  1230. vDSP_vsmul(y, 1, &v, y, 1, n);
  1231. #elif defined(GGML_SIMD)
  1232. const int np = (n & ~(GGML_F32_STEP - 1));
  1233. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1234. GGML_F32_VEC ay[GGML_F32_ARR];
  1235. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1236. for (int j = 0; j < GGML_F32_ARR; j++) {
  1237. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1238. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1239. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1240. }
  1241. }
  1242. // leftovers
  1243. for (int i = np; i < n; ++i) {
  1244. y[i] *= v;
  1245. }
  1246. #else
  1247. // scalar
  1248. for (int i = 0; i < n; ++i) {
  1249. y[i] *= v;
  1250. }
  1251. #endif
  1252. }
  1253. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1254. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1255. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1256. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1257. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1258. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1259. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1260. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1261. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1262. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1263. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1264. // TODO: optimize performance
  1265. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1266. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1267. static const float GELU_COEF_A = 0.044715f;
  1268. static const float GELU_QUICK_COEF = -1.702f;
  1269. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1270. inline static float ggml_gelu_f32(float x) {
  1271. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1272. }
  1273. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1274. const uint16_t * i16 = (const uint16_t *) x;
  1275. for (int i = 0; i < n; ++i) {
  1276. y[i] = ggml_table_gelu_f16[i16[i]];
  1277. }
  1278. }
  1279. #ifdef GGML_GELU_FP16
  1280. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1281. uint16_t t;
  1282. for (int i = 0; i < n; ++i) {
  1283. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1284. memcpy(&t, &fp16, sizeof(uint16_t));
  1285. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1286. }
  1287. }
  1288. #else
  1289. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1290. for (int i = 0; i < n; ++i) {
  1291. y[i] = ggml_gelu_f32(x[i]);
  1292. }
  1293. }
  1294. #endif
  1295. inline static float ggml_gelu_quick_f32(float x) {
  1296. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1297. }
  1298. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1299. // const uint16_t * i16 = (const uint16_t *) x;
  1300. // for (int i = 0; i < n; ++i) {
  1301. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1302. // }
  1303. //}
  1304. #ifdef GGML_GELU_QUICK_FP16
  1305. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1306. uint16_t t;
  1307. for (int i = 0; i < n; ++i) {
  1308. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1309. memcpy(&t, &fp16, sizeof(uint16_t));
  1310. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1311. }
  1312. }
  1313. #else
  1314. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1315. for (int i = 0; i < n; ++i) {
  1316. y[i] = ggml_gelu_quick_f32(x[i]);
  1317. }
  1318. }
  1319. #endif
  1320. // Sigmoid Linear Unit (SiLU) function
  1321. inline static float ggml_silu_f32(float x) {
  1322. return x/(1.0f + expf(-x));
  1323. }
  1324. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1325. // const uint16_t * i16 = (const uint16_t *) x;
  1326. // for (int i = 0; i < n; ++i) {
  1327. // y[i] = ggml_table_silu_f16[i16[i]];
  1328. // }
  1329. //}
  1330. #ifdef GGML_SILU_FP16
  1331. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1332. uint16_t t;
  1333. for (int i = 0; i < n; ++i) {
  1334. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1335. memcpy(&t, &fp16, sizeof(uint16_t));
  1336. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1337. }
  1338. }
  1339. #else
  1340. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1341. for (int i = 0; i < n; ++i) {
  1342. y[i] = ggml_silu_f32(x[i]);
  1343. }
  1344. }
  1345. #endif
  1346. inline static float ggml_silu_backward_f32(float x, float dy) {
  1347. const float s = 1.0f/(1.0f + expf(-x));
  1348. return dy*s*(1.0f + x*(1.0f - s));
  1349. }
  1350. #ifdef GGML_SILU_FP16
  1351. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1352. for (int i = 0; i < n; ++i) {
  1353. // we did not use x[i] to compute forward silu but its f16 equivalent
  1354. // take derivative at f16 of x[i]:
  1355. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1356. float usedx = GGML_FP16_TO_FP32(fp16);
  1357. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1358. }
  1359. }
  1360. #else
  1361. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1362. for (int i = 0; i < n; ++i) {
  1363. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1364. }
  1365. }
  1366. #endif
  1367. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1368. #ifndef GGML_USE_ACCELERATE
  1369. ggml_float sum = 0.0;
  1370. for (int i = 0; i < n; ++i) {
  1371. sum += (ggml_float)x[i];
  1372. }
  1373. *s = sum;
  1374. #else
  1375. vDSP_sve(x, 1, s, n);
  1376. #endif
  1377. }
  1378. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1379. ggml_float sum = 0.0;
  1380. for (int i = 0; i < n; ++i) {
  1381. sum += (ggml_float)x[i];
  1382. }
  1383. *s = sum;
  1384. }
  1385. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1386. float sum = 0.0f;
  1387. for (int i = 0; i < n; ++i) {
  1388. sum += GGML_FP16_TO_FP32(x[i]);
  1389. }
  1390. *s = sum;
  1391. }
  1392. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1393. #ifndef GGML_USE_ACCELERATE
  1394. float max = -INFINITY;
  1395. for (int i = 0; i < n; ++i) {
  1396. max = MAX(max, x[i]);
  1397. }
  1398. *s = max;
  1399. #else
  1400. vDSP_maxv(x, 1, s, n);
  1401. #endif
  1402. }
  1403. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1404. ggml_vec_norm_f32(n, s, x);
  1405. *s = 1.f/(*s);
  1406. }
  1407. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1408. float max = -INFINITY;
  1409. int idx = 0;
  1410. for (int i = 0; i < n; ++i) {
  1411. max = MAX(max, x[i]);
  1412. if (max == x[i]) { idx = i; }
  1413. }
  1414. *s = idx;
  1415. }
  1416. //
  1417. // data types
  1418. //
  1419. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1420. "NONE",
  1421. "DUP",
  1422. "ADD",
  1423. "ADD1",
  1424. "ACC",
  1425. "SUB",
  1426. "MUL",
  1427. "DIV",
  1428. "SQR",
  1429. "SQRT",
  1430. "LOG",
  1431. "SUM",
  1432. "SUM_ROWS",
  1433. "MEAN",
  1434. "ARGMAX",
  1435. "REPEAT",
  1436. "REPEAT_BACK",
  1437. "CONCAT",
  1438. "SILU_BACK",
  1439. "NORM",
  1440. "RMS_NORM",
  1441. "RMS_NORM_BACK",
  1442. "GROUP_NORM",
  1443. "MUL_MAT",
  1444. "MUL_MAT_ID",
  1445. "OUT_PROD",
  1446. "SCALE",
  1447. "SET",
  1448. "CPY",
  1449. "CONT",
  1450. "RESHAPE",
  1451. "VIEW",
  1452. "PERMUTE",
  1453. "TRANSPOSE",
  1454. "GET_ROWS",
  1455. "GET_ROWS_BACK",
  1456. "DIAG",
  1457. "DIAG_MASK_INF",
  1458. "DIAG_MASK_ZERO",
  1459. "SOFT_MAX",
  1460. "SOFT_MAX_BACK",
  1461. "ROPE",
  1462. "ROPE_BACK",
  1463. "ALIBI",
  1464. "CLAMP",
  1465. "CONV_TRANSPOSE_1D",
  1466. "IM2COL",
  1467. "CONV_TRANSPOSE_2D",
  1468. "POOL_1D",
  1469. "POOL_2D",
  1470. "UPSCALE",
  1471. "PAD",
  1472. "ARGSORT",
  1473. "LEAKY_RELU",
  1474. "FLASH_ATTN",
  1475. "FLASH_FF",
  1476. "FLASH_ATTN_BACK",
  1477. "WIN_PART",
  1478. "WIN_UNPART",
  1479. "GET_REL_POS",
  1480. "ADD_REL_POS",
  1481. "UNARY",
  1482. "MAP_UNARY",
  1483. "MAP_BINARY",
  1484. "MAP_CUSTOM1_F32",
  1485. "MAP_CUSTOM2_F32",
  1486. "MAP_CUSTOM3_F32",
  1487. "MAP_CUSTOM1",
  1488. "MAP_CUSTOM2",
  1489. "MAP_CUSTOM3",
  1490. "CROSS_ENTROPY_LOSS",
  1491. "CROSS_ENTROPY_LOSS_BACK",
  1492. };
  1493. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1494. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1495. "none",
  1496. "x",
  1497. "x+y",
  1498. "x+y",
  1499. "view(x,nb,offset)+=y->x",
  1500. "x-y",
  1501. "x*y",
  1502. "x/y",
  1503. "x^2",
  1504. "√x",
  1505. "log(x)",
  1506. "Σx",
  1507. "Σx_k",
  1508. "Σx/n",
  1509. "argmax(x)",
  1510. "repeat(x)",
  1511. "repeat_back(x)",
  1512. "concat(x, y)",
  1513. "silu_back(x)",
  1514. "norm(x)",
  1515. "rms_norm(x)",
  1516. "rms_norm_back(x)",
  1517. "group_norm(x)",
  1518. "X*Y",
  1519. "X[i]*Y",
  1520. "X*Y",
  1521. "x*v",
  1522. "y-\\>view(x)",
  1523. "x-\\>y",
  1524. "cont(x)",
  1525. "reshape(x)",
  1526. "view(x)",
  1527. "permute(x)",
  1528. "transpose(x)",
  1529. "get_rows(x)",
  1530. "get_rows_back(x)",
  1531. "diag(x)",
  1532. "diag_mask_inf(x)",
  1533. "diag_mask_zero(x)",
  1534. "soft_max(x)",
  1535. "soft_max_back(x)",
  1536. "rope(x)",
  1537. "rope_back(x)",
  1538. "alibi(x)",
  1539. "clamp(x)",
  1540. "conv_transpose_1d(x)",
  1541. "im2col(x)",
  1542. "conv_transpose_2d(x)",
  1543. "pool_1d(x)",
  1544. "pool_2d(x)",
  1545. "upscale(x)",
  1546. "pad(x)",
  1547. "argsort(x)",
  1548. "leaky_relu(x)",
  1549. "flash_attn(x)",
  1550. "flash_ff(x)",
  1551. "flash_attn_back(x)",
  1552. "win_part(x)",
  1553. "win_unpart(x)",
  1554. "get_rel_pos(x)",
  1555. "add_rel_pos(x)",
  1556. "unary(x)",
  1557. "f(x)",
  1558. "f(x,y)",
  1559. "custom_f32(x)",
  1560. "custom_f32(x,y)",
  1561. "custom_f32(x,y,z)",
  1562. "custom(x)",
  1563. "custom(x,y)",
  1564. "custom(x,y,z)",
  1565. "cross_entropy_loss(x,y)",
  1566. "cross_entropy_loss_back(x,y)",
  1567. };
  1568. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1569. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1570. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1571. "ABS",
  1572. "SGN",
  1573. "NEG",
  1574. "STEP",
  1575. "TANH",
  1576. "ELU",
  1577. "RELU",
  1578. "GELU",
  1579. "GELU_QUICK",
  1580. "SILU",
  1581. "HARDSWISH",
  1582. "HARDSIGMOID",
  1583. };
  1584. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1585. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1586. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1587. // WARN:
  1588. // Mis-configuration can lead to problem that's hard to reason about:
  1589. // * At best it crash or talks nosense.
  1590. // * At worst it talks slightly difference but hard to perceive.
  1591. //
  1592. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1593. // Take care about compile options (e.g., GGML_USE_xxx).
  1594. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1595. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1596. static void ggml_setup_op_has_task_pass(void) {
  1597. { // INIT
  1598. bool * p = GGML_OP_HAS_INIT;
  1599. p[GGML_OP_ACC ] = true;
  1600. p[GGML_OP_MUL_MAT ] = true;
  1601. p[GGML_OP_MUL_MAT_ID ] = true;
  1602. p[GGML_OP_OUT_PROD ] = true;
  1603. p[GGML_OP_SET ] = true;
  1604. p[GGML_OP_GET_ROWS_BACK ] = true;
  1605. p[GGML_OP_DIAG_MASK_INF ] = true;
  1606. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1607. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1608. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1609. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1610. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1611. p[GGML_OP_ADD_REL_POS ] = true;
  1612. }
  1613. { // FINALIZE
  1614. bool * p = GGML_OP_HAS_FINALIZE;
  1615. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1616. }
  1617. }
  1618. //
  1619. // ggml context
  1620. //
  1621. struct ggml_context {
  1622. size_t mem_size;
  1623. void * mem_buffer;
  1624. bool mem_buffer_owned;
  1625. bool no_alloc;
  1626. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1627. int n_objects;
  1628. struct ggml_object * objects_begin;
  1629. struct ggml_object * objects_end;
  1630. struct ggml_scratch scratch;
  1631. struct ggml_scratch scratch_save;
  1632. };
  1633. struct ggml_context_container {
  1634. bool used;
  1635. struct ggml_context context;
  1636. };
  1637. //
  1638. // NUMA support
  1639. //
  1640. #define GGML_NUMA_MAX_NODES 8
  1641. #define GGML_NUMA_MAX_CPUS 512
  1642. struct ggml_numa_node {
  1643. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1644. uint32_t n_cpus;
  1645. };
  1646. struct ggml_numa_nodes {
  1647. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1648. uint32_t n_nodes;
  1649. uint32_t total_cpus; // hardware threads on system
  1650. };
  1651. //
  1652. // ggml state
  1653. //
  1654. struct ggml_state {
  1655. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1656. struct ggml_numa_nodes numa;
  1657. };
  1658. // global state
  1659. static struct ggml_state g_state;
  1660. static atomic_int g_state_barrier = 0;
  1661. // barrier via spin lock
  1662. inline static void ggml_critical_section_start(void) {
  1663. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1664. while (processing > 0) {
  1665. // wait for other threads to finish
  1666. atomic_fetch_sub(&g_state_barrier, 1);
  1667. sched_yield(); // TODO: reconsider this
  1668. processing = atomic_fetch_add(&g_state_barrier, 1);
  1669. }
  1670. }
  1671. // TODO: make this somehow automatically executed
  1672. // some sort of "sentry" mechanism
  1673. inline static void ggml_critical_section_end(void) {
  1674. atomic_fetch_sub(&g_state_barrier, 1);
  1675. }
  1676. void ggml_numa_init(void) {
  1677. if (g_state.numa.n_nodes > 0) {
  1678. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1679. return;
  1680. }
  1681. #ifdef __linux__
  1682. struct stat st;
  1683. char path[256];
  1684. int rv;
  1685. // enumerate nodes
  1686. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1687. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1688. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1689. if (stat(path, &st) != 0) { break; }
  1690. ++g_state.numa.n_nodes;
  1691. }
  1692. // enumerate CPUs
  1693. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1694. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1695. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1696. if (stat(path, &st) != 0) { break; }
  1697. ++g_state.numa.total_cpus;
  1698. }
  1699. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1700. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1701. g_state.numa.n_nodes = 0;
  1702. return;
  1703. }
  1704. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1705. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1706. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1707. node->n_cpus = 0;
  1708. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1709. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1710. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1711. if (stat(path, &st) == 0) {
  1712. node->cpus[node->n_cpus++] = c;
  1713. GGML_PRINT_DEBUG(" %u", c);
  1714. }
  1715. }
  1716. GGML_PRINT_DEBUG("\n");
  1717. }
  1718. if (ggml_is_numa()) {
  1719. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1720. if (fptr != NULL) {
  1721. char buf[42];
  1722. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1723. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1724. }
  1725. fclose(fptr);
  1726. }
  1727. }
  1728. #else
  1729. // TODO
  1730. #endif
  1731. }
  1732. bool ggml_is_numa(void) {
  1733. return g_state.numa.n_nodes > 1;
  1734. }
  1735. ////////////////////////////////////////////////////////////////////////////////
  1736. void ggml_print_object(const struct ggml_object * obj) {
  1737. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1738. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1739. }
  1740. void ggml_print_objects(const struct ggml_context * ctx) {
  1741. struct ggml_object * obj = ctx->objects_begin;
  1742. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1743. while (obj != NULL) {
  1744. ggml_print_object(obj);
  1745. obj = obj->next;
  1746. }
  1747. GGML_PRINT("%s: --- end ---\n", __func__);
  1748. }
  1749. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1750. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1751. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1752. }
  1753. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1754. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1755. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1756. }
  1757. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1758. size_t nbytes;
  1759. size_t blck_size = ggml_blck_size(tensor->type);
  1760. if (blck_size == 1) {
  1761. nbytes = ggml_type_size(tensor->type);
  1762. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1763. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1764. }
  1765. }
  1766. else {
  1767. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1768. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1769. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1770. }
  1771. }
  1772. return nbytes;
  1773. }
  1774. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1775. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1776. }
  1777. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1778. return type_traits[type].blck_size;
  1779. }
  1780. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1781. return type_traits[type].type_size;
  1782. }
  1783. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1784. assert(ne % ggml_blck_size(type) == 0);
  1785. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1786. }
  1787. double ggml_type_sizef(enum ggml_type type) {
  1788. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1789. }
  1790. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1791. return type_traits[type].type_name;
  1792. }
  1793. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1794. return type_traits[type].is_quantized;
  1795. }
  1796. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1797. return GGML_OP_NAME[op];
  1798. }
  1799. const char * ggml_op_symbol(enum ggml_op op) {
  1800. return GGML_OP_SYMBOL[op];
  1801. }
  1802. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1803. return GGML_UNARY_OP_NAME[op];
  1804. }
  1805. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1806. if (t->op == GGML_OP_UNARY) {
  1807. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1808. return ggml_unary_op_name(uop);
  1809. }
  1810. else {
  1811. return ggml_op_name(t->op);
  1812. }
  1813. }
  1814. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1815. return ggml_type_size(tensor->type);
  1816. }
  1817. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1818. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1819. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1820. }
  1821. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1822. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1823. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1824. }
  1825. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1826. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1827. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1828. }
  1829. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1830. return tensor->ne[3] == 1;
  1831. }
  1832. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1833. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1834. if (tensor->ne[i] > 1) {
  1835. return i + 1;
  1836. }
  1837. }
  1838. return 1;
  1839. }
  1840. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1841. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1842. return (t0->ne[0] == t1->ne[0]) &&
  1843. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1844. (t1->ne[3]%t0->ne[3] == 0);
  1845. }
  1846. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1847. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1848. return (t0->ne[1] == t1->ne[1]) &&
  1849. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1850. (t1->ne[3]%t0->ne[3] == 0);
  1851. }
  1852. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1853. enum ggml_type wtype = GGML_TYPE_COUNT;
  1854. switch (ftype) {
  1855. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1856. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1857. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1858. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1859. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1860. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1861. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1862. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1863. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1864. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1865. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1866. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1867. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1868. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1869. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1870. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1871. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1872. }
  1873. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1874. return wtype;
  1875. }
  1876. size_t ggml_tensor_overhead(void) {
  1877. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1878. }
  1879. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1880. return tensor->nb[0] > tensor->nb[1];
  1881. }
  1882. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1883. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1884. return
  1885. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1886. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1887. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1888. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1889. }
  1890. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1891. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1892. return
  1893. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1894. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1895. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1896. }
  1897. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1898. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1899. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1900. }
  1901. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1902. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1903. return
  1904. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1905. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1906. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1907. }
  1908. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1909. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1910. return
  1911. (t0->ne[0] == t1->ne[0] ) &&
  1912. (t0->ne[1] == t1->ne[1] ) &&
  1913. (t0->ne[2] == t1->ne[2] ) &&
  1914. (t0->ne[3] == t1->ne[3] );
  1915. }
  1916. // check if t1 can be represented as a repeatition of t0
  1917. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1918. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1919. return
  1920. (t1->ne[0]%t0->ne[0] == 0) &&
  1921. (t1->ne[1]%t0->ne[1] == 0) &&
  1922. (t1->ne[2]%t0->ne[2] == 0) &&
  1923. (t1->ne[3]%t0->ne[3] == 0);
  1924. }
  1925. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1926. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1927. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1928. }
  1929. static inline int ggml_up32(int n) {
  1930. return (n + 31) & ~31;
  1931. }
  1932. //static inline int ggml_up64(int n) {
  1933. // return (n + 63) & ~63;
  1934. //}
  1935. static inline int ggml_up(int n, int m) {
  1936. // assert m is a power of 2
  1937. GGML_ASSERT((m & (m - 1)) == 0);
  1938. return (n + m - 1) & ~(m - 1);
  1939. }
  1940. // assert that pointer is aligned to GGML_MEM_ALIGN
  1941. #define ggml_assert_aligned(ptr) \
  1942. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1943. ////////////////////////////////////////////////////////////////////////////////
  1944. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1945. // make this function thread safe
  1946. ggml_critical_section_start();
  1947. static bool is_first_call = true;
  1948. if (is_first_call) {
  1949. // initialize time system (required on Windows)
  1950. ggml_time_init();
  1951. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1952. {
  1953. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1954. ggml_fp16_t ii;
  1955. for (int i = 0; i < (1 << 16); ++i) {
  1956. uint16_t ui = i;
  1957. memcpy(&ii, &ui, sizeof(ii));
  1958. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1959. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1960. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1961. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1962. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1963. }
  1964. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1965. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1966. }
  1967. // initialize g_state
  1968. {
  1969. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1970. g_state = (struct ggml_state) {
  1971. /*.contexts =*/ { { 0 } },
  1972. /*.numa =*/ {
  1973. .n_nodes = 0,
  1974. .total_cpus = 0,
  1975. },
  1976. };
  1977. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1978. g_state.contexts[i].used = false;
  1979. }
  1980. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1981. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1982. }
  1983. #if defined(GGML_USE_CUBLAS)
  1984. ggml_init_cublas();
  1985. #elif defined(GGML_USE_CLBLAST)
  1986. ggml_cl_init();
  1987. #elif defined(GGML_USE_VULKAN)
  1988. ggml_vk_init();
  1989. #elif defined(GGML_USE_SYCL)
  1990. ggml_init_sycl();
  1991. #endif
  1992. ggml_setup_op_has_task_pass();
  1993. is_first_call = false;
  1994. }
  1995. // find non-used context in g_state
  1996. struct ggml_context * ctx = NULL;
  1997. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1998. if (!g_state.contexts[i].used) {
  1999. g_state.contexts[i].used = true;
  2000. ctx = &g_state.contexts[i].context;
  2001. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2002. break;
  2003. }
  2004. }
  2005. if (ctx == NULL) {
  2006. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2007. ggml_critical_section_end();
  2008. return NULL;
  2009. }
  2010. // allow to call ggml_init with 0 size
  2011. if (params.mem_size == 0) {
  2012. params.mem_size = GGML_MEM_ALIGN;
  2013. }
  2014. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2015. *ctx = (struct ggml_context) {
  2016. /*.mem_size =*/ mem_size,
  2017. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2018. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2019. /*.no_alloc =*/ params.no_alloc,
  2020. /*.no_alloc_save =*/ params.no_alloc,
  2021. /*.n_objects =*/ 0,
  2022. /*.objects_begin =*/ NULL,
  2023. /*.objects_end =*/ NULL,
  2024. /*.scratch =*/ { 0, 0, NULL, },
  2025. /*.scratch_save =*/ { 0, 0, NULL, },
  2026. };
  2027. GGML_ASSERT(ctx->mem_buffer != NULL);
  2028. ggml_assert_aligned(ctx->mem_buffer);
  2029. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2030. ggml_critical_section_end();
  2031. return ctx;
  2032. }
  2033. void ggml_free(struct ggml_context * ctx) {
  2034. if (ctx == NULL) {
  2035. return;
  2036. }
  2037. // make this function thread safe
  2038. ggml_critical_section_start();
  2039. bool found = false;
  2040. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2041. if (&g_state.contexts[i].context == ctx) {
  2042. g_state.contexts[i].used = false;
  2043. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2044. __func__, i, ggml_used_mem(ctx));
  2045. if (ctx->mem_buffer_owned) {
  2046. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2047. }
  2048. found = true;
  2049. break;
  2050. }
  2051. }
  2052. if (!found) {
  2053. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2054. }
  2055. ggml_critical_section_end();
  2056. }
  2057. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2058. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2059. }
  2060. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2061. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2062. ctx->scratch = scratch;
  2063. return result;
  2064. }
  2065. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2066. return ctx->no_alloc;
  2067. }
  2068. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2069. ctx->no_alloc = no_alloc;
  2070. }
  2071. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2072. return ctx->mem_buffer;
  2073. }
  2074. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2075. return ctx->mem_size;
  2076. }
  2077. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2078. size_t max_size = 0;
  2079. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2080. max_size = MAX(max_size, ggml_nbytes(tensor));
  2081. }
  2082. return max_size;
  2083. }
  2084. // IMPORTANT:
  2085. // when creating "opt" tensors, always save and load the scratch buffer
  2086. // this is an error prone process, but it is necessary to support inplace
  2087. // operators when using scratch buffers
  2088. // TODO: implement a better way
  2089. static void ggml_scratch_save(struct ggml_context * ctx) {
  2090. // this is needed to allow opt tensors to store their data
  2091. // TODO: again, need to find a better way
  2092. ctx->no_alloc_save = ctx->no_alloc;
  2093. ctx->no_alloc = false;
  2094. ctx->scratch_save = ctx->scratch;
  2095. ctx->scratch.data = NULL;
  2096. }
  2097. static void ggml_scratch_load(struct ggml_context * ctx) {
  2098. ctx->no_alloc = ctx->no_alloc_save;
  2099. ctx->scratch = ctx->scratch_save;
  2100. }
  2101. ////////////////////////////////////////////////////////////////////////////////
  2102. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2103. // always insert objects at the end of the context's memory pool
  2104. struct ggml_object * obj_cur = ctx->objects_end;
  2105. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2106. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2107. const size_t cur_end = cur_offs + cur_size;
  2108. // align to GGML_MEM_ALIGN
  2109. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2110. char * const mem_buffer = ctx->mem_buffer;
  2111. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2112. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2113. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2114. __func__, cur_end + size_needed, ctx->mem_size);
  2115. assert(false);
  2116. return NULL;
  2117. }
  2118. *obj_new = (struct ggml_object) {
  2119. .offs = cur_end + GGML_OBJECT_SIZE,
  2120. .size = size_needed,
  2121. .next = NULL,
  2122. .type = type,
  2123. };
  2124. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2125. if (obj_cur != NULL) {
  2126. obj_cur->next = obj_new;
  2127. } else {
  2128. // this is the first object in this context
  2129. ctx->objects_begin = obj_new;
  2130. }
  2131. ctx->objects_end = obj_new;
  2132. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2133. return obj_new;
  2134. }
  2135. static struct ggml_tensor * ggml_new_tensor_impl(
  2136. struct ggml_context * ctx,
  2137. enum ggml_type type,
  2138. int n_dims,
  2139. const int64_t * ne,
  2140. struct ggml_tensor * view_src,
  2141. size_t view_offs) {
  2142. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2143. // find the base tensor and absolute offset
  2144. if (view_src != NULL && view_src->view_src != NULL) {
  2145. view_offs += view_src->view_offs;
  2146. view_src = view_src->view_src;
  2147. }
  2148. size_t data_size = ggml_row_size(type, ne[0]);
  2149. for (int i = 1; i < n_dims; i++) {
  2150. data_size *= ne[i];
  2151. }
  2152. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2153. void * data = view_src != NULL ? view_src->data : NULL;
  2154. if (data != NULL) {
  2155. data = (char *) data + view_offs;
  2156. }
  2157. size_t obj_alloc_size = 0;
  2158. if (view_src == NULL && !ctx->no_alloc) {
  2159. if (ctx->scratch.data != NULL) {
  2160. // allocate tensor data in the scratch buffer
  2161. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2162. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2163. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2164. assert(false);
  2165. return NULL;
  2166. }
  2167. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2168. ctx->scratch.offs += data_size;
  2169. } else {
  2170. // allocate tensor data in the context's memory pool
  2171. obj_alloc_size = data_size;
  2172. }
  2173. }
  2174. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2175. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2176. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2177. *result = (struct ggml_tensor) {
  2178. /*.type =*/ type,
  2179. /*.backend =*/ GGML_BACKEND_CPU,
  2180. /*.buffer =*/ NULL,
  2181. /*.ne =*/ { 1, 1, 1, 1 },
  2182. /*.nb =*/ { 0, 0, 0, 0 },
  2183. /*.op =*/ GGML_OP_NONE,
  2184. /*.op_params =*/ { 0 },
  2185. /*.is_param =*/ false,
  2186. /*.grad =*/ NULL,
  2187. /*.src =*/ { NULL },
  2188. /*.perf_runs =*/ 0,
  2189. /*.perf_cycles =*/ 0,
  2190. /*.perf_time_us =*/ 0,
  2191. /*.view_src =*/ view_src,
  2192. /*.view_offs =*/ view_offs,
  2193. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2194. /*.name =*/ { 0 },
  2195. /*.extra =*/ NULL,
  2196. /*.padding =*/ { 0 },
  2197. };
  2198. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2199. //ggml_assert_aligned(result->data);
  2200. for (int i = 0; i < n_dims; i++) {
  2201. result->ne[i] = ne[i];
  2202. }
  2203. result->nb[0] = ggml_type_size(type);
  2204. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2205. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2206. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2207. }
  2208. ctx->n_objects++;
  2209. return result;
  2210. }
  2211. struct ggml_tensor * ggml_new_tensor(
  2212. struct ggml_context * ctx,
  2213. enum ggml_type type,
  2214. int n_dims,
  2215. const int64_t * ne) {
  2216. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2217. }
  2218. struct ggml_tensor * ggml_new_tensor_1d(
  2219. struct ggml_context * ctx,
  2220. enum ggml_type type,
  2221. int64_t ne0) {
  2222. return ggml_new_tensor(ctx, type, 1, &ne0);
  2223. }
  2224. struct ggml_tensor * ggml_new_tensor_2d(
  2225. struct ggml_context * ctx,
  2226. enum ggml_type type,
  2227. int64_t ne0,
  2228. int64_t ne1) {
  2229. const int64_t ne[2] = { ne0, ne1 };
  2230. return ggml_new_tensor(ctx, type, 2, ne);
  2231. }
  2232. struct ggml_tensor * ggml_new_tensor_3d(
  2233. struct ggml_context * ctx,
  2234. enum ggml_type type,
  2235. int64_t ne0,
  2236. int64_t ne1,
  2237. int64_t ne2) {
  2238. const int64_t ne[3] = { ne0, ne1, ne2 };
  2239. return ggml_new_tensor(ctx, type, 3, ne);
  2240. }
  2241. struct ggml_tensor * ggml_new_tensor_4d(
  2242. struct ggml_context * ctx,
  2243. enum ggml_type type,
  2244. int64_t ne0,
  2245. int64_t ne1,
  2246. int64_t ne2,
  2247. int64_t ne3) {
  2248. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2249. return ggml_new_tensor(ctx, type, 4, ne);
  2250. }
  2251. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2252. ggml_scratch_save(ctx);
  2253. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2254. ggml_scratch_load(ctx);
  2255. ggml_set_i32(result, value);
  2256. return result;
  2257. }
  2258. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2259. ggml_scratch_save(ctx);
  2260. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2261. ggml_scratch_load(ctx);
  2262. ggml_set_f32(result, value);
  2263. return result;
  2264. }
  2265. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2266. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2267. }
  2268. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2269. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2270. assert(params_size <= GGML_MAX_OP_PARAMS);
  2271. memcpy(tensor->op_params, params, params_size);
  2272. }
  2273. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2274. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2275. return ((const int32_t *)(tensor->op_params))[i];
  2276. }
  2277. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2278. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2279. ((int32_t *)(tensor->op_params))[i] = value;
  2280. }
  2281. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2282. memset(tensor->data, 0, ggml_nbytes(tensor));
  2283. return tensor;
  2284. }
  2285. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2286. const int n = ggml_nrows(tensor);
  2287. const int nc = tensor->ne[0];
  2288. const size_t n1 = tensor->nb[1];
  2289. char * const data = tensor->data;
  2290. switch (tensor->type) {
  2291. case GGML_TYPE_I8:
  2292. {
  2293. assert(tensor->nb[0] == sizeof(int8_t));
  2294. for (int i = 0; i < n; i++) {
  2295. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2296. }
  2297. } break;
  2298. case GGML_TYPE_I16:
  2299. {
  2300. assert(tensor->nb[0] == sizeof(int16_t));
  2301. for (int i = 0; i < n; i++) {
  2302. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2303. }
  2304. } break;
  2305. case GGML_TYPE_I32:
  2306. {
  2307. assert(tensor->nb[0] == sizeof(int32_t));
  2308. for (int i = 0; i < n; i++) {
  2309. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2310. }
  2311. } break;
  2312. case GGML_TYPE_F16:
  2313. {
  2314. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2315. for (int i = 0; i < n; i++) {
  2316. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2317. }
  2318. } break;
  2319. case GGML_TYPE_F32:
  2320. {
  2321. assert(tensor->nb[0] == sizeof(float));
  2322. for (int i = 0; i < n; i++) {
  2323. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2324. }
  2325. } break;
  2326. default:
  2327. {
  2328. GGML_ASSERT(false);
  2329. } break;
  2330. }
  2331. return tensor;
  2332. }
  2333. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2334. const int n = ggml_nrows(tensor);
  2335. const int nc = tensor->ne[0];
  2336. const size_t n1 = tensor->nb[1];
  2337. char * const data = tensor->data;
  2338. switch (tensor->type) {
  2339. case GGML_TYPE_I8:
  2340. {
  2341. assert(tensor->nb[0] == sizeof(int8_t));
  2342. for (int i = 0; i < n; i++) {
  2343. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2344. }
  2345. } break;
  2346. case GGML_TYPE_I16:
  2347. {
  2348. assert(tensor->nb[0] == sizeof(int16_t));
  2349. for (int i = 0; i < n; i++) {
  2350. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2351. }
  2352. } break;
  2353. case GGML_TYPE_I32:
  2354. {
  2355. assert(tensor->nb[0] == sizeof(int32_t));
  2356. for (int i = 0; i < n; i++) {
  2357. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2358. }
  2359. } break;
  2360. case GGML_TYPE_F16:
  2361. {
  2362. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2363. for (int i = 0; i < n; i++) {
  2364. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2365. }
  2366. } break;
  2367. case GGML_TYPE_F32:
  2368. {
  2369. assert(tensor->nb[0] == sizeof(float));
  2370. for (int i = 0; i < n; i++) {
  2371. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2372. }
  2373. } break;
  2374. default:
  2375. {
  2376. GGML_ASSERT(false);
  2377. } break;
  2378. }
  2379. return tensor;
  2380. }
  2381. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2382. const int64_t ne2 = tensor->ne[2];
  2383. const int64_t ne1 = tensor->ne[1];
  2384. const int64_t ne0 = tensor->ne[0];
  2385. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2386. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2387. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2388. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2389. if (i0) {
  2390. * i0 = i0_;
  2391. }
  2392. if (i1) {
  2393. * i1 = i1_;
  2394. }
  2395. if (i2) {
  2396. * i2 = i2_;
  2397. }
  2398. if (i3) {
  2399. * i3 = i3_;
  2400. }
  2401. }
  2402. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2403. if (!ggml_is_contiguous(tensor)) {
  2404. int64_t id[4] = { 0, 0, 0, 0 };
  2405. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2406. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2407. }
  2408. switch (tensor->type) {
  2409. case GGML_TYPE_I8:
  2410. {
  2411. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2412. return ((int8_t *)(tensor->data))[i];
  2413. }
  2414. case GGML_TYPE_I16:
  2415. {
  2416. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2417. return ((int16_t *)(tensor->data))[i];
  2418. }
  2419. case GGML_TYPE_I32:
  2420. {
  2421. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2422. return ((int32_t *)(tensor->data))[i];
  2423. }
  2424. case GGML_TYPE_F16:
  2425. {
  2426. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2427. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2428. }
  2429. case GGML_TYPE_F32:
  2430. {
  2431. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2432. return ((float *)(tensor->data))[i];
  2433. }
  2434. default:
  2435. {
  2436. GGML_ASSERT(false);
  2437. }
  2438. }
  2439. return 0.0f;
  2440. }
  2441. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2442. if (!ggml_is_contiguous(tensor)) {
  2443. int64_t id[4] = { 0, 0, 0, 0 };
  2444. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2445. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2446. return;
  2447. }
  2448. switch (tensor->type) {
  2449. case GGML_TYPE_I8:
  2450. {
  2451. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2452. ((int8_t *)(tensor->data))[i] = value;
  2453. } break;
  2454. case GGML_TYPE_I16:
  2455. {
  2456. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2457. ((int16_t *)(tensor->data))[i] = value;
  2458. } break;
  2459. case GGML_TYPE_I32:
  2460. {
  2461. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2462. ((int32_t *)(tensor->data))[i] = value;
  2463. } break;
  2464. case GGML_TYPE_F16:
  2465. {
  2466. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2467. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2468. } break;
  2469. case GGML_TYPE_F32:
  2470. {
  2471. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2472. ((float *)(tensor->data))[i] = value;
  2473. } break;
  2474. default:
  2475. {
  2476. GGML_ASSERT(false);
  2477. } break;
  2478. }
  2479. }
  2480. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2481. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2482. switch (tensor->type) {
  2483. case GGML_TYPE_I8:
  2484. return ((int8_t *) data)[0];
  2485. case GGML_TYPE_I16:
  2486. return ((int16_t *) data)[0];
  2487. case GGML_TYPE_I32:
  2488. return ((int32_t *) data)[0];
  2489. case GGML_TYPE_F16:
  2490. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2491. case GGML_TYPE_F32:
  2492. return ((float *) data)[0];
  2493. default:
  2494. GGML_ASSERT(false);
  2495. }
  2496. return 0.0f;
  2497. }
  2498. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2499. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2500. switch (tensor->type) {
  2501. case GGML_TYPE_I8:
  2502. {
  2503. ((int8_t *)(data))[0] = value;
  2504. } break;
  2505. case GGML_TYPE_I16:
  2506. {
  2507. ((int16_t *)(data))[0] = value;
  2508. } break;
  2509. case GGML_TYPE_I32:
  2510. {
  2511. ((int32_t *)(data))[0] = value;
  2512. } break;
  2513. case GGML_TYPE_F16:
  2514. {
  2515. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2516. } break;
  2517. case GGML_TYPE_F32:
  2518. {
  2519. ((float *)(data))[0] = value;
  2520. } break;
  2521. default:
  2522. {
  2523. GGML_ASSERT(false);
  2524. } break;
  2525. }
  2526. }
  2527. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2528. if (!ggml_is_contiguous(tensor)) {
  2529. int64_t id[4] = { 0, 0, 0, 0 };
  2530. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2531. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2532. }
  2533. switch (tensor->type) {
  2534. case GGML_TYPE_I8:
  2535. {
  2536. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2537. return ((int8_t *)(tensor->data))[i];
  2538. }
  2539. case GGML_TYPE_I16:
  2540. {
  2541. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2542. return ((int16_t *)(tensor->data))[i];
  2543. }
  2544. case GGML_TYPE_I32:
  2545. {
  2546. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2547. return ((int32_t *)(tensor->data))[i];
  2548. }
  2549. case GGML_TYPE_F16:
  2550. {
  2551. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2552. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2553. }
  2554. case GGML_TYPE_F32:
  2555. {
  2556. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2557. return ((float *)(tensor->data))[i];
  2558. }
  2559. default:
  2560. {
  2561. GGML_ASSERT(false);
  2562. }
  2563. }
  2564. return 0.0f;
  2565. }
  2566. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2567. if (!ggml_is_contiguous(tensor)) {
  2568. int64_t id[4] = { 0, 0, 0, 0 };
  2569. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2570. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2571. return;
  2572. }
  2573. switch (tensor->type) {
  2574. case GGML_TYPE_I8:
  2575. {
  2576. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2577. ((int8_t *)(tensor->data))[i] = value;
  2578. } break;
  2579. case GGML_TYPE_I16:
  2580. {
  2581. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2582. ((int16_t *)(tensor->data))[i] = value;
  2583. } break;
  2584. case GGML_TYPE_I32:
  2585. {
  2586. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2587. ((int32_t *)(tensor->data))[i] = value;
  2588. } break;
  2589. case GGML_TYPE_F16:
  2590. {
  2591. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2592. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2593. } break;
  2594. case GGML_TYPE_F32:
  2595. {
  2596. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2597. ((float *)(tensor->data))[i] = value;
  2598. } break;
  2599. default:
  2600. {
  2601. GGML_ASSERT(false);
  2602. } break;
  2603. }
  2604. }
  2605. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2606. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2607. switch (tensor->type) {
  2608. case GGML_TYPE_I8:
  2609. return ((int8_t *) data)[0];
  2610. case GGML_TYPE_I16:
  2611. return ((int16_t *) data)[0];
  2612. case GGML_TYPE_I32:
  2613. return ((int32_t *) data)[0];
  2614. case GGML_TYPE_F16:
  2615. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2616. case GGML_TYPE_F32:
  2617. return ((float *) data)[0];
  2618. default:
  2619. GGML_ASSERT(false);
  2620. }
  2621. return 0.0f;
  2622. }
  2623. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2624. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2625. switch (tensor->type) {
  2626. case GGML_TYPE_I8:
  2627. {
  2628. ((int8_t *)(data))[0] = value;
  2629. } break;
  2630. case GGML_TYPE_I16:
  2631. {
  2632. ((int16_t *)(data))[0] = value;
  2633. } break;
  2634. case GGML_TYPE_I32:
  2635. {
  2636. ((int32_t *)(data))[0] = value;
  2637. } break;
  2638. case GGML_TYPE_F16:
  2639. {
  2640. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2641. } break;
  2642. case GGML_TYPE_F32:
  2643. {
  2644. ((float *)(data))[0] = value;
  2645. } break;
  2646. default:
  2647. {
  2648. GGML_ASSERT(false);
  2649. } break;
  2650. }
  2651. }
  2652. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2653. return tensor->data;
  2654. }
  2655. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2656. assert(tensor->type == GGML_TYPE_F32);
  2657. return (float *)(tensor->data);
  2658. }
  2659. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2660. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2661. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2662. }
  2663. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2664. return tensor->name;
  2665. }
  2666. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2667. strncpy(tensor->name, name, sizeof(tensor->name));
  2668. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2669. return tensor;
  2670. }
  2671. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2672. va_list args;
  2673. va_start(args, fmt);
  2674. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2675. va_end(args);
  2676. return tensor;
  2677. }
  2678. struct ggml_tensor * ggml_view_tensor(
  2679. struct ggml_context * ctx,
  2680. struct ggml_tensor * src) {
  2681. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2682. ggml_format_name(result, "%s (view)", src->name);
  2683. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2684. result->nb[i] = src->nb[i];
  2685. }
  2686. return result;
  2687. }
  2688. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2689. struct ggml_object * obj = ctx->objects_begin;
  2690. char * const mem_buffer = ctx->mem_buffer;
  2691. while (obj != NULL) {
  2692. if (obj->type == GGML_OBJECT_TENSOR) {
  2693. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2694. }
  2695. obj = obj->next;
  2696. }
  2697. return NULL;
  2698. }
  2699. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2700. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2701. obj = obj->next;
  2702. char * const mem_buffer = ctx->mem_buffer;
  2703. while (obj != NULL) {
  2704. if (obj->type == GGML_OBJECT_TENSOR) {
  2705. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2706. }
  2707. obj = obj->next;
  2708. }
  2709. return NULL;
  2710. }
  2711. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2712. struct ggml_object * obj = ctx->objects_begin;
  2713. char * const mem_buffer = ctx->mem_buffer;
  2714. while (obj != NULL) {
  2715. if (obj->type == GGML_OBJECT_TENSOR) {
  2716. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2717. if (strcmp(cur->name, name) == 0) {
  2718. return cur;
  2719. }
  2720. }
  2721. obj = obj->next;
  2722. }
  2723. return NULL;
  2724. }
  2725. ////////////////////////////////////////////////////////////////////////////////
  2726. // ggml_dup
  2727. static struct ggml_tensor * ggml_dup_impl(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. bool inplace) {
  2731. bool is_node = false;
  2732. if (!inplace && (a->grad)) {
  2733. is_node = true;
  2734. }
  2735. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2736. result->op = GGML_OP_DUP;
  2737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2738. result->src[0] = a;
  2739. return result;
  2740. }
  2741. struct ggml_tensor * ggml_dup(
  2742. struct ggml_context * ctx,
  2743. struct ggml_tensor * a) {
  2744. return ggml_dup_impl(ctx, a, false);
  2745. }
  2746. struct ggml_tensor * ggml_dup_inplace(
  2747. struct ggml_context * ctx,
  2748. struct ggml_tensor * a) {
  2749. return ggml_dup_impl(ctx, a, true);
  2750. }
  2751. // ggml_add
  2752. static struct ggml_tensor * ggml_add_impl(
  2753. struct ggml_context * ctx,
  2754. struct ggml_tensor * a,
  2755. struct ggml_tensor * b,
  2756. bool inplace) {
  2757. GGML_ASSERT(ggml_can_repeat(b, a));
  2758. bool is_node = false;
  2759. if (!inplace && (a->grad || b->grad)) {
  2760. // TODO: support backward pass for broadcasting
  2761. GGML_ASSERT(ggml_are_same_shape(a, b));
  2762. is_node = true;
  2763. }
  2764. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2765. result->op = GGML_OP_ADD;
  2766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2767. result->src[0] = a;
  2768. result->src[1] = b;
  2769. return result;
  2770. }
  2771. struct ggml_tensor * ggml_add(
  2772. struct ggml_context * ctx,
  2773. struct ggml_tensor * a,
  2774. struct ggml_tensor * b) {
  2775. return ggml_add_impl(ctx, a, b, false);
  2776. }
  2777. struct ggml_tensor * ggml_add_inplace(
  2778. struct ggml_context * ctx,
  2779. struct ggml_tensor * a,
  2780. struct ggml_tensor * b) {
  2781. return ggml_add_impl(ctx, a, b, true);
  2782. }
  2783. // ggml_add_cast
  2784. static struct ggml_tensor * ggml_add_cast_impl(
  2785. struct ggml_context * ctx,
  2786. struct ggml_tensor * a,
  2787. struct ggml_tensor * b,
  2788. enum ggml_type type) {
  2789. // TODO: support less-strict constraint
  2790. // GGML_ASSERT(ggml_can_repeat(b, a));
  2791. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2792. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2793. bool is_node = false;
  2794. if (a->grad || b->grad) {
  2795. // TODO: support backward pass for broadcasting
  2796. GGML_ASSERT(ggml_are_same_shape(a, b));
  2797. is_node = true;
  2798. }
  2799. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2800. result->op = GGML_OP_ADD;
  2801. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2802. result->src[0] = a;
  2803. result->src[1] = b;
  2804. return result;
  2805. }
  2806. struct ggml_tensor * ggml_add_cast(
  2807. struct ggml_context * ctx,
  2808. struct ggml_tensor * a,
  2809. struct ggml_tensor * b,
  2810. enum ggml_type type) {
  2811. return ggml_add_cast_impl(ctx, a, b, type);
  2812. }
  2813. // ggml_add1
  2814. static struct ggml_tensor * ggml_add1_impl(
  2815. struct ggml_context * ctx,
  2816. struct ggml_tensor * a,
  2817. struct ggml_tensor * b,
  2818. bool inplace) {
  2819. GGML_ASSERT(ggml_is_scalar(b));
  2820. GGML_ASSERT(ggml_is_padded_1d(a));
  2821. bool is_node = false;
  2822. if (a->grad || b->grad) {
  2823. is_node = true;
  2824. }
  2825. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2826. result->op = GGML_OP_ADD1;
  2827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2828. result->src[0] = a;
  2829. result->src[1] = b;
  2830. return result;
  2831. }
  2832. struct ggml_tensor * ggml_add1(
  2833. struct ggml_context * ctx,
  2834. struct ggml_tensor * a,
  2835. struct ggml_tensor * b) {
  2836. return ggml_add1_impl(ctx, a, b, false);
  2837. }
  2838. struct ggml_tensor * ggml_add1_inplace(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * a,
  2841. struct ggml_tensor * b) {
  2842. return ggml_add1_impl(ctx, a, b, true);
  2843. }
  2844. // ggml_acc
  2845. static struct ggml_tensor * ggml_acc_impl(
  2846. struct ggml_context * ctx,
  2847. struct ggml_tensor * a,
  2848. struct ggml_tensor * b,
  2849. size_t nb1,
  2850. size_t nb2,
  2851. size_t nb3,
  2852. size_t offset,
  2853. bool inplace) {
  2854. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2855. GGML_ASSERT(ggml_is_contiguous(a));
  2856. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2857. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2858. bool is_node = false;
  2859. if (!inplace && (a->grad || b->grad)) {
  2860. is_node = true;
  2861. }
  2862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2863. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2864. ggml_set_op_params(result, params, sizeof(params));
  2865. result->op = GGML_OP_ACC;
  2866. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2867. result->src[0] = a;
  2868. result->src[1] = b;
  2869. return result;
  2870. }
  2871. struct ggml_tensor * ggml_acc(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. struct ggml_tensor * b,
  2875. size_t nb1,
  2876. size_t nb2,
  2877. size_t nb3,
  2878. size_t offset) {
  2879. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2880. }
  2881. struct ggml_tensor * ggml_acc_inplace(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. struct ggml_tensor * b,
  2885. size_t nb1,
  2886. size_t nb2,
  2887. size_t nb3,
  2888. size_t offset) {
  2889. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2890. }
  2891. // ggml_sub
  2892. static struct ggml_tensor * ggml_sub_impl(
  2893. struct ggml_context * ctx,
  2894. struct ggml_tensor * a,
  2895. struct ggml_tensor * b,
  2896. bool inplace) {
  2897. GGML_ASSERT(ggml_are_same_shape(a, b));
  2898. bool is_node = false;
  2899. if (!inplace && (a->grad || b->grad)) {
  2900. is_node = true;
  2901. }
  2902. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2903. result->op = GGML_OP_SUB;
  2904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2905. result->src[0] = a;
  2906. result->src[1] = b;
  2907. return result;
  2908. }
  2909. struct ggml_tensor * ggml_sub(
  2910. struct ggml_context * ctx,
  2911. struct ggml_tensor * a,
  2912. struct ggml_tensor * b) {
  2913. return ggml_sub_impl(ctx, a, b, false);
  2914. }
  2915. struct ggml_tensor * ggml_sub_inplace(
  2916. struct ggml_context * ctx,
  2917. struct ggml_tensor * a,
  2918. struct ggml_tensor * b) {
  2919. return ggml_sub_impl(ctx, a, b, true);
  2920. }
  2921. // ggml_mul
  2922. static struct ggml_tensor * ggml_mul_impl(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a,
  2925. struct ggml_tensor * b,
  2926. bool inplace) {
  2927. GGML_ASSERT(ggml_can_repeat(b, a));
  2928. bool is_node = false;
  2929. if (!inplace && (a->grad || b->grad)) {
  2930. // TODO: support backward pass for broadcasting
  2931. GGML_ASSERT(ggml_are_same_shape(a, b));
  2932. is_node = true;
  2933. }
  2934. if (inplace) {
  2935. GGML_ASSERT(!is_node);
  2936. }
  2937. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2938. result->op = GGML_OP_MUL;
  2939. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2940. result->src[0] = a;
  2941. result->src[1] = b;
  2942. return result;
  2943. }
  2944. struct ggml_tensor * ggml_mul(
  2945. struct ggml_context * ctx,
  2946. struct ggml_tensor * a,
  2947. struct ggml_tensor * b) {
  2948. return ggml_mul_impl(ctx, a, b, false);
  2949. }
  2950. struct ggml_tensor * ggml_mul_inplace(
  2951. struct ggml_context * ctx,
  2952. struct ggml_tensor * a,
  2953. struct ggml_tensor * b) {
  2954. return ggml_mul_impl(ctx, a, b, true);
  2955. }
  2956. // ggml_div
  2957. static struct ggml_tensor * ggml_div_impl(
  2958. struct ggml_context * ctx,
  2959. struct ggml_tensor * a,
  2960. struct ggml_tensor * b,
  2961. bool inplace) {
  2962. GGML_ASSERT(ggml_can_repeat(b, a));
  2963. bool is_node = false;
  2964. if (!inplace && (a->grad || b->grad)) {
  2965. is_node = true;
  2966. }
  2967. if (inplace) {
  2968. GGML_ASSERT(!is_node);
  2969. }
  2970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2971. result->op = GGML_OP_DIV;
  2972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2973. result->src[0] = a;
  2974. result->src[1] = b;
  2975. return result;
  2976. }
  2977. struct ggml_tensor * ggml_div(
  2978. struct ggml_context * ctx,
  2979. struct ggml_tensor * a,
  2980. struct ggml_tensor * b) {
  2981. return ggml_div_impl(ctx, a, b, false);
  2982. }
  2983. struct ggml_tensor * ggml_div_inplace(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. struct ggml_tensor * b) {
  2987. return ggml_div_impl(ctx, a, b, true);
  2988. }
  2989. // ggml_sqr
  2990. static struct ggml_tensor * ggml_sqr_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. bool inplace) {
  2994. bool is_node = false;
  2995. if (!inplace && (a->grad)) {
  2996. is_node = true;
  2997. }
  2998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2999. result->op = GGML_OP_SQR;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src[0] = a;
  3002. return result;
  3003. }
  3004. struct ggml_tensor * ggml_sqr(
  3005. struct ggml_context * ctx,
  3006. struct ggml_tensor * a) {
  3007. return ggml_sqr_impl(ctx, a, false);
  3008. }
  3009. struct ggml_tensor * ggml_sqr_inplace(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a) {
  3012. return ggml_sqr_impl(ctx, a, true);
  3013. }
  3014. // ggml_sqrt
  3015. static struct ggml_tensor * ggml_sqrt_impl(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. bool inplace) {
  3019. bool is_node = false;
  3020. if (!inplace && (a->grad)) {
  3021. is_node = true;
  3022. }
  3023. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3024. result->op = GGML_OP_SQRT;
  3025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3026. result->src[0] = a;
  3027. return result;
  3028. }
  3029. struct ggml_tensor * ggml_sqrt(
  3030. struct ggml_context * ctx,
  3031. struct ggml_tensor * a) {
  3032. return ggml_sqrt_impl(ctx, a, false);
  3033. }
  3034. struct ggml_tensor * ggml_sqrt_inplace(
  3035. struct ggml_context * ctx,
  3036. struct ggml_tensor * a) {
  3037. return ggml_sqrt_impl(ctx, a, true);
  3038. }
  3039. // ggml_log
  3040. static struct ggml_tensor * ggml_log_impl(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a,
  3043. bool inplace) {
  3044. bool is_node = false;
  3045. if (!inplace && (a->grad)) {
  3046. is_node = true;
  3047. }
  3048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3049. result->op = GGML_OP_LOG;
  3050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3051. result->src[0] = a;
  3052. return result;
  3053. }
  3054. struct ggml_tensor * ggml_log(
  3055. struct ggml_context * ctx,
  3056. struct ggml_tensor * a) {
  3057. return ggml_log_impl(ctx, a, false);
  3058. }
  3059. struct ggml_tensor * ggml_log_inplace(
  3060. struct ggml_context * ctx,
  3061. struct ggml_tensor * a) {
  3062. return ggml_log_impl(ctx, a, true);
  3063. }
  3064. // ggml_sum
  3065. struct ggml_tensor * ggml_sum(
  3066. struct ggml_context * ctx,
  3067. struct ggml_tensor * a) {
  3068. bool is_node = false;
  3069. if (a->grad) {
  3070. is_node = true;
  3071. }
  3072. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3073. result->op = GGML_OP_SUM;
  3074. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3075. result->src[0] = a;
  3076. return result;
  3077. }
  3078. // ggml_sum_rows
  3079. struct ggml_tensor * ggml_sum_rows(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a) {
  3082. bool is_node = false;
  3083. if (a->grad) {
  3084. is_node = true;
  3085. }
  3086. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3087. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3088. ne[i] = a->ne[i];
  3089. }
  3090. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3091. result->op = GGML_OP_SUM_ROWS;
  3092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3093. result->src[0] = a;
  3094. return result;
  3095. }
  3096. // ggml_mean
  3097. struct ggml_tensor * ggml_mean(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a) {
  3100. bool is_node = false;
  3101. if (a->grad) {
  3102. GGML_ASSERT(false); // TODO: implement
  3103. is_node = true;
  3104. }
  3105. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3106. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3107. result->op = GGML_OP_MEAN;
  3108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3109. result->src[0] = a;
  3110. return result;
  3111. }
  3112. // ggml_argmax
  3113. struct ggml_tensor * ggml_argmax(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a) {
  3116. GGML_ASSERT(ggml_is_matrix(a));
  3117. bool is_node = false;
  3118. if (a->grad) {
  3119. GGML_ASSERT(false);
  3120. is_node = true;
  3121. }
  3122. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3123. result->op = GGML_OP_ARGMAX;
  3124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3125. result->src[0] = a;
  3126. return result;
  3127. }
  3128. // ggml_repeat
  3129. struct ggml_tensor * ggml_repeat(
  3130. struct ggml_context * ctx,
  3131. struct ggml_tensor * a,
  3132. struct ggml_tensor * b) {
  3133. GGML_ASSERT(ggml_can_repeat(a, b));
  3134. bool is_node = false;
  3135. if (a->grad) {
  3136. is_node = true;
  3137. }
  3138. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3139. result->op = GGML_OP_REPEAT;
  3140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3141. result->src[0] = a;
  3142. return result;
  3143. }
  3144. // ggml_repeat_back
  3145. struct ggml_tensor * ggml_repeat_back(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a,
  3148. struct ggml_tensor * b) {
  3149. GGML_ASSERT(ggml_can_repeat(b, a));
  3150. bool is_node = false;
  3151. if (a->grad) {
  3152. is_node = true;
  3153. }
  3154. if (ggml_are_same_shape(a, b) && !is_node) {
  3155. return a;
  3156. }
  3157. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3158. result->op = GGML_OP_REPEAT_BACK;
  3159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3160. result->src[0] = a;
  3161. return result;
  3162. }
  3163. // ggml_concat
  3164. struct ggml_tensor * ggml_concat(
  3165. struct ggml_context* ctx,
  3166. struct ggml_tensor* a,
  3167. struct ggml_tensor* b) {
  3168. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3169. bool is_node = false;
  3170. if (a->grad || b->grad) {
  3171. is_node = true;
  3172. }
  3173. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3174. result->op = GGML_OP_CONCAT;
  3175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3176. result->src[0] = a;
  3177. result->src[1] = b;
  3178. return result;
  3179. }
  3180. // ggml_abs
  3181. struct ggml_tensor * ggml_abs(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a) {
  3184. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3185. }
  3186. struct ggml_tensor * ggml_abs_inplace(
  3187. struct ggml_context * ctx,
  3188. struct ggml_tensor * a) {
  3189. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3190. }
  3191. // ggml_sgn
  3192. struct ggml_tensor * ggml_sgn(
  3193. struct ggml_context * ctx,
  3194. struct ggml_tensor * a) {
  3195. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3196. }
  3197. struct ggml_tensor * ggml_sgn_inplace(
  3198. struct ggml_context * ctx,
  3199. struct ggml_tensor * a) {
  3200. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3201. }
  3202. // ggml_neg
  3203. struct ggml_tensor * ggml_neg(
  3204. struct ggml_context * ctx,
  3205. struct ggml_tensor * a) {
  3206. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3207. }
  3208. struct ggml_tensor * ggml_neg_inplace(
  3209. struct ggml_context * ctx,
  3210. struct ggml_tensor * a) {
  3211. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3212. }
  3213. // ggml_step
  3214. struct ggml_tensor * ggml_step(
  3215. struct ggml_context * ctx,
  3216. struct ggml_tensor * a) {
  3217. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3218. }
  3219. struct ggml_tensor * ggml_step_inplace(
  3220. struct ggml_context * ctx,
  3221. struct ggml_tensor * a) {
  3222. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3223. }
  3224. // ggml_tanh
  3225. struct ggml_tensor * ggml_tanh(
  3226. struct ggml_context * ctx,
  3227. struct ggml_tensor * a) {
  3228. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3229. }
  3230. struct ggml_tensor * ggml_tanh_inplace(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3234. }
  3235. // ggml_elu
  3236. struct ggml_tensor * ggml_elu(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a) {
  3239. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3240. }
  3241. struct ggml_tensor * ggml_elu_inplace(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a) {
  3244. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3245. }
  3246. // ggml_relu
  3247. struct ggml_tensor * ggml_relu(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a) {
  3250. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3251. }
  3252. struct ggml_tensor * ggml_relu_inplace(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a) {
  3255. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3256. }
  3257. // ggml_leaky_relu
  3258. struct ggml_tensor * ggml_leaky_relu(
  3259. struct ggml_context * ctx,
  3260. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3261. bool is_node = false;
  3262. if (!inplace && (a->grad)) {
  3263. is_node = true;
  3264. }
  3265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3266. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3267. result->op = GGML_OP_LEAKY_RELU;
  3268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3269. result->src[0] = a;
  3270. return result;
  3271. }
  3272. // ggml_gelu
  3273. struct ggml_tensor * ggml_gelu(
  3274. struct ggml_context * ctx,
  3275. struct ggml_tensor * a) {
  3276. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3277. }
  3278. struct ggml_tensor * ggml_gelu_inplace(
  3279. struct ggml_context * ctx,
  3280. struct ggml_tensor * a) {
  3281. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3282. }
  3283. // ggml_gelu_quick
  3284. struct ggml_tensor * ggml_gelu_quick(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a) {
  3287. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3288. }
  3289. struct ggml_tensor * ggml_gelu_quick_inplace(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a) {
  3292. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3293. }
  3294. // ggml_silu
  3295. struct ggml_tensor * ggml_silu(
  3296. struct ggml_context * ctx,
  3297. struct ggml_tensor * a) {
  3298. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3299. }
  3300. struct ggml_tensor * ggml_silu_inplace(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a) {
  3303. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3304. }
  3305. // ggml_silu_back
  3306. struct ggml_tensor * ggml_silu_back(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. struct ggml_tensor * b) {
  3310. bool is_node = false;
  3311. if (a->grad || b->grad) {
  3312. // TODO: implement backward
  3313. is_node = true;
  3314. }
  3315. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3316. result->op = GGML_OP_SILU_BACK;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src[0] = a;
  3319. result->src[1] = b;
  3320. return result;
  3321. }
  3322. // ggml hardswish
  3323. struct ggml_tensor * ggml_hardswish(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a) {
  3326. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3327. }
  3328. // ggml hardsigmoid
  3329. struct ggml_tensor * ggml_hardsigmoid(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a) {
  3332. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3333. }
  3334. // ggml_norm
  3335. static struct ggml_tensor * ggml_norm_impl(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a,
  3338. float eps,
  3339. bool inplace) {
  3340. bool is_node = false;
  3341. if (!inplace && (a->grad)) {
  3342. GGML_ASSERT(false); // TODO: implement backward
  3343. is_node = true;
  3344. }
  3345. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3346. ggml_set_op_params(result, &eps, sizeof(eps));
  3347. result->op = GGML_OP_NORM;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src[0] = a;
  3350. return result;
  3351. }
  3352. struct ggml_tensor * ggml_norm(
  3353. struct ggml_context * ctx,
  3354. struct ggml_tensor * a,
  3355. float eps) {
  3356. return ggml_norm_impl(ctx, a, eps, false);
  3357. }
  3358. struct ggml_tensor * ggml_norm_inplace(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. float eps) {
  3362. return ggml_norm_impl(ctx, a, eps, true);
  3363. }
  3364. // ggml_rms_norm
  3365. static struct ggml_tensor * ggml_rms_norm_impl(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a,
  3368. float eps,
  3369. bool inplace) {
  3370. bool is_node = false;
  3371. if (!inplace && (a->grad)) {
  3372. is_node = true;
  3373. }
  3374. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3375. ggml_set_op_params(result, &eps, sizeof(eps));
  3376. result->op = GGML_OP_RMS_NORM;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. return result;
  3380. }
  3381. struct ggml_tensor * ggml_rms_norm(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a,
  3384. float eps) {
  3385. return ggml_rms_norm_impl(ctx, a, eps, false);
  3386. }
  3387. struct ggml_tensor * ggml_rms_norm_inplace(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a,
  3390. float eps) {
  3391. return ggml_rms_norm_impl(ctx, a, eps, true);
  3392. }
  3393. // ggml_rms_norm_back
  3394. struct ggml_tensor * ggml_rms_norm_back(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a,
  3397. struct ggml_tensor * b,
  3398. float eps) {
  3399. bool is_node = false;
  3400. if (a->grad) {
  3401. // TODO: implement backward
  3402. is_node = true;
  3403. }
  3404. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3405. ggml_set_op_params(result, &eps, sizeof(eps));
  3406. result->op = GGML_OP_RMS_NORM_BACK;
  3407. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3408. result->src[0] = a;
  3409. result->src[1] = b;
  3410. return result;
  3411. }
  3412. // ggml_group_norm
  3413. static struct ggml_tensor * ggml_group_norm_impl(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a,
  3416. int n_groups,
  3417. bool inplace) {
  3418. bool is_node = false;
  3419. if (!inplace && (a->grad)) {
  3420. GGML_ASSERT(false); // TODO: implement backward
  3421. is_node = true;
  3422. }
  3423. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3424. result->op_params[0] = n_groups;
  3425. result->op = GGML_OP_GROUP_NORM;
  3426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3427. result->src[0] = a;
  3428. return result;
  3429. }
  3430. struct ggml_tensor * ggml_group_norm(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. int n_groups) {
  3434. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3435. }
  3436. struct ggml_tensor * ggml_group_norm_inplace(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a,
  3439. int n_groups) {
  3440. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3441. }
  3442. // ggml_mul_mat
  3443. struct ggml_tensor * ggml_mul_mat(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a,
  3446. struct ggml_tensor * b) {
  3447. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3448. GGML_ASSERT(!ggml_is_transposed(a));
  3449. bool is_node = false;
  3450. if (a->grad || b->grad) {
  3451. is_node = true;
  3452. }
  3453. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3454. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3455. result->op = GGML_OP_MUL_MAT;
  3456. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3457. result->src[0] = a;
  3458. result->src[1] = b;
  3459. return result;
  3460. }
  3461. void ggml_mul_mat_set_prec(
  3462. struct ggml_tensor * a,
  3463. enum ggml_prec prec) {
  3464. const int32_t prec_i32 = (int32_t) prec;
  3465. ggml_set_op_params_i32(a, 0, prec_i32);
  3466. }
  3467. // ggml_mul_mat_id
  3468. struct ggml_tensor * ggml_mul_mat_id(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * const as[],
  3471. int n_as,
  3472. struct ggml_tensor * ids,
  3473. int id,
  3474. struct ggml_tensor * b) {
  3475. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3476. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3477. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3478. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3479. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3480. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3481. bool is_node = false;
  3482. if (as[0]->grad || b->grad) {
  3483. is_node = true;
  3484. }
  3485. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3486. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3487. ggml_set_op_params_i32(result, 0, id);
  3488. ggml_set_op_params_i32(result, 1, n_as);
  3489. result->op = GGML_OP_MUL_MAT_ID;
  3490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3491. result->src[0] = ids;
  3492. result->src[1] = b;
  3493. for (int i = 0; i < n_as; i++) {
  3494. struct ggml_tensor * a = as[i];
  3495. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3496. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3497. GGML_ASSERT(!ggml_is_transposed(a));
  3498. result->src[i + 2] = a;
  3499. }
  3500. return result;
  3501. }
  3502. // ggml_out_prod
  3503. struct ggml_tensor * ggml_out_prod(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * a,
  3506. struct ggml_tensor * b) {
  3507. GGML_ASSERT(ggml_can_out_prod(a, b));
  3508. GGML_ASSERT(!ggml_is_transposed(a));
  3509. bool is_node = false;
  3510. if (a->grad || b->grad) {
  3511. is_node = true;
  3512. }
  3513. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3514. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3515. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3516. result->op = GGML_OP_OUT_PROD;
  3517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3518. result->src[0] = a;
  3519. result->src[1] = b;
  3520. return result;
  3521. }
  3522. // ggml_scale
  3523. static struct ggml_tensor * ggml_scale_impl(
  3524. struct ggml_context * ctx,
  3525. struct ggml_tensor * a,
  3526. float s,
  3527. bool inplace) {
  3528. GGML_ASSERT(ggml_is_padded_1d(a));
  3529. bool is_node = false;
  3530. if (a->grad) {
  3531. is_node = true;
  3532. }
  3533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3534. ggml_set_op_params(result, &s, sizeof(s));
  3535. result->op = GGML_OP_SCALE;
  3536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3537. result->src[0] = a;
  3538. return result;
  3539. }
  3540. struct ggml_tensor * ggml_scale(
  3541. struct ggml_context * ctx,
  3542. struct ggml_tensor * a,
  3543. float s) {
  3544. return ggml_scale_impl(ctx, a, s, false);
  3545. }
  3546. struct ggml_tensor * ggml_scale_inplace(
  3547. struct ggml_context * ctx,
  3548. struct ggml_tensor * a,
  3549. float s) {
  3550. return ggml_scale_impl(ctx, a, s, true);
  3551. }
  3552. // ggml_set
  3553. static struct ggml_tensor * ggml_set_impl(
  3554. struct ggml_context * ctx,
  3555. struct ggml_tensor * a,
  3556. struct ggml_tensor * b,
  3557. size_t nb1,
  3558. size_t nb2,
  3559. size_t nb3,
  3560. size_t offset,
  3561. bool inplace) {
  3562. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3563. bool is_node = false;
  3564. if (a->grad || b->grad) {
  3565. is_node = true;
  3566. }
  3567. // make a view of the destination
  3568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3569. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3570. ggml_set_op_params(result, params, sizeof(params));
  3571. result->op = GGML_OP_SET;
  3572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3573. result->src[0] = a;
  3574. result->src[1] = b;
  3575. return result;
  3576. }
  3577. struct ggml_tensor * ggml_set(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b,
  3581. size_t nb1,
  3582. size_t nb2,
  3583. size_t nb3,
  3584. size_t offset) {
  3585. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3586. }
  3587. struct ggml_tensor * ggml_set_inplace(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. struct ggml_tensor * b,
  3591. size_t nb1,
  3592. size_t nb2,
  3593. size_t nb3,
  3594. size_t offset) {
  3595. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3596. }
  3597. struct ggml_tensor * ggml_set_1d(
  3598. struct ggml_context * ctx,
  3599. struct ggml_tensor * a,
  3600. struct ggml_tensor * b,
  3601. size_t offset) {
  3602. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3603. }
  3604. struct ggml_tensor * ggml_set_1d_inplace(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a,
  3607. struct ggml_tensor * b,
  3608. size_t offset) {
  3609. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3610. }
  3611. struct ggml_tensor * ggml_set_2d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. struct ggml_tensor * b,
  3615. size_t nb1,
  3616. size_t offset) {
  3617. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3618. }
  3619. struct ggml_tensor * ggml_set_2d_inplace(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a,
  3622. struct ggml_tensor * b,
  3623. size_t nb1,
  3624. size_t offset) {
  3625. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3626. }
  3627. // ggml_cpy
  3628. static struct ggml_tensor * ggml_cpy_impl(
  3629. struct ggml_context * ctx,
  3630. struct ggml_tensor * a,
  3631. struct ggml_tensor * b) {
  3632. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3633. bool is_node = false;
  3634. if (a->grad || b->grad) {
  3635. // inplace is false and either one have a grad
  3636. is_node = true;
  3637. }
  3638. // make a view of the destination
  3639. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3640. if (strlen(b->name) > 0) {
  3641. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3642. } else {
  3643. ggml_format_name(result, "%s (copy)", a->name);
  3644. }
  3645. result->op = GGML_OP_CPY;
  3646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3647. result->src[0] = a;
  3648. result->src[1] = b;
  3649. return result;
  3650. }
  3651. struct ggml_tensor * ggml_cpy(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * a,
  3654. struct ggml_tensor * b) {
  3655. return ggml_cpy_impl(ctx, a, b);
  3656. }
  3657. struct ggml_tensor * ggml_cast(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. enum ggml_type type) {
  3661. bool is_node = false;
  3662. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3663. ggml_format_name(result, "%s (copy)", a->name);
  3664. result->op = GGML_OP_CPY;
  3665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3666. result->src[0] = a;
  3667. result->src[1] = result;
  3668. return result;
  3669. }
  3670. // ggml_cont
  3671. static struct ggml_tensor * ggml_cont_impl(
  3672. struct ggml_context * ctx,
  3673. struct ggml_tensor * a) {
  3674. bool is_node = false;
  3675. if (a->grad) {
  3676. is_node = true;
  3677. }
  3678. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3679. ggml_format_name(result, "%s (cont)", a->name);
  3680. result->op = GGML_OP_CONT;
  3681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3682. result->src[0] = a;
  3683. return result;
  3684. }
  3685. struct ggml_tensor * ggml_cont(
  3686. struct ggml_context * ctx,
  3687. struct ggml_tensor * a) {
  3688. return ggml_cont_impl(ctx, a);
  3689. }
  3690. // make contiguous, with new shape
  3691. GGML_API struct ggml_tensor * ggml_cont_1d(
  3692. struct ggml_context * ctx,
  3693. struct ggml_tensor * a,
  3694. int64_t ne0) {
  3695. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3696. }
  3697. GGML_API struct ggml_tensor * ggml_cont_2d(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. int64_t ne0,
  3701. int64_t ne1) {
  3702. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3703. }
  3704. GGML_API struct ggml_tensor * ggml_cont_3d(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. int64_t ne0,
  3708. int64_t ne1,
  3709. int64_t ne2) {
  3710. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3711. }
  3712. struct ggml_tensor * ggml_cont_4d(
  3713. struct ggml_context * ctx,
  3714. struct ggml_tensor * a,
  3715. int64_t ne0,
  3716. int64_t ne1,
  3717. int64_t ne2,
  3718. int64_t ne3) {
  3719. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3720. bool is_node = false;
  3721. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3722. ggml_format_name(result, "%s (cont)", a->name);
  3723. result->op = GGML_OP_CONT;
  3724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3725. result->src[0] = a;
  3726. return result;
  3727. }
  3728. // ggml_reshape
  3729. struct ggml_tensor * ggml_reshape(
  3730. struct ggml_context * ctx,
  3731. struct ggml_tensor * a,
  3732. struct ggml_tensor * b) {
  3733. GGML_ASSERT(ggml_is_contiguous(a));
  3734. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3735. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3736. bool is_node = false;
  3737. if (a->grad) {
  3738. is_node = true;
  3739. }
  3740. if (b->grad) {
  3741. // gradient propagation is not supported
  3742. //GGML_ASSERT(false);
  3743. }
  3744. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3745. ggml_format_name(result, "%s (reshaped)", a->name);
  3746. result->op = GGML_OP_RESHAPE;
  3747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3748. result->src[0] = a;
  3749. return result;
  3750. }
  3751. struct ggml_tensor * ggml_reshape_1d(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. int64_t ne0) {
  3755. GGML_ASSERT(ggml_is_contiguous(a));
  3756. GGML_ASSERT(ggml_nelements(a) == ne0);
  3757. bool is_node = false;
  3758. if (a->grad) {
  3759. is_node = true;
  3760. }
  3761. const int64_t ne[1] = { ne0 };
  3762. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3763. ggml_format_name(result, "%s (reshaped)", a->name);
  3764. result->op = GGML_OP_RESHAPE;
  3765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3766. result->src[0] = a;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_reshape_2d(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. int64_t ne0,
  3773. int64_t ne1) {
  3774. GGML_ASSERT(ggml_is_contiguous(a));
  3775. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3776. bool is_node = false;
  3777. if (a->grad) {
  3778. is_node = true;
  3779. }
  3780. const int64_t ne[2] = { ne0, ne1 };
  3781. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3782. ggml_format_name(result, "%s (reshaped)", a->name);
  3783. result->op = GGML_OP_RESHAPE;
  3784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3785. result->src[0] = a;
  3786. return result;
  3787. }
  3788. struct ggml_tensor * ggml_reshape_3d(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a,
  3791. int64_t ne0,
  3792. int64_t ne1,
  3793. int64_t ne2) {
  3794. GGML_ASSERT(ggml_is_contiguous(a));
  3795. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3796. bool is_node = false;
  3797. if (a->grad) {
  3798. is_node = true;
  3799. }
  3800. const int64_t ne[3] = { ne0, ne1, ne2 };
  3801. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3802. ggml_format_name(result, "%s (reshaped)", a->name);
  3803. result->op = GGML_OP_RESHAPE;
  3804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3805. result->src[0] = a;
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_reshape_4d(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. int64_t ne0,
  3812. int64_t ne1,
  3813. int64_t ne2,
  3814. int64_t ne3) {
  3815. GGML_ASSERT(ggml_is_contiguous(a));
  3816. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3817. bool is_node = false;
  3818. if (a->grad) {
  3819. is_node = true;
  3820. }
  3821. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3822. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3823. ggml_format_name(result, "%s (reshaped)", a->name);
  3824. result->op = GGML_OP_RESHAPE;
  3825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3826. result->src[0] = a;
  3827. return result;
  3828. }
  3829. static struct ggml_tensor * ggml_view_impl(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. int n_dims,
  3833. const int64_t * ne,
  3834. size_t offset) {
  3835. bool is_node = false;
  3836. if (a->grad) {
  3837. is_node = true;
  3838. }
  3839. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3840. ggml_format_name(result, "%s (view)", a->name);
  3841. ggml_set_op_params(result, &offset, sizeof(offset));
  3842. result->op = GGML_OP_VIEW;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src[0] = a;
  3845. return result;
  3846. }
  3847. // ggml_view_1d
  3848. struct ggml_tensor * ggml_view_1d(
  3849. struct ggml_context * ctx,
  3850. struct ggml_tensor * a,
  3851. int64_t ne0,
  3852. size_t offset) {
  3853. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3854. return result;
  3855. }
  3856. // ggml_view_2d
  3857. struct ggml_tensor * ggml_view_2d(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. int64_t ne0,
  3861. int64_t ne1,
  3862. size_t nb1,
  3863. size_t offset) {
  3864. const int64_t ne[2] = { ne0, ne1 };
  3865. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3866. result->nb[1] = nb1;
  3867. result->nb[2] = result->nb[1]*ne1;
  3868. result->nb[3] = result->nb[2];
  3869. return result;
  3870. }
  3871. // ggml_view_3d
  3872. struct ggml_tensor * ggml_view_3d(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. int64_t ne0,
  3876. int64_t ne1,
  3877. int64_t ne2,
  3878. size_t nb1,
  3879. size_t nb2,
  3880. size_t offset) {
  3881. const int64_t ne[3] = { ne0, ne1, ne2 };
  3882. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3883. result->nb[1] = nb1;
  3884. result->nb[2] = nb2;
  3885. result->nb[3] = result->nb[2]*ne2;
  3886. return result;
  3887. }
  3888. // ggml_view_4d
  3889. struct ggml_tensor * ggml_view_4d(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. int64_t ne0,
  3893. int64_t ne1,
  3894. int64_t ne2,
  3895. int64_t ne3,
  3896. size_t nb1,
  3897. size_t nb2,
  3898. size_t nb3,
  3899. size_t offset) {
  3900. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3901. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3902. result->nb[1] = nb1;
  3903. result->nb[2] = nb2;
  3904. result->nb[3] = nb3;
  3905. return result;
  3906. }
  3907. // ggml_permute
  3908. struct ggml_tensor * ggml_permute(
  3909. struct ggml_context * ctx,
  3910. struct ggml_tensor * a,
  3911. int axis0,
  3912. int axis1,
  3913. int axis2,
  3914. int axis3) {
  3915. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3916. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3917. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3918. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3919. GGML_ASSERT(axis0 != axis1);
  3920. GGML_ASSERT(axis0 != axis2);
  3921. GGML_ASSERT(axis0 != axis3);
  3922. GGML_ASSERT(axis1 != axis2);
  3923. GGML_ASSERT(axis1 != axis3);
  3924. GGML_ASSERT(axis2 != axis3);
  3925. bool is_node = false;
  3926. if (a->grad) {
  3927. is_node = true;
  3928. }
  3929. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3930. ggml_format_name(result, "%s (permuted)", a->name);
  3931. int ne[GGML_MAX_DIMS];
  3932. int nb[GGML_MAX_DIMS];
  3933. ne[axis0] = a->ne[0];
  3934. ne[axis1] = a->ne[1];
  3935. ne[axis2] = a->ne[2];
  3936. ne[axis3] = a->ne[3];
  3937. nb[axis0] = a->nb[0];
  3938. nb[axis1] = a->nb[1];
  3939. nb[axis2] = a->nb[2];
  3940. nb[axis3] = a->nb[3];
  3941. result->ne[0] = ne[0];
  3942. result->ne[1] = ne[1];
  3943. result->ne[2] = ne[2];
  3944. result->ne[3] = ne[3];
  3945. result->nb[0] = nb[0];
  3946. result->nb[1] = nb[1];
  3947. result->nb[2] = nb[2];
  3948. result->nb[3] = nb[3];
  3949. result->op = GGML_OP_PERMUTE;
  3950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3951. result->src[0] = a;
  3952. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3953. ggml_set_op_params(result, params, sizeof(params));
  3954. return result;
  3955. }
  3956. // ggml_transpose
  3957. struct ggml_tensor * ggml_transpose(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a) {
  3960. bool is_node = false;
  3961. if (a->grad) {
  3962. is_node = true;
  3963. }
  3964. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3965. ggml_format_name(result, "%s (transposed)", a->name);
  3966. result->ne[0] = a->ne[1];
  3967. result->ne[1] = a->ne[0];
  3968. result->nb[0] = a->nb[1];
  3969. result->nb[1] = a->nb[0];
  3970. result->op = GGML_OP_TRANSPOSE;
  3971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3972. result->src[0] = a;
  3973. return result;
  3974. }
  3975. // ggml_get_rows
  3976. struct ggml_tensor * ggml_get_rows(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. struct ggml_tensor * b) {
  3980. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3981. GGML_ASSERT(b->ne[3] == 1);
  3982. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3983. bool is_node = false;
  3984. if (a->grad || b->grad) {
  3985. is_node = true;
  3986. }
  3987. // TODO: implement non F32 return
  3988. enum ggml_type type = GGML_TYPE_F32;
  3989. if (a->type == GGML_TYPE_I32) {
  3990. type = a->type;
  3991. }
  3992. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3993. result->op = GGML_OP_GET_ROWS;
  3994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3995. result->src[0] = a;
  3996. result->src[1] = b;
  3997. return result;
  3998. }
  3999. // ggml_get_rows_back
  4000. struct ggml_tensor * ggml_get_rows_back(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. struct ggml_tensor * b,
  4004. struct ggml_tensor * c) {
  4005. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4006. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4007. bool is_node = false;
  4008. if (a->grad || b->grad) {
  4009. is_node = true;
  4010. }
  4011. // TODO: implement non F32 return
  4012. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4013. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4014. result->op = GGML_OP_GET_ROWS_BACK;
  4015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4016. result->src[0] = a;
  4017. result->src[1] = b;
  4018. return result;
  4019. }
  4020. // ggml_diag
  4021. struct ggml_tensor * ggml_diag(
  4022. struct ggml_context * ctx,
  4023. struct ggml_tensor * a) {
  4024. GGML_ASSERT(a->ne[1] == 1);
  4025. bool is_node = false;
  4026. if (a->grad) {
  4027. is_node = true;
  4028. }
  4029. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4030. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4031. result->op = GGML_OP_DIAG;
  4032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4033. result->src[0] = a;
  4034. return result;
  4035. }
  4036. // ggml_diag_mask_inf
  4037. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a,
  4040. int n_past,
  4041. bool inplace) {
  4042. bool is_node = false;
  4043. if (a->grad) {
  4044. is_node = true;
  4045. }
  4046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4047. int32_t params[] = { n_past };
  4048. ggml_set_op_params(result, params, sizeof(params));
  4049. result->op = GGML_OP_DIAG_MASK_INF;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src[0] = a;
  4052. return result;
  4053. }
  4054. struct ggml_tensor * ggml_diag_mask_inf(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a,
  4057. int n_past) {
  4058. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4059. }
  4060. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a,
  4063. int n_past) {
  4064. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4065. }
  4066. // ggml_diag_mask_zero
  4067. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. int n_past,
  4071. bool inplace) {
  4072. bool is_node = false;
  4073. if (a->grad) {
  4074. is_node = true;
  4075. }
  4076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4077. int32_t params[] = { n_past };
  4078. ggml_set_op_params(result, params, sizeof(params));
  4079. result->op = GGML_OP_DIAG_MASK_ZERO;
  4080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4081. result->src[0] = a;
  4082. return result;
  4083. }
  4084. struct ggml_tensor * ggml_diag_mask_zero(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. int n_past) {
  4088. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4089. }
  4090. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a,
  4093. int n_past) {
  4094. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4095. }
  4096. // ggml_soft_max
  4097. static struct ggml_tensor * ggml_soft_max_impl(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. struct ggml_tensor * mask,
  4101. float scale,
  4102. bool inplace) {
  4103. GGML_ASSERT(ggml_is_contiguous(a));
  4104. if (mask) {
  4105. GGML_ASSERT(ggml_is_contiguous(mask));
  4106. GGML_ASSERT(mask->ne[2] == 1);
  4107. GGML_ASSERT(mask->ne[3] == 1);
  4108. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4109. }
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4115. float params[] = { scale };
  4116. ggml_set_op_params(result, params, sizeof(params));
  4117. result->op = GGML_OP_SOFT_MAX;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src[0] = a;
  4120. result->src[1] = mask;
  4121. return result;
  4122. }
  4123. struct ggml_tensor * ggml_soft_max(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a) {
  4126. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4127. }
  4128. struct ggml_tensor * ggml_soft_max_inplace(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a) {
  4131. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4132. }
  4133. struct ggml_tensor * ggml_soft_max_ext(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. struct ggml_tensor * mask,
  4137. float scale) {
  4138. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4139. }
  4140. // ggml_soft_max_back
  4141. static struct ggml_tensor * ggml_soft_max_back_impl(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b,
  4145. bool inplace) {
  4146. bool is_node = false;
  4147. if (a->grad || b->grad) {
  4148. is_node = true; // TODO : implement backward pass
  4149. }
  4150. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4151. result->op = GGML_OP_SOFT_MAX_BACK;
  4152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4153. result->src[0] = a;
  4154. result->src[1] = b;
  4155. return result;
  4156. }
  4157. struct ggml_tensor * ggml_soft_max_back(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. struct ggml_tensor * b) {
  4161. return ggml_soft_max_back_impl(ctx, a, b, false);
  4162. }
  4163. struct ggml_tensor * ggml_soft_max_back_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b) {
  4167. return ggml_soft_max_back_impl(ctx, a, b, true);
  4168. }
  4169. // ggml_rope
  4170. static struct ggml_tensor * ggml_rope_impl(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. int n_dims,
  4175. int mode,
  4176. int n_ctx,
  4177. int n_orig_ctx,
  4178. float freq_base,
  4179. float freq_scale,
  4180. float ext_factor,
  4181. float attn_factor,
  4182. float beta_fast,
  4183. float beta_slow,
  4184. float xpos_base,
  4185. bool xpos_down,
  4186. bool inplace) {
  4187. GGML_ASSERT(ggml_is_vector(b));
  4188. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4189. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4190. bool is_node = false;
  4191. if (a->grad) {
  4192. is_node = true;
  4193. }
  4194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4196. memcpy(params + 5, &freq_base, sizeof(float));
  4197. memcpy(params + 6, &freq_scale, sizeof(float));
  4198. memcpy(params + 7, &ext_factor, sizeof(float));
  4199. memcpy(params + 8, &attn_factor, sizeof(float));
  4200. memcpy(params + 9, &beta_fast, sizeof(float));
  4201. memcpy(params + 10, &beta_slow, sizeof(float));
  4202. memcpy(params + 11, &xpos_base, sizeof(float));
  4203. memcpy(params + 12, &xpos_down, sizeof(bool));
  4204. ggml_set_op_params(result, params, sizeof(params));
  4205. result->op = GGML_OP_ROPE;
  4206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4207. result->src[0] = a;
  4208. result->src[1] = b;
  4209. return result;
  4210. }
  4211. struct ggml_tensor * ggml_rope(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. struct ggml_tensor * b,
  4215. int n_dims,
  4216. int mode,
  4217. int n_ctx) {
  4218. return ggml_rope_impl(
  4219. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4220. );
  4221. }
  4222. struct ggml_tensor * ggml_rope_inplace(
  4223. struct ggml_context * ctx,
  4224. struct ggml_tensor * a,
  4225. struct ggml_tensor * b,
  4226. int n_dims,
  4227. int mode,
  4228. int n_ctx) {
  4229. return ggml_rope_impl(
  4230. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4231. );
  4232. }
  4233. struct ggml_tensor * ggml_rope_custom(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a,
  4236. struct ggml_tensor * b,
  4237. int n_dims,
  4238. int mode,
  4239. int n_ctx,
  4240. int n_orig_ctx,
  4241. float freq_base,
  4242. float freq_scale,
  4243. float ext_factor,
  4244. float attn_factor,
  4245. float beta_fast,
  4246. float beta_slow) {
  4247. return ggml_rope_impl(
  4248. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4249. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4250. );
  4251. }
  4252. struct ggml_tensor * ggml_rope_custom_inplace(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b,
  4256. int n_dims,
  4257. int mode,
  4258. int n_ctx,
  4259. int n_orig_ctx,
  4260. float freq_base,
  4261. float freq_scale,
  4262. float ext_factor,
  4263. float attn_factor,
  4264. float beta_fast,
  4265. float beta_slow) {
  4266. return ggml_rope_impl(
  4267. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4268. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4269. );
  4270. }
  4271. struct ggml_tensor * ggml_rope_xpos_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a,
  4274. struct ggml_tensor * b,
  4275. int n_dims,
  4276. float base,
  4277. bool down) {
  4278. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4279. }
  4280. // ggml_rope_back
  4281. struct ggml_tensor * ggml_rope_back(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. struct ggml_tensor * b,
  4285. int n_dims,
  4286. int mode,
  4287. int n_ctx,
  4288. int n_orig_ctx,
  4289. float freq_base,
  4290. float freq_scale,
  4291. float ext_factor,
  4292. float attn_factor,
  4293. float beta_fast,
  4294. float beta_slow,
  4295. float xpos_base,
  4296. bool xpos_down) {
  4297. GGML_ASSERT(ggml_is_vector(b));
  4298. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4299. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4300. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4301. bool is_node = false;
  4302. if (a->grad) {
  4303. is_node = false; // TODO: implement backward
  4304. }
  4305. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4306. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4307. memcpy(params + 5, &freq_base, sizeof(float));
  4308. memcpy(params + 6, &freq_scale, sizeof(float));
  4309. memcpy(params + 7, &ext_factor, sizeof(float));
  4310. memcpy(params + 8, &attn_factor, sizeof(float));
  4311. memcpy(params + 9, &beta_fast, sizeof(float));
  4312. memcpy(params + 10, &beta_slow, sizeof(float));
  4313. memcpy(params + 11, &xpos_base, sizeof(float));
  4314. memcpy(params + 12, &xpos_down, sizeof(bool));
  4315. ggml_set_op_params(result, params, sizeof(params));
  4316. result->op = GGML_OP_ROPE_BACK;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src[0] = a;
  4319. result->src[1] = b;
  4320. return result;
  4321. }
  4322. // ggml_alibi
  4323. struct ggml_tensor * ggml_alibi(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. int n_past,
  4327. int n_head,
  4328. float bias_max) {
  4329. GGML_ASSERT(n_past >= 0);
  4330. bool is_node = false;
  4331. if (a->grad) {
  4332. GGML_ASSERT(false); // TODO: implement backward
  4333. is_node = true;
  4334. }
  4335. // TODO: when implement backward, fix this:
  4336. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4337. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4338. int32_t op_params[3] = { n_past, n_head };
  4339. memcpy(op_params + 2, &bias_max, sizeof(float));
  4340. ggml_set_op_params(result, op_params, sizeof(op_params));
  4341. result->op = GGML_OP_ALIBI;
  4342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4343. result->src[0] = a;
  4344. return result;
  4345. }
  4346. // ggml_clamp
  4347. struct ggml_tensor * ggml_clamp(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float min,
  4351. float max) {
  4352. bool is_node = false;
  4353. if (a->grad) {
  4354. GGML_ASSERT(false); // TODO: implement backward
  4355. is_node = true;
  4356. }
  4357. // TODO: when implement backward, fix this:
  4358. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4359. float params[] = { min, max };
  4360. ggml_set_op_params(result, params, sizeof(params));
  4361. result->op = GGML_OP_CLAMP;
  4362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4363. result->src[0] = a;
  4364. return result;
  4365. }
  4366. // ggml_conv_1d
  4367. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4368. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4369. }
  4370. GGML_API struct ggml_tensor * ggml_conv_1d(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. struct ggml_tensor * b,
  4374. int s0,
  4375. int p0,
  4376. int d0) {
  4377. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4378. struct ggml_tensor * result =
  4379. ggml_mul_mat(ctx,
  4380. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4381. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4382. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4383. return result;
  4384. }
  4385. // ggml_conv_1d_ph
  4386. struct ggml_tensor* ggml_conv_1d_ph(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. struct ggml_tensor * b,
  4390. int s,
  4391. int d) {
  4392. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4393. }
  4394. // ggml_conv_transpose_1d
  4395. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4396. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4397. }
  4398. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. struct ggml_tensor * b,
  4402. int s0,
  4403. int p0,
  4404. int d0) {
  4405. GGML_ASSERT(ggml_is_matrix(b));
  4406. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4407. GGML_ASSERT(a->ne[3] == 1);
  4408. GGML_ASSERT(p0 == 0);
  4409. GGML_ASSERT(d0 == 1);
  4410. bool is_node = false;
  4411. if (a->grad || b->grad) {
  4412. GGML_ASSERT(false); // TODO: implement backward
  4413. is_node = true;
  4414. }
  4415. const int64_t ne[4] = {
  4416. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4417. a->ne[1], b->ne[2], 1,
  4418. };
  4419. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4420. int32_t params[] = { s0, p0, d0 };
  4421. ggml_set_op_params(result, params, sizeof(params));
  4422. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. result->src[1] = b;
  4426. return result;
  4427. }
  4428. // ggml_conv_depthwise
  4429. struct ggml_tensor * ggml_conv_depthwise_2d(
  4430. struct ggml_context * ctx,
  4431. struct ggml_tensor * a,
  4432. struct ggml_tensor * b,
  4433. int s0,
  4434. int s1,
  4435. int p0,
  4436. int p1,
  4437. int d0,
  4438. int d1) {
  4439. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4440. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4441. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4442. s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
  4443. struct ggml_tensor * result =
  4444. ggml_mul_mat(ctx,
  4445. ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4446. ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4447. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4448. return result;
  4449. }
  4450. // ggml_conv_2d
  4451. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4452. // a: [OC,IC, KH, KW]
  4453. // b: [N, IC, IH, IW]
  4454. // result: [N, OH, OW, IC*KH*KW]
  4455. struct ggml_tensor * ggml_im2col(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. struct ggml_tensor * b,
  4459. int s0,
  4460. int s1,
  4461. int p0,
  4462. int p1,
  4463. int d0,
  4464. int d1,
  4465. bool is_2D) {
  4466. if(is_2D) {
  4467. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4468. } else {
  4469. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4470. }
  4471. bool is_node = false;
  4472. if (a->grad || b->grad) {
  4473. GGML_ASSERT(false); // TODO: implement backward
  4474. is_node = true;
  4475. }
  4476. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4477. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4478. const int64_t ne[4] = {
  4479. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4480. OW,
  4481. is_2D ? OH : b->ne[2],
  4482. is_2D ? b->ne[3] : 1,
  4483. };
  4484. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4485. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4486. ggml_set_op_params(result, params, sizeof(params));
  4487. result->op = GGML_OP_IM2COL;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = a;
  4490. result->src[1] = b;
  4491. return result;
  4492. }
  4493. // a: [OC,IC, KH, KW]
  4494. // b: [N, IC, IH, IW]
  4495. // result: [N, OC, OH, OW]
  4496. struct ggml_tensor * ggml_conv_2d(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. struct ggml_tensor * b,
  4500. int s0,
  4501. int s1,
  4502. int p0,
  4503. int p1,
  4504. int d0,
  4505. int d1) {
  4506. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4507. struct ggml_tensor * result =
  4508. ggml_mul_mat(ctx,
  4509. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4510. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4511. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4512. return result;
  4513. }
  4514. // ggml_conv_2d_sk_p0
  4515. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. struct ggml_tensor * b) {
  4519. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4520. }
  4521. // ggml_conv_2d_s1_ph
  4522. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4523. struct ggml_context * ctx,
  4524. struct ggml_tensor * a,
  4525. struct ggml_tensor * b) {
  4526. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4527. }
  4528. // ggml_conv_transpose_2d_p0
  4529. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4530. return (ins - 1) * s - 2 * p + ks;
  4531. }
  4532. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. struct ggml_tensor * b,
  4536. int stride) {
  4537. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4538. bool is_node = false;
  4539. if (a->grad || b->grad) {
  4540. GGML_ASSERT(false); // TODO: implement backward
  4541. is_node = true;
  4542. }
  4543. const int64_t ne[4] = {
  4544. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4545. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4546. a->ne[2], b->ne[3],
  4547. };
  4548. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4549. ggml_set_op_params_i32(result, 0, stride);
  4550. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4551. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4552. result->src[0] = a;
  4553. result->src[1] = b;
  4554. return result;
  4555. }
  4556. // ggml_pool_*
  4557. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4558. return (ins + 2 * p - ks) / s + 1;
  4559. }
  4560. // ggml_pool_1d
  4561. struct ggml_tensor * ggml_pool_1d(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. enum ggml_op_pool op,
  4565. int k0,
  4566. int s0,
  4567. int p0) {
  4568. bool is_node = false;
  4569. if (a->grad) {
  4570. GGML_ASSERT(false); // TODO: implement backward
  4571. is_node = true;
  4572. }
  4573. const int64_t ne[2] = {
  4574. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4575. a->ne[1],
  4576. };
  4577. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4578. int32_t params[] = { op, k0, s0, p0 };
  4579. ggml_set_op_params(result, params, sizeof(params));
  4580. result->op = GGML_OP_POOL_1D;
  4581. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4582. result->src[0] = a;
  4583. return result;
  4584. }
  4585. // ggml_pool_2d
  4586. struct ggml_tensor * ggml_pool_2d(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. enum ggml_op_pool op,
  4590. int k0,
  4591. int k1,
  4592. int s0,
  4593. int s1,
  4594. float p0,
  4595. float p1) {
  4596. bool is_node = false;
  4597. if (a->grad) {
  4598. GGML_ASSERT(false); // TODO: implement backward
  4599. is_node = true;
  4600. }
  4601. const int64_t ne[3] = {
  4602. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4603. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4604. a->ne[2],
  4605. };
  4606. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4607. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4608. ggml_set_op_params(result, params, sizeof(params));
  4609. result->op = GGML_OP_POOL_2D;
  4610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4611. result->src[0] = a;
  4612. return result;
  4613. }
  4614. // ggml_upscale
  4615. static struct ggml_tensor * ggml_upscale_impl(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a,
  4618. int scale_factor) {
  4619. bool is_node = false;
  4620. if (a->grad) {
  4621. GGML_ASSERT(false); // TODO: implement backward
  4622. is_node = true;
  4623. }
  4624. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4625. a->ne[0] * scale_factor,
  4626. a->ne[1] * scale_factor,
  4627. a->ne[2], a->ne[3]);
  4628. result->op = GGML_OP_UPSCALE;
  4629. result->op_params[0] = scale_factor;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src[0] = a;
  4632. return result;
  4633. }
  4634. struct ggml_tensor * ggml_pad(
  4635. struct ggml_context * ctx,
  4636. struct ggml_tensor * a,
  4637. int p0, int p1, int p2, int p3) {
  4638. bool is_node = false;
  4639. if (a->grad) {
  4640. GGML_ASSERT(false); // TODO: implement backward
  4641. is_node = true;
  4642. }
  4643. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4644. a->ne[0] + p0,
  4645. a->ne[1] + p1,
  4646. a->ne[2] + p2,
  4647. a->ne[3] + p3);
  4648. result->op = GGML_OP_PAD;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src[0] = a;
  4651. return result;
  4652. }
  4653. struct ggml_tensor * ggml_upscale(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. int scale_factor) {
  4657. return ggml_upscale_impl(ctx, a, scale_factor);
  4658. }
  4659. // ggml_argsort
  4660. struct ggml_tensor * ggml_argsort(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a,
  4663. enum ggml_sort_order order) {
  4664. bool is_node = false;
  4665. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4666. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4667. result->op = GGML_OP_ARGSORT;
  4668. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4669. result->src[0] = a;
  4670. return result;
  4671. }
  4672. // ggml_top_k
  4673. struct ggml_tensor * ggml_top_k(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. int k) {
  4677. GGML_ASSERT(a->ne[0] >= k);
  4678. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4679. result = ggml_view_4d(ctx, result,
  4680. k, result->ne[1], result->ne[2], result->ne[3],
  4681. result->nb[1], result->nb[2], result->nb[3],
  4682. 0);
  4683. return result;
  4684. }
  4685. // ggml_flash_attn
  4686. struct ggml_tensor * ggml_flash_attn(
  4687. struct ggml_context * ctx,
  4688. struct ggml_tensor * q,
  4689. struct ggml_tensor * k,
  4690. struct ggml_tensor * v,
  4691. bool masked) {
  4692. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4693. // TODO: check if vT can be multiplied by (k*qT)
  4694. bool is_node = false;
  4695. if (q->grad || k->grad || v->grad) {
  4696. is_node = true;
  4697. }
  4698. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4699. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4700. int32_t t = masked ? 1 : 0;
  4701. ggml_set_op_params(result, &t, sizeof(t));
  4702. result->op = GGML_OP_FLASH_ATTN;
  4703. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4704. result->src[0] = q;
  4705. result->src[1] = k;
  4706. result->src[2] = v;
  4707. return result;
  4708. }
  4709. // ggml_flash_ff
  4710. struct ggml_tensor * ggml_flash_ff(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a,
  4713. struct ggml_tensor * b0,
  4714. struct ggml_tensor * b1,
  4715. struct ggml_tensor * c0,
  4716. struct ggml_tensor * c1) {
  4717. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4718. // TODO: more checks
  4719. bool is_node = false;
  4720. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4721. is_node = true;
  4722. }
  4723. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4724. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4725. result->op = GGML_OP_FLASH_FF;
  4726. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4727. result->src[0] = a;
  4728. result->src[1] = b0;
  4729. result->src[2] = b1;
  4730. result->src[3] = c0;
  4731. result->src[4] = c1;
  4732. return result;
  4733. }
  4734. // ggml_flash_attn_back
  4735. struct ggml_tensor * ggml_flash_attn_back(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * q,
  4738. struct ggml_tensor * k,
  4739. struct ggml_tensor * v,
  4740. struct ggml_tensor * d,
  4741. bool masked) {
  4742. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4743. // TODO: check if vT can be multiplied by (k*qT)
  4744. // d shape [D,N,ne2,ne3]
  4745. // q shape [D,N,ne2,ne3]
  4746. // k shape [D,M,kvne2,ne3]
  4747. // v shape [M,D,kvne2,ne3]
  4748. const int64_t D = q->ne[0];
  4749. const int64_t N = q->ne[1];
  4750. const int64_t M = k->ne[1];
  4751. const int64_t ne2 = q->ne[2];
  4752. const int64_t ne3 = q->ne[3];
  4753. const int64_t kvne2 = k->ne[2];
  4754. GGML_ASSERT(k->ne[0] == D);
  4755. GGML_ASSERT(v->ne[0] == M);
  4756. GGML_ASSERT(v->ne[1] == D);
  4757. GGML_ASSERT(d->ne[0] == D);
  4758. GGML_ASSERT(d->ne[1] == N);
  4759. GGML_ASSERT(k->ne[2] == kvne2);
  4760. GGML_ASSERT(k->ne[3] == ne3);
  4761. GGML_ASSERT(v->ne[2] == kvne2);
  4762. GGML_ASSERT(v->ne[3] == ne3);
  4763. GGML_ASSERT(d->ne[2] == ne2);
  4764. GGML_ASSERT(d->ne[3] == ne3);
  4765. GGML_ASSERT(ne2 % kvne2 == 0);
  4766. bool is_node = false;
  4767. if (q->grad || k->grad || v->grad) {
  4768. // when using this operation (in backwards pass) these grads are set.
  4769. // we don't want to create (big) grad of our result, so is_node is false.
  4770. is_node = false;
  4771. }
  4772. // store gradients of q, k and v as continuous tensors concatenated in result.
  4773. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4774. const int64_t elem_q = ggml_nelements(q);
  4775. const int64_t elem_k = ggml_nelements(k);
  4776. const int64_t elem_v = ggml_nelements(v);
  4777. enum ggml_type result_type = GGML_TYPE_F32;
  4778. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4779. const size_t tsize = ggml_type_size(result_type);
  4780. const size_t offs_q = 0;
  4781. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4782. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4783. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4784. const size_t nelements = (end + tsize - 1)/tsize;
  4785. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4786. int32_t masked_i = masked ? 1 : 0;
  4787. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4788. result->op = GGML_OP_FLASH_ATTN_BACK;
  4789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4790. result->src[0] = q;
  4791. result->src[1] = k;
  4792. result->src[2] = v;
  4793. result->src[3] = d;
  4794. return result;
  4795. }
  4796. // ggml_win_part
  4797. struct ggml_tensor * ggml_win_part(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a,
  4800. int w) {
  4801. GGML_ASSERT(a->ne[3] == 1);
  4802. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4803. bool is_node = false;
  4804. if (a->grad) {
  4805. GGML_ASSERT(false); // TODO: implement backward
  4806. is_node = true;
  4807. }
  4808. // padding
  4809. const int px = (w - a->ne[1]%w)%w;
  4810. const int py = (w - a->ne[2]%w)%w;
  4811. const int npx = (px + a->ne[1])/w;
  4812. const int npy = (py + a->ne[2])/w;
  4813. const int np = npx*npy;
  4814. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4815. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4816. int32_t params[] = { npx, npy, w };
  4817. ggml_set_op_params(result, params, sizeof(params));
  4818. result->op = GGML_OP_WIN_PART;
  4819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4820. result->src[0] = a;
  4821. return result;
  4822. }
  4823. // ggml_win_unpart
  4824. struct ggml_tensor * ggml_win_unpart(
  4825. struct ggml_context * ctx,
  4826. struct ggml_tensor * a,
  4827. int w0,
  4828. int h0,
  4829. int w) {
  4830. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4831. bool is_node = false;
  4832. if (a->grad) {
  4833. GGML_ASSERT(false); // TODO: implement backward
  4834. is_node = true;
  4835. }
  4836. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4837. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4838. int32_t params[] = { w };
  4839. ggml_set_op_params(result, params, sizeof(params));
  4840. result->op = GGML_OP_WIN_UNPART;
  4841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4842. result->src[0] = a;
  4843. return result;
  4844. }
  4845. // ggml_get_rel_pos
  4846. struct ggml_tensor * ggml_get_rel_pos(
  4847. struct ggml_context * ctx,
  4848. struct ggml_tensor * a,
  4849. int qh,
  4850. int kh) {
  4851. GGML_ASSERT(qh == kh);
  4852. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4853. bool is_node = false;
  4854. if (a->grad) {
  4855. GGML_ASSERT(false); // TODO: implement backward
  4856. is_node = true;
  4857. }
  4858. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4859. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4860. result->op = GGML_OP_GET_REL_POS;
  4861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4862. result->src[0] = a;
  4863. return result;
  4864. }
  4865. // ggml_add_rel_pos
  4866. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4867. struct ggml_context * ctx,
  4868. struct ggml_tensor * a,
  4869. struct ggml_tensor * pw,
  4870. struct ggml_tensor * ph,
  4871. bool inplace) {
  4872. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4873. GGML_ASSERT(ggml_is_contiguous(a));
  4874. GGML_ASSERT(ggml_is_contiguous(pw));
  4875. GGML_ASSERT(ggml_is_contiguous(ph));
  4876. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4877. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4878. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4879. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4880. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4881. bool is_node = false;
  4882. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4883. is_node = true;
  4884. }
  4885. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4886. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4887. result->op = GGML_OP_ADD_REL_POS;
  4888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4889. result->src[0] = a;
  4890. result->src[1] = pw;
  4891. result->src[2] = ph;
  4892. return result;
  4893. }
  4894. struct ggml_tensor * ggml_add_rel_pos(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. struct ggml_tensor * pw,
  4898. struct ggml_tensor * ph) {
  4899. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4900. }
  4901. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. struct ggml_tensor * pw,
  4905. struct ggml_tensor * ph) {
  4906. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4907. }
  4908. // gmml_unary
  4909. static struct ggml_tensor * ggml_unary_impl(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. enum ggml_unary_op op,
  4913. bool inplace) {
  4914. bool is_node = false;
  4915. if (!inplace && (a->grad)) {
  4916. is_node = true;
  4917. }
  4918. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4919. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4920. result->op = GGML_OP_UNARY;
  4921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4922. result->src[0] = a;
  4923. return result;
  4924. }
  4925. struct ggml_tensor * ggml_unary(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. enum ggml_unary_op op) {
  4929. return ggml_unary_impl(ctx, a, op, false);
  4930. }
  4931. struct ggml_tensor * ggml_unary_inplace(
  4932. struct ggml_context * ctx,
  4933. struct ggml_tensor * a,
  4934. enum ggml_unary_op op) {
  4935. return ggml_unary_impl(ctx, a, op, true);
  4936. }
  4937. // ggml_map_unary
  4938. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. const ggml_unary_op_f32_t fun,
  4942. bool inplace) {
  4943. bool is_node = false;
  4944. if (!inplace && a->grad) {
  4945. is_node = true;
  4946. }
  4947. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4948. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4949. result->op = GGML_OP_MAP_UNARY;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_map_unary_f32(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. const ggml_unary_op_f32_t fun) {
  4958. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4959. }
  4960. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. const ggml_unary_op_f32_t fun) {
  4964. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4965. }
  4966. // ggml_map_binary
  4967. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b,
  4971. const ggml_binary_op_f32_t fun,
  4972. bool inplace) {
  4973. GGML_ASSERT(ggml_are_same_shape(a, b));
  4974. bool is_node = false;
  4975. if (!inplace && (a->grad || b->grad)) {
  4976. is_node = true;
  4977. }
  4978. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4979. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4980. result->op = GGML_OP_MAP_BINARY;
  4981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4982. result->src[0] = a;
  4983. result->src[1] = b;
  4984. return result;
  4985. }
  4986. struct ggml_tensor * ggml_map_binary_f32(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a,
  4989. struct ggml_tensor * b,
  4990. const ggml_binary_op_f32_t fun) {
  4991. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4992. }
  4993. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4994. struct ggml_context * ctx,
  4995. struct ggml_tensor * a,
  4996. struct ggml_tensor * b,
  4997. const ggml_binary_op_f32_t fun) {
  4998. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4999. }
  5000. // ggml_map_custom1_f32
  5001. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. const ggml_custom1_op_f32_t fun,
  5005. bool inplace) {
  5006. bool is_node = false;
  5007. if (!inplace && a->grad) {
  5008. is_node = true;
  5009. }
  5010. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5011. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5012. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5014. result->src[0] = a;
  5015. return result;
  5016. }
  5017. struct ggml_tensor * ggml_map_custom1_f32(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. const ggml_custom1_op_f32_t fun) {
  5021. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5022. }
  5023. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. const ggml_custom1_op_f32_t fun) {
  5027. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5028. }
  5029. // ggml_map_custom2_f32
  5030. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. struct ggml_tensor * b,
  5034. const ggml_custom2_op_f32_t fun,
  5035. bool inplace) {
  5036. bool is_node = false;
  5037. if (!inplace && (a->grad || b->grad)) {
  5038. is_node = true;
  5039. }
  5040. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5041. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5042. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5043. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5044. result->src[0] = a;
  5045. result->src[1] = b;
  5046. return result;
  5047. }
  5048. struct ggml_tensor * ggml_map_custom2_f32(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. struct ggml_tensor * b,
  5052. const ggml_custom2_op_f32_t fun) {
  5053. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5054. }
  5055. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. struct ggml_tensor * b,
  5059. const ggml_custom2_op_f32_t fun) {
  5060. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5061. }
  5062. // ggml_map_custom3_f32
  5063. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a,
  5066. struct ggml_tensor * b,
  5067. struct ggml_tensor * c,
  5068. const ggml_custom3_op_f32_t fun,
  5069. bool inplace) {
  5070. bool is_node = false;
  5071. if (!inplace && (a->grad || b->grad || c->grad)) {
  5072. is_node = true;
  5073. }
  5074. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5075. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5076. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5077. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5078. result->src[0] = a;
  5079. result->src[1] = b;
  5080. result->src[2] = c;
  5081. return result;
  5082. }
  5083. struct ggml_tensor * ggml_map_custom3_f32(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. struct ggml_tensor * b,
  5087. struct ggml_tensor * c,
  5088. const ggml_custom3_op_f32_t fun) {
  5089. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5090. }
  5091. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5092. struct ggml_context * ctx,
  5093. struct ggml_tensor * a,
  5094. struct ggml_tensor * b,
  5095. struct ggml_tensor * c,
  5096. const ggml_custom3_op_f32_t fun) {
  5097. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5098. }
  5099. // ggml_map_custom1
  5100. struct ggml_map_custom1_op_params {
  5101. ggml_custom1_op_t fun;
  5102. int n_tasks;
  5103. void * userdata;
  5104. };
  5105. static struct ggml_tensor * ggml_map_custom1_impl(
  5106. struct ggml_context * ctx,
  5107. struct ggml_tensor * a,
  5108. const ggml_custom1_op_t fun,
  5109. int n_tasks,
  5110. void * userdata,
  5111. bool inplace) {
  5112. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5113. bool is_node = false;
  5114. if (!inplace && a->grad) {
  5115. is_node = true;
  5116. }
  5117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5118. struct ggml_map_custom1_op_params params = {
  5119. /*.fun =*/ fun,
  5120. /*.n_tasks =*/ n_tasks,
  5121. /*.userdata =*/ userdata
  5122. };
  5123. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5124. result->op = GGML_OP_MAP_CUSTOM1;
  5125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5126. result->src[0] = a;
  5127. return result;
  5128. }
  5129. struct ggml_tensor * ggml_map_custom1(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a,
  5132. const ggml_custom1_op_t fun,
  5133. int n_tasks,
  5134. void * userdata) {
  5135. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5136. }
  5137. struct ggml_tensor * ggml_map_custom1_inplace(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. const ggml_custom1_op_t fun,
  5141. int n_tasks,
  5142. void * userdata) {
  5143. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5144. }
  5145. // ggml_map_custom2
  5146. struct ggml_map_custom2_op_params {
  5147. ggml_custom2_op_t fun;
  5148. int n_tasks;
  5149. void * userdata;
  5150. };
  5151. static struct ggml_tensor * ggml_map_custom2_impl(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b,
  5155. const ggml_custom2_op_t fun,
  5156. int n_tasks,
  5157. void * userdata,
  5158. bool inplace) {
  5159. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5160. bool is_node = false;
  5161. if (!inplace && (a->grad || b->grad)) {
  5162. is_node = true;
  5163. }
  5164. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5165. struct ggml_map_custom2_op_params params = {
  5166. /*.fun =*/ fun,
  5167. /*.n_tasks =*/ n_tasks,
  5168. /*.userdata =*/ userdata
  5169. };
  5170. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5171. result->op = GGML_OP_MAP_CUSTOM2;
  5172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5173. result->src[0] = a;
  5174. result->src[1] = b;
  5175. return result;
  5176. }
  5177. struct ggml_tensor * ggml_map_custom2(
  5178. struct ggml_context * ctx,
  5179. struct ggml_tensor * a,
  5180. struct ggml_tensor * b,
  5181. const ggml_custom2_op_t fun,
  5182. int n_tasks,
  5183. void * userdata) {
  5184. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5185. }
  5186. struct ggml_tensor * ggml_map_custom2_inplace(
  5187. struct ggml_context * ctx,
  5188. struct ggml_tensor * a,
  5189. struct ggml_tensor * b,
  5190. const ggml_custom2_op_t fun,
  5191. int n_tasks,
  5192. void * userdata) {
  5193. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5194. }
  5195. // ggml_map_custom3
  5196. struct ggml_map_custom3_op_params {
  5197. ggml_custom3_op_t fun;
  5198. int n_tasks;
  5199. void * userdata;
  5200. };
  5201. static struct ggml_tensor * ggml_map_custom3_impl(
  5202. struct ggml_context * ctx,
  5203. struct ggml_tensor * a,
  5204. struct ggml_tensor * b,
  5205. struct ggml_tensor * c,
  5206. const ggml_custom3_op_t fun,
  5207. int n_tasks,
  5208. void * userdata,
  5209. bool inplace) {
  5210. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5211. bool is_node = false;
  5212. if (!inplace && (a->grad || b->grad || c->grad)) {
  5213. is_node = true;
  5214. }
  5215. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5216. struct ggml_map_custom3_op_params params = {
  5217. /*.fun =*/ fun,
  5218. /*.n_tasks =*/ n_tasks,
  5219. /*.userdata =*/ userdata
  5220. };
  5221. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5222. result->op = GGML_OP_MAP_CUSTOM3;
  5223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5224. result->src[0] = a;
  5225. result->src[1] = b;
  5226. result->src[2] = c;
  5227. return result;
  5228. }
  5229. struct ggml_tensor * ggml_map_custom3(
  5230. struct ggml_context * ctx,
  5231. struct ggml_tensor * a,
  5232. struct ggml_tensor * b,
  5233. struct ggml_tensor * c,
  5234. const ggml_custom3_op_t fun,
  5235. int n_tasks,
  5236. void * userdata) {
  5237. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5238. }
  5239. struct ggml_tensor * ggml_map_custom3_inplace(
  5240. struct ggml_context * ctx,
  5241. struct ggml_tensor * a,
  5242. struct ggml_tensor * b,
  5243. struct ggml_tensor * c,
  5244. const ggml_custom3_op_t fun,
  5245. int n_tasks,
  5246. void * userdata) {
  5247. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5248. }
  5249. // ggml_cross_entropy_loss
  5250. struct ggml_tensor * ggml_cross_entropy_loss(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. struct ggml_tensor * b) {
  5254. GGML_ASSERT(ggml_are_same_shape(a, b));
  5255. bool is_node = false;
  5256. if (a->grad || b->grad) {
  5257. is_node = true;
  5258. }
  5259. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5260. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5262. result->src[0] = a;
  5263. result->src[1] = b;
  5264. return result;
  5265. }
  5266. // ggml_cross_entropy_loss_back
  5267. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b,
  5271. struct ggml_tensor * c) {
  5272. GGML_ASSERT(ggml_are_same_shape(a, b));
  5273. GGML_ASSERT(ggml_is_scalar(c));
  5274. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5275. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5276. result->grad = NULL;
  5277. result->src[0] = a;
  5278. result->src[1] = b;
  5279. result->src[2] = c;
  5280. return result;
  5281. }
  5282. ////////////////////////////////////////////////////////////////////////////////
  5283. void ggml_set_param(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * tensor) {
  5286. tensor->is_param = true;
  5287. GGML_ASSERT(tensor->grad == NULL);
  5288. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5289. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5290. }
  5291. // ggml_compute_forward_dup
  5292. static void ggml_compute_forward_dup_same_cont(
  5293. const struct ggml_compute_params * params,
  5294. const struct ggml_tensor * src0,
  5295. struct ggml_tensor * dst) {
  5296. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5297. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5298. GGML_ASSERT(src0->type == dst->type);
  5299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5300. return;
  5301. }
  5302. const size_t nb00 = src0->nb[0];
  5303. const size_t nb0 = dst->nb[0];
  5304. const int ith = params->ith; // thread index
  5305. const int nth = params->nth; // number of threads
  5306. // parallelize by elements
  5307. const int ne = ggml_nelements(dst);
  5308. const int dr = (ne + nth - 1) / nth;
  5309. const int ie0 = dr * ith;
  5310. const int ie1 = MIN(ie0 + dr, ne);
  5311. if (ie0 < ie1) {
  5312. memcpy(
  5313. ((char *) dst->data + ie0*nb0),
  5314. ((char *) src0->data + ie0*nb00),
  5315. (ie1 - ie0) * ggml_type_size(src0->type));
  5316. }
  5317. }
  5318. static void ggml_compute_forward_dup_f16(
  5319. const struct ggml_compute_params * params,
  5320. const struct ggml_tensor * src0,
  5321. struct ggml_tensor * dst) {
  5322. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5323. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5324. return;
  5325. }
  5326. GGML_TENSOR_UNARY_OP_LOCALS
  5327. const int ith = params->ith; // thread index
  5328. const int nth = params->nth; // number of threads
  5329. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5330. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5331. return;
  5332. }
  5333. // parallelize by rows
  5334. const int nr = ne01;
  5335. // number of rows per thread
  5336. const int dr = (nr + nth - 1) / nth;
  5337. // row range for this thread
  5338. const int ir0 = dr * ith;
  5339. const int ir1 = MIN(ir0 + dr, nr);
  5340. if (src0->type == dst->type &&
  5341. ne00 == ne0 &&
  5342. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5343. // copy by rows
  5344. const size_t rs = ne00*nb00;
  5345. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5346. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5347. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5348. memcpy(
  5349. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5350. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5351. rs);
  5352. }
  5353. }
  5354. }
  5355. return;
  5356. }
  5357. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5358. if (ggml_is_contiguous(dst)) {
  5359. if (nb00 == sizeof(ggml_fp16_t)) {
  5360. if (dst->type == GGML_TYPE_F16) {
  5361. size_t id = 0;
  5362. const size_t rs = ne00 * nb00;
  5363. char * dst_ptr = (char *) dst->data;
  5364. for (int i03 = 0; i03 < ne03; i03++) {
  5365. for (int i02 = 0; i02 < ne02; i02++) {
  5366. id += rs * ir0;
  5367. for (int i01 = ir0; i01 < ir1; i01++) {
  5368. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5369. memcpy(dst_ptr + id, src0_ptr, rs);
  5370. id += rs;
  5371. }
  5372. id += rs * (ne01 - ir1);
  5373. }
  5374. }
  5375. } else if (dst->type == GGML_TYPE_F32) {
  5376. size_t id = 0;
  5377. float * dst_ptr = (float *) dst->data;
  5378. for (int i03 = 0; i03 < ne03; i03++) {
  5379. for (int i02 = 0; i02 < ne02; i02++) {
  5380. id += ne00 * ir0;
  5381. for (int i01 = ir0; i01 < ir1; i01++) {
  5382. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5383. for (int i00 = 0; i00 < ne00; i00++) {
  5384. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5385. id++;
  5386. }
  5387. }
  5388. id += ne00 * (ne01 - ir1);
  5389. }
  5390. }
  5391. } else if (type_traits[dst->type].from_float) {
  5392. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5393. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5394. size_t id = 0;
  5395. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5396. char * dst_ptr = (char *) dst->data;
  5397. for (int i03 = 0; i03 < ne03; i03++) {
  5398. for (int i02 = 0; i02 < ne02; i02++) {
  5399. id += rs * ir0;
  5400. for (int i01 = ir0; i01 < ir1; i01++) {
  5401. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5402. for (int i00 = 0; i00 < ne00; i00++) {
  5403. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5404. }
  5405. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5406. id += rs;
  5407. }
  5408. id += rs * (ne01 - ir1);
  5409. }
  5410. }
  5411. } else {
  5412. GGML_ASSERT(false); // TODO: implement
  5413. }
  5414. } else {
  5415. //printf("%s: this is not optimal - fix me\n", __func__);
  5416. if (dst->type == GGML_TYPE_F32) {
  5417. size_t id = 0;
  5418. float * dst_ptr = (float *) dst->data;
  5419. for (int i03 = 0; i03 < ne03; i03++) {
  5420. for (int i02 = 0; i02 < ne02; i02++) {
  5421. id += ne00 * ir0;
  5422. for (int i01 = ir0; i01 < ir1; i01++) {
  5423. for (int i00 = 0; i00 < ne00; i00++) {
  5424. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5425. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5426. id++;
  5427. }
  5428. }
  5429. id += ne00 * (ne01 - ir1);
  5430. }
  5431. }
  5432. } else if (dst->type == GGML_TYPE_F16) {
  5433. size_t id = 0;
  5434. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5435. for (int i03 = 0; i03 < ne03; i03++) {
  5436. for (int i02 = 0; i02 < ne02; i02++) {
  5437. id += ne00 * ir0;
  5438. for (int i01 = ir0; i01 < ir1; i01++) {
  5439. for (int i00 = 0; i00 < ne00; i00++) {
  5440. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5441. dst_ptr[id] = *src0_ptr;
  5442. id++;
  5443. }
  5444. }
  5445. id += ne00 * (ne01 - ir1);
  5446. }
  5447. }
  5448. } else {
  5449. GGML_ASSERT(false); // TODO: implement
  5450. }
  5451. }
  5452. return;
  5453. }
  5454. // dst counters
  5455. int64_t i10 = 0;
  5456. int64_t i11 = 0;
  5457. int64_t i12 = 0;
  5458. int64_t i13 = 0;
  5459. if (dst->type == GGML_TYPE_F16) {
  5460. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5461. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5462. i10 += ne00 * ir0;
  5463. while (i10 >= ne0) {
  5464. i10 -= ne0;
  5465. if (++i11 == ne1) {
  5466. i11 = 0;
  5467. if (++i12 == ne2) {
  5468. i12 = 0;
  5469. if (++i13 == ne3) {
  5470. i13 = 0;
  5471. }
  5472. }
  5473. }
  5474. }
  5475. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5476. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5477. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5478. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5479. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5480. if (++i10 == ne00) {
  5481. i10 = 0;
  5482. if (++i11 == ne01) {
  5483. i11 = 0;
  5484. if (++i12 == ne02) {
  5485. i12 = 0;
  5486. if (++i13 == ne03) {
  5487. i13 = 0;
  5488. }
  5489. }
  5490. }
  5491. }
  5492. }
  5493. }
  5494. i10 += ne00 * (ne01 - ir1);
  5495. while (i10 >= ne0) {
  5496. i10 -= ne0;
  5497. if (++i11 == ne1) {
  5498. i11 = 0;
  5499. if (++i12 == ne2) {
  5500. i12 = 0;
  5501. if (++i13 == ne3) {
  5502. i13 = 0;
  5503. }
  5504. }
  5505. }
  5506. }
  5507. }
  5508. }
  5509. } else if (dst->type == GGML_TYPE_F32) {
  5510. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5511. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5512. i10 += ne00 * ir0;
  5513. while (i10 >= ne0) {
  5514. i10 -= ne0;
  5515. if (++i11 == ne1) {
  5516. i11 = 0;
  5517. if (++i12 == ne2) {
  5518. i12 = 0;
  5519. if (++i13 == ne3) {
  5520. i13 = 0;
  5521. }
  5522. }
  5523. }
  5524. }
  5525. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5526. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5527. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5528. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5529. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5530. if (++i10 == ne0) {
  5531. i10 = 0;
  5532. if (++i11 == ne1) {
  5533. i11 = 0;
  5534. if (++i12 == ne2) {
  5535. i12 = 0;
  5536. if (++i13 == ne3) {
  5537. i13 = 0;
  5538. }
  5539. }
  5540. }
  5541. }
  5542. }
  5543. }
  5544. i10 += ne00 * (ne01 - ir1);
  5545. while (i10 >= ne0) {
  5546. i10 -= ne0;
  5547. if (++i11 == ne1) {
  5548. i11 = 0;
  5549. if (++i12 == ne2) {
  5550. i12 = 0;
  5551. if (++i13 == ne3) {
  5552. i13 = 0;
  5553. }
  5554. }
  5555. }
  5556. }
  5557. }
  5558. }
  5559. } else {
  5560. GGML_ASSERT(false); // TODO: implement
  5561. }
  5562. }
  5563. static void ggml_compute_forward_dup_f32(
  5564. const struct ggml_compute_params * params,
  5565. const struct ggml_tensor * src0,
  5566. struct ggml_tensor * dst) {
  5567. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5568. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5569. return;
  5570. }
  5571. GGML_TENSOR_UNARY_OP_LOCALS
  5572. const int ith = params->ith; // thread index
  5573. const int nth = params->nth; // number of threads
  5574. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5575. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5576. return;
  5577. }
  5578. // parallelize by rows
  5579. const int nr = ne01;
  5580. // number of rows per thread
  5581. const int dr = (nr + nth - 1) / nth;
  5582. // row range for this thread
  5583. const int ir0 = dr * ith;
  5584. const int ir1 = MIN(ir0 + dr, nr);
  5585. if (src0->type == dst->type &&
  5586. ne00 == ne0 &&
  5587. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5588. // copy by rows
  5589. const size_t rs = ne00*nb00;
  5590. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5591. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5592. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5593. memcpy(
  5594. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5595. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5596. rs);
  5597. }
  5598. }
  5599. }
  5600. return;
  5601. }
  5602. if (ggml_is_contiguous(dst)) {
  5603. // TODO: simplify
  5604. if (nb00 == sizeof(float)) {
  5605. if (dst->type == GGML_TYPE_F32) {
  5606. size_t id = 0;
  5607. const size_t rs = ne00 * nb00;
  5608. char * dst_ptr = (char *) dst->data;
  5609. for (int i03 = 0; i03 < ne03; i03++) {
  5610. for (int i02 = 0; i02 < ne02; i02++) {
  5611. id += rs * ir0;
  5612. for (int i01 = ir0; i01 < ir1; i01++) {
  5613. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5614. memcpy(dst_ptr + id, src0_ptr, rs);
  5615. id += rs;
  5616. }
  5617. id += rs * (ne01 - ir1);
  5618. }
  5619. }
  5620. } else if (type_traits[dst->type].from_float) {
  5621. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5622. size_t id = 0;
  5623. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5624. char * dst_ptr = (char *) dst->data;
  5625. for (int i03 = 0; i03 < ne03; i03++) {
  5626. for (int i02 = 0; i02 < ne02; i02++) {
  5627. id += rs * ir0;
  5628. for (int i01 = ir0; i01 < ir1; i01++) {
  5629. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5630. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5631. id += rs;
  5632. }
  5633. id += rs * (ne01 - ir1);
  5634. }
  5635. }
  5636. } else {
  5637. GGML_ASSERT(false); // TODO: implement
  5638. }
  5639. } else {
  5640. //printf("%s: this is not optimal - fix me\n", __func__);
  5641. if (dst->type == GGML_TYPE_F32) {
  5642. size_t id = 0;
  5643. float * dst_ptr = (float *) dst->data;
  5644. for (int i03 = 0; i03 < ne03; i03++) {
  5645. for (int i02 = 0; i02 < ne02; i02++) {
  5646. id += ne00 * ir0;
  5647. for (int i01 = ir0; i01 < ir1; i01++) {
  5648. for (int i00 = 0; i00 < ne00; i00++) {
  5649. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5650. dst_ptr[id] = *src0_ptr;
  5651. id++;
  5652. }
  5653. }
  5654. id += ne00 * (ne01 - ir1);
  5655. }
  5656. }
  5657. } else if (dst->type == GGML_TYPE_F16) {
  5658. size_t id = 0;
  5659. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5660. for (int i03 = 0; i03 < ne03; i03++) {
  5661. for (int i02 = 0; i02 < ne02; i02++) {
  5662. id += ne00 * ir0;
  5663. for (int i01 = ir0; i01 < ir1; i01++) {
  5664. for (int i00 = 0; i00 < ne00; i00++) {
  5665. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5666. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5667. id++;
  5668. }
  5669. }
  5670. id += ne00 * (ne01 - ir1);
  5671. }
  5672. }
  5673. } else {
  5674. GGML_ASSERT(false); // TODO: implement
  5675. }
  5676. }
  5677. return;
  5678. }
  5679. // dst counters
  5680. int64_t i10 = 0;
  5681. int64_t i11 = 0;
  5682. int64_t i12 = 0;
  5683. int64_t i13 = 0;
  5684. if (dst->type == GGML_TYPE_F32) {
  5685. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5686. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5687. i10 += ne00 * ir0;
  5688. while (i10 >= ne0) {
  5689. i10 -= ne0;
  5690. if (++i11 == ne1) {
  5691. i11 = 0;
  5692. if (++i12 == ne2) {
  5693. i12 = 0;
  5694. if (++i13 == ne3) {
  5695. i13 = 0;
  5696. }
  5697. }
  5698. }
  5699. }
  5700. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5701. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5702. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5703. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5704. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5705. if (++i10 == ne0) {
  5706. i10 = 0;
  5707. if (++i11 == ne1) {
  5708. i11 = 0;
  5709. if (++i12 == ne2) {
  5710. i12 = 0;
  5711. if (++i13 == ne3) {
  5712. i13 = 0;
  5713. }
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. i10 += ne00 * (ne01 - ir1);
  5720. while (i10 >= ne0) {
  5721. i10 -= ne0;
  5722. if (++i11 == ne1) {
  5723. i11 = 0;
  5724. if (++i12 == ne2) {
  5725. i12 = 0;
  5726. if (++i13 == ne3) {
  5727. i13 = 0;
  5728. }
  5729. }
  5730. }
  5731. }
  5732. }
  5733. }
  5734. } else if (dst->type == GGML_TYPE_F16) {
  5735. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5736. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5737. i10 += ne00 * ir0;
  5738. while (i10 >= ne0) {
  5739. i10 -= ne0;
  5740. if (++i11 == ne1) {
  5741. i11 = 0;
  5742. if (++i12 == ne2) {
  5743. i12 = 0;
  5744. if (++i13 == ne3) {
  5745. i13 = 0;
  5746. }
  5747. }
  5748. }
  5749. }
  5750. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5751. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5752. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5753. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5754. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5755. if (++i10 == ne0) {
  5756. i10 = 0;
  5757. if (++i11 == ne1) {
  5758. i11 = 0;
  5759. if (++i12 == ne2) {
  5760. i12 = 0;
  5761. if (++i13 == ne3) {
  5762. i13 = 0;
  5763. }
  5764. }
  5765. }
  5766. }
  5767. }
  5768. }
  5769. i10 += ne00 * (ne01 - ir1);
  5770. while (i10 >= ne0) {
  5771. i10 -= ne0;
  5772. if (++i11 == ne1) {
  5773. i11 = 0;
  5774. if (++i12 == ne2) {
  5775. i12 = 0;
  5776. if (++i13 == ne3) {
  5777. i13 = 0;
  5778. }
  5779. }
  5780. }
  5781. }
  5782. }
  5783. }
  5784. } else {
  5785. GGML_ASSERT(false); // TODO: implement
  5786. }
  5787. }
  5788. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5789. static void ggml_compute_forward_dup_bytes(
  5790. const struct ggml_compute_params * params,
  5791. const struct ggml_tensor * src0,
  5792. struct ggml_tensor * dst) {
  5793. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5794. GGML_ASSERT(src0->type == dst->type);
  5795. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5796. return;
  5797. }
  5798. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5799. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5800. return;
  5801. }
  5802. GGML_TENSOR_UNARY_OP_LOCALS;
  5803. const size_t type_size = ggml_type_size(src0->type);
  5804. const int ith = params->ith; // thread index
  5805. const int nth = params->nth; // number of threads
  5806. // parallelize by rows
  5807. const int nr = ne01;
  5808. // number of rows per thread
  5809. const int dr = (nr + nth - 1) / nth;
  5810. // row range for this thread
  5811. const int ir0 = dr * ith;
  5812. const int ir1 = MIN(ir0 + dr, nr);
  5813. if (src0->type == dst->type &&
  5814. ne00 == ne0 &&
  5815. nb00 == type_size && nb0 == type_size) {
  5816. // copy by rows
  5817. const size_t rs = ne00 * type_size;
  5818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5820. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5821. memcpy(
  5822. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5823. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5824. rs);
  5825. }
  5826. }
  5827. }
  5828. return;
  5829. }
  5830. if (ggml_is_contiguous(dst)) {
  5831. size_t id = 0;
  5832. char * dst_ptr = (char *) dst->data;
  5833. const size_t rs = ne00 * type_size;
  5834. if (nb00 == type_size) {
  5835. // src0 is contigous on first dimension, copy by rows
  5836. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5837. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5838. id += rs * ir0;
  5839. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5840. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5841. memcpy(dst_ptr + id, src0_ptr, rs);
  5842. id += rs;
  5843. }
  5844. id += rs * (ne01 - ir1);
  5845. }
  5846. }
  5847. } else {
  5848. //printf("%s: this is not optimal - fix me\n", __func__);
  5849. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5850. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5851. id += rs * ir0;
  5852. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5853. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5854. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  5855. memcpy(dst_ptr + id, src0_ptr, type_size);
  5856. id += type_size;
  5857. }
  5858. }
  5859. id += rs * (ne01 - ir1);
  5860. }
  5861. }
  5862. }
  5863. return;
  5864. }
  5865. // dst counters
  5866. int64_t i10 = 0;
  5867. int64_t i11 = 0;
  5868. int64_t i12 = 0;
  5869. int64_t i13 = 0;
  5870. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5871. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5872. i10 += ne00 * ir0;
  5873. while (i10 >= ne0) {
  5874. i10 -= ne0;
  5875. if (++i11 == ne1) {
  5876. i11 = 0;
  5877. if (++i12 == ne2) {
  5878. i12 = 0;
  5879. if (++i13 == ne3) {
  5880. i13 = 0;
  5881. }
  5882. }
  5883. }
  5884. }
  5885. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5886. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5887. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5888. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5889. memcpy(dst_ptr, src0_ptr, type_size);
  5890. if (++i10 == ne0) {
  5891. i10 = 0;
  5892. if (++i11 == ne1) {
  5893. i11 = 0;
  5894. if (++i12 == ne2) {
  5895. i12 = 0;
  5896. if (++i13 == ne3) {
  5897. i13 = 0;
  5898. }
  5899. }
  5900. }
  5901. }
  5902. }
  5903. }
  5904. i10 += ne00 * (ne01 - ir1);
  5905. while (i10 >= ne0) {
  5906. i10 -= ne0;
  5907. if (++i11 == ne1) {
  5908. i11 = 0;
  5909. if (++i12 == ne2) {
  5910. i12 = 0;
  5911. if (++i13 == ne3) {
  5912. i13 = 0;
  5913. }
  5914. }
  5915. }
  5916. }
  5917. }
  5918. }
  5919. }
  5920. static void ggml_compute_forward_dup(
  5921. const struct ggml_compute_params * params,
  5922. const struct ggml_tensor * src0,
  5923. struct ggml_tensor * dst) {
  5924. if (src0->type == dst->type) {
  5925. ggml_compute_forward_dup_bytes(params, src0, dst);
  5926. return;
  5927. }
  5928. switch (src0->type) {
  5929. case GGML_TYPE_F16:
  5930. {
  5931. ggml_compute_forward_dup_f16(params, src0, dst);
  5932. } break;
  5933. case GGML_TYPE_F32:
  5934. {
  5935. ggml_compute_forward_dup_f32(params, src0, dst);
  5936. } break;
  5937. default:
  5938. {
  5939. GGML_ASSERT(false);
  5940. } break;
  5941. }
  5942. }
  5943. // ggml_compute_forward_add
  5944. static void ggml_compute_forward_add_f32(
  5945. const struct ggml_compute_params * params,
  5946. const struct ggml_tensor * src0,
  5947. const struct ggml_tensor * src1,
  5948. struct ggml_tensor * dst) {
  5949. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5950. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5951. return;
  5952. }
  5953. const int ith = params->ith;
  5954. const int nth = params->nth;
  5955. #ifdef GGML_USE_CLBLAST
  5956. if (src1->backend == GGML_BACKEND_GPU) {
  5957. // TODO: OpenCL kernel support full broadcast
  5958. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  5959. if (ith == 0) {
  5960. ggml_cl_add(src0, src1, dst);
  5961. }
  5962. return;
  5963. }
  5964. #endif
  5965. const int nr = ggml_nrows(src0);
  5966. GGML_TENSOR_BINARY_OP_LOCALS
  5967. GGML_ASSERT( nb0 == sizeof(float));
  5968. GGML_ASSERT(nb00 == sizeof(float));
  5969. // rows per thread
  5970. const int dr = (nr + nth - 1)/nth;
  5971. // row range for this thread
  5972. const int ir0 = dr*ith;
  5973. const int ir1 = MIN(ir0 + dr, nr);
  5974. if (nb10 == sizeof(float)) {
  5975. for (int ir = ir0; ir < ir1; ++ir) {
  5976. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5977. const int64_t i03 = ir/(ne02*ne01);
  5978. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5979. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5980. const int64_t i13 = i03 % ne13;
  5981. const int64_t i12 = i02 % ne12;
  5982. const int64_t i11 = i01 % ne11;
  5983. const int64_t nr0 = ne00 / ne10;
  5984. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5985. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5986. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5987. for (int64_t r = 0; r < nr0; ++r) {
  5988. #ifdef GGML_USE_ACCELERATE
  5989. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5990. #else
  5991. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5992. #endif
  5993. }
  5994. }
  5995. } else {
  5996. // src1 is not contiguous
  5997. for (int ir = ir0; ir < ir1; ++ir) {
  5998. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5999. const int64_t i03 = ir/(ne02*ne01);
  6000. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6001. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6002. const int64_t i13 = i03 % ne13;
  6003. const int64_t i12 = i02 % ne12;
  6004. const int64_t i11 = i01 % ne11;
  6005. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6006. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6007. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6008. const int64_t i10 = i0 % ne10;
  6009. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6010. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6011. }
  6012. }
  6013. }
  6014. }
  6015. static void ggml_compute_forward_add_f16_f32(
  6016. const struct ggml_compute_params * params,
  6017. const struct ggml_tensor * src0,
  6018. const struct ggml_tensor * src1,
  6019. struct ggml_tensor * dst) {
  6020. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6022. return;
  6023. }
  6024. const int ith = params->ith;
  6025. const int nth = params->nth;
  6026. const int nr = ggml_nrows(src0);
  6027. GGML_TENSOR_BINARY_OP_LOCALS
  6028. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6029. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6030. if (dst->type == GGML_TYPE_F32) {
  6031. GGML_ASSERT( nb0 == sizeof(float));
  6032. }
  6033. else {
  6034. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6035. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6036. }
  6037. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6038. // rows per thread
  6039. const int dr = (nr + nth - 1)/nth;
  6040. // row range for this thread
  6041. const int ir0 = dr*ith;
  6042. const int ir1 = MIN(ir0 + dr, nr);
  6043. if (nb10 == sizeof(float)) {
  6044. if (dst->type == GGML_TYPE_F16) {
  6045. for (int ir = ir0; ir < ir1; ++ir) {
  6046. // src0, src1 and dst are same shape => same indices
  6047. const int i3 = ir/(ne2*ne1);
  6048. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6049. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6050. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6051. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6052. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6053. for (int i = 0; i < ne0; i++) {
  6054. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6055. }
  6056. }
  6057. } else {
  6058. for (int ir = ir0; ir < ir1; ++ir) {
  6059. // src0, src1 and dst are same shape => same indices
  6060. const int i3 = ir/(ne2*ne1);
  6061. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6062. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6063. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6064. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6065. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6066. for (int i = 0; i < ne0; i++) {
  6067. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6068. }
  6069. }
  6070. }
  6071. }
  6072. else {
  6073. // src1 is not contiguous
  6074. GGML_ASSERT(false);
  6075. }
  6076. }
  6077. static void ggml_compute_forward_add_f16_f16(
  6078. const struct ggml_compute_params * params,
  6079. const struct ggml_tensor * src0,
  6080. const struct ggml_tensor * src1,
  6081. struct ggml_tensor * dst) {
  6082. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6083. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6084. return;
  6085. }
  6086. const int ith = params->ith;
  6087. const int nth = params->nth;
  6088. const int nr = ggml_nrows(src0);
  6089. GGML_TENSOR_BINARY_OP_LOCALS
  6090. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6091. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6092. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6093. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6094. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6095. // rows per thread
  6096. const int dr = (nr + nth - 1)/nth;
  6097. // row range for this thread
  6098. const int ir0 = dr*ith;
  6099. const int ir1 = MIN(ir0 + dr, nr);
  6100. if (nb10 == sizeof(ggml_fp16_t)) {
  6101. for (int ir = ir0; ir < ir1; ++ir) {
  6102. // src0, src1 and dst are same shape => same indices
  6103. const int i3 = ir/(ne2*ne1);
  6104. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6105. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6106. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6107. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6108. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6109. for (int i = 0; i < ne0; i++) {
  6110. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6111. }
  6112. }
  6113. }
  6114. else {
  6115. // src1 is not contiguous
  6116. GGML_ASSERT(false);
  6117. }
  6118. }
  6119. static void ggml_compute_forward_add_q_f32(
  6120. const struct ggml_compute_params * params,
  6121. const struct ggml_tensor * src0,
  6122. const struct ggml_tensor * src1,
  6123. struct ggml_tensor * dst) {
  6124. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6125. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6126. return;
  6127. }
  6128. const int nr = ggml_nrows(src0);
  6129. GGML_TENSOR_BINARY_OP_LOCALS
  6130. const int ith = params->ith;
  6131. const int nth = params->nth;
  6132. const enum ggml_type type = src0->type;
  6133. const enum ggml_type dtype = dst->type;
  6134. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6135. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6136. // we don't support permuted src0 or src1
  6137. GGML_ASSERT(nb00 == ggml_type_size(type));
  6138. GGML_ASSERT(nb10 == sizeof(float));
  6139. // dst cannot be transposed or permuted
  6140. GGML_ASSERT(nb0 <= nb1);
  6141. GGML_ASSERT(nb1 <= nb2);
  6142. GGML_ASSERT(nb2 <= nb3);
  6143. GGML_ASSERT(ggml_is_quantized(src0->type));
  6144. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6145. // rows per thread
  6146. const int dr = (nr + nth - 1)/nth;
  6147. // row range for this thread
  6148. const int ir0 = dr*ith;
  6149. const int ir1 = MIN(ir0 + dr, nr);
  6150. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6151. for (int ir = ir0; ir < ir1; ++ir) {
  6152. // src0 indices
  6153. const int i03 = ir/(ne02*ne01);
  6154. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6155. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6156. // src1 and dst are same shape as src0 => same indices
  6157. const int i13 = i03;
  6158. const int i12 = i02;
  6159. const int i11 = i01;
  6160. const int i3 = i03;
  6161. const int i2 = i02;
  6162. const int i1 = i01;
  6163. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6164. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6165. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6166. assert(ne00 % 32 == 0);
  6167. // unquantize row from src0 to temp buffer
  6168. dequantize_row_q(src0_row, wdata, ne00);
  6169. // add src1
  6170. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6171. // quantize row to dst
  6172. if (quantize_row_q != NULL) {
  6173. quantize_row_q(wdata, dst_row, ne00);
  6174. } else {
  6175. memcpy(dst_row, wdata, ne0*nb0);
  6176. }
  6177. }
  6178. }
  6179. static void ggml_compute_forward_add(
  6180. const struct ggml_compute_params * params,
  6181. const struct ggml_tensor * src0,
  6182. const struct ggml_tensor * src1,
  6183. struct ggml_tensor * dst) {
  6184. switch (src0->type) {
  6185. case GGML_TYPE_F32:
  6186. {
  6187. if (src1->type == GGML_TYPE_F32) {
  6188. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6189. }
  6190. else {
  6191. GGML_ASSERT(false);
  6192. }
  6193. } break;
  6194. case GGML_TYPE_F16:
  6195. {
  6196. if (src1->type == GGML_TYPE_F16) {
  6197. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6198. }
  6199. else if (src1->type == GGML_TYPE_F32) {
  6200. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6201. }
  6202. else {
  6203. GGML_ASSERT(false);
  6204. }
  6205. } break;
  6206. case GGML_TYPE_Q4_0:
  6207. case GGML_TYPE_Q4_1:
  6208. case GGML_TYPE_Q5_0:
  6209. case GGML_TYPE_Q5_1:
  6210. case GGML_TYPE_Q8_0:
  6211. case GGML_TYPE_Q2_K:
  6212. case GGML_TYPE_Q3_K:
  6213. case GGML_TYPE_Q4_K:
  6214. case GGML_TYPE_Q5_K:
  6215. case GGML_TYPE_Q6_K:
  6216. case GGML_TYPE_IQ2_XXS:
  6217. case GGML_TYPE_IQ2_XS:
  6218. case GGML_TYPE_IQ3_XXS:
  6219. {
  6220. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6221. } break;
  6222. default:
  6223. {
  6224. GGML_ASSERT(false);
  6225. } break;
  6226. }
  6227. }
  6228. // ggml_compute_forward_add1
  6229. static void ggml_compute_forward_add1_f32(
  6230. const struct ggml_compute_params * params,
  6231. const struct ggml_tensor * src0,
  6232. const struct ggml_tensor * src1,
  6233. struct ggml_tensor * dst) {
  6234. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6235. GGML_ASSERT(ggml_is_scalar(src1));
  6236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6237. return;
  6238. }
  6239. const int ith = params->ith;
  6240. const int nth = params->nth;
  6241. const int nr = ggml_nrows(src0);
  6242. GGML_TENSOR_UNARY_OP_LOCALS
  6243. GGML_ASSERT( nb0 == sizeof(float));
  6244. GGML_ASSERT(nb00 == sizeof(float));
  6245. // rows per thread
  6246. const int dr = (nr + nth - 1)/nth;
  6247. // row range for this thread
  6248. const int ir0 = dr*ith;
  6249. const int ir1 = MIN(ir0 + dr, nr);
  6250. for (int ir = ir0; ir < ir1; ++ir) {
  6251. // src0 and dst are same shape => same indices
  6252. const int i3 = ir/(ne2*ne1);
  6253. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6254. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6255. #ifdef GGML_USE_ACCELERATE
  6256. UNUSED(ggml_vec_add1_f32);
  6257. vDSP_vadd(
  6258. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6259. (float *) ((char *) src1->data), 0,
  6260. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6261. ne0);
  6262. #else
  6263. ggml_vec_add1_f32(ne0,
  6264. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6265. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6266. *(float *) src1->data);
  6267. #endif
  6268. }
  6269. }
  6270. static void ggml_compute_forward_add1_f16_f32(
  6271. const struct ggml_compute_params * params,
  6272. const struct ggml_tensor * src0,
  6273. const struct ggml_tensor * src1,
  6274. struct ggml_tensor * dst) {
  6275. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6276. GGML_ASSERT(ggml_is_scalar(src1));
  6277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6278. return;
  6279. }
  6280. // scalar to add
  6281. const float v = *(float *) src1->data;
  6282. const int ith = params->ith;
  6283. const int nth = params->nth;
  6284. const int nr = ggml_nrows(src0);
  6285. GGML_TENSOR_UNARY_OP_LOCALS
  6286. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6287. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6288. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6289. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6290. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6291. // rows per thread
  6292. const int dr = (nr + nth - 1)/nth;
  6293. // row range for this thread
  6294. const int ir0 = dr*ith;
  6295. const int ir1 = MIN(ir0 + dr, nr);
  6296. for (int ir = ir0; ir < ir1; ++ir) {
  6297. // src0 and dst are same shape => same indices
  6298. const int i3 = ir/(ne2*ne1);
  6299. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6300. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6301. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6302. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6303. for (int i = 0; i < ne0; i++) {
  6304. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6305. }
  6306. }
  6307. }
  6308. static void ggml_compute_forward_add1_f16_f16(
  6309. const struct ggml_compute_params * params,
  6310. const struct ggml_tensor * src0,
  6311. const struct ggml_tensor * src1,
  6312. struct ggml_tensor * dst) {
  6313. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6314. GGML_ASSERT(ggml_is_scalar(src1));
  6315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6316. return;
  6317. }
  6318. // scalar to add
  6319. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6320. const int ith = params->ith;
  6321. const int nth = params->nth;
  6322. const int nr = ggml_nrows(src0);
  6323. GGML_TENSOR_UNARY_OP_LOCALS
  6324. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6325. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6326. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6327. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6328. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6329. // rows per thread
  6330. const int dr = (nr + nth - 1)/nth;
  6331. // row range for this thread
  6332. const int ir0 = dr*ith;
  6333. const int ir1 = MIN(ir0 + dr, nr);
  6334. for (int ir = ir0; ir < ir1; ++ir) {
  6335. // src0 and dst are same shape => same indices
  6336. const int i3 = ir/(ne2*ne1);
  6337. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6338. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6339. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6340. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6341. for (int i = 0; i < ne0; i++) {
  6342. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6343. }
  6344. }
  6345. }
  6346. static void ggml_compute_forward_add1_q_f32(
  6347. const struct ggml_compute_params * params,
  6348. const struct ggml_tensor * src0,
  6349. const struct ggml_tensor * src1,
  6350. struct ggml_tensor * dst) {
  6351. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6352. GGML_ASSERT(ggml_is_scalar(src1));
  6353. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6354. return;
  6355. }
  6356. // scalar to add
  6357. const float v = *(float *) src1->data;
  6358. const int ith = params->ith;
  6359. const int nth = params->nth;
  6360. const int nr = ggml_nrows(src0);
  6361. GGML_TENSOR_UNARY_OP_LOCALS
  6362. const enum ggml_type type = src0->type;
  6363. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6364. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6365. // we don't support permuted src0
  6366. GGML_ASSERT(nb00 == ggml_type_size(type));
  6367. // dst cannot be transposed or permuted
  6368. GGML_ASSERT(nb0 <= nb1);
  6369. GGML_ASSERT(nb1 <= nb2);
  6370. GGML_ASSERT(nb2 <= nb3);
  6371. GGML_ASSERT(ggml_is_quantized(src0->type));
  6372. GGML_ASSERT(dst->type == src0->type);
  6373. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6374. // rows per thread
  6375. const int dr = (nr + nth - 1)/nth;
  6376. // row range for this thread
  6377. const int ir0 = dr*ith;
  6378. const int ir1 = MIN(ir0 + dr, nr);
  6379. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6380. for (int ir = ir0; ir < ir1; ++ir) {
  6381. // src0 and dst are same shape => same indices
  6382. const int i3 = ir/(ne2*ne1);
  6383. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6384. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6385. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6386. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6387. assert(ne0 % 32 == 0);
  6388. // unquantize row from src0 to temp buffer
  6389. dequantize_row_q(src0_row, wdata, ne0);
  6390. // add src1
  6391. ggml_vec_acc1_f32(ne0, wdata, v);
  6392. // quantize row to dst
  6393. quantize_row_q(wdata, dst_row, ne0);
  6394. }
  6395. }
  6396. static void ggml_compute_forward_add1(
  6397. const struct ggml_compute_params * params,
  6398. const struct ggml_tensor * src0,
  6399. const struct ggml_tensor * src1,
  6400. struct ggml_tensor * dst) {
  6401. switch (src0->type) {
  6402. case GGML_TYPE_F32:
  6403. {
  6404. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6405. } break;
  6406. case GGML_TYPE_F16:
  6407. {
  6408. if (src1->type == GGML_TYPE_F16) {
  6409. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6410. }
  6411. else if (src1->type == GGML_TYPE_F32) {
  6412. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6413. }
  6414. else {
  6415. GGML_ASSERT(false);
  6416. }
  6417. } break;
  6418. case GGML_TYPE_Q4_0:
  6419. case GGML_TYPE_Q4_1:
  6420. case GGML_TYPE_Q5_0:
  6421. case GGML_TYPE_Q5_1:
  6422. case GGML_TYPE_Q8_0:
  6423. case GGML_TYPE_Q8_1:
  6424. case GGML_TYPE_Q2_K:
  6425. case GGML_TYPE_Q3_K:
  6426. case GGML_TYPE_Q4_K:
  6427. case GGML_TYPE_Q5_K:
  6428. case GGML_TYPE_Q6_K:
  6429. case GGML_TYPE_IQ2_XXS:
  6430. case GGML_TYPE_IQ2_XS:
  6431. case GGML_TYPE_IQ3_XXS:
  6432. {
  6433. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6434. } break;
  6435. default:
  6436. {
  6437. GGML_ASSERT(false);
  6438. } break;
  6439. }
  6440. }
  6441. // ggml_compute_forward_acc
  6442. static void ggml_compute_forward_acc_f32(
  6443. const struct ggml_compute_params * params,
  6444. const struct ggml_tensor * src0,
  6445. const struct ggml_tensor * src1,
  6446. struct ggml_tensor * dst) {
  6447. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6448. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6449. // view src0 and dst with these strides and data offset inbytes during acc
  6450. // nb0 is implicitly element_size because src0 and dst are contiguous
  6451. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6452. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6453. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6454. size_t offset = ((int32_t *) dst->op_params)[3];
  6455. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6456. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6457. if (params->ith != 0) {
  6458. return;
  6459. }
  6460. // memcpy needs to be synchronized across threads to avoid race conditions.
  6461. // => do it in INIT phase
  6462. memcpy(
  6463. ((char *) dst->data),
  6464. ((char *) src0->data),
  6465. ggml_nbytes(dst));
  6466. }
  6467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6468. return;
  6469. }
  6470. const int ith = params->ith;
  6471. const int nth = params->nth;
  6472. const int nr = ggml_nrows(src1);
  6473. const int nc = src1->ne[0];
  6474. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6475. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6476. // src0 and dst as viewed during acc
  6477. const size_t nb0 = ggml_element_size(src0);
  6478. const size_t nb00 = nb0;
  6479. const size_t nb01 = nb1;
  6480. const size_t nb02 = nb2;
  6481. const size_t nb03 = nb3;
  6482. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6483. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6484. GGML_ASSERT(nb10 == sizeof(float));
  6485. // rows per thread
  6486. const int dr = (nr + nth - 1)/nth;
  6487. // row range for this thread
  6488. const int ir0 = dr*ith;
  6489. const int ir1 = MIN(ir0 + dr, nr);
  6490. for (int ir = ir0; ir < ir1; ++ir) {
  6491. // src0 and dst are viewed with shape of src1 and offset
  6492. // => same indices
  6493. const int i3 = ir/(ne12*ne11);
  6494. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6495. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6496. #ifdef GGML_USE_ACCELERATE
  6497. vDSP_vadd(
  6498. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6499. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6500. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6501. #else
  6502. ggml_vec_add_f32(nc,
  6503. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6504. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6505. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6506. #endif
  6507. }
  6508. }
  6509. static void ggml_compute_forward_acc(
  6510. const struct ggml_compute_params * params,
  6511. const struct ggml_tensor * src0,
  6512. const struct ggml_tensor * src1,
  6513. struct ggml_tensor * dst) {
  6514. switch (src0->type) {
  6515. case GGML_TYPE_F32:
  6516. {
  6517. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6518. } break;
  6519. case GGML_TYPE_F16:
  6520. case GGML_TYPE_Q4_0:
  6521. case GGML_TYPE_Q4_1:
  6522. case GGML_TYPE_Q5_0:
  6523. case GGML_TYPE_Q5_1:
  6524. case GGML_TYPE_Q8_0:
  6525. case GGML_TYPE_Q8_1:
  6526. case GGML_TYPE_Q2_K:
  6527. case GGML_TYPE_Q3_K:
  6528. case GGML_TYPE_Q4_K:
  6529. case GGML_TYPE_Q5_K:
  6530. case GGML_TYPE_Q6_K:
  6531. case GGML_TYPE_IQ2_XXS:
  6532. case GGML_TYPE_IQ2_XS:
  6533. case GGML_TYPE_IQ3_XXS:
  6534. default:
  6535. {
  6536. GGML_ASSERT(false);
  6537. } break;
  6538. }
  6539. }
  6540. // ggml_compute_forward_sub
  6541. static void ggml_compute_forward_sub_f32(
  6542. const struct ggml_compute_params * params,
  6543. const struct ggml_tensor * src0,
  6544. const struct ggml_tensor * src1,
  6545. struct ggml_tensor * dst) {
  6546. assert(params->ith == 0);
  6547. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6549. return;
  6550. }
  6551. const int nr = ggml_nrows(src0);
  6552. GGML_TENSOR_BINARY_OP_LOCALS
  6553. GGML_ASSERT( nb0 == sizeof(float));
  6554. GGML_ASSERT(nb00 == sizeof(float));
  6555. if (nb10 == sizeof(float)) {
  6556. for (int ir = 0; ir < nr; ++ir) {
  6557. // src0, src1 and dst are same shape => same indices
  6558. const int i3 = ir/(ne2*ne1);
  6559. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6560. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6561. #ifdef GGML_USE_ACCELERATE
  6562. vDSP_vsub(
  6563. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6564. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6565. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6566. ne0);
  6567. #else
  6568. ggml_vec_sub_f32(ne0,
  6569. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6570. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6571. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6572. #endif
  6573. // }
  6574. // }
  6575. }
  6576. } else {
  6577. // src1 is not contiguous
  6578. for (int ir = 0; ir < nr; ++ir) {
  6579. // src0, src1 and dst are same shape => same indices
  6580. const int i3 = ir/(ne2*ne1);
  6581. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6582. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6583. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6584. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6585. for (int i0 = 0; i0 < ne0; i0++) {
  6586. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6587. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6588. }
  6589. }
  6590. }
  6591. }
  6592. static void ggml_compute_forward_sub(
  6593. const struct ggml_compute_params * params,
  6594. const struct ggml_tensor * src0,
  6595. const struct ggml_tensor * src1,
  6596. struct ggml_tensor * dst) {
  6597. switch (src0->type) {
  6598. case GGML_TYPE_F32:
  6599. {
  6600. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6601. } break;
  6602. default:
  6603. {
  6604. GGML_ASSERT(false);
  6605. } break;
  6606. }
  6607. }
  6608. // ggml_compute_forward_mul
  6609. static void ggml_compute_forward_mul_f32(
  6610. const struct ggml_compute_params * params,
  6611. const struct ggml_tensor * src0,
  6612. const struct ggml_tensor * src1,
  6613. struct ggml_tensor * dst) {
  6614. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6616. return;
  6617. }
  6618. const int ith = params->ith;
  6619. const int nth = params->nth;
  6620. #if defined(GGML_USE_CLBLAST)
  6621. if (src1->backend == GGML_BACKEND_GPU) {
  6622. // TODO: OpenCL kernel support full broadcast
  6623. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6624. if (ith == 0) {
  6625. ggml_cl_mul(src0, src1, dst);
  6626. }
  6627. return;
  6628. }
  6629. #endif
  6630. const int64_t nr = ggml_nrows(src0);
  6631. GGML_TENSOR_BINARY_OP_LOCALS
  6632. GGML_ASSERT( nb0 == sizeof(float));
  6633. GGML_ASSERT(nb00 == sizeof(float));
  6634. if (nb10 == sizeof(float)) {
  6635. for (int64_t ir = ith; ir < nr; ir += nth) {
  6636. // src0 and dst are same shape => same indices
  6637. const int64_t i03 = ir/(ne02*ne01);
  6638. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6639. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6640. const int64_t i13 = i03 % ne13;
  6641. const int64_t i12 = i02 % ne12;
  6642. const int64_t i11 = i01 % ne11;
  6643. const int64_t nr0 = ne00 / ne10;
  6644. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6645. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6646. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6647. for (int64_t r = 0 ; r < nr0; ++r) {
  6648. #ifdef GGML_USE_ACCELERATE
  6649. UNUSED(ggml_vec_mul_f32);
  6650. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6651. #else
  6652. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6653. #endif
  6654. }
  6655. }
  6656. } else {
  6657. // src1 is not contiguous
  6658. for (int64_t ir = ith; ir < nr; ir += nth) {
  6659. // src0 and dst are same shape => same indices
  6660. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6661. const int64_t i03 = ir/(ne02*ne01);
  6662. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6663. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6664. const int64_t i13 = i03 % ne13;
  6665. const int64_t i12 = i02 % ne12;
  6666. const int64_t i11 = i01 % ne11;
  6667. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6668. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6669. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6670. const int64_t i10 = i0 % ne10;
  6671. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6672. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6673. }
  6674. }
  6675. }
  6676. }
  6677. static void ggml_compute_forward_mul(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. const struct ggml_tensor * src1,
  6681. struct ggml_tensor * dst) {
  6682. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6683. switch (src0->type) {
  6684. case GGML_TYPE_F32:
  6685. {
  6686. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6687. } break;
  6688. default:
  6689. {
  6690. GGML_ASSERT(false);
  6691. } break;
  6692. }
  6693. }
  6694. // ggml_compute_forward_div
  6695. static void ggml_compute_forward_div_f32(
  6696. const struct ggml_compute_params * params,
  6697. const struct ggml_tensor * src0,
  6698. const struct ggml_tensor * src1,
  6699. struct ggml_tensor * dst) {
  6700. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6701. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6702. return;
  6703. }
  6704. const int ith = params->ith;
  6705. const int nth = params->nth;
  6706. const int64_t nr = ggml_nrows(src0);
  6707. GGML_TENSOR_BINARY_OP_LOCALS
  6708. GGML_ASSERT( nb0 == sizeof(float));
  6709. GGML_ASSERT(nb00 == sizeof(float));
  6710. if (nb10 == sizeof(float)) {
  6711. for (int64_t ir = ith; ir < nr; ir += nth) {
  6712. // src0 and dst are same shape => same indices
  6713. const int64_t i03 = ir/(ne02*ne01);
  6714. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6715. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6716. const int64_t i13 = i03 % ne13;
  6717. const int64_t i12 = i02 % ne12;
  6718. const int64_t i11 = i01 % ne11;
  6719. const int64_t nr0 = ne00 / ne10;
  6720. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6721. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6722. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6723. for (int64_t r = 0; r < nr0; ++r) {
  6724. #ifdef GGML_USE_ACCELERATE
  6725. UNUSED(ggml_vec_div_f32);
  6726. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6727. #else
  6728. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6729. #endif
  6730. }
  6731. }
  6732. } else {
  6733. // src1 is not contiguous
  6734. for (int64_t ir = ith; ir < nr; ir += nth) {
  6735. // src0 and dst are same shape => same indices
  6736. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6737. const int64_t i03 = ir/(ne02*ne01);
  6738. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6739. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6740. const int64_t i13 = i03 % ne13;
  6741. const int64_t i12 = i02 % ne12;
  6742. const int64_t i11 = i01 % ne11;
  6743. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6744. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6745. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6746. const int64_t i10 = i0 % ne10;
  6747. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6748. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6749. }
  6750. }
  6751. }
  6752. }
  6753. static void ggml_compute_forward_div(
  6754. const struct ggml_compute_params * params,
  6755. const struct ggml_tensor * src0,
  6756. const struct ggml_tensor * src1,
  6757. struct ggml_tensor * dst) {
  6758. switch (src0->type) {
  6759. case GGML_TYPE_F32:
  6760. {
  6761. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6762. } break;
  6763. default:
  6764. {
  6765. GGML_ASSERT(false);
  6766. } break;
  6767. }
  6768. }
  6769. // ggml_compute_forward_sqr
  6770. static void ggml_compute_forward_sqr_f32(
  6771. const struct ggml_compute_params * params,
  6772. const struct ggml_tensor * src0,
  6773. struct ggml_tensor * dst) {
  6774. assert(params->ith == 0);
  6775. assert(ggml_are_same_shape(src0, dst));
  6776. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6777. return;
  6778. }
  6779. const int n = ggml_nrows(src0);
  6780. const int nc = src0->ne[0];
  6781. assert( dst->nb[0] == sizeof(float));
  6782. assert(src0->nb[0] == sizeof(float));
  6783. for (int i = 0; i < n; i++) {
  6784. ggml_vec_sqr_f32(nc,
  6785. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6786. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6787. }
  6788. }
  6789. static void ggml_compute_forward_sqr(
  6790. const struct ggml_compute_params * params,
  6791. const struct ggml_tensor * src0,
  6792. struct ggml_tensor * dst) {
  6793. switch (src0->type) {
  6794. case GGML_TYPE_F32:
  6795. {
  6796. ggml_compute_forward_sqr_f32(params, src0, dst);
  6797. } break;
  6798. default:
  6799. {
  6800. GGML_ASSERT(false);
  6801. } break;
  6802. }
  6803. }
  6804. // ggml_compute_forward_sqrt
  6805. static void ggml_compute_forward_sqrt_f32(
  6806. const struct ggml_compute_params * params,
  6807. const struct ggml_tensor * src0,
  6808. struct ggml_tensor * dst) {
  6809. assert(params->ith == 0);
  6810. assert(ggml_are_same_shape(src0, dst));
  6811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6812. return;
  6813. }
  6814. const int n = ggml_nrows(src0);
  6815. const int nc = src0->ne[0];
  6816. assert( dst->nb[0] == sizeof(float));
  6817. assert(src0->nb[0] == sizeof(float));
  6818. for (int i = 0; i < n; i++) {
  6819. ggml_vec_sqrt_f32(nc,
  6820. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6821. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6822. }
  6823. }
  6824. static void ggml_compute_forward_sqrt(
  6825. const struct ggml_compute_params * params,
  6826. const struct ggml_tensor * src0,
  6827. struct ggml_tensor * dst) {
  6828. switch (src0->type) {
  6829. case GGML_TYPE_F32:
  6830. {
  6831. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6832. } break;
  6833. default:
  6834. {
  6835. GGML_ASSERT(false);
  6836. } break;
  6837. }
  6838. }
  6839. // ggml_compute_forward_log
  6840. static void ggml_compute_forward_log_f32(
  6841. const struct ggml_compute_params * params,
  6842. const struct ggml_tensor * src0,
  6843. struct ggml_tensor * dst) {
  6844. GGML_ASSERT(params->ith == 0);
  6845. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6847. return;
  6848. }
  6849. const int n = ggml_nrows(src0);
  6850. const int nc = src0->ne[0];
  6851. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6852. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6853. for (int i = 0; i < n; i++) {
  6854. ggml_vec_log_f32(nc,
  6855. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6856. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6857. }
  6858. }
  6859. static void ggml_compute_forward_log(
  6860. const struct ggml_compute_params * params,
  6861. const struct ggml_tensor * src0,
  6862. struct ggml_tensor * dst) {
  6863. switch (src0->type) {
  6864. case GGML_TYPE_F32:
  6865. {
  6866. ggml_compute_forward_log_f32(params, src0, dst);
  6867. } break;
  6868. default:
  6869. {
  6870. GGML_ASSERT(false);
  6871. } break;
  6872. }
  6873. }
  6874. // ggml_compute_forward_sum
  6875. static void ggml_compute_forward_sum_f32(
  6876. const struct ggml_compute_params * params,
  6877. const struct ggml_tensor * src0,
  6878. struct ggml_tensor * dst) {
  6879. assert(params->ith == 0);
  6880. assert(ggml_is_scalar(dst));
  6881. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6882. return;
  6883. }
  6884. assert(ggml_is_scalar(dst));
  6885. assert(src0->nb[0] == sizeof(float));
  6886. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6887. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6888. ggml_float sum = 0;
  6889. ggml_float row_sum = 0;
  6890. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6891. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6892. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6893. ggml_vec_sum_f32_ggf(ne00,
  6894. &row_sum,
  6895. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6896. sum += row_sum;
  6897. }
  6898. }
  6899. }
  6900. ((float *) dst->data)[0] = sum;
  6901. }
  6902. static void ggml_compute_forward_sum_f16(
  6903. const struct ggml_compute_params * params,
  6904. const struct ggml_tensor * src0,
  6905. struct ggml_tensor * dst) {
  6906. assert(params->ith == 0);
  6907. assert(ggml_is_scalar(dst));
  6908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6909. return;
  6910. }
  6911. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6912. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6913. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6914. float sum = 0;
  6915. float row_sum = 0;
  6916. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6917. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6918. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6919. ggml_vec_sum_f16_ggf(ne00,
  6920. &row_sum,
  6921. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6922. sum += row_sum;
  6923. }
  6924. }
  6925. }
  6926. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6927. }
  6928. static void ggml_compute_forward_sum(
  6929. const struct ggml_compute_params * params,
  6930. const struct ggml_tensor * src0,
  6931. struct ggml_tensor * dst) {
  6932. switch (src0->type) {
  6933. case GGML_TYPE_F32:
  6934. {
  6935. ggml_compute_forward_sum_f32(params, src0, dst);
  6936. } break;
  6937. case GGML_TYPE_F16:
  6938. {
  6939. ggml_compute_forward_sum_f16(params, src0, dst);
  6940. } break;
  6941. default:
  6942. {
  6943. GGML_ASSERT(false);
  6944. } break;
  6945. }
  6946. }
  6947. // ggml_compute_forward_sum_rows
  6948. static void ggml_compute_forward_sum_rows_f32(
  6949. const struct ggml_compute_params * params,
  6950. const struct ggml_tensor * src0,
  6951. struct ggml_tensor * dst) {
  6952. GGML_ASSERT(params->ith == 0);
  6953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6954. return;
  6955. }
  6956. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6957. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6958. GGML_TENSOR_UNARY_OP_LOCALS
  6959. GGML_ASSERT(ne0 == 1);
  6960. GGML_ASSERT(ne1 == ne01);
  6961. GGML_ASSERT(ne2 == ne02);
  6962. GGML_ASSERT(ne3 == ne03);
  6963. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6964. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6965. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6966. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6967. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6968. float row_sum = 0;
  6969. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6970. dst_row[0] = row_sum;
  6971. }
  6972. }
  6973. }
  6974. }
  6975. static void ggml_compute_forward_sum_rows(
  6976. const struct ggml_compute_params * params,
  6977. const struct ggml_tensor * src0,
  6978. struct ggml_tensor * dst) {
  6979. switch (src0->type) {
  6980. case GGML_TYPE_F32:
  6981. {
  6982. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6983. } break;
  6984. default:
  6985. {
  6986. GGML_ASSERT(false);
  6987. } break;
  6988. }
  6989. }
  6990. // ggml_compute_forward_mean
  6991. static void ggml_compute_forward_mean_f32(
  6992. const struct ggml_compute_params * params,
  6993. const struct ggml_tensor * src0,
  6994. struct ggml_tensor * dst) {
  6995. assert(params->ith == 0);
  6996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6997. return;
  6998. }
  6999. assert(src0->nb[0] == sizeof(float));
  7000. GGML_TENSOR_UNARY_OP_LOCALS
  7001. assert(ne0 == 1);
  7002. assert(ne1 == ne01);
  7003. assert(ne2 == ne02);
  7004. assert(ne3 == ne03);
  7005. UNUSED(ne0);
  7006. UNUSED(ne1);
  7007. UNUSED(ne2);
  7008. UNUSED(ne3);
  7009. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7010. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7011. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7012. ggml_vec_sum_f32(ne00,
  7013. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7014. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7015. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7016. }
  7017. }
  7018. }
  7019. }
  7020. static void ggml_compute_forward_mean(
  7021. const struct ggml_compute_params * params,
  7022. const struct ggml_tensor * src0,
  7023. struct ggml_tensor * dst) {
  7024. switch (src0->type) {
  7025. case GGML_TYPE_F32:
  7026. {
  7027. ggml_compute_forward_mean_f32(params, src0, dst);
  7028. } break;
  7029. default:
  7030. {
  7031. GGML_ASSERT(false);
  7032. } break;
  7033. }
  7034. }
  7035. // ggml_compute_forward_argmax
  7036. static void ggml_compute_forward_argmax_f32(
  7037. const struct ggml_compute_params * params,
  7038. const struct ggml_tensor * src0,
  7039. struct ggml_tensor * dst) {
  7040. assert(params->ith == 0);
  7041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7042. return;
  7043. }
  7044. assert(src0->nb[0] == sizeof(float));
  7045. assert(dst->nb[0] == sizeof(float));
  7046. const int64_t ne00 = src0->ne[0];
  7047. const int64_t ne01 = src0->ne[1];
  7048. const size_t nb01 = src0->nb[1];
  7049. const size_t nb0 = dst->nb[0];
  7050. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7051. float * src = (float *) ((char *) src0->data + i1*nb01);
  7052. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7053. int v = 0;
  7054. ggml_vec_argmax_f32(ne00, &v, src);
  7055. dst_[0] = v;
  7056. }
  7057. }
  7058. static void ggml_compute_forward_argmax(
  7059. const struct ggml_compute_params * params,
  7060. const struct ggml_tensor * src0,
  7061. struct ggml_tensor * dst) {
  7062. switch (src0->type) {
  7063. case GGML_TYPE_F32:
  7064. {
  7065. ggml_compute_forward_argmax_f32(params, src0, dst);
  7066. } break;
  7067. default:
  7068. {
  7069. GGML_ASSERT(false);
  7070. } break;
  7071. }
  7072. }
  7073. // ggml_compute_forward_repeat
  7074. static void ggml_compute_forward_repeat_f32(
  7075. const struct ggml_compute_params * params,
  7076. const struct ggml_tensor * src0,
  7077. struct ggml_tensor * dst) {
  7078. GGML_ASSERT(params->ith == 0);
  7079. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7081. return;
  7082. }
  7083. GGML_TENSOR_UNARY_OP_LOCALS
  7084. // guaranteed to be an integer due to the check in ggml_can_repeat
  7085. const int nr0 = (int)(ne0/ne00);
  7086. const int nr1 = (int)(ne1/ne01);
  7087. const int nr2 = (int)(ne2/ne02);
  7088. const int nr3 = (int)(ne3/ne03);
  7089. // TODO: support for transposed / permuted tensors
  7090. GGML_ASSERT(nb0 == sizeof(float));
  7091. GGML_ASSERT(nb00 == sizeof(float));
  7092. // TODO: maybe this is not optimal?
  7093. for (int i3 = 0; i3 < nr3; i3++) {
  7094. for (int k3 = 0; k3 < ne03; k3++) {
  7095. for (int i2 = 0; i2 < nr2; i2++) {
  7096. for (int k2 = 0; k2 < ne02; k2++) {
  7097. for (int i1 = 0; i1 < nr1; i1++) {
  7098. for (int k1 = 0; k1 < ne01; k1++) {
  7099. for (int i0 = 0; i0 < nr0; i0++) {
  7100. ggml_vec_cpy_f32(ne00,
  7101. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7102. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7103. }
  7104. }
  7105. }
  7106. }
  7107. }
  7108. }
  7109. }
  7110. }
  7111. static void ggml_compute_forward_repeat_f16(
  7112. const struct ggml_compute_params * params,
  7113. const struct ggml_tensor * src0,
  7114. struct ggml_tensor * dst) {
  7115. GGML_ASSERT(params->ith == 0);
  7116. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7117. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7118. return;
  7119. }
  7120. GGML_TENSOR_UNARY_OP_LOCALS
  7121. // guaranteed to be an integer due to the check in ggml_can_repeat
  7122. const int nr0 = (int)(ne0/ne00);
  7123. const int nr1 = (int)(ne1/ne01);
  7124. const int nr2 = (int)(ne2/ne02);
  7125. const int nr3 = (int)(ne3/ne03);
  7126. // TODO: support for transposed / permuted tensors
  7127. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7128. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7129. // TODO: maybe this is not optimal?
  7130. for (int i3 = 0; i3 < nr3; i3++) {
  7131. for (int k3 = 0; k3 < ne03; k3++) {
  7132. for (int i2 = 0; i2 < nr2; i2++) {
  7133. for (int k2 = 0; k2 < ne02; k2++) {
  7134. for (int i1 = 0; i1 < nr1; i1++) {
  7135. for (int k1 = 0; k1 < ne01; k1++) {
  7136. for (int i0 = 0; i0 < nr0; i0++) {
  7137. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7138. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7139. // ggml_vec_cpy_f16(ne00, y, x)
  7140. for (int i = 0; i < ne00; ++i) {
  7141. y[i] = x[i];
  7142. }
  7143. }
  7144. }
  7145. }
  7146. }
  7147. }
  7148. }
  7149. }
  7150. }
  7151. static void ggml_compute_forward_repeat(
  7152. const struct ggml_compute_params * params,
  7153. const struct ggml_tensor * src0,
  7154. struct ggml_tensor * dst) {
  7155. switch (src0->type) {
  7156. case GGML_TYPE_F16:
  7157. case GGML_TYPE_I16:
  7158. {
  7159. ggml_compute_forward_repeat_f16(params, src0, dst);
  7160. } break;
  7161. case GGML_TYPE_F32:
  7162. case GGML_TYPE_I32:
  7163. {
  7164. ggml_compute_forward_repeat_f32(params, src0, dst);
  7165. } break;
  7166. default:
  7167. {
  7168. GGML_ASSERT(false);
  7169. } break;
  7170. }
  7171. }
  7172. // ggml_compute_forward_repeat_back
  7173. static void ggml_compute_forward_repeat_back_f32(
  7174. const struct ggml_compute_params * params,
  7175. const struct ggml_tensor * src0,
  7176. struct ggml_tensor * dst) {
  7177. GGML_ASSERT(params->ith == 0);
  7178. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7180. return;
  7181. }
  7182. GGML_TENSOR_UNARY_OP_LOCALS
  7183. // guaranteed to be an integer due to the check in ggml_can_repeat
  7184. const int nr0 = (int)(ne00/ne0);
  7185. const int nr1 = (int)(ne01/ne1);
  7186. const int nr2 = (int)(ne02/ne2);
  7187. const int nr3 = (int)(ne03/ne3);
  7188. // TODO: support for transposed / permuted tensors
  7189. GGML_ASSERT(nb0 == sizeof(float));
  7190. GGML_ASSERT(nb00 == sizeof(float));
  7191. if (ggml_is_contiguous(dst)) {
  7192. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7193. } else {
  7194. for (int k3 = 0; k3 < ne3; k3++) {
  7195. for (int k2 = 0; k2 < ne2; k2++) {
  7196. for (int k1 = 0; k1 < ne1; k1++) {
  7197. ggml_vec_set_f32(ne0,
  7198. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7199. 0);
  7200. }
  7201. }
  7202. }
  7203. }
  7204. // TODO: maybe this is not optimal?
  7205. for (int i3 = 0; i3 < nr3; i3++) {
  7206. for (int k3 = 0; k3 < ne3; k3++) {
  7207. for (int i2 = 0; i2 < nr2; i2++) {
  7208. for (int k2 = 0; k2 < ne2; k2++) {
  7209. for (int i1 = 0; i1 < nr1; i1++) {
  7210. for (int k1 = 0; k1 < ne1; k1++) {
  7211. for (int i0 = 0; i0 < nr0; i0++) {
  7212. ggml_vec_acc_f32(ne0,
  7213. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7214. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7215. }
  7216. }
  7217. }
  7218. }
  7219. }
  7220. }
  7221. }
  7222. }
  7223. static void ggml_compute_forward_repeat_back(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. struct ggml_tensor * dst) {
  7227. switch (src0->type) {
  7228. case GGML_TYPE_F32:
  7229. {
  7230. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7231. } break;
  7232. default:
  7233. {
  7234. GGML_ASSERT(false);
  7235. } break;
  7236. }
  7237. }
  7238. // ggml_compute_forward_concat
  7239. static void ggml_compute_forward_concat_f32(
  7240. const struct ggml_compute_params * params,
  7241. const struct ggml_tensor * src0,
  7242. const struct ggml_tensor * src1,
  7243. struct ggml_tensor * dst) {
  7244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7245. return;
  7246. }
  7247. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7248. const int ith = params->ith;
  7249. const int nth = params->nth;
  7250. GGML_TENSOR_BINARY_OP_LOCALS
  7251. // TODO: support for transposed / permuted tensors
  7252. GGML_ASSERT(nb0 == sizeof(float));
  7253. GGML_ASSERT(nb00 == sizeof(float));
  7254. GGML_ASSERT(nb10 == sizeof(float));
  7255. for (int i3 = 0; i3 < ne3; i3++) {
  7256. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7257. if (i2 < ne02) { // src0
  7258. for (int i1 = 0; i1 < ne1; i1++) {
  7259. for (int i0 = 0; i0 < ne0; i0++) {
  7260. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7261. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7262. *y = *x;
  7263. }
  7264. }
  7265. } // src1
  7266. else {
  7267. for (int i1 = 0; i1 < ne1; i1++) {
  7268. for (int i0 = 0; i0 < ne0; i0++) {
  7269. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7270. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7271. *y = *x;
  7272. }
  7273. }
  7274. }
  7275. }
  7276. }
  7277. }
  7278. static void ggml_compute_forward_concat(
  7279. const struct ggml_compute_params* params,
  7280. const struct ggml_tensor* src0,
  7281. const struct ggml_tensor* src1,
  7282. struct ggml_tensor* dst) {
  7283. switch (src0->type) {
  7284. case GGML_TYPE_F32:
  7285. case GGML_TYPE_I32:
  7286. {
  7287. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7288. } break;
  7289. default:
  7290. {
  7291. GGML_ASSERT(false);
  7292. } break;
  7293. }
  7294. }
  7295. // ggml_compute_forward_abs
  7296. static void ggml_compute_forward_abs_f32(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. assert(params->ith == 0);
  7301. assert(ggml_are_same_shape(src0, dst));
  7302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7303. return;
  7304. }
  7305. const int n = ggml_nrows(src0);
  7306. const int nc = src0->ne[0];
  7307. assert(dst->nb[0] == sizeof(float));
  7308. assert(src0->nb[0] == sizeof(float));
  7309. for (int i = 0; i < n; i++) {
  7310. ggml_vec_abs_f32(nc,
  7311. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7312. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7313. }
  7314. }
  7315. static void ggml_compute_forward_abs(
  7316. const struct ggml_compute_params * params,
  7317. const struct ggml_tensor * src0,
  7318. struct ggml_tensor * dst) {
  7319. switch (src0->type) {
  7320. case GGML_TYPE_F32:
  7321. {
  7322. ggml_compute_forward_abs_f32(params, src0, dst);
  7323. } break;
  7324. default:
  7325. {
  7326. GGML_ASSERT(false);
  7327. } break;
  7328. }
  7329. }
  7330. // ggml_compute_forward_sgn
  7331. static void ggml_compute_forward_sgn_f32(
  7332. const struct ggml_compute_params * params,
  7333. const struct ggml_tensor * src0,
  7334. struct ggml_tensor * dst) {
  7335. assert(params->ith == 0);
  7336. assert(ggml_are_same_shape(src0, dst));
  7337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7338. return;
  7339. }
  7340. const int n = ggml_nrows(src0);
  7341. const int nc = src0->ne[0];
  7342. assert(dst->nb[0] == sizeof(float));
  7343. assert(src0->nb[0] == sizeof(float));
  7344. for (int i = 0; i < n; i++) {
  7345. ggml_vec_sgn_f32(nc,
  7346. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7347. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7348. }
  7349. }
  7350. static void ggml_compute_forward_sgn(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. switch (src0->type) {
  7355. case GGML_TYPE_F32:
  7356. {
  7357. ggml_compute_forward_sgn_f32(params, src0, dst);
  7358. } break;
  7359. default:
  7360. {
  7361. GGML_ASSERT(false);
  7362. } break;
  7363. }
  7364. }
  7365. // ggml_compute_forward_neg
  7366. static void ggml_compute_forward_neg_f32(
  7367. const struct ggml_compute_params * params,
  7368. const struct ggml_tensor * src0,
  7369. struct ggml_tensor * dst) {
  7370. assert(params->ith == 0);
  7371. assert(ggml_are_same_shape(src0, dst));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. const int n = ggml_nrows(src0);
  7376. const int nc = src0->ne[0];
  7377. assert(dst->nb[0] == sizeof(float));
  7378. assert(src0->nb[0] == sizeof(float));
  7379. for (int i = 0; i < n; i++) {
  7380. ggml_vec_neg_f32(nc,
  7381. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7382. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7383. }
  7384. }
  7385. static void ggml_compute_forward_neg(
  7386. const struct ggml_compute_params * params,
  7387. const struct ggml_tensor * src0,
  7388. struct ggml_tensor * dst) {
  7389. switch (src0->type) {
  7390. case GGML_TYPE_F32:
  7391. {
  7392. ggml_compute_forward_neg_f32(params, src0, dst);
  7393. } break;
  7394. default:
  7395. {
  7396. GGML_ASSERT(false);
  7397. } break;
  7398. }
  7399. }
  7400. // ggml_compute_forward_step
  7401. static void ggml_compute_forward_step_f32(
  7402. const struct ggml_compute_params * params,
  7403. const struct ggml_tensor * src0,
  7404. struct ggml_tensor * dst) {
  7405. assert(params->ith == 0);
  7406. assert(ggml_are_same_shape(src0, dst));
  7407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7408. return;
  7409. }
  7410. const int n = ggml_nrows(src0);
  7411. const int nc = src0->ne[0];
  7412. assert(dst->nb[0] == sizeof(float));
  7413. assert(src0->nb[0] == sizeof(float));
  7414. for (int i = 0; i < n; i++) {
  7415. ggml_vec_step_f32(nc,
  7416. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7417. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7418. }
  7419. }
  7420. static void ggml_compute_forward_step(
  7421. const struct ggml_compute_params * params,
  7422. const struct ggml_tensor * src0,
  7423. struct ggml_tensor * dst) {
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_step_f32(params, src0, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_tanh
  7436. static void ggml_compute_forward_tanh_f32(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. struct ggml_tensor * dst) {
  7440. assert(params->ith == 0);
  7441. assert(ggml_are_same_shape(src0, dst));
  7442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7443. return;
  7444. }
  7445. const int n = ggml_nrows(src0);
  7446. const int nc = src0->ne[0];
  7447. assert(dst->nb[0] == sizeof(float));
  7448. assert(src0->nb[0] == sizeof(float));
  7449. for (int i = 0; i < n; i++) {
  7450. ggml_vec_tanh_f32(nc,
  7451. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7452. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7453. }
  7454. }
  7455. static void ggml_compute_forward_tanh(
  7456. const struct ggml_compute_params * params,
  7457. const struct ggml_tensor * src0,
  7458. struct ggml_tensor * dst) {
  7459. switch (src0->type) {
  7460. case GGML_TYPE_F32:
  7461. {
  7462. ggml_compute_forward_tanh_f32(params, src0, dst);
  7463. } break;
  7464. default:
  7465. {
  7466. GGML_ASSERT(false);
  7467. } break;
  7468. }
  7469. }
  7470. // ggml_compute_forward_elu
  7471. static void ggml_compute_forward_elu_f32(
  7472. const struct ggml_compute_params * params,
  7473. const struct ggml_tensor * src0,
  7474. struct ggml_tensor * dst) {
  7475. assert(params->ith == 0);
  7476. assert(ggml_are_same_shape(src0, dst));
  7477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7478. return;
  7479. }
  7480. const int n = ggml_nrows(src0);
  7481. const int nc = src0->ne[0];
  7482. assert(dst->nb[0] == sizeof(float));
  7483. assert(src0->nb[0] == sizeof(float));
  7484. for (int i = 0; i < n; i++) {
  7485. ggml_vec_elu_f32(nc,
  7486. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7487. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7488. }
  7489. }
  7490. static void ggml_compute_forward_elu(
  7491. const struct ggml_compute_params * params,
  7492. const struct ggml_tensor * src0,
  7493. struct ggml_tensor * dst) {
  7494. switch (src0->type) {
  7495. case GGML_TYPE_F32:
  7496. {
  7497. ggml_compute_forward_elu_f32(params, src0, dst);
  7498. } break;
  7499. default:
  7500. {
  7501. GGML_ASSERT(false);
  7502. } break;
  7503. }
  7504. }
  7505. // ggml_compute_forward_relu
  7506. static void ggml_compute_forward_relu_f32(
  7507. const struct ggml_compute_params * params,
  7508. const struct ggml_tensor * src0,
  7509. struct ggml_tensor * dst) {
  7510. assert(params->ith == 0);
  7511. assert(ggml_are_same_shape(src0, dst));
  7512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7513. return;
  7514. }
  7515. const int n = ggml_nrows(src0);
  7516. const int nc = src0->ne[0];
  7517. assert(dst->nb[0] == sizeof(float));
  7518. assert(src0->nb[0] == sizeof(float));
  7519. for (int i = 0; i < n; i++) {
  7520. ggml_vec_relu_f32(nc,
  7521. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7522. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7523. }
  7524. }
  7525. static void ggml_compute_forward_relu(
  7526. const struct ggml_compute_params * params,
  7527. const struct ggml_tensor * src0,
  7528. struct ggml_tensor * dst) {
  7529. switch (src0->type) {
  7530. case GGML_TYPE_F32:
  7531. {
  7532. ggml_compute_forward_relu_f32(params, src0, dst);
  7533. } break;
  7534. default:
  7535. {
  7536. GGML_ASSERT(false);
  7537. } break;
  7538. }
  7539. }
  7540. // ggml_compute_forward_gelu
  7541. static void ggml_compute_forward_gelu_f32(
  7542. const struct ggml_compute_params * params,
  7543. const struct ggml_tensor * src0,
  7544. struct ggml_tensor * dst) {
  7545. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7546. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7547. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7549. return;
  7550. }
  7551. const int ith = params->ith;
  7552. const int nth = params->nth;
  7553. const int nc = src0->ne[0];
  7554. const int nr = ggml_nrows(src0);
  7555. // rows per thread
  7556. const int dr = (nr + nth - 1)/nth;
  7557. // row range for this thread
  7558. const int ir0 = dr*ith;
  7559. const int ir1 = MIN(ir0 + dr, nr);
  7560. for (int i1 = ir0; i1 < ir1; i1++) {
  7561. ggml_vec_gelu_f32(nc,
  7562. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7563. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7564. #ifndef NDEBUG
  7565. for (int k = 0; k < nc; k++) {
  7566. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7567. UNUSED(x);
  7568. assert(!isnan(x));
  7569. assert(!isinf(x));
  7570. }
  7571. #endif
  7572. }
  7573. }
  7574. static void ggml_compute_forward_gelu(
  7575. const struct ggml_compute_params * params,
  7576. const struct ggml_tensor * src0,
  7577. struct ggml_tensor * dst) {
  7578. switch (src0->type) {
  7579. case GGML_TYPE_F32:
  7580. {
  7581. ggml_compute_forward_gelu_f32(params, src0, dst);
  7582. } break;
  7583. default:
  7584. {
  7585. GGML_ASSERT(false);
  7586. } break;
  7587. }
  7588. }
  7589. // ggml_compute_forward_gelu_quick
  7590. static void ggml_compute_forward_gelu_quick_f32(
  7591. const struct ggml_compute_params * params,
  7592. const struct ggml_tensor * src0,
  7593. struct ggml_tensor * dst) {
  7594. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7595. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7596. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7598. return;
  7599. }
  7600. const int ith = params->ith;
  7601. const int nth = params->nth;
  7602. const int nc = src0->ne[0];
  7603. const int nr = ggml_nrows(src0);
  7604. // rows per thread
  7605. const int dr = (nr + nth - 1)/nth;
  7606. // row range for this thread
  7607. const int ir0 = dr*ith;
  7608. const int ir1 = MIN(ir0 + dr, nr);
  7609. for (int i1 = ir0; i1 < ir1; i1++) {
  7610. ggml_vec_gelu_quick_f32(nc,
  7611. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7612. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7613. #ifndef NDEBUG
  7614. for (int k = 0; k < nc; k++) {
  7615. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7616. UNUSED(x);
  7617. assert(!isnan(x));
  7618. assert(!isinf(x));
  7619. }
  7620. #endif
  7621. }
  7622. }
  7623. static void ggml_compute_forward_gelu_quick(
  7624. const struct ggml_compute_params * params,
  7625. const struct ggml_tensor * src0,
  7626. struct ggml_tensor * dst) {
  7627. switch (src0->type) {
  7628. case GGML_TYPE_F32:
  7629. {
  7630. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7631. } break;
  7632. default:
  7633. {
  7634. GGML_ASSERT(false);
  7635. } break;
  7636. }
  7637. }
  7638. // ggml_compute_forward_silu
  7639. static void ggml_compute_forward_silu_f32(
  7640. const struct ggml_compute_params * params,
  7641. const struct ggml_tensor * src0,
  7642. struct ggml_tensor * dst) {
  7643. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7644. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7645. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7646. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7647. return;
  7648. }
  7649. const int ith = params->ith;
  7650. const int nth = params->nth;
  7651. const int nc = src0->ne[0];
  7652. const int nr = ggml_nrows(src0);
  7653. // rows per thread
  7654. const int dr = (nr + nth - 1)/nth;
  7655. // row range for this thread
  7656. const int ir0 = dr*ith;
  7657. const int ir1 = MIN(ir0 + dr, nr);
  7658. for (int i1 = ir0; i1 < ir1; i1++) {
  7659. ggml_vec_silu_f32(nc,
  7660. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7661. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7662. #ifndef NDEBUG
  7663. for (int k = 0; k < nc; k++) {
  7664. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7665. UNUSED(x);
  7666. assert(!isnan(x));
  7667. assert(!isinf(x));
  7668. }
  7669. #endif
  7670. }
  7671. }
  7672. static void ggml_compute_forward_silu(
  7673. const struct ggml_compute_params * params,
  7674. const struct ggml_tensor * src0,
  7675. struct ggml_tensor * dst) {
  7676. switch (src0->type) {
  7677. case GGML_TYPE_F32:
  7678. {
  7679. ggml_compute_forward_silu_f32(params, src0, dst);
  7680. } break;
  7681. default:
  7682. {
  7683. GGML_ASSERT(false);
  7684. } break;
  7685. }
  7686. }
  7687. // ggml_compute_forward_leaky_relu
  7688. static void ggml_compute_forward_leaky_relu_f32(
  7689. const struct ggml_compute_params * params,
  7690. const struct ggml_tensor * src0,
  7691. struct ggml_tensor * dst) {
  7692. assert(params->ith == 0);
  7693. assert(ggml_are_same_shape(src0, dst));
  7694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7695. return;
  7696. }
  7697. const int n = ggml_nrows(src0);
  7698. const int nc = src0->ne[0];
  7699. float negative_slope;
  7700. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7701. assert(dst->nb[0] == sizeof(float));
  7702. assert(src0->nb[0] == sizeof(float));
  7703. for (int i = 0; i < n; i++) {
  7704. ggml_vec_leaky_relu_f32(nc,
  7705. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7706. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7707. }
  7708. }
  7709. static void ggml_compute_forward_leaky_relu(
  7710. const struct ggml_compute_params * params,
  7711. const struct ggml_tensor * src0,
  7712. struct ggml_tensor * dst) {
  7713. switch (src0->type) {
  7714. case GGML_TYPE_F32:
  7715. {
  7716. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7717. } break;
  7718. default:
  7719. {
  7720. GGML_ASSERT(false);
  7721. } break;
  7722. }
  7723. }
  7724. // ggml_compute_forward_silu_back
  7725. static void ggml_compute_forward_silu_back_f32(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. const struct ggml_tensor * grad,
  7729. struct ggml_tensor * dst) {
  7730. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7731. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7732. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7733. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7734. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7736. return;
  7737. }
  7738. const int ith = params->ith;
  7739. const int nth = params->nth;
  7740. const int nc = src0->ne[0];
  7741. const int nr = ggml_nrows(src0);
  7742. // rows per thread
  7743. const int dr = (nr + nth - 1)/nth;
  7744. // row range for this thread
  7745. const int ir0 = dr*ith;
  7746. const int ir1 = MIN(ir0 + dr, nr);
  7747. for (int i1 = ir0; i1 < ir1; i1++) {
  7748. ggml_vec_silu_backward_f32(nc,
  7749. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7750. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7751. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7752. #ifndef NDEBUG
  7753. for (int k = 0; k < nc; k++) {
  7754. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7755. UNUSED(x);
  7756. assert(!isnan(x));
  7757. assert(!isinf(x));
  7758. }
  7759. #endif
  7760. }
  7761. }
  7762. static void ggml_compute_forward_silu_back(
  7763. const struct ggml_compute_params * params,
  7764. const struct ggml_tensor * src0,
  7765. const struct ggml_tensor * grad,
  7766. struct ggml_tensor * dst) {
  7767. switch (src0->type) {
  7768. case GGML_TYPE_F32:
  7769. {
  7770. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7771. } break;
  7772. default:
  7773. {
  7774. GGML_ASSERT(false);
  7775. } break;
  7776. }
  7777. }
  7778. static void ggml_compute_forward_hardswish_f32(
  7779. const struct ggml_compute_params * params,
  7780. const struct ggml_tensor * src0,
  7781. struct ggml_tensor * dst) {
  7782. assert(params->ith == 0);
  7783. assert(ggml_are_same_shape(src0, dst));
  7784. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7785. return;
  7786. }
  7787. const int n = ggml_nrows(src0);
  7788. const int nc = src0->ne[0];
  7789. assert(dst->nb[0] == sizeof(float));
  7790. assert(src0->nb[0] == sizeof(float));
  7791. for (int i = 0; i < n; i++) {
  7792. ggml_vec_hardswish_f32(nc,
  7793. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7794. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7795. }
  7796. }
  7797. static void ggml_compute_forward_hardswish(
  7798. const struct ggml_compute_params * params,
  7799. const struct ggml_tensor * src0,
  7800. struct ggml_tensor * dst) {
  7801. switch (src0->type) {
  7802. case GGML_TYPE_F32:
  7803. {
  7804. ggml_compute_forward_hardswish_f32(params, src0, dst);
  7805. } break;
  7806. default:
  7807. {
  7808. GGML_ASSERT(false);
  7809. } break;
  7810. }
  7811. }
  7812. static void ggml_compute_forward_hardsigmoid_f32(
  7813. const struct ggml_compute_params * params,
  7814. const struct ggml_tensor * src0,
  7815. struct ggml_tensor * dst) {
  7816. assert(params->ith == 0);
  7817. assert(ggml_are_same_shape(src0, dst));
  7818. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7819. return;
  7820. }
  7821. const int n = ggml_nrows(src0);
  7822. const int nc = src0->ne[0];
  7823. assert(dst->nb[0] == sizeof(float));
  7824. assert(src0->nb[0] == sizeof(float));
  7825. for (int i = 0; i < n; i++) {
  7826. ggml_vec_hardsigmoid_f32(nc,
  7827. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7828. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7829. }
  7830. }
  7831. static void ggml_compute_forward_hardsigmoid(
  7832. const struct ggml_compute_params * params,
  7833. const struct ggml_tensor * src0,
  7834. struct ggml_tensor * dst) {
  7835. switch (src0->type) {
  7836. case GGML_TYPE_F32:
  7837. {
  7838. ggml_compute_forward_hardsigmoid_f32(params, src0, dst);
  7839. } break;
  7840. default:
  7841. {
  7842. GGML_ASSERT(false);
  7843. } break;
  7844. }
  7845. }
  7846. // ggml_compute_forward_norm
  7847. static void ggml_compute_forward_norm_f32(
  7848. const struct ggml_compute_params * params,
  7849. const struct ggml_tensor * src0,
  7850. struct ggml_tensor * dst) {
  7851. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7852. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7853. return;
  7854. }
  7855. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7856. const int ith = params->ith;
  7857. const int nth = params->nth;
  7858. GGML_TENSOR_UNARY_OP_LOCALS
  7859. float eps;
  7860. memcpy(&eps, dst->op_params, sizeof(float));
  7861. GGML_ASSERT(eps > 0.0f);
  7862. // TODO: optimize
  7863. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7864. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7865. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7866. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7867. ggml_float sum = 0.0;
  7868. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7869. sum += (ggml_float)x[i00];
  7870. }
  7871. float mean = sum/ne00;
  7872. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7873. ggml_float sum2 = 0.0;
  7874. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7875. float v = x[i00] - mean;
  7876. y[i00] = v;
  7877. sum2 += (ggml_float)(v*v);
  7878. }
  7879. float variance = sum2/ne00;
  7880. const float scale = 1.0f/sqrtf(variance + eps);
  7881. ggml_vec_scale_f32(ne00, y, scale);
  7882. }
  7883. }
  7884. }
  7885. }
  7886. static void ggml_compute_forward_norm(
  7887. const struct ggml_compute_params * params,
  7888. const struct ggml_tensor * src0,
  7889. struct ggml_tensor * dst) {
  7890. switch (src0->type) {
  7891. case GGML_TYPE_F32:
  7892. {
  7893. ggml_compute_forward_norm_f32(params, src0, dst);
  7894. } break;
  7895. default:
  7896. {
  7897. GGML_ASSERT(false);
  7898. } break;
  7899. }
  7900. }
  7901. // ggml_compute_forward_group_rms_norm
  7902. static void ggml_compute_forward_rms_norm_f32(
  7903. const struct ggml_compute_params * params,
  7904. const struct ggml_tensor * src0,
  7905. struct ggml_tensor * dst) {
  7906. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7907. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7908. return;
  7909. }
  7910. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7911. const int ith = params->ith;
  7912. const int nth = params->nth;
  7913. GGML_TENSOR_UNARY_OP_LOCALS
  7914. float eps;
  7915. memcpy(&eps, dst->op_params, sizeof(float));
  7916. GGML_ASSERT(eps > 0.0f);
  7917. // TODO: optimize
  7918. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7919. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7920. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7921. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7922. ggml_float sum = 0.0;
  7923. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7924. sum += (ggml_float)(x[i00] * x[i00]);
  7925. }
  7926. const float mean = sum/ne00;
  7927. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7928. memcpy(y, x, ne00 * sizeof(float));
  7929. // for (int i00 = 0; i00 < ne00; i00++) {
  7930. // y[i00] = x[i00];
  7931. // }
  7932. const float scale = 1.0f/sqrtf(mean + eps);
  7933. ggml_vec_scale_f32(ne00, y, scale);
  7934. }
  7935. }
  7936. }
  7937. }
  7938. static void ggml_compute_forward_rms_norm(
  7939. const struct ggml_compute_params * params,
  7940. const struct ggml_tensor * src0,
  7941. struct ggml_tensor * dst) {
  7942. switch (src0->type) {
  7943. case GGML_TYPE_F32:
  7944. {
  7945. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7946. } break;
  7947. default:
  7948. {
  7949. GGML_ASSERT(false);
  7950. } break;
  7951. }
  7952. }
  7953. static void ggml_compute_forward_rms_norm_back_f32(
  7954. const struct ggml_compute_params * params,
  7955. const struct ggml_tensor * src0,
  7956. const struct ggml_tensor * src1,
  7957. struct ggml_tensor * dst) {
  7958. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7960. return;
  7961. }
  7962. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7963. const int ith = params->ith;
  7964. const int nth = params->nth;
  7965. GGML_TENSOR_BINARY_OP_LOCALS
  7966. float eps;
  7967. memcpy(&eps, dst->op_params, sizeof(float));
  7968. // TODO: optimize
  7969. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7970. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7971. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7972. // src1 is same shape as src0 => same indices
  7973. const int64_t i11 = i01;
  7974. const int64_t i12 = i02;
  7975. const int64_t i13 = i03;
  7976. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7977. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7978. ggml_float sum_xx = 0.0;
  7979. ggml_float sum_xdz = 0.0;
  7980. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7981. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7982. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7983. }
  7984. //const float mean = (float)(sum_xx)/ne00;
  7985. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7986. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7987. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7988. // we could cache rms from forward pass to improve performance.
  7989. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7990. //const float rms = sqrtf(mean_eps);
  7991. const float rrms = 1.0f / sqrtf(mean_eps);
  7992. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7993. {
  7994. // z = rms_norm(x)
  7995. //
  7996. // rms_norm(src0) =
  7997. // scale(
  7998. // src0,
  7999. // div(
  8000. // 1,
  8001. // sqrt(
  8002. // add(
  8003. // scale(
  8004. // sum(
  8005. // sqr(
  8006. // src0)),
  8007. // (1.0/N)),
  8008. // eps))));
  8009. // postorder:
  8010. // ## op args grad
  8011. // 00 param src0 grad[#00]
  8012. // 01 const 1
  8013. // 02 sqr (#00) grad[#02]
  8014. // 03 sum (#02) grad[#03]
  8015. // 04 const 1/N
  8016. // 05 scale (#03, #04) grad[#05]
  8017. // 06 const eps
  8018. // 07 add (#05, #06) grad[#07]
  8019. // 08 sqrt (#07) grad[#08]
  8020. // 09 div (#01,#08) grad[#09]
  8021. // 10 scale (#00,#09) grad[#10]
  8022. //
  8023. // backward pass, given grad[#10]
  8024. // #10: scale
  8025. // grad[#00] += scale(grad[#10],#09)
  8026. // grad[#09] += sum(mul(grad[#10],#00))
  8027. // #09: div
  8028. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8029. // #08: sqrt
  8030. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8031. // #07: add
  8032. // grad[#05] += grad[#07]
  8033. // #05: scale
  8034. // grad[#03] += scale(grad[#05],#04)
  8035. // #03: sum
  8036. // grad[#02] += repeat(grad[#03], #02)
  8037. // #02:
  8038. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8039. //
  8040. // substitute and simplify:
  8041. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8042. // grad[#02] = repeat(grad[#03], #02)
  8043. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8044. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8045. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8046. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8047. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8048. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8049. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8050. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8051. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8052. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8053. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8054. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8055. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8056. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8057. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8058. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8059. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8060. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8061. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8062. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8063. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8064. // a = b*c + d*e
  8065. // a = b*c*f/f + d*e*f/f
  8066. // a = (b*c*f + d*e*f)*(1/f)
  8067. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8068. // a = (b + d*e/c)*c
  8069. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8070. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8071. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8072. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8073. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8074. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8075. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8076. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8077. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8078. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8079. }
  8080. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8081. // post-order:
  8082. // dx := x
  8083. // dx := scale(dx,-mean_xdz/mean_eps)
  8084. // dx := add(dx, dz)
  8085. // dx := scale(dx, rrms)
  8086. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8087. ggml_vec_cpy_f32 (ne00, dx, x);
  8088. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8089. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8090. ggml_vec_acc_f32 (ne00, dx, dz);
  8091. ggml_vec_scale_f32(ne00, dx, rrms);
  8092. }
  8093. }
  8094. }
  8095. }
  8096. static void ggml_compute_forward_rms_norm_back(
  8097. const struct ggml_compute_params * params,
  8098. const struct ggml_tensor * src0,
  8099. const struct ggml_tensor * src1,
  8100. struct ggml_tensor * dst) {
  8101. switch (src0->type) {
  8102. case GGML_TYPE_F32:
  8103. {
  8104. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8105. } break;
  8106. default:
  8107. {
  8108. GGML_ASSERT(false);
  8109. } break;
  8110. }
  8111. }
  8112. // ggml_compute_forward_group_norm
  8113. static void ggml_compute_forward_group_norm_f32(
  8114. const struct ggml_compute_params * params,
  8115. const struct ggml_tensor * src0,
  8116. struct ggml_tensor * dst) {
  8117. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8118. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8119. return;
  8120. }
  8121. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8122. const int ith = params->ith;
  8123. const int nth = params->nth;
  8124. GGML_TENSOR_UNARY_OP_LOCALS
  8125. const float eps = 1e-6f; // TODO: make this a parameter
  8126. // TODO: optimize
  8127. int n_channels = src0->ne[2];
  8128. int n_groups = dst->op_params[0];
  8129. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8130. for (int i = ith; i < n_groups; i+=nth) {
  8131. int start = i * n_channels_per_group;
  8132. int end = start + n_channels_per_group;
  8133. if (end > n_channels) {
  8134. end = n_channels;
  8135. }
  8136. int step = end - start;
  8137. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8138. ggml_float sum = 0.0;
  8139. for (int64_t i02 = start; i02 < end; i02++) {
  8140. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8141. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8142. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8143. sum += (ggml_float)x[i00];
  8144. }
  8145. }
  8146. }
  8147. float mean = sum / (ne00 * ne01 * step);
  8148. ggml_float sum2 = 0.0;
  8149. for (int64_t i02 = start; i02 < end; i02++) {
  8150. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8151. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8152. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8153. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8154. float v = x[i00] - mean;
  8155. y[i00] = v;
  8156. sum2 += (ggml_float)(v * v);
  8157. }
  8158. }
  8159. }
  8160. float variance = sum2 / (ne00 * ne01 * step);
  8161. const float scale = 1.0f / sqrtf(variance + eps);
  8162. for (int64_t i02 = start; i02 < end; i02++) {
  8163. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8164. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8165. ggml_vec_scale_f32(ne00, y, scale);
  8166. }
  8167. }
  8168. }
  8169. }
  8170. }
  8171. static void ggml_compute_forward_group_norm(
  8172. const struct ggml_compute_params * params,
  8173. const struct ggml_tensor * src0,
  8174. struct ggml_tensor * dst) {
  8175. switch (src0->type) {
  8176. case GGML_TYPE_F32:
  8177. {
  8178. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8179. } break;
  8180. default:
  8181. {
  8182. GGML_ASSERT(false);
  8183. } break;
  8184. }
  8185. }
  8186. // ggml_compute_forward_mul_mat
  8187. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8188. // helper function to determine if it is better to use BLAS or not
  8189. // for large matrices, BLAS is faster
  8190. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8191. const struct ggml_tensor * src0 = dst->src[0];
  8192. const struct ggml_tensor * src1 = dst->src[1];
  8193. //const int64_t ne00 = src0->ne[0];
  8194. //const int64_t ne01 = src0->ne[1];
  8195. const int64_t ne10 = src1->ne[0];
  8196. const int64_t ne0 = dst->ne[0];
  8197. const int64_t ne1 = dst->ne[1];
  8198. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8199. // all the experts for each batch element and the processing would become incredibly slow
  8200. // TODO: find the optimal values for these
  8201. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8202. ggml_is_contiguous(src0) &&
  8203. ggml_is_contiguous(src1) &&
  8204. //src0->type == GGML_TYPE_F32 &&
  8205. src1->type == GGML_TYPE_F32 &&
  8206. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8207. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8208. return true;
  8209. }
  8210. return false;
  8211. }
  8212. #endif
  8213. static void ggml_compute_forward_mul_mat(
  8214. const struct ggml_compute_params * params,
  8215. const struct ggml_tensor * src0,
  8216. const struct ggml_tensor * src1,
  8217. struct ggml_tensor * dst) {
  8218. int64_t t0 = ggml_perf_time_us();
  8219. UNUSED(t0);
  8220. GGML_TENSOR_BINARY_OP_LOCALS
  8221. const int ith = params->ith;
  8222. const int nth = params->nth;
  8223. const enum ggml_type type = src0->type;
  8224. const bool src1_cont = ggml_is_contiguous(src1);
  8225. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8226. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8227. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8228. GGML_ASSERT(ne0 == ne01);
  8229. GGML_ASSERT(ne1 == ne11);
  8230. GGML_ASSERT(ne2 == ne12);
  8231. GGML_ASSERT(ne3 == ne13);
  8232. // we don't support permuted src0 or src1
  8233. GGML_ASSERT(nb00 == ggml_type_size(type));
  8234. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8235. // dst cannot be transposed or permuted
  8236. GGML_ASSERT(nb0 == sizeof(float));
  8237. GGML_ASSERT(nb0 <= nb1);
  8238. GGML_ASSERT(nb1 <= nb2);
  8239. GGML_ASSERT(nb2 <= nb3);
  8240. // broadcast factors
  8241. const int64_t r2 = ne12/ne02;
  8242. const int64_t r3 = ne13/ne03;
  8243. // nb01 >= nb00 - src0 is not transposed
  8244. // compute by src0 rows
  8245. #if defined(GGML_USE_CLBLAST)
  8246. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8247. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8248. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8249. }
  8250. return;
  8251. }
  8252. #endif
  8253. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8254. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8255. const int64_t ne_plane = ne01*ne00;
  8256. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8257. UNUSED(desired_wsize);
  8258. if (params->type == GGML_TASK_INIT) {
  8259. if (type != GGML_TYPE_F32) {
  8260. assert(params->wsize >= desired_wsize);
  8261. // parallelize by src0 rows
  8262. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8263. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8264. // broadcast src0 into src1 across 2nd,3rd dimension
  8265. const int64_t i03 = i13/r3;
  8266. const int64_t i02 = i12/r2;
  8267. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8268. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8269. ggml_to_float_t const to_float = type_traits[type].to_float;
  8270. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8271. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8272. }
  8273. }
  8274. }
  8275. }
  8276. return;
  8277. }
  8278. if (params->type == GGML_TASK_FINALIZE) {
  8279. return;
  8280. }
  8281. // perform sgemm, parallelization controlled by blas lib
  8282. if (ith != 0) {
  8283. return;
  8284. }
  8285. //const int64_t tgemm0 = ggml_perf_time_us();
  8286. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8287. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8288. const int64_t i03 = i13/r3;
  8289. const int64_t i02 = i12/r2;
  8290. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8291. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8292. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8293. if (type != GGML_TYPE_F32) {
  8294. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8295. }
  8296. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8297. ne1, ne01, ne10,
  8298. 1.0f, y, ne10,
  8299. x, ne00,
  8300. 0.0f, d, ne01);
  8301. }
  8302. }
  8303. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8304. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8305. return;
  8306. }
  8307. #endif
  8308. if (params->type == GGML_TASK_INIT) {
  8309. if (ith != 0) {
  8310. return;
  8311. }
  8312. if (src1->type != vec_dot_type) {
  8313. char * wdata = params->wdata;
  8314. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8315. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8316. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8317. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8318. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8319. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8320. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8321. wdata += row_size;
  8322. }
  8323. }
  8324. }
  8325. }
  8326. return;
  8327. }
  8328. if (params->type == GGML_TASK_FINALIZE) {
  8329. return;
  8330. }
  8331. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8332. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8333. const int64_t nr0 = ne01; // src0 rows
  8334. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8335. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8336. // distribute the thread work across the inner or outer loop based on which one is larger
  8337. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8338. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8339. const int64_t ith0 = ith % nth0;
  8340. const int64_t ith1 = ith / nth0;
  8341. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8342. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8343. const int64_t ir010 = dr0*ith0;
  8344. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8345. const int64_t ir110 = dr1*ith1;
  8346. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8347. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8348. // threads with no work simply yield (not sure if it helps)
  8349. if (ir010 >= ir011 || ir110 >= ir111) {
  8350. sched_yield();
  8351. return;
  8352. }
  8353. assert(ne12 % ne02 == 0);
  8354. assert(ne13 % ne03 == 0);
  8355. // block-tiling attempt
  8356. const int64_t blck_0 = 16;
  8357. const int64_t blck_1 = 16;
  8358. // attempt to reduce false-sharing (does not seem to make a difference)
  8359. float tmp[16];
  8360. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8361. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8362. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8363. const int64_t i13 = (ir1/(ne12*ne1));
  8364. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8365. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8366. // broadcast src0 into src1
  8367. const int64_t i03 = i13/r3;
  8368. const int64_t i02 = i12/r2;
  8369. const int64_t i1 = i11;
  8370. const int64_t i2 = i12;
  8371. const int64_t i3 = i13;
  8372. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8373. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8374. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8375. // the original src1 data pointer, so we should index using the indices directly
  8376. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8377. const char * src1_col = (const char *) wdata +
  8378. (src1_cont || src1->type != vec_dot_type
  8379. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8380. : (i11*nb11 + i12*nb12 + i13*nb13));
  8381. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8382. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8383. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8384. //}
  8385. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8386. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8387. }
  8388. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8389. }
  8390. }
  8391. }
  8392. }
  8393. // ggml_compute_forward_mul_mat_id
  8394. static void ggml_compute_forward_mul_mat_id(
  8395. const struct ggml_compute_params * params,
  8396. const struct ggml_tensor * ids,
  8397. const struct ggml_tensor * src1,
  8398. struct ggml_tensor * dst) {
  8399. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8400. GGML_TENSOR_BINARY_OP_LOCALS
  8401. const int ith = params->ith;
  8402. const int nth = params->nth;
  8403. const enum ggml_type type = src0->type;
  8404. const bool src1_cont = ggml_is_contiguous(src1);
  8405. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8406. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8407. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8408. GGML_ASSERT(ne0 == ne01);
  8409. GGML_ASSERT(ne1 == ne11);
  8410. GGML_ASSERT(ne2 == ne12);
  8411. GGML_ASSERT(ne3 == ne13);
  8412. // we don't support permuted src0 or src1
  8413. GGML_ASSERT(nb00 == ggml_type_size(type));
  8414. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8415. // dst cannot be transposed or permuted
  8416. GGML_ASSERT(nb0 == sizeof(float));
  8417. GGML_ASSERT(nb0 <= nb1);
  8418. GGML_ASSERT(nb1 <= nb2);
  8419. GGML_ASSERT(nb2 <= nb3);
  8420. // broadcast factors
  8421. const int64_t r2 = ne12/ne02;
  8422. const int64_t r3 = ne13/ne03;
  8423. // row groups
  8424. const int id = ggml_get_op_params_i32(dst, 0);
  8425. const int n_as = ggml_get_op_params_i32(dst, 1);
  8426. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8427. (char *) params->wdata :
  8428. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8429. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8430. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8431. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8432. if (params->type == GGML_TASK_INIT) {
  8433. if (ith != 0) {
  8434. return;
  8435. }
  8436. char * wdata = params->wdata;
  8437. if (src1->type != vec_dot_type) {
  8438. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8439. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8440. assert(src1->type == GGML_TYPE_F32);
  8441. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8442. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8443. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8444. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8445. wdata += row_size;
  8446. }
  8447. }
  8448. }
  8449. }
  8450. // initialize matrix_row_counts
  8451. GGML_ASSERT(wdata == wdata_src1_end);
  8452. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8453. // group rows by src0 matrix
  8454. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8455. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8456. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8457. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8458. matrix_row_counts[row_id] += 1;
  8459. }
  8460. return;
  8461. }
  8462. if (params->type == GGML_TASK_FINALIZE) {
  8463. return;
  8464. }
  8465. // compute each matrix multiplication in sequence
  8466. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8467. const int64_t cne1 = matrix_row_counts[cur_a];
  8468. if (cne1 == 0) {
  8469. continue;
  8470. }
  8471. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8472. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8473. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8474. const int64_t nr0 = ne01; // src0 rows
  8475. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8476. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8477. // distribute the thread work across the inner or outer loop based on which one is larger
  8478. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8479. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8480. const int64_t ith0 = ith % nth0;
  8481. const int64_t ith1 = ith / nth0;
  8482. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8483. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8484. const int64_t ir010 = dr0*ith0;
  8485. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8486. const int64_t ir110 = dr1*ith1;
  8487. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8488. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8489. // threads with no work simply yield (not sure if it helps)
  8490. if (ir010 >= ir011 || ir110 >= ir111) {
  8491. sched_yield();
  8492. continue;
  8493. }
  8494. assert(ne12 % ne02 == 0);
  8495. assert(ne13 % ne03 == 0);
  8496. // block-tiling attempt
  8497. const int64_t blck_0 = 16;
  8498. const int64_t blck_1 = 16;
  8499. // attempt to reduce false-sharing (does not seem to make a difference)
  8500. float tmp[16];
  8501. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8502. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8503. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8504. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8505. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8506. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8507. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8508. // broadcast src0 into src1
  8509. const int64_t i03 = i13/r3;
  8510. const int64_t i02 = i12/r2;
  8511. const int64_t i1 = i11;
  8512. const int64_t i2 = i12;
  8513. const int64_t i3 = i13;
  8514. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8515. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8516. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8517. // the original src1 data pointer, so we should index using the indices directly
  8518. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8519. const char * src1_col = (const char *) wdata +
  8520. (src1_cont || src1->type != vec_dot_type
  8521. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8522. : (i11*nb11 + i12*nb12 + i13*nb13));
  8523. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8524. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8525. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8526. //}
  8527. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8528. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8529. }
  8530. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8531. }
  8532. }
  8533. }
  8534. }
  8535. #undef MMID_MATRIX_ROW
  8536. }
  8537. // ggml_compute_forward_out_prod
  8538. static void ggml_compute_forward_out_prod_f32(
  8539. const struct ggml_compute_params * params,
  8540. const struct ggml_tensor * src0,
  8541. const struct ggml_tensor * src1,
  8542. struct ggml_tensor * dst) {
  8543. // int64_t t0 = ggml_perf_time_us();
  8544. // UNUSED(t0);
  8545. GGML_TENSOR_BINARY_OP_LOCALS
  8546. const int ith = params->ith;
  8547. const int nth = params->nth;
  8548. GGML_ASSERT(ne0 == ne00);
  8549. GGML_ASSERT(ne1 == ne10);
  8550. GGML_ASSERT(ne2 == ne02);
  8551. GGML_ASSERT(ne02 == ne12);
  8552. GGML_ASSERT(ne3 == ne13);
  8553. GGML_ASSERT(ne03 == ne13);
  8554. // we don't support permuted src0 or src1
  8555. GGML_ASSERT(nb00 == sizeof(float));
  8556. // dst cannot be transposed or permuted
  8557. GGML_ASSERT(nb0 == sizeof(float));
  8558. // GGML_ASSERT(nb0 <= nb1);
  8559. // GGML_ASSERT(nb1 <= nb2);
  8560. // GGML_ASSERT(nb2 <= nb3);
  8561. // nb01 >= nb00 - src0 is not transposed
  8562. // compute by src0 rows
  8563. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8564. // TODO: #if defined(GGML_USE_CLBLAST)
  8565. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8566. bool use_blas = ggml_is_matrix(src0) &&
  8567. ggml_is_matrix(src1) &&
  8568. ggml_is_contiguous(src0) &&
  8569. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8570. #endif
  8571. if (params->type == GGML_TASK_INIT) {
  8572. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8573. if (use_blas) {
  8574. return;
  8575. }
  8576. #endif
  8577. if (ith != 0) {
  8578. return;
  8579. }
  8580. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8581. return;
  8582. }
  8583. if (params->type == GGML_TASK_FINALIZE) {
  8584. return;
  8585. }
  8586. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8587. if (use_blas) {
  8588. if (params->ith != 0) { // All threads other than the first do no work.
  8589. return;
  8590. }
  8591. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8592. // src0: (k,n)
  8593. // src1: (k,m)
  8594. // dst: (m,n)
  8595. //
  8596. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8597. // Also expressed as (major,minor)
  8598. // a: (m,k): so src1 transposed
  8599. // b: (k,n): so src0
  8600. // c: (m,n)
  8601. //
  8602. // However, if ggml_is_transposed(src1) is true, then
  8603. // src1->data already contains a transposed version, so sgemm mustn't
  8604. // transpose it further.
  8605. int n = src0->ne[0];
  8606. int k = src0->ne[1];
  8607. int m = src1->ne[0];
  8608. int transposeA, lda;
  8609. if (!ggml_is_transposed(src1)) {
  8610. transposeA = CblasTrans;
  8611. lda = m;
  8612. } else {
  8613. transposeA = CblasNoTrans;
  8614. lda = k;
  8615. }
  8616. float * a = (float *) ((char *) src1->data);
  8617. float * b = (float *) ((char *) src0->data);
  8618. float * c = (float *) ((char *) dst->data);
  8619. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8620. return;
  8621. }
  8622. #endif
  8623. // dst[:,:,:,:] = 0
  8624. // for i2,i3:
  8625. // for i1:
  8626. // for i01:
  8627. // for i0:
  8628. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8629. // parallelize by last three dimensions
  8630. // total rows in dst
  8631. const int64_t nr = ne1*ne2*ne3;
  8632. // rows per thread
  8633. const int64_t dr = (nr + nth - 1)/nth;
  8634. // row range for this thread
  8635. const int64_t ir0 = dr*ith;
  8636. const int64_t ir1 = MIN(ir0 + dr, nr);
  8637. // block-tiling attempt
  8638. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8639. const int64_t blck_1 = 16;
  8640. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8641. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8642. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8643. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8644. for (int64_t ir = bir; ir < bir1; ++ir) {
  8645. // dst indices
  8646. const int64_t i3 = ir/(ne2*ne1);
  8647. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8648. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8649. const int64_t i02 = i2;
  8650. const int64_t i03 = i3;
  8651. //const int64_t i10 = i1;
  8652. const int64_t i12 = i2;
  8653. const int64_t i13 = i3;
  8654. #if GGML_VEC_MAD_UNROLL > 2
  8655. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8656. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8657. const int64_t i11 = i01;
  8658. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8659. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8660. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8661. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8662. }
  8663. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8664. const int64_t i11 = i01;
  8665. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8666. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8667. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8668. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8669. }
  8670. #else
  8671. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8672. const int64_t i11 = i01;
  8673. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8674. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8675. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8676. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8677. }
  8678. #endif
  8679. }
  8680. }
  8681. }
  8682. //int64_t t1 = ggml_perf_time_us();
  8683. //static int64_t acc = 0;
  8684. //acc += t1 - t0;
  8685. //if (t1 - t0 > 10) {
  8686. // printf("\n");
  8687. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8688. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8689. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8690. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8691. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8692. //}
  8693. }
  8694. static void ggml_compute_forward_out_prod_q_f32(
  8695. const struct ggml_compute_params * params,
  8696. const struct ggml_tensor * src0,
  8697. const struct ggml_tensor * src1,
  8698. struct ggml_tensor * dst) {
  8699. // int64_t t0 = ggml_perf_time_us();
  8700. // UNUSED(t0);
  8701. GGML_TENSOR_BINARY_OP_LOCALS;
  8702. const int ith = params->ith;
  8703. const int nth = params->nth;
  8704. const enum ggml_type type = src0->type;
  8705. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8706. GGML_ASSERT(ne02 == ne12);
  8707. GGML_ASSERT(ne03 == ne13);
  8708. GGML_ASSERT(ne2 == ne12);
  8709. GGML_ASSERT(ne3 == ne13);
  8710. // we don't support permuted src0 dim0
  8711. GGML_ASSERT(nb00 == ggml_type_size(type));
  8712. // dst dim0 cannot be transposed or permuted
  8713. GGML_ASSERT(nb0 == sizeof(float));
  8714. // GGML_ASSERT(nb0 <= nb1);
  8715. // GGML_ASSERT(nb1 <= nb2);
  8716. // GGML_ASSERT(nb2 <= nb3);
  8717. GGML_ASSERT(ne0 == ne00);
  8718. GGML_ASSERT(ne1 == ne10);
  8719. GGML_ASSERT(ne2 == ne02);
  8720. GGML_ASSERT(ne3 == ne03);
  8721. // nb01 >= nb00 - src0 is not transposed
  8722. // compute by src0 rows
  8723. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8724. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8725. if (params->type == GGML_TASK_INIT) {
  8726. if (ith != 0) {
  8727. return;
  8728. }
  8729. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8730. return;
  8731. }
  8732. if (params->type == GGML_TASK_FINALIZE) {
  8733. return;
  8734. }
  8735. // parallelize by last three dimensions
  8736. // total rows in dst
  8737. const int64_t nr = ne1*ne2*ne3;
  8738. // rows per thread
  8739. const int64_t dr = (nr + nth - 1)/nth;
  8740. // row range for this thread
  8741. const int64_t ir0 = dr*ith;
  8742. const int64_t ir1 = MIN(ir0 + dr, nr);
  8743. // dst[:,:,:,:] = 0
  8744. // for i2,i3:
  8745. // for i1:
  8746. // for i01:
  8747. // for i0:
  8748. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8749. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8750. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8751. // dst indices
  8752. const int64_t i3 = ir/(ne2*ne1);
  8753. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8754. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8755. const int64_t i02 = i2;
  8756. const int64_t i03 = i3;
  8757. //const int64_t i10 = i1;
  8758. const int64_t i12 = i2;
  8759. const int64_t i13 = i3;
  8760. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8761. const int64_t i11 = i01;
  8762. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8763. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8764. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8765. dequantize_row_q(s0, wdata, ne0);
  8766. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8767. }
  8768. }
  8769. //int64_t t1 = ggml_perf_time_us();
  8770. //static int64_t acc = 0;
  8771. //acc += t1 - t0;
  8772. //if (t1 - t0 > 10) {
  8773. // printf("\n");
  8774. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8775. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8776. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8777. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8778. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8779. //}
  8780. }
  8781. static void ggml_compute_forward_out_prod(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0,
  8784. const struct ggml_tensor * src1,
  8785. struct ggml_tensor * dst) {
  8786. switch (src0->type) {
  8787. case GGML_TYPE_Q4_0:
  8788. case GGML_TYPE_Q4_1:
  8789. case GGML_TYPE_Q5_0:
  8790. case GGML_TYPE_Q5_1:
  8791. case GGML_TYPE_Q8_0:
  8792. case GGML_TYPE_Q2_K:
  8793. case GGML_TYPE_Q3_K:
  8794. case GGML_TYPE_Q4_K:
  8795. case GGML_TYPE_Q5_K:
  8796. case GGML_TYPE_Q6_K:
  8797. case GGML_TYPE_IQ2_XXS:
  8798. case GGML_TYPE_IQ2_XS:
  8799. case GGML_TYPE_IQ3_XXS:
  8800. {
  8801. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8802. } break;
  8803. case GGML_TYPE_F16:
  8804. {
  8805. GGML_ASSERT(false); // todo
  8806. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8807. } break;
  8808. case GGML_TYPE_F32:
  8809. {
  8810. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8811. } break;
  8812. default:
  8813. {
  8814. GGML_ASSERT(false);
  8815. } break;
  8816. }
  8817. }
  8818. // ggml_compute_forward_scale
  8819. static void ggml_compute_forward_scale_f32(
  8820. const struct ggml_compute_params * params,
  8821. const struct ggml_tensor * src0,
  8822. struct ggml_tensor * dst) {
  8823. GGML_ASSERT(ggml_is_contiguous(src0));
  8824. GGML_ASSERT(ggml_is_contiguous(dst));
  8825. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8826. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8827. return;
  8828. }
  8829. // scale factor
  8830. float v;
  8831. memcpy(&v, dst->op_params, sizeof(float));
  8832. const int ith = params->ith;
  8833. const int nth = params->nth;
  8834. const int nc = src0->ne[0];
  8835. const int nr = ggml_nrows(src0);
  8836. // rows per thread
  8837. const int dr = (nr + nth - 1)/nth;
  8838. // row range for this thread
  8839. const int ir0 = dr*ith;
  8840. const int ir1 = MIN(ir0 + dr, nr);
  8841. const size_t nb01 = src0->nb[1];
  8842. const size_t nb1 = dst->nb[1];
  8843. for (int i1 = ir0; i1 < ir1; i1++) {
  8844. if (dst->data != src0->data) {
  8845. // src0 is same shape as dst => same indices
  8846. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8847. }
  8848. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8849. }
  8850. }
  8851. static void ggml_compute_forward_scale(
  8852. const struct ggml_compute_params * params,
  8853. const struct ggml_tensor * src0,
  8854. struct ggml_tensor * dst) {
  8855. switch (src0->type) {
  8856. case GGML_TYPE_F32:
  8857. {
  8858. ggml_compute_forward_scale_f32(params, src0, dst);
  8859. } break;
  8860. default:
  8861. {
  8862. GGML_ASSERT(false);
  8863. } break;
  8864. }
  8865. }
  8866. // ggml_compute_forward_set
  8867. static void ggml_compute_forward_set_f32(
  8868. const struct ggml_compute_params * params,
  8869. const struct ggml_tensor * src0,
  8870. const struct ggml_tensor * src1,
  8871. struct ggml_tensor * dst) {
  8872. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8873. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8874. // view src0 and dst with these strides and data offset inbytes during set
  8875. // nb0 is implicitly element_size because src0 and dst are contiguous
  8876. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8877. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8878. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8879. size_t offset = ((int32_t *) dst->op_params)[3];
  8880. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8881. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8882. if (params->ith != 0) {
  8883. return;
  8884. }
  8885. // memcpy needs to be synchronized across threads to avoid race conditions.
  8886. // => do it in INIT phase
  8887. memcpy(
  8888. ((char *) dst->data),
  8889. ((char *) src0->data),
  8890. ggml_nbytes(dst));
  8891. }
  8892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8893. return;
  8894. }
  8895. const int ith = params->ith;
  8896. const int nth = params->nth;
  8897. const int nr = ggml_nrows(src1);
  8898. const int nc = src1->ne[0];
  8899. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8900. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8901. // src0 and dst as viewed during set
  8902. const size_t nb0 = ggml_element_size(src0);
  8903. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8904. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8905. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8906. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8907. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8908. GGML_ASSERT(nb10 == sizeof(float));
  8909. // rows per thread
  8910. const int dr = (nr + nth - 1)/nth;
  8911. // row range for this thread
  8912. const int ir0 = dr*ith;
  8913. const int ir1 = MIN(ir0 + dr, nr);
  8914. for (int ir = ir0; ir < ir1; ++ir) {
  8915. // src0 and dst are viewed with shape of src1 and offset
  8916. // => same indices
  8917. const int i3 = ir/(ne12*ne11);
  8918. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8919. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8920. ggml_vec_cpy_f32(nc,
  8921. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8922. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8923. }
  8924. }
  8925. static void ggml_compute_forward_set(
  8926. const struct ggml_compute_params * params,
  8927. const struct ggml_tensor * src0,
  8928. const struct ggml_tensor * src1,
  8929. struct ggml_tensor * dst) {
  8930. switch (src0->type) {
  8931. case GGML_TYPE_F32:
  8932. {
  8933. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8934. } break;
  8935. case GGML_TYPE_F16:
  8936. case GGML_TYPE_Q4_0:
  8937. case GGML_TYPE_Q4_1:
  8938. case GGML_TYPE_Q5_0:
  8939. case GGML_TYPE_Q5_1:
  8940. case GGML_TYPE_Q8_0:
  8941. case GGML_TYPE_Q8_1:
  8942. case GGML_TYPE_Q2_K:
  8943. case GGML_TYPE_Q3_K:
  8944. case GGML_TYPE_Q4_K:
  8945. case GGML_TYPE_Q5_K:
  8946. case GGML_TYPE_Q6_K:
  8947. case GGML_TYPE_IQ2_XXS:
  8948. case GGML_TYPE_IQ2_XS:
  8949. case GGML_TYPE_IQ3_XXS:
  8950. default:
  8951. {
  8952. GGML_ASSERT(false);
  8953. } break;
  8954. }
  8955. }
  8956. // ggml_compute_forward_cpy
  8957. static void ggml_compute_forward_cpy(
  8958. const struct ggml_compute_params * params,
  8959. const struct ggml_tensor * src0,
  8960. struct ggml_tensor * dst) {
  8961. ggml_compute_forward_dup(params, src0, dst);
  8962. }
  8963. // ggml_compute_forward_cont
  8964. static void ggml_compute_forward_cont(
  8965. const struct ggml_compute_params * params,
  8966. const struct ggml_tensor * src0,
  8967. struct ggml_tensor * dst) {
  8968. ggml_compute_forward_dup(params, src0, dst);
  8969. }
  8970. // ggml_compute_forward_reshape
  8971. static void ggml_compute_forward_reshape(
  8972. const struct ggml_compute_params * params,
  8973. const struct ggml_tensor * src0,
  8974. struct ggml_tensor * dst) {
  8975. // NOP
  8976. UNUSED(params);
  8977. UNUSED(src0);
  8978. UNUSED(dst);
  8979. }
  8980. // ggml_compute_forward_view
  8981. static void ggml_compute_forward_view(
  8982. const struct ggml_compute_params * params,
  8983. const struct ggml_tensor * src0) {
  8984. // NOP
  8985. UNUSED(params);
  8986. UNUSED(src0);
  8987. }
  8988. // ggml_compute_forward_permute
  8989. static void ggml_compute_forward_permute(
  8990. const struct ggml_compute_params * params,
  8991. const struct ggml_tensor * src0) {
  8992. // NOP
  8993. UNUSED(params);
  8994. UNUSED(src0);
  8995. }
  8996. // ggml_compute_forward_transpose
  8997. static void ggml_compute_forward_transpose(
  8998. const struct ggml_compute_params * params,
  8999. const struct ggml_tensor * src0) {
  9000. // NOP
  9001. UNUSED(params);
  9002. UNUSED(src0);
  9003. }
  9004. // ggml_compute_forward_get_rows
  9005. static void ggml_compute_forward_get_rows_q(
  9006. const struct ggml_compute_params * params,
  9007. const struct ggml_tensor * src0,
  9008. const struct ggml_tensor * src1,
  9009. struct ggml_tensor * dst) {
  9010. assert(params->ith == 0);
  9011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9012. return;
  9013. }
  9014. GGML_TENSOR_BINARY_OP_LOCALS
  9015. const int64_t nc = ne00;
  9016. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9017. const enum ggml_type type = src0->type;
  9018. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9019. assert(ne0 == nc);
  9020. assert(ne02 == ne11);
  9021. assert(nb00 == ggml_type_size(type));
  9022. assert(ggml_nrows(dst) == nr);
  9023. // TODO: multi-thread
  9024. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9025. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9026. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9027. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9028. dequantize_row_q(
  9029. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9030. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9031. }
  9032. }
  9033. }
  9034. }
  9035. static void ggml_compute_forward_get_rows_f16(
  9036. const struct ggml_compute_params * params,
  9037. const struct ggml_tensor * src0,
  9038. const struct ggml_tensor * src1,
  9039. struct ggml_tensor * dst) {
  9040. assert(params->ith == 0);
  9041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9042. return;
  9043. }
  9044. GGML_TENSOR_BINARY_OP_LOCALS
  9045. const int64_t nc = ne00;
  9046. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9047. assert(ne0 == nc);
  9048. assert(ne02 == ne11);
  9049. assert(nb00 == sizeof(ggml_fp16_t));
  9050. assert(ggml_nrows(dst) == nr);
  9051. // TODO: multi-thread
  9052. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9053. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9054. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9055. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9056. ggml_fp16_to_fp32_row(
  9057. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9058. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9059. }
  9060. }
  9061. }
  9062. }
  9063. static void ggml_compute_forward_get_rows_f32(
  9064. const struct ggml_compute_params * params,
  9065. const struct ggml_tensor * src0,
  9066. const struct ggml_tensor * src1,
  9067. struct ggml_tensor * dst) {
  9068. assert(params->ith == 0);
  9069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9070. return;
  9071. }
  9072. GGML_TENSOR_BINARY_OP_LOCALS
  9073. const int64_t nc = ne00;
  9074. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9075. assert(ne0 == nc);
  9076. assert(ne02 == ne11);
  9077. assert(nb00 == sizeof(float));
  9078. assert(ggml_nrows(dst) == nr);
  9079. // TODO: multi-thread
  9080. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9081. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9082. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9083. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9084. ggml_vec_cpy_f32(nc,
  9085. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9086. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9087. }
  9088. }
  9089. }
  9090. }
  9091. static void ggml_compute_forward_get_rows(
  9092. const struct ggml_compute_params * params,
  9093. const struct ggml_tensor * src0,
  9094. const struct ggml_tensor * src1,
  9095. struct ggml_tensor * dst) {
  9096. switch (src0->type) {
  9097. case GGML_TYPE_Q4_0:
  9098. case GGML_TYPE_Q4_1:
  9099. case GGML_TYPE_Q5_0:
  9100. case GGML_TYPE_Q5_1:
  9101. case GGML_TYPE_Q8_0:
  9102. case GGML_TYPE_Q8_1:
  9103. case GGML_TYPE_Q2_K:
  9104. case GGML_TYPE_Q3_K:
  9105. case GGML_TYPE_Q4_K:
  9106. case GGML_TYPE_Q5_K:
  9107. case GGML_TYPE_Q6_K:
  9108. case GGML_TYPE_IQ2_XXS:
  9109. case GGML_TYPE_IQ2_XS:
  9110. case GGML_TYPE_IQ3_XXS:
  9111. {
  9112. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9113. } break;
  9114. case GGML_TYPE_F16:
  9115. {
  9116. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9117. } break;
  9118. case GGML_TYPE_F32:
  9119. case GGML_TYPE_I32:
  9120. {
  9121. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9122. } break;
  9123. default:
  9124. {
  9125. GGML_ASSERT(false);
  9126. } break;
  9127. }
  9128. //static bool first = true;
  9129. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9130. //if (first) {
  9131. // first = false;
  9132. //} else {
  9133. // for (int k = 0; k < dst->ne[1]; ++k) {
  9134. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9135. // for (int i = 0; i < 16; ++i) {
  9136. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9137. // }
  9138. // printf("\n");
  9139. // }
  9140. // printf("\n");
  9141. // }
  9142. // printf("\n");
  9143. // exit(0);
  9144. //}
  9145. }
  9146. // ggml_compute_forward_get_rows_back
  9147. static void ggml_compute_forward_get_rows_back_f32_f16(
  9148. const struct ggml_compute_params * params,
  9149. const struct ggml_tensor * src0,
  9150. const struct ggml_tensor * src1,
  9151. struct ggml_tensor * dst) {
  9152. GGML_ASSERT(params->ith == 0);
  9153. GGML_ASSERT(ggml_is_contiguous(dst));
  9154. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9155. if (params->type == GGML_TASK_INIT) {
  9156. if (params->ith != 0) {
  9157. return;
  9158. }
  9159. memset(dst->data, 0, ggml_nbytes(dst));
  9160. }
  9161. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9162. return;
  9163. }
  9164. const int nc = src0->ne[0];
  9165. const int nr = ggml_nelements(src1);
  9166. GGML_ASSERT( dst->ne[0] == nc);
  9167. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9168. for (int i = 0; i < nr; ++i) {
  9169. const int r = ((int32_t *) src1->data)[i];
  9170. for (int j = 0; j < nc; ++j) {
  9171. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9172. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9173. }
  9174. }
  9175. }
  9176. static void ggml_compute_forward_get_rows_back_f32(
  9177. const struct ggml_compute_params * params,
  9178. const struct ggml_tensor * src0,
  9179. const struct ggml_tensor * src1,
  9180. struct ggml_tensor * dst) {
  9181. GGML_ASSERT(params->ith == 0);
  9182. GGML_ASSERT(ggml_is_contiguous(dst));
  9183. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9184. if (params->type == GGML_TASK_INIT) {
  9185. if (params->ith != 0) {
  9186. return;
  9187. }
  9188. memset(dst->data, 0, ggml_nbytes(dst));
  9189. }
  9190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9191. return;
  9192. }
  9193. const int nc = src0->ne[0];
  9194. const int nr = ggml_nelements(src1);
  9195. GGML_ASSERT( dst->ne[0] == nc);
  9196. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9197. for (int i = 0; i < nr; ++i) {
  9198. const int r = ((int32_t *) src1->data)[i];
  9199. ggml_vec_add_f32(nc,
  9200. (float *) ((char *) dst->data + r*dst->nb[1]),
  9201. (float *) ((char *) dst->data + r*dst->nb[1]),
  9202. (float *) ((char *) src0->data + i*src0->nb[1]));
  9203. }
  9204. }
  9205. static void ggml_compute_forward_get_rows_back(
  9206. const struct ggml_compute_params * params,
  9207. const struct ggml_tensor * src0,
  9208. const struct ggml_tensor * src1,
  9209. struct ggml_tensor * dst) {
  9210. switch (src0->type) {
  9211. case GGML_TYPE_F16:
  9212. {
  9213. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  9214. } break;
  9215. case GGML_TYPE_F32:
  9216. {
  9217. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  9218. } break;
  9219. default:
  9220. {
  9221. GGML_ASSERT(false);
  9222. } break;
  9223. }
  9224. //static bool first = true;
  9225. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9226. //if (first) {
  9227. // first = false;
  9228. //} else {
  9229. // for (int k = 0; k < dst->ne[1]; ++k) {
  9230. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9231. // for (int i = 0; i < 16; ++i) {
  9232. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9233. // }
  9234. // printf("\n");
  9235. // }
  9236. // printf("\n");
  9237. // }
  9238. // printf("\n");
  9239. // exit(0);
  9240. //}
  9241. }
  9242. // ggml_compute_forward_diag
  9243. static void ggml_compute_forward_diag_f32(
  9244. const struct ggml_compute_params * params,
  9245. const struct ggml_tensor * src0,
  9246. struct ggml_tensor * dst) {
  9247. GGML_ASSERT(params->ith == 0);
  9248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9249. return;
  9250. }
  9251. // TODO: handle transposed/permuted matrices
  9252. GGML_TENSOR_UNARY_OP_LOCALS
  9253. GGML_ASSERT(ne00 == ne0);
  9254. GGML_ASSERT(ne00 == ne1);
  9255. GGML_ASSERT(ne01 == 1);
  9256. GGML_ASSERT(ne02 == ne2);
  9257. GGML_ASSERT(ne03 == ne3);
  9258. GGML_ASSERT(nb00 == sizeof(float));
  9259. GGML_ASSERT(nb0 == sizeof(float));
  9260. for (int i3 = 0; i3 < ne3; i3++) {
  9261. for (int i2 = 0; i2 < ne2; i2++) {
  9262. for (int i1 = 0; i1 < ne1; i1++) {
  9263. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9264. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9265. for (int i0 = 0; i0 < i1; i0++) {
  9266. d[i0] = 0;
  9267. }
  9268. d[i1] = s[i1];
  9269. for (int i0 = i1+1; i0 < ne0; i0++) {
  9270. d[i0] = 0;
  9271. }
  9272. }
  9273. }
  9274. }
  9275. }
  9276. static void ggml_compute_forward_diag(
  9277. const struct ggml_compute_params * params,
  9278. const struct ggml_tensor * src0,
  9279. struct ggml_tensor * dst) {
  9280. switch (src0->type) {
  9281. case GGML_TYPE_F32:
  9282. {
  9283. ggml_compute_forward_diag_f32(params, src0, dst);
  9284. } break;
  9285. default:
  9286. {
  9287. GGML_ASSERT(false);
  9288. } break;
  9289. }
  9290. }
  9291. // ggml_compute_forward_diag_mask_inf
  9292. static void ggml_compute_forward_diag_mask_f32(
  9293. const struct ggml_compute_params * params,
  9294. const struct ggml_tensor * src0,
  9295. struct ggml_tensor * dst,
  9296. const float value) {
  9297. const int ith = params->ith;
  9298. const int nth = params->nth;
  9299. const int n_past = ((int32_t *) dst->op_params)[0];
  9300. const bool inplace = src0->data == dst->data;
  9301. GGML_ASSERT(n_past >= 0);
  9302. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9303. if (ith != 0) {
  9304. return;
  9305. }
  9306. // memcpy needs to be synchronized across threads to avoid race conditions.
  9307. // => do it in INIT phase
  9308. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9309. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9310. memcpy(
  9311. ((char *) dst->data),
  9312. ((char *) src0->data),
  9313. ggml_nbytes(dst));
  9314. }
  9315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9316. return;
  9317. }
  9318. // TODO: handle transposed/permuted matrices
  9319. const int n = ggml_nrows(src0);
  9320. const int nc = src0->ne[0];
  9321. const int nr = src0->ne[1];
  9322. const int nz = n/nr;
  9323. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9324. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9325. for (int k = 0; k < nz; k++) {
  9326. for (int j = ith; j < nr; j += nth) {
  9327. for (int i = n_past; i < nc; i++) {
  9328. if (i > n_past + j) {
  9329. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9330. }
  9331. }
  9332. }
  9333. }
  9334. }
  9335. static void ggml_compute_forward_diag_mask_inf(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. struct ggml_tensor * dst) {
  9339. switch (src0->type) {
  9340. case GGML_TYPE_F32:
  9341. {
  9342. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9343. } break;
  9344. default:
  9345. {
  9346. GGML_ASSERT(false);
  9347. } break;
  9348. }
  9349. }
  9350. static void ggml_compute_forward_diag_mask_zero(
  9351. const struct ggml_compute_params * params,
  9352. const struct ggml_tensor * src0,
  9353. struct ggml_tensor * dst) {
  9354. switch (src0->type) {
  9355. case GGML_TYPE_F32:
  9356. {
  9357. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9358. } break;
  9359. default:
  9360. {
  9361. GGML_ASSERT(false);
  9362. } break;
  9363. }
  9364. }
  9365. // ggml_compute_forward_soft_max
  9366. static void ggml_compute_forward_soft_max_f32(
  9367. const struct ggml_compute_params * params,
  9368. const struct ggml_tensor * src0,
  9369. const struct ggml_tensor * src1,
  9370. struct ggml_tensor * dst) {
  9371. assert(ggml_is_contiguous(dst));
  9372. assert(ggml_are_same_shape(src0, dst));
  9373. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9374. return;
  9375. }
  9376. float scale = 1.0f;
  9377. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9378. // TODO: handle transposed/permuted matrices
  9379. const int ith = params->ith;
  9380. const int nth = params->nth;
  9381. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9382. const int nc = src0->ne[0];
  9383. const int nr = ggml_nrows(src0);
  9384. // rows per thread
  9385. const int dr = (nr + nth - 1)/nth;
  9386. // row range for this thread
  9387. const int ir0 = dr*ith;
  9388. const int ir1 = MIN(ir0 + dr, nr);
  9389. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9390. for (int i1 = ir0; i1 < ir1; i1++) {
  9391. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9392. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9393. // broadcast the mask across rows
  9394. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9395. ggml_vec_cpy_f32 (nc, wp, sp);
  9396. ggml_vec_scale_f32(nc, wp, scale);
  9397. if (mp) {
  9398. ggml_vec_acc_f32(nc, wp, mp);
  9399. }
  9400. #ifndef NDEBUG
  9401. for (int i = 0; i < nc; ++i) {
  9402. //printf("p[%d] = %f\n", i, p[i]);
  9403. assert(!isnan(wp[i]));
  9404. }
  9405. #endif
  9406. float max = -INFINITY;
  9407. ggml_vec_max_f32(nc, &max, wp);
  9408. ggml_float sum = 0.0;
  9409. uint16_t scvt;
  9410. for (int i = 0; i < nc; i++) {
  9411. if (wp[i] == -INFINITY) {
  9412. dp[i] = 0.0f;
  9413. } else {
  9414. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9415. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9416. memcpy(&scvt, &s, sizeof(scvt));
  9417. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9418. sum += (ggml_float)val;
  9419. dp[i] = val;
  9420. }
  9421. }
  9422. assert(sum > 0.0);
  9423. sum = 1.0/sum;
  9424. ggml_vec_scale_f32(nc, dp, sum);
  9425. #ifndef NDEBUG
  9426. for (int i = 0; i < nc; ++i) {
  9427. assert(!isnan(dp[i]));
  9428. assert(!isinf(dp[i]));
  9429. }
  9430. #endif
  9431. }
  9432. }
  9433. static void ggml_compute_forward_soft_max(
  9434. const struct ggml_compute_params * params,
  9435. const struct ggml_tensor * src0,
  9436. const struct ggml_tensor * src1,
  9437. struct ggml_tensor * dst) {
  9438. switch (src0->type) {
  9439. case GGML_TYPE_F32:
  9440. {
  9441. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  9442. } break;
  9443. default:
  9444. {
  9445. GGML_ASSERT(false);
  9446. } break;
  9447. }
  9448. }
  9449. // ggml_compute_forward_soft_max_back
  9450. static void ggml_compute_forward_soft_max_back_f32(
  9451. const struct ggml_compute_params * params,
  9452. const struct ggml_tensor * src0,
  9453. const struct ggml_tensor * src1,
  9454. struct ggml_tensor * dst) {
  9455. GGML_ASSERT(ggml_is_contiguous(src0));
  9456. GGML_ASSERT(ggml_is_contiguous(src1));
  9457. GGML_ASSERT(ggml_is_contiguous(dst));
  9458. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9459. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9460. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9461. return;
  9462. }
  9463. // TODO: handle transposed/permuted matrices
  9464. const int ith = params->ith;
  9465. const int nth = params->nth;
  9466. const int nc = src0->ne[0];
  9467. const int nr = ggml_nrows(src0);
  9468. // rows per thread
  9469. const int dr = (nr + nth - 1)/nth;
  9470. // row range for this thread
  9471. const int ir0 = dr*ith;
  9472. const int ir1 = MIN(ir0 + dr, nr);
  9473. for (int i1 = ir0; i1 < ir1; i1++) {
  9474. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9475. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9476. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9477. #ifndef NDEBUG
  9478. for (int i = 0; i < nc; ++i) {
  9479. //printf("p[%d] = %f\n", i, p[i]);
  9480. assert(!isnan(dy[i]));
  9481. assert(!isnan(y[i]));
  9482. }
  9483. #endif
  9484. // Jii = yi - yi*yi
  9485. // Jij = -yi*yj
  9486. // J = diag(y)-y.T*y
  9487. // dx = J * dy
  9488. // dxk = sum_i(Jki * dyi)
  9489. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9490. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9491. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9492. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9493. // dxk = -yk * dot(y, dy) + yk*dyk
  9494. // dxk = yk * (- dot(y, dy) + dyk)
  9495. // dxk = yk * (dyk - dot(y, dy))
  9496. //
  9497. // post-order:
  9498. // dot_y_dy := dot(y, dy)
  9499. // dx := dy
  9500. // dx := dx - dot_y_dy
  9501. // dx := dx * y
  9502. // linear runtime, no additional memory
  9503. float dot_y_dy = 0;
  9504. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9505. ggml_vec_cpy_f32 (nc, dx, dy);
  9506. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9507. ggml_vec_mul_f32 (nc, dx, dx, y);
  9508. #ifndef NDEBUG
  9509. for (int i = 0; i < nc; ++i) {
  9510. assert(!isnan(dx[i]));
  9511. assert(!isinf(dx[i]));
  9512. }
  9513. #endif
  9514. }
  9515. }
  9516. static void ggml_compute_forward_soft_max_back(
  9517. const struct ggml_compute_params * params,
  9518. const struct ggml_tensor * src0,
  9519. const struct ggml_tensor * src1,
  9520. struct ggml_tensor * dst) {
  9521. switch (src0->type) {
  9522. case GGML_TYPE_F32:
  9523. {
  9524. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9525. } break;
  9526. default:
  9527. {
  9528. GGML_ASSERT(false);
  9529. } break;
  9530. }
  9531. }
  9532. // ggml_compute_forward_alibi
  9533. static void ggml_compute_forward_alibi_f32(
  9534. const struct ggml_compute_params * params,
  9535. const struct ggml_tensor * src0,
  9536. struct ggml_tensor * dst) {
  9537. assert(params->ith == 0);
  9538. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9539. return;
  9540. }
  9541. //const int n_past = ((int32_t *) dst->op_params)[0];
  9542. const int n_head = ((int32_t *) dst->op_params)[1];
  9543. float max_bias;
  9544. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9545. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9546. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9547. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9548. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9549. const int64_t n = ggml_nrows(src0);
  9550. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9551. const size_t nb0 = src0->nb[0];
  9552. const size_t nb1 = src0->nb[1];
  9553. const size_t nb2 = src0->nb[2];
  9554. //const int nb3 = src0->nb[3];
  9555. GGML_ASSERT(nb0 == sizeof(float));
  9556. GGML_ASSERT(n_head == ne2);
  9557. // add alibi to src0 (KQ_scaled)
  9558. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9559. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9560. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9561. for (int64_t i = 0; i < ne0; i++) {
  9562. for (int64_t j = 0; j < ne1; j++) {
  9563. for (int64_t k = 0; k < ne2_ne3; k++) {
  9564. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9565. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9566. // TODO: k*nb2 or k*nb3
  9567. float m_k;
  9568. if (k < n_heads_log2_floor) {
  9569. m_k = powf(m0, k + 1);
  9570. } else {
  9571. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9572. }
  9573. pdst[0] = i * m_k + src[0];
  9574. }
  9575. }
  9576. }
  9577. }
  9578. static void ggml_compute_forward_alibi_f16(
  9579. const struct ggml_compute_params * params,
  9580. const struct ggml_tensor * src0,
  9581. struct ggml_tensor * dst) {
  9582. assert(params->ith == 0);
  9583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9584. return;
  9585. }
  9586. //const int n_past = ((int32_t *) dst->op_params)[0];
  9587. const int n_head = ((int32_t *) dst->op_params)[1];
  9588. float max_bias;
  9589. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9590. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9591. const int ne1 = src0->ne[1]; // seq_len_without_past
  9592. const int ne2 = src0->ne[2]; // n_head -> this is k
  9593. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9594. const int n = ggml_nrows(src0);
  9595. const int ne2_ne3 = n/ne1; // ne2*ne3
  9596. const int nb0 = src0->nb[0];
  9597. const int nb1 = src0->nb[1];
  9598. const int nb2 = src0->nb[2];
  9599. //const int nb3 = src0->nb[3];
  9600. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9601. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9602. GGML_ASSERT(n_head == ne2);
  9603. // add alibi to src0 (KQ_scaled)
  9604. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9605. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9606. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9607. for (int i = 0; i < ne0; i++) {
  9608. for (int j = 0; j < ne1; j++) {
  9609. for (int k = 0; k < ne2_ne3; k++) {
  9610. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9611. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9612. // TODO: k*nb2 or k*nb3
  9613. float m_k;
  9614. if (k < n_heads_log2_floor) {
  9615. m_k = powf(m0, k + 1);
  9616. } else {
  9617. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9618. }
  9619. // we return F32
  9620. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9621. }
  9622. }
  9623. }
  9624. }
  9625. static void ggml_compute_forward_alibi(
  9626. const struct ggml_compute_params * params,
  9627. const struct ggml_tensor * src0,
  9628. struct ggml_tensor * dst) {
  9629. switch (src0->type) {
  9630. case GGML_TYPE_F16:
  9631. {
  9632. ggml_compute_forward_alibi_f16(params, src0, dst);
  9633. } break;
  9634. case GGML_TYPE_F32:
  9635. {
  9636. ggml_compute_forward_alibi_f32(params, src0, dst);
  9637. } break;
  9638. case GGML_TYPE_Q4_0:
  9639. case GGML_TYPE_Q4_1:
  9640. case GGML_TYPE_Q5_0:
  9641. case GGML_TYPE_Q5_1:
  9642. case GGML_TYPE_Q8_0:
  9643. case GGML_TYPE_Q8_1:
  9644. case GGML_TYPE_Q2_K:
  9645. case GGML_TYPE_Q3_K:
  9646. case GGML_TYPE_Q4_K:
  9647. case GGML_TYPE_Q5_K:
  9648. case GGML_TYPE_Q6_K:
  9649. case GGML_TYPE_IQ2_XXS:
  9650. case GGML_TYPE_IQ2_XS:
  9651. case GGML_TYPE_IQ3_XXS:
  9652. case GGML_TYPE_Q8_K:
  9653. case GGML_TYPE_I8:
  9654. case GGML_TYPE_I16:
  9655. case GGML_TYPE_I32:
  9656. case GGML_TYPE_COUNT:
  9657. {
  9658. GGML_ASSERT(false);
  9659. } break;
  9660. }
  9661. }
  9662. // ggml_compute_forward_clamp
  9663. static void ggml_compute_forward_clamp_f32(
  9664. const struct ggml_compute_params * params,
  9665. const struct ggml_tensor * src0,
  9666. struct ggml_tensor * dst) {
  9667. assert(params->ith == 0);
  9668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9669. return;
  9670. }
  9671. float min;
  9672. float max;
  9673. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9674. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9675. const int ith = params->ith;
  9676. const int nth = params->nth;
  9677. const int n = ggml_nrows(src0);
  9678. const int nc = src0->ne[0];
  9679. const size_t nb00 = src0->nb[0];
  9680. const size_t nb01 = src0->nb[1];
  9681. const size_t nb0 = dst->nb[0];
  9682. const size_t nb1 = dst->nb[1];
  9683. GGML_ASSERT( nb0 == sizeof(float));
  9684. GGML_ASSERT(nb00 == sizeof(float));
  9685. for (int j = ith; j < n; j += nth) {
  9686. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9687. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9688. for (int i = 0; i < nc; i++) {
  9689. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9690. }
  9691. }
  9692. }
  9693. static void ggml_compute_forward_clamp(
  9694. const struct ggml_compute_params * params,
  9695. const struct ggml_tensor * src0,
  9696. struct ggml_tensor * dst) {
  9697. switch (src0->type) {
  9698. case GGML_TYPE_F32:
  9699. {
  9700. ggml_compute_forward_clamp_f32(params, src0, dst);
  9701. } break;
  9702. case GGML_TYPE_F16:
  9703. case GGML_TYPE_Q4_0:
  9704. case GGML_TYPE_Q4_1:
  9705. case GGML_TYPE_Q5_0:
  9706. case GGML_TYPE_Q5_1:
  9707. case GGML_TYPE_Q8_0:
  9708. case GGML_TYPE_Q8_1:
  9709. case GGML_TYPE_Q2_K:
  9710. case GGML_TYPE_Q3_K:
  9711. case GGML_TYPE_Q4_K:
  9712. case GGML_TYPE_Q5_K:
  9713. case GGML_TYPE_Q6_K:
  9714. case GGML_TYPE_IQ2_XXS:
  9715. case GGML_TYPE_IQ2_XS:
  9716. case GGML_TYPE_IQ3_XXS:
  9717. case GGML_TYPE_Q8_K:
  9718. case GGML_TYPE_I8:
  9719. case GGML_TYPE_I16:
  9720. case GGML_TYPE_I32:
  9721. case GGML_TYPE_COUNT:
  9722. {
  9723. GGML_ASSERT(false);
  9724. } break;
  9725. }
  9726. }
  9727. // ggml_compute_forward_rope
  9728. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9729. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9730. return 1 - MIN(1, MAX(0, y));
  9731. }
  9732. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9733. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9734. static void rope_yarn(
  9735. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9736. float * cos_theta, float * sin_theta
  9737. ) {
  9738. // Get n-d rotational scaling corrected for extrapolation
  9739. float theta_interp = freq_scale * theta_extrap;
  9740. float theta = theta_interp;
  9741. if (ext_factor != 0.0f) {
  9742. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9743. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9744. // Get n-d magnitude scaling corrected for interpolation
  9745. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9746. }
  9747. *cos_theta = cosf(theta) * mscale;
  9748. *sin_theta = sinf(theta) * mscale;
  9749. }
  9750. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9751. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9752. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9753. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9754. }
  9755. static void ggml_rope_cache_init(
  9756. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9757. float * cache, float sin_sign, float theta_scale
  9758. ) {
  9759. float theta = theta_base;
  9760. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9761. rope_yarn(
  9762. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9763. );
  9764. cache[i0 + 1] *= sin_sign;
  9765. theta *= theta_scale;
  9766. }
  9767. }
  9768. GGML_CALL void ggml_rope_yarn_corr_dims(
  9769. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9770. ) {
  9771. // start and end correction dims
  9772. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9773. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9774. }
  9775. static void ggml_compute_forward_rope_f32(
  9776. const struct ggml_compute_params * params,
  9777. const struct ggml_tensor * src0,
  9778. const struct ggml_tensor * src1,
  9779. struct ggml_tensor * dst,
  9780. const bool forward) {
  9781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9782. return;
  9783. }
  9784. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9785. // these two only relevant for xPos RoPE:
  9786. float xpos_base;
  9787. bool xpos_down;
  9788. //const int n_past = ((int32_t *) dst->op_params)[0];
  9789. const int n_dims = ((int32_t *) dst->op_params)[1];
  9790. const int mode = ((int32_t *) dst->op_params)[2];
  9791. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9792. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9793. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9794. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9795. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9796. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9797. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9798. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9799. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9800. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9801. GGML_TENSOR_UNARY_OP_LOCALS
  9802. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9803. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9804. GGML_ASSERT(nb00 == sizeof(float));
  9805. const int ith = params->ith;
  9806. const int nth = params->nth;
  9807. const int nr = ggml_nrows(dst);
  9808. GGML_ASSERT(n_dims <= ne0);
  9809. GGML_ASSERT(n_dims % 2 == 0);
  9810. // rows per thread
  9811. const int dr = (nr + nth - 1)/nth;
  9812. // row range for this thread
  9813. const int ir0 = dr*ith;
  9814. const int ir1 = MIN(ir0 + dr, nr);
  9815. // row index used to determine which thread to use
  9816. int ir = 0;
  9817. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9818. const float inv_ndims = -1.f/n_dims;
  9819. float corr_dims[2];
  9820. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9821. const bool is_neox = mode & 2;
  9822. const bool is_glm = mode & 4;
  9823. // backward process uses inverse rotation by cos and sin.
  9824. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9825. // this essentially just switches the sign of sin.
  9826. const float sin_sign = forward ? 1.0f : -1.0f;
  9827. const int32_t * pos = (const int32_t *) src1->data;
  9828. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9829. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9830. const int64_t p = pos[i2];
  9831. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9832. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9833. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9834. }
  9835. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9836. if (ir++ < ir0) continue;
  9837. if (ir > ir1) break;
  9838. float theta_base = (float)p;
  9839. if (is_glm) {
  9840. theta_base = MIN(p, n_ctx - 2);
  9841. float block_theta = MAX(p - (n_ctx - 2), 0);
  9842. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9843. const float cos_theta = cosf(theta_base);
  9844. const float sin_theta = sinf(theta_base) * sin_sign;
  9845. const float cos_block_theta = cosf(block_theta);
  9846. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9847. theta_base *= theta_scale;
  9848. block_theta *= theta_scale;
  9849. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9850. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9851. const float x0 = src[0];
  9852. const float x1 = src[n_dims/2];
  9853. const float x2 = src[n_dims];
  9854. const float x3 = src[n_dims/2*3];
  9855. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9856. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9857. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9858. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9859. }
  9860. } else if (!is_neox) {
  9861. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9862. const float cos_theta = cache[i0 + 0];
  9863. const float sin_theta = cache[i0 + 1];
  9864. // zeta scaling for xPos only:
  9865. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9866. if (xpos_down) zeta = 1.0f / zeta;
  9867. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9868. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9869. const float x0 = src[0];
  9870. const float x1 = src[1];
  9871. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9872. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9873. }
  9874. } else {
  9875. // TODO: this might be wrong for ne0 != n_dims - need double check
  9876. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  9877. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  9878. theta_base *= freq_scale;
  9879. for (int64_t ic = 0; ic < ne0; ic += 2) {
  9880. if (ic < n_dims) {
  9881. const int64_t ib = 0;
  9882. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9883. float cur_rot = inv_ndims * ic - ib;
  9884. float cos_theta, sin_theta;
  9885. rope_yarn(
  9886. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9887. &cos_theta, &sin_theta
  9888. );
  9889. sin_theta *= sin_sign;
  9890. theta_base *= theta_scale;
  9891. const int64_t i0 = ib*n_dims + ic/2;
  9892. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9893. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9894. const float x0 = src[0];
  9895. const float x1 = src[n_dims/2];
  9896. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9897. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9898. } else {
  9899. const int64_t i0 = ic;
  9900. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9901. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9902. dst_data[0] = src[0];
  9903. dst_data[1] = src[1];
  9904. }
  9905. }
  9906. }
  9907. }
  9908. }
  9909. }
  9910. }
  9911. static void ggml_compute_forward_rope_f16(
  9912. const struct ggml_compute_params * params,
  9913. const struct ggml_tensor * src0,
  9914. const struct ggml_tensor * src1,
  9915. struct ggml_tensor * dst,
  9916. const bool forward) {
  9917. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9918. return;
  9919. }
  9920. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9921. //const int n_past = ((int32_t *) dst->op_params)[0];
  9922. const int n_dims = ((int32_t *) dst->op_params)[1];
  9923. const int mode = ((int32_t *) dst->op_params)[2];
  9924. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9925. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9926. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9927. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9928. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9929. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9930. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9931. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9932. GGML_TENSOR_UNARY_OP_LOCALS
  9933. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9934. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9935. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9936. const int ith = params->ith;
  9937. const int nth = params->nth;
  9938. const int nr = ggml_nrows(dst);
  9939. GGML_ASSERT(n_dims <= ne0);
  9940. GGML_ASSERT(n_dims % 2 == 0);
  9941. // rows per thread
  9942. const int dr = (nr + nth - 1)/nth;
  9943. // row range for this thread
  9944. const int ir0 = dr*ith;
  9945. const int ir1 = MIN(ir0 + dr, nr);
  9946. // row index used to determine which thread to use
  9947. int ir = 0;
  9948. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9949. const float inv_ndims = -1.f/n_dims;
  9950. float corr_dims[2];
  9951. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9952. const bool is_neox = mode & 2;
  9953. const bool is_glm = mode & 4;
  9954. // backward process uses inverse rotation by cos and sin.
  9955. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9956. // this essentially just switches the sign of sin.
  9957. const float sin_sign = forward ? 1.0f : -1.0f;
  9958. const int32_t * pos = (const int32_t *) src1->data;
  9959. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9960. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9961. const int64_t p = pos[i2];
  9962. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  9963. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  9964. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  9965. }
  9966. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9967. if (ir++ < ir0) continue;
  9968. if (ir > ir1) break;
  9969. float theta_base = (float)p;
  9970. if (is_glm) {
  9971. theta_base = MIN(p, n_ctx - 2);
  9972. float block_theta = MAX(p - (n_ctx - 2), 0);
  9973. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9974. const float cos_theta = cosf(theta_base);
  9975. const float sin_theta = sinf(theta_base) * sin_sign;
  9976. const float cos_block_theta = cosf(block_theta);
  9977. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9978. theta_base *= theta_scale;
  9979. block_theta *= theta_scale;
  9980. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9981. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9982. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9983. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9984. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9985. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9986. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9987. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9988. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9989. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9990. }
  9991. } else if (!is_neox) {
  9992. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9993. const float cos_theta = cache[i0 + 0];
  9994. const float sin_theta = cache[i0 + 1];
  9995. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9996. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9997. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9998. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9999. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10000. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10001. }
  10002. } else {
  10003. // TODO: this might be wrong for ne0 != n_dims - need double check
  10004. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10005. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10006. theta_base *= freq_scale;
  10007. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10008. if (ic < n_dims) {
  10009. const int64_t ib = 0;
  10010. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10011. float cur_rot = inv_ndims * ic - ib;
  10012. float cos_theta, sin_theta;
  10013. rope_yarn(
  10014. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10015. &cos_theta, &sin_theta
  10016. );
  10017. sin_theta *= sin_sign;
  10018. theta_base *= theta_scale;
  10019. const int64_t i0 = ib*n_dims + ic/2;
  10020. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10021. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10022. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10023. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10024. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10025. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10026. } else {
  10027. const int64_t i0 = ic;
  10028. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10029. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10030. dst_data[0] = src[0];
  10031. dst_data[1] = src[1];
  10032. }
  10033. }
  10034. }
  10035. }
  10036. }
  10037. }
  10038. }
  10039. static void ggml_compute_forward_rope(
  10040. const struct ggml_compute_params * params,
  10041. const struct ggml_tensor * src0,
  10042. const struct ggml_tensor * src1,
  10043. struct ggml_tensor * dst) {
  10044. switch (src0->type) {
  10045. case GGML_TYPE_F16:
  10046. {
  10047. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  10048. } break;
  10049. case GGML_TYPE_F32:
  10050. {
  10051. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  10052. } break;
  10053. default:
  10054. {
  10055. GGML_ASSERT(false);
  10056. } break;
  10057. }
  10058. }
  10059. // ggml_compute_forward_rope_back
  10060. static void ggml_compute_forward_rope_back(
  10061. const struct ggml_compute_params * params,
  10062. const struct ggml_tensor * src0,
  10063. const struct ggml_tensor * src1,
  10064. struct ggml_tensor * dst) {
  10065. switch (src0->type) {
  10066. case GGML_TYPE_F16:
  10067. {
  10068. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  10069. } break;
  10070. case GGML_TYPE_F32:
  10071. {
  10072. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  10073. } break;
  10074. default:
  10075. {
  10076. GGML_ASSERT(false);
  10077. } break;
  10078. }
  10079. }
  10080. // ggml_compute_forward_conv_transpose_1d
  10081. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10082. const struct ggml_compute_params * params,
  10083. const struct ggml_tensor * src0,
  10084. const struct ggml_tensor * src1,
  10085. struct ggml_tensor * dst) {
  10086. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10087. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10088. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10089. int64_t t0 = ggml_perf_time_us();
  10090. UNUSED(t0);
  10091. GGML_TENSOR_BINARY_OP_LOCALS
  10092. const int ith = params->ith;
  10093. const int nth = params->nth;
  10094. const int nk = ne00*ne01*ne02;
  10095. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10096. GGML_ASSERT(nb10 == sizeof(float));
  10097. if (params->type == GGML_TASK_INIT) {
  10098. if (ith != 0) {
  10099. return;
  10100. }
  10101. memset(params->wdata, 0, params->wsize);
  10102. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10103. {
  10104. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10105. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10106. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10107. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10108. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10109. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10110. dst_data[i00*ne02 + i02] = src[i00];
  10111. }
  10112. }
  10113. }
  10114. }
  10115. // permute source data (src1) from (L x Cin) to (Cin x L)
  10116. {
  10117. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10118. ggml_fp16_t * dst_data = wdata;
  10119. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10120. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10121. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10122. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10123. }
  10124. }
  10125. }
  10126. // need to zero dst since we are accumulating into it
  10127. memset(dst->data, 0, ggml_nbytes(dst));
  10128. return;
  10129. }
  10130. if (params->type == GGML_TASK_FINALIZE) {
  10131. return;
  10132. }
  10133. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10134. // total rows in dst
  10135. const int nr = ne1;
  10136. // rows per thread
  10137. const int dr = (nr + nth - 1)/nth;
  10138. // row range for this thread
  10139. const int ir0 = dr*ith;
  10140. const int ir1 = MIN(ir0 + dr, nr);
  10141. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10142. ggml_fp16_t * const wdata_src = wdata + nk;
  10143. for (int i1 = ir0; i1 < ir1; i1++) {
  10144. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10145. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10146. for (int i10 = 0; i10 < ne10; i10++) {
  10147. const int i1n = i10*ne11;
  10148. for (int i00 = 0; i00 < ne00; i00++) {
  10149. float v = 0;
  10150. ggml_vec_dot_f16(ne02, &v,
  10151. (ggml_fp16_t *) wdata_src + i1n,
  10152. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  10153. dst_data[i10*s0 + i00] += v;
  10154. }
  10155. }
  10156. }
  10157. }
  10158. static void ggml_compute_forward_conv_transpose_1d_f32(
  10159. const struct ggml_compute_params * params,
  10160. const struct ggml_tensor * src0,
  10161. const struct ggml_tensor * src1,
  10162. struct ggml_tensor * dst) {
  10163. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10164. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10165. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10166. int64_t t0 = ggml_perf_time_us();
  10167. UNUSED(t0);
  10168. GGML_TENSOR_BINARY_OP_LOCALS
  10169. const int ith = params->ith;
  10170. const int nth = params->nth;
  10171. const int nk = ne00*ne01*ne02;
  10172. GGML_ASSERT(nb00 == sizeof(float));
  10173. GGML_ASSERT(nb10 == sizeof(float));
  10174. if (params->type == GGML_TASK_INIT) {
  10175. if (ith != 0) {
  10176. return;
  10177. }
  10178. memset(params->wdata, 0, params->wsize);
  10179. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10180. {
  10181. float * const wdata = (float *) params->wdata + 0;
  10182. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10183. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10184. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10185. float * dst_data = wdata + i01*ne00*ne02;
  10186. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10187. dst_data[i00*ne02 + i02] = src[i00];
  10188. }
  10189. }
  10190. }
  10191. }
  10192. // prepare source data (src1)
  10193. {
  10194. float * const wdata = (float *) params->wdata + nk;
  10195. float * dst_data = wdata;
  10196. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10197. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10198. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10199. dst_data[i10*ne11 + i11] = src[i10];
  10200. }
  10201. }
  10202. }
  10203. // need to zero dst since we are accumulating into it
  10204. memset(dst->data, 0, ggml_nbytes(dst));
  10205. return;
  10206. }
  10207. if (params->type == GGML_TASK_FINALIZE) {
  10208. return;
  10209. }
  10210. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10211. // total rows in dst
  10212. const int nr = ne1;
  10213. // rows per thread
  10214. const int dr = (nr + nth - 1)/nth;
  10215. // row range for this thread
  10216. const int ir0 = dr*ith;
  10217. const int ir1 = MIN(ir0 + dr, nr);
  10218. float * const wdata = (float *) params->wdata + 0;
  10219. float * const wdata_src = wdata + nk;
  10220. for (int i1 = ir0; i1 < ir1; i1++) {
  10221. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10222. float * wdata_kernel = wdata + i1*ne02*ne00;
  10223. for (int i10 = 0; i10 < ne10; i10++) {
  10224. const int i1n = i10*ne11;
  10225. for (int i00 = 0; i00 < ne00; i00++) {
  10226. float v = 0;
  10227. ggml_vec_dot_f32(ne02, &v,
  10228. wdata_src + i1n,
  10229. wdata_kernel + i00*ne02);
  10230. dst_data[i10*s0 + i00] += v;
  10231. }
  10232. }
  10233. }
  10234. }
  10235. static void ggml_compute_forward_conv_transpose_1d(
  10236. const struct ggml_compute_params * params,
  10237. const struct ggml_tensor * src0,
  10238. const struct ggml_tensor * src1,
  10239. struct ggml_tensor * dst) {
  10240. switch (src0->type) {
  10241. case GGML_TYPE_F16:
  10242. {
  10243. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  10244. } break;
  10245. case GGML_TYPE_F32:
  10246. {
  10247. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  10248. } break;
  10249. default:
  10250. {
  10251. GGML_ASSERT(false);
  10252. } break;
  10253. }
  10254. }
  10255. // src0: kernel [OC, IC, KH, KW]
  10256. // src1: image [N, IC, IH, IW]
  10257. // dst: result [N, OH, OW, IC*KH*KW]
  10258. static void ggml_compute_forward_im2col_f16(
  10259. const struct ggml_compute_params * params,
  10260. const struct ggml_tensor * src0,
  10261. const struct ggml_tensor * src1,
  10262. struct ggml_tensor * dst) {
  10263. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10264. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10265. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10266. int64_t t0 = ggml_perf_time_us();
  10267. UNUSED(t0);
  10268. GGML_TENSOR_BINARY_OP_LOCALS;
  10269. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10270. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10271. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10272. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10273. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10274. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10275. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10276. const int ith = params->ith;
  10277. const int nth = params->nth;
  10278. const int64_t N = is_2D ? ne13 : ne12;
  10279. const int64_t IC = is_2D ? ne12 : ne11;
  10280. const int64_t IH = is_2D ? ne11 : 1;
  10281. const int64_t IW = ne10;
  10282. const int64_t KH = is_2D ? ne01 : 1;
  10283. const int64_t KW = ne00;
  10284. const int64_t OH = is_2D ? ne2 : 1;
  10285. const int64_t OW = ne1;
  10286. int ofs0 = is_2D ? nb13 : nb12;
  10287. int ofs1 = is_2D ? nb12 : nb11;
  10288. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10289. GGML_ASSERT(nb10 == sizeof(float));
  10290. if (params->type == GGML_TASK_INIT) {
  10291. return;
  10292. }
  10293. if (params->type == GGML_TASK_FINALIZE) {
  10294. return;
  10295. }
  10296. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10297. {
  10298. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10299. for (int64_t in = 0; in < N; in++) {
  10300. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10301. for (int64_t iow = 0; iow < OW; iow++) {
  10302. for (int64_t iic = ith; iic < IC; iic += nth) {
  10303. // micro kernel
  10304. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10305. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10306. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10307. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10308. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10309. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10310. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10311. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10312. } else {
  10313. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10314. }
  10315. }
  10316. }
  10317. }
  10318. }
  10319. }
  10320. }
  10321. }
  10322. }
  10323. static void ggml_compute_forward_im2col(
  10324. const struct ggml_compute_params * params,
  10325. const struct ggml_tensor * src0,
  10326. const struct ggml_tensor * src1,
  10327. struct ggml_tensor * dst) {
  10328. switch (src0->type) {
  10329. case GGML_TYPE_F16:
  10330. {
  10331. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  10332. } break;
  10333. case GGML_TYPE_F32:
  10334. {
  10335. GGML_ASSERT(false);
  10336. } break;
  10337. default:
  10338. {
  10339. GGML_ASSERT(false);
  10340. } break;
  10341. }
  10342. }
  10343. // ggml_compute_forward_conv_transpose_2d
  10344. static void ggml_compute_forward_conv_transpose_2d(
  10345. const struct ggml_compute_params * params,
  10346. const struct ggml_tensor * src0,
  10347. const struct ggml_tensor * src1,
  10348. struct ggml_tensor * dst) {
  10349. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10350. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10351. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10352. int64_t t0 = ggml_perf_time_us();
  10353. UNUSED(t0);
  10354. GGML_TENSOR_BINARY_OP_LOCALS
  10355. const int ith = params->ith;
  10356. const int nth = params->nth;
  10357. const int nk = ne00*ne01*ne02*ne03;
  10358. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10359. GGML_ASSERT(nb10 == sizeof(float));
  10360. if (params->type == GGML_TASK_INIT) {
  10361. if (ith != 0) {
  10362. return;
  10363. }
  10364. memset(params->wdata, 0, params->wsize);
  10365. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10366. {
  10367. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10368. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10369. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10370. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10371. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10372. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10373. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10374. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10375. }
  10376. }
  10377. }
  10378. }
  10379. }
  10380. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10381. {
  10382. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10383. for (int i12 = 0; i12 < ne12; i12++) {
  10384. for (int i11 = 0; i11 < ne11; i11++) {
  10385. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10386. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10387. for (int i10 = 0; i10 < ne10; i10++) {
  10388. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10389. }
  10390. }
  10391. }
  10392. }
  10393. memset(dst->data, 0, ggml_nbytes(dst));
  10394. return;
  10395. }
  10396. if (params->type == GGML_TASK_FINALIZE) {
  10397. return;
  10398. }
  10399. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10400. // total patches in dst
  10401. const int np = ne2;
  10402. // patches per thread
  10403. const int dp = (np + nth - 1)/nth;
  10404. // patch range for this thread
  10405. const int ip0 = dp*ith;
  10406. const int ip1 = MIN(ip0 + dp, np);
  10407. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10408. ggml_fp16_t * const wdata_src = wdata + nk;
  10409. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10410. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10411. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10412. for (int i11 = 0; i11 < ne11; i11++) {
  10413. for (int i10 = 0; i10 < ne10; i10++) {
  10414. const int i1n = i11*ne10*ne12 + i10*ne12;
  10415. for (int i01 = 0; i01 < ne01; i01++) {
  10416. for (int i00 = 0; i00 < ne00; i00++) {
  10417. float v = 0;
  10418. ggml_vec_dot_f16(ne03, &v,
  10419. wdata_src + i1n,
  10420. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  10421. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10422. }
  10423. }
  10424. }
  10425. }
  10426. }
  10427. }
  10428. // ggml_compute_forward_pool_1d_sk_p0
  10429. static void ggml_compute_forward_pool_1d_sk_p0(
  10430. const struct ggml_compute_params * params,
  10431. const enum ggml_op_pool op,
  10432. const struct ggml_tensor * src,
  10433. const int k,
  10434. struct ggml_tensor * dst) {
  10435. assert(src->type == GGML_TYPE_F32);
  10436. assert(params->ith == 0);
  10437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10438. return;
  10439. }
  10440. const char * cdata = (const char *)src->data;
  10441. const char * const data_end = cdata + ggml_nbytes(src);
  10442. float * drow = (float *)dst->data;
  10443. const int64_t rs = dst->ne[0];
  10444. while (cdata < data_end) {
  10445. const float * const srow = (const float *)cdata;
  10446. int j = 0;
  10447. for (int64_t i = 0; i < rs; ++i) {
  10448. switch (op) {
  10449. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10450. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10451. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10452. }
  10453. for (int ki = 0; ki < k; ++ki) {
  10454. switch (op) {
  10455. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10456. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10457. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10458. }
  10459. ++j;
  10460. }
  10461. switch (op) {
  10462. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10463. case GGML_OP_POOL_MAX: break;
  10464. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10465. }
  10466. }
  10467. cdata += src->nb[1];
  10468. drow += rs;
  10469. }
  10470. }
  10471. // ggml_compute_forward_pool_1d
  10472. static void ggml_compute_forward_pool_1d(
  10473. const struct ggml_compute_params * params,
  10474. const struct ggml_tensor * src0,
  10475. struct ggml_tensor * dst) {
  10476. const int32_t * opts = (const int32_t *)dst->op_params;
  10477. enum ggml_op_pool op = opts[0];
  10478. const int k0 = opts[1];
  10479. const int s0 = opts[2];
  10480. const int p0 = opts[3];
  10481. GGML_ASSERT(p0 == 0); // padding not supported
  10482. GGML_ASSERT(k0 == s0); // only s = k supported
  10483. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10484. }
  10485. // ggml_compute_forward_pool_2d
  10486. static void ggml_compute_forward_pool_2d(
  10487. const struct ggml_compute_params * params,
  10488. const struct ggml_tensor * src,
  10489. struct ggml_tensor * dst) {
  10490. assert(src->type == GGML_TYPE_F32);
  10491. assert(params->ith == 0);
  10492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10493. return;
  10494. }
  10495. const int32_t * opts = (const int32_t *)dst->op_params;
  10496. enum ggml_op_pool op = opts[0];
  10497. const int k0 = opts[1];
  10498. const int k1 = opts[2];
  10499. const int s0 = opts[3];
  10500. const int s1 = opts[4];
  10501. const int p0 = opts[5];
  10502. const int p1 = opts[6];
  10503. const char * cdata = (const char*)src->data;
  10504. const char * const data_end = cdata + ggml_nbytes(src);
  10505. const int64_t px = dst->ne[0];
  10506. const int64_t py = dst->ne[1];
  10507. const int64_t pa = px * py;
  10508. float * dplane = (float *)dst->data;
  10509. const int ka = k0 * k1;
  10510. const int offset0 = -p0;
  10511. const int offset1 = -p1;
  10512. while (cdata < data_end) {
  10513. for (int oy = 0; oy < py; ++oy) {
  10514. float * const drow = dplane + oy * px;
  10515. for (int ox = 0; ox < px; ++ox) {
  10516. float * const out = drow + ox;
  10517. switch (op) {
  10518. case GGML_OP_POOL_AVG: *out = 0; break;
  10519. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10520. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10521. }
  10522. const int ix = offset0 + ox * s0;
  10523. const int iy = offset1 + oy * s1;
  10524. for (int ky = 0; ky < k1; ++ky) {
  10525. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10526. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10527. for (int kx = 0; kx < k0; ++kx) {
  10528. int j = ix + kx;
  10529. if (j < 0 || j >= src->ne[0]) continue;
  10530. switch (op) {
  10531. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10532. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10533. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10534. }
  10535. }
  10536. }
  10537. switch (op) {
  10538. case GGML_OP_POOL_AVG: *out /= ka; break;
  10539. case GGML_OP_POOL_MAX: break;
  10540. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10541. }
  10542. }
  10543. }
  10544. cdata += src->nb[2];
  10545. dplane += pa;
  10546. }
  10547. }
  10548. // ggml_compute_forward_upscale
  10549. static void ggml_compute_forward_upscale_f32(
  10550. const struct ggml_compute_params * params,
  10551. const struct ggml_tensor * src0,
  10552. struct ggml_tensor * dst) {
  10553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10554. return;
  10555. }
  10556. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10557. const int ith = params->ith;
  10558. const int nth = params->nth;
  10559. GGML_TENSOR_UNARY_OP_LOCALS
  10560. const int scale_factor = dst->op_params[0];
  10561. // TODO: optimize
  10562. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10563. const int64_t i03 = i3;
  10564. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10565. const int64_t i02 = i2;
  10566. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10567. const int64_t i01 = i1 / scale_factor;
  10568. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10569. const int64_t i00 = i0 / scale_factor;
  10570. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10571. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10572. *y = *x;
  10573. }
  10574. }
  10575. }
  10576. }
  10577. }
  10578. static void ggml_compute_forward_upscale(
  10579. const struct ggml_compute_params * params,
  10580. const struct ggml_tensor * src0,
  10581. struct ggml_tensor * dst) {
  10582. switch (src0->type) {
  10583. case GGML_TYPE_F32:
  10584. {
  10585. ggml_compute_forward_upscale_f32(params, src0, dst);
  10586. } break;
  10587. default:
  10588. {
  10589. GGML_ASSERT(false);
  10590. } break;
  10591. }
  10592. }
  10593. // ggml_compute_forward_pad
  10594. static void ggml_compute_forward_pad_f32(
  10595. const struct ggml_compute_params * params,
  10596. const struct ggml_tensor * src0,
  10597. struct ggml_tensor * dst) {
  10598. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10599. return;
  10600. }
  10601. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10602. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10603. const int ith = params->ith;
  10604. const int nth = params->nth;
  10605. GGML_TENSOR_UNARY_OP_LOCALS
  10606. float * dst_ptr = (float *) dst->data;
  10607. // TODO: optimize
  10608. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10609. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10610. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10611. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10612. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10613. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10614. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10615. dst_ptr[dst_idx] = *src_ptr;
  10616. } else {
  10617. dst_ptr[dst_idx] = 0;
  10618. }
  10619. }
  10620. }
  10621. }
  10622. }
  10623. }
  10624. static void ggml_compute_forward_pad(
  10625. const struct ggml_compute_params * params,
  10626. const struct ggml_tensor * src0,
  10627. struct ggml_tensor * dst) {
  10628. switch (src0->type) {
  10629. case GGML_TYPE_F32:
  10630. {
  10631. ggml_compute_forward_pad_f32(params, src0, dst);
  10632. } break;
  10633. default:
  10634. {
  10635. GGML_ASSERT(false);
  10636. } break;
  10637. }
  10638. }
  10639. // ggml_compute_forward_argsort
  10640. static void ggml_compute_forward_argsort_f32(
  10641. const struct ggml_compute_params * params,
  10642. const struct ggml_tensor * src0,
  10643. struct ggml_tensor * dst) {
  10644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10645. return;
  10646. }
  10647. GGML_TENSOR_UNARY_OP_LOCALS
  10648. GGML_ASSERT(nb0 == sizeof(float));
  10649. const int ith = params->ith;
  10650. const int nth = params->nth;
  10651. const int64_t nr = ggml_nrows(src0);
  10652. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10653. for (int64_t i = ith; i < nr; i += nth) {
  10654. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10655. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10656. for (int64_t j = 0; j < ne0; j++) {
  10657. dst_data[j] = j;
  10658. }
  10659. // C doesn't have a functional sort, so we do a bubble sort instead
  10660. for (int64_t j = 0; j < ne0; j++) {
  10661. for (int64_t k = j + 1; k < ne0; k++) {
  10662. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10663. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10664. int32_t tmp = dst_data[j];
  10665. dst_data[j] = dst_data[k];
  10666. dst_data[k] = tmp;
  10667. }
  10668. }
  10669. }
  10670. }
  10671. }
  10672. static void ggml_compute_forward_argsort(
  10673. const struct ggml_compute_params * params,
  10674. const struct ggml_tensor * src0,
  10675. struct ggml_tensor * dst) {
  10676. switch (src0->type) {
  10677. case GGML_TYPE_F32:
  10678. {
  10679. ggml_compute_forward_argsort_f32(params, src0, dst);
  10680. } break;
  10681. default:
  10682. {
  10683. GGML_ASSERT(false);
  10684. } break;
  10685. }
  10686. }
  10687. // ggml_compute_forward_flash_attn
  10688. static void ggml_compute_forward_flash_attn_f32(
  10689. const struct ggml_compute_params * params,
  10690. const struct ggml_tensor * q,
  10691. const struct ggml_tensor * k,
  10692. const struct ggml_tensor * v,
  10693. const bool masked,
  10694. struct ggml_tensor * dst) {
  10695. int64_t t0 = ggml_perf_time_us();
  10696. UNUSED(t0);
  10697. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10698. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10699. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10700. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10701. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10702. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10703. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10704. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10705. const int ith = params->ith;
  10706. const int nth = params->nth;
  10707. const int64_t D = neq0;
  10708. const int64_t N = neq1;
  10709. const int64_t P = nek1 - N;
  10710. const int64_t M = P + N;
  10711. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10712. GGML_ASSERT(ne0 == D);
  10713. GGML_ASSERT(ne1 == N);
  10714. GGML_ASSERT(P >= 0);
  10715. GGML_ASSERT(nbq0 == sizeof(float));
  10716. GGML_ASSERT(nbk0 == sizeof(float));
  10717. GGML_ASSERT(nbv0 == sizeof(float));
  10718. GGML_ASSERT(neq0 == D);
  10719. GGML_ASSERT(nek0 == D);
  10720. GGML_ASSERT(nev1 == D);
  10721. GGML_ASSERT(neq1 == N);
  10722. GGML_ASSERT(nek1 == N + P);
  10723. GGML_ASSERT(nev1 == D);
  10724. // dst cannot be transposed or permuted
  10725. GGML_ASSERT(nb0 == sizeof(float));
  10726. GGML_ASSERT(nb0 <= nb1);
  10727. GGML_ASSERT(nb1 <= nb2);
  10728. GGML_ASSERT(nb2 <= nb3);
  10729. if (params->type == GGML_TASK_INIT) {
  10730. return;
  10731. }
  10732. if (params->type == GGML_TASK_FINALIZE) {
  10733. return;
  10734. }
  10735. // parallelize by q rows using ggml_vec_dot_f32
  10736. // total rows in q
  10737. const int nr = neq1*neq2*neq3;
  10738. // rows per thread
  10739. const int dr = (nr + nth - 1)/nth;
  10740. // row range for this thread
  10741. const int ir0 = dr*ith;
  10742. const int ir1 = MIN(ir0 + dr, nr);
  10743. const float scale = 1.0f/sqrtf(D);
  10744. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10745. for (int ir = ir0; ir < ir1; ++ir) {
  10746. // q indices
  10747. const int iq3 = ir/(neq2*neq1);
  10748. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10749. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10750. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10751. for (int i = M; i < Mup; ++i) {
  10752. S[i] = -INFINITY;
  10753. }
  10754. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10755. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10756. // k indices
  10757. const int ik3 = iq3;
  10758. const int ik2 = iq2 % nek2;
  10759. const int ik1 = ic;
  10760. // S indices
  10761. const int i1 = ik1;
  10762. ggml_vec_dot_f32(neq0,
  10763. S + i1,
  10764. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10765. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10766. }
  10767. // scale
  10768. ggml_vec_scale_f32(masked_begin, S, scale);
  10769. for (int64_t i = masked_begin; i < M; i++) {
  10770. S[i] = -INFINITY;
  10771. }
  10772. // softmax
  10773. // exclude known -INF S[..] values from max and loop
  10774. // dont forget to set their SW values to zero
  10775. {
  10776. float max = -INFINITY;
  10777. ggml_vec_max_f32(masked_begin, &max, S);
  10778. ggml_float sum = 0.0;
  10779. {
  10780. #ifdef GGML_SOFT_MAX_ACCELERATE
  10781. max = -max;
  10782. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10783. vvexpf(S, S, &Mup);
  10784. ggml_vec_sum_f32(Mup, &sum, S);
  10785. #else
  10786. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10787. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10788. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10789. if (i >= masked_begin) {
  10790. break;
  10791. }
  10792. float * SS = S + i;
  10793. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10794. if (i + j >= masked_begin) {
  10795. break;
  10796. } else if (SS[j] == -INFINITY) {
  10797. SS[j] = 0.0f;
  10798. } else {
  10799. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10800. const float val = expf(SS[j] - max);
  10801. #else
  10802. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10803. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10804. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10805. #endif
  10806. sump[j] += (ggml_float)val;
  10807. SS[j] = val;
  10808. }
  10809. }
  10810. }
  10811. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10812. sum += sump[i];
  10813. }
  10814. #endif
  10815. }
  10816. assert(sum > 0.0);
  10817. sum = 1.0/sum;
  10818. ggml_vec_scale_f32(masked_begin, S, sum);
  10819. #ifndef NDEBUG
  10820. for (int i = 0; i < masked_begin; ++i) {
  10821. assert(!isnan(S[i]));
  10822. assert(!isinf(S[i]));
  10823. }
  10824. #endif
  10825. }
  10826. for (int64_t ic = 0; ic < nev1; ++ic) {
  10827. // dst indices
  10828. const int i1 = iq1;
  10829. const int i2 = iq2;
  10830. const int i3 = iq3;
  10831. // v indices
  10832. const int iv2 = iq2 % nev2;
  10833. const int iv3 = iq3;
  10834. ggml_vec_dot_f32(masked_begin,
  10835. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10836. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10837. S);
  10838. }
  10839. }
  10840. }
  10841. static void ggml_compute_forward_flash_attn_f16(
  10842. const struct ggml_compute_params * params,
  10843. const struct ggml_tensor * q,
  10844. const struct ggml_tensor * k,
  10845. const struct ggml_tensor * v,
  10846. const bool masked,
  10847. struct ggml_tensor * dst) {
  10848. int64_t t0 = ggml_perf_time_us();
  10849. UNUSED(t0);
  10850. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10851. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10852. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10853. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10854. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10855. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10856. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10857. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10858. const int ith = params->ith;
  10859. const int nth = params->nth;
  10860. const int64_t D = neq0;
  10861. const int64_t N = neq1;
  10862. const int64_t P = nek1 - N;
  10863. const int64_t M = P + N;
  10864. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10865. GGML_ASSERT(ne0 == D);
  10866. GGML_ASSERT(ne1 == N);
  10867. GGML_ASSERT(P >= 0);
  10868. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10869. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10870. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10871. GGML_ASSERT(neq0 == D);
  10872. GGML_ASSERT(nek0 == D);
  10873. GGML_ASSERT(nev1 == D);
  10874. GGML_ASSERT(neq1 == N);
  10875. GGML_ASSERT(nek1 == N + P);
  10876. GGML_ASSERT(nev1 == D);
  10877. // dst cannot be transposed or permuted
  10878. GGML_ASSERT(nb0 == sizeof(float));
  10879. GGML_ASSERT(nb0 <= nb1);
  10880. GGML_ASSERT(nb1 <= nb2);
  10881. GGML_ASSERT(nb2 <= nb3);
  10882. if (params->type == GGML_TASK_INIT) {
  10883. return;
  10884. }
  10885. if (params->type == GGML_TASK_FINALIZE) {
  10886. return;
  10887. }
  10888. // parallelize by q rows using ggml_vec_dot_f32
  10889. // total rows in q
  10890. const int nr = neq1*neq2*neq3;
  10891. // rows per thread
  10892. const int dr = (nr + nth - 1)/nth;
  10893. // row range for this thread
  10894. const int ir0 = dr*ith;
  10895. const int ir1 = MIN(ir0 + dr, nr);
  10896. const float scale = 1.0f/sqrtf(D);
  10897. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10898. for (int ir = ir0; ir < ir1; ++ir) {
  10899. // q indices
  10900. const int iq3 = ir/(neq2*neq1);
  10901. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10902. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10903. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10904. for (int i = M; i < Mup; ++i) {
  10905. S[i] = -INFINITY;
  10906. }
  10907. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10908. for (int64_t ic = 0; ic < nek1; ++ic) {
  10909. // k indices
  10910. const int ik3 = iq3;
  10911. const int ik2 = iq2 % nek2;
  10912. const int ik1 = ic;
  10913. // S indices
  10914. const int i1 = ik1;
  10915. ggml_vec_dot_f16(neq0,
  10916. S + i1,
  10917. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10918. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10919. }
  10920. } else {
  10921. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10922. // k indices
  10923. const int ik3 = iq3;
  10924. const int ik2 = iq2 % nek2;
  10925. const int ik1 = ic;
  10926. // S indices
  10927. const int i1 = ik1;
  10928. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10929. S + i1,
  10930. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10931. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10932. }
  10933. }
  10934. // scale
  10935. ggml_vec_scale_f32(nek1, S, scale);
  10936. if (masked) {
  10937. for (int64_t i = P; i < M; i++) {
  10938. if (i > P + iq1) {
  10939. S[i] = -INFINITY;
  10940. }
  10941. }
  10942. }
  10943. // softmax
  10944. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10945. // dont forget to set their S values to zero
  10946. {
  10947. float max = -INFINITY;
  10948. ggml_vec_max_f32(M, &max, S);
  10949. ggml_float sum = 0.0;
  10950. {
  10951. #ifdef GGML_SOFT_MAX_ACCELERATE
  10952. max = -max;
  10953. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10954. vvexpf(S, S, &Mup);
  10955. ggml_vec_sum_f32(Mup, &sum, S);
  10956. #else
  10957. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10958. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10959. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10960. float * SS = S + i;
  10961. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10962. if (SS[j] == -INFINITY) {
  10963. SS[j] = 0.0f;
  10964. } else {
  10965. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10966. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10967. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10968. sump[j] += (ggml_float)val;
  10969. SS[j] = val;
  10970. }
  10971. }
  10972. }
  10973. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10974. sum += sump[i];
  10975. }
  10976. #endif
  10977. }
  10978. assert(sum > 0.0);
  10979. sum = 1.0/sum;
  10980. ggml_vec_scale_f32(M, S, sum);
  10981. #ifndef NDEBUG
  10982. for (int i = 0; i < M; ++i) {
  10983. assert(!isnan(S[i]));
  10984. assert(!isinf(S[i]));
  10985. }
  10986. #endif
  10987. }
  10988. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10989. for (int64_t i = 0; i < M; i++) {
  10990. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10991. }
  10992. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10993. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10994. for (int64_t ic = 0; ic < nev1; ++ic) {
  10995. // dst indices
  10996. const int i1 = iq1;
  10997. const int i2 = iq2;
  10998. const int i3 = iq3;
  10999. // v indices
  11000. const int iv2 = iq2 % nev2;
  11001. const int iv3 = iq3;
  11002. ggml_vec_dot_f16(nev0,
  11003. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11004. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11005. S16);
  11006. }
  11007. } else {
  11008. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11009. // dst indices
  11010. const int i1 = iq1;
  11011. const int i2 = iq2;
  11012. const int i3 = iq3;
  11013. // v indices
  11014. const int iv2 = iq2 % nev2;
  11015. const int iv3 = iq3;
  11016. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11017. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11018. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11019. S16);
  11020. }
  11021. }
  11022. }
  11023. }
  11024. static void ggml_compute_forward_flash_attn(
  11025. const struct ggml_compute_params * params,
  11026. const struct ggml_tensor * q,
  11027. const struct ggml_tensor * k,
  11028. const struct ggml_tensor * v,
  11029. const bool masked,
  11030. struct ggml_tensor * dst) {
  11031. switch (q->type) {
  11032. case GGML_TYPE_F16:
  11033. {
  11034. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11035. } break;
  11036. case GGML_TYPE_F32:
  11037. {
  11038. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11039. } break;
  11040. default:
  11041. {
  11042. GGML_ASSERT(false);
  11043. } break;
  11044. }
  11045. }
  11046. // ggml_compute_forward_flash_ff
  11047. static void ggml_compute_forward_flash_ff_f16(
  11048. const struct ggml_compute_params * params,
  11049. const struct ggml_tensor * a, // F16
  11050. const struct ggml_tensor * b0, // F16 fc_w
  11051. const struct ggml_tensor * b1, // F32 fc_b
  11052. const struct ggml_tensor * c0, // F16 proj_w
  11053. const struct ggml_tensor * c1, // F32 proj_b
  11054. struct ggml_tensor * dst) {
  11055. int64_t t0 = ggml_perf_time_us();
  11056. UNUSED(t0);
  11057. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11058. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11059. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11060. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11061. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11062. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11063. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11064. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11065. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11066. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11067. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11068. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11069. const int ith = params->ith;
  11070. const int nth = params->nth;
  11071. const int64_t D = nea0;
  11072. //const int64_t N = nea1;
  11073. const int64_t M = neb01;
  11074. GGML_ASSERT(ne0 == nea0);
  11075. GGML_ASSERT(ne1 == nea1);
  11076. GGML_ASSERT(ne2 == nea2);
  11077. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11078. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11079. GGML_ASSERT(nbb10 == sizeof(float));
  11080. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11081. GGML_ASSERT(nbc10 == sizeof(float));
  11082. GGML_ASSERT(neb00 == D);
  11083. GGML_ASSERT(neb01 == M);
  11084. GGML_ASSERT(neb10 == M);
  11085. GGML_ASSERT(neb11 == 1);
  11086. GGML_ASSERT(nec00 == M);
  11087. GGML_ASSERT(nec01 == D);
  11088. GGML_ASSERT(nec10 == D);
  11089. GGML_ASSERT(nec11 == 1);
  11090. // dst cannot be transposed or permuted
  11091. GGML_ASSERT(nb0 == sizeof(float));
  11092. GGML_ASSERT(nb0 <= nb1);
  11093. GGML_ASSERT(nb1 <= nb2);
  11094. GGML_ASSERT(nb2 <= nb3);
  11095. if (params->type == GGML_TASK_INIT) {
  11096. return;
  11097. }
  11098. if (params->type == GGML_TASK_FINALIZE) {
  11099. return;
  11100. }
  11101. // parallelize by a rows using ggml_vec_dot_f32
  11102. // total rows in a
  11103. const int nr = nea1*nea2*nea3;
  11104. // rows per thread
  11105. const int dr = (nr + nth - 1)/nth;
  11106. // row range for this thread
  11107. const int ir0 = dr*ith;
  11108. const int ir1 = MIN(ir0 + dr, nr);
  11109. for (int ir = ir0; ir < ir1; ++ir) {
  11110. // a indices
  11111. const int ia3 = ir/(nea2*nea1);
  11112. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11113. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11114. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11115. for (int64_t ic = 0; ic < neb01; ++ic) {
  11116. // b0 indices
  11117. const int ib03 = ia3;
  11118. const int ib02 = ia2;
  11119. const int ib01 = ic;
  11120. // S indices
  11121. const int i1 = ib01;
  11122. ggml_vec_dot_f16(nea0,
  11123. S + i1,
  11124. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11125. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11126. }
  11127. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11128. //ggml_vec_gelu_f32(neb01, S, S);
  11129. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11130. for (int64_t i = 0; i < M; i++) {
  11131. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11132. }
  11133. ggml_vec_gelu_f16(neb01, S16, S16);
  11134. {
  11135. // dst indices
  11136. const int i1 = ia1;
  11137. const int i2 = ia2;
  11138. const int i3 = ia3;
  11139. for (int64_t ic = 0; ic < nec01; ++ic) {
  11140. ggml_vec_dot_f16(neb01,
  11141. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11142. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11143. S16);
  11144. }
  11145. ggml_vec_add_f32(nec01,
  11146. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11147. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11148. (float *) c1->data);
  11149. }
  11150. }
  11151. }
  11152. static void ggml_compute_forward_flash_ff(
  11153. const struct ggml_compute_params * params,
  11154. const struct ggml_tensor * a,
  11155. const struct ggml_tensor * b0,
  11156. const struct ggml_tensor * b1,
  11157. const struct ggml_tensor * c0,
  11158. const struct ggml_tensor * c1,
  11159. struct ggml_tensor * dst) {
  11160. switch (b0->type) {
  11161. case GGML_TYPE_F16:
  11162. {
  11163. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11164. } break;
  11165. case GGML_TYPE_F32:
  11166. {
  11167. GGML_ASSERT(false); // TODO
  11168. } break;
  11169. default:
  11170. {
  11171. GGML_ASSERT(false);
  11172. } break;
  11173. }
  11174. }
  11175. // ggml_compute_forward_flash_attn_back
  11176. static void ggml_compute_forward_flash_attn_back_f32(
  11177. const struct ggml_compute_params * params,
  11178. const struct ggml_tensor * q,
  11179. const struct ggml_tensor * k,
  11180. const struct ggml_tensor * v,
  11181. const struct ggml_tensor * d,
  11182. const bool masked,
  11183. struct ggml_tensor * dst) {
  11184. int64_t t0 = ggml_perf_time_us();
  11185. UNUSED(t0);
  11186. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11187. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11188. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11189. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11190. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11191. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11192. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11193. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11194. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11195. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11196. const int ith = params->ith;
  11197. const int nth = params->nth;
  11198. const int64_t D = neq0;
  11199. const int64_t N = neq1;
  11200. const int64_t P = nek1 - N;
  11201. const int64_t M = P + N;
  11202. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11203. const int mxDM = MAX(D, Mup);
  11204. // GGML_ASSERT(ne0 == D);
  11205. // GGML_ASSERT(ne1 == N);
  11206. GGML_ASSERT(P >= 0);
  11207. GGML_ASSERT(nbq0 == sizeof(float));
  11208. GGML_ASSERT(nbk0 == sizeof(float));
  11209. GGML_ASSERT(nbv0 == sizeof(float));
  11210. GGML_ASSERT(neq0 == D);
  11211. GGML_ASSERT(nek0 == D);
  11212. GGML_ASSERT(nev1 == D);
  11213. GGML_ASSERT(ned0 == D);
  11214. GGML_ASSERT(neq1 == N);
  11215. GGML_ASSERT(nek1 == N + P);
  11216. GGML_ASSERT(nev1 == D);
  11217. GGML_ASSERT(ned1 == N);
  11218. // dst cannot be transposed or permuted
  11219. GGML_ASSERT(nb0 == sizeof(float));
  11220. GGML_ASSERT(nb0 <= nb1);
  11221. GGML_ASSERT(nb1 <= nb2);
  11222. GGML_ASSERT(nb2 <= nb3);
  11223. if (params->type == GGML_TASK_INIT) {
  11224. if (ith == 0) {
  11225. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11226. }
  11227. return;
  11228. }
  11229. if (params->type == GGML_TASK_FINALIZE) {
  11230. return;
  11231. }
  11232. const int64_t elem_q = ggml_nelements(q);
  11233. const int64_t elem_k = ggml_nelements(k);
  11234. enum ggml_type result_type = dst->type;
  11235. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11236. const size_t tsize = ggml_type_size(result_type);
  11237. const size_t offs_q = 0;
  11238. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11239. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11240. void * grad_q = (char *) dst->data;
  11241. void * grad_k = (char *) dst->data + offs_k;
  11242. void * grad_v = (char *) dst->data + offs_v;
  11243. const size_t nbgq1 = nb0*neq0;
  11244. const size_t nbgq2 = nb0*neq0*neq1;
  11245. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11246. const size_t nbgk1 = nb0*nek0;
  11247. const size_t nbgk2 = nb0*nek0*nek1;
  11248. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11249. const size_t nbgv1 = nb0*nev0;
  11250. const size_t nbgv2 = nb0*nev0*nev1;
  11251. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11252. // parallelize by k rows using ggml_vec_dot_f32
  11253. // total rows in k
  11254. const int nr = nek2*nek3;
  11255. // rows per thread
  11256. const int dr = (nr + nth - 1)/nth;
  11257. // row range for this thread
  11258. const int ir0 = dr*ith;
  11259. const int ir1 = MIN(ir0 + dr, nr);
  11260. const float scale = 1.0f/sqrtf(D);
  11261. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11262. // how often k2 (and v2) is repeated in q2
  11263. int nrep = neq2/nek2;
  11264. for (int ir = ir0; ir < ir1; ++ir) {
  11265. // q indices
  11266. const int ik3 = ir/(nek2);
  11267. const int ik2 = ir - ik3*nek2;
  11268. const int iq3 = ik3;
  11269. const int id3 = ik3;
  11270. const int iv3 = ik3;
  11271. const int iv2 = ik2;
  11272. for (int irep = 0; irep < nrep; ++irep) {
  11273. const int iq2 = ik2 + irep*nek2;
  11274. const int id2 = iq2;
  11275. // (ik2 + irep*nek2) % nek2 == ik2
  11276. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11277. const int id1 = iq1;
  11278. // not sure about CACHE_LINE_SIZE_F32..
  11279. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11280. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11281. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11282. for (int i = M; i < Mup; ++i) {
  11283. S[i] = -INFINITY;
  11284. }
  11285. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11286. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11287. // k indices
  11288. const int ik1 = ic;
  11289. // S indices
  11290. const int i1 = ik1;
  11291. ggml_vec_dot_f32(neq0,
  11292. S + i1,
  11293. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11294. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11295. }
  11296. // scale
  11297. ggml_vec_scale_f32(masked_begin, S, scale);
  11298. for (int64_t i = masked_begin; i < M; i++) {
  11299. S[i] = -INFINITY;
  11300. }
  11301. // softmax
  11302. // exclude known -INF S[..] values from max and loop
  11303. // dont forget to set their SM values to zero
  11304. {
  11305. float max = -INFINITY;
  11306. ggml_vec_max_f32(masked_begin, &max, S);
  11307. ggml_float sum = 0.0;
  11308. {
  11309. #ifdef GGML_SOFT_MAX_ACCELERATE
  11310. max = -max;
  11311. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11312. vvexpf(SM, SM, &Mup);
  11313. ggml_vec_sum_f32(Mup, &sum, SM);
  11314. #else
  11315. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11316. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11317. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11318. if (i >= masked_begin) {
  11319. break;
  11320. }
  11321. float * SR = S + i;
  11322. float * SW = SM + i;
  11323. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11324. if (i + j >= masked_begin) {
  11325. break;
  11326. } else if (SR[j] == -INFINITY) {
  11327. SW[j] = 0.0f;
  11328. } else {
  11329. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11330. const float val = expf(SR[j] - max);
  11331. #else
  11332. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11333. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11334. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11335. #endif
  11336. sump[j] += (ggml_float)val;
  11337. SW[j] = val;
  11338. }
  11339. }
  11340. }
  11341. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11342. sum += sump[i];
  11343. }
  11344. #endif
  11345. }
  11346. assert(sum > 0.0);
  11347. sum = 1.0/sum;
  11348. ggml_vec_scale_f32(masked_begin, SM, sum);
  11349. }
  11350. // step-by-step explanation
  11351. {
  11352. // forward-process shape grads from backward process
  11353. // parallel_for ik2,ik3:
  11354. // for irep:
  11355. // iq2 = ik2 + irep*nek2
  11356. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11357. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11358. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11359. // for iq1:
  11360. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11361. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11362. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11363. // S0 = -Inf [D,1,1,1]
  11364. // ~S1[i] = dot(kcur[:D,i], qcur)
  11365. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11366. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11367. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11368. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11369. // ~S5[i] = dot(vcur[:,i], S4)
  11370. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11371. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11372. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11373. // dst backward-/ grad[dst] = d
  11374. //
  11375. // output gradients with their dependencies:
  11376. //
  11377. // grad[kcur] = grad[S1].T @ qcur
  11378. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11379. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11380. // grad[S4] = grad[S5] @ vcur
  11381. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11382. // grad[qcur] = grad[S1] @ kcur
  11383. // grad[vcur] = grad[S5].T @ S4
  11384. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11385. //
  11386. // in post-order:
  11387. //
  11388. // S1 = qcur @ kcur.T
  11389. // S2 = S1 * scale
  11390. // S3 = diag_mask_inf(S2, P)
  11391. // S4 = softmax(S3)
  11392. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11393. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11394. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11395. // grad[qcur] = grad[S1] @ kcur
  11396. // grad[kcur] = grad[S1].T @ qcur
  11397. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11398. //
  11399. // using less variables (SM=S4):
  11400. //
  11401. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11402. // SM = softmax(S)
  11403. // S = d[:D,iq1,iq2,iq3] @ vcur
  11404. // dot_SM_gradSM = dot(SM, S)
  11405. // S = SM * (S - dot(SM, S))
  11406. // S = diag_mask_zero(S, P) * scale
  11407. //
  11408. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11409. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11410. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11411. }
  11412. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11413. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11414. // for ic:
  11415. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11416. // exclude known future zero S[..] values from operation
  11417. ggml_vec_set_f32(masked_begin, S, 0);
  11418. for (int64_t ic = 0; ic < D; ++ic) {
  11419. ggml_vec_mad_f32(masked_begin,
  11420. S,
  11421. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11422. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11423. }
  11424. // S = SM * (S - dot(SM, S))
  11425. float dot_SM_gradSM = 0;
  11426. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  11427. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11428. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11429. // S = diag_mask_zero(S, P) * scale
  11430. // already done by above ggml_vec_set_f32
  11431. // exclude known zero S[..] values from operation
  11432. ggml_vec_scale_f32(masked_begin, S, scale);
  11433. // S shape [M,1]
  11434. // SM shape [M,1]
  11435. // kcur shape [D,M]
  11436. // qcur shape [D,1]
  11437. // vcur shape [M,D]
  11438. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11439. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11440. // for ic:
  11441. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11442. // exclude known zero S[..] values from loop
  11443. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11444. ggml_vec_mad_f32(D,
  11445. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11446. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11447. S[ic]);
  11448. }
  11449. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11450. // for ic:
  11451. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11452. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11453. // exclude known zero S[..] values from loop
  11454. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11455. ggml_vec_mad_f32(D,
  11456. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11457. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11458. S[ic]);
  11459. }
  11460. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11461. // for ic:
  11462. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11463. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11464. // exclude known zero SM[..] values from mad
  11465. for (int64_t ic = 0; ic < D; ++ic) {
  11466. ggml_vec_mad_f32(masked_begin,
  11467. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11468. SM,
  11469. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11470. }
  11471. }
  11472. }
  11473. }
  11474. }
  11475. static void ggml_compute_forward_flash_attn_back(
  11476. const struct ggml_compute_params * params,
  11477. const struct ggml_tensor * q,
  11478. const struct ggml_tensor * k,
  11479. const struct ggml_tensor * v,
  11480. const struct ggml_tensor * d,
  11481. const bool masked,
  11482. struct ggml_tensor * dst) {
  11483. switch (q->type) {
  11484. case GGML_TYPE_F32:
  11485. {
  11486. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11487. } break;
  11488. default:
  11489. {
  11490. GGML_ASSERT(false);
  11491. } break;
  11492. }
  11493. }
  11494. // ggml_compute_forward_win_part
  11495. static void ggml_compute_forward_win_part_f32(
  11496. const struct ggml_compute_params * params,
  11497. const struct ggml_tensor * src0,
  11498. struct ggml_tensor * dst) {
  11499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11500. return;
  11501. }
  11502. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11503. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11504. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11505. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11506. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11507. assert(ne00 == ne0);
  11508. assert(ne3 == nep0*nep1);
  11509. // TODO: optimize / multi-thread
  11510. for (int py = 0; py < nep1; ++py) {
  11511. for (int px = 0; px < nep0; ++px) {
  11512. const int64_t i3 = py*nep0 + px;
  11513. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11514. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11515. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11516. const int64_t i02 = py*w + i2;
  11517. const int64_t i01 = px*w + i1;
  11518. const int64_t i00 = i0;
  11519. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11520. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11521. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11522. ((float *) dst->data)[i] = 0.0f;
  11523. } else {
  11524. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11525. }
  11526. }
  11527. }
  11528. }
  11529. }
  11530. }
  11531. }
  11532. static void ggml_compute_forward_win_part(
  11533. const struct ggml_compute_params * params,
  11534. const struct ggml_tensor * src0,
  11535. struct ggml_tensor * dst) {
  11536. switch (src0->type) {
  11537. case GGML_TYPE_F32:
  11538. {
  11539. ggml_compute_forward_win_part_f32(params, src0, dst);
  11540. } break;
  11541. default:
  11542. {
  11543. GGML_ASSERT(false);
  11544. } break;
  11545. }
  11546. }
  11547. // ggml_compute_forward_win_unpart
  11548. static void ggml_compute_forward_win_unpart_f32(
  11549. const struct ggml_compute_params * params,
  11550. const struct ggml_tensor * src0,
  11551. struct ggml_tensor * dst) {
  11552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11553. return;
  11554. }
  11555. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11556. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11557. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11558. // padding
  11559. const int px = (w - ne1%w)%w;
  11560. //const int py = (w - ne2%w)%w;
  11561. const int npx = (px + ne1)/w;
  11562. //const int npy = (py + ne2)/w;
  11563. assert(ne0 == ne00);
  11564. // TODO: optimize / multi-thread
  11565. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11566. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11567. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11568. const int ip2 = i2/w;
  11569. const int ip1 = i1/w;
  11570. const int64_t i02 = i2%w;
  11571. const int64_t i01 = i1%w;
  11572. const int64_t i00 = i0;
  11573. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11574. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11575. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11576. }
  11577. }
  11578. }
  11579. }
  11580. static void ggml_compute_forward_win_unpart(
  11581. const struct ggml_compute_params * params,
  11582. const struct ggml_tensor * src0,
  11583. struct ggml_tensor * dst) {
  11584. switch (src0->type) {
  11585. case GGML_TYPE_F32:
  11586. {
  11587. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11588. } break;
  11589. default:
  11590. {
  11591. GGML_ASSERT(false);
  11592. } break;
  11593. }
  11594. }
  11595. //gmml_compute_forward_unary
  11596. static void ggml_compute_forward_unary(
  11597. const struct ggml_compute_params * params,
  11598. const struct ggml_tensor * src0,
  11599. struct ggml_tensor * dst) {
  11600. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11601. switch (op) {
  11602. case GGML_UNARY_OP_ABS:
  11603. {
  11604. ggml_compute_forward_abs(params, src0, dst);
  11605. } break;
  11606. case GGML_UNARY_OP_SGN:
  11607. {
  11608. ggml_compute_forward_sgn(params, src0, dst);
  11609. } break;
  11610. case GGML_UNARY_OP_NEG:
  11611. {
  11612. ggml_compute_forward_neg(params, src0, dst);
  11613. } break;
  11614. case GGML_UNARY_OP_STEP:
  11615. {
  11616. ggml_compute_forward_step(params, src0, dst);
  11617. } break;
  11618. case GGML_UNARY_OP_TANH:
  11619. {
  11620. ggml_compute_forward_tanh(params, src0, dst);
  11621. } break;
  11622. case GGML_UNARY_OP_ELU:
  11623. {
  11624. ggml_compute_forward_elu(params, src0, dst);
  11625. } break;
  11626. case GGML_UNARY_OP_RELU:
  11627. {
  11628. ggml_compute_forward_relu(params, src0, dst);
  11629. } break;
  11630. case GGML_UNARY_OP_GELU:
  11631. {
  11632. ggml_compute_forward_gelu(params, src0, dst);
  11633. } break;
  11634. case GGML_UNARY_OP_GELU_QUICK:
  11635. {
  11636. ggml_compute_forward_gelu_quick(params, src0, dst);
  11637. } break;
  11638. case GGML_UNARY_OP_SILU:
  11639. {
  11640. ggml_compute_forward_silu(params, src0, dst);
  11641. } break;
  11642. case GGML_UNARY_OP_HARDSWISH:
  11643. {
  11644. ggml_compute_forward_hardswish(params, src0, dst);
  11645. } break;
  11646. case GGML_UNARY_OP_HARDSIGMOID:
  11647. {
  11648. ggml_compute_forward_hardsigmoid(params, src0, dst);
  11649. } break;
  11650. default:
  11651. {
  11652. GGML_ASSERT(false);
  11653. } break;
  11654. }
  11655. }
  11656. // ggml_compute_forward_get_rel_pos
  11657. static void ggml_compute_forward_get_rel_pos_f16(
  11658. const struct ggml_compute_params * params,
  11659. const struct ggml_tensor * src0,
  11660. struct ggml_tensor * dst) {
  11661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11662. return;
  11663. }
  11664. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11665. GGML_TENSOR_UNARY_OP_LOCALS
  11666. const int64_t w = ne1;
  11667. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11668. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11669. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11670. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11671. const int64_t pos = (w - i1 - 1) + i2;
  11672. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11673. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11674. }
  11675. }
  11676. }
  11677. }
  11678. static void ggml_compute_forward_get_rel_pos(
  11679. const struct ggml_compute_params * params,
  11680. const struct ggml_tensor * src0,
  11681. struct ggml_tensor * dst) {
  11682. switch (src0->type) {
  11683. case GGML_TYPE_F16:
  11684. {
  11685. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11686. } break;
  11687. default:
  11688. {
  11689. GGML_ASSERT(false);
  11690. } break;
  11691. }
  11692. }
  11693. // ggml_compute_forward_add_rel_pos
  11694. static void ggml_compute_forward_add_rel_pos_f32(
  11695. const struct ggml_compute_params * params,
  11696. const struct ggml_tensor * src0,
  11697. const struct ggml_tensor * src1,
  11698. const struct ggml_tensor * src2,
  11699. struct ggml_tensor * dst) {
  11700. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11701. if (!inplace && params->type == GGML_TASK_INIT) {
  11702. if (params->ith != 0) {
  11703. return;
  11704. }
  11705. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11706. return;
  11707. }
  11708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11709. return;
  11710. }
  11711. int64_t t0 = ggml_perf_time_us();
  11712. UNUSED(t0);
  11713. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11714. float * src1_data = (float *) src1->data;
  11715. float * src2_data = (float *) src2->data;
  11716. float * dst_data = (float *) dst->data;
  11717. const int64_t ne10 = src1->ne[0];
  11718. const int64_t ne11 = src1->ne[1];
  11719. const int64_t ne12 = src1->ne[2];
  11720. const int64_t ne13 = src1->ne[3];
  11721. const int ith = params->ith;
  11722. const int nth = params->nth;
  11723. // total patches in dst
  11724. const int np = ne13;
  11725. // patches per thread
  11726. const int dp = (np + nth - 1)/nth;
  11727. // patch range for this thread
  11728. const int ip0 = dp*ith;
  11729. const int ip1 = MIN(ip0 + dp, np);
  11730. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11731. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11732. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11733. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11734. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11735. const int64_t jp0 = jp1 + i10;
  11736. const float src1_e = src1_data[jp0];
  11737. const float src2_e = src2_data[jp0];
  11738. const int64_t jdh = jp0 * ne10;
  11739. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11740. for (int64_t j = 0; j < ne10; ++j) {
  11741. dst_data[jdh + j ] += src2_e;
  11742. dst_data[jdw + j*ne10] += src1_e;
  11743. }
  11744. }
  11745. }
  11746. }
  11747. }
  11748. }
  11749. static void ggml_compute_forward_add_rel_pos(
  11750. const struct ggml_compute_params * params,
  11751. const struct ggml_tensor * src0,
  11752. const struct ggml_tensor * src1,
  11753. const struct ggml_tensor * src2,
  11754. struct ggml_tensor * dst) {
  11755. switch (src0->type) {
  11756. case GGML_TYPE_F32:
  11757. {
  11758. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11759. } break;
  11760. default:
  11761. {
  11762. GGML_ASSERT(false);
  11763. } break;
  11764. }
  11765. }
  11766. // ggml_compute_forward_map_unary
  11767. static void ggml_compute_forward_map_unary_f32(
  11768. const struct ggml_compute_params * params,
  11769. const struct ggml_tensor * src0,
  11770. struct ggml_tensor * dst,
  11771. const ggml_unary_op_f32_t fun) {
  11772. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11774. return;
  11775. }
  11776. const int n = ggml_nrows(src0);
  11777. const int nc = src0->ne[0];
  11778. assert( dst->nb[0] == sizeof(float));
  11779. assert(src0->nb[0] == sizeof(float));
  11780. for (int i = 0; i < n; i++) {
  11781. fun(nc,
  11782. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11783. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11784. }
  11785. }
  11786. static void ggml_compute_forward_map_unary(
  11787. const struct ggml_compute_params * params,
  11788. const struct ggml_tensor * src0,
  11789. struct ggml_tensor * dst,
  11790. const ggml_unary_op_f32_t fun) {
  11791. switch (src0->type) {
  11792. case GGML_TYPE_F32:
  11793. {
  11794. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11795. } break;
  11796. default:
  11797. {
  11798. GGML_ASSERT(false);
  11799. } break;
  11800. }
  11801. }
  11802. // ggml_compute_forward_map_binary
  11803. static void ggml_compute_forward_map_binary_f32(
  11804. const struct ggml_compute_params * params,
  11805. const struct ggml_tensor * src0,
  11806. const struct ggml_tensor * src1,
  11807. struct ggml_tensor * dst,
  11808. const ggml_binary_op_f32_t fun) {
  11809. assert(params->ith == 0);
  11810. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11812. return;
  11813. }
  11814. const int n = ggml_nrows(src0);
  11815. const int nc = src0->ne[0];
  11816. assert( dst->nb[0] == sizeof(float));
  11817. assert(src0->nb[0] == sizeof(float));
  11818. assert(src1->nb[0] == sizeof(float));
  11819. for (int i = 0; i < n; i++) {
  11820. fun(nc,
  11821. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11822. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11823. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11824. }
  11825. }
  11826. static void ggml_compute_forward_map_binary(
  11827. const struct ggml_compute_params * params,
  11828. const struct ggml_tensor * src0,
  11829. const struct ggml_tensor * src1,
  11830. struct ggml_tensor * dst,
  11831. const ggml_binary_op_f32_t fun) {
  11832. switch (src0->type) {
  11833. case GGML_TYPE_F32:
  11834. {
  11835. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11836. } break;
  11837. default:
  11838. {
  11839. GGML_ASSERT(false);
  11840. } break;
  11841. }
  11842. }
  11843. // ggml_compute_forward_map_custom1
  11844. static void ggml_compute_forward_map_custom1_f32(
  11845. const struct ggml_compute_params * params,
  11846. const struct ggml_tensor * a,
  11847. struct ggml_tensor * dst,
  11848. const ggml_custom1_op_f32_t fun) {
  11849. assert(params->ith == 0);
  11850. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11851. return;
  11852. }
  11853. fun(dst, a);
  11854. }
  11855. // ggml_compute_forward_map_custom2
  11856. static void ggml_compute_forward_map_custom2_f32(
  11857. const struct ggml_compute_params * params,
  11858. const struct ggml_tensor * a,
  11859. const struct ggml_tensor * b,
  11860. struct ggml_tensor * dst,
  11861. const ggml_custom2_op_f32_t fun) {
  11862. assert(params->ith == 0);
  11863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11864. return;
  11865. }
  11866. fun(dst, a, b);
  11867. }
  11868. // ggml_compute_forward_map_custom3
  11869. static void ggml_compute_forward_map_custom3_f32(
  11870. const struct ggml_compute_params * params,
  11871. const struct ggml_tensor * a,
  11872. const struct ggml_tensor * b,
  11873. const struct ggml_tensor * c,
  11874. struct ggml_tensor * dst,
  11875. const ggml_custom3_op_f32_t fun) {
  11876. assert(params->ith == 0);
  11877. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11878. return;
  11879. }
  11880. fun(dst, a, b, c);
  11881. }
  11882. // ggml_compute_forward_map_custom1
  11883. static void ggml_compute_forward_map_custom1(
  11884. const struct ggml_compute_params * params,
  11885. const struct ggml_tensor * a,
  11886. struct ggml_tensor * dst) {
  11887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11888. return;
  11889. }
  11890. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11891. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11892. }
  11893. // ggml_compute_forward_map_custom2
  11894. static void ggml_compute_forward_map_custom2(
  11895. const struct ggml_compute_params * params,
  11896. const struct ggml_tensor * a,
  11897. const struct ggml_tensor * b,
  11898. struct ggml_tensor * dst) {
  11899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11900. return;
  11901. }
  11902. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11903. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11904. }
  11905. // ggml_compute_forward_map_custom3
  11906. static void ggml_compute_forward_map_custom3(
  11907. const struct ggml_compute_params * params,
  11908. const struct ggml_tensor * a,
  11909. const struct ggml_tensor * b,
  11910. const struct ggml_tensor * c,
  11911. struct ggml_tensor * dst) {
  11912. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11913. return;
  11914. }
  11915. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11916. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11917. }
  11918. // ggml_compute_forward_cross_entropy_loss
  11919. static void ggml_compute_forward_cross_entropy_loss_f32(
  11920. const struct ggml_compute_params * params,
  11921. const struct ggml_tensor * src0,
  11922. const struct ggml_tensor * src1,
  11923. struct ggml_tensor * dst) {
  11924. GGML_ASSERT(ggml_is_contiguous(src0));
  11925. GGML_ASSERT(ggml_is_contiguous(src1));
  11926. GGML_ASSERT(ggml_is_scalar(dst));
  11927. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11928. const int ith = params->ith;
  11929. const int nth = params->nth;
  11930. float * sums = (float *) params->wdata;
  11931. // TODO: handle transposed/permuted matrices
  11932. const int nc = src0->ne[0];
  11933. const int nr = ggml_nrows(src0);
  11934. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11935. if (params->type == GGML_TASK_INIT) {
  11936. if (ith == 0) {
  11937. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11938. }
  11939. return;
  11940. }
  11941. if (params->type == GGML_TASK_FINALIZE) {
  11942. if (ith == 0) {
  11943. float * dp = (float *) dst->data;
  11944. ggml_vec_sum_f32(nth, dp, sums);
  11945. dp[0] *= -1.0f / (float) nr;
  11946. }
  11947. return;
  11948. }
  11949. const double eps = 1e-9;
  11950. // rows per thread
  11951. const int dr = (nr + nth - 1)/nth;
  11952. // row range for this thread
  11953. const int ir0 = dr*ith;
  11954. const int ir1 = MIN(ir0 + dr, nr);
  11955. for (int i1 = ir0; i1 < ir1; i1++) {
  11956. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11957. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11958. float * st = ((float *) params->wdata) + nth + ith*nc;
  11959. #ifndef NDEBUG
  11960. for (int i = 0; i < nc; ++i) {
  11961. //printf("p[%d] = %f\n", i, p[i]);
  11962. assert(!isnan(s0[i]));
  11963. assert(!isnan(s1[i]));
  11964. }
  11965. #endif
  11966. // soft_max
  11967. ggml_float sum = 0.0;
  11968. {
  11969. float max = -INFINITY;
  11970. ggml_vec_max_f32(nc, &max, s0);
  11971. uint16_t scvt; UNUSED(scvt);
  11972. for (int i = 0; i < nc; i++) {
  11973. if (s0[i] == -INFINITY) {
  11974. st[i] = 0.0f;
  11975. } else {
  11976. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11977. const float s = s0[i] - max;
  11978. const float val = expf(s);
  11979. #else
  11980. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11981. memcpy(&scvt, &s, sizeof(scvt));
  11982. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11983. #endif
  11984. sum += (ggml_float)val;
  11985. st[i] = val;
  11986. }
  11987. }
  11988. assert(sum > 0.0);
  11989. // sum = 1.0/sum;
  11990. }
  11991. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11992. sum = (1.0 - eps) / sum;
  11993. ggml_vec_scale_f32(nc, st, sum);
  11994. ggml_vec_add1_f32(nc, st, st, eps);
  11995. ggml_vec_log_f32(nc, st, st);
  11996. ggml_vec_mul_f32(nc, st, st, s1);
  11997. float st_sum = 0;
  11998. ggml_vec_sum_f32(nc, &st_sum, st);
  11999. sums[ith] += st_sum;
  12000. #ifndef NDEBUG
  12001. for (int i = 0; i < nc; ++i) {
  12002. assert(!isnan(st[i]));
  12003. assert(!isinf(st[i]));
  12004. }
  12005. #endif
  12006. }
  12007. }
  12008. static void ggml_compute_forward_cross_entropy_loss(
  12009. const struct ggml_compute_params * params,
  12010. const struct ggml_tensor * src0,
  12011. const struct ggml_tensor * src1,
  12012. struct ggml_tensor * dst) {
  12013. switch (src0->type) {
  12014. case GGML_TYPE_F32:
  12015. {
  12016. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12017. } break;
  12018. default:
  12019. {
  12020. GGML_ASSERT(false);
  12021. } break;
  12022. }
  12023. }
  12024. // ggml_compute_forward_cross_entropy_loss_back
  12025. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12026. const struct ggml_compute_params * params,
  12027. const struct ggml_tensor * src0,
  12028. const struct ggml_tensor * src1,
  12029. const struct ggml_tensor * opt0,
  12030. struct ggml_tensor * dst) {
  12031. GGML_ASSERT(ggml_is_contiguous(dst));
  12032. GGML_ASSERT(ggml_is_contiguous(src0));
  12033. GGML_ASSERT(ggml_is_contiguous(src1));
  12034. GGML_ASSERT(ggml_is_contiguous(opt0));
  12035. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12036. const int64_t ith = params->ith;
  12037. const int64_t nth = params->nth;
  12038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12039. return;
  12040. }
  12041. const double eps = 1e-9;
  12042. // TODO: handle transposed/permuted matrices
  12043. const int64_t nc = src0->ne[0];
  12044. const int64_t nr = ggml_nrows(src0);
  12045. // rows per thread
  12046. const int64_t dr = (nr + nth - 1)/nth;
  12047. // row range for this thread
  12048. const int64_t ir0 = dr*ith;
  12049. const int64_t ir1 = MIN(ir0 + dr, nr);
  12050. float * d = (float *) opt0->data;
  12051. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12052. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12053. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12054. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12055. #ifndef NDEBUG
  12056. for (int i = 0; i < nc; ++i) {
  12057. //printf("p[%d] = %f\n", i, p[i]);
  12058. assert(!isnan(s0[i]));
  12059. assert(!isnan(s1[i]));
  12060. }
  12061. #endif
  12062. // soft_max
  12063. ggml_float sum = 0.0;
  12064. {
  12065. float max = -INFINITY;
  12066. ggml_vec_max_f32(nc, &max, s0);
  12067. uint16_t scvt; UNUSED(scvt);
  12068. for (int i = 0; i < nc; i++) {
  12069. if (s0[i] == -INFINITY) {
  12070. ds0[i] = 0.0f;
  12071. } else {
  12072. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12073. const float s = s0[i] - max;
  12074. const float val = expf(s);
  12075. #else
  12076. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12077. memcpy(&scvt, &s, sizeof(scvt));
  12078. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12079. #endif
  12080. sum += (ggml_float)val;
  12081. ds0[i] = val;
  12082. }
  12083. }
  12084. assert(sum > 0.0);
  12085. sum = (1.0 - eps)/sum;
  12086. }
  12087. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12088. ggml_vec_scale_f32(nc, ds0, sum);
  12089. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12090. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12091. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12092. #ifndef NDEBUG
  12093. for (int i = 0; i < nc; ++i) {
  12094. assert(!isnan(ds0[i]));
  12095. assert(!isinf(ds0[i]));
  12096. }
  12097. #endif
  12098. }
  12099. }
  12100. static void ggml_compute_forward_cross_entropy_loss_back(
  12101. const struct ggml_compute_params * params,
  12102. const struct ggml_tensor * src0,
  12103. const struct ggml_tensor * src1,
  12104. const struct ggml_tensor * opt0,
  12105. struct ggml_tensor * dst) {
  12106. switch (src0->type) {
  12107. case GGML_TYPE_F32:
  12108. {
  12109. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12110. } break;
  12111. default:
  12112. {
  12113. GGML_ASSERT(false);
  12114. } break;
  12115. }
  12116. }
  12117. /////////////////////////////////
  12118. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12119. GGML_ASSERT(params);
  12120. if (tensor->op == GGML_OP_NONE) {
  12121. return;
  12122. }
  12123. #ifdef GGML_USE_CUBLAS
  12124. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12125. if (skip_cpu) {
  12126. return;
  12127. }
  12128. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12129. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12130. #elif defined(GGML_USE_VULKAN)
  12131. const bool skip_cpu = ggml_vk_compute_forward(params, tensor);
  12132. #ifdef GGML_VULKAN_CHECK_RESULTS
  12133. if (skip_cpu) {
  12134. ggml_vk_check_results_1(params, tensor);
  12135. }
  12136. #endif
  12137. if (skip_cpu) {
  12138. return;
  12139. }
  12140. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12141. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12142. #endif // GGML_USE_CUBLAS
  12143. #ifdef GGML_USE_SYCL
  12144. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12145. if (skip_cpu) {
  12146. return;
  12147. }
  12148. #endif // GGML_USE_SYCL
  12149. switch (tensor->op) {
  12150. case GGML_OP_DUP:
  12151. {
  12152. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12153. } break;
  12154. case GGML_OP_ADD:
  12155. {
  12156. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12157. } break;
  12158. case GGML_OP_ADD1:
  12159. {
  12160. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12161. } break;
  12162. case GGML_OP_ACC:
  12163. {
  12164. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12165. } break;
  12166. case GGML_OP_SUB:
  12167. {
  12168. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12169. } break;
  12170. case GGML_OP_MUL:
  12171. {
  12172. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12173. } break;
  12174. case GGML_OP_DIV:
  12175. {
  12176. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12177. } break;
  12178. case GGML_OP_SQR:
  12179. {
  12180. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12181. } break;
  12182. case GGML_OP_SQRT:
  12183. {
  12184. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12185. } break;
  12186. case GGML_OP_LOG:
  12187. {
  12188. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12189. } break;
  12190. case GGML_OP_SUM:
  12191. {
  12192. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12193. } break;
  12194. case GGML_OP_SUM_ROWS:
  12195. {
  12196. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12197. } break;
  12198. case GGML_OP_MEAN:
  12199. {
  12200. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12201. } break;
  12202. case GGML_OP_ARGMAX:
  12203. {
  12204. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12205. } break;
  12206. case GGML_OP_REPEAT:
  12207. {
  12208. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12209. } break;
  12210. case GGML_OP_REPEAT_BACK:
  12211. {
  12212. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12213. } break;
  12214. case GGML_OP_CONCAT:
  12215. {
  12216. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12217. } break;
  12218. case GGML_OP_SILU_BACK:
  12219. {
  12220. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12221. } break;
  12222. case GGML_OP_NORM:
  12223. {
  12224. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12225. } break;
  12226. case GGML_OP_RMS_NORM:
  12227. {
  12228. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12229. } break;
  12230. case GGML_OP_RMS_NORM_BACK:
  12231. {
  12232. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12233. } break;
  12234. case GGML_OP_GROUP_NORM:
  12235. {
  12236. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12237. } break;
  12238. case GGML_OP_MUL_MAT:
  12239. {
  12240. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12241. } break;
  12242. case GGML_OP_MUL_MAT_ID:
  12243. {
  12244. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  12245. } break;
  12246. case GGML_OP_OUT_PROD:
  12247. {
  12248. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12249. } break;
  12250. case GGML_OP_SCALE:
  12251. {
  12252. ggml_compute_forward_scale(params, tensor->src[0], tensor);
  12253. } break;
  12254. case GGML_OP_SET:
  12255. {
  12256. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12257. } break;
  12258. case GGML_OP_CPY:
  12259. {
  12260. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12261. } break;
  12262. case GGML_OP_CONT:
  12263. {
  12264. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12265. } break;
  12266. case GGML_OP_RESHAPE:
  12267. {
  12268. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12269. } break;
  12270. case GGML_OP_VIEW:
  12271. {
  12272. ggml_compute_forward_view(params, tensor->src[0]);
  12273. } break;
  12274. case GGML_OP_PERMUTE:
  12275. {
  12276. ggml_compute_forward_permute(params, tensor->src[0]);
  12277. } break;
  12278. case GGML_OP_TRANSPOSE:
  12279. {
  12280. ggml_compute_forward_transpose(params, tensor->src[0]);
  12281. } break;
  12282. case GGML_OP_GET_ROWS:
  12283. {
  12284. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12285. } break;
  12286. case GGML_OP_GET_ROWS_BACK:
  12287. {
  12288. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  12289. } break;
  12290. case GGML_OP_DIAG:
  12291. {
  12292. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12293. } break;
  12294. case GGML_OP_DIAG_MASK_INF:
  12295. {
  12296. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12297. } break;
  12298. case GGML_OP_DIAG_MASK_ZERO:
  12299. {
  12300. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12301. } break;
  12302. case GGML_OP_SOFT_MAX:
  12303. {
  12304. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  12305. } break;
  12306. case GGML_OP_SOFT_MAX_BACK:
  12307. {
  12308. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12309. } break;
  12310. case GGML_OP_ROPE:
  12311. {
  12312. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12313. } break;
  12314. case GGML_OP_ROPE_BACK:
  12315. {
  12316. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12317. } break;
  12318. case GGML_OP_ALIBI:
  12319. {
  12320. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12321. } break;
  12322. case GGML_OP_CLAMP:
  12323. {
  12324. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12325. } break;
  12326. case GGML_OP_CONV_TRANSPOSE_1D:
  12327. {
  12328. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  12329. } break;
  12330. case GGML_OP_IM2COL:
  12331. {
  12332. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  12333. } break;
  12334. case GGML_OP_CONV_TRANSPOSE_2D:
  12335. {
  12336. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12337. } break;
  12338. case GGML_OP_POOL_1D:
  12339. {
  12340. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12341. } break;
  12342. case GGML_OP_POOL_2D:
  12343. {
  12344. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12345. } break;
  12346. case GGML_OP_UPSCALE:
  12347. {
  12348. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12349. } break;
  12350. case GGML_OP_PAD:
  12351. {
  12352. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  12353. } break;
  12354. case GGML_OP_ARGSORT:
  12355. {
  12356. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  12357. } break;
  12358. case GGML_OP_LEAKY_RELU:
  12359. {
  12360. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  12361. } break;
  12362. case GGML_OP_FLASH_ATTN:
  12363. {
  12364. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12365. GGML_ASSERT(t == 0 || t == 1);
  12366. const bool masked = t != 0;
  12367. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12368. } break;
  12369. case GGML_OP_FLASH_FF:
  12370. {
  12371. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12372. } break;
  12373. case GGML_OP_FLASH_ATTN_BACK:
  12374. {
  12375. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12376. GGML_ASSERT(t == 0 || t == 1);
  12377. bool masked = t != 0;
  12378. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12379. } break;
  12380. case GGML_OP_WIN_PART:
  12381. {
  12382. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12383. } break;
  12384. case GGML_OP_WIN_UNPART:
  12385. {
  12386. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12387. } break;
  12388. case GGML_OP_UNARY:
  12389. {
  12390. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12391. } break;
  12392. case GGML_OP_GET_REL_POS:
  12393. {
  12394. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12395. } break;
  12396. case GGML_OP_ADD_REL_POS:
  12397. {
  12398. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12399. } break;
  12400. case GGML_OP_MAP_UNARY:
  12401. {
  12402. ggml_unary_op_f32_t fun;
  12403. memcpy(&fun, tensor->op_params, sizeof(fun));
  12404. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12405. }
  12406. break;
  12407. case GGML_OP_MAP_BINARY:
  12408. {
  12409. ggml_binary_op_f32_t fun;
  12410. memcpy(&fun, tensor->op_params, sizeof(fun));
  12411. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12412. }
  12413. break;
  12414. case GGML_OP_MAP_CUSTOM1_F32:
  12415. {
  12416. ggml_custom1_op_f32_t fun;
  12417. memcpy(&fun, tensor->op_params, sizeof(fun));
  12418. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12419. }
  12420. break;
  12421. case GGML_OP_MAP_CUSTOM2_F32:
  12422. {
  12423. ggml_custom2_op_f32_t fun;
  12424. memcpy(&fun, tensor->op_params, sizeof(fun));
  12425. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12426. }
  12427. break;
  12428. case GGML_OP_MAP_CUSTOM3_F32:
  12429. {
  12430. ggml_custom3_op_f32_t fun;
  12431. memcpy(&fun, tensor->op_params, sizeof(fun));
  12432. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12433. }
  12434. break;
  12435. case GGML_OP_MAP_CUSTOM1:
  12436. {
  12437. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12438. }
  12439. break;
  12440. case GGML_OP_MAP_CUSTOM2:
  12441. {
  12442. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12443. }
  12444. break;
  12445. case GGML_OP_MAP_CUSTOM3:
  12446. {
  12447. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12448. }
  12449. break;
  12450. case GGML_OP_CROSS_ENTROPY_LOSS:
  12451. {
  12452. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12453. }
  12454. break;
  12455. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12456. {
  12457. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12458. }
  12459. break;
  12460. case GGML_OP_NONE:
  12461. {
  12462. // nop
  12463. } break;
  12464. case GGML_OP_COUNT:
  12465. {
  12466. GGML_ASSERT(false);
  12467. } break;
  12468. }
  12469. }
  12470. ////////////////////////////////////////////////////////////////////////////////
  12471. static size_t ggml_hash_size(size_t min_sz) {
  12472. // next primes after powers of two
  12473. static const size_t primes[] = {
  12474. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12475. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12476. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12477. 16777259, 33554467, 67108879, 134217757, 268435459,
  12478. 536870923, 1073741827, 2147483659
  12479. };
  12480. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12481. // find the smallest prime that is larger or equal to min_sz
  12482. size_t l = 0;
  12483. size_t r = n_primes;
  12484. while (l < r) {
  12485. size_t m = (l + r)/2;
  12486. if (primes[m] < min_sz) {
  12487. l = m + 1;
  12488. } else {
  12489. r = m;
  12490. }
  12491. }
  12492. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12493. return sz;
  12494. }
  12495. static size_t ggml_hash(const void * p) {
  12496. return (size_t)p;
  12497. }
  12498. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12499. size_t h = ggml_hash(key) % hash_set.size;
  12500. // linear probing
  12501. size_t i = h;
  12502. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12503. i = (i + 1) % hash_set.size;
  12504. if (i == h) {
  12505. // visited all hash table entries -> not found
  12506. return GGML_HASHTABLE_FULL;
  12507. }
  12508. }
  12509. return i;
  12510. }
  12511. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12512. size_t i = ggml_hash_find(hash_set, key);
  12513. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12514. }
  12515. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12516. size_t i = ggml_hash_find(hash_set, key);
  12517. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12518. if (hash_set.keys[i] == key) {
  12519. return GGML_HASHTABLE_ALREADY_EXISTS;
  12520. }
  12521. // insert
  12522. GGML_ASSERT(hash_set.keys[i] == NULL);
  12523. hash_set.keys[i] = key;
  12524. return i;
  12525. }
  12526. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12527. size_t i = ggml_hash_find(hash_set, key);
  12528. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12529. hash_set.keys[i] = key;
  12530. return i;
  12531. }
  12532. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12533. size = ggml_hash_size(size);
  12534. struct ggml_hash_set result;
  12535. result.size = size;
  12536. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12537. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12538. return result;
  12539. }
  12540. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12541. GGML_FREE(hash_set.keys);
  12542. }
  12543. struct hash_map {
  12544. struct ggml_hash_set set;
  12545. struct ggml_tensor ** vals;
  12546. };
  12547. static struct hash_map * ggml_new_hash_map(size_t size) {
  12548. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12549. result->set = ggml_hash_set_new(size);
  12550. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12551. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12552. return result;
  12553. }
  12554. static void ggml_hash_map_free(struct hash_map * map) {
  12555. ggml_hash_set_free(map->set);
  12556. GGML_FREE(map->vals);
  12557. GGML_FREE(map);
  12558. }
  12559. // gradient checkpointing
  12560. static struct ggml_tensor * ggml_recompute_graph_node(
  12561. struct ggml_context * ctx,
  12562. struct ggml_cgraph * graph,
  12563. struct hash_map * replacements,
  12564. struct ggml_tensor * node) {
  12565. if (node == NULL) {
  12566. return NULL;
  12567. }
  12568. if (node->is_param) {
  12569. return node;
  12570. }
  12571. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12572. return node;
  12573. }
  12574. int count_children = 0;
  12575. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12576. if (node->src[k]) {
  12577. ++count_children;
  12578. }
  12579. }
  12580. if (count_children == 0) {
  12581. return node;
  12582. }
  12583. size_t i = ggml_hash_find(replacements->set, node);
  12584. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12585. if (replacements->set.keys[i] == node) {
  12586. return replacements->vals[i];
  12587. }
  12588. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12589. // insert clone into replacements
  12590. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12591. replacements->set.keys[i] = node;
  12592. replacements->vals[i] = clone;
  12593. clone->op = node->op;
  12594. clone->grad = node->grad;
  12595. clone->is_param = node->is_param;
  12596. clone->extra = node->extra;
  12597. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12598. clone->nb[k] = node->nb[k];
  12599. }
  12600. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12601. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12602. }
  12603. if (node->view_src != NULL) {
  12604. clone->data = (node->view_src->data == NULL)
  12605. ? NULL // view_src not yet allocated
  12606. : (char *) node->view_src->data // view_src already allocated
  12607. + node->view_offs;
  12608. clone->view_src = node->view_src;
  12609. clone->view_offs = node->view_offs;
  12610. }
  12611. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12612. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12613. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12614. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12615. return clone;
  12616. }
  12617. void ggml_build_backward_gradient_checkpointing(
  12618. struct ggml_context * ctx,
  12619. struct ggml_cgraph * gf,
  12620. struct ggml_cgraph * gb,
  12621. struct ggml_cgraph * gb_tmp,
  12622. struct ggml_tensor * * checkpoints,
  12623. int n_checkpoints) {
  12624. ggml_graph_cpy(gf, gb_tmp);
  12625. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12626. if (n_checkpoints <= 0) {
  12627. ggml_graph_cpy(gb_tmp, gb);
  12628. return;
  12629. }
  12630. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12631. // insert checkpoints in replacements
  12632. for (int i = 0; i < n_checkpoints; ++i) {
  12633. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12634. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12635. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12636. replacements->set.keys[k] = checkpoints[i];
  12637. replacements->vals[k] = checkpoints[i];
  12638. }
  12639. ggml_graph_cpy(gf, gb);
  12640. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12641. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12642. // by recomputing them from checkpoints
  12643. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12644. struct ggml_tensor * node = gb_tmp->nodes[i];
  12645. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12646. // insert new tensors recomputing src, reusing already made replacements,
  12647. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12648. // recurse for input tensors,
  12649. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12650. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12651. }
  12652. // insert rewritten backward node with replacements made into resulting backward graph gb
  12653. ggml_build_forward_expand(gb, node);
  12654. }
  12655. ggml_hash_map_free(replacements);
  12656. }
  12657. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12658. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12659. if (ggml_hash_contains(zero_table, a)) {
  12660. return b;
  12661. } else {
  12662. return ggml_add_impl(ctx, a, b, false);
  12663. }
  12664. }
  12665. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12666. if (ggml_hash_contains(zero_table, a)) {
  12667. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12668. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12669. } else {
  12670. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12671. }
  12672. }
  12673. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12674. if (ggml_hash_contains(zero_table, a)) {
  12675. return ggml_repeat(ctx, b, a);
  12676. } else {
  12677. return ggml_add1_impl(ctx, a, b, false);
  12678. }
  12679. }
  12680. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12681. if (ggml_hash_contains(zero_table, a)) {
  12682. return ggml_neg(ctx, b);
  12683. } else {
  12684. return ggml_sub_impl(ctx, a, b, false);
  12685. }
  12686. }
  12687. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12688. struct ggml_tensor * src0 = tensor->src[0];
  12689. struct ggml_tensor * src1 = tensor->src[1];
  12690. switch (tensor->op) {
  12691. case GGML_OP_DUP:
  12692. {
  12693. if (src0->grad) {
  12694. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12695. }
  12696. } break;
  12697. case GGML_OP_ADD:
  12698. {
  12699. if (src0->grad) {
  12700. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12701. }
  12702. if (src1->grad) {
  12703. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12704. }
  12705. } break;
  12706. case GGML_OP_ADD1:
  12707. {
  12708. if (src0->grad) {
  12709. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12710. }
  12711. if (src1->grad) {
  12712. src1->grad = ggml_add_or_set(ctx,
  12713. src1->grad,
  12714. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12715. zero_table);
  12716. }
  12717. } break;
  12718. case GGML_OP_ACC:
  12719. {
  12720. if (src0->grad) {
  12721. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12722. }
  12723. if (src1->grad) {
  12724. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12725. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12726. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12727. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12728. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12729. tensor->grad,
  12730. src1->grad->ne[0],
  12731. src1->grad->ne[1],
  12732. src1->grad->ne[2],
  12733. src1->grad->ne[3],
  12734. nb1, nb2, nb3, offset);
  12735. src1->grad =
  12736. ggml_add_or_set(ctx,
  12737. src1->grad,
  12738. ggml_reshape(ctx,
  12739. ggml_cont(ctx, tensor_grad_view),
  12740. src1->grad),
  12741. zero_table);
  12742. }
  12743. } break;
  12744. case GGML_OP_SUB:
  12745. {
  12746. if (src0->grad) {
  12747. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12748. }
  12749. if (src1->grad) {
  12750. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12751. }
  12752. } break;
  12753. case GGML_OP_MUL:
  12754. {
  12755. if (src0->grad) {
  12756. src0->grad =
  12757. ggml_add_or_set(ctx,
  12758. src0->grad,
  12759. ggml_mul(ctx, src1, tensor->grad),
  12760. zero_table);
  12761. }
  12762. if (src1->grad) {
  12763. src1->grad =
  12764. ggml_add_or_set(ctx,
  12765. src1->grad,
  12766. ggml_mul(ctx, src0, tensor->grad),
  12767. zero_table);
  12768. }
  12769. } break;
  12770. case GGML_OP_DIV:
  12771. {
  12772. if (src0->grad) {
  12773. src0->grad =
  12774. ggml_add_or_set(ctx,
  12775. src0->grad,
  12776. ggml_div(ctx, tensor->grad, src1),
  12777. zero_table);
  12778. }
  12779. if (src1->grad) {
  12780. src1->grad =
  12781. ggml_sub_or_set(ctx,
  12782. src1->grad,
  12783. ggml_mul(ctx,
  12784. tensor->grad,
  12785. ggml_div(ctx, tensor, src1)),
  12786. zero_table);
  12787. }
  12788. } break;
  12789. case GGML_OP_SQR:
  12790. {
  12791. if (src0->grad) {
  12792. src0->grad =
  12793. ggml_add_or_set(ctx,
  12794. src0->grad,
  12795. ggml_scale(ctx,
  12796. ggml_mul(ctx, src0, tensor->grad),
  12797. 2.0f),
  12798. zero_table);
  12799. }
  12800. } break;
  12801. case GGML_OP_SQRT:
  12802. {
  12803. if (src0->grad) {
  12804. src0->grad =
  12805. ggml_add_or_set(ctx,
  12806. src0->grad,
  12807. ggml_scale(ctx,
  12808. ggml_div(ctx,
  12809. tensor->grad,
  12810. tensor),
  12811. 0.5f),
  12812. zero_table);
  12813. }
  12814. } break;
  12815. case GGML_OP_LOG:
  12816. {
  12817. if (src0->grad) {
  12818. src0->grad =
  12819. ggml_add_or_set(ctx,
  12820. src0->grad,
  12821. ggml_div(ctx,
  12822. tensor->grad,
  12823. src0),
  12824. zero_table);
  12825. }
  12826. } break;
  12827. case GGML_OP_SUM:
  12828. {
  12829. if (src0->grad) {
  12830. src0->grad =
  12831. ggml_add1_or_set(ctx,
  12832. src0->grad,
  12833. tensor->grad,
  12834. zero_table);
  12835. }
  12836. } break;
  12837. case GGML_OP_SUM_ROWS:
  12838. {
  12839. if (src0->grad) {
  12840. src0->grad =
  12841. ggml_add_or_set(ctx,
  12842. src0->grad,
  12843. ggml_repeat(ctx,
  12844. tensor->grad,
  12845. src0->grad),
  12846. zero_table);
  12847. }
  12848. } break;
  12849. case GGML_OP_MEAN:
  12850. case GGML_OP_ARGMAX:
  12851. {
  12852. GGML_ASSERT(false); // TODO: implement
  12853. } break;
  12854. case GGML_OP_REPEAT:
  12855. {
  12856. // necessary for llama
  12857. if (src0->grad) {
  12858. src0->grad = ggml_add_or_set(ctx,
  12859. src0->grad,
  12860. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12861. zero_table);
  12862. }
  12863. } break;
  12864. case GGML_OP_REPEAT_BACK:
  12865. {
  12866. if (src0->grad) {
  12867. // TODO: test this
  12868. src0->grad = ggml_add_or_set(ctx,
  12869. src0->grad,
  12870. ggml_repeat(ctx, tensor->grad, src0->grad),
  12871. zero_table);
  12872. }
  12873. } break;
  12874. case GGML_OP_CONCAT:
  12875. {
  12876. GGML_ASSERT(false); // TODO: implement
  12877. } break;
  12878. case GGML_OP_SILU_BACK:
  12879. {
  12880. GGML_ASSERT(false); // TODO: not implemented
  12881. } break;
  12882. case GGML_OP_NORM:
  12883. {
  12884. GGML_ASSERT(false); // TODO: not implemented
  12885. } break;
  12886. case GGML_OP_RMS_NORM:
  12887. {
  12888. // necessary for llama
  12889. if (src0->grad) {
  12890. float eps;
  12891. memcpy(&eps, tensor->op_params, sizeof(float));
  12892. src0->grad = ggml_add_or_set(ctx,
  12893. src0->grad,
  12894. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12895. zero_table);
  12896. }
  12897. } break;
  12898. case GGML_OP_RMS_NORM_BACK:
  12899. {
  12900. GGML_ASSERT(false); // TODO: not implemented
  12901. } break;
  12902. case GGML_OP_GROUP_NORM:
  12903. {
  12904. GGML_ASSERT(false); // TODO: not implemented
  12905. } break;
  12906. case GGML_OP_MUL_MAT:
  12907. {
  12908. // https://cs231n.github.io/optimization-2/#staged
  12909. // # forward pass
  12910. // s0 = np.random.randn(5, 10)
  12911. // s1 = np.random.randn(10, 3)
  12912. // t = s0.dot(s1)
  12913. // # now suppose we had the gradient on t from above in the circuit
  12914. // dt = np.random.randn(*t.shape) # same shape as t
  12915. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12916. // ds1 = t.T.dot(dt)
  12917. // tensor.shape [m,p,qq,rr]
  12918. // src0.shape [n,m,q1,r1]
  12919. // src1.shape [n,p,qq,rr]
  12920. // necessary for llama
  12921. if (src0->grad) {
  12922. struct ggml_tensor * s1_tg =
  12923. ggml_out_prod(ctx, // [n,m,qq,rr]
  12924. src1, // [n,p,qq,rr]
  12925. tensor->grad); // [m,p,qq,rr]
  12926. const int64_t qq = s1_tg->ne[2];
  12927. const int64_t rr = s1_tg->ne[3];
  12928. const int64_t q1 = src0->ne[2];
  12929. const int64_t r1 = src0->ne[3];
  12930. const bool ne2_broadcasted = qq > q1;
  12931. const bool ne3_broadcasted = rr > r1;
  12932. if (ne2_broadcasted || ne3_broadcasted) {
  12933. // sum broadcast repetitions of s1_tg into shape of src0
  12934. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12935. }
  12936. src0->grad =
  12937. ggml_add_or_set(ctx,
  12938. src0->grad, // [n,m,q1,r1]
  12939. s1_tg, // [n,m,q1,r1]
  12940. zero_table);
  12941. }
  12942. if (src1->grad) {
  12943. src1->grad =
  12944. ggml_add_or_set(ctx,
  12945. src1->grad, // [n,p,qq,rr]
  12946. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12947. // ggml_cont(ctx, // [m,n,q1,r1]
  12948. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12949. // tensor->grad), // [m,p,qq,rr]
  12950. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12951. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12952. // // and then use ggml_out_prod
  12953. ggml_out_prod(ctx, // [n,p,qq,rr]
  12954. src0, // [n,m,q1,r1]
  12955. ggml_transpose(ctx, // [p,m,qq,rr]
  12956. tensor->grad)), // [m,p,qq,rr]
  12957. zero_table);
  12958. }
  12959. } break;
  12960. case GGML_OP_MUL_MAT_ID:
  12961. {
  12962. GGML_ASSERT(false); // TODO: not implemented
  12963. } break;
  12964. case GGML_OP_OUT_PROD:
  12965. {
  12966. GGML_ASSERT(false); // TODO: not implemented
  12967. } break;
  12968. case GGML_OP_SCALE:
  12969. {
  12970. // necessary for llama
  12971. if (src0->grad) {
  12972. float s;
  12973. memcpy(&s, tensor->op_params, sizeof(float));
  12974. src0->grad =
  12975. ggml_add_or_set(ctx,
  12976. src0->grad,
  12977. ggml_scale_impl(ctx, tensor->grad, s, false),
  12978. zero_table);
  12979. }
  12980. } break;
  12981. case GGML_OP_SET:
  12982. {
  12983. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12984. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12985. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12986. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12987. struct ggml_tensor * tensor_grad_view = NULL;
  12988. if (src0->grad || src1->grad) {
  12989. GGML_ASSERT(src0->type == tensor->type);
  12990. GGML_ASSERT(tensor->grad->type == tensor->type);
  12991. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12992. tensor_grad_view = ggml_view_4d(ctx,
  12993. tensor->grad,
  12994. src1->grad->ne[0],
  12995. src1->grad->ne[1],
  12996. src1->grad->ne[2],
  12997. src1->grad->ne[3],
  12998. nb1, nb2, nb3, offset);
  12999. }
  13000. if (src0->grad) {
  13001. src0->grad = ggml_add_or_set(ctx,
  13002. src0->grad,
  13003. ggml_acc_impl(ctx,
  13004. tensor->grad,
  13005. ggml_neg(ctx, tensor_grad_view),
  13006. nb1, nb2, nb3, offset, false),
  13007. zero_table);
  13008. }
  13009. if (src1->grad) {
  13010. src1->grad =
  13011. ggml_add_or_set(ctx,
  13012. src1->grad,
  13013. ggml_reshape(ctx,
  13014. ggml_cont(ctx, tensor_grad_view),
  13015. src1->grad),
  13016. zero_table);
  13017. }
  13018. } break;
  13019. case GGML_OP_CPY:
  13020. {
  13021. // necessary for llama
  13022. // cpy overwrites value of src1 by src0 and returns view(src1)
  13023. // the overwriting is mathematically equivalent to:
  13024. // tensor = src0 * 1 + src1 * 0
  13025. if (src0->grad) {
  13026. // dsrc0 = dtensor * 1
  13027. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13028. }
  13029. if (src1->grad) {
  13030. // dsrc1 = dtensor * 0 -> noop
  13031. }
  13032. } break;
  13033. case GGML_OP_CONT:
  13034. {
  13035. // same as cpy
  13036. if (src0->grad) {
  13037. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13038. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13039. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13040. }
  13041. } break;
  13042. case GGML_OP_RESHAPE:
  13043. {
  13044. // necessary for llama
  13045. if (src0->grad) {
  13046. src0->grad =
  13047. ggml_add_or_set(ctx, src0->grad,
  13048. ggml_reshape(ctx,
  13049. ggml_is_contiguous(tensor->grad)
  13050. ? tensor->grad
  13051. : ggml_cont(ctx, tensor->grad),
  13052. src0->grad),
  13053. zero_table);
  13054. }
  13055. } break;
  13056. case GGML_OP_VIEW:
  13057. {
  13058. // necessary for llama
  13059. if (src0->grad) {
  13060. size_t offset;
  13061. memcpy(&offset, tensor->op_params, sizeof(offset));
  13062. size_t nb1 = tensor->nb[1];
  13063. size_t nb2 = tensor->nb[2];
  13064. size_t nb3 = tensor->nb[3];
  13065. if (src0->type != src0->grad->type) {
  13066. // gradient is typically F32, but src0 could be other type
  13067. size_t ng = ggml_element_size(src0->grad);
  13068. size_t n0 = ggml_element_size(src0);
  13069. GGML_ASSERT(offset % n0 == 0);
  13070. GGML_ASSERT(nb1 % n0 == 0);
  13071. GGML_ASSERT(nb2 % n0 == 0);
  13072. GGML_ASSERT(nb3 % n0 == 0);
  13073. offset = (offset / n0) * ng;
  13074. nb1 = (nb1 / n0) * ng;
  13075. nb2 = (nb2 / n0) * ng;
  13076. nb3 = (nb3 / n0) * ng;
  13077. }
  13078. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13079. }
  13080. } break;
  13081. case GGML_OP_PERMUTE:
  13082. {
  13083. // necessary for llama
  13084. if (src0->grad) {
  13085. int32_t * axes = (int32_t *) tensor->op_params;
  13086. int axis0 = axes[0] & 0x3;
  13087. int axis1 = axes[1] & 0x3;
  13088. int axis2 = axes[2] & 0x3;
  13089. int axis3 = axes[3] & 0x3;
  13090. int axes_backward[4] = {0,0,0,0};
  13091. axes_backward[axis0] = 0;
  13092. axes_backward[axis1] = 1;
  13093. axes_backward[axis2] = 2;
  13094. axes_backward[axis3] = 3;
  13095. src0->grad =
  13096. ggml_add_or_set(ctx, src0->grad,
  13097. ggml_permute(ctx,
  13098. tensor->grad,
  13099. axes_backward[0],
  13100. axes_backward[1],
  13101. axes_backward[2],
  13102. axes_backward[3]),
  13103. zero_table);
  13104. }
  13105. } break;
  13106. case GGML_OP_TRANSPOSE:
  13107. {
  13108. // necessary for llama
  13109. if (src0->grad) {
  13110. src0->grad =
  13111. ggml_add_or_set(ctx, src0->grad,
  13112. ggml_transpose(ctx, tensor->grad),
  13113. zero_table);
  13114. }
  13115. } break;
  13116. case GGML_OP_GET_ROWS:
  13117. {
  13118. // necessary for llama (only for tokenizer)
  13119. if (src0->grad) {
  13120. src0->grad =
  13121. ggml_add_or_set(ctx, src0->grad,
  13122. // last ggml_get_rows_back argument src0->grad is only
  13123. // necessary to setup correct output shape
  13124. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13125. zero_table);
  13126. }
  13127. if (src1->grad) {
  13128. // noop
  13129. }
  13130. } break;
  13131. case GGML_OP_GET_ROWS_BACK:
  13132. {
  13133. GGML_ASSERT(false); // TODO: not implemented
  13134. } break;
  13135. case GGML_OP_DIAG:
  13136. {
  13137. GGML_ASSERT(false); // TODO: not implemented
  13138. } break;
  13139. case GGML_OP_DIAG_MASK_INF:
  13140. {
  13141. // necessary for llama
  13142. if (src0->grad) {
  13143. const int n_past = ((int32_t *) tensor->op_params)[0];
  13144. src0->grad =
  13145. ggml_add_or_set(ctx, src0->grad,
  13146. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13147. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13148. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13149. zero_table);
  13150. }
  13151. } break;
  13152. case GGML_OP_DIAG_MASK_ZERO:
  13153. {
  13154. // necessary for llama
  13155. if (src0->grad) {
  13156. const int n_past = ((int32_t *) tensor->op_params)[0];
  13157. src0->grad =
  13158. ggml_add_or_set(ctx, src0->grad,
  13159. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13160. zero_table);
  13161. }
  13162. } break;
  13163. case GGML_OP_SOFT_MAX:
  13164. {
  13165. // necessary for llama
  13166. if (src0->grad) {
  13167. src0->grad =
  13168. ggml_add_or_set(ctx, src0->grad,
  13169. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13170. zero_table);
  13171. }
  13172. } break;
  13173. case GGML_OP_SOFT_MAX_BACK:
  13174. {
  13175. GGML_ASSERT(false); // TODO: not implemented
  13176. } break;
  13177. case GGML_OP_ROPE:
  13178. {
  13179. // necessary for llama
  13180. if (src0->grad) {
  13181. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13182. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13183. const int mode = ((int32_t *) tensor->op_params)[2];
  13184. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13185. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13186. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13187. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13188. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13189. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13190. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13191. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13192. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13193. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13194. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13195. src0->grad = ggml_add_or_set(ctx,
  13196. src0->grad,
  13197. ggml_rope_back(ctx,
  13198. tensor->grad,
  13199. src1,
  13200. n_dims,
  13201. mode,
  13202. n_ctx,
  13203. n_orig_ctx,
  13204. freq_base,
  13205. freq_scale,
  13206. ext_factor,
  13207. attn_factor,
  13208. beta_fast,
  13209. beta_slow,
  13210. xpos_base,
  13211. xpos_down),
  13212. zero_table);
  13213. }
  13214. } break;
  13215. case GGML_OP_ROPE_BACK:
  13216. {
  13217. if (src0->grad) {
  13218. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13219. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13220. const int mode = ((int32_t *) tensor->op_params)[2];
  13221. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13222. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13223. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13224. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13225. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13226. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13227. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13228. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13229. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13230. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13231. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13232. src0->grad = ggml_add_or_set(ctx,
  13233. src0->grad,
  13234. ggml_rope_impl(ctx,
  13235. tensor->grad,
  13236. src1,
  13237. n_dims,
  13238. mode,
  13239. n_ctx,
  13240. n_orig_ctx,
  13241. freq_base,
  13242. freq_scale,
  13243. ext_factor,
  13244. attn_factor,
  13245. beta_fast,
  13246. beta_slow,
  13247. xpos_base,
  13248. xpos_down,
  13249. false),
  13250. zero_table);
  13251. }
  13252. } break;
  13253. case GGML_OP_ALIBI:
  13254. {
  13255. GGML_ASSERT(false); // TODO: not implemented
  13256. } break;
  13257. case GGML_OP_CLAMP:
  13258. {
  13259. GGML_ASSERT(false); // TODO: not implemented
  13260. } break;
  13261. case GGML_OP_CONV_TRANSPOSE_1D:
  13262. {
  13263. GGML_ASSERT(false); // TODO: not implemented
  13264. } break;
  13265. case GGML_OP_IM2COL:
  13266. {
  13267. GGML_ASSERT(false); // TODO: not implemented
  13268. } break;
  13269. case GGML_OP_CONV_TRANSPOSE_2D:
  13270. {
  13271. GGML_ASSERT(false); // TODO: not implemented
  13272. } break;
  13273. case GGML_OP_POOL_1D:
  13274. {
  13275. GGML_ASSERT(false); // TODO: not implemented
  13276. } break;
  13277. case GGML_OP_POOL_2D:
  13278. {
  13279. GGML_ASSERT(false); // TODO: not implemented
  13280. } break;
  13281. case GGML_OP_UPSCALE:
  13282. {
  13283. GGML_ASSERT(false); // TODO: not implemented
  13284. } break;
  13285. case GGML_OP_PAD:
  13286. {
  13287. GGML_ASSERT(false); // TODO: not implemented
  13288. } break;
  13289. case GGML_OP_ARGSORT:
  13290. {
  13291. GGML_ASSERT(false); // TODO: not implemented
  13292. } break;
  13293. case GGML_OP_LEAKY_RELU:
  13294. {
  13295. GGML_ASSERT(false); // TODO: not implemented
  13296. } break;
  13297. case GGML_OP_FLASH_ATTN:
  13298. {
  13299. struct ggml_tensor * flash_grad = NULL;
  13300. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13301. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13302. GGML_ASSERT(t == 0 || t == 1);
  13303. bool masked = t != 0;
  13304. flash_grad =
  13305. ggml_flash_attn_back(ctx,
  13306. src0,
  13307. src1,
  13308. tensor->src[2],
  13309. tensor->grad,
  13310. masked);
  13311. }
  13312. struct ggml_tensor * src2 = tensor->src[2];
  13313. const int64_t elem_q = ggml_nelements(src0);
  13314. const int64_t elem_k = ggml_nelements(src1);
  13315. const int64_t elem_v = ggml_nelements(src2);
  13316. enum ggml_type result_type = flash_grad->type;
  13317. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13318. const size_t tsize = ggml_type_size(result_type);
  13319. const size_t offs_q = 0;
  13320. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13321. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13322. if (src0->grad) {
  13323. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13324. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13325. src0->grad = ggml_add_or_set(ctx,
  13326. src0->grad,
  13327. grad_q,
  13328. zero_table);
  13329. }
  13330. if (src1->grad) {
  13331. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13332. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13333. src1->grad = ggml_add_or_set(ctx,
  13334. src1->grad,
  13335. grad_k,
  13336. zero_table);
  13337. }
  13338. if (src2->grad) {
  13339. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13340. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13341. src2->grad = ggml_add_or_set(ctx,
  13342. src2->grad,
  13343. grad_v,
  13344. zero_table);
  13345. }
  13346. } break;
  13347. case GGML_OP_FLASH_FF:
  13348. {
  13349. GGML_ASSERT(false); // not supported
  13350. } break;
  13351. case GGML_OP_FLASH_ATTN_BACK:
  13352. {
  13353. GGML_ASSERT(false); // not supported
  13354. } break;
  13355. case GGML_OP_WIN_PART:
  13356. case GGML_OP_WIN_UNPART:
  13357. case GGML_OP_UNARY:
  13358. {
  13359. switch (ggml_get_unary_op(tensor)) {
  13360. case GGML_UNARY_OP_ABS:
  13361. {
  13362. if (src0->grad) {
  13363. src0->grad =
  13364. ggml_add_or_set(ctx,
  13365. src0->grad,
  13366. ggml_mul(ctx,
  13367. ggml_sgn(ctx, src0),
  13368. tensor->grad),
  13369. zero_table);
  13370. }
  13371. } break;
  13372. case GGML_UNARY_OP_SGN:
  13373. {
  13374. if (src0->grad) {
  13375. // noop
  13376. }
  13377. } break;
  13378. case GGML_UNARY_OP_NEG:
  13379. {
  13380. if (src0->grad) {
  13381. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13382. }
  13383. } break;
  13384. case GGML_UNARY_OP_STEP:
  13385. {
  13386. if (src0->grad) {
  13387. // noop
  13388. }
  13389. } break;
  13390. case GGML_UNARY_OP_TANH:
  13391. {
  13392. GGML_ASSERT(false); // TODO: not implemented
  13393. } break;
  13394. case GGML_UNARY_OP_ELU:
  13395. {
  13396. GGML_ASSERT(false); // TODO: not implemented
  13397. } break;
  13398. case GGML_UNARY_OP_RELU:
  13399. {
  13400. if (src0->grad) {
  13401. src0->grad = ggml_add_or_set(ctx,
  13402. src0->grad,
  13403. ggml_mul(ctx,
  13404. ggml_step(ctx, src0),
  13405. tensor->grad),
  13406. zero_table);
  13407. }
  13408. } break;
  13409. case GGML_UNARY_OP_GELU:
  13410. {
  13411. GGML_ASSERT(false); // TODO: not implemented
  13412. } break;
  13413. case GGML_UNARY_OP_GELU_QUICK:
  13414. {
  13415. GGML_ASSERT(false); // TODO: not implemented
  13416. } break;
  13417. case GGML_UNARY_OP_SILU:
  13418. {
  13419. // necessary for llama
  13420. if (src0->grad) {
  13421. src0->grad = ggml_add_or_set(ctx,
  13422. src0->grad,
  13423. ggml_silu_back(ctx, src0, tensor->grad),
  13424. zero_table);
  13425. }
  13426. } break;
  13427. default:
  13428. GGML_ASSERT(false);
  13429. }
  13430. } break;
  13431. case GGML_OP_GET_REL_POS:
  13432. case GGML_OP_ADD_REL_POS:
  13433. case GGML_OP_MAP_UNARY:
  13434. case GGML_OP_MAP_BINARY:
  13435. case GGML_OP_MAP_CUSTOM1_F32:
  13436. case GGML_OP_MAP_CUSTOM2_F32:
  13437. case GGML_OP_MAP_CUSTOM3_F32:
  13438. case GGML_OP_MAP_CUSTOM1:
  13439. case GGML_OP_MAP_CUSTOM2:
  13440. case GGML_OP_MAP_CUSTOM3:
  13441. {
  13442. GGML_ASSERT(false); // not supported
  13443. } break;
  13444. case GGML_OP_CROSS_ENTROPY_LOSS:
  13445. {
  13446. if (src0->grad) {
  13447. src0->grad = ggml_add_or_set(ctx,
  13448. src0->grad,
  13449. ggml_cross_entropy_loss_back(ctx,
  13450. src0,
  13451. src1,
  13452. tensor->grad),
  13453. zero_table);
  13454. }
  13455. } break;
  13456. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13457. {
  13458. GGML_ASSERT(false); // not supported
  13459. } break;
  13460. case GGML_OP_NONE:
  13461. {
  13462. // nop
  13463. } break;
  13464. case GGML_OP_COUNT:
  13465. {
  13466. GGML_ASSERT(false);
  13467. } break;
  13468. }
  13469. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13470. if (tensor->src[i] && tensor->src[i]->grad) {
  13471. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13472. }
  13473. }
  13474. }
  13475. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13476. if (node->grad == NULL) {
  13477. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13478. // it can also happen during forward pass, if the user performs computations with constants
  13479. if (node->op != GGML_OP_NONE) {
  13480. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13481. }
  13482. }
  13483. // check if already visited
  13484. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13485. return;
  13486. }
  13487. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13488. const int k =
  13489. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13490. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13491. /* unknown order, just fall back to using i*/ i;
  13492. if (node->src[k]) {
  13493. ggml_visit_parents(cgraph, node->src[k]);
  13494. }
  13495. }
  13496. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13497. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13498. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13499. if (strlen(node->name) == 0) {
  13500. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13501. }
  13502. cgraph->leafs[cgraph->n_leafs] = node;
  13503. cgraph->n_leafs++;
  13504. } else {
  13505. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13506. if (strlen(node->name) == 0) {
  13507. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13508. }
  13509. cgraph->nodes[cgraph->n_nodes] = node;
  13510. if (cgraph->grads) {
  13511. cgraph->grads[cgraph->n_nodes] = node->grad;
  13512. }
  13513. cgraph->n_nodes++;
  13514. }
  13515. }
  13516. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13517. if (!expand) {
  13518. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13519. ggml_graph_clear(cgraph);
  13520. }
  13521. const int n0 = cgraph->n_nodes;
  13522. UNUSED(n0);
  13523. ggml_visit_parents(cgraph, tensor);
  13524. const int n_new = cgraph->n_nodes - n0;
  13525. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13526. if (n_new > 0) {
  13527. // the last added node should always be starting point
  13528. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13529. }
  13530. }
  13531. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13532. ggml_build_forward_impl(cgraph, tensor, true);
  13533. }
  13534. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13535. GGML_ASSERT(gf->n_nodes > 0);
  13536. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13537. if (keep) {
  13538. for (int i = 0; i < gf->n_nodes; i++) {
  13539. struct ggml_tensor * node = gf->nodes[i];
  13540. if (node->grad) {
  13541. node->grad = ggml_dup_tensor(ctx, node);
  13542. gf->grads[i] = node->grad;
  13543. }
  13544. }
  13545. }
  13546. // remember original gradients which start with zero values
  13547. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13548. for (int i = 0; i < gf->n_nodes; i++) {
  13549. if (gf->grads[i]) {
  13550. ggml_hash_insert(zero_table, gf->grads[i]);
  13551. }
  13552. }
  13553. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13554. struct ggml_tensor * node = gf->nodes[i];
  13555. // inplace operations to add gradients are not created by ggml_compute_backward
  13556. // use allocator to automatically make inplace operations
  13557. if (node->grad) {
  13558. ggml_compute_backward(ctx, node, zero_table);
  13559. }
  13560. }
  13561. for (int i = 0; i < gf->n_nodes; i++) {
  13562. struct ggml_tensor * node = gf->nodes[i];
  13563. if (node->is_param) {
  13564. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13565. ggml_build_forward_expand(gb, node->grad);
  13566. }
  13567. }
  13568. ggml_hash_set_free(zero_table);
  13569. }
  13570. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13571. size_t nbytes = sizeof(struct ggml_cgraph);
  13572. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13573. if (grads) {
  13574. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13575. }
  13576. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13577. return nbytes;
  13578. }
  13579. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13580. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13581. }
  13582. size_t ggml_graph_overhead(void) {
  13583. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13584. }
  13585. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13586. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13587. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13588. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13589. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13590. size_t hash_size = ggml_hash_size(size * 2);
  13591. struct ggml_tensor ** nodes_ptr = data_start;
  13592. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13593. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13594. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13595. // check that we allocated the correct amount of memory
  13596. assert(obj_size == (size_t) (
  13597. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13598. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13599. *cgraph = (struct ggml_cgraph) {
  13600. /*.size =*/ size,
  13601. /*.n_nodes =*/ 0,
  13602. /*.n_leafs =*/ 0,
  13603. /*.nodes =*/ nodes_ptr,
  13604. /*.grads =*/ grads_ptr,
  13605. /*.leafs =*/ leafs_ptr,
  13606. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13607. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13608. /*.perf_runs =*/ 0,
  13609. /*.perf_cycles =*/ 0,
  13610. /*.perf_time_us =*/ 0,
  13611. };
  13612. return cgraph;
  13613. }
  13614. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13615. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13616. }
  13617. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13618. struct ggml_cgraph cgraph = {
  13619. /*.size =*/ 0,
  13620. /*.n_nodes =*/ i1 - i0,
  13621. /*.n_leafs =*/ 0,
  13622. /*.nodes =*/ cgraph0->nodes + i0,
  13623. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13624. /*.leafs =*/ NULL,
  13625. /*.hash_table =*/ { 0, NULL },
  13626. /*.order =*/ cgraph0->order,
  13627. /*.perf_runs =*/ 0,
  13628. /*.perf_cycles =*/ 0,
  13629. /*.perf_time_us =*/ 0,
  13630. };
  13631. return cgraph;
  13632. }
  13633. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13634. GGML_ASSERT(dst->size >= src->n_leafs);
  13635. GGML_ASSERT(dst->size >= src->n_nodes);
  13636. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13637. dst->n_leafs = src->n_leafs;
  13638. dst->n_nodes = src->n_nodes;
  13639. dst->order = src->order;
  13640. for (int i = 0; i < src->n_leafs; ++i) {
  13641. dst->leafs[i] = src->leafs[i];
  13642. }
  13643. for (int i = 0; i < src->n_nodes; ++i) {
  13644. dst->nodes[i] = src->nodes[i];
  13645. }
  13646. if (src->grads) {
  13647. GGML_ASSERT(dst->grads != NULL);
  13648. for (int i = 0; i < src->n_nodes; ++i) {
  13649. dst->grads[i] = src->grads[i];
  13650. }
  13651. }
  13652. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13653. if (src->visited_hash_table.keys[i]) {
  13654. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13655. }
  13656. }
  13657. }
  13658. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13659. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13660. ggml_graph_cpy(cgraph, result);
  13661. return result;
  13662. }
  13663. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13664. GGML_ASSERT(cgraph->grads != NULL);
  13665. for (int i = 0; i < cgraph->n_nodes; i++) {
  13666. struct ggml_tensor * grad = cgraph->grads[i];
  13667. if (grad) {
  13668. ggml_set_zero(grad);
  13669. }
  13670. }
  13671. }
  13672. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13673. cgraph->n_leafs = 0;
  13674. cgraph->n_nodes = 0;
  13675. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13676. }
  13677. //
  13678. // thread data
  13679. //
  13680. // synchronization is done via busy loops
  13681. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13682. //
  13683. #ifdef __APPLE__
  13684. //#include <os/lock.h>
  13685. //
  13686. //typedef os_unfair_lock ggml_lock_t;
  13687. //
  13688. //#define ggml_lock_init(x) UNUSED(x)
  13689. //#define ggml_lock_destroy(x) UNUSED(x)
  13690. //#define ggml_lock_lock os_unfair_lock_lock
  13691. //#define ggml_lock_unlock os_unfair_lock_unlock
  13692. //
  13693. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13694. typedef int ggml_lock_t;
  13695. #define ggml_lock_init(x) UNUSED(x)
  13696. #define ggml_lock_destroy(x) UNUSED(x)
  13697. #define ggml_lock_lock(x) UNUSED(x)
  13698. #define ggml_lock_unlock(x) UNUSED(x)
  13699. #define GGML_LOCK_INITIALIZER 0
  13700. typedef pthread_t ggml_thread_t;
  13701. #define ggml_thread_create pthread_create
  13702. #define ggml_thread_join pthread_join
  13703. #else
  13704. //typedef pthread_spinlock_t ggml_lock_t;
  13705. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13706. //#define ggml_lock_destroy pthread_spin_destroy
  13707. //#define ggml_lock_lock pthread_spin_lock
  13708. //#define ggml_lock_unlock pthread_spin_unlock
  13709. typedef int ggml_lock_t;
  13710. #define ggml_lock_init(x) UNUSED(x)
  13711. #define ggml_lock_destroy(x) UNUSED(x)
  13712. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13713. #define ggml_lock_lock(x) _mm_pause()
  13714. #else
  13715. #define ggml_lock_lock(x) UNUSED(x)
  13716. #endif
  13717. #define ggml_lock_unlock(x) UNUSED(x)
  13718. #define GGML_LOCK_INITIALIZER 0
  13719. typedef pthread_t ggml_thread_t;
  13720. #define ggml_thread_create pthread_create
  13721. #define ggml_thread_join pthread_join
  13722. #endif
  13723. // Android's libc implementation "bionic" does not support setting affinity
  13724. #if defined(__linux__) && !defined(__BIONIC__)
  13725. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13726. if (!ggml_is_numa()) {
  13727. return;
  13728. }
  13729. // run thread on node_num thread_n / (threads per node)
  13730. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13731. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13732. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13733. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13734. CPU_ZERO_S(setsize, cpus);
  13735. for (size_t i = 0; i < node->n_cpus; ++i) {
  13736. CPU_SET_S(node->cpus[i], setsize, cpus);
  13737. }
  13738. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13739. if (rv) {
  13740. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13741. strerror(rv));
  13742. }
  13743. CPU_FREE(cpus);
  13744. }
  13745. static void clear_numa_thread_affinity(void) {
  13746. if (!ggml_is_numa()) {
  13747. return;
  13748. }
  13749. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13750. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13751. CPU_ZERO_S(setsize, cpus);
  13752. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13753. CPU_SET_S(i, setsize, cpus);
  13754. }
  13755. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13756. if (rv) {
  13757. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13758. strerror(rv));
  13759. }
  13760. CPU_FREE(cpus);
  13761. }
  13762. #else
  13763. // TODO: Windows etc.
  13764. // (the linux implementation may also work on BSD, someone should test)
  13765. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13766. static void clear_numa_thread_affinity(void) {}
  13767. #endif
  13768. struct ggml_compute_state_shared {
  13769. const struct ggml_cgraph * cgraph;
  13770. const struct ggml_cplan * cplan;
  13771. int64_t perf_node_start_cycles;
  13772. int64_t perf_node_start_time_us;
  13773. const int n_threads;
  13774. // synchronization primitives
  13775. atomic_int n_active; // num active threads
  13776. atomic_int node_n; // active graph node
  13777. atomic_int node_task; // active graph node task phase
  13778. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13779. void * abort_callback_data;
  13780. };
  13781. struct ggml_compute_state {
  13782. ggml_thread_t thrd;
  13783. int ith;
  13784. struct ggml_compute_state_shared * shared;
  13785. };
  13786. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13787. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13788. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13789. node->perf_runs++;
  13790. node->perf_cycles += cycles_cur;
  13791. node->perf_time_us += time_us_cur;
  13792. }
  13793. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13794. int n_tasks = 0;
  13795. switch (node->op) {
  13796. case GGML_OP_CPY:
  13797. case GGML_OP_DUP:
  13798. case GGML_OP_ADD:
  13799. case GGML_OP_ADD1:
  13800. case GGML_OP_ACC:
  13801. {
  13802. n_tasks = n_threads;
  13803. } break;
  13804. case GGML_OP_SUB:
  13805. case GGML_OP_SQR:
  13806. case GGML_OP_SQRT:
  13807. case GGML_OP_LOG:
  13808. case GGML_OP_SUM:
  13809. case GGML_OP_SUM_ROWS:
  13810. case GGML_OP_MEAN:
  13811. case GGML_OP_ARGMAX:
  13812. case GGML_OP_REPEAT:
  13813. case GGML_OP_REPEAT_BACK:
  13814. case GGML_OP_LEAKY_RELU:
  13815. {
  13816. n_tasks = 1;
  13817. } break;
  13818. case GGML_OP_UNARY:
  13819. switch (ggml_get_unary_op(node)) {
  13820. case GGML_UNARY_OP_ABS:
  13821. case GGML_UNARY_OP_SGN:
  13822. case GGML_UNARY_OP_NEG:
  13823. case GGML_UNARY_OP_STEP:
  13824. case GGML_UNARY_OP_TANH:
  13825. case GGML_UNARY_OP_ELU:
  13826. case GGML_UNARY_OP_RELU:
  13827. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  13828. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  13829. {
  13830. n_tasks = 1;
  13831. } break;
  13832. case GGML_UNARY_OP_GELU:
  13833. case GGML_UNARY_OP_GELU_QUICK:
  13834. case GGML_UNARY_OP_SILU:
  13835. {
  13836. n_tasks = n_threads;
  13837. } break;
  13838. default:
  13839. GGML_ASSERT(false);
  13840. }
  13841. break;
  13842. case GGML_OP_SILU_BACK:
  13843. case GGML_OP_MUL:
  13844. case GGML_OP_DIV:
  13845. case GGML_OP_NORM:
  13846. case GGML_OP_RMS_NORM:
  13847. case GGML_OP_RMS_NORM_BACK:
  13848. case GGML_OP_GROUP_NORM:
  13849. case GGML_OP_CONCAT:
  13850. {
  13851. n_tasks = n_threads;
  13852. } break;
  13853. case GGML_OP_MUL_MAT:
  13854. {
  13855. n_tasks = n_threads;
  13856. // TODO: use different scheduling for different matrix sizes
  13857. //const int nr0 = ggml_nrows(node->src[0]);
  13858. //const int nr1 = ggml_nrows(node->src[1]);
  13859. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13860. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13861. } break;
  13862. case GGML_OP_MUL_MAT_ID:
  13863. {
  13864. n_tasks = n_threads;
  13865. } break;
  13866. case GGML_OP_OUT_PROD:
  13867. {
  13868. n_tasks = n_threads;
  13869. } break;
  13870. case GGML_OP_SCALE:
  13871. case GGML_OP_SET:
  13872. case GGML_OP_CONT:
  13873. case GGML_OP_RESHAPE:
  13874. case GGML_OP_VIEW:
  13875. case GGML_OP_PERMUTE:
  13876. case GGML_OP_TRANSPOSE:
  13877. case GGML_OP_GET_ROWS:
  13878. case GGML_OP_GET_ROWS_BACK:
  13879. case GGML_OP_DIAG:
  13880. {
  13881. n_tasks = 1;
  13882. } break;
  13883. case GGML_OP_DIAG_MASK_ZERO:
  13884. case GGML_OP_DIAG_MASK_INF:
  13885. case GGML_OP_SOFT_MAX_BACK:
  13886. case GGML_OP_ROPE:
  13887. case GGML_OP_ROPE_BACK:
  13888. case GGML_OP_ADD_REL_POS:
  13889. {
  13890. n_tasks = n_threads;
  13891. } break;
  13892. case GGML_OP_ALIBI:
  13893. {
  13894. n_tasks = 1; //TODO
  13895. } break;
  13896. case GGML_OP_CLAMP:
  13897. {
  13898. n_tasks = 1; //TODO
  13899. } break;
  13900. case GGML_OP_SOFT_MAX:
  13901. {
  13902. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  13903. } break;
  13904. case GGML_OP_CONV_TRANSPOSE_1D:
  13905. {
  13906. n_tasks = n_threads;
  13907. } break;
  13908. case GGML_OP_IM2COL:
  13909. {
  13910. n_tasks = n_threads;
  13911. } break;
  13912. case GGML_OP_CONV_TRANSPOSE_2D:
  13913. {
  13914. n_tasks = n_threads;
  13915. } break;
  13916. case GGML_OP_POOL_1D:
  13917. case GGML_OP_POOL_2D:
  13918. {
  13919. n_tasks = 1;
  13920. } break;
  13921. case GGML_OP_UPSCALE:
  13922. {
  13923. n_tasks = n_threads;
  13924. } break;
  13925. case GGML_OP_PAD:
  13926. {
  13927. n_tasks = n_threads;
  13928. } break;
  13929. case GGML_OP_ARGSORT:
  13930. {
  13931. n_tasks = n_threads;
  13932. } break;
  13933. case GGML_OP_FLASH_ATTN:
  13934. {
  13935. n_tasks = n_threads;
  13936. } break;
  13937. case GGML_OP_FLASH_FF:
  13938. {
  13939. n_tasks = n_threads;
  13940. } break;
  13941. case GGML_OP_FLASH_ATTN_BACK:
  13942. {
  13943. n_tasks = n_threads;
  13944. } break;
  13945. case GGML_OP_WIN_PART:
  13946. case GGML_OP_WIN_UNPART:
  13947. case GGML_OP_GET_REL_POS:
  13948. case GGML_OP_MAP_UNARY:
  13949. case GGML_OP_MAP_BINARY:
  13950. case GGML_OP_MAP_CUSTOM1_F32:
  13951. case GGML_OP_MAP_CUSTOM2_F32:
  13952. case GGML_OP_MAP_CUSTOM3_F32:
  13953. {
  13954. n_tasks = 1;
  13955. } break;
  13956. case GGML_OP_MAP_CUSTOM1:
  13957. {
  13958. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13959. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13960. n_tasks = n_threads;
  13961. } else {
  13962. n_tasks = MIN(p->n_tasks, n_threads);
  13963. }
  13964. } break;
  13965. case GGML_OP_MAP_CUSTOM2:
  13966. {
  13967. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13968. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13969. n_tasks = n_threads;
  13970. } else {
  13971. n_tasks = MIN(p->n_tasks, n_threads);
  13972. }
  13973. } break;
  13974. case GGML_OP_MAP_CUSTOM3:
  13975. {
  13976. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13977. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13978. n_tasks = n_threads;
  13979. } else {
  13980. n_tasks = MIN(p->n_tasks, n_threads);
  13981. }
  13982. } break;
  13983. case GGML_OP_CROSS_ENTROPY_LOSS:
  13984. {
  13985. n_tasks = n_threads;
  13986. } break;
  13987. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13988. {
  13989. n_tasks = n_threads;
  13990. } break;
  13991. case GGML_OP_NONE:
  13992. {
  13993. n_tasks = 1;
  13994. } break;
  13995. case GGML_OP_COUNT:
  13996. {
  13997. GGML_ASSERT(false);
  13998. } break;
  13999. default:
  14000. {
  14001. fprintf(stderr, "%s: op not implemented: ", __func__);
  14002. if (node->op < GGML_OP_COUNT) {
  14003. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14004. } else {
  14005. fprintf(stderr, "%d\n", node->op);
  14006. }
  14007. GGML_ASSERT(false);
  14008. } break;
  14009. }
  14010. assert(n_tasks > 0);
  14011. return n_tasks;
  14012. }
  14013. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14014. // wait for other threads to finish
  14015. const int last_node_n = * node_n;
  14016. while (true) {
  14017. if (do_yield) {
  14018. sched_yield();
  14019. }
  14020. * node_n = atomic_load(&state->shared->node_n);
  14021. if (* node_n != last_node_n) break;
  14022. }
  14023. }
  14024. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14025. // wait for other threads to finish
  14026. const int last_task_phase = * task_phase;
  14027. while (true) {
  14028. if (do_yield) {
  14029. sched_yield();
  14030. }
  14031. * task_phase = atomic_load(&state->shared->node_task);
  14032. if (* task_phase != last_task_phase) break;
  14033. }
  14034. }
  14035. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14036. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14037. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14038. const struct ggml_cplan * cplan = state->shared->cplan;
  14039. const int n_threads = state->shared->n_threads;
  14040. set_numa_thread_affinity(state->ith, n_threads);
  14041. int node_n = -1;
  14042. int task_phase = GGML_TASK_FINALIZE;
  14043. while (true) {
  14044. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14045. state->shared->node_n += 1;
  14046. return (thread_ret_t) GGML_EXIT_ABORTED;
  14047. }
  14048. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14049. // all other threads are finished and spinning
  14050. // do finalize and init here so we don't have synchronize again
  14051. struct ggml_compute_params params = {
  14052. /*.type =*/ GGML_TASK_FINALIZE,
  14053. /*.ith =*/ 0,
  14054. /*.nth =*/ 0,
  14055. /*.wsize =*/ cplan->work_size,
  14056. /*.wdata =*/ cplan->work_data,
  14057. };
  14058. if (node_n != -1) {
  14059. /* FINALIZE */
  14060. struct ggml_tensor * node = cgraph->nodes[node_n];
  14061. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14062. params.nth = ggml_get_n_tasks(node, n_threads);
  14063. ggml_compute_forward(&params, node);
  14064. }
  14065. ggml_graph_compute_perf_stats_node(node, state->shared);
  14066. }
  14067. // distribute new work or execute it direct if 1T
  14068. while (++node_n < cgraph->n_nodes) {
  14069. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14070. struct ggml_tensor * node = cgraph->nodes[node_n];
  14071. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14072. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14073. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14074. params.nth = n_tasks;
  14075. if (n_tasks == 1) {
  14076. /* INIT */
  14077. if (GGML_OP_HAS_INIT[node->op]) {
  14078. params.type = GGML_TASK_INIT;
  14079. ggml_compute_forward(&params, node);
  14080. }
  14081. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14082. // they do something more efficient than spinning (?)
  14083. params.type = GGML_TASK_COMPUTE;
  14084. ggml_compute_forward(&params, node);
  14085. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14086. params.type = GGML_TASK_FINALIZE;
  14087. ggml_compute_forward(&params, node);
  14088. }
  14089. ggml_graph_compute_perf_stats_node(node, state->shared);
  14090. } else {
  14091. break;
  14092. }
  14093. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14094. break;
  14095. }
  14096. }
  14097. task_phase = GGML_TASK_INIT;
  14098. atomic_store(&state->shared->n_active, n_threads);
  14099. atomic_store(&state->shared->node_n, node_n);
  14100. atomic_store(&state->shared->node_task, task_phase);
  14101. } else {
  14102. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14103. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14104. }
  14105. // check if we should stop
  14106. if (node_n >= cgraph->n_nodes) break;
  14107. /* INIT & COMPUTE */
  14108. struct ggml_tensor * node = cgraph->nodes[node_n];
  14109. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14110. struct ggml_compute_params params = {
  14111. /*.type =*/ GGML_TASK_INIT,
  14112. /*.ith =*/ state->ith,
  14113. /*.nth =*/ n_tasks,
  14114. /*.wsize =*/ cplan->work_size,
  14115. /*.wdata =*/ cplan->work_data,
  14116. };
  14117. if (state->ith < n_tasks) {
  14118. if (GGML_OP_HAS_INIT[node->op]) {
  14119. ggml_compute_forward(&params, node);
  14120. }
  14121. }
  14122. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14123. task_phase = GGML_TASK_COMPUTE;
  14124. atomic_store(&state->shared->n_active, n_threads);
  14125. atomic_store(&state->shared->node_task, task_phase);
  14126. }
  14127. else {
  14128. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14129. // depending on the workload and the operating system.
  14130. // since it is not clear what is the best approach, it should potentially become user-configurable
  14131. // ref: https://github.com/ggerganov/ggml/issues/291
  14132. // UPD: adding the do_yield flag seems to resolve the issue universally
  14133. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14134. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14135. }
  14136. if (state->ith < n_tasks) {
  14137. params.type = GGML_TASK_COMPUTE;
  14138. ggml_compute_forward(&params, node);
  14139. }
  14140. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14141. task_phase = GGML_TASK_FINALIZE;
  14142. atomic_store(&state->shared->n_active, n_threads);
  14143. atomic_store(&state->shared->node_task, task_phase);
  14144. }
  14145. else {
  14146. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14147. }
  14148. }
  14149. return GGML_EXIT_SUCCESS;
  14150. }
  14151. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14152. if (n_threads <= 0) {
  14153. n_threads = GGML_DEFAULT_N_THREADS;
  14154. }
  14155. size_t work_size = 0;
  14156. struct ggml_cplan cplan;
  14157. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14158. // thread scheduling for the different operations + work buffer size estimation
  14159. for (int i = 0; i < cgraph->n_nodes; i++) {
  14160. struct ggml_tensor * node = cgraph->nodes[i];
  14161. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14162. size_t cur = 0;
  14163. switch (node->op) {
  14164. case GGML_OP_CPY:
  14165. case GGML_OP_DUP:
  14166. {
  14167. if (ggml_is_quantized(node->type)) {
  14168. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14169. }
  14170. } break;
  14171. case GGML_OP_ADD:
  14172. case GGML_OP_ADD1:
  14173. {
  14174. if (ggml_is_quantized(node->src[0]->type)) {
  14175. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14176. }
  14177. } break;
  14178. case GGML_OP_ACC:
  14179. {
  14180. if (ggml_is_quantized(node->src[0]->type)) {
  14181. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14182. }
  14183. } break;
  14184. case GGML_OP_MUL_MAT:
  14185. {
  14186. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14187. #if defined(GGML_USE_CLBLAST)
  14188. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14189. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14190. } else
  14191. #endif
  14192. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14193. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14194. if (node->src[0]->type != GGML_TYPE_F32) {
  14195. // here we need memory for fully dequantized matrix from src0
  14196. // take into account that src0 can be broadcasted into src1[2,3]
  14197. cur = ggml_type_size(GGML_TYPE_F32)
  14198. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14199. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14200. }
  14201. } else
  14202. #endif
  14203. if (node->src[1]->type != vec_dot_type) {
  14204. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14205. }
  14206. } break;
  14207. case GGML_OP_MUL_MAT_ID:
  14208. {
  14209. cur = 0;
  14210. const struct ggml_tensor * src0 = node->src[2];
  14211. const struct ggml_tensor * src1 = node->src[1];
  14212. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14213. if (src1->type != vec_dot_type) {
  14214. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14215. }
  14216. const int n_as = ggml_get_op_params_i32(node, 1);
  14217. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14218. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14219. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14220. } break;
  14221. case GGML_OP_OUT_PROD:
  14222. {
  14223. if (ggml_is_quantized(node->src[0]->type)) {
  14224. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14225. }
  14226. } break;
  14227. case GGML_OP_SOFT_MAX:
  14228. case GGML_OP_ROPE:
  14229. {
  14230. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14231. } break;
  14232. case GGML_OP_CONV_TRANSPOSE_1D:
  14233. {
  14234. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14235. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14236. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14237. const int64_t ne00 = node->src[0]->ne[0]; // K
  14238. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14239. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14240. const int64_t ne10 = node->src[1]->ne[0]; // L
  14241. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14242. if (node->src[0]->type == GGML_TYPE_F16 &&
  14243. node->src[1]->type == GGML_TYPE_F32) {
  14244. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14245. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14246. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14247. node->src[1]->type == GGML_TYPE_F32) {
  14248. cur += sizeof(float)*ne00*ne01*ne02;
  14249. cur += sizeof(float)*ne10*ne11;
  14250. } else {
  14251. GGML_ASSERT(false);
  14252. }
  14253. } break;
  14254. case GGML_OP_CONV_TRANSPOSE_2D:
  14255. {
  14256. const int64_t ne00 = node->src[0]->ne[0]; // W
  14257. const int64_t ne01 = node->src[0]->ne[1]; // H
  14258. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14259. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14260. const int64_t ne10 = node->src[1]->ne[0]; // W
  14261. const int64_t ne11 = node->src[1]->ne[1]; // H
  14262. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14263. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14264. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14265. } break;
  14266. case GGML_OP_FLASH_ATTN:
  14267. {
  14268. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14269. if (node->src[1]->type == GGML_TYPE_F32) {
  14270. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14271. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14272. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14273. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14274. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14275. }
  14276. } break;
  14277. case GGML_OP_FLASH_FF:
  14278. {
  14279. if (node->src[1]->type == GGML_TYPE_F32) {
  14280. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14281. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14282. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14283. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14284. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14285. }
  14286. } break;
  14287. case GGML_OP_FLASH_ATTN_BACK:
  14288. {
  14289. const int64_t D = node->src[0]->ne[0];
  14290. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14291. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14292. if (node->src[1]->type == GGML_TYPE_F32) {
  14293. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14294. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14295. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14296. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14297. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14298. }
  14299. } break;
  14300. case GGML_OP_CROSS_ENTROPY_LOSS:
  14301. {
  14302. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14303. } break;
  14304. case GGML_OP_COUNT:
  14305. {
  14306. GGML_ASSERT(false);
  14307. } break;
  14308. default:
  14309. break;
  14310. }
  14311. work_size = MAX(work_size, cur);
  14312. }
  14313. if (work_size > 0) {
  14314. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14315. }
  14316. cplan.n_threads = n_threads;
  14317. cplan.work_size = work_size;
  14318. cplan.work_data = NULL;
  14319. return cplan;
  14320. }
  14321. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14322. {
  14323. GGML_ASSERT(cplan);
  14324. GGML_ASSERT(cplan->n_threads > 0);
  14325. if (cplan->work_size > 0) {
  14326. GGML_ASSERT(cplan->work_data);
  14327. }
  14328. }
  14329. #ifdef GGML_USE_VULKAN
  14330. for (int i = 0; i < cgraph->n_nodes; i++) {
  14331. ggml_vk_preallocate_buffers_graph(cgraph->nodes[i]);
  14332. }
  14333. ggml_vk_preallocate_buffers();
  14334. for (int i = 0; i < cgraph->n_nodes; i++) {
  14335. ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14336. }
  14337. #endif
  14338. const int n_threads = cplan->n_threads;
  14339. struct ggml_compute_state_shared state_shared = {
  14340. /*.cgraph =*/ cgraph,
  14341. /*.cgraph_plan =*/ cplan,
  14342. /*.perf_node_start_cycles =*/ 0,
  14343. /*.perf_node_start_time_us =*/ 0,
  14344. /*.n_threads =*/ n_threads,
  14345. /*.n_active =*/ n_threads,
  14346. /*.node_n =*/ -1,
  14347. /*.node_task =*/ GGML_TASK_FINALIZE,
  14348. /*.abort_callback =*/ NULL,
  14349. /*.abort_callback_data =*/ NULL,
  14350. };
  14351. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14352. // create thread pool
  14353. if (n_threads > 1) {
  14354. for (int j = 1; j < n_threads; ++j) {
  14355. workers[j] = (struct ggml_compute_state) {
  14356. .thrd = 0,
  14357. .ith = j,
  14358. .shared = &state_shared,
  14359. };
  14360. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14361. GGML_ASSERT(rc == 0);
  14362. UNUSED(rc);
  14363. }
  14364. }
  14365. workers[0].ith = 0;
  14366. workers[0].shared = &state_shared;
  14367. const int64_t perf_start_cycles = ggml_perf_cycles();
  14368. const int64_t perf_start_time_us = ggml_perf_time_us();
  14369. // this is a work thread too
  14370. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14371. // don't leave affinity set on the main thread
  14372. clear_numa_thread_affinity();
  14373. // join or kill thread pool
  14374. if (n_threads > 1) {
  14375. for (int j = 1; j < n_threads; j++) {
  14376. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14377. GGML_ASSERT(rc == 0);
  14378. }
  14379. }
  14380. #ifdef GGML_USE_VULKAN
  14381. ggml_vk_graph_cleanup();
  14382. #endif
  14383. // performance stats (graph)
  14384. {
  14385. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14386. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14387. cgraph->perf_runs++;
  14388. cgraph->perf_cycles += perf_cycles_cur;
  14389. cgraph->perf_time_us += perf_time_us_cur;
  14390. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14391. __func__, cgraph->perf_runs,
  14392. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14393. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14394. (double) perf_time_us_cur / 1000.0,
  14395. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14396. }
  14397. return compute_status;
  14398. }
  14399. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14400. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14401. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14402. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14403. ggml_graph_compute(cgraph, &cplan);
  14404. }
  14405. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14406. for (int i = 0; i < cgraph->n_leafs; i++) {
  14407. struct ggml_tensor * leaf = cgraph->leafs[i];
  14408. if (strcmp(leaf->name, name) == 0) {
  14409. return leaf;
  14410. }
  14411. }
  14412. for (int i = 0; i < cgraph->n_nodes; i++) {
  14413. struct ggml_tensor * node = cgraph->nodes[i];
  14414. if (strcmp(node->name, name) == 0) {
  14415. return node;
  14416. }
  14417. }
  14418. return NULL;
  14419. }
  14420. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14421. const int64_t * ne = tensor->ne;
  14422. const size_t * nb = tensor->nb;
  14423. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14424. ggml_type_name(tensor->type),
  14425. ggml_op_name (tensor->op),
  14426. ggml_n_dims(tensor),
  14427. ne[0], ne[1], ne[2], ne[3],
  14428. nb[0], nb[1], nb[2], nb[3],
  14429. tensor->data,
  14430. tensor->name);
  14431. }
  14432. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14433. const int64_t * ne = tensor->ne;
  14434. const size_t * nb = tensor->nb;
  14435. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14436. arg,
  14437. ggml_type_name(tensor->type),
  14438. ggml_op_name (tensor->op),
  14439. ggml_n_dims(tensor),
  14440. ne[0], ne[1], ne[2], ne[3],
  14441. nb[0], nb[1], nb[2], nb[3],
  14442. tensor->data,
  14443. tensor->name);
  14444. }
  14445. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14446. uint64_t size_eval = 0;
  14447. // compute size of intermediate results
  14448. // TODO: does not take into account scratch buffers !!!!
  14449. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14450. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14451. }
  14452. // print
  14453. {
  14454. FILE * fout = stdout;
  14455. fprintf(fout, "\n");
  14456. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14457. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14458. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14459. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14460. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14461. // header
  14462. fprintf(fout, "\n");
  14463. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14464. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14465. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14466. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14467. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14468. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14469. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14470. }
  14471. // header
  14472. fprintf(fout, "\n");
  14473. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14474. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14475. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14476. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14477. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14478. if (cgraph->nodes[i]->src[j]) {
  14479. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14480. }
  14481. }
  14482. fprintf(fout, "\n");
  14483. }
  14484. fprintf(fout, "\n");
  14485. }
  14486. // write binary data
  14487. {
  14488. FILE * fout = fopen(fname, "wb");
  14489. if (!fout) {
  14490. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14491. return;
  14492. }
  14493. // header
  14494. {
  14495. const uint32_t magic = GGML_FILE_MAGIC;
  14496. const uint32_t version = GGML_FILE_VERSION;
  14497. const uint32_t n_leafs = cgraph->n_leafs;
  14498. const uint32_t n_nodes = cgraph->n_nodes;
  14499. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14500. fwrite(&version, sizeof(uint32_t), 1, fout);
  14501. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14502. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14503. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14504. }
  14505. // leafs
  14506. {
  14507. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14508. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14509. const uint32_t type = tensor->type;
  14510. const uint32_t op = tensor->op;
  14511. fwrite(&type, sizeof(uint32_t), 1, fout);
  14512. fwrite(&op, sizeof(uint32_t), 1, fout);
  14513. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14514. const uint64_t ne = tensor->ne[j];
  14515. const uint64_t nb = tensor->nb[j];
  14516. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14517. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14518. }
  14519. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14520. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14521. // dump the data
  14522. // TODO: pad this to 32 byte boundary
  14523. {
  14524. const size_t size = ggml_nbytes(tensor);
  14525. fwrite(tensor->data, sizeof(char), size, fout);
  14526. }
  14527. }
  14528. }
  14529. // nodes
  14530. {
  14531. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14532. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14533. const uint32_t type = tensor->type;
  14534. const uint32_t op = tensor->op;
  14535. fwrite(&type, sizeof(uint32_t), 1, fout);
  14536. fwrite(&op, sizeof(uint32_t), 1, fout);
  14537. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14538. const uint64_t ne = tensor->ne[j];
  14539. const uint64_t nb = tensor->nb[j];
  14540. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14541. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14542. }
  14543. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14544. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14545. // output the op arguments
  14546. {
  14547. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14548. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14549. args[j] = tensor->src[j];
  14550. }
  14551. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14552. if (args[j]) {
  14553. int32_t idx = -1;
  14554. // check if leaf
  14555. {
  14556. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14557. if (args[j] == cgraph->leafs[k]) {
  14558. idx = k;
  14559. break;
  14560. }
  14561. }
  14562. }
  14563. // check if node
  14564. if (idx == -1) {
  14565. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14566. if (args[j] == cgraph->nodes[k]) {
  14567. idx = cgraph->n_leafs + k;
  14568. break;
  14569. }
  14570. }
  14571. }
  14572. if (idx == -1) {
  14573. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14574. fclose(fout);
  14575. return;
  14576. }
  14577. fwrite(&idx, sizeof(int32_t), 1, fout);
  14578. } else {
  14579. const int32_t nul = -1;
  14580. fwrite(&nul, sizeof(int32_t), 1, fout);
  14581. }
  14582. }
  14583. }
  14584. }
  14585. }
  14586. fclose(fout);
  14587. }
  14588. }
  14589. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14590. assert(*ctx_data == NULL);
  14591. assert(*ctx_eval == NULL);
  14592. struct ggml_cgraph * result = NULL;
  14593. struct ggml_tensor * data = NULL;
  14594. // read file into data
  14595. {
  14596. FILE * fin = fopen(fname, "rb");
  14597. if (!fin) {
  14598. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14599. return result;
  14600. }
  14601. size_t fsize = 0;
  14602. fseek(fin, 0, SEEK_END);
  14603. fsize = ftell(fin);
  14604. fseek(fin, 0, SEEK_SET);
  14605. // create the data context
  14606. {
  14607. const size_t overhead = 1*ggml_tensor_overhead();
  14608. struct ggml_init_params params = {
  14609. .mem_size = fsize + overhead,
  14610. .mem_buffer = NULL,
  14611. .no_alloc = false,
  14612. };
  14613. *ctx_data = ggml_init(params);
  14614. if (!*ctx_data) {
  14615. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14616. fclose(fin);
  14617. return result;
  14618. }
  14619. }
  14620. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14621. {
  14622. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14623. if (ret != fsize) {
  14624. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14625. fclose(fin);
  14626. return result;
  14627. }
  14628. }
  14629. fclose(fin);
  14630. }
  14631. // populate result
  14632. {
  14633. char * ptr = (char *) data->data;
  14634. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14635. if (magic != GGML_FILE_MAGIC) {
  14636. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14637. return result;
  14638. }
  14639. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14640. if (version != GGML_FILE_VERSION) {
  14641. fprintf(stderr, "%s: invalid version number\n", __func__);
  14642. return result;
  14643. }
  14644. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14645. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14646. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14647. const int graph_size = MAX(n_leafs, n_nodes);
  14648. // create the data context
  14649. {
  14650. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14651. struct ggml_init_params params = {
  14652. .mem_size = size_eval + overhead,
  14653. .mem_buffer = NULL,
  14654. .no_alloc = true,
  14655. };
  14656. *ctx_eval = ggml_init(params);
  14657. if (!*ctx_eval) {
  14658. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14659. return result;
  14660. }
  14661. }
  14662. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14663. result->n_leafs = n_leafs;
  14664. result->n_nodes = n_nodes;
  14665. // leafs
  14666. {
  14667. uint32_t type;
  14668. uint32_t op;
  14669. for (uint32_t i = 0; i < n_leafs; ++i) {
  14670. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14671. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14672. int64_t ne[GGML_MAX_DIMS];
  14673. size_t nb[GGML_MAX_DIMS];
  14674. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14675. uint64_t ne_cur;
  14676. uint64_t nb_cur;
  14677. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14678. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14679. ne[j] = ne_cur;
  14680. nb[j] = nb_cur;
  14681. }
  14682. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14683. tensor->op = (enum ggml_op) op;
  14684. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14685. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14686. tensor->data = (void *) ptr;
  14687. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14688. tensor->nb[j] = nb[j];
  14689. }
  14690. result->leafs[i] = tensor;
  14691. ptr += ggml_nbytes(tensor);
  14692. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14693. }
  14694. }
  14695. ggml_set_no_alloc(*ctx_eval, false);
  14696. // nodes
  14697. {
  14698. uint32_t type;
  14699. uint32_t op;
  14700. for (uint32_t i = 0; i < n_nodes; ++i) {
  14701. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14702. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14703. enum ggml_op eop = (enum ggml_op) op;
  14704. int64_t ne[GGML_MAX_DIMS];
  14705. size_t nb[GGML_MAX_DIMS];
  14706. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14707. uint64_t ne_cur;
  14708. uint64_t nb_cur;
  14709. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14710. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14711. ne[j] = ne_cur;
  14712. nb[j] = nb_cur;
  14713. }
  14714. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14715. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14716. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14717. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14718. // parse args
  14719. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14720. const int32_t arg_idx = ptr_arg_idx[j];
  14721. if (arg_idx == -1) {
  14722. continue;
  14723. }
  14724. if (arg_idx < result->n_leafs) {
  14725. args[j] = result->leafs[arg_idx];
  14726. } else {
  14727. args[j] = result->nodes[arg_idx - result->n_leafs];
  14728. }
  14729. }
  14730. // create the tensor
  14731. // "view" operations are handled differently
  14732. // TODO: handle inplace ops - currently a copy is always made
  14733. struct ggml_tensor * tensor = NULL;
  14734. switch (eop) {
  14735. // TODO: implement other view ops
  14736. case GGML_OP_RESHAPE:
  14737. {
  14738. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14739. } break;
  14740. case GGML_OP_VIEW:
  14741. {
  14742. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14743. size_t offs;
  14744. memcpy(&offs, ptr_op_params, sizeof(offs));
  14745. tensor->data = ((char *) tensor->data) + offs;
  14746. } break;
  14747. case GGML_OP_TRANSPOSE:
  14748. {
  14749. tensor = ggml_transpose(*ctx_eval, args[0]);
  14750. } break;
  14751. case GGML_OP_PERMUTE:
  14752. {
  14753. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14754. } break;
  14755. default:
  14756. {
  14757. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14758. tensor->op = eop;
  14759. } break;
  14760. }
  14761. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14762. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14763. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14764. tensor->nb[j] = nb[j];
  14765. }
  14766. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14767. tensor->src[j] = args[j];
  14768. }
  14769. result->nodes[i] = tensor;
  14770. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14771. }
  14772. }
  14773. }
  14774. return result;
  14775. }
  14776. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14777. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14778. GGML_PRINT("=== GRAPH ===\n");
  14779. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14780. for (int i = 0; i < cgraph->n_nodes; i++) {
  14781. struct ggml_tensor * node = cgraph->nodes[i];
  14782. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14783. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14784. i,
  14785. node->ne[0], node->ne[1], node->ne[2],
  14786. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14787. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14788. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14789. (double) node->perf_time_us / 1000.0,
  14790. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14791. }
  14792. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14793. for (int i = 0; i < cgraph->n_leafs; i++) {
  14794. struct ggml_tensor * node = cgraph->leafs[i];
  14795. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14796. i,
  14797. node->ne[0], node->ne[1],
  14798. ggml_op_name(node->op),
  14799. ggml_get_name(node));
  14800. }
  14801. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14802. if (perf_total_per_op_us[i] == 0) {
  14803. continue;
  14804. }
  14805. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14806. }
  14807. GGML_PRINT("========================================\n");
  14808. }
  14809. // check if node is part of the graph
  14810. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14811. if (cgraph == NULL) {
  14812. return true;
  14813. }
  14814. for (int i = 0; i < cgraph->n_nodes; i++) {
  14815. if (cgraph->nodes[i] == node) {
  14816. return true;
  14817. }
  14818. }
  14819. return false;
  14820. }
  14821. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14822. for (int i = 0; i < cgraph->n_nodes; i++) {
  14823. struct ggml_tensor * parent = cgraph->nodes[i];
  14824. if (parent->grad == node) {
  14825. return parent;
  14826. }
  14827. }
  14828. return NULL;
  14829. }
  14830. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14831. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14832. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14833. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14834. gparent0 ? (void *) gparent0 : (void *) parent,
  14835. gparent0 ? "g" : "x",
  14836. gparent ? (void *) gparent : (void *) node,
  14837. gparent ? "g" : "x",
  14838. gparent ? "empty" : "vee",
  14839. gparent ? "dashed" : "solid",
  14840. label);
  14841. }
  14842. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14843. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14844. (void *) parent, "x",
  14845. (void *) node, "x",
  14846. label);
  14847. }
  14848. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14849. char color[16];
  14850. FILE * fp = fopen(filename, "w");
  14851. GGML_ASSERT(fp);
  14852. fprintf(fp, "digraph G {\n");
  14853. fprintf(fp, " newrank = true;\n");
  14854. fprintf(fp, " rankdir = LR;\n");
  14855. for (int i = 0; i < gb->n_nodes; i++) {
  14856. struct ggml_tensor * node = gb->nodes[i];
  14857. if (ggml_graph_get_parent(gb, node) != NULL) {
  14858. continue;
  14859. }
  14860. if (node->is_param) {
  14861. snprintf(color, sizeof(color), "yellow");
  14862. } else if (node->grad) {
  14863. if (ggml_graph_find(gf, node)) {
  14864. snprintf(color, sizeof(color), "green");
  14865. } else {
  14866. snprintf(color, sizeof(color), "lightblue");
  14867. }
  14868. } else {
  14869. snprintf(color, sizeof(color), "white");
  14870. }
  14871. fprintf(fp, " \"%p\" [ "
  14872. "style = filled; fillcolor = %s; shape = record; "
  14873. "label=\"",
  14874. (void *) node, color);
  14875. if (strlen(node->name) > 0) {
  14876. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14877. } else {
  14878. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14879. }
  14880. if (ggml_is_matrix(node)) {
  14881. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14882. } else {
  14883. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14884. }
  14885. if (node->grad) {
  14886. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14887. } else {
  14888. fprintf(fp, "\"; ]\n");
  14889. }
  14890. }
  14891. for (int i = 0; i < gb->n_leafs; i++) {
  14892. struct ggml_tensor * node = gb->leafs[i];
  14893. snprintf(color, sizeof(color), "pink");
  14894. fprintf(fp, " \"%p\" [ "
  14895. "style = filled; fillcolor = %s; shape = record; "
  14896. "label=\"<x>",
  14897. (void *) node, color);
  14898. if (strlen(node->name) > 0) {
  14899. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14900. } else {
  14901. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14902. }
  14903. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14904. if (ggml_nelements(node) < 5) {
  14905. fprintf(fp, " | (");
  14906. for (int j = 0; j < ggml_nelements(node); j++) {
  14907. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14908. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14909. }
  14910. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14911. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14912. }
  14913. else {
  14914. fprintf(fp, "#");
  14915. }
  14916. if (j < ggml_nelements(node) - 1) {
  14917. fprintf(fp, ", ");
  14918. }
  14919. }
  14920. fprintf(fp, ")");
  14921. }
  14922. fprintf(fp, "\"; ]\n");
  14923. }
  14924. for (int i = 0; i < gb->n_nodes; i++) {
  14925. struct ggml_tensor * node = gb->nodes[i];
  14926. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14927. if (node->src[j]) {
  14928. char label[16];
  14929. snprintf(label, sizeof(label), "src %d", j);
  14930. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14931. }
  14932. }
  14933. }
  14934. for (int i = 0; i < gb->n_leafs; i++) {
  14935. struct ggml_tensor * node = gb->leafs[i];
  14936. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14937. if (node->src[j]) {
  14938. char label[16];
  14939. snprintf(label, sizeof(label), "src %d", j);
  14940. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14941. }
  14942. }
  14943. }
  14944. fprintf(fp, "}\n");
  14945. fclose(fp);
  14946. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14947. }
  14948. ////////////////////////////////////////////////////////////////////////////////
  14949. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14950. int i = 0;
  14951. for (int p = 0; p < np; ++p) {
  14952. const int64_t ne = ggml_nelements(ps[p]) ;
  14953. // TODO: add function to set tensor from array
  14954. for (int64_t j = 0; j < ne; ++j) {
  14955. ggml_set_f32_1d(ps[p], j, x[i++]);
  14956. }
  14957. }
  14958. }
  14959. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14960. int i = 0;
  14961. for (int p = 0; p < np; ++p) {
  14962. const int64_t ne = ggml_nelements(ps[p]) ;
  14963. // TODO: add function to get all elements at once
  14964. for (int64_t j = 0; j < ne; ++j) {
  14965. x[i++] = ggml_get_f32_1d(ps[p], j);
  14966. }
  14967. }
  14968. }
  14969. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14970. int64_t i = 0;
  14971. for (int p = 0; p < np; ++p) {
  14972. const int64_t ne = ggml_nelements(ps[p]) ;
  14973. // TODO: add function to get all elements at once
  14974. for (int64_t j = 0; j < ne; ++j) {
  14975. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14976. }
  14977. }
  14978. }
  14979. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14980. int64_t i = 0;
  14981. for (int p = 0; p < np; ++p) {
  14982. const int64_t ne = ggml_nelements(ps[p]) ;
  14983. // TODO: add function to get all elements at once
  14984. for (int64_t j = 0; j < ne; ++j) {
  14985. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14986. }
  14987. }
  14988. }
  14989. //
  14990. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  14991. //
  14992. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  14993. //
  14994. static enum ggml_opt_result ggml_opt_adam(
  14995. struct ggml_context * ctx,
  14996. struct ggml_opt_context * opt,
  14997. struct ggml_opt_params params,
  14998. struct ggml_tensor * f,
  14999. struct ggml_cgraph * gf,
  15000. struct ggml_cgraph * gb,
  15001. ggml_opt_callback callback,
  15002. void * callback_data) {
  15003. GGML_ASSERT(ggml_is_scalar(f));
  15004. // these will store the parameters we want to optimize
  15005. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15006. int np = 0;
  15007. int64_t nx = 0;
  15008. for (int i = 0; i < gf->n_nodes; ++i) {
  15009. if (gf->nodes[i]->is_param) {
  15010. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15011. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15012. ps[np++] = gf->nodes[i];
  15013. nx += ggml_nelements(gf->nodes[i]);
  15014. }
  15015. }
  15016. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15017. int iter = opt->iter;
  15018. ggml_opt_init(opt->ctx, opt, params, nx);
  15019. opt->iter = iter;
  15020. }
  15021. // constants
  15022. float sched = params.adam.sched;
  15023. const float alpha = params.adam.alpha;
  15024. const float decay = params.adam.decay * alpha;
  15025. const float beta1 = params.adam.beta1;
  15026. const float beta2 = params.adam.beta2;
  15027. const float eps = params.adam.eps;
  15028. const float gclip = params.adam.gclip;
  15029. const int decay_min_ndim = params.adam.decay_min_ndim;
  15030. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15031. const float accum_norm = 1.0f / (float) n_accum;
  15032. float * g = opt->adam.g->data; // gradients
  15033. float * m = opt->adam.m->data; // first moment
  15034. float * v = opt->adam.v->data; // second moment
  15035. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15036. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15037. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15038. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15039. bool cancel = false;
  15040. // compute the function value
  15041. float fx = 0;
  15042. ggml_set_zero(opt->adam.g);
  15043. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15044. if (callback) {
  15045. callback(callback_data, accum_step, &sched, &cancel);
  15046. if (cancel) {
  15047. return GGML_OPT_CANCEL;
  15048. }
  15049. }
  15050. // ggml_graph_reset (gf);
  15051. ggml_set_f32 (f->grad, 1.0f);
  15052. ggml_graph_compute(gb, &cplan);
  15053. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15054. fx += ggml_get_f32_1d(f, 0);
  15055. }
  15056. fx *= accum_norm;
  15057. opt->adam.fx_prev = fx;
  15058. opt->adam.fx_best = opt->adam.fx_prev;
  15059. if (pf) {
  15060. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15061. }
  15062. opt->loss_before = opt->adam.fx_prev;
  15063. opt->loss_after = opt->adam.fx_prev;
  15064. // initialize
  15065. if (opt->just_initialized) {
  15066. opt->adam.n_no_improvement = 0;
  15067. opt->just_initialized = false;
  15068. }
  15069. float * fx_best = &opt->adam.fx_best;
  15070. float * fx_prev = &opt->adam.fx_prev;
  15071. int * n_no_improvement = &opt->adam.n_no_improvement;
  15072. int iter0 = opt->iter;
  15073. // run the optimizer
  15074. for (int t = 0; t < params.adam.n_iter; ++t) {
  15075. opt->iter = iter0 + t + 1;
  15076. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15077. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15078. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15079. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15080. for (int i = 0; i < np; ++i) {
  15081. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15082. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15083. }
  15084. const int64_t t_start_wall = ggml_time_us();
  15085. const int64_t t_start_cpu = ggml_cycles();
  15086. UNUSED(t_start_wall);
  15087. UNUSED(t_start_cpu);
  15088. {
  15089. float gnorm = 1.0f;
  15090. if (gclip > 0.0f) {
  15091. // gradient clipping
  15092. ggml_float sum = 0.0;
  15093. for (int64_t i = 0; i < nx; ++i) {
  15094. sum += (ggml_float)(g[i]*g[i]);
  15095. }
  15096. ggml_float norm = sqrt(sum);
  15097. if (norm > (ggml_float) gclip) {
  15098. gnorm = (float) ((ggml_float) gclip / norm);
  15099. }
  15100. }
  15101. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15102. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15103. int64_t i = 0;
  15104. for (int p = 0; p < np; ++p) {
  15105. const int64_t ne = ggml_nelements(ps[p]);
  15106. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15107. for (int64_t j = 0; j < ne; ++j) {
  15108. float x = ggml_get_f32_1d(ps[p], j);
  15109. float g_ = g[i]*gnorm;
  15110. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15111. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15112. float mh = m[i]*beta1h;
  15113. float vh = v[i]*beta2h;
  15114. vh = sqrtf(vh) + eps;
  15115. x = x*(1.0f - p_decay) - mh/vh;
  15116. ggml_set_f32_1d(ps[p], j, x);
  15117. ++i;
  15118. }
  15119. }
  15120. }
  15121. fx = 0;
  15122. ggml_set_zero(opt->adam.g);
  15123. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15124. if (callback) {
  15125. callback(callback_data, accum_step, &sched, &cancel);
  15126. if (cancel) {
  15127. return GGML_OPT_CANCEL;;
  15128. }
  15129. }
  15130. // ggml_graph_reset (gf);
  15131. ggml_set_f32 (f->grad, 1.0f);
  15132. ggml_graph_compute(gb, &cplan);
  15133. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15134. fx += ggml_get_f32_1d(f, 0);
  15135. }
  15136. fx *= accum_norm;
  15137. opt->loss_after = fx;
  15138. // check convergence
  15139. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15140. GGML_PRINT_DEBUG("converged\n");
  15141. return GGML_OPT_OK;
  15142. }
  15143. // delta-based convergence test
  15144. if (pf != NULL) {
  15145. // need at least params.past iterations to start checking for convergence
  15146. if (params.past <= iter0 + t) {
  15147. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15148. if (fabsf(rate) < params.delta) {
  15149. return GGML_OPT_OK;
  15150. }
  15151. }
  15152. pf[(iter0 + t)%params.past] = fx;
  15153. }
  15154. // check for improvement
  15155. if (params.max_no_improvement > 0) {
  15156. if (fx_best[0] > fx) {
  15157. fx_best[0] = fx;
  15158. n_no_improvement[0] = 0;
  15159. } else {
  15160. ++n_no_improvement[0];
  15161. if (n_no_improvement[0] >= params.max_no_improvement) {
  15162. return GGML_OPT_OK;
  15163. }
  15164. }
  15165. }
  15166. fx_prev[0] = fx;
  15167. {
  15168. const int64_t t_end_cpu = ggml_cycles();
  15169. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15170. UNUSED(t_end_cpu);
  15171. const int64_t t_end_wall = ggml_time_us();
  15172. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15173. UNUSED(t_end_wall);
  15174. }
  15175. }
  15176. return GGML_OPT_DID_NOT_CONVERGE;
  15177. }
  15178. //
  15179. // L-BFGS
  15180. //
  15181. // the L-BFGS implementation below is based on the following implementation:
  15182. //
  15183. // https://github.com/chokkan/liblbfgs
  15184. //
  15185. struct ggml_lbfgs_iteration_data {
  15186. float alpha;
  15187. float ys;
  15188. float * s;
  15189. float * y;
  15190. };
  15191. static enum ggml_opt_result linesearch_backtracking(
  15192. const struct ggml_opt_params * params,
  15193. int nx,
  15194. float * x,
  15195. float * fx,
  15196. float * g,
  15197. float * d,
  15198. float * step,
  15199. const float * xp,
  15200. struct ggml_tensor * f,
  15201. struct ggml_cgraph * gb,
  15202. struct ggml_cplan * cplan,
  15203. const int np,
  15204. struct ggml_tensor * ps[],
  15205. bool * cancel,
  15206. ggml_opt_callback callback,
  15207. void * callback_data) {
  15208. int count = 0;
  15209. float width = 0.0f;
  15210. float dg = 0.0f;
  15211. float finit = 0.0f;
  15212. float dginit = 0.0f;
  15213. float dgtest = 0.0f;
  15214. const float dec = 0.5f;
  15215. const float inc = 2.1f;
  15216. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15217. const float accum_norm = 1.0f / (float) n_accum;
  15218. if (*step <= 0.f) {
  15219. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15220. }
  15221. // compute the initial gradient in the search direction
  15222. ggml_vec_dot_f32(nx, &dginit, g, d);
  15223. // make sure that d points to a descent direction
  15224. if (0 < dginit) {
  15225. return GGML_LINESEARCH_FAIL;
  15226. }
  15227. // initialize local variables
  15228. finit = *fx;
  15229. dgtest = params->lbfgs.ftol*dginit;
  15230. while (true) {
  15231. ggml_vec_cpy_f32(nx, x, xp);
  15232. ggml_vec_mad_f32(nx, x, d, *step);
  15233. // evaluate the function and gradient values
  15234. {
  15235. ggml_opt_set_params(np, ps, x);
  15236. *fx = 0;
  15237. memset(g, 0, sizeof(float)*nx);
  15238. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15239. if (callback) {
  15240. // LBFG-S does not support learning rate -> ignore learning schedule
  15241. float sched = 0;
  15242. callback(callback_data, accum_step, &sched, cancel);
  15243. if (*cancel) {
  15244. return GGML_OPT_CANCEL;
  15245. }
  15246. }
  15247. // ggml_graph_reset (gf);
  15248. ggml_set_f32 (f->grad, 1.0f);
  15249. ggml_graph_compute(gb, cplan);
  15250. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15251. *fx += ggml_get_f32_1d(f, 0);
  15252. }
  15253. *fx *= accum_norm;
  15254. }
  15255. ++count;
  15256. if (*fx > finit + (*step)*dgtest) {
  15257. width = dec;
  15258. } else {
  15259. // Armijo condition is satisfied
  15260. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15261. return count;
  15262. }
  15263. ggml_vec_dot_f32(nx, &dg, g, d);
  15264. // check the Wolfe condition
  15265. if (dg < params->lbfgs.wolfe * dginit) {
  15266. width = inc;
  15267. } else {
  15268. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15269. // regular Wolfe conditions
  15270. return count;
  15271. }
  15272. if(dg > -params->lbfgs.wolfe*dginit) {
  15273. width = dec;
  15274. } else {
  15275. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15276. return count;
  15277. }
  15278. }
  15279. }
  15280. if (*step < params->lbfgs.min_step) {
  15281. return GGML_LINESEARCH_MINIMUM_STEP;
  15282. }
  15283. if (*step > params->lbfgs.max_step) {
  15284. return GGML_LINESEARCH_MAXIMUM_STEP;
  15285. }
  15286. if (params->lbfgs.max_linesearch <= count) {
  15287. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15288. }
  15289. (*step) *= width;
  15290. }
  15291. GGML_UNREACHABLE();
  15292. }
  15293. static enum ggml_opt_result ggml_opt_lbfgs(
  15294. struct ggml_context * ctx,
  15295. struct ggml_opt_context * opt,
  15296. struct ggml_opt_params params,
  15297. struct ggml_tensor * f,
  15298. struct ggml_cgraph * gf,
  15299. struct ggml_cgraph * gb,
  15300. ggml_opt_callback callback,
  15301. void * callback_data) {
  15302. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15303. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15304. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15305. return GGML_OPT_INVALID_WOLFE;
  15306. }
  15307. }
  15308. const int m = params.lbfgs.m;
  15309. // these will store the parameters we want to optimize
  15310. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15311. int np = 0;
  15312. int nx = 0;
  15313. for (int i = 0; i < gf->n_nodes; ++i) {
  15314. if (gf->nodes[i]->is_param) {
  15315. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15316. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15317. ps[np++] = gf->nodes[i];
  15318. nx += ggml_nelements(gf->nodes[i]);
  15319. }
  15320. }
  15321. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15322. int iter = opt->iter;
  15323. ggml_opt_init(ctx, opt, params, nx);
  15324. opt->iter = iter;
  15325. }
  15326. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15327. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15328. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15329. float * x = opt->lbfgs.x->data; // current parameters
  15330. float * xp = opt->lbfgs.xp->data; // previous parameters
  15331. float * g = opt->lbfgs.g->data; // current gradient
  15332. float * gp = opt->lbfgs.gp->data; // previous gradient
  15333. float * d = opt->lbfgs.d->data; // search direction
  15334. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15335. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15336. const float accum_norm = 1.0f / (float) n_accum;
  15337. float fx = 0.0f; // cost function value
  15338. float xnorm = 0.0f; // ||x||
  15339. float gnorm = 0.0f; // ||g||
  15340. // initialize x from the graph nodes
  15341. ggml_opt_get_params(np, ps, x);
  15342. // the L-BFGS memory
  15343. float * lm_alpha = opt->lbfgs.lmal->data;
  15344. float * lm_ys = opt->lbfgs.lmys->data;
  15345. float * lm_s = opt->lbfgs.lms->data;
  15346. float * lm_y = opt->lbfgs.lmy->data;
  15347. bool cancel = false;
  15348. // evaluate the function value and its gradient
  15349. {
  15350. ggml_opt_set_params(np, ps, x);
  15351. fx = 0;
  15352. memset(g, 0, sizeof(float)*nx);
  15353. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15354. if (callback) {
  15355. // LBFG-S does not support learning rate -> ignore learning schedule
  15356. float sched = 0;
  15357. callback(callback_data, accum_step, &sched, &cancel);
  15358. if (cancel) {
  15359. return GGML_OPT_CANCEL;
  15360. }
  15361. }
  15362. // ggml_graph_reset (gf);
  15363. ggml_set_f32 (f->grad, 1.0f);
  15364. ggml_graph_compute(gb, &cplan);
  15365. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15366. fx += ggml_get_f32_1d(f, 0);
  15367. }
  15368. fx *= accum_norm;
  15369. opt->loss_before = fx;
  15370. opt->loss_after = fx;
  15371. }
  15372. // search direction = -gradient
  15373. ggml_vec_neg_f32(nx, d, g);
  15374. // ||x||, ||g||
  15375. ggml_vec_norm_f32(nx, &xnorm, x);
  15376. ggml_vec_norm_f32(nx, &gnorm, g);
  15377. if (xnorm < 1.0f) {
  15378. xnorm = 1.0f;
  15379. }
  15380. // already optimized
  15381. if (gnorm/xnorm <= params.lbfgs.eps) {
  15382. return GGML_OPT_OK;
  15383. }
  15384. if (opt->just_initialized) {
  15385. if (pf) {
  15386. pf[0] = fx;
  15387. }
  15388. opt->lbfgs.fx_best = fx;
  15389. // initial step
  15390. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15391. opt->lbfgs.j = 0;
  15392. opt->lbfgs.k = 1;
  15393. opt->lbfgs.end = 0;
  15394. opt->lbfgs.n_no_improvement = 0;
  15395. opt->just_initialized = false;
  15396. }
  15397. float * fx_best = &opt->lbfgs.fx_best;
  15398. float * step = &opt->lbfgs.step;
  15399. int * j = &opt->lbfgs.j;
  15400. int * k = &opt->lbfgs.k;
  15401. int * end = &opt->lbfgs.end;
  15402. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15403. int ls = 0;
  15404. int bound = 0;
  15405. float ys = 0.0f;
  15406. float yy = 0.0f;
  15407. float beta = 0.0f;
  15408. int it = 0;
  15409. while (true) {
  15410. // store the current position and gradient vectors
  15411. ggml_vec_cpy_f32(nx, xp, x);
  15412. ggml_vec_cpy_f32(nx, gp, g);
  15413. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15414. // to determine if the optimization should be cancelled
  15415. // this is a simple change, but not doing this atm, since I don't have a nice
  15416. // way to test and don't want to break something with so many changes lined up
  15417. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15418. if (cancel) {
  15419. return GGML_OPT_CANCEL;
  15420. }
  15421. if (ls < 0) {
  15422. // linesearch failed - go back to the previous point and return
  15423. ggml_vec_cpy_f32(nx, x, xp);
  15424. ggml_vec_cpy_f32(nx, g, gp);
  15425. return ls;
  15426. }
  15427. opt->loss_after = fx;
  15428. ggml_vec_norm_f32(nx, &xnorm, x);
  15429. ggml_vec_norm_f32(nx, &gnorm, g);
  15430. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15431. if (xnorm < 1.0f) {
  15432. xnorm = 1.0f;
  15433. }
  15434. if (gnorm/xnorm <= params.lbfgs.eps) {
  15435. // converged
  15436. return GGML_OPT_OK;
  15437. }
  15438. // delta-based convergence test
  15439. if (pf != NULL) {
  15440. // need at least params.past iterations to start checking for convergence
  15441. if (params.past <= k[0]) {
  15442. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15443. if (fabsf(rate) < params.delta) {
  15444. return GGML_OPT_OK;
  15445. }
  15446. }
  15447. pf[k[0]%params.past] = fx;
  15448. }
  15449. // check for improvement
  15450. if (params.max_no_improvement > 0) {
  15451. if (fx < fx_best[0]) {
  15452. fx_best[0] = fx;
  15453. n_no_improvement[0] = 0;
  15454. } else {
  15455. n_no_improvement[0]++;
  15456. if (n_no_improvement[0] >= params.max_no_improvement) {
  15457. return GGML_OPT_OK;
  15458. }
  15459. }
  15460. }
  15461. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15462. // reached the maximum number of iterations
  15463. return GGML_OPT_DID_NOT_CONVERGE;
  15464. }
  15465. // update vectors s and y:
  15466. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15467. // y_{k+1} = g_{k+1} - g_{k}.
  15468. //
  15469. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15470. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15471. // compute scalars ys and yy:
  15472. // ys = y^t \cdot s -> 1 / \rho.
  15473. // yy = y^t \cdot y.
  15474. //
  15475. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15476. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15477. lm_ys[end[0]] = ys;
  15478. // find new search direction
  15479. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15480. bound = (m <= k[0]) ? m : k[0];
  15481. k[0]++;
  15482. it++;
  15483. end[0] = (end[0] + 1)%m;
  15484. // initialize search direction with -g
  15485. ggml_vec_neg_f32(nx, d, g);
  15486. j[0] = end[0];
  15487. for (int i = 0; i < bound; ++i) {
  15488. j[0] = (j[0] + m - 1) % m;
  15489. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15490. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15491. lm_alpha[j[0]] /= lm_ys[j[0]];
  15492. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15493. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15494. }
  15495. ggml_vec_scale_f32(nx, d, ys/yy);
  15496. for (int i = 0; i < bound; ++i) {
  15497. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15498. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15499. beta /= lm_ys[j[0]];
  15500. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15501. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15502. j[0] = (j[0] + 1)%m;
  15503. }
  15504. step[0] = 1.0;
  15505. }
  15506. GGML_UNREACHABLE();
  15507. }
  15508. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15509. struct ggml_opt_params result;
  15510. switch (type) {
  15511. case GGML_OPT_ADAM:
  15512. {
  15513. result = (struct ggml_opt_params) {
  15514. .type = GGML_OPT_ADAM,
  15515. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15516. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15517. .past = 0,
  15518. .delta = 1e-5f,
  15519. .max_no_improvement = 100,
  15520. .print_forward_graph = true,
  15521. .print_backward_graph = true,
  15522. .n_gradient_accumulation = 1,
  15523. .adam = {
  15524. .n_iter = 10000,
  15525. .sched = 1.000f,
  15526. .decay = 0.0f,
  15527. .decay_min_ndim = 2,
  15528. .alpha = 0.001f,
  15529. .beta1 = 0.9f,
  15530. .beta2 = 0.999f,
  15531. .eps = 1e-8f,
  15532. .eps_f = 1e-5f,
  15533. .eps_g = 1e-3f,
  15534. .gclip = 0.0f,
  15535. },
  15536. };
  15537. } break;
  15538. case GGML_OPT_LBFGS:
  15539. {
  15540. result = (struct ggml_opt_params) {
  15541. .type = GGML_OPT_LBFGS,
  15542. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15543. .n_threads = 1,
  15544. .past = 0,
  15545. .delta = 1e-5f,
  15546. .max_no_improvement = 0,
  15547. .print_forward_graph = true,
  15548. .print_backward_graph = true,
  15549. .n_gradient_accumulation = 1,
  15550. .lbfgs = {
  15551. .m = 6,
  15552. .n_iter = 100,
  15553. .max_linesearch = 20,
  15554. .eps = 1e-5f,
  15555. .ftol = 1e-4f,
  15556. .wolfe = 0.9f,
  15557. .min_step = 1e-20f,
  15558. .max_step = 1e+20f,
  15559. .linesearch = GGML_LINESEARCH_DEFAULT,
  15560. },
  15561. };
  15562. } break;
  15563. }
  15564. return result;
  15565. }
  15566. GGML_API void ggml_opt_init(
  15567. struct ggml_context * ctx,
  15568. struct ggml_opt_context * opt,
  15569. struct ggml_opt_params params,
  15570. int64_t nx) {
  15571. opt->ctx = ctx;
  15572. opt->params = params;
  15573. opt->iter = 0;
  15574. opt->nx = nx;
  15575. opt->just_initialized = true;
  15576. if (opt->ctx == NULL) {
  15577. struct ggml_init_params ctx_opt_params;
  15578. if (opt->params.type == GGML_OPT_ADAM) {
  15579. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15580. if (opt->params.past > 0) {
  15581. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15582. }
  15583. } else if (opt->params.type == GGML_OPT_LBFGS) {
  15584. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15585. if (opt->params.past > 0) {
  15586. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15587. }
  15588. }
  15589. ctx_opt_params.mem_buffer = NULL;
  15590. ctx_opt_params.no_alloc = false;
  15591. opt->ctx = ggml_init(ctx_opt_params);
  15592. }
  15593. switch (opt->params.type) {
  15594. case GGML_OPT_ADAM:
  15595. {
  15596. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15597. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15598. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15599. opt->adam.pf = params.past > 0
  15600. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15601. : NULL;
  15602. ggml_set_zero(opt->adam.m);
  15603. ggml_set_zero(opt->adam.v);
  15604. if (opt->adam.pf) {
  15605. ggml_set_zero(opt->adam.pf);
  15606. }
  15607. } break;
  15608. case GGML_OPT_LBFGS:
  15609. {
  15610. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15611. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15612. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15613. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15614. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15615. opt->lbfgs.pf = params.past > 0
  15616. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15617. : NULL;
  15618. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15619. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15620. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15621. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15622. ggml_set_zero(opt->lbfgs.x);
  15623. ggml_set_zero(opt->lbfgs.xp);
  15624. ggml_set_zero(opt->lbfgs.g);
  15625. ggml_set_zero(opt->lbfgs.gp);
  15626. ggml_set_zero(opt->lbfgs.d);
  15627. if (opt->lbfgs.pf) {
  15628. ggml_set_zero(opt->lbfgs.pf);
  15629. }
  15630. ggml_set_zero(opt->lbfgs.lmal);
  15631. ggml_set_zero(opt->lbfgs.lmys);
  15632. ggml_set_zero(opt->lbfgs.lms);
  15633. ggml_set_zero(opt->lbfgs.lmy);
  15634. } break;
  15635. }
  15636. }
  15637. enum ggml_opt_result ggml_opt(
  15638. struct ggml_context * ctx,
  15639. struct ggml_opt_params params,
  15640. struct ggml_tensor * f) {
  15641. bool free_ctx = false;
  15642. if (ctx == NULL) {
  15643. struct ggml_init_params params_ctx = {
  15644. .mem_size = 16*1024*1024,
  15645. .mem_buffer = NULL,
  15646. .no_alloc = false,
  15647. };
  15648. ctx = ggml_init(params_ctx);
  15649. if (ctx == NULL) {
  15650. return GGML_OPT_NO_CONTEXT;
  15651. }
  15652. free_ctx = true;
  15653. }
  15654. enum ggml_opt_result result = GGML_OPT_OK;
  15655. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15656. ggml_opt_init(ctx, opt, params, 0);
  15657. result = ggml_opt_resume(ctx, opt, f);
  15658. if (free_ctx) {
  15659. ggml_free(ctx);
  15660. }
  15661. return result;
  15662. }
  15663. enum ggml_opt_result ggml_opt_resume(
  15664. struct ggml_context * ctx,
  15665. struct ggml_opt_context * opt,
  15666. struct ggml_tensor * f) {
  15667. // build forward + backward compute graphs
  15668. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15669. ggml_build_forward_expand(gf, f);
  15670. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15671. ggml_build_backward_expand(ctx, gf, gb, true);
  15672. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15673. }
  15674. enum ggml_opt_result ggml_opt_resume_g(
  15675. struct ggml_context * ctx,
  15676. struct ggml_opt_context * opt,
  15677. struct ggml_tensor * f,
  15678. struct ggml_cgraph * gf,
  15679. struct ggml_cgraph * gb,
  15680. ggml_opt_callback callback,
  15681. void * callback_data) {
  15682. // build forward + backward compute graphs
  15683. enum ggml_opt_result result = GGML_OPT_OK;
  15684. switch (opt->params.type) {
  15685. case GGML_OPT_ADAM:
  15686. {
  15687. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15688. } break;
  15689. case GGML_OPT_LBFGS:
  15690. {
  15691. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15692. } break;
  15693. }
  15694. if (opt->params.print_forward_graph) {
  15695. ggml_graph_print (gf);
  15696. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15697. }
  15698. if (opt->params.print_backward_graph) {
  15699. ggml_graph_print (gb);
  15700. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15701. }
  15702. return result;
  15703. }
  15704. ////////////////////////////////////////////////////////////////////////////////
  15705. void ggml_quantize_init(enum ggml_type type) {
  15706. ggml_critical_section_start();
  15707. switch (type) {
  15708. case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
  15709. case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
  15710. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15711. default: // nothing
  15712. break;
  15713. }
  15714. ggml_critical_section_end();
  15715. }
  15716. void ggml_quantize_free(void) {
  15717. ggml_critical_section_start();
  15718. iq2xs_free_impl(256);
  15719. iq2xs_free_impl(512);
  15720. ggml_critical_section_end();
  15721. }
  15722. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15723. assert(k % QK4_0 == 0);
  15724. const int nb = k / QK4_0;
  15725. for (int b = 0; b < n; b += k) {
  15726. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15727. quantize_row_q4_0_reference(src + b, y, k);
  15728. for (int i = 0; i < nb; i++) {
  15729. for (int j = 0; j < QK4_0; j += 2) {
  15730. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15731. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15732. hist[vi0]++;
  15733. hist[vi1]++;
  15734. }
  15735. }
  15736. }
  15737. return (n/QK4_0*sizeof(block_q4_0));
  15738. }
  15739. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15740. assert(k % QK4_1 == 0);
  15741. const int nb = k / QK4_1;
  15742. for (int b = 0; b < n; b += k) {
  15743. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15744. quantize_row_q4_1_reference(src + b, y, k);
  15745. for (int i = 0; i < nb; i++) {
  15746. for (int j = 0; j < QK4_1; j += 2) {
  15747. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15748. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15749. hist[vi0]++;
  15750. hist[vi1]++;
  15751. }
  15752. }
  15753. }
  15754. return (n/QK4_1*sizeof(block_q4_1));
  15755. }
  15756. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15757. assert(k % QK5_0 == 0);
  15758. const int nb = k / QK5_0;
  15759. for (int b = 0; b < n; b += k) {
  15760. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15761. quantize_row_q5_0_reference(src + b, y, k);
  15762. for (int i = 0; i < nb; i++) {
  15763. uint32_t qh;
  15764. memcpy(&qh, &y[i].qh, sizeof(qh));
  15765. for (int j = 0; j < QK5_0; j += 2) {
  15766. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15767. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15768. // cast to 16 bins
  15769. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15770. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15771. hist[vi0]++;
  15772. hist[vi1]++;
  15773. }
  15774. }
  15775. }
  15776. return (n/QK5_0*sizeof(block_q5_0));
  15777. }
  15778. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15779. assert(k % QK5_1 == 0);
  15780. const int nb = k / QK5_1;
  15781. for (int b = 0; b < n; b += k) {
  15782. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15783. quantize_row_q5_1_reference(src + b, y, k);
  15784. for (int i = 0; i < nb; i++) {
  15785. uint32_t qh;
  15786. memcpy(&qh, &y[i].qh, sizeof(qh));
  15787. for (int j = 0; j < QK5_1; j += 2) {
  15788. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15789. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15790. // cast to 16 bins
  15791. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15792. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15793. hist[vi0]++;
  15794. hist[vi1]++;
  15795. }
  15796. }
  15797. }
  15798. return (n/QK5_1*sizeof(block_q5_1));
  15799. }
  15800. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15801. assert(k % QK8_0 == 0);
  15802. const int nb = k / QK8_0;
  15803. for (int b = 0; b < n; b += k) {
  15804. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15805. quantize_row_q8_0_reference(src + b, y, k);
  15806. for (int i = 0; i < nb; i++) {
  15807. for (int j = 0; j < QK8_0; ++j) {
  15808. const int8_t vi = y[i].qs[j];
  15809. hist[vi/16 + 8]++;
  15810. }
  15811. }
  15812. }
  15813. return (n/QK8_0*sizeof(block_q8_0));
  15814. }
  15815. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  15816. return
  15817. type == GGML_TYPE_IQ2_XXS ||
  15818. type == GGML_TYPE_IQ2_XS;
  15819. }
  15820. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  15821. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  15822. ggml_quantize_init(type); // this is noop if already initialized
  15823. size_t result = 0;
  15824. int n = nrows * n_per_row;
  15825. switch (type) {
  15826. case GGML_TYPE_Q4_0:
  15827. {
  15828. GGML_ASSERT(start % QK4_0 == 0);
  15829. GGML_ASSERT(start % n_per_row == 0);
  15830. size_t start_row = start / n_per_row;
  15831. size_t row_size = ggml_row_size(type, n_per_row);
  15832. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15833. GGML_ASSERT(result == row_size * nrows);
  15834. } break;
  15835. case GGML_TYPE_Q4_1:
  15836. {
  15837. GGML_ASSERT(start % QK4_1 == 0);
  15838. GGML_ASSERT(start % n_per_row == 0);
  15839. size_t start_row = start / n_per_row;
  15840. size_t row_size = ggml_row_size(type, n_per_row);
  15841. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15842. GGML_ASSERT(result == row_size * nrows);
  15843. } break;
  15844. case GGML_TYPE_Q5_0:
  15845. {
  15846. GGML_ASSERT(start % QK5_0 == 0);
  15847. GGML_ASSERT(start % n_per_row == 0);
  15848. size_t start_row = start / n_per_row;
  15849. size_t row_size = ggml_row_size(type, n_per_row);
  15850. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15851. GGML_ASSERT(result == row_size * nrows);
  15852. } break;
  15853. case GGML_TYPE_Q5_1:
  15854. {
  15855. GGML_ASSERT(start % QK5_1 == 0);
  15856. GGML_ASSERT(start % n_per_row == 0);
  15857. size_t start_row = start / n_per_row;
  15858. size_t row_size = ggml_row_size(type, n_per_row);
  15859. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15860. GGML_ASSERT(result == row_size * nrows);
  15861. } break;
  15862. case GGML_TYPE_Q8_0:
  15863. {
  15864. GGML_ASSERT(start % QK8_0 == 0);
  15865. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15866. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15867. } break;
  15868. case GGML_TYPE_Q2_K:
  15869. {
  15870. GGML_ASSERT(start % QK_K == 0);
  15871. GGML_ASSERT(start % n_per_row == 0);
  15872. size_t start_row = start / n_per_row;
  15873. size_t row_size = ggml_row_size(type, n_per_row);
  15874. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15875. GGML_ASSERT(result == row_size * nrows);
  15876. } break;
  15877. case GGML_TYPE_Q3_K:
  15878. {
  15879. GGML_ASSERT(start % QK_K == 0);
  15880. GGML_ASSERT(start % n_per_row == 0);
  15881. size_t start_row = start / n_per_row;
  15882. size_t row_size = ggml_row_size(type, n_per_row);
  15883. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15884. GGML_ASSERT(result == row_size * nrows);
  15885. } break;
  15886. case GGML_TYPE_Q4_K:
  15887. {
  15888. GGML_ASSERT(start % QK_K == 0);
  15889. GGML_ASSERT(start % n_per_row == 0);
  15890. size_t start_row = start / n_per_row;
  15891. size_t row_size = ggml_row_size(type, n_per_row);
  15892. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15893. GGML_ASSERT(result == row_size * nrows);
  15894. } break;
  15895. case GGML_TYPE_Q5_K:
  15896. {
  15897. GGML_ASSERT(start % QK_K == 0);
  15898. GGML_ASSERT(start % n_per_row == 0);
  15899. size_t start_row = start / n_per_row;
  15900. size_t row_size = ggml_row_size(type, n_per_row);
  15901. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15902. GGML_ASSERT(result == row_size * nrows);
  15903. } break;
  15904. case GGML_TYPE_Q6_K:
  15905. {
  15906. GGML_ASSERT(start % QK_K == 0);
  15907. GGML_ASSERT(start % n_per_row == 0);
  15908. size_t start_row = start / n_per_row;
  15909. size_t row_size = ggml_row_size(type, n_per_row);
  15910. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15911. GGML_ASSERT(result == row_size * nrows);
  15912. } break;
  15913. case GGML_TYPE_IQ2_XXS:
  15914. {
  15915. GGML_ASSERT(start % QK_K == 0);
  15916. GGML_ASSERT(start % n_per_row == 0);
  15917. GGML_ASSERT(imatrix);
  15918. size_t start_row = start / n_per_row;
  15919. size_t row_size = ggml_row_size(type, n_per_row);
  15920. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15921. GGML_ASSERT(result == row_size * nrows);
  15922. } break;
  15923. case GGML_TYPE_IQ2_XS:
  15924. {
  15925. GGML_ASSERT(start % QK_K == 0);
  15926. GGML_ASSERT(start % n_per_row == 0);
  15927. GGML_ASSERT(imatrix);
  15928. size_t start_row = start / n_per_row;
  15929. size_t row_size = ggml_row_size(type, n_per_row);
  15930. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15931. GGML_ASSERT(result == row_size * nrows);
  15932. } break;
  15933. case GGML_TYPE_IQ3_XXS:
  15934. {
  15935. GGML_ASSERT(start % QK_K == 0);
  15936. GGML_ASSERT(start % n_per_row == 0);
  15937. size_t start_row = start / n_per_row;
  15938. size_t row_size = ggml_row_size(type, n_per_row);
  15939. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  15940. GGML_ASSERT(result == row_size * nrows);
  15941. } break;
  15942. case GGML_TYPE_F16:
  15943. {
  15944. size_t elemsize = sizeof(ggml_fp16_t);
  15945. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15946. result = n * elemsize;
  15947. } break;
  15948. case GGML_TYPE_F32:
  15949. {
  15950. size_t elemsize = sizeof(float);
  15951. result = n * elemsize;
  15952. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15953. } break;
  15954. default:
  15955. assert(false);
  15956. }
  15957. return result;
  15958. }
  15959. ////////////////////////////////////////////////////////////////////////////////
  15960. struct gguf_str {
  15961. uint64_t n; // GGUFv2
  15962. char * data;
  15963. };
  15964. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15965. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15966. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15967. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15968. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15969. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15970. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15971. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15972. [GGUF_TYPE_BOOL] = sizeof(bool),
  15973. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15974. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15975. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15976. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15977. [GGUF_TYPE_ARRAY] = 0, // undefined
  15978. };
  15979. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15980. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15981. [GGUF_TYPE_UINT8] = "u8",
  15982. [GGUF_TYPE_INT8] = "i8",
  15983. [GGUF_TYPE_UINT16] = "u16",
  15984. [GGUF_TYPE_INT16] = "i16",
  15985. [GGUF_TYPE_UINT32] = "u32",
  15986. [GGUF_TYPE_INT32] = "i32",
  15987. [GGUF_TYPE_FLOAT32] = "f32",
  15988. [GGUF_TYPE_BOOL] = "bool",
  15989. [GGUF_TYPE_STRING] = "str",
  15990. [GGUF_TYPE_ARRAY] = "arr",
  15991. [GGUF_TYPE_UINT64] = "u64",
  15992. [GGUF_TYPE_INT64] = "i64",
  15993. [GGUF_TYPE_FLOAT64] = "f64",
  15994. };
  15995. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15996. union gguf_value {
  15997. uint8_t uint8;
  15998. int8_t int8;
  15999. uint16_t uint16;
  16000. int16_t int16;
  16001. uint32_t uint32;
  16002. int32_t int32;
  16003. float float32;
  16004. uint64_t uint64;
  16005. int64_t int64;
  16006. double float64;
  16007. bool bool_;
  16008. struct gguf_str str;
  16009. struct {
  16010. enum gguf_type type;
  16011. uint64_t n; // GGUFv2
  16012. void * data;
  16013. } arr;
  16014. };
  16015. struct gguf_kv {
  16016. struct gguf_str key;
  16017. enum gguf_type type;
  16018. union gguf_value value;
  16019. };
  16020. struct gguf_header {
  16021. char magic[4];
  16022. uint32_t version;
  16023. uint64_t n_tensors; // GGUFv2
  16024. uint64_t n_kv; // GGUFv2
  16025. };
  16026. struct gguf_tensor_info {
  16027. struct gguf_str name;
  16028. uint32_t n_dims;
  16029. uint64_t ne[GGML_MAX_DIMS];
  16030. enum ggml_type type;
  16031. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16032. // for writing API
  16033. const void * data;
  16034. size_t size;
  16035. };
  16036. struct gguf_context {
  16037. struct gguf_header header;
  16038. struct gguf_kv * kv;
  16039. struct gguf_tensor_info * infos;
  16040. size_t alignment;
  16041. size_t offset; // offset of `data` from beginning of file
  16042. size_t size; // size of `data` in bytes
  16043. //uint8_t * padding;
  16044. void * data;
  16045. };
  16046. static size_t gguf_type_size(enum gguf_type type) {
  16047. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16048. return GGUF_TYPE_SIZE[type];
  16049. }
  16050. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16051. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16052. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16053. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16054. GGML_ASSERT(info->ne[i] > 0);
  16055. }
  16056. // prevent overflow for total number of elements
  16057. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16058. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16059. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16060. }
  16061. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16062. const size_t n = fread(dst, 1, size, file);
  16063. *offset += n;
  16064. return n == size;
  16065. }
  16066. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16067. p->n = 0;
  16068. p->data = NULL;
  16069. bool ok = true;
  16070. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16071. // early exit if string length is invalid, prevents from integer overflow
  16072. if (p->n == SIZE_MAX) {
  16073. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16074. return false;
  16075. }
  16076. p->data = GGML_CALLOC(p->n + 1, 1);
  16077. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16078. return ok;
  16079. }
  16080. struct gguf_context * gguf_init_empty(void) {
  16081. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16082. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16083. ctx->header.version = GGUF_VERSION;
  16084. ctx->header.n_tensors = 0;
  16085. ctx->header.n_kv = 0;
  16086. ctx->kv = NULL;
  16087. ctx->infos = NULL;
  16088. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16089. ctx->offset = 0;
  16090. ctx->size = 0;
  16091. ctx->data = NULL;
  16092. return ctx;
  16093. }
  16094. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16095. FILE * file = fopen(fname, "rb");
  16096. if (!file) {
  16097. return NULL;
  16098. }
  16099. // offset from start of file
  16100. size_t offset = 0;
  16101. char magic[4];
  16102. // check the magic before making allocations
  16103. {
  16104. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16105. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16106. if (magic[i] != GGUF_MAGIC[i]) {
  16107. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16108. fclose(file);
  16109. return NULL;
  16110. }
  16111. }
  16112. }
  16113. bool ok = true;
  16114. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16115. // read the header
  16116. {
  16117. strncpy(ctx->header.magic, magic, 4);
  16118. ctx->kv = NULL;
  16119. ctx->infos = NULL;
  16120. ctx->data = NULL;
  16121. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16122. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16123. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16124. if (ctx->header.version == 1) {
  16125. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16126. fclose(file);
  16127. gguf_free(ctx);
  16128. return NULL;
  16129. }
  16130. // sanity-checks to prevent from integer/buffer overflows
  16131. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16132. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16133. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16134. if (!ok) {
  16135. fprintf(stderr, "%s: failed to read header\n", __func__);
  16136. fclose(file);
  16137. gguf_free(ctx);
  16138. return NULL;
  16139. }
  16140. }
  16141. // read the kv pairs
  16142. {
  16143. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16144. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16145. struct gguf_kv * kv = &ctx->kv[i];
  16146. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16147. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16148. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16149. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16150. switch (kv->type) {
  16151. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16152. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16153. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16154. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16155. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16156. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16157. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16158. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16159. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16160. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16161. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16162. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16163. case GGUF_TYPE_ARRAY:
  16164. {
  16165. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16166. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16167. switch (kv->value.arr.type) {
  16168. case GGUF_TYPE_UINT8:
  16169. case GGUF_TYPE_INT8:
  16170. case GGUF_TYPE_UINT16:
  16171. case GGUF_TYPE_INT16:
  16172. case GGUF_TYPE_UINT32:
  16173. case GGUF_TYPE_INT32:
  16174. case GGUF_TYPE_FLOAT32:
  16175. case GGUF_TYPE_UINT64:
  16176. case GGUF_TYPE_INT64:
  16177. case GGUF_TYPE_FLOAT64:
  16178. case GGUF_TYPE_BOOL:
  16179. {
  16180. // prevent from integer overflow in the malloc below
  16181. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16182. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16183. fclose(file);
  16184. gguf_free(ctx);
  16185. return NULL;
  16186. }
  16187. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16188. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16189. } break;
  16190. case GGUF_TYPE_STRING:
  16191. {
  16192. // prevent from integer overflow in the malloc below
  16193. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16194. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16195. fclose(file);
  16196. gguf_free(ctx);
  16197. return NULL;
  16198. }
  16199. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16200. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16201. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16202. }
  16203. } break;
  16204. case GGUF_TYPE_ARRAY:
  16205. default: GGML_ASSERT(false && "invalid type"); break;
  16206. }
  16207. } break;
  16208. default: GGML_ASSERT(false && "invalid type");
  16209. }
  16210. if (!ok) {
  16211. break;
  16212. }
  16213. }
  16214. if (!ok) {
  16215. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16216. fclose(file);
  16217. gguf_free(ctx);
  16218. return NULL;
  16219. }
  16220. }
  16221. // read the tensor infos
  16222. {
  16223. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16224. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16225. struct gguf_tensor_info * info = &ctx->infos[i];
  16226. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16227. info->ne[j] = 1;
  16228. }
  16229. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16230. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16231. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16232. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16233. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16234. }
  16235. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16236. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16237. gguf_tensor_info_sanitize(info);
  16238. if (!ok) {
  16239. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16240. fclose(file);
  16241. gguf_free(ctx);
  16242. return NULL;
  16243. }
  16244. }
  16245. }
  16246. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16247. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16248. if (alignment_idx != -1) {
  16249. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16250. }
  16251. // we require the data section to be aligned, so take into account any padding
  16252. {
  16253. const size_t offset_pad = offset % ctx->alignment;
  16254. if (offset_pad != 0) {
  16255. offset += ctx->alignment - offset_pad;
  16256. fseek(file, offset, SEEK_SET);
  16257. }
  16258. }
  16259. // store the current file offset - this is where the data section starts
  16260. ctx->offset = offset;
  16261. // compute the total size of the data section, taking into account the alignment
  16262. {
  16263. ctx->size = 0;
  16264. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16265. struct gguf_tensor_info * info = &ctx->infos[i];
  16266. const int64_t ne =
  16267. (int64_t) info->ne[0] *
  16268. (int64_t) info->ne[1] *
  16269. (int64_t) info->ne[2] *
  16270. (int64_t) info->ne[3];
  16271. if (ne % ggml_blck_size(info->type) != 0) {
  16272. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16273. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16274. fclose(file);
  16275. gguf_free(ctx);
  16276. return NULL;
  16277. }
  16278. const size_t size_cur = ggml_row_size(info->type, ne);
  16279. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16280. }
  16281. }
  16282. // load the tensor data only if requested
  16283. if (params.ctx != NULL) {
  16284. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16285. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16286. // the ggml_tensor structs to the appropriate locations in the binary blob
  16287. // compute the exact size needed for the new ggml_context
  16288. const size_t mem_size =
  16289. params.no_alloc ?
  16290. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16291. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16292. struct ggml_init_params pdata = {
  16293. .mem_size = mem_size,
  16294. .mem_buffer = NULL,
  16295. .no_alloc = params.no_alloc,
  16296. };
  16297. *params.ctx = ggml_init(pdata);
  16298. struct ggml_context * ctx_data = *params.ctx;
  16299. struct ggml_tensor * data = NULL;
  16300. if (!params.no_alloc) {
  16301. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16302. ok = ok && data != NULL;
  16303. // read the binary blob with the tensor data
  16304. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16305. if (!ok) {
  16306. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16307. fclose(file);
  16308. ggml_free(ctx_data);
  16309. gguf_free(ctx);
  16310. return NULL;
  16311. }
  16312. ctx->data = data->data;
  16313. }
  16314. ggml_set_no_alloc(ctx_data, true);
  16315. // create the tensors
  16316. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16317. const int64_t ne[GGML_MAX_DIMS] = {
  16318. ctx->infos[i].ne[0],
  16319. ctx->infos[i].ne[1],
  16320. ctx->infos[i].ne[2],
  16321. ctx->infos[i].ne[3],
  16322. };
  16323. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16324. ok = ok && cur != NULL;
  16325. ggml_set_name(cur, ctx->infos[i].name.data);
  16326. if (!ok) {
  16327. break;
  16328. }
  16329. // point the data member to the appropriate location in the binary blob using the tensor infos
  16330. if (!params.no_alloc) {
  16331. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16332. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16333. }
  16334. }
  16335. if (!ok) {
  16336. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16337. fclose(file);
  16338. ggml_free(ctx_data);
  16339. gguf_free(ctx);
  16340. return NULL;
  16341. }
  16342. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16343. }
  16344. fclose(file);
  16345. return ctx;
  16346. }
  16347. void gguf_free(struct gguf_context * ctx) {
  16348. if (ctx == NULL) {
  16349. return;
  16350. }
  16351. if (ctx->kv) {
  16352. // free string memory - not great..
  16353. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16354. struct gguf_kv * kv = &ctx->kv[i];
  16355. if (kv->key.data) {
  16356. GGML_FREE(kv->key.data);
  16357. }
  16358. if (kv->type == GGUF_TYPE_STRING) {
  16359. if (kv->value.str.data) {
  16360. GGML_FREE(kv->value.str.data);
  16361. }
  16362. }
  16363. if (kv->type == GGUF_TYPE_ARRAY) {
  16364. if (kv->value.arr.data) {
  16365. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16366. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16367. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16368. if (str->data) {
  16369. GGML_FREE(str->data);
  16370. }
  16371. }
  16372. }
  16373. GGML_FREE(kv->value.arr.data);
  16374. }
  16375. }
  16376. }
  16377. GGML_FREE(ctx->kv);
  16378. }
  16379. if (ctx->infos) {
  16380. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16381. struct gguf_tensor_info * info = &ctx->infos[i];
  16382. if (info->name.data) {
  16383. GGML_FREE(info->name.data);
  16384. }
  16385. }
  16386. GGML_FREE(ctx->infos);
  16387. }
  16388. GGML_ALIGNED_FREE(ctx);
  16389. }
  16390. const char * gguf_type_name(enum gguf_type type) {
  16391. return GGUF_TYPE_NAME[type];
  16392. }
  16393. int gguf_get_version(const struct gguf_context * ctx) {
  16394. return ctx->header.version;
  16395. }
  16396. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16397. return ctx->alignment;
  16398. }
  16399. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16400. return ctx->offset;
  16401. }
  16402. void * gguf_get_data(const struct gguf_context * ctx) {
  16403. return ctx->data;
  16404. }
  16405. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16406. return ctx->header.n_kv;
  16407. }
  16408. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16409. // return -1 if key not found
  16410. int keyfound = -1;
  16411. const int n_kv = gguf_get_n_kv(ctx);
  16412. for (int i = 0; i < n_kv; ++i) {
  16413. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16414. keyfound = i;
  16415. break;
  16416. }
  16417. }
  16418. return keyfound;
  16419. }
  16420. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16421. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16422. return ctx->kv[key_id].key.data;
  16423. }
  16424. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16425. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16426. return ctx->kv[key_id].type;
  16427. }
  16428. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16429. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16430. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16431. return ctx->kv[key_id].value.arr.type;
  16432. }
  16433. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16434. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16435. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16436. return ctx->kv[key_id].value.arr.data;
  16437. }
  16438. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16439. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16440. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16441. struct gguf_kv * kv = &ctx->kv[key_id];
  16442. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16443. return str->data;
  16444. }
  16445. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16446. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16447. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16448. return ctx->kv[key_id].value.arr.n;
  16449. }
  16450. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16451. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16452. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16453. return ctx->kv[key_id].value.uint8;
  16454. }
  16455. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16456. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16457. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16458. return ctx->kv[key_id].value.int8;
  16459. }
  16460. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16461. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16462. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16463. return ctx->kv[key_id].value.uint16;
  16464. }
  16465. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16466. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16467. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16468. return ctx->kv[key_id].value.int16;
  16469. }
  16470. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16471. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16472. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16473. return ctx->kv[key_id].value.uint32;
  16474. }
  16475. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16476. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16477. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16478. return ctx->kv[key_id].value.int32;
  16479. }
  16480. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16481. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16482. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16483. return ctx->kv[key_id].value.float32;
  16484. }
  16485. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16486. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16487. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16488. return ctx->kv[key_id].value.uint64;
  16489. }
  16490. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16491. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16492. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16493. return ctx->kv[key_id].value.int64;
  16494. }
  16495. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16496. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16497. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16498. return ctx->kv[key_id].value.float64;
  16499. }
  16500. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16501. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16502. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16503. return ctx->kv[key_id].value.bool_;
  16504. }
  16505. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16506. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16507. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16508. return ctx->kv[key_id].value.str.data;
  16509. }
  16510. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16511. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16512. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16513. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16514. return &ctx->kv[key_id].value;
  16515. }
  16516. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16517. return ctx->header.n_tensors;
  16518. }
  16519. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16520. // return -1 if tensor not found
  16521. int tensorfound = -1;
  16522. const int n_tensors = gguf_get_n_tensors(ctx);
  16523. for (int i = 0; i < n_tensors; ++i) {
  16524. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16525. tensorfound = i;
  16526. break;
  16527. }
  16528. }
  16529. return tensorfound;
  16530. }
  16531. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16532. return ctx->infos[i].offset;
  16533. }
  16534. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16535. return ctx->infos[i].name.data;
  16536. }
  16537. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16538. return ctx->infos[i].type;
  16539. }
  16540. // returns the index
  16541. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16542. const int idx = gguf_find_key(ctx, key);
  16543. if (idx >= 0) {
  16544. return idx;
  16545. }
  16546. const int n_kv = gguf_get_n_kv(ctx);
  16547. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16548. ctx->kv[n_kv].key.n = strlen(key);
  16549. ctx->kv[n_kv].key.data = strdup(key);
  16550. ctx->header.n_kv++;
  16551. return n_kv;
  16552. }
  16553. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16554. const int idx = gguf_get_or_add_key(ctx, key);
  16555. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16556. ctx->kv[idx].value.uint8 = val;
  16557. }
  16558. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16559. const int idx = gguf_get_or_add_key(ctx, key);
  16560. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16561. ctx->kv[idx].value.int8 = val;
  16562. }
  16563. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16564. const int idx = gguf_get_or_add_key(ctx, key);
  16565. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16566. ctx->kv[idx].value.uint16 = val;
  16567. }
  16568. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16569. const int idx = gguf_get_or_add_key(ctx, key);
  16570. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16571. ctx->kv[idx].value.int16 = val;
  16572. }
  16573. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16574. const int idx = gguf_get_or_add_key(ctx, key);
  16575. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16576. ctx->kv[idx].value.uint32 = val;
  16577. }
  16578. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16579. const int idx = gguf_get_or_add_key(ctx, key);
  16580. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16581. ctx->kv[idx].value.int32 = val;
  16582. }
  16583. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16584. const int idx = gguf_get_or_add_key(ctx, key);
  16585. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16586. ctx->kv[idx].value.float32 = val;
  16587. }
  16588. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16589. const int idx = gguf_get_or_add_key(ctx, key);
  16590. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16591. ctx->kv[idx].value.uint64 = val;
  16592. }
  16593. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16594. const int idx = gguf_get_or_add_key(ctx, key);
  16595. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16596. ctx->kv[idx].value.int64 = val;
  16597. }
  16598. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16599. const int idx = gguf_get_or_add_key(ctx, key);
  16600. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16601. ctx->kv[idx].value.float64 = val;
  16602. }
  16603. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16604. const int idx = gguf_get_or_add_key(ctx, key);
  16605. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16606. ctx->kv[idx].value.bool_ = val;
  16607. }
  16608. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16609. const int idx = gguf_get_or_add_key(ctx, key);
  16610. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16611. ctx->kv[idx].value.str.n = strlen(val);
  16612. ctx->kv[idx].value.str.data = strdup(val);
  16613. }
  16614. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16615. const int idx = gguf_get_or_add_key(ctx, key);
  16616. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16617. ctx->kv[idx].value.arr.type = type;
  16618. ctx->kv[idx].value.arr.n = n;
  16619. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16620. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16621. }
  16622. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16623. const int idx = gguf_get_or_add_key(ctx, key);
  16624. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16625. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16626. ctx->kv[idx].value.arr.n = n;
  16627. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16628. for (int i = 0; i < n; i++) {
  16629. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16630. str->n = strlen(data[i]);
  16631. str->data = strdup(data[i]);
  16632. }
  16633. }
  16634. // set or add KV pairs from another context
  16635. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16636. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16637. switch (src->kv[i].type) {
  16638. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16639. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16640. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16641. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16642. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16643. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16644. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16645. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16646. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16647. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16648. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16649. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16650. case GGUF_TYPE_ARRAY:
  16651. {
  16652. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16653. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16654. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16655. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16656. }
  16657. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16658. GGML_FREE((void *)data);
  16659. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16660. GGML_ASSERT(false && "nested arrays not supported");
  16661. } else {
  16662. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16663. }
  16664. } break;
  16665. default: GGML_ASSERT(false && "invalid type"); break;
  16666. }
  16667. }
  16668. }
  16669. void gguf_add_tensor(
  16670. struct gguf_context * ctx,
  16671. const struct ggml_tensor * tensor) {
  16672. const int idx = ctx->header.n_tensors;
  16673. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16674. ctx->infos[idx].name.n = strlen(tensor->name);
  16675. ctx->infos[idx].name.data = strdup(tensor->name);
  16676. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16677. ctx->infos[idx].ne[i] = 1;
  16678. }
  16679. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16680. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16681. ctx->infos[idx].ne[i] = tensor->ne[i];
  16682. }
  16683. ctx->infos[idx].type = tensor->type;
  16684. ctx->infos[idx].offset = 0;
  16685. ctx->infos[idx].data = tensor->data;
  16686. ctx->infos[idx].size = ggml_nbytes(tensor);
  16687. if (ctx->header.n_tensors > 0) {
  16688. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16689. }
  16690. ctx->header.n_tensors++;
  16691. }
  16692. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16693. const int idx = gguf_find_tensor(ctx, name);
  16694. if (idx < 0) {
  16695. GGML_ASSERT(false && "tensor not found");
  16696. }
  16697. ctx->infos[idx].type = type;
  16698. }
  16699. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16700. const int idx = gguf_find_tensor(ctx, name);
  16701. if (idx < 0) {
  16702. GGML_ASSERT(false && "tensor not found");
  16703. }
  16704. ctx->infos[idx].data = data;
  16705. ctx->infos[idx].size = size;
  16706. // update offsets
  16707. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16708. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16709. }
  16710. }
  16711. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16712. // fwrite(&val->n, sizeof(val->n), 1, file);
  16713. // fwrite(val->data, sizeof(char), val->n, file);
  16714. //}
  16715. //
  16716. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16717. // fwrite(val, sizeof(char), size, file);
  16718. //}
  16719. struct gguf_buf {
  16720. void * data;
  16721. size_t size;
  16722. size_t offset;
  16723. };
  16724. static struct gguf_buf gguf_buf_init(size_t size) {
  16725. struct gguf_buf buf = {
  16726. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  16727. /*buf.size =*/ size,
  16728. /*buf.offset =*/ 0,
  16729. };
  16730. return buf;
  16731. }
  16732. static void gguf_buf_free(struct gguf_buf buf) {
  16733. if (buf.data) {
  16734. GGML_FREE(buf.data);
  16735. }
  16736. }
  16737. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16738. if (buf->offset + size > buf->size) {
  16739. buf->size = 1.5*(buf->offset + size);
  16740. if (buf->data) {
  16741. buf->data = realloc(buf->data, buf->size);
  16742. }
  16743. }
  16744. }
  16745. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16746. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16747. if (buf->data) {
  16748. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16749. }
  16750. buf->offset += sizeof(val->n);
  16751. if (buf->data) {
  16752. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16753. }
  16754. buf->offset += val->n;
  16755. }
  16756. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16757. gguf_buf_grow(buf, el_size);
  16758. if (buf->data) {
  16759. memcpy((char *) buf->data + buf->offset, val, el_size);
  16760. }
  16761. buf->offset += el_size;
  16762. }
  16763. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16764. // write header
  16765. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16766. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16767. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16768. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16769. // write key-value pairs
  16770. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16771. struct gguf_kv * kv = &ctx->kv[i];
  16772. gguf_bwrite_str(buf, &kv->key);
  16773. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16774. switch (kv->type) {
  16775. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16776. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16777. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16778. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16779. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16780. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16781. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16782. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16783. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16784. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16785. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16786. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16787. case GGUF_TYPE_ARRAY:
  16788. {
  16789. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16790. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16791. switch (kv->value.arr.type) {
  16792. case GGUF_TYPE_UINT8:
  16793. case GGUF_TYPE_INT8:
  16794. case GGUF_TYPE_UINT16:
  16795. case GGUF_TYPE_INT16:
  16796. case GGUF_TYPE_UINT32:
  16797. case GGUF_TYPE_INT32:
  16798. case GGUF_TYPE_FLOAT32:
  16799. case GGUF_TYPE_UINT64:
  16800. case GGUF_TYPE_INT64:
  16801. case GGUF_TYPE_FLOAT64:
  16802. case GGUF_TYPE_BOOL:
  16803. {
  16804. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16805. } break;
  16806. case GGUF_TYPE_STRING:
  16807. {
  16808. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16809. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16810. }
  16811. } break;
  16812. case GGUF_TYPE_ARRAY:
  16813. default: GGML_ASSERT(false && "invalid type"); break;
  16814. }
  16815. } break;
  16816. default: GGML_ASSERT(false && "invalid type");
  16817. }
  16818. }
  16819. // write tensor infos
  16820. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16821. struct gguf_tensor_info * info = &ctx->infos[i];
  16822. gguf_bwrite_str(buf, &info->name);
  16823. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16824. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16825. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16826. }
  16827. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16828. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16829. }
  16830. // we require the data section to be aligned, so take into account any padding
  16831. {
  16832. const size_t offset = buf->offset;
  16833. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16834. if (offset_pad != offset) {
  16835. uint8_t pad = 0;
  16836. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16837. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16838. }
  16839. }
  16840. }
  16841. if (only_meta) {
  16842. return;
  16843. }
  16844. size_t offset = 0;
  16845. // write tensor data
  16846. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16847. struct gguf_tensor_info * info = &ctx->infos[i];
  16848. const size_t size = info->size;
  16849. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16850. gguf_bwrite_el(buf, info->data, size);
  16851. if (size_pad != size) {
  16852. uint8_t pad = 0;
  16853. for (size_t j = 0; j < size_pad - size; ++j) {
  16854. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16855. }
  16856. }
  16857. GGML_ASSERT(offset == info->offset);
  16858. offset += size_pad;
  16859. }
  16860. }
  16861. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16862. FILE * file = fopen(fname, "wb");
  16863. if (!file) {
  16864. GGML_ASSERT(false && "failed to open file for writing");
  16865. }
  16866. struct gguf_buf buf = gguf_buf_init(16*1024);
  16867. gguf_write_to_buf(ctx, &buf, only_meta);
  16868. fwrite(buf.data, 1, buf.offset, file);
  16869. gguf_buf_free(buf);
  16870. fclose(file);
  16871. }
  16872. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16873. // no allocs - only compute size
  16874. struct gguf_buf buf = gguf_buf_init(0);
  16875. gguf_write_to_buf(ctx, &buf, true);
  16876. return buf.offset;
  16877. }
  16878. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16879. struct gguf_buf buf = gguf_buf_init(16*1024);
  16880. gguf_write_to_buf(ctx, &buf, true);
  16881. memcpy(data, buf.data, buf.offset);
  16882. gguf_buf_free(buf);
  16883. }
  16884. ////////////////////////////////////////////////////////////////////////////////
  16885. int ggml_cpu_has_avx(void) {
  16886. #if defined(__AVX__)
  16887. return 1;
  16888. #else
  16889. return 0;
  16890. #endif
  16891. }
  16892. int ggml_cpu_has_avx_vnni(void) {
  16893. #if defined(__AVXVNNI__)
  16894. return 1;
  16895. #else
  16896. return 0;
  16897. #endif
  16898. }
  16899. int ggml_cpu_has_avx2(void) {
  16900. #if defined(__AVX2__)
  16901. return 1;
  16902. #else
  16903. return 0;
  16904. #endif
  16905. }
  16906. int ggml_cpu_has_avx512(void) {
  16907. #if defined(__AVX512F__)
  16908. return 1;
  16909. #else
  16910. return 0;
  16911. #endif
  16912. }
  16913. int ggml_cpu_has_avx512_vbmi(void) {
  16914. #if defined(__AVX512VBMI__)
  16915. return 1;
  16916. #else
  16917. return 0;
  16918. #endif
  16919. }
  16920. int ggml_cpu_has_avx512_vnni(void) {
  16921. #if defined(__AVX512VNNI__)
  16922. return 1;
  16923. #else
  16924. return 0;
  16925. #endif
  16926. }
  16927. int ggml_cpu_has_fma(void) {
  16928. #if defined(__FMA__)
  16929. return 1;
  16930. #else
  16931. return 0;
  16932. #endif
  16933. }
  16934. int ggml_cpu_has_neon(void) {
  16935. #if defined(__ARM_NEON)
  16936. return 1;
  16937. #else
  16938. return 0;
  16939. #endif
  16940. }
  16941. int ggml_cpu_has_arm_fma(void) {
  16942. #if defined(__ARM_FEATURE_FMA)
  16943. return 1;
  16944. #else
  16945. return 0;
  16946. #endif
  16947. }
  16948. int ggml_cpu_has_metal(void) {
  16949. #if defined(GGML_USE_METAL)
  16950. return 1;
  16951. #else
  16952. return 0;
  16953. #endif
  16954. }
  16955. int ggml_cpu_has_f16c(void) {
  16956. #if defined(__F16C__)
  16957. return 1;
  16958. #else
  16959. return 0;
  16960. #endif
  16961. }
  16962. int ggml_cpu_has_fp16_va(void) {
  16963. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16964. return 1;
  16965. #else
  16966. return 0;
  16967. #endif
  16968. }
  16969. int ggml_cpu_has_wasm_simd(void) {
  16970. #if defined(__wasm_simd128__)
  16971. return 1;
  16972. #else
  16973. return 0;
  16974. #endif
  16975. }
  16976. int ggml_cpu_has_blas(void) {
  16977. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  16978. return 1;
  16979. #else
  16980. return 0;
  16981. #endif
  16982. }
  16983. int ggml_cpu_has_cublas(void) {
  16984. #if defined(GGML_USE_CUBLAS)
  16985. return 1;
  16986. #else
  16987. return 0;
  16988. #endif
  16989. }
  16990. int ggml_cpu_has_clblast(void) {
  16991. #if defined(GGML_USE_CLBLAST)
  16992. return 1;
  16993. #else
  16994. return 0;
  16995. #endif
  16996. }
  16997. int ggml_cpu_has_vulkan(void) {
  16998. #if defined(GGML_USE_VULKAN)
  16999. return 1;
  17000. #else
  17001. return 0;
  17002. #endif
  17003. }
  17004. int ggml_cpu_has_sycl(void) {
  17005. #if defined(GGML_USE_SYCL)
  17006. return 1;
  17007. #else
  17008. return 0;
  17009. #endif
  17010. }
  17011. int ggml_cpu_has_gpublas(void) {
  17012. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_sycl();
  17013. }
  17014. int ggml_cpu_has_sse3(void) {
  17015. #if defined(__SSE3__)
  17016. return 1;
  17017. #else
  17018. return 0;
  17019. #endif
  17020. }
  17021. int ggml_cpu_has_ssse3(void) {
  17022. #if defined(__SSSE3__)
  17023. return 1;
  17024. #else
  17025. return 0;
  17026. #endif
  17027. }
  17028. int ggml_cpu_has_vsx(void) {
  17029. #if defined(__POWER9_VECTOR__)
  17030. return 1;
  17031. #else
  17032. return 0;
  17033. #endif
  17034. }
  17035. ////////////////////////////////////////////////////////////////////////////////