test-backend-ops.cpp 170 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651
  1. // This file defines tests for various GGML ops and backends.
  2. // For the forward pass it asserts that the results of multiple backends computing the same GGML ops are consistent.
  3. // For the backward pass it asserts that the gradients from backpropagation are consistent
  4. // with the gradients obtained via the method of finite differences ("grad" mode, this is optional).
  5. // It is also possible to check the performance ("perf" mode).
  6. //
  7. // this file has three sections: Section 1 does general setup, section 2 defines the GGML ops to be tested,
  8. // and section 3 defines which tests to run.
  9. // Quick start for adding a new GGML op: Go to section 2 and create a struct that inherits from test_case,
  10. // then go to section 3 and add an instantiation of your struct.
  11. // ##############################
  12. // ## Section 1: General Setup ##
  13. // ##############################
  14. #include <ggml.h>
  15. #include <ggml-alloc.h>
  16. #include <ggml-backend.h>
  17. #include <ggml-cpp.h>
  18. #include <algorithm>
  19. #include <array>
  20. #include <cfloat>
  21. #include <cinttypes>
  22. #include <cstdint>
  23. #include <cstdio>
  24. #include <cstdlib>
  25. #include <cstring>
  26. #include <future>
  27. #include <memory>
  28. #include <random>
  29. #include <regex>
  30. #include <string>
  31. #include <thread>
  32. #include <vector>
  33. static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
  34. size_t nels = ggml_nelements(tensor);
  35. std::vector<float> data(nels);
  36. {
  37. // parallel initialization
  38. static const size_t n_threads = std::thread::hardware_concurrency();
  39. // static RNG initialization (revisit if n_threads stops being constant)
  40. static std::vector<std::default_random_engine> generators = []() {
  41. std::random_device rd;
  42. std::vector<std::default_random_engine> vec;
  43. vec.reserve(n_threads);
  44. //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
  45. for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
  46. return vec;
  47. }();
  48. auto init_thread = [&](size_t ith, size_t start, size_t end) {
  49. std::uniform_real_distribution<float> distribution(min, max);
  50. auto & gen = generators[ith];
  51. for (size_t i = start; i < end; i++) {
  52. data[i] = distribution(gen);
  53. }
  54. };
  55. std::vector<std::future<void>> tasks;
  56. tasks.reserve(n_threads);
  57. for (size_t i = 0; i < n_threads; i++) {
  58. size_t start = i*nels/n_threads;
  59. size_t end = (i+1)*nels/n_threads;
  60. tasks.push_back(std::async(std::launch::async, init_thread, i, start, end));
  61. }
  62. for (auto & t : tasks) {
  63. t.get();
  64. }
  65. }
  66. if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
  67. ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float));
  68. } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) {
  69. GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0);
  70. // dummy importance matrix
  71. std::vector<float> imatrix(tensor->ne[0], 1.0f);
  72. const float * im = imatrix.data();
  73. if (!ggml_quantize_requires_imatrix(tensor->type)) {
  74. // when the imatrix is optional, we want to test both quantization with and without imatrix
  75. // use one of the random numbers to decide
  76. if (data[0] > 0.5f*(min + max)) {
  77. im = nullptr;
  78. }
  79. }
  80. std::vector<uint8_t> dataq(ggml_row_size(tensor->type, nels));
  81. {
  82. // parallel quantization by block
  83. size_t blck_size = ggml_blck_size(tensor->type);
  84. size_t n_blocks = nels / blck_size;
  85. auto quantize_thread = [&](size_t start, size_t end) {
  86. ggml_quantize_chunk(tensor->type, data.data(), dataq.data(),
  87. start * blck_size, end - start, blck_size, im);
  88. };
  89. const size_t min_blocks_per_thread = 1;
  90. const size_t n_threads = std::min<size_t>(std::thread::hardware_concurrency()/2,
  91. std::max<size_t>(1, n_blocks / min_blocks_per_thread));
  92. std::vector<std::future<void>> tasks;
  93. tasks.reserve(n_threads);
  94. for (size_t i = 0; i < n_threads; i++) {
  95. size_t start = i*n_blocks/n_threads;
  96. size_t end = (i+1)*n_blocks/n_threads;
  97. tasks.push_back(std::async(std::launch::async, quantize_thread, start, end));
  98. }
  99. for (auto & t : tasks) {
  100. t.get();
  101. }
  102. }
  103. ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
  104. } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
  105. // This is going to create some weird integers though.
  106. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
  107. } else if (tensor->type == GGML_TYPE_I64) {
  108. // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful.
  109. const size_t nbytes_half = ggml_nbytes(tensor)/2;
  110. ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half);
  111. ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half);
  112. } else {
  113. GGML_ABORT("fatal error");
  114. }
  115. }
  116. static std::vector<float> tensor_to_float(const ggml_tensor * t) {
  117. std::vector<float> tv;
  118. tv.reserve(ggml_nelements(t));
  119. std::vector<uint8_t> buf(ggml_nbytes(t));
  120. ggml_backend_tensor_get(t, buf.data(), 0, ggml_nbytes(t));
  121. const auto * tt = ggml_get_type_traits(t->type);
  122. size_t bs = ggml_blck_size(t->type);
  123. std::vector<float> vq(ggml_blck_size(t->type));
  124. bool quantized = ggml_is_quantized(t->type);
  125. // access elements by index to avoid gaps in views
  126. for (int64_t i3 = 0; i3 < t->ne[3]; i3++) {
  127. for (int64_t i2 = 0; i2 < t->ne[2]; i2++) {
  128. for (int64_t i1 = 0; i1 < t->ne[1]; i1++) {
  129. for (int64_t i0 = 0; i0 < t->ne[0]; i0 += bs) {
  130. size_t i = i3*t->nb[3] + i2*t->nb[2] + i1*t->nb[1] + i0/bs*t->nb[0];
  131. if (t->type == GGML_TYPE_F16) {
  132. tv.push_back(ggml_fp16_to_fp32(*(ggml_fp16_t*)&buf[i]));
  133. } else if (t->type == GGML_TYPE_BF16) {
  134. tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i]));
  135. } else if (t->type == GGML_TYPE_F32) {
  136. tv.push_back(*(float *) &buf[i]);
  137. } else if (t->type == GGML_TYPE_I64) {
  138. tv.push_back((float)*(int64_t *) &buf[i]);
  139. } else if (t->type == GGML_TYPE_I32) {
  140. tv.push_back((float)*(int32_t *) &buf[i]);
  141. } else if (t->type == GGML_TYPE_I16) {
  142. tv.push_back((float)*(int16_t *) &buf[i]);
  143. } else if (t->type == GGML_TYPE_I8) {
  144. tv.push_back((float)*(int8_t *) &buf[i]);
  145. } else if (quantized) {
  146. tt->to_float(&buf[i], vq.data(), bs);
  147. tv.insert(tv.end(), vq.begin(), vq.end());
  148. } else {
  149. GGML_ABORT("fatal error");
  150. }
  151. }
  152. }
  153. }
  154. }
  155. return tv;
  156. }
  157. // normalized mean squared error = mse(a, b) / mse(a, 0)
  158. static double nmse(const float * a, const float * b, size_t n) {
  159. double mse_a_b = 0.0;
  160. double mse_a_0 = 0.0;
  161. for (size_t i = 0; i < n; i++) {
  162. float a_i = a[i];
  163. float b_i = b[i];
  164. mse_a_b += (a_i - b_i) * (a_i - b_i);
  165. mse_a_0 += a_i * a_i;
  166. }
  167. return mse_a_b / mse_a_0;
  168. }
  169. // maximum absolute asymmetry between a and b
  170. // asymmetry: (a - b) / (a + b)
  171. // This is more stable than relative error if one of the values fluctuates towards zero.
  172. // n: number of values to compare.
  173. // expected_vals: optional vector of expected values for a. If expected_vals is not empty, filter out all comparisons where
  174. // a does not match any of the expected values. Needed for noncontinuous gradients where the numerical calculation can fail.
  175. static double mean_abs_asymm(const float * a, const float * b, const size_t n, const std::vector<float> & expected_vals) {
  176. double sum = 0.0f;
  177. size_t nvalid = 0;
  178. for (size_t i = 0; i < n; i++) {
  179. if (!expected_vals.empty()) {
  180. bool matches_any = false;
  181. for (const float & ev : expected_vals) {
  182. if (fabsf(a[i] - ev) < 1e-3f) {
  183. matches_any = true;
  184. break;
  185. }
  186. }
  187. if (!matches_any) {
  188. continue;
  189. }
  190. }
  191. const float asymm = (a[i] - b[i]) / (a[i] + b[i]);
  192. sum += fabsf(asymm);
  193. nvalid++;
  194. }
  195. return sum/nvalid;
  196. }
  197. // utils for printing the variables of the test cases
  198. template<typename T>
  199. static std::string var_to_str(const T & x) {
  200. return std::to_string(x);
  201. }
  202. template<typename T, size_t N>
  203. static std::string var_to_str(const T (&x)[N]) {
  204. std::string s = "[";
  205. for (size_t i = 0; i < N; i++) {
  206. if (i > 0) {
  207. s += ",";
  208. }
  209. s += var_to_str(x[i]);
  210. }
  211. s += "]";
  212. return s;
  213. }
  214. template<typename T, size_t N>
  215. static std::string var_to_str(const std::array<T, N> & x) {
  216. std::string s = "[";
  217. for (size_t i = 0; i < N; i++) {
  218. if (i > 0) {
  219. s += ",";
  220. }
  221. s += var_to_str(x[i]);
  222. }
  223. s += "]";
  224. return s;
  225. }
  226. static std::string var_to_str(ggml_type type) {
  227. return ggml_type_name(type);
  228. }
  229. static std::string var_to_str(ggml_prec prec) {
  230. return prec == GGML_PREC_F32 ? "f32" : "def";
  231. }
  232. static std::string var_to_str(ggml_op_pool pool) {
  233. switch (pool) {
  234. case GGML_OP_POOL_AVG: return "avg";
  235. case GGML_OP_POOL_MAX: return "max";
  236. default: return std::to_string(pool);
  237. }
  238. }
  239. #define VAR_TO_STR(x) (#x "=" + var_to_str(x))
  240. #define VARS_TO_STR1(a) VAR_TO_STR(a)
  241. #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
  242. #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
  243. #define VARS_TO_STR4(a, b, c, d) VAR_TO_STR(a) + "," + VARS_TO_STR3(b, c, d)
  244. #define VARS_TO_STR5(a, b, c, d, e) VAR_TO_STR(a) + "," + VARS_TO_STR4(b, c, d, e)
  245. #define VARS_TO_STR6(a, b, c, d, e, f) VAR_TO_STR(a) + "," + VARS_TO_STR5(b, c, d, e, f)
  246. #define VARS_TO_STR7(a, b, c, d, e, f, g) VAR_TO_STR(a) + "," + VARS_TO_STR6(b, c, d, e, f, g)
  247. #define VARS_TO_STR8(a, b, c, d, e, f, g, h) VAR_TO_STR(a) + "," + VARS_TO_STR7(b, c, d, e, f, g, h)
  248. #define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
  249. #define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
  250. #define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
  251. #define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
  252. #ifdef GGML_USE_SYCL
  253. static bool inline _isinf(float f) {
  254. return (*(uint32_t *)&f & 0x7fffffff) == 0x7f800000;
  255. }
  256. #else
  257. static bool inline _isinf(float f) { return std::isinf(f); }
  258. #endif
  259. // accept FLT_MAX as infinity
  260. static bool isinf_or_max(float f) {
  261. return _isinf(f) || f == FLT_MAX || f == -FLT_MAX;
  262. }
  263. static bool ggml_is_view_op(enum ggml_op op) {
  264. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  265. }
  266. enum test_mode {
  267. MODE_TEST,
  268. MODE_PERF,
  269. MODE_GRAD,
  270. };
  271. struct test_case {
  272. virtual ~test_case() {}
  273. virtual std::string op_desc(ggml_tensor * t) {
  274. return ggml_op_desc(t);
  275. }
  276. virtual std::string vars() {
  277. return "";
  278. }
  279. virtual ggml_tensor * build_graph(ggml_context * ctx) = 0;
  280. virtual double max_nmse_err() {
  281. return 1e-7;
  282. }
  283. virtual double max_maa_err() {
  284. return 1e-4;
  285. }
  286. virtual float grad_eps() {
  287. return 1e-1f;
  288. }
  289. // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher.
  290. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher.
  291. virtual bool grad_precise() {
  292. return false;
  293. }
  294. // Skip gradient checks if total number of gradients to be checked is larger than this (to speed up the tests).
  295. virtual int64_t grad_nmax() {
  296. return 10000;
  297. }
  298. // No effect if empty.
  299. // If not empty, skip all gradient checks where the numerical result does not match any of the values.
  300. // Needed for dealing with noncontinuous gradients (e.g. ReLU) where estimation using finite differences is unreliable.
  301. virtual std::vector<float> grad_expect() {
  302. return {};
  303. }
  304. virtual void initialize_tensors(ggml_context * ctx) {
  305. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
  306. init_tensor_uniform(t);
  307. }
  308. }
  309. virtual size_t op_size(ggml_tensor * t) {
  310. size_t size = ggml_nbytes(t);
  311. // add source tensors
  312. for (int i = 0; i < GGML_MAX_SRC; i++) {
  313. if (t->src[i] != NULL) {
  314. size += ggml_nbytes(t->src[i]);
  315. }
  316. }
  317. return size;
  318. }
  319. virtual uint64_t op_flops(ggml_tensor * t) {
  320. GGML_UNUSED(t);
  321. return 0;
  322. }
  323. ggml_cgraph * gf = nullptr;
  324. ggml_cgraph * gb = nullptr;
  325. static const int sentinel_size = 1024;
  326. test_mode mode;
  327. std::vector<ggml_tensor *> sentinels;
  328. void add_sentinel(ggml_context * ctx) {
  329. if (mode == MODE_PERF || mode == MODE_GRAD) {
  330. return;
  331. }
  332. ggml_tensor * sentinel = ::ggml_new_tensor_1d(ctx, GGML_TYPE_F32, sentinel_size);
  333. ggml_format_name(sentinel, "sent_%zu", sentinels.size());
  334. sentinels.push_back(sentinel);
  335. }
  336. // hijack ggml_new_tensor to add sentinels after each tensor to check for overflows in the backend
  337. ggml_tensor * ggml_new_tensor(ggml_context * ctx, ggml_type type, int n_dims, const int64_t * ne) {
  338. ggml_tensor * t = ::ggml_new_tensor(ctx, type, n_dims, ne);
  339. add_sentinel(ctx);
  340. return t;
  341. }
  342. ggml_tensor * ggml_new_tensor_1d(ggml_context * ctx, ggml_type type, int64_t ne0) {
  343. ggml_tensor * t = ::ggml_new_tensor_1d(ctx, type, ne0);
  344. add_sentinel(ctx);
  345. return t;
  346. }
  347. ggml_tensor * ggml_new_tensor_2d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1) {
  348. ggml_tensor * t = ::ggml_new_tensor_2d(ctx, type, ne0, ne1);
  349. add_sentinel(ctx);
  350. return t;
  351. }
  352. ggml_tensor * ggml_new_tensor_3d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2) {
  353. ggml_tensor * t = ::ggml_new_tensor_3d(ctx, type, ne0, ne1, ne2);
  354. add_sentinel(ctx);
  355. return t;
  356. }
  357. ggml_tensor * ggml_new_tensor_4d(ggml_context * ctx, ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
  358. ggml_tensor * t = ::ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
  359. add_sentinel(ctx);
  360. return t;
  361. }
  362. bool eval(ggml_backend_t backend1, ggml_backend_t backend2, const char * op_name) {
  363. mode = MODE_TEST;
  364. ggml_init_params params = {
  365. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  366. /* .mem_base = */ NULL,
  367. /* .no_alloc = */ true,
  368. };
  369. ggml_context * ctx = ggml_init(params);
  370. GGML_ASSERT(ctx);
  371. gf = ggml_new_graph(ctx);
  372. // pre-graph sentinel
  373. add_sentinel(ctx);
  374. ggml_tensor * out = build_graph(ctx);
  375. if (op_name != nullptr && op_desc(out) != op_name) {
  376. //printf(" %s: skipping\n", op_desc(out).c_str());
  377. ggml_free(ctx);
  378. return true;
  379. }
  380. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  381. fflush(stdout);
  382. // check if the backends support the ops
  383. bool supported = true;
  384. for (ggml_backend_t backend : {backend1, backend2}) {
  385. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  386. if (!ggml_backend_supports_op(backend, t)) {
  387. printf("not supported [%s] ", ggml_backend_name(backend));
  388. supported = false;
  389. break;
  390. }
  391. }
  392. }
  393. if (!supported) {
  394. printf("\n");
  395. ggml_free(ctx);
  396. return true;
  397. }
  398. // post-graph sentinel
  399. add_sentinel(ctx);
  400. // allocate
  401. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
  402. if (buf == NULL) {
  403. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
  404. ggml_free(ctx);
  405. return false;
  406. }
  407. // build graph
  408. ggml_build_forward_expand(gf, out);
  409. // add sentinels as graph nodes so that they are checked in the callback
  410. for (ggml_tensor * sentinel : sentinels) {
  411. ggml_graph_add_node(gf, sentinel);
  412. }
  413. // randomize tensors
  414. initialize_tensors(ctx);
  415. // compare
  416. struct callback_userdata {
  417. bool ok;
  418. double max_err;
  419. ggml_backend_t backend1;
  420. ggml_backend_t backend2;
  421. };
  422. callback_userdata ud {
  423. true,
  424. max_nmse_err(),
  425. backend1,
  426. backend2
  427. };
  428. auto callback = [](int index, ggml_tensor * t1, ggml_tensor * t2, void * user_data) -> bool {
  429. callback_userdata * ud = (callback_userdata *) user_data;
  430. const char * bn1 = ggml_backend_name(ud->backend1);
  431. const char * bn2 = ggml_backend_name(ud->backend2);
  432. if (t1->op == GGML_OP_NONE) {
  433. // sentinels must be unchanged
  434. std::vector<uint8_t> t1_data(ggml_nbytes(t1));
  435. std::vector<uint8_t> t2_data(ggml_nbytes(t2));
  436. ggml_backend_tensor_get(t1, t1_data.data(), 0, ggml_nbytes(t1));
  437. ggml_backend_tensor_get(t2, t2_data.data(), 0, ggml_nbytes(t2));
  438. if (memcmp(t1_data.data(), t2_data.data(), ggml_nbytes(t1)) != 0) {
  439. printf("sentinel mismatch: %s ", t1->name);
  440. ud->ok = false;
  441. return true;
  442. }
  443. }
  444. std::vector<float> f1 = tensor_to_float(t1);
  445. std::vector<float> f2 = tensor_to_float(t2);
  446. for (size_t i = 0; i < f1.size(); i++) {
  447. // check for nans
  448. if (std::isnan(f1[i]) || std::isnan(f2[i])) {
  449. printf("[%s] NaN at index %zu (%s=%f %s=%f) ", ggml_op_desc(t1), i, bn1, f1[i], bn2, f2[i]);
  450. ud->ok = false;
  451. return true;
  452. }
  453. // check for infs: both must be inf of the same sign, or both must be finite
  454. if (isinf_or_max(f1[i]) || isinf_or_max(f2[i])) {
  455. if (isinf_or_max(f1[i]) && isinf_or_max(f2[i])) {
  456. if (std::signbit(f1[i]) != std::signbit(f2[i])) {
  457. printf("[%s] inf sign mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  458. ud->ok = false;
  459. return true;
  460. }
  461. } else {
  462. printf("[%s] inf mismatch: %s=%f %s=%f ", ggml_op_desc(t1), bn1, f1[i], bn2, f2[i]);
  463. ud->ok = false;
  464. return true;
  465. }
  466. }
  467. }
  468. double err = nmse(f1.data(), f2.data(), f1.size());
  469. if (err > ud->max_err) {
  470. printf("[%s] NMSE = %.9f > %.9f ", ggml_op_desc(t1), err, ud->max_err);
  471. //for (int i = 0; i < (int) f1.size(); i++) {
  472. // printf("%5d %9.6f %9.6f, diff = %9.6f\n", i, f1[i], f2[i], f1[i] - f2[i]);
  473. //}
  474. //printf("\n");
  475. //exit(1);
  476. ud->ok = false;
  477. }
  478. return true;
  479. GGML_UNUSED(index);
  480. };
  481. const bool cmp_ok = ggml_backend_compare_graph_backend(backend1, backend2, gf, callback, &ud);
  482. if (!cmp_ok) {
  483. printf("compare failed ");
  484. }
  485. ggml_backend_buffer_free(buf);
  486. ggml_free(ctx);
  487. if (ud.ok && cmp_ok) {
  488. printf("\033[1;32mOK\033[0m\n");
  489. return true;
  490. }
  491. printf("\033[1;31mFAIL\033[0m\n");
  492. return false;
  493. }
  494. bool eval_perf(ggml_backend_t backend, const char * op_name) {
  495. mode = MODE_PERF;
  496. static const size_t graph_nodes = 8192;
  497. ggml_init_params params = {
  498. /* .mem_size = */ ggml_tensor_overhead()*128 + ggml_graph_overhead_custom(graph_nodes, false),
  499. /* .mem_base = */ NULL,
  500. /* .no_alloc = */ true,
  501. };
  502. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  503. GGML_ASSERT(ctx);
  504. ggml_tensor * out = build_graph(ctx.get());
  505. if (op_name != nullptr && op_desc(out) != op_name) {
  506. //printf(" %s: skipping\n", op_desc(out).c_str());
  507. return true;
  508. }
  509. int len = printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  510. fflush(stdout);
  511. // check if backends support op
  512. if (!ggml_backend_supports_op(backend, out)) {
  513. printf("not supported\n");
  514. return true;
  515. }
  516. // align while also leaving some margin for variations in parameters
  517. int align = 8;
  518. int last = (len + align - 1) / align * align;
  519. if (last - len < 5) {
  520. last += align;
  521. }
  522. printf("%*s", last - len, "");
  523. // allocate
  524. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  525. if (buf == NULL) {
  526. printf("failed to allocate tensors\n");
  527. return false;
  528. }
  529. // randomize tensors
  530. initialize_tensors(ctx.get());
  531. // build graph
  532. ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
  533. ggml_build_forward_expand(gf, out);
  534. // warmup run
  535. ggml_status status = ggml_backend_graph_compute(backend, gf);
  536. if (status != GGML_STATUS_SUCCESS) {
  537. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  538. return false;
  539. }
  540. // determine number of runs
  541. int n_runs;
  542. bool is_cpu = ggml_backend_dev_type(ggml_backend_get_device(backend)) == GGML_BACKEND_DEVICE_TYPE_CPU;
  543. if (op_flops(out) > 0) {
  544. // based on flops
  545. const uint64_t GFLOP = 1000 * 1000 * 1000;
  546. const uint64_t target_flops_cpu = 8ULL * GFLOP;
  547. const uint64_t target_flops_gpu = 100ULL * GFLOP;
  548. uint64_t target_flops = is_cpu ? target_flops_cpu : target_flops_gpu;
  549. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1;
  550. } else {
  551. // based on memory size
  552. const size_t GB = 1ULL << 30;
  553. const size_t target_size_cpu = 8 * GB;
  554. const size_t target_size_gpu = 32 * GB;
  555. size_t target_size = is_cpu ? target_size_cpu : target_size_gpu;
  556. n_runs = std::min<int>(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1;
  557. }
  558. // duplicate the op
  559. for (int i = 1; i < n_runs; i++) {
  560. ggml_graph_add_node(gf, out);
  561. }
  562. // calculate memory
  563. size_t mem = n_runs * op_size(out);
  564. auto tensor_op_size = [](ggml_tensor * t) {
  565. size_t size = ggml_nbytes(t);
  566. // add source tensors
  567. for (int i = 0; i < GGML_MAX_SRC; i++) {
  568. if (t->src[i] != NULL) {
  569. size += ggml_nbytes(t->src[i]);
  570. }
  571. }
  572. return size;
  573. };
  574. for (int i = 0; i < ggml_graph_n_nodes(gf); ++i) {
  575. if (ggml_is_view_op(ggml_graph_node(gf, i)->op) || ggml_graph_node(gf, i) == out) {
  576. continue;
  577. }
  578. mem += tensor_op_size(ggml_graph_node(gf, i));
  579. }
  580. // run
  581. int64_t total_time_us = 0;
  582. int64_t total_mem = 0;
  583. int total_runs = 0;
  584. do {
  585. int64_t start_time = ggml_time_us();
  586. ggml_status status = ggml_backend_graph_compute(backend, gf);
  587. if (status != GGML_STATUS_SUCCESS) {
  588. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  589. return false;
  590. }
  591. int64_t end_time = ggml_time_us();
  592. total_time_us += end_time - start_time;
  593. total_mem += mem;
  594. total_runs += n_runs;
  595. } while (total_time_us < 1000*1000); // run for at least 1 second
  596. printf(" %8d runs - %8.2f us/run - ",
  597. total_runs,
  598. (double)total_time_us / total_runs);
  599. if (op_flops(out) > 0) {
  600. double flops_per_sec = (op_flops(out) * total_runs) / (total_time_us / 1e6);
  601. auto format_flops = [](double flops) -> std::string {
  602. char buf[256];
  603. if (flops >= 1e12) {
  604. snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12);
  605. } else if (flops >= 1e9) {
  606. snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9);
  607. } else if (flops >= 1e6) {
  608. snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6);
  609. } else {
  610. snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3);
  611. }
  612. return buf;
  613. };
  614. printf("%s/run - \033[1;34m%sS\033[0m",
  615. format_flops(op_flops(out)).c_str(),
  616. format_flops(flops_per_sec).c_str());
  617. } else {
  618. printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m",
  619. op_size(out) / 1024,
  620. total_mem / (total_time_us / 1e6) / 1024.0 / 1024.0 / 1024.0);
  621. }
  622. printf("\n");
  623. return true;
  624. }
  625. bool eval_grad(ggml_backend_t backend, const char * op_name) {
  626. mode = MODE_GRAD;
  627. const std::vector<float> expect = grad_expect();
  628. ggml_init_params params = {
  629. /* .mem_size = */ ggml_tensor_overhead()*128 + 2*ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, true),
  630. /* .mem_base = */ NULL,
  631. /* .no_alloc = */ true,
  632. };
  633. ggml_context_ptr ctx(ggml_init(params)); // smart ptr
  634. GGML_ASSERT(ctx);
  635. gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  636. gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
  637. ggml_tensor * out = build_graph(ctx.get());
  638. if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
  639. //printf(" %s: skipping\n", op_desc(out).c_str());
  640. return true;
  641. }
  642. printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
  643. fflush(stdout);
  644. if (out->type != GGML_TYPE_F32) {
  645. printf("not supported [%s->type != FP32]\n", out->name);
  646. return true;
  647. }
  648. // check if the backend supports the ops
  649. bool supported = true;
  650. bool any_params = false;
  651. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  652. if (!ggml_backend_supports_op(backend, t)) {
  653. printf("not supported [%s] ", ggml_backend_name(backend));
  654. supported = false;
  655. break;
  656. }
  657. if ((t->flags & GGML_TENSOR_FLAG_PARAM)) {
  658. any_params = true;
  659. if (t->type != GGML_TYPE_F32) {
  660. printf("not supported [%s->type != FP32] ", t->name);
  661. supported = false;
  662. break;
  663. }
  664. }
  665. }
  666. if (!any_params) {
  667. printf("not supported [%s] \n", op_desc(out).c_str());
  668. supported = false;
  669. }
  670. if (!supported) {
  671. printf("\n");
  672. return true;
  673. }
  674. int64_t ngrads = 0;
  675. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  676. if (t->flags & GGML_TENSOR_FLAG_PARAM) {
  677. ngrads += ggml_nelements(t);
  678. }
  679. }
  680. if (ngrads > grad_nmax()) {
  681. printf("skipping large tensors for speed \n");
  682. return true;
  683. }
  684. if (!ggml_is_scalar(out)) {
  685. out = ggml_sum(ctx.get(), out);
  686. ggml_set_name(out, "sum_of_out");
  687. }
  688. ggml_set_loss(out);
  689. ggml_build_forward_expand(gf, out);
  690. ggml_graph_cpy(gf, gb);
  691. ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
  692. if (expect.size() != 1 || expect[0] != 0.0f) {
  693. GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
  694. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  695. GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
  696. }
  697. }
  698. for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
  699. if (!ggml_backend_supports_op(backend, t)) {
  700. printf("not supported [%s] ", ggml_backend_name(backend));
  701. supported = false;
  702. break;
  703. }
  704. if ((t->flags & GGML_TENSOR_FLAG_PARAM) && t->type != GGML_TYPE_F32) {
  705. printf("not supported [%s->type != FP32] ", t->name);
  706. supported = false;
  707. break;
  708. }
  709. }
  710. if (!supported) {
  711. printf("\n");
  712. return true;
  713. }
  714. // allocate
  715. ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
  716. if (buf == NULL) {
  717. printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
  718. return false;
  719. }
  720. initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
  721. ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
  722. ggml_status status = ggml_backend_graph_compute(backend, gf);
  723. if (status != GGML_STATUS_SUCCESS) {
  724. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  725. return false;
  726. }
  727. status = ggml_backend_graph_compute(backend, gb);
  728. if (status != GGML_STATUS_SUCCESS) {
  729. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  730. return false;
  731. }
  732. bool ok = true;
  733. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
  734. if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
  735. continue;
  736. }
  737. const char * bn = ggml_backend_name(backend);
  738. const int64_t ne = ggml_nelements(t);
  739. std::vector<float> ga;
  740. struct ggml_tensor * grad = ggml_graph_get_grad(gb, t);
  741. if (grad) {
  742. ga = tensor_to_float(grad);
  743. } else {
  744. ga.resize(ne); // default value is 0.0f
  745. }
  746. for (int64_t i = 0; i < ne; ++i) { // gradient algebraic
  747. // check for nans
  748. if (!std::isfinite(ga[i])) {
  749. printf("[%s] nonfinite gradient at index %" PRId64 " (%s=%f) ", ggml_op_desc(t), i, bn, ga[i]);
  750. ok = false;
  751. break;
  752. }
  753. }
  754. if (!ok) {
  755. break;
  756. }
  757. std::vector<float> gn(ne); // gradient numeric
  758. GGML_ASSERT(ga.size() == gn.size());
  759. std::vector<float> x0 = tensor_to_float(t); // original t data
  760. GGML_ASSERT(ggml_is_scalar(out));
  761. GGML_ASSERT(out->type == GGML_TYPE_F32);
  762. const float eps = grad_eps();
  763. for (int64_t i = 0; i < ne; ++i) {
  764. const float xiu = x0[i] + 1.0f*eps; // x, index i, up
  765. const float xiuh = x0[i] + 0.5f*eps; // x, index i, up half
  766. const float xidh = x0[i] - 0.5f*eps; // x, index i, down half
  767. const float xid = x0[i] - 1.0f*eps; // x, index i, down
  768. float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
  769. ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
  770. status = ggml_backend_graph_compute(backend, gf);
  771. if (status != GGML_STATUS_SUCCESS) {
  772. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  773. return false;
  774. }
  775. ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
  776. ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
  777. status = ggml_backend_graph_compute(backend, gf);
  778. if (status != GGML_STATUS_SUCCESS) {
  779. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  780. return false;
  781. }
  782. ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
  783. if (grad_precise()) {
  784. ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
  785. status = ggml_backend_graph_compute(backend, gf);
  786. if (status != GGML_STATUS_SUCCESS) {
  787. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  788. return false;
  789. }
  790. ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
  791. ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
  792. status = ggml_backend_graph_compute(backend, gf);
  793. if (status != GGML_STATUS_SUCCESS) {
  794. fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
  795. return false;
  796. }
  797. ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
  798. gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
  799. } else {
  800. gn[i] = (fu - fd) / (2.0f*eps);
  801. }
  802. ggml_backend_tensor_set(t, x0.data(), 0, ggml_nbytes(t));
  803. }
  804. const double err = mean_abs_asymm(gn.data(), ga.data(), gn.size(), expect);
  805. if (err > max_maa_err()) {
  806. printf("[%s] MAA = %.9f > %.9f ", ggml_op_desc(t), err, max_maa_err());
  807. ok = false;
  808. break;
  809. }
  810. if (!ok) {
  811. break;
  812. }
  813. }
  814. if (!ok) {
  815. printf("compare failed ");
  816. }
  817. if (ok) {
  818. printf("\033[1;32mOK\033[0m\n");
  819. return true;
  820. }
  821. printf("\033[1;31mFAIL\033[0m\n");
  822. return false;
  823. }
  824. };
  825. // ###################################
  826. // ## Section 2: GGML Op Defintions ##
  827. // ###################################
  828. // The following is an example showing the bare minimum for creating a test for a GGML op.
  829. // GGML_OP_EXAMPLE
  830. struct test_example : public test_case {
  831. // Always define these 2 or variants thereof:
  832. const ggml_type type; // The type of the input tensors.
  833. const std::array<int64_t, 4> ne; // The shape of the input tensors.
  834. // For some ops it's necessary to define multiple types or shapes for the inputs.
  835. // Or they may need additional parameters.
  836. // Put all parameters needed to fully define the test into one of the VARS_TO_STR macros.
  837. // In most cases these are just the properties of the struct that you defined above.
  838. // This is needed for info prints.
  839. std::string vars() override {
  840. return VARS_TO_STR2(type, ne);
  841. }
  842. // Define a constructor for the struct.
  843. // In most cases it will be sufficient to have the same arguments as the struct has properties
  844. // and just use initializer lists.
  845. test_example(ggml_type type = GGML_TYPE_F32,
  846. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  847. : type(type), ne(ne) {}
  848. // Define how a simple GGML compute graph can be constructed for the new GGML op.
  849. ggml_tensor * build_graph(ggml_context * ctx) override {
  850. // Step 1: create input tensors that don't depend on any other tensors:
  851. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  852. ggml_set_name(a, "a"); // Setting names is optional but it's useful for debugging.
  853. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  854. ggml_set_name(b, "b");
  855. // Step 2: use the op that you want to test in the GGML compute graph.
  856. ggml_tensor * out = ggml_add(ctx, a, b); // For this example we're just doing a simple addition.
  857. ggml_set_name(out, "out");
  858. // Step 3: return the output tensor.
  859. return out;
  860. }
  861. // In order to also check the gradients for your op, add calls like ggml_set_param(ctx, a)
  862. // immediately after you create the tensors.
  863. // This is optional and only makes sense if a backward pass has actually been implemented for the new op.
  864. };
  865. // GGML_OP_UNARY
  866. struct test_unary : public test_case {
  867. const ggml_unary_op op;
  868. const ggml_type type;
  869. const std::array<int64_t, 4> ne_a;
  870. int v; // view (1 : non-contiguous a)
  871. std::string vars() override {
  872. return VARS_TO_STR3(type, ne_a, v);
  873. }
  874. test_unary(ggml_unary_op op,
  875. ggml_type type = GGML_TYPE_F32,
  876. std::array<int64_t, 4> ne_a = {128, 2, 2, 2},
  877. int v = 0)
  878. : op(op), type(type), ne_a(ne_a), v(v) {}
  879. ggml_tensor * build_graph(ggml_context * ctx) override {
  880. const bool grad_supported = op == GGML_UNARY_OP_ABS || op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_NEG ||
  881. op == GGML_UNARY_OP_STEP || op == GGML_UNARY_OP_RELU || op == GGML_UNARY_OP_SILU;
  882. ggml_tensor * a;
  883. if (v & 1) {
  884. auto ne = ne_a; ne[0] *= 3;
  885. a = ggml_new_tensor(ctx, type, 4, ne.data());
  886. if (grad_supported) {
  887. ggml_set_param(ctx, a);
  888. }
  889. ggml_set_name(a, "a");
  890. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  891. ggml_set_name(a, "view_of_a");
  892. } else {
  893. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  894. if (grad_supported) {
  895. ggml_set_param(ctx, a);
  896. }
  897. ggml_set_name(a, "a");
  898. }
  899. ggml_tensor * out = ggml_unary(ctx, a, op);
  900. ggml_set_name(out, "out");
  901. return out;
  902. }
  903. void initialize_tensors(ggml_context * ctx) override {
  904. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  905. // test extended range of values to check for NaNs in GELU
  906. init_tensor_uniform(t, -150.f, 150.f);
  907. }
  908. }
  909. float grad_eps() override {
  910. return 15.0f;
  911. }
  912. std::vector<float> grad_expect() override {
  913. if (op == GGML_UNARY_OP_ABS) {
  914. return {-1.0f, 1.0f};
  915. }
  916. if (op == GGML_UNARY_OP_SGN || op == GGML_UNARY_OP_STEP) {
  917. return {0.0f};
  918. }
  919. if (op == GGML_UNARY_OP_RELU) {
  920. return {0.0f, 1.0f};
  921. }
  922. return {};
  923. }
  924. };
  925. // GGML_OP_GET_ROWS
  926. struct test_get_rows : public test_case {
  927. const ggml_type type;
  928. const int n; // cols
  929. const int m; // rows
  930. const int r; // rows to get
  931. const int b; // batch size
  932. const bool v; // view (non-contiguous src1)
  933. std::string vars() override {
  934. return VARS_TO_STR6(type, n, m, r, b, v);
  935. }
  936. test_get_rows(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  937. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  938. ggml_tensor * build_graph(ggml_context * ctx) override {
  939. ggml_tensor * in = ggml_new_tensor_3d(ctx, type, n, m, b);
  940. ggml_set_name(in, "in");
  941. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  942. ggml_set_name(rows, "rows");
  943. if (v) {
  944. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  945. ggml_set_name(rows, "view_of_rows");
  946. }
  947. const bool grad_supported = ggml_is_matrix(in) && ggml_is_vector(rows);
  948. if (grad_supported) {
  949. ggml_set_param(ctx, in);
  950. // rows is a constant input -> no gradients
  951. }
  952. ggml_tensor * out = ggml_get_rows(ctx, in, rows);
  953. ggml_set_name(out, "out");
  954. return out;
  955. }
  956. void initialize_tensors(ggml_context * ctx) override {
  957. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  958. if (t->type == GGML_TYPE_I32) {
  959. if (ggml_is_view_op(t->op)) { continue; }
  960. // rows
  961. std::vector<int> data(r*b);
  962. for (int i = 0; i < r*b; i++) {
  963. data[i] = rand() % m;
  964. }
  965. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  966. } else {
  967. init_tensor_uniform(t);
  968. }
  969. }
  970. }
  971. };
  972. // GGML_OP_GET_ROWS_BACK
  973. struct test_get_rows_back : public test_case {
  974. const ggml_type type;
  975. const int n; // cols
  976. const int m; // rows
  977. const int r; // rows to get
  978. const int b; // batch size
  979. const bool v; // view (non-contiguous src1)
  980. std::string vars() override {
  981. return VARS_TO_STR6(type, n, m, r, b, v);
  982. }
  983. test_get_rows_back(ggml_type type = GGML_TYPE_F32, int n = 10, int m = 5, int r = 3, int b = 1, bool v = false)
  984. : type(type), n(n), m(m), r(r), b(b), v(v) {}
  985. ggml_tensor * build_graph(ggml_context * ctx) override {
  986. ggml_tensor * in_forward = ggml_new_tensor_3d(ctx, type, n, m, b);
  987. ggml_set_name(in_forward, "in_forward");
  988. ggml_tensor * rows = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, r, b);
  989. ggml_set_name(rows, "rows");
  990. if (v) {
  991. rows = ggml_view_2d(ctx, rows, r/2, b, rows->nb[1], 0);
  992. ggml_set_name(rows, "view_of_rows");
  993. }
  994. ggml_tensor * grad = ggml_new_tensor_3d(ctx, type, n, r, b);
  995. ggml_set_name(grad, "grad");
  996. ggml_tensor * out = ggml_get_rows_back(ctx, grad, rows, in_forward);
  997. ggml_set_name(out, "out");
  998. return out;
  999. }
  1000. void initialize_tensors(ggml_context * ctx) override {
  1001. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1002. if (t->type == GGML_TYPE_I32) {
  1003. if (ggml_is_view_op(t->op)) { continue; }
  1004. // rows
  1005. std::vector<int> data(r*b);
  1006. for (int i = 0; i < r*b; i++) {
  1007. data[i] = rand() % m;
  1008. }
  1009. ggml_backend_tensor_set(t, data.data(), 0, r * b * sizeof(int));
  1010. } else {
  1011. init_tensor_uniform(t);
  1012. }
  1013. }
  1014. }
  1015. };
  1016. // GGML_OP_ARGMAX
  1017. struct test_argmax : public test_case {
  1018. const ggml_type type;
  1019. const std::array<int64_t, 4> ne;
  1020. std::string vars() override {
  1021. return VARS_TO_STR2(type, ne);
  1022. }
  1023. test_argmax(ggml_type type = GGML_TYPE_F32,
  1024. std::array<int64_t, 4> ne = {10, 100, 1, 1})
  1025. : type(type), ne(ne) {}
  1026. ggml_tensor * build_graph(ggml_context * ctx) override {
  1027. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1028. ggml_set_name(a, "a");
  1029. ggml_tensor * out = ggml_argmax(ctx, a);
  1030. ggml_set_name(out, "out");
  1031. return out;
  1032. }
  1033. void initialize_tensors(ggml_context * ctx) override {
  1034. std::random_device rd;
  1035. std::default_random_engine rng(rd());
  1036. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1037. if (t->type == GGML_TYPE_F32) {
  1038. // initialize with unique values to avoid ties
  1039. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1040. std::vector<float> data(t->ne[0]);
  1041. for (int i = 0; i < t->ne[0]; i++) {
  1042. data[i] = i;
  1043. }
  1044. std::shuffle(data.begin(), data.end(), rng);
  1045. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  1046. }
  1047. } else {
  1048. init_tensor_uniform(t);
  1049. }
  1050. }
  1051. }
  1052. double max_nmse_err() override {
  1053. return 0.0;
  1054. }
  1055. };
  1056. // GGML_OP_COUNT_EQUAL
  1057. struct test_count_equal : public test_case {
  1058. const ggml_type type;
  1059. const std::array<int64_t, 4> ne;
  1060. std::string vars() override {
  1061. return VARS_TO_STR2(type, ne);
  1062. }
  1063. test_count_equal(ggml_type type = GGML_TYPE_F32,
  1064. std::array<int64_t, 4> ne = {4, 500, 1, 1})
  1065. : type(type), ne(ne) {}
  1066. ggml_tensor * build_graph(ggml_context * ctx) override {
  1067. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1068. ggml_set_name(a, "a");
  1069. ggml_tensor * a_argmax = ggml_argmax(ctx, a);
  1070. ggml_set_name(a_argmax, "a_argmax");
  1071. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1072. ggml_set_name(b, "b");
  1073. ggml_tensor * b_argmax = ggml_argmax(ctx, b);
  1074. ggml_set_name(b_argmax, "b_argmax");
  1075. ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax);
  1076. ggml_set_name(out, "out");
  1077. return out;
  1078. }
  1079. double max_nmse_err() override {
  1080. return 0.0;
  1081. }
  1082. };
  1083. // GGML_OP_REPEAT
  1084. struct test_repeat : public test_case {
  1085. const ggml_type type;
  1086. const std::array<int64_t, 4> ne;
  1087. const std::array<int, 4> nr;
  1088. std::string vars() override {
  1089. return VARS_TO_STR3(type, ne, nr);
  1090. }
  1091. size_t op_size(ggml_tensor * t) override {
  1092. return ggml_nbytes(t) * 2;
  1093. }
  1094. test_repeat(ggml_type type = GGML_TYPE_F32,
  1095. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1096. std::array<int, 4> nr = {2, 2, 2, 2})
  1097. : type(type), ne(ne), nr(nr) {}
  1098. ggml_tensor * build_graph(ggml_context * ctx) override {
  1099. ggml_tensor * target = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1100. ggml_set_name(target, "target");
  1101. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1102. ggml_set_param(ctx, src);
  1103. ggml_set_name(src, "src");
  1104. ggml_tensor * out = ggml_repeat(ctx, src, target);
  1105. ggml_set_name(out, "out");
  1106. return out;
  1107. }
  1108. };
  1109. // GGML_OP_REPEAT_BACK
  1110. struct test_repeat_back : public test_case {
  1111. const ggml_type type;
  1112. const std::array<int64_t, 4> ne;
  1113. const std::array<int, 4> nr;
  1114. const bool v; // whether src is a noncontiguous view
  1115. std::string vars() override {
  1116. return VARS_TO_STR4(type, ne, nr, v);
  1117. }
  1118. size_t op_size(ggml_tensor * t) override {
  1119. return ggml_nbytes(t) * 2;
  1120. }
  1121. test_repeat_back(ggml_type type = GGML_TYPE_F32,
  1122. std::array<int64_t, 4> ne = {8, 6, 4, 2},
  1123. std::array<int, 4> nr = {2, 2, 2, 2},
  1124. bool v = false)
  1125. : type(type), ne(ne), nr(nr), v(v) {}
  1126. ggml_tensor * build_graph(ggml_context * ctx) override {
  1127. ggml_tensor * src = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1128. ggml_set_name(src, "src");
  1129. if (v) {
  1130. GGML_ASSERT(ne[0] % 2 == 0);
  1131. GGML_ASSERT(ne[1] % 2 == 0);
  1132. GGML_ASSERT(ne[2] % 2 == 0);
  1133. GGML_ASSERT(ne[3] % 2 == 0);
  1134. GGML_ASSERT(nr[0] % 2 == 0 || nr[0] == 1);
  1135. GGML_ASSERT(nr[1] % 2 == 0 || nr[1] == 1);
  1136. GGML_ASSERT(nr[2] % 2 == 0 || nr[2] == 1);
  1137. GGML_ASSERT(nr[3] % 2 == 0 || nr[3] == 1);
  1138. const int64_t ne00 = nr[0] == 1 ? src->ne[0] : src->ne[0] / 2;
  1139. const int64_t ne01 = nr[1] == 1 ? src->ne[1] : src->ne[1] / 2;
  1140. const int64_t ne02 = nr[2] == 1 ? src->ne[2] : src->ne[2] / 2;
  1141. const int64_t ne03 = nr[3] == 1 ? src->ne[3] : src->ne[3] / 2;
  1142. src = ggml_view_4d(ctx, src, ne00, ne01, ne02, ne03, src->nb[1], src->nb[2], src->nb[3], 0);
  1143. }
  1144. ggml_tensor * target = ggml_new_tensor(ctx, type, 4, ne.data());
  1145. ggml_set_name(target, "target");
  1146. ggml_tensor * out = ggml_repeat_back(ctx, src, target);
  1147. ggml_set_name(out, "out");
  1148. return out;
  1149. }
  1150. };
  1151. // GGML_OP_DUP
  1152. struct test_dup : public test_case {
  1153. const ggml_type type;
  1154. const std::array<int64_t, 4> ne;
  1155. const std::array<int64_t, 4> permute;
  1156. bool _use_permute;
  1157. std::string vars() override {
  1158. std::string v = VARS_TO_STR2(type, ne);
  1159. if (_use_permute) v += "," + VAR_TO_STR(permute);
  1160. return v;
  1161. }
  1162. test_dup(ggml_type type = GGML_TYPE_F32,
  1163. std::array<int64_t, 4> ne = {10, 10, 20, 1},
  1164. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1165. : type(type), ne(ne), permute(permute),
  1166. _use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1167. ggml_tensor * build_graph(ggml_context * ctx) override {
  1168. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1169. ggml_set_param(ctx, src);
  1170. ggml_set_name(src, "src");
  1171. if (_use_permute) {
  1172. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1173. ggml_set_name(src, "src_permuted");
  1174. }
  1175. ggml_tensor * out = ggml_dup(ctx, src);
  1176. ggml_set_name(out, "out");
  1177. return out;
  1178. }
  1179. };
  1180. // GGML_OP_SET
  1181. struct test_set : public test_case {
  1182. const ggml_type type_src;
  1183. const ggml_type type_dst;
  1184. const std::array<int64_t, 4> ne;
  1185. const int dim;
  1186. std::string vars() override {
  1187. return VARS_TO_STR4(type_src, type_dst, ne, dim);
  1188. }
  1189. size_t op_size(ggml_tensor * t) override {
  1190. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1191. }
  1192. test_set(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1193. std::array<int64_t, 4> ne = {6, 5, 4, 3}, int dim = 1)
  1194. : type_src(type_src), type_dst(type_dst), ne(ne), dim(dim) {}
  1195. ggml_tensor * build_graph(ggml_context * ctx) override {
  1196. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1197. ggml_set_param(ctx, src);
  1198. ggml_set_name(src, "src");
  1199. auto ne_dst = ne;
  1200. for (int i = 0; i < dim; ++i) {
  1201. ne_dst[i] *= 2;
  1202. }
  1203. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, ne_dst.data());
  1204. ggml_set_param(ctx, dst);
  1205. ggml_set_name(dst, "dst");
  1206. size_t offset = 0;
  1207. for (int i = 0; i < dim; ++i) {
  1208. offset += ((ne_dst[i] - ne[i])/2)*dst->nb[i];
  1209. }
  1210. ggml_tensor * out = ggml_set(ctx, dst, src,
  1211. // The backward pass requires setting a contiguous region:
  1212. src->nb[1], src->nb[2], src->nb[3], offset);
  1213. ggml_set_name(out, "out");
  1214. return out;
  1215. }
  1216. };
  1217. // GGML_OP_CPY
  1218. struct test_cpy : public test_case {
  1219. const ggml_type type_src;
  1220. const ggml_type type_dst;
  1221. const std::array<int64_t, 4> ne;
  1222. const std::array<int64_t, 4> permute;
  1223. bool _src_use_permute;
  1224. std::string vars() override {
  1225. return VARS_TO_STR4(type_src, type_dst, ne, permute);
  1226. }
  1227. double max_nmse_err() override {
  1228. return 1e-6;
  1229. }
  1230. size_t op_size(ggml_tensor * t) override {
  1231. return ggml_nbytes(t) + ggml_nbytes(t->src[0]);
  1232. }
  1233. test_cpy(ggml_type type_src = GGML_TYPE_F32, ggml_type type_dst = GGML_TYPE_F32,
  1234. std::array<int64_t, 4> ne = {10, 10, 10, 1},
  1235. std::array<int64_t, 4> permute = {0, 0, 0, 0})
  1236. : type_src(type_src), type_dst(type_dst), ne(ne), permute(permute),
  1237. _src_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
  1238. ggml_tensor * build_graph(ggml_context * ctx) override {
  1239. ggml_tensor * src = ggml_new_tensor(ctx, type_src, 4, ne.data());
  1240. ggml_set_param(ctx, src);
  1241. ggml_set_name(src, "src");
  1242. if (_src_use_permute) {
  1243. src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
  1244. ggml_set_name(src, "src_permuted");
  1245. }
  1246. ggml_tensor* dst = ggml_new_tensor(ctx, type_dst, 4, src->ne);
  1247. ggml_set_name(dst, "dst");
  1248. ggml_tensor * out = ggml_cpy(ctx, src, dst);
  1249. ggml_set_name(out, "out");
  1250. return out;
  1251. }
  1252. };
  1253. // GGML_OP_CONT
  1254. struct test_cont : public test_case {
  1255. const ggml_type type;
  1256. const std::array<int64_t, 4> ne;
  1257. std::string vars() override {
  1258. return VARS_TO_STR2(type, ne);
  1259. }
  1260. test_cont(ggml_type type = GGML_TYPE_F32,
  1261. std::array<int64_t, 4> ne = {10, 10, 10, 1})
  1262. : type(type), ne(ne) {}
  1263. ggml_tensor * build_graph(ggml_context * ctx) override {
  1264. ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
  1265. ggml_set_param(ctx, src);
  1266. ggml_set_name(src, "src");
  1267. src = ggml_transpose(ctx, src);
  1268. ggml_set_name(src, "src_transposed");
  1269. ggml_tensor * out = ggml_cont(ctx, src);
  1270. ggml_set_name(out, "out");
  1271. return out;
  1272. }
  1273. };
  1274. // GGML_OP_ADD
  1275. // GGML_OP_SUB
  1276. // GGML_OP_MUL
  1277. // GGML_OP_DIV
  1278. struct test_bin_bcast : public test_case {
  1279. using op_t = ggml_tensor * (*) (ggml_context *, ggml_tensor *, ggml_tensor *);
  1280. op_t op;
  1281. const ggml_type type;
  1282. const std::array<int64_t, 4> ne;
  1283. const std::array<int, 4> nr;
  1284. std::string vars() override {
  1285. return VARS_TO_STR3(type, ne, nr);
  1286. }
  1287. size_t op_size(ggml_tensor * t) override {
  1288. return ggml_nbytes(t) * 3;
  1289. }
  1290. test_bin_bcast(op_t op, ggml_type type = GGML_TYPE_F32,
  1291. std::array<int64_t, 4> ne = {10, 10, 1, 1},
  1292. std::array<int, 4> nr = {1, 2, 1, 1})
  1293. : op(op), type(type), ne(ne), nr(nr) {}
  1294. ggml_tensor * build_graph(ggml_context * ctx) override {
  1295. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0]*nr[0], ne[1]*nr[1], ne[2]*nr[2], ne[3]*nr[3]);
  1296. ggml_set_name(a, "a");
  1297. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1298. ggml_set_name(b, "b");
  1299. // The backward pass supports broadcasting only for GGML_ADD:
  1300. const bool grad_supported = op == ggml_add || ggml_are_same_shape(a, b);
  1301. if (grad_supported) {
  1302. ggml_set_param(ctx, a);
  1303. ggml_set_param(ctx, b);
  1304. }
  1305. ggml_tensor * out = op(ctx, a, b);
  1306. ggml_set_name(out, "out");
  1307. return out;
  1308. }
  1309. void initialize_tensors(ggml_context * ctx) override {
  1310. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1311. if (op == ggml_mul || op == ggml_div) {
  1312. // MUL and DIV have numerical issues around zero:
  1313. init_tensor_uniform(t, 0.9f, 1.1f);
  1314. } else {
  1315. init_tensor_uniform(t);
  1316. }
  1317. }
  1318. }
  1319. float grad_eps() override {
  1320. return 0.1f * (op == ggml_mul ? ne[0]*ne[1]*ne[2]*ne[3] : 1);
  1321. }
  1322. bool grad_precise() override {
  1323. return op == ggml_div;
  1324. }
  1325. double max_maa_err() override {
  1326. return op == ggml_add ? 1e-4 : 1e-3;
  1327. }
  1328. };
  1329. // GGML_OP_ADD1
  1330. struct test_add1 : public test_case {
  1331. const ggml_type type;
  1332. const std::array<int64_t, 4> ne;
  1333. std::string vars() override {
  1334. return VARS_TO_STR2(type, ne);
  1335. }
  1336. test_add1(ggml_type type = GGML_TYPE_F32,
  1337. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1338. : type(type), ne(ne) {}
  1339. ggml_tensor * build_graph(ggml_context * ctx) override {
  1340. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1341. ggml_set_param(ctx, a);
  1342. ggml_set_name(a, "a");
  1343. ggml_tensor * b = ggml_new_tensor_1d(ctx, type, 1);
  1344. // ggml_set_param(ctx, b); // TODO: implement
  1345. ggml_set_name(b, "b");
  1346. ggml_tensor * out = ggml_add1(ctx, a, b);
  1347. ggml_set_name(out, "out");
  1348. return out;
  1349. }
  1350. float grad_eps() override {
  1351. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  1352. }
  1353. };
  1354. // GGML_OP_SCALE
  1355. struct test_scale : public test_case {
  1356. const ggml_type type;
  1357. const std::array<int64_t, 4> ne;
  1358. float scale;
  1359. std::string vars() override {
  1360. return VARS_TO_STR3(type, ne, scale);
  1361. }
  1362. test_scale(ggml_type type = GGML_TYPE_F32,
  1363. std::array<int64_t, 4> ne = {10, 10, 10, 10},
  1364. float scale = 2.0f)
  1365. : type(type), ne(ne), scale(scale) {}
  1366. ggml_tensor * build_graph(ggml_context * ctx) override {
  1367. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1368. ggml_set_param(ctx, a);
  1369. ggml_set_name(a, "a");
  1370. ggml_tensor * out = ggml_scale(ctx, a, scale);
  1371. ggml_set_name(out, "out");
  1372. return out;
  1373. }
  1374. };
  1375. // GGML_OP_SILU_BACK
  1376. struct test_silu_back : public test_case {
  1377. const ggml_type type;
  1378. const std::array<int64_t, 4> ne;
  1379. float eps;
  1380. std::string vars() override {
  1381. return VARS_TO_STR3(type, ne, eps);
  1382. }
  1383. test_silu_back(ggml_type type = GGML_TYPE_F32,
  1384. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1385. float eps = 1e-6f)
  1386. : type(type), ne(ne), eps(eps) {}
  1387. ggml_tensor * build_graph(ggml_context * ctx) override {
  1388. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1389. ggml_set_name(a, "a");
  1390. ggml_tensor * grad = ggml_new_tensor(ctx, type, 4, ne.data());
  1391. ggml_set_name(grad, "grad");
  1392. ggml_tensor * out = ggml_silu_back(ctx, a, grad);
  1393. ggml_set_name(out, "out");
  1394. return out;
  1395. }
  1396. bool grad_precise() override {
  1397. return true;
  1398. }
  1399. };
  1400. // GGML_OP_NORM
  1401. struct test_norm : public test_case {
  1402. const ggml_type type;
  1403. const std::array<int64_t, 4> ne;
  1404. const bool v; // whether a is a non-contiguous view
  1405. const float eps;
  1406. std::string vars() override {
  1407. return VARS_TO_STR4(type, ne, v, eps);
  1408. }
  1409. test_norm(ggml_type type = GGML_TYPE_F32,
  1410. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1411. bool v = false,
  1412. float eps = 1e-6f)
  1413. : type(type), ne(ne), v(v), eps(eps) {}
  1414. ggml_tensor * build_graph(ggml_context * ctx) override {
  1415. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1416. ggml_set_name(a, "a");
  1417. if (v) {
  1418. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1419. ggml_set_name(a, "view of a");
  1420. }
  1421. ggml_tensor * out = ggml_norm(ctx, a, eps);
  1422. ggml_set_name(out, "out");
  1423. return out;
  1424. }
  1425. };
  1426. // GGML_OP_RMS_NORM
  1427. struct test_rms_norm : public test_case {
  1428. const ggml_type type;
  1429. const std::array<int64_t, 4> ne;
  1430. const bool v; // whether a is a non-contiguous view
  1431. const float eps;
  1432. std::string vars() override {
  1433. return VARS_TO_STR4(type, ne, v, eps);
  1434. }
  1435. test_rms_norm(ggml_type type = GGML_TYPE_F32,
  1436. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1437. bool v = false,
  1438. float eps = 1e-6f)
  1439. : type(type), ne(ne), v(v), eps(eps) {}
  1440. ggml_tensor * build_graph(ggml_context * ctx) override {
  1441. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1442. ggml_set_param(ctx, a);
  1443. ggml_set_name(a, "a");
  1444. if (v) {
  1445. a = ggml_view_4d(ctx, a, a->ne[0]/2, a->ne[1]/2, a->ne[2]/2, a->ne[3]/2, a->nb[1], a->nb[2], a->nb[3], 0);
  1446. ggml_set_name(a, "view of a");
  1447. }
  1448. ggml_tensor * out = ggml_rms_norm(ctx, a, eps);
  1449. ggml_set_name(out, "out");
  1450. return out;
  1451. }
  1452. void initialize_tensors(ggml_context * ctx) override {
  1453. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1454. init_tensor_uniform(t, -10.f, 10.f);
  1455. }
  1456. }
  1457. float grad_eps() override {
  1458. return 1.0f;
  1459. }
  1460. bool grad_precise() override {
  1461. return true;
  1462. }
  1463. };
  1464. // GGML_OP_RMS_NORM_BACK
  1465. struct test_rms_norm_back : public test_case {
  1466. const ggml_type type;
  1467. const std::array<int64_t, 4> ne;
  1468. const float eps;
  1469. std::string vars() override {
  1470. return VARS_TO_STR3(type, ne, eps);
  1471. }
  1472. test_rms_norm_back(ggml_type type = GGML_TYPE_F32,
  1473. std::array<int64_t, 4> ne = {64, 5, 4, 3},
  1474. float eps = 1e-6f)
  1475. : type(type), ne(ne), eps(eps) {}
  1476. ggml_tensor * build_graph(ggml_context * ctx) override {
  1477. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1478. ggml_set_name(a, "a");
  1479. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  1480. ggml_set_name(b, "b");
  1481. ggml_tensor * out = ggml_rms_norm_back(ctx, a, b, eps);
  1482. ggml_set_name(out, "out");
  1483. return out;
  1484. }
  1485. void initialize_tensors(ggml_context * ctx) override {
  1486. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1487. init_tensor_uniform(t, -10.f, 10.f);
  1488. }
  1489. }
  1490. };
  1491. // GGML_OP_SSM_CONV
  1492. struct test_ssm_conv : public test_case {
  1493. const ggml_type type;
  1494. const std::array<int64_t, 4> ne_a;
  1495. const std::array<int64_t, 4> ne_b;
  1496. std::string vars() override {
  1497. return VARS_TO_STR3(type, ne_a, ne_b);
  1498. }
  1499. test_ssm_conv(ggml_type type = GGML_TYPE_F32,
  1500. std::array<int64_t, 4> ne_a = {10, 10, 10, 1},
  1501. std::array<int64_t, 4> ne_b = {3, 3, 1, 1})
  1502. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  1503. ggml_tensor * build_graph(ggml_context * ctx) override {
  1504. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  1505. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  1506. ggml_tensor * out = ggml_ssm_conv(ctx, a, b);
  1507. return out;
  1508. }
  1509. };
  1510. // GGML_OP_SSM_SCAN
  1511. struct test_ssm_scan : public test_case {
  1512. const ggml_type type;
  1513. const int64_t d_state;
  1514. const int64_t d_inner;
  1515. const int64_t n_seq_tokens;
  1516. const int64_t n_seqs;
  1517. std::string vars() override {
  1518. return VARS_TO_STR5(type, d_state, d_inner, n_seq_tokens, n_seqs);
  1519. }
  1520. test_ssm_scan(ggml_type type = GGML_TYPE_F32,
  1521. int64_t d_state = 32, int64_t d_inner = 32, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1522. : type(type), d_state(d_state), d_inner(d_inner), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1523. ggml_tensor * build_graph(ggml_context * ctx) override {
  1524. ggml_tensor * s = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, n_seqs, 1 }.data());
  1525. ggml_tensor * x = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1526. ggml_tensor * dt = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_inner, n_seq_tokens, n_seqs, 1 }.data());
  1527. ggml_tensor * A = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, d_inner, 1 , 1 }.data());
  1528. ggml_tensor * B = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1529. ggml_tensor * C = ggml_new_tensor(ctx, type, 4, std::vector<int64_t>{ d_state, n_seq_tokens, n_seqs, 1 }.data());
  1530. ggml_tensor * out = ggml_ssm_scan(ctx, s, x, dt, A, B, C);
  1531. return out;
  1532. }
  1533. };
  1534. // GGML_OP_RWKV_WKV6
  1535. struct test_rwkv_wkv6 : public test_case {
  1536. const ggml_type type;
  1537. const int64_t head_count;
  1538. const int64_t head_size;
  1539. const int64_t n_seq_tokens;
  1540. const int64_t n_seqs;
  1541. std::string vars() override {
  1542. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1543. }
  1544. test_rwkv_wkv6(ggml_type type = GGML_TYPE_F32,
  1545. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1546. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1547. ggml_tensor * build_graph(ggml_context * ctx) override {
  1548. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1549. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1550. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1551. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1552. ggml_tensor * tf = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size, head_count }.data());
  1553. ggml_tensor * td = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1554. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1555. ggml_tensor * out = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, s);
  1556. return out;
  1557. }
  1558. };
  1559. // GGML_OP_GATED_LINEAR_ATTN
  1560. struct test_gla : public test_case {
  1561. const ggml_type type;
  1562. const int64_t head_count;
  1563. const int64_t head_size;
  1564. const int64_t n_seq_tokens;
  1565. const int64_t n_seqs;
  1566. std::string vars() override {
  1567. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1568. }
  1569. test_gla(ggml_type type = GGML_TYPE_F32,
  1570. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1571. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1572. ggml_tensor * build_graph(ggml_context * ctx) override {
  1573. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1574. ggml_tensor * q = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1575. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1576. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1577. ggml_tensor * g = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1578. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1579. ggml_tensor * out = ggml_gated_linear_attn(ctx, k, v, q, g, s, pow(head_size, -0.5));
  1580. return out;
  1581. }
  1582. };
  1583. // GGML_OP_RWKV_WKV7
  1584. struct test_rwkv_wkv7 : public test_case {
  1585. const ggml_type type;
  1586. const int64_t head_count;
  1587. const int64_t head_size;
  1588. const int64_t n_seq_tokens;
  1589. const int64_t n_seqs;
  1590. std::string vars() override {
  1591. return VARS_TO_STR5(type, head_count, head_size, n_seq_tokens, n_seqs);
  1592. }
  1593. test_rwkv_wkv7(ggml_type type = GGML_TYPE_F32,
  1594. int64_t head_count = 32, int64_t head_size = 64, int64_t n_seq_tokens = 32, int64_t n_seqs = 32)
  1595. : type(type), head_count(head_count), head_size(head_size), n_seq_tokens(n_seq_tokens), n_seqs(n_seqs) {}
  1596. ggml_tensor * build_graph(ggml_context * ctx) override {
  1597. const int64_t n_tokens = n_seq_tokens * n_seqs;
  1598. ggml_tensor * r = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1599. ggml_tensor * w = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1600. ggml_tensor * k = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1601. ggml_tensor * v = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1602. ggml_tensor * a = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1603. ggml_tensor * b = ggml_new_tensor(ctx, type, 3, std::vector<int64_t>{ head_size, head_count, n_tokens }.data());
  1604. // Outputs may become NaN with long seqlen without these normalization
  1605. a = ggml_l2_norm(ctx, a, 1e-7F);
  1606. b = ggml_l2_norm(ctx, b, 1e-7F);
  1607. ggml_tensor * s = ggml_new_tensor(ctx, type, 2, std::vector<int64_t>{ head_size * head_size * head_count, n_seqs }.data());
  1608. ggml_tensor * out = ggml_rwkv_wkv7(ctx, r, w, k, v, a, b, s);
  1609. return out;
  1610. }
  1611. };
  1612. // GGML_OP_MUL_MAT
  1613. struct test_mul_mat : public test_case {
  1614. const ggml_type type_a;
  1615. const ggml_type type_b;
  1616. const int64_t m;
  1617. const int64_t n;
  1618. const int64_t k;
  1619. const std::array<int64_t, 2> bs; // dims 3 and 4
  1620. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1621. const std::array<int64_t, 4> per; // permutation of dimensions
  1622. std::string vars() override {
  1623. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, per);
  1624. }
  1625. double max_nmse_err() override {
  1626. return 5e-4;
  1627. }
  1628. int64_t grad_nmax() override {
  1629. return 20000;
  1630. }
  1631. uint64_t op_flops(ggml_tensor * t) override {
  1632. GGML_UNUSED(t);
  1633. return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1];
  1634. }
  1635. test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1636. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1637. std::array<int64_t, 2> bs = {10, 10},
  1638. std::array<int64_t, 2> nr = {2, 2},
  1639. std::array<int64_t, 4> per = {0, 1, 2, 3})
  1640. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), per(per) {}
  1641. ggml_tensor * build_graph(ggml_context * ctx) override {
  1642. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1643. ggml_tensor * a;
  1644. ggml_tensor * b;
  1645. const int npermuted = (per[0] != 0) + (per[1] != 1) + (per[2] != 2) + (per[3] != 3);
  1646. if (npermuted > 0) {
  1647. GGML_ASSERT(npermuted == 2);
  1648. GGML_ASSERT(!ggml_is_quantized(type_a) || per[0] == 0);
  1649. GGML_ASSERT(!ggml_is_quantized(type_b) || per[0] == 0);
  1650. // Create tensors with the permuted dimensions, then permute them back to the dimensions given by m,n,k.
  1651. const int64_t ne_a[4] = {k, m, bs[0], bs[1]};
  1652. const int64_t ne_b[4] = {k, n, bs[0]*nr[0], bs[1]*nr[1]};
  1653. a = ggml_new_tensor_4d(ctx, type_a, ne_a[per[0]], ne_a[per[1]], ne_a[per[2]], ne_a[per[3]]);
  1654. b = ggml_new_tensor_4d(ctx, type_b, ne_b[per[0]], ne_b[per[1]], ne_b[per[2]], ne_b[per[3]]);
  1655. if (!ggml_is_quantized(type_a)) {
  1656. if (bs[1] == 1 && nr[1] == 1) {
  1657. ggml_set_param(ctx, a);
  1658. }
  1659. ggml_set_param(ctx, b);
  1660. }
  1661. ggml_set_name(a, "a");
  1662. ggml_set_name(b, "b");
  1663. a = ggml_permute(ctx, a, per[0], per[1], per[2], per[3]);
  1664. b = ggml_permute(ctx, b, per[0], per[1], per[2], per[3]);
  1665. ggml_set_name(a, "a_permuted");
  1666. ggml_set_name(b, "b_permuted");
  1667. } else {
  1668. a = ggml_new_tensor_4d(ctx, type_a, k, m, bs[0], bs[1]);
  1669. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1670. if (!ggml_is_quantized(type_a)) {
  1671. if (bs[1] == 1 && nr[1] == 1) {
  1672. ggml_set_param(ctx, a);
  1673. }
  1674. ggml_set_param(ctx, b);
  1675. }
  1676. ggml_set_name(a, "a");
  1677. ggml_set_name(b, "b");
  1678. }
  1679. ggml_tensor * out = ggml_mul_mat(ctx, a, b);
  1680. ggml_set_name(out, "out");
  1681. return out;
  1682. }
  1683. };
  1684. // GGML_OP_MUL_MAT_ID
  1685. struct test_mul_mat_id : public test_case {
  1686. const ggml_type type_a;
  1687. const ggml_type type_b;
  1688. const int n_mats;
  1689. const int n_used;
  1690. const bool b; // brodcast b matrix
  1691. const int64_t m;
  1692. const int64_t n;
  1693. const int64_t k;
  1694. std::string vars() override {
  1695. return VARS_TO_STR8(type_a, type_b, n_mats, n_used, b, m, n, k);
  1696. }
  1697. double max_nmse_err() override {
  1698. return 5e-4;
  1699. }
  1700. uint64_t op_flops(ggml_tensor * t) override {
  1701. GGML_UNUSED(t);
  1702. return 2 * m * k * n * n_used;
  1703. }
  1704. test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1705. int n_mats = 8, int n_used = 2, bool b = false,
  1706. int64_t m = 32, int64_t n = 32, int64_t k = 32)
  1707. : type_a(type_a), type_b(type_b), n_mats(n_mats), n_used(n_used), b(b),
  1708. m(m), n(n), k(k) {
  1709. GGML_ASSERT(n_used <= n_mats);
  1710. }
  1711. ggml_tensor * build_graph(ggml_context * ctx) override {
  1712. // C^T = A * B^T: (k, m) * (k, n) => (m, n)
  1713. ggml_tensor * as = ggml_new_tensor_3d(ctx, type_a, k, m, n_mats);
  1714. ggml_set_name(as, "as");
  1715. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_mats, n);
  1716. ggml_set_name(ids, "ids");
  1717. if (n_used != n_mats) {
  1718. ids = ggml_view_2d(ctx, ids, n_used, n, ids->nb[1], 0);
  1719. ggml_set_name(ids, "view_of_ids");
  1720. }
  1721. ggml_tensor * b = ggml_new_tensor_3d(ctx, type_b, k, this->b ? 1 : n_used, n);
  1722. ggml_set_name(b, "b");
  1723. ggml_tensor * out = ggml_mul_mat_id(ctx, as, b, ids);
  1724. ggml_set_name(out, "out");
  1725. return out;
  1726. }
  1727. void initialize_tensors(ggml_context * ctx) override {
  1728. std::random_device rd;
  1729. std::default_random_engine rng(rd());
  1730. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1731. if (t->type == GGML_TYPE_I32) {
  1732. if (ggml_is_view_op(t->op)) { continue; }
  1733. // ids
  1734. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  1735. std::vector<int32_t> data(t->ne[0]);
  1736. for (int i = 0; i < t->ne[0]; i++) {
  1737. data[i] = i % n_mats;
  1738. }
  1739. std::shuffle(data.begin(), data.end(), rng);
  1740. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(int32_t));
  1741. }
  1742. } else {
  1743. init_tensor_uniform(t);
  1744. }
  1745. }
  1746. }
  1747. };
  1748. // GGML_OP_OUT_PROD
  1749. struct test_out_prod : public test_case {
  1750. const ggml_type type_a;
  1751. const ggml_type type_b;
  1752. const int64_t m;
  1753. const int64_t n;
  1754. const int64_t k;
  1755. const std::array<int64_t, 2> bs; // dims 3 and 4
  1756. const std::array<int64_t, 2> nr; // repeat in dims 3 and 4
  1757. const bool trans_b;
  1758. std::string vars() override {
  1759. return VARS_TO_STR8(type_a, type_b, m, n, k, bs, nr, trans_b);
  1760. }
  1761. double max_nmse_err() override {
  1762. return 5e-4;
  1763. }
  1764. test_out_prod(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32,
  1765. int64_t m = 32, int64_t n = 32, int64_t k = 32,
  1766. std::array<int64_t, 2> bs = {10, 10},
  1767. std::array<int64_t, 2> nr = {2, 2},
  1768. bool trans_b = false)
  1769. : type_a(type_a), type_b(type_b), m(m), n(n), k(k), bs(bs), nr(nr), trans_b(trans_b) {}
  1770. ggml_tensor * build_graph(ggml_context * ctx) override {
  1771. ggml_tensor * a = ggml_new_tensor_4d(ctx, type_a, m, k, bs[0], bs[1]);
  1772. ggml_set_name(a, "a");
  1773. ggml_tensor * b;
  1774. if (trans_b) {
  1775. b = ggml_new_tensor_4d(ctx, type_b, k, n, bs[0]*nr[0], bs[1]*nr[1]);
  1776. b = ggml_transpose(ctx, b);
  1777. } else {
  1778. b = ggml_new_tensor_4d(ctx, type_b, n, k, bs[0]*nr[0], bs[1]*nr[1]);
  1779. }
  1780. ggml_set_name(b, "b");
  1781. ggml_tensor * out = ggml_out_prod(ctx, a, b);
  1782. ggml_set_name(out, "out");
  1783. return out;
  1784. }
  1785. };
  1786. // GGML_OP_SQR
  1787. struct test_sqr : public test_case {
  1788. const ggml_type type;
  1789. const std::array<int64_t, 4> ne;
  1790. std::string vars() override {
  1791. return VARS_TO_STR2(type, ne);
  1792. }
  1793. test_sqr(ggml_type type = GGML_TYPE_F32,
  1794. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1795. : type(type), ne(ne) {}
  1796. ggml_tensor * build_graph(ggml_context * ctx) override {
  1797. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1798. ggml_set_param(ctx, a);
  1799. ggml_set_name(a, "a");
  1800. ggml_tensor * out = ggml_sqr(ctx, a);
  1801. ggml_set_name(out, "out");
  1802. return out;
  1803. }
  1804. float grad_eps() override {
  1805. return 0.1f * 0.25f*ne[0]*ne[1]*ne[2]*ne[3]; // 10% of expected value of sum.
  1806. }
  1807. };
  1808. // GGML_OP_SQRT
  1809. struct test_sqrt : public test_case {
  1810. const ggml_type type;
  1811. const std::array<int64_t, 4> ne;
  1812. std::string vars() override {
  1813. return VARS_TO_STR2(type, ne);
  1814. }
  1815. test_sqrt(ggml_type type = GGML_TYPE_F32,
  1816. std::array<int64_t, 4> ne = {10, 3, 3, 2})
  1817. : type(type), ne(ne) {}
  1818. ggml_tensor * build_graph(ggml_context * ctx) override {
  1819. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1820. ggml_set_param(ctx, a);
  1821. ggml_set_name(a, "a");
  1822. ggml_tensor * out = ggml_sqrt(ctx, a);
  1823. ggml_set_name(out, "out");
  1824. return out;
  1825. }
  1826. void initialize_tensors(ggml_context * ctx) override {
  1827. // fill with positive values
  1828. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1829. init_tensor_uniform(t, 50.0f, 100.0f);
  1830. }
  1831. }
  1832. float grad_eps() override {
  1833. return 20.0f;
  1834. }
  1835. bool grad_precise() override {
  1836. return true;
  1837. }
  1838. };
  1839. // GGML_OP_LOG
  1840. struct test_log : public test_case {
  1841. const ggml_type type;
  1842. const std::array<int64_t, 4> ne;
  1843. std::string vars() override {
  1844. return VARS_TO_STR2(type, ne);
  1845. }
  1846. test_log(ggml_type type = GGML_TYPE_F32,
  1847. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  1848. : type(type), ne(ne) {}
  1849. ggml_tensor * build_graph(ggml_context * ctx) override {
  1850. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1851. ggml_set_param(ctx, a);
  1852. ggml_set_name(a, "a");
  1853. ggml_tensor * out = ggml_log(ctx, a);
  1854. ggml_set_name(out, "out");
  1855. return out;
  1856. }
  1857. void initialize_tensors(ggml_context * ctx) override {
  1858. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1859. // log(1) == 0, cluster values there to keep the sum low for better precision in the backward pass:
  1860. init_tensor_uniform(t, 0.9f, 1.1f);
  1861. }
  1862. }
  1863. bool grad_precise() override {
  1864. return true;
  1865. }
  1866. };
  1867. // GGML_OP_SIN
  1868. struct test_sin : public test_case {
  1869. const ggml_type type;
  1870. const std::array<int64_t, 4> ne;
  1871. std::string vars() override {
  1872. return VARS_TO_STR2(type, ne);
  1873. }
  1874. test_sin(ggml_type type = GGML_TYPE_F32,
  1875. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1876. : type(type), ne(ne) {}
  1877. ggml_tensor * build_graph(ggml_context * ctx) override {
  1878. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1879. ggml_set_param(ctx, a);
  1880. ggml_set_name(a, "a");
  1881. ggml_tensor * out = ggml_sin(ctx, a);
  1882. ggml_set_name(out, "out");
  1883. return out;
  1884. }
  1885. void initialize_tensors(ggml_context * ctx) override {
  1886. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1887. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1888. }
  1889. }
  1890. double max_maa_err() override {
  1891. return 1e-3;
  1892. }
  1893. float grad_eps() override {
  1894. return 0.2f;
  1895. }
  1896. bool grad_precise() override {
  1897. return true;
  1898. }
  1899. };
  1900. // GGML_OP_COS
  1901. struct test_cos : public test_case {
  1902. const ggml_type type;
  1903. const std::array<int64_t, 4> ne;
  1904. std::string vars() override {
  1905. return VARS_TO_STR2(type, ne);
  1906. }
  1907. test_cos(ggml_type type = GGML_TYPE_F32,
  1908. std::array<int64_t, 4> ne = {10, 2, 2, 2})
  1909. : type(type), ne(ne) {}
  1910. ggml_tensor * build_graph(ggml_context * ctx) override {
  1911. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1912. ggml_set_param(ctx, a);
  1913. ggml_set_name(a, "a");
  1914. ggml_tensor * out = ggml_cos(ctx, a);
  1915. ggml_set_name(out, "out");
  1916. return out;
  1917. }
  1918. void initialize_tensors(ggml_context * ctx) override {
  1919. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  1920. init_tensor_uniform(t, -6.5f, 6.5f); // Covers interval [-2*pi, 2*pi].
  1921. }
  1922. }
  1923. double max_maa_err() override {
  1924. return 1e-3;
  1925. }
  1926. float grad_eps() override {
  1927. return 0.2f;
  1928. }
  1929. bool grad_precise() override {
  1930. return true;
  1931. }
  1932. };
  1933. // GGML_OP_CLAMP
  1934. struct test_clamp : public test_case {
  1935. const ggml_type type;
  1936. const std::array<int64_t, 4> ne;
  1937. float min;
  1938. float max;
  1939. std::string vars() override {
  1940. return VARS_TO_STR4(type, ne, min, max);
  1941. }
  1942. test_clamp(ggml_type type = GGML_TYPE_F32,
  1943. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1944. float min = -0.5f, float max = 0.5f)
  1945. : type(type), ne(ne), min(min), max(max) {}
  1946. ggml_tensor * build_graph(ggml_context * ctx) override {
  1947. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1948. ggml_set_name(a, "a");
  1949. ggml_tensor * out = ggml_clamp(ctx, a, min, max);
  1950. ggml_set_name(out, "out");
  1951. return out;
  1952. }
  1953. float grad_eps() override {
  1954. return 1e-2f;
  1955. }
  1956. std::vector<float> grad_expect() override {
  1957. return {0.0f, 1.0f};
  1958. }
  1959. };
  1960. // GGML_OP_DIAG_MASK_INF
  1961. struct test_diag_mask_inf : public test_case {
  1962. const ggml_type type;
  1963. const std::array<int64_t, 4> ne;
  1964. const int n_past;
  1965. std::string vars() override {
  1966. return VARS_TO_STR3(type, ne, n_past);
  1967. }
  1968. test_diag_mask_inf(ggml_type type = GGML_TYPE_F32,
  1969. std::array<int64_t, 4> ne = {10, 10, 3, 2},
  1970. int n_past = 5)
  1971. : type(type), ne(ne), n_past(n_past) {}
  1972. ggml_tensor * build_graph(ggml_context * ctx) override {
  1973. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  1974. ggml_set_param(ctx, a);
  1975. ggml_set_name(a, "a");
  1976. ggml_tensor * out = ggml_diag_mask_inf(ctx, a, n_past);
  1977. ggml_set_name(out, "out");
  1978. return out;
  1979. }
  1980. };
  1981. // GGML_OP_SOFT_MAX
  1982. struct test_soft_max : public test_case {
  1983. const ggml_type type;
  1984. const std::array<int64_t, 4> ne;
  1985. const bool mask;
  1986. const ggml_type m_prec;
  1987. const float scale;
  1988. const float max_bias;
  1989. std::string vars() override {
  1990. return VARS_TO_STR6(type, ne, mask, m_prec, scale, max_bias);
  1991. }
  1992. // the 1024 test with bias occasionally fails:
  1993. // SOFT_MAX(type=f32,ne=[1024,16,1,1],mask=1,scale=1.000000,max_bias=8.000000): [SOFT_MAX] NMSE = 0.000000103 > 0.000000100 FAIL
  1994. virtual double max_nmse_err() override {
  1995. return 1e-6;
  1996. }
  1997. test_soft_max(ggml_type type = GGML_TYPE_F32,
  1998. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  1999. bool mask = false,
  2000. ggml_type m_prec = GGML_TYPE_F32,
  2001. float scale = 1.0f,
  2002. float max_bias = 0.0f)
  2003. : type(type), ne(ne), mask(mask), m_prec(m_prec), scale(scale), max_bias(max_bias) {}
  2004. ggml_tensor * build_graph(ggml_context * ctx) override {
  2005. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2006. ggml_set_param(ctx, a);
  2007. ggml_set_name(a, "a");
  2008. ggml_tensor * mask = nullptr;
  2009. if (this->mask) {
  2010. mask = ggml_new_tensor_2d(ctx, m_prec, ne[0], ne[1]);
  2011. ggml_set_name(mask, "mask");
  2012. }
  2013. ggml_tensor * out = ggml_soft_max_ext(ctx, a, mask, scale, max_bias);
  2014. ggml_set_name(out, "out");
  2015. return out;
  2016. }
  2017. bool grad_precise() override {
  2018. return true;
  2019. }
  2020. };
  2021. // GGML_OP_SOFT_MAX_BACK
  2022. struct test_soft_max_back : public test_case {
  2023. const ggml_type type;
  2024. const std::array<int64_t, 4> ne;
  2025. const float scale;
  2026. const float max_bias;
  2027. std::string vars() override {
  2028. return VARS_TO_STR4(type, ne, scale, max_bias);
  2029. }
  2030. test_soft_max_back(ggml_type type = GGML_TYPE_F32,
  2031. std::array<int64_t, 4> ne = {10, 5, 4, 3},
  2032. float scale = 1.0f,
  2033. float max_bias = 0.0f)
  2034. : type(type), ne(ne), scale(scale), max_bias(max_bias) {}
  2035. ggml_tensor * build_graph(ggml_context * ctx) override {
  2036. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2037. ggml_set_name(a, "a");
  2038. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data());
  2039. ggml_set_name(a, "a");
  2040. ggml_tensor * out = ggml_soft_max_ext_back(ctx, a, b, scale, max_bias);
  2041. ggml_set_name(out, "out");
  2042. return out;
  2043. }
  2044. };
  2045. // GGML_OP_ROPE + GGML_OP_ROPE_BACK
  2046. struct test_rope : public test_case {
  2047. const ggml_type type;
  2048. const std::array<int64_t, 4> ne_a;
  2049. int n_dims;
  2050. int mode;
  2051. int n_ctx; // used to generate positions
  2052. float fs; // freq_scale
  2053. float ef; // ext_factor
  2054. float af; // attn_factor
  2055. bool ff;
  2056. int v; // view (1 : non-contiguous a)
  2057. bool forward;
  2058. std::string vars() override {
  2059. // forward can be inferred from the op, does not need to be printed
  2060. return VARS_TO_STR10(type, ne_a, n_dims, mode, n_ctx, fs, ef, af, ff, v);
  2061. }
  2062. test_rope(ggml_type type = GGML_TYPE_F32,
  2063. std::array<int64_t, 4> ne_a = {10, 5, 3, 1},
  2064. int n_dims = 10, int mode = 0, int n_ctx = 512, float fs = 1.0f,
  2065. float ef = 0.0f, float af = 0.0f, bool ff = false, int v = 0, bool forward = true)
  2066. : type(type), ne_a(ne_a), n_dims(n_dims), mode(mode), n_ctx(n_ctx), fs(fs), ef(ef), af(af), ff(ff), v(v), forward(forward) {}
  2067. ggml_tensor * build_graph(ggml_context * ctx) override {
  2068. ggml_tensor * a;
  2069. if (v & 1) {
  2070. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2071. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2072. if (forward) {
  2073. ggml_set_param(ctx, a);
  2074. }
  2075. ggml_set_name(a, "a");
  2076. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2077. ggml_set_name(a, "view_of_a");
  2078. } else {
  2079. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2080. if (forward) {
  2081. ggml_set_param(ctx, a);
  2082. }
  2083. ggml_set_name(a, "a");
  2084. }
  2085. const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
  2086. const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
  2087. ggml_tensor * pos;
  2088. if (is_mrope || is_vision) {
  2089. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2] * 4);
  2090. } else {
  2091. pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, ne_a[2]);
  2092. }
  2093. ggml_set_name(pos, "pos");
  2094. ggml_tensor * freq = nullptr;
  2095. if (ff) {
  2096. freq = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_dims/2);
  2097. ggml_set_name(freq, "freq");
  2098. }
  2099. ggml_tensor * out;
  2100. if (is_mrope) {
  2101. if (is_vision) {
  2102. GGML_ASSERT(n_dims/4 > 0);
  2103. int rope_sections[4] = {n_dims/4, n_dims/4, 0, 0}; // Vision-RoPE only use first two dimension for image (x, y) coordinate
  2104. if (forward) {
  2105. out = ggml_rope_multi (ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2106. } else {
  2107. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims/2, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2108. }
  2109. } else {
  2110. GGML_ASSERT(n_dims/3 > 0);
  2111. int rope_sections[4] = {n_dims/3, n_dims/3, n_dims/3, 0};
  2112. if (forward) {
  2113. out = ggml_rope_multi (ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2114. } else {
  2115. out = ggml_rope_multi_back(ctx, a, pos, freq, n_dims, rope_sections, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2116. }
  2117. }
  2118. } else {
  2119. if (forward) {
  2120. out = ggml_rope_ext (ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2121. } else {
  2122. out = ggml_rope_ext_back(ctx, a, pos, freq, n_dims, mode, 0, 10000.0f, fs, ef, af, 1.0f, 1.0f);
  2123. }
  2124. }
  2125. ggml_set_name(out, "out");
  2126. return out;
  2127. }
  2128. void initialize_tensors(ggml_context * ctx) override {
  2129. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2130. if (t->type == GGML_TYPE_I32) {
  2131. // pos
  2132. const int num_pos_ids = (mode & GGML_ROPE_TYPE_MROPE) ? ne_a[2] * 4 : ne_a[2];
  2133. std::vector<int> data(num_pos_ids);
  2134. for (int i = 0; i < num_pos_ids; i++) {
  2135. data[i] = rand() % n_ctx;
  2136. }
  2137. ggml_backend_tensor_set(t, data.data(), 0, num_pos_ids * sizeof(int));
  2138. } else {
  2139. if (t->ne[0] == n_dims/2) {
  2140. // frequency factors in the range [0.9f, 1.1f]
  2141. init_tensor_uniform(t, 0.9f, 1.1f);
  2142. } else {
  2143. init_tensor_uniform(t);
  2144. }
  2145. }
  2146. }
  2147. }
  2148. double max_maa_err() override {
  2149. return 1e-3;
  2150. }
  2151. bool grad_precise() override {
  2152. return true;
  2153. }
  2154. };
  2155. // GGML_OP_POOL2D
  2156. struct test_pool2d : public test_case {
  2157. enum ggml_op_pool pool_type;
  2158. const ggml_type type_input;
  2159. const std::array<int64_t, 4> ne_input;
  2160. // kernel size
  2161. const int k0;
  2162. const int k1;
  2163. // stride
  2164. const int s0;
  2165. const int s1;
  2166. // padding
  2167. const int p0;
  2168. const int p1;
  2169. std::string vars() override {
  2170. return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
  2171. }
  2172. test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
  2173. ggml_type type_input = GGML_TYPE_F32,
  2174. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2175. int k0 = 3, int k1 = 3,
  2176. int s0 = 1, int s1 = 1,
  2177. int p0 = 1, int p1 = 1)
  2178. : pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
  2179. ggml_tensor * build_graph(ggml_context * ctx) override {
  2180. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2181. ggml_set_param(ctx, input);
  2182. ggml_set_name(input, "input");
  2183. ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
  2184. ggml_set_name(out, "out");
  2185. return out;
  2186. }
  2187. };
  2188. // GGML_OP_CONV_TRANSPOSE_1D
  2189. struct test_conv_transpose_1d : public test_case {
  2190. const std::array<int64_t, 4> ne_input;
  2191. const std::array<int64_t, 4> ne_kernel;
  2192. const int s0; // stride
  2193. const int p0; // padding
  2194. const int d0; // dilation
  2195. std::string vars() override {
  2196. return VARS_TO_STR5(ne_input, ne_kernel, s0, p0, d0);
  2197. }
  2198. test_conv_transpose_1d(std::array<int64_t, 4> ne_input = {197, 32, 1, 1}, // [input_width, input_height, input_channels, 1]
  2199. std::array<int64_t, 4> ne_kernel = {16, 32, 32, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2200. int s0 = 1, int p0 = 0, int d0 = 1)
  2201. : ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), p0(p0), d0(d0) {}
  2202. ggml_tensor * build_graph(ggml_context * ctx) override {
  2203. ggml_tensor * input = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_input.data());
  2204. ggml_set_name(input, "input");
  2205. ggml_tensor * kernel = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne_kernel.data());
  2206. ggml_set_name(kernel, "kernel");
  2207. ggml_tensor * out = ggml_conv_transpose_1d(ctx, kernel, input, s0, p0, d0);
  2208. ggml_set_name(out, "out");
  2209. return out;
  2210. }
  2211. };
  2212. // GGML_OP_IM2COL
  2213. struct test_im2col : public test_case {
  2214. const ggml_type type_input;
  2215. const ggml_type type_kernel;
  2216. const ggml_type dst_type;
  2217. const std::array<int64_t, 4> ne_input;
  2218. const std::array<int64_t, 4> ne_kernel;
  2219. // stride
  2220. const int s0;
  2221. const int s1;
  2222. // padding
  2223. const int p0;
  2224. const int p1;
  2225. // dilation
  2226. const int d0;
  2227. const int d1;
  2228. // mode
  2229. const bool is_2D;
  2230. std::string vars() override {
  2231. return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
  2232. }
  2233. test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
  2234. std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
  2235. std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
  2236. int s0 = 1, int s1 = 1,
  2237. int p0 = 1, int p1 = 1,
  2238. int d0 = 1, int d1 = 1,
  2239. bool is_2D = true)
  2240. : type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
  2241. ggml_tensor * build_graph(ggml_context * ctx) override {
  2242. ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
  2243. ggml_set_param(ctx, input);
  2244. ggml_set_name(input, "input");
  2245. ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
  2246. ggml_set_name(kernel, "kernel");
  2247. ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
  2248. ggml_set_name(out, "out");
  2249. return out;
  2250. }
  2251. };
  2252. // GGML_OP_CONCAT
  2253. struct test_concat : public test_case {
  2254. const ggml_type type;
  2255. const std::array<int64_t, 4> ne_a;
  2256. const int64_t ne_b_d;
  2257. const int dim;
  2258. const int v; // view (1 << 0: non-cont a, 1 << 1: non-cont b)
  2259. std::string vars() override {
  2260. return VARS_TO_STR5(type, ne_a, ne_b_d, dim, v);
  2261. }
  2262. test_concat(ggml_type type = GGML_TYPE_F32,
  2263. std::array<int64_t, 4> ne_a = {10, 5, 5, 5},
  2264. int64_t ne_b_d = 5,
  2265. int dim = 2, int v = 0)
  2266. : type(type), ne_a(ne_a), ne_b_d(ne_b_d), dim(dim), v(v) {}
  2267. ggml_tensor * build_graph(ggml_context * ctx) override {
  2268. auto ne_b = ne_a;
  2269. ne_b[dim] = ne_b_d;
  2270. ggml_tensor * a;
  2271. if (v & 1) {
  2272. auto ne = ne_a; ne[0] *= 2; ne[1] *= 4; ne[2] *= 3;
  2273. a = ggml_new_tensor(ctx, type, 4, ne.data());
  2274. ggml_set_name(a, "a");
  2275. a = ggml_view_4d(ctx, a, ne_a[0], ne_a[1], ne_a[2], ne_a[3], a->nb[1], a->nb[2], a->nb[3], 0);
  2276. ggml_set_name(a, "view_of_a");
  2277. } else {
  2278. a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2279. ggml_set_name(a, "a");
  2280. }
  2281. ggml_tensor * b;
  2282. if (v & 2) {
  2283. auto ne = ne_b; ne[0] *= 3; ne[1] *= 2; ne[2] *= 4;
  2284. b = ggml_new_tensor(ctx, type, 4, ne.data());
  2285. ggml_set_name(b, "b");
  2286. b = ggml_view_4d(ctx, b, ne_b[0], ne_b[1], ne_b[2], ne_b[3], b->nb[1], b->nb[2], b->nb[3], 0);
  2287. ggml_set_name(b, "view_of_b");
  2288. } else {
  2289. b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2290. ggml_set_name(b, "b");
  2291. }
  2292. ggml_tensor * out = ggml_concat(ctx, a, b, dim);
  2293. ggml_set_name(out, "out");
  2294. return out;
  2295. }
  2296. };
  2297. // GGML_OP_ARGSORT
  2298. struct test_argsort : public test_case {
  2299. const ggml_type type;
  2300. const std::array<int64_t, 4> ne;
  2301. ggml_sort_order order;
  2302. std::string vars() override {
  2303. return VARS_TO_STR3(type, ne, order);
  2304. }
  2305. test_argsort(ggml_type type = GGML_TYPE_F32,
  2306. std::array<int64_t, 4> ne = {16, 10, 10, 10},
  2307. ggml_sort_order order = GGML_SORT_ORDER_ASC)
  2308. : type(type), ne(ne), order(order) {}
  2309. ggml_tensor * build_graph(ggml_context * ctx) override {
  2310. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2311. ggml_set_name(a, "a");
  2312. ggml_tensor * out = ggml_argsort(ctx, a, order);
  2313. ggml_set_name(out, "out");
  2314. return out;
  2315. }
  2316. void initialize_tensors(ggml_context * ctx) override {
  2317. std::random_device rd;
  2318. std::default_random_engine rng(rd());
  2319. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2320. if (t->type == GGML_TYPE_I32) {
  2321. // indices
  2322. std::vector<int> data(ggml_nelements(t));
  2323. for (int i = 0; i < ggml_nelements(t); i++) {
  2324. data[i] = rand();
  2325. }
  2326. std::shuffle(data.begin(), data.end(), rng);
  2327. ggml_backend_tensor_set(t, data.data(), 0, ne[0]*ne[1]*ne[2]*ne[3] * sizeof(int));
  2328. } else if (t->type == GGML_TYPE_F32) {
  2329. // initialize with unique values to avoid ties
  2330. for (int64_t r = 0; r < ggml_nrows(t); r++) {
  2331. std::vector<float> data(t->ne[0]);
  2332. for (int i = 0; i < t->ne[0]; i++) {
  2333. data[i] = i;
  2334. }
  2335. std::shuffle(data.begin(), data.end(), rng);
  2336. ggml_backend_tensor_set(t, data.data(), r * t->nb[1], t->ne[0] * sizeof(float));
  2337. }
  2338. } else {
  2339. GGML_ABORT("fatal error");
  2340. }
  2341. }
  2342. }
  2343. };
  2344. // GGML_OP_SUM
  2345. struct test_sum : public test_case {
  2346. const ggml_type type;
  2347. const std::array<int64_t, 4> ne;
  2348. std::string vars() override {
  2349. return VARS_TO_STR2(type, ne);
  2350. }
  2351. test_sum(ggml_type type = GGML_TYPE_F32,
  2352. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2353. : type(type), ne(ne) {}
  2354. ggml_tensor * build_graph(ggml_context * ctx) override {
  2355. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2356. ggml_set_param(ctx, a);
  2357. ggml_set_name(a, "a");
  2358. ggml_tensor * out = ggml_sum(ctx, a);
  2359. ggml_set_name(out, "out");
  2360. return out;
  2361. }
  2362. float grad_eps() override {
  2363. return 0.1f * sqrtf(ne[0]*ne[1]*ne[2]*ne[3]);
  2364. }
  2365. };
  2366. // GGML_OP_SUM_ROWS
  2367. struct test_sum_rows : public test_case {
  2368. const ggml_type type;
  2369. const std::array<int64_t, 4> ne;
  2370. std::string vars() override {
  2371. return VARS_TO_STR2(type, ne);
  2372. }
  2373. test_sum_rows(ggml_type type = GGML_TYPE_F32,
  2374. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2375. : type(type), ne(ne) {}
  2376. ggml_tensor * build_graph(ggml_context * ctx) override {
  2377. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2378. ggml_set_param(ctx, a);
  2379. ggml_set_name(a, "a");
  2380. ggml_tensor * out = ggml_sum_rows(ctx, a);
  2381. ggml_set_name(out, "out");
  2382. return out;
  2383. }
  2384. };
  2385. // GGML_OP_MEAN
  2386. struct test_mean : public test_case {
  2387. const ggml_type type;
  2388. const std::array<int64_t, 4> ne;
  2389. std::string vars() override {
  2390. return VARS_TO_STR2(type, ne);
  2391. }
  2392. test_mean(ggml_type type = GGML_TYPE_F32,
  2393. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2394. : type(type), ne(ne) {}
  2395. ggml_tensor * build_graph(ggml_context * ctx) override {
  2396. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2397. ggml_set_param(ctx, a);
  2398. ggml_set_name(a, "a");
  2399. ggml_tensor * out = ggml_mean(ctx, a);
  2400. ggml_set_name(out, "out");
  2401. return out;
  2402. }
  2403. float grad_eps() override {
  2404. return 0.1f * ne[0]*ne[1]*ne[2]*ne[3];
  2405. }
  2406. };
  2407. // GGML_OP_UPSCALE
  2408. struct test_upscale : public test_case {
  2409. const ggml_type type;
  2410. const std::array<int64_t, 4> ne;
  2411. const int32_t scale_factor;
  2412. const bool transpose;
  2413. std::string vars() override {
  2414. return VARS_TO_STR4(type, ne, scale_factor, transpose);
  2415. }
  2416. test_upscale(ggml_type type = GGML_TYPE_F32,
  2417. std::array<int64_t, 4> ne = {512, 512, 3, 1},
  2418. int32_t scale_factor = 2, bool transpose = false)
  2419. : type(type), ne(ne), scale_factor(scale_factor), transpose(transpose) {}
  2420. ggml_tensor * build_graph(ggml_context * ctx) override {
  2421. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2422. ggml_set_name(a, "a");
  2423. if (transpose) {
  2424. a = ggml_transpose(ctx, a);
  2425. ggml_set_name(a, "a_transposed");
  2426. }
  2427. ggml_tensor * out = ggml_upscale(ctx, a, scale_factor);
  2428. ggml_set_name(out, "out");
  2429. return out;
  2430. }
  2431. };
  2432. // GGML_OP_UPSCALE (ext)
  2433. struct test_upscale_ext : public test_case {
  2434. const ggml_type type;
  2435. const std::array<int64_t, 4> ne;
  2436. const std::array<int64_t, 4> ne_tgt;
  2437. std::string vars() override {
  2438. return VARS_TO_STR3(type, ne, ne_tgt);
  2439. }
  2440. test_upscale_ext(ggml_type type = GGML_TYPE_F32,
  2441. std::array<int64_t, 4> ne = {2, 5, 7, 11},
  2442. std::array<int64_t, 4> ne_tgt = {5, 7, 11, 13})
  2443. : type(type), ne(ne), ne_tgt(ne_tgt) {}
  2444. ggml_tensor * build_graph(ggml_context * ctx) override {
  2445. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2446. ggml_set_name(a, "a");
  2447. ggml_tensor * out = ggml_upscale_ext(ctx, a, ne_tgt[0], ne_tgt[1],ne_tgt[2], ne_tgt[3]);
  2448. ggml_set_name(out, "out");
  2449. return out;
  2450. }
  2451. };
  2452. // GGML_OP_GROUP_NORM
  2453. struct test_group_norm : public test_case {
  2454. const ggml_type type;
  2455. const std::array<int64_t, 4> ne;
  2456. const int32_t num_groups;
  2457. const float eps;
  2458. std::string vars() override {
  2459. return VARS_TO_STR4(type, ne, num_groups, eps);
  2460. }
  2461. test_group_norm(ggml_type type = GGML_TYPE_F32,
  2462. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2463. int32_t num_groups = 32,
  2464. float eps = 1e-6f)
  2465. : type(type), ne(ne), num_groups(num_groups), eps(eps) {}
  2466. ggml_tensor * build_graph(ggml_context * ctx) override {
  2467. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2468. ggml_set_name(a, "a");
  2469. ggml_tensor * out = ggml_group_norm(ctx, a, num_groups, eps);
  2470. ggml_set_name(out, "out");
  2471. return out;
  2472. }
  2473. };
  2474. // GGML_OP_L2_NORM
  2475. struct test_l2_norm : public test_case {
  2476. const ggml_type type;
  2477. const std::array<int64_t, 4> ne;
  2478. const float eps;
  2479. std::string vars() override {
  2480. return VARS_TO_STR2(type, ne);
  2481. }
  2482. test_l2_norm(ggml_type type = GGML_TYPE_F32,
  2483. std::array<int64_t, 4> ne = {64, 64, 320, 1},
  2484. float eps = 1e-12f)
  2485. : type(type), ne(ne), eps(eps) {}
  2486. ggml_tensor * build_graph(ggml_context * ctx) override {
  2487. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
  2488. ggml_set_name(a, "a");
  2489. ggml_tensor * out = ggml_l2_norm(ctx, a, eps);
  2490. ggml_set_name(out, "out");
  2491. return out;
  2492. }
  2493. };
  2494. // GGML_OP_ACC
  2495. struct test_acc : public test_case {
  2496. const ggml_type type;
  2497. const std::array<int64_t, 4> ne_a;
  2498. const std::array<int64_t, 4> ne_b;
  2499. std::string vars() override {
  2500. return VARS_TO_STR3(type, ne_a, ne_b);
  2501. }
  2502. test_acc(ggml_type type = GGML_TYPE_F32,
  2503. std::array<int64_t, 4> ne_a = {256, 17, 1, 1},
  2504. std::array<int64_t, 4> ne_b = {256, 16, 1, 1})
  2505. : type(type), ne_a(ne_a), ne_b(ne_b) {}
  2506. ggml_tensor * build_graph(ggml_context * ctx) override {
  2507. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2508. ggml_set_param(ctx, a);
  2509. ggml_set_name(a, "a");
  2510. ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne_b.data());
  2511. ggml_set_param(ctx, b);
  2512. ggml_set_name(b, "b");
  2513. ggml_tensor * out = ggml_acc(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], b->nb[1]);
  2514. ggml_set_name(out, "out");
  2515. return out;
  2516. }
  2517. };
  2518. // GGML_OP_PAD
  2519. struct test_pad : public test_case {
  2520. const ggml_type type;
  2521. const std::array<int64_t, 4> ne_a;
  2522. const int pad_0;
  2523. const int pad_1;
  2524. std::string vars() override {
  2525. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2526. }
  2527. test_pad(ggml_type type = GGML_TYPE_F32,
  2528. std::array<int64_t, 4> ne_a = {512, 512, 1, 1},
  2529. int pad_0 = 1, int pad_1 = 1)
  2530. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2531. ggml_tensor * build_graph(ggml_context * ctx) override {
  2532. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2533. ggml_set_name(a, "a");
  2534. ggml_tensor * out = ggml_pad(ctx, a, pad_0, pad_1, 0, 0);
  2535. ggml_set_name(out, "out");
  2536. return out;
  2537. }
  2538. };
  2539. // GGML_OP_PAD_REFLECT_1D
  2540. struct test_pad_reflect_1d : public test_case {
  2541. const ggml_type type;
  2542. const std::array<int64_t, 4> ne_a;
  2543. const int pad_0;
  2544. const int pad_1;
  2545. std::string vars() override {
  2546. return VARS_TO_STR4(type, ne_a, pad_0, pad_1);
  2547. }
  2548. test_pad_reflect_1d(ggml_type type = GGML_TYPE_F32,
  2549. std::array<int64_t, 4> ne_a = {512, 34, 2, 1},
  2550. int pad_0 = 10, int pad_1 = 9)
  2551. : type(type), ne_a(ne_a), pad_0(pad_0), pad_1(pad_1) {}
  2552. ggml_tensor * build_graph(ggml_context * ctx) override {
  2553. ggml_tensor * a = ggml_new_tensor(ctx, type, 2, ne_a.data());
  2554. ggml_set_name(a, "a");
  2555. ggml_tensor * out = ggml_pad_reflect_1d(ctx, a, pad_0, pad_1);
  2556. ggml_set_name(out, "out");
  2557. return out;
  2558. }
  2559. };
  2560. // GGML_OP_ARANGE
  2561. struct test_arange : public test_case {
  2562. const ggml_type type;
  2563. const float start;
  2564. const float stop;
  2565. const float step;
  2566. std::string vars() override {
  2567. return VARS_TO_STR4(type, start, stop, step);
  2568. }
  2569. test_arange(ggml_type type = GGML_TYPE_F32,
  2570. float start = 0.f, float stop = 10.f, float step = 1.f)
  2571. : type(type), start(start), stop(stop), step(step) {}
  2572. ggml_tensor * build_graph(ggml_context * ctx) override {
  2573. ggml_tensor * out = ggml_arange(ctx, start, stop, step);
  2574. ggml_set_name(out, "out");
  2575. return out;
  2576. }
  2577. };
  2578. // GGML_OP_TIMESTEP_EMBEDDING
  2579. struct test_timestep_embedding : public test_case {
  2580. const ggml_type type;
  2581. const std::array<int64_t, 4> ne_a;
  2582. const int dim;
  2583. const int max_period;
  2584. std::string vars() override {
  2585. return VARS_TO_STR4(type, ne_a, dim, max_period);
  2586. }
  2587. test_timestep_embedding(ggml_type type = GGML_TYPE_F32,
  2588. std::array<int64_t, 4> ne_a = {2, 1, 1, 1},
  2589. int dim = 320, int max_period=10000)
  2590. : type(type), ne_a(ne_a), dim(dim), max_period(max_period) {}
  2591. ggml_tensor * build_graph(ggml_context * ctx) override {
  2592. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2593. ggml_set_name(a, "a");
  2594. ggml_tensor * out = ggml_timestep_embedding(ctx, a, dim, max_period);
  2595. ggml_set_name(out, "out");
  2596. return out;
  2597. }
  2598. };
  2599. // GGML_OP_LEAKY_RELU
  2600. struct test_leaky_relu : public test_case {
  2601. const ggml_type type;
  2602. const std::array<int64_t, 4> ne_a;
  2603. const float negative_slope;
  2604. std::string vars() override {
  2605. return VARS_TO_STR3(type, ne_a, negative_slope);
  2606. }
  2607. test_leaky_relu(ggml_type type = GGML_TYPE_F32,
  2608. std::array<int64_t, 4> ne_a = {10, 5, 4, 3},
  2609. float negative_slope = 0.1f)
  2610. : type(type), ne_a(ne_a), negative_slope(negative_slope) {}
  2611. ggml_tensor * build_graph(ggml_context * ctx) override {
  2612. ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne_a.data());
  2613. ggml_set_name(a, "a");
  2614. ggml_tensor * out = ggml_leaky_relu(ctx, a, negative_slope, true);
  2615. ggml_set_name(out, "out");
  2616. return out;
  2617. }
  2618. };
  2619. // GGML_OP_FLASH_ATTN_EXT
  2620. struct test_flash_attn_ext : public test_case {
  2621. const int64_t hs; // head size
  2622. const int64_t nh; // num heads
  2623. const int64_t nr; // repeat in Q, tests for grouped-query attention
  2624. const int64_t kv; // kv size
  2625. const int64_t nb; // batch size
  2626. const bool mask; // use mask
  2627. const float max_bias; // ALiBi
  2628. const float logit_softcap; // Gemma 2
  2629. const ggml_prec prec;
  2630. const ggml_type type_KV;
  2631. std::array<int32_t, 4> permute;
  2632. std::string vars() override {
  2633. return VARS_TO_STR11(hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, permute);
  2634. }
  2635. double max_nmse_err() override {
  2636. return 5e-4;
  2637. }
  2638. uint64_t op_flops(ggml_tensor * t) override {
  2639. GGML_UNUSED(t);
  2640. // Just counting matmul costs:
  2641. // Q*K^T is nb x hs x kv, P*V is nb x kv x hs, per head
  2642. return 2 * 2 * nh*nr * nb * hs * kv;
  2643. }
  2644. test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t nr = 1, int64_t kv = 96, int64_t nb = 8,
  2645. bool mask = true, float max_bias = 0.0f, float logit_softcap = 0.0f, ggml_prec prec = GGML_PREC_F32,
  2646. ggml_type type_KV = GGML_TYPE_F16, std::array<int32_t, 4> permute = {0, 1, 2, 3})
  2647. : hs(hs), nh(nh), nr(nr), kv(kv), nb(nb), mask(mask), max_bias(max_bias), logit_softcap(logit_softcap), prec(prec), type_KV(type_KV), permute(permute) {}
  2648. ggml_tensor * build_graph(ggml_context * ctx) override {
  2649. const int64_t hs_padded = GGML_PAD(hs, ggml_blck_size(type_KV));
  2650. auto const &create_permuted = [&](ggml_type type, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) -> ggml_tensor * {
  2651. int64_t ne[4] = {ne0, ne1, ne2, ne3};
  2652. int64_t ne_perm[4];
  2653. for (int i = 0; i < 4; ++i) {
  2654. ne_perm[permute[i]] = ne[i];
  2655. }
  2656. ggml_tensor * t = ggml_new_tensor_4d(ctx, type, ne_perm[0], ne_perm[1], ne_perm[2], ne_perm[3]);
  2657. if (permute != std::array<int32_t, 4>{0, 1, 2, 3}) {
  2658. t = ggml_permute(ctx, t, permute[0], permute[1], permute[2], permute[3]);
  2659. }
  2660. return t;
  2661. };
  2662. ggml_tensor * q = create_permuted(GGML_TYPE_F32, hs_padded, nb, nh*nr, 1);
  2663. ggml_set_name(q, "q");
  2664. ggml_tensor * k = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2665. ggml_set_name(k, "k");
  2666. ggml_tensor * v = create_permuted(type_KV, hs_padded, kv, nh, 1);
  2667. ggml_set_name(v, "v");
  2668. ggml_tensor * m = nullptr;
  2669. if (mask) {
  2670. m = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1);
  2671. ggml_set_name(m, "m");
  2672. }
  2673. ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias, logit_softcap);
  2674. ggml_flash_attn_ext_set_prec(out, prec);
  2675. ggml_set_name(out, "out");
  2676. return out;
  2677. }
  2678. bool grad_precise() override {
  2679. return true;
  2680. }
  2681. };
  2682. // GGML_OP_CROSS_ENTROPY_LOSS
  2683. struct test_cross_entropy_loss : public test_case {
  2684. const ggml_type type;
  2685. const std::array<int64_t, 4> ne;
  2686. std::string vars() override {
  2687. return VARS_TO_STR2(type, ne);
  2688. }
  2689. test_cross_entropy_loss(ggml_type type = GGML_TYPE_F32,
  2690. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2691. : type(type), ne(ne) {}
  2692. ggml_tensor * build_graph(ggml_context * ctx) override {
  2693. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2694. ggml_set_param(ctx, logits);
  2695. ggml_set_name(logits, "logits");
  2696. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2697. // The labels are assumed to be constant -> no gradients.
  2698. ggml_set_name(labels, "labels");
  2699. // Ensure labels add up to 1:
  2700. labels = ggml_soft_max(ctx, labels);
  2701. ggml_set_name(labels, "labels_normalized");
  2702. ggml_tensor * out = ggml_cross_entropy_loss(ctx, logits, labels);
  2703. ggml_set_name(out, "out");
  2704. return out;
  2705. }
  2706. void initialize_tensors(ggml_context * ctx) override {
  2707. // For larger abs. diffs between logits softmax is more linear, therefore more precise num. gradients.
  2708. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2709. init_tensor_uniform(t, -100.0f, 100.0f);
  2710. }
  2711. }
  2712. float grad_eps() override {
  2713. return 1.0f;
  2714. }
  2715. bool grad_precise() override {
  2716. return true;
  2717. }
  2718. };
  2719. // GGML_OP_CROSS_ENTROPY_LOSS_BACK
  2720. struct test_cross_entropy_loss_back : public test_case {
  2721. const ggml_type type;
  2722. const std::array<int64_t, 4> ne;
  2723. std::string vars() override {
  2724. return VARS_TO_STR2(type, ne);
  2725. }
  2726. test_cross_entropy_loss_back(ggml_type type = GGML_TYPE_F32,
  2727. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2728. : type(type), ne(ne) {}
  2729. ggml_tensor * build_graph(ggml_context * ctx) override {
  2730. ggml_tensor * grad = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2731. ggml_set_name(grad, "grad");
  2732. ggml_tensor * logits = ggml_new_tensor(ctx, type, 4, ne.data());
  2733. ggml_set_name(logits, "logits");
  2734. ggml_tensor * labels = ggml_new_tensor(ctx, type, 4, ne.data());
  2735. ggml_set_name(labels, "labels");
  2736. // Ensure labels add up to 1:
  2737. labels = ggml_soft_max(ctx, labels);
  2738. ggml_set_name(labels, "labels_normalized");
  2739. ggml_tensor * out = ggml_cross_entropy_loss_back(ctx, grad, logits, labels);
  2740. ggml_set_name(out, "out");
  2741. return out;
  2742. }
  2743. };
  2744. // GGML_OP_OPT_STEP_ADAMW
  2745. struct test_opt_step_adamw : public test_case {
  2746. const ggml_type type;
  2747. const std::array<int64_t, 4> ne;
  2748. std::string vars() override {
  2749. return VARS_TO_STR2(type, ne);
  2750. }
  2751. test_opt_step_adamw(ggml_type type = GGML_TYPE_F32,
  2752. std::array<int64_t, 4> ne = {10, 5, 4, 3})
  2753. : type(type), ne(ne) {}
  2754. ggml_tensor * build_graph(ggml_context * ctx) override {
  2755. ggml_tensor * a = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2756. ggml_set_param(ctx, a); // Despite tensor a having gradients the output tensor will not.
  2757. ggml_set_name(a, "a");
  2758. ggml_tensor * grad = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2759. ggml_set_name(grad, "grad");
  2760. ggml_tensor * grad_m = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2761. ggml_set_name(grad_m, "grad_m");
  2762. ggml_tensor * grad_v = ggml_new_tensor_4d(ctx, type, ne[0], ne[1], ne[2], ne[3]);
  2763. ggml_set_name(grad_v, "grad_v");
  2764. ggml_tensor * adamw_params = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 7);
  2765. ggml_set_name(adamw_params, "adamw_params");
  2766. ggml_tensor * out = ggml_opt_step_adamw(ctx, a, grad, grad_m, grad_v, adamw_params);
  2767. ggml_set_name(out, "out");
  2768. return out;
  2769. }
  2770. void initialize_tensors(ggml_context * ctx) override {
  2771. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2772. init_tensor_uniform(t, 0.0f, 1.0f); // grad_v and adamw_params need non-negative values.
  2773. }
  2774. }
  2775. bool grad_precise() override {
  2776. return true;
  2777. }
  2778. };
  2779. enum llm_norm_type {
  2780. LLM_NORM,
  2781. LLM_NORM_RMS,
  2782. };
  2783. struct llama_hparams {
  2784. uint32_t n_vocab;
  2785. uint32_t n_embd;
  2786. uint32_t n_head;
  2787. uint32_t n_head_kv;
  2788. static constexpr uint32_t n_layer = 1;
  2789. uint32_t n_rot;
  2790. uint32_t n_embd_head; // dimension of values (d_v)
  2791. uint32_t n_ff;
  2792. float f_norm_eps;
  2793. float f_norm_rms_eps;
  2794. // cparams
  2795. static constexpr uint32_t n_ctx = 512; // user-specified context size
  2796. static constexpr uint32_t n_ctx_orig = n_ctx;
  2797. // batch
  2798. int32_t n_tokens;
  2799. // llm_build_context
  2800. static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
  2801. static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
  2802. uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
  2803. return n_embd_head * n_head_kv;
  2804. }
  2805. };
  2806. // LLM base class
  2807. struct test_llm : public test_case {
  2808. llama_hparams hp;
  2809. protected:
  2810. test_llm(llama_hparams hp)
  2811. : hp(std::move(hp)) {
  2812. }
  2813. public:
  2814. struct ggml_tensor * llm_build_norm(
  2815. struct ggml_context * ctx,
  2816. struct ggml_tensor * cur,
  2817. struct ggml_tensor * mw,
  2818. struct ggml_tensor * mb,
  2819. llm_norm_type type) {
  2820. switch (type) {
  2821. case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
  2822. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
  2823. }
  2824. cur = ggml_mul(ctx, cur, mw);
  2825. if (mb) {
  2826. cur = ggml_add(ctx, cur, mb);
  2827. }
  2828. return cur;
  2829. }
  2830. void llm_build_kv_store(
  2831. struct ggml_context * ctx,
  2832. struct ggml_tensor * k_l,
  2833. struct ggml_tensor * v_l,
  2834. struct ggml_tensor * k_cur,
  2835. struct ggml_tensor * v_cur) {
  2836. // compute the transposed [n_tokens, n_embd] V matrix
  2837. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
  2838. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
  2839. (ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
  2840. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
  2841. ( hp.n_ctx)*ggml_element_size(v_l),
  2842. (hp.kv_head)*ggml_element_size(v_l));
  2843. // important: storing RoPE-ed version of K in the KV cache!
  2844. ggml_cpy(ctx, k_cur, k_cache_view);
  2845. ggml_cpy(ctx, v_cur_t, v_cache_view);
  2846. }
  2847. struct ggml_tensor * llm_build_kqv(
  2848. struct ggml_context * ctx,
  2849. struct ggml_tensor * k_l,
  2850. struct ggml_tensor * v_l,
  2851. struct ggml_tensor * q_cur,
  2852. struct ggml_tensor * kq_mask,
  2853. float kq_scale) {
  2854. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  2855. struct ggml_tensor * k =
  2856. ggml_view_3d(ctx, k_l,
  2857. hp.n_embd_head, hp.n_kv, hp.n_head_kv,
  2858. ggml_row_size(k_l->type, hp.n_embd_gqa()),
  2859. ggml_row_size(k_l->type, hp.n_embd_head),
  2860. 0);
  2861. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  2862. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, 0.0f);
  2863. // split cached v into n_head heads
  2864. struct ggml_tensor * v =
  2865. ggml_view_3d(ctx, v_l,
  2866. hp.n_kv, hp.n_embd_head, hp.n_head_kv,
  2867. ggml_element_size(v_l)*hp.n_ctx,
  2868. ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
  2869. 0);
  2870. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  2871. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  2872. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
  2873. struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2874. cur = ggml_mul_mat(ctx, wo, cur);
  2875. return cur;
  2876. }
  2877. void initialize_tensors(ggml_context * ctx) override {
  2878. for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  2879. if (t->type == GGML_TYPE_I32) {
  2880. // pos
  2881. std::vector<int> data(hp.n_tokens);
  2882. for (int i = 0; i < hp.n_tokens; i++) {
  2883. data[i] = rand() % hp.n_ctx;
  2884. }
  2885. ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
  2886. } else {
  2887. init_tensor_uniform(t);
  2888. }
  2889. }
  2890. }
  2891. };
  2892. // Llama
  2893. struct test_llama : public test_llm {
  2894. static constexpr float freq_base = 10000.0f;
  2895. static constexpr float freq_scale = 1.0f;
  2896. static constexpr float ext_factor = 0.0f;
  2897. static constexpr float attn_factor = 1.0f;
  2898. static constexpr float beta_fast = 32.0f;
  2899. static constexpr float beta_slow = 1.0f;
  2900. std::string op_desc(ggml_tensor * t) override {
  2901. GGML_UNUSED(t);
  2902. return "LLAMA";
  2903. }
  2904. std::string vars() override {
  2905. auto n_tokens = hp.n_tokens;
  2906. return VARS_TO_STR1(n_tokens);
  2907. }
  2908. double max_nmse_err() override {
  2909. return 2e-3;
  2910. }
  2911. test_llama(int n_tokens = 1)
  2912. : test_llm({
  2913. /*n_vocab =*/ 32000,
  2914. /*n_embd =*/ 3200,
  2915. /*n_head =*/ 32,
  2916. /*n_head_kv =*/ 32,
  2917. /*n_rot =*/ 100,
  2918. /*n_embd_head =*/ 100,
  2919. /*n_ff =*/ 8640,
  2920. /*f_norm_eps =*/ 0.f,
  2921. /*f_norm_rms_eps =*/ 1e-5f,
  2922. /*n_tokens =*/ n_tokens,
  2923. }) {
  2924. }
  2925. ggml_tensor * build_graph(ggml_context * ctx) override {
  2926. struct ggml_tensor * cur;
  2927. struct ggml_tensor * inpL;
  2928. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  2929. // inp_pos - contains the positions
  2930. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  2931. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2932. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  2933. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2934. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  2935. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  2936. struct ggml_tensor * inpSA = inpL;
  2937. // norm
  2938. ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2939. cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
  2940. // self-attention
  2941. {
  2942. ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
  2943. ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2944. ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
  2945. // compute Q and K and RoPE them
  2946. struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
  2947. struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
  2948. struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
  2949. Qcur = ggml_rope_ext(
  2950. ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos, nullptr,
  2951. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2952. ext_factor, attn_factor, beta_fast, beta_slow
  2953. );
  2954. Kcur = ggml_rope_ext(
  2955. ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos, nullptr,
  2956. hp.n_rot, 0, hp.n_ctx_orig, freq_base, freq_scale,
  2957. ext_factor, attn_factor, beta_fast, beta_slow
  2958. );
  2959. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  2960. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  2961. }
  2962. struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
  2963. // feed-forward network
  2964. ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2965. cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
  2966. ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2967. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  2968. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  2969. struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
  2970. cur = ggml_mul_mat(ctx, ffn_gate, cur);
  2971. cur = ggml_silu(ctx, cur);
  2972. cur = ggml_mul(ctx, cur, tmp);
  2973. cur = ggml_mul_mat(ctx, ffn_down, cur);
  2974. cur = ggml_add(ctx, cur, ffn_inp);
  2975. // input for next layer
  2976. inpL = cur;
  2977. }
  2978. cur = inpL;
  2979. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  2980. cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
  2981. // lm_head
  2982. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
  2983. cur = ggml_mul_mat(ctx, output, cur);
  2984. return cur;
  2985. }
  2986. };
  2987. // Falcon
  2988. struct test_falcon : public test_llm {
  2989. static constexpr float freq_base = 10000.0f;
  2990. static constexpr float freq_scale = 1.0f;
  2991. static constexpr float ext_factor = 0.0f;
  2992. static constexpr float attn_factor = 1.0f;
  2993. static constexpr float beta_fast = 32.0f;
  2994. static constexpr float beta_slow = 1.0f;
  2995. std::string op_desc(ggml_tensor * t) override {
  2996. GGML_UNUSED(t);
  2997. return "FALCON";
  2998. }
  2999. std::string vars() override {
  3000. auto n_tokens = hp.n_tokens;
  3001. return VARS_TO_STR1(n_tokens);
  3002. }
  3003. double max_nmse_err() override {
  3004. return 2e-3;
  3005. }
  3006. test_falcon(int n_tokens = 1)
  3007. : test_llm({
  3008. /*n_vocab =*/ 32000,
  3009. /*n_embd =*/ 3200,
  3010. /*n_head =*/ 50,
  3011. /*n_head_kv =*/ 1,
  3012. /*n_rot =*/ 64,
  3013. /*n_embd_head =*/ 64,
  3014. /*n_ff =*/ 8640,
  3015. /*f_norm_eps =*/ 1e-5f,
  3016. /*f_norm_rms_eps =*/ 0.f,
  3017. /*n_tokens =*/ n_tokens,
  3018. }) {
  3019. }
  3020. ggml_tensor * build_graph(ggml_context * ctx) override {
  3021. struct ggml_tensor * cur;
  3022. struct ggml_tensor * inpL;
  3023. inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
  3024. // inp_pos - contains the positions
  3025. struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
  3026. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3027. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F16, hp.n_kv, hp.n_tokens, 1);
  3028. ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3029. ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
  3030. for (uint32_t il = 0; il < hp.n_layer; ++il) {
  3031. // norm
  3032. ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3033. ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3034. ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
  3035. // self-attention
  3036. {
  3037. cur = attn_norm;
  3038. ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
  3039. cur = ggml_mul_mat(ctx, wqkv, cur);
  3040. struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
  3041. struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
  3042. struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
  3043. Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
  3044. Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
  3045. // using mode = 2 for neox mode
  3046. Qcur = ggml_rope_ext(
  3047. ctx, Qcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3048. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3049. );
  3050. Kcur = ggml_rope_ext(
  3051. ctx, Kcur, inp_pos, nullptr, hp.n_rot, 2, hp.n_ctx_orig,
  3052. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  3053. );
  3054. llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
  3055. cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
  3056. }
  3057. struct ggml_tensor * ffn_inp = cur;
  3058. // feed forward
  3059. {
  3060. ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
  3061. ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
  3062. cur = attn_norm;
  3063. cur = ggml_mul_mat(ctx, ffn_up, cur);
  3064. cur = ggml_gelu(ctx, cur);
  3065. cur = ggml_mul_mat(ctx, ffn_down, cur);
  3066. }
  3067. cur = ggml_add(ctx, cur, ffn_inp);
  3068. cur = ggml_add(ctx, cur, inpL);
  3069. // input for next layer
  3070. inpL = cur;
  3071. }
  3072. cur = inpL;
  3073. ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3074. ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
  3075. cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
  3076. // lm_head
  3077. ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
  3078. cur = ggml_mul_mat(ctx, output, cur);
  3079. return cur;
  3080. }
  3081. };
  3082. // ###########################################
  3083. // ## Section 3: GGML Op Test Instantiation ##
  3084. // ###########################################
  3085. static const ggml_type all_types[] = {
  3086. GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16,
  3087. GGML_TYPE_Q4_0, GGML_TYPE_Q4_1,
  3088. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3089. GGML_TYPE_Q8_0,
  3090. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3091. GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
  3092. GGML_TYPE_Q6_K,
  3093. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3094. GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3095. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3096. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3097. };
  3098. static const ggml_type base_types[] = {
  3099. GGML_TYPE_F32, GGML_TYPE_F16,
  3100. GGML_TYPE_Q8_0, // for I8MM tests
  3101. GGML_TYPE_Q4_0,
  3102. GGML_TYPE_Q4_1, // for I8MM tests
  3103. GGML_TYPE_Q4_K,
  3104. GGML_TYPE_IQ2_XXS
  3105. };
  3106. static const ggml_type other_types[] = {
  3107. GGML_TYPE_Q4_1,
  3108. GGML_TYPE_Q5_0, GGML_TYPE_Q5_1,
  3109. GGML_TYPE_Q8_0,
  3110. GGML_TYPE_Q2_K, GGML_TYPE_Q3_K,
  3111. GGML_TYPE_Q5_K,
  3112. GGML_TYPE_Q6_K,
  3113. // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends
  3114. GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S,
  3115. GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M,
  3116. GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS,
  3117. GGML_TYPE_BF16,
  3118. };
  3119. // Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low
  3120. static std::vector<std::unique_ptr<test_case>> make_test_cases_eval() {
  3121. std::vector<std::unique_ptr<test_case>> test_cases;
  3122. std::default_random_engine rng(0);
  3123. // unary ops
  3124. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3125. for (int v : {0, 1}) {
  3126. for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) {
  3127. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 128, 2, 2, 2 }, v));
  3128. test_cases.emplace_back(new test_unary((ggml_unary_op) op, type, { 5, 7, 11, 13 }, v));
  3129. }
  3130. }
  3131. }
  3132. test_cases.emplace_back(new test_get_rows(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3133. for (ggml_type type : all_types) {
  3134. for (int b : {1, 7}) {
  3135. for (bool v : {false, true}) {
  3136. test_cases.emplace_back(new test_get_rows(type, 256, 5, 4, b, v));
  3137. }
  3138. }
  3139. }
  3140. for (int b : {1, 7}) {
  3141. for (bool v : {false, true}) {
  3142. test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
  3143. }
  3144. }
  3145. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_F32, 1, 8, 2, 1, false));
  3146. for (ggml_type type : all_types) {
  3147. for (bool v : {false, true}) {
  3148. test_cases.emplace_back(new test_get_rows_back(type, 256, 5, 4, 1, v));
  3149. }
  3150. }
  3151. for (bool v : {false, true}) {
  3152. test_cases.emplace_back(new test_get_rows_back(GGML_TYPE_I32, 256, 5, 4, 1, v));
  3153. }
  3154. for (ggml_type type_input : {GGML_TYPE_F32}) {
  3155. for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
  3156. for (int k0 : {1, 3}) {
  3157. for (int k1 : {1, 3}) {
  3158. for (int s0 : {1, 2}) {
  3159. for (int s1 : {1, 2}) {
  3160. for (int p0 : {0, 1}) {
  3161. for (int p1 : {0, 1}) {
  3162. test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
  3163. }
  3164. }
  3165. }
  3166. }
  3167. }
  3168. }
  3169. }
  3170. }
  3171. // im2col 1D
  3172. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3173. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3174. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {3000, 128, 1, 1}, {3, 128, 1280, 1}, 1, 0, 1, 0, 1, 0, false));
  3175. for (int s0 : {1, 3}) {
  3176. for (int p0 : {0, 3}) {
  3177. for (int d0 : {1, 3}) {
  3178. test_cases.emplace_back(new test_im2col(
  3179. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 2, 2, 1}, {3, 2, 2, 1},
  3180. s0, 0, p0, 0, d0, 0, false));
  3181. }
  3182. }
  3183. }
  3184. // im2col 2D
  3185. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32));
  3186. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
  3187. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
  3188. for (int s0 : {1, 3}) {
  3189. for (int s1 : {1, 3}) {
  3190. for (int p0 : {0, 3}) {
  3191. for (int p1 : {0, 3}) {
  3192. for (int d0 : {1, 3}) {
  3193. for (int d1 : {1, 3}) {
  3194. test_cases.emplace_back(new test_im2col(
  3195. GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32, {20, 20, 2, 2}, {3, 3, 2, 2},
  3196. s0, s1, p0, p1, d0, d1, true));
  3197. }
  3198. }
  3199. }
  3200. }
  3201. }
  3202. }
  3203. // extra tests for im2col 2D
  3204. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 32}, {3, 3, 1, 32}, 1, 1, 1, 1, 1, 1, true));
  3205. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 32}, {3, 3, 2, 32}, 1, 1, 1, 1, 1, 1, true));
  3206. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 1024}, {3, 3, 1, 1024}, 1, 1, 1, 1, 1, 1, true));
  3207. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 1024}, {3, 3, 2, 1024}, 1, 1, 1, 1, 1, 1, true));
  3208. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2048}, {3, 3, 1, 2048}, 1, 1, 1, 1, 1, 1, true));
  3209. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2048}, {3, 3, 2, 2048}, 1, 1, 1, 1, 1, 1, true));
  3210. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 1, 2560}, {3, 3, 1, 2560}, 1, 1, 1, 1, 1, 1, true));
  3211. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {12, 12, 2, 2560}, {3, 3, 2, 2560}, 1, 1, 1, 1, 1, 1, true));
  3212. // sycl backend will limit task global_range < MAX_INT
  3213. // test cases for 2D im2col with large input W and H (occurs in stable-diffusion)
  3214. // however these cases need to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3215. // these cases are verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3216. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3217. // test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {1024, 1024, 256, 1}, {3, 3, 256, 1}, 1, 1, 1, 1, 1, 1, true));
  3218. test_cases.emplace_back(new test_conv_transpose_1d());
  3219. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 3, 0, 1));
  3220. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 2, 0, 1));
  3221. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {2,3,2,1}, 1, 0, 1));
  3222. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 2, 0, 1));
  3223. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,2,2,1}, 1, 0, 1));
  3224. test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1));
  3225. test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1));
  3226. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 500, 1, 1}));
  3227. test_cases.emplace_back(new test_count_equal(GGML_TYPE_F32, {4, 5000, 1, 1}));
  3228. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 1, 1, 1}));
  3229. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {100, 10, 1, 1}));
  3230. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3231. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 12, 1, 1}));
  3232. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {2000, 10, 1, 1}));
  3233. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {5438, 3, 1, 1}));
  3234. for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1
  3235. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1}));
  3236. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3237. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 2, 1, 1}));
  3238. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 2, 1}));
  3239. test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3240. test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 5, 4, ne3}, {2, 1, 1, 1}));
  3241. test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 5, 4, ne3}, {1, 1, 1, 2}));
  3242. }
  3243. for (bool view : {false, true}) {
  3244. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 1}, view));
  3245. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {2, 1, 1, 1}, view));
  3246. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 2, 1, 1}, view));
  3247. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 2, 1}, view));
  3248. test_cases.emplace_back(new test_repeat_back(GGML_TYPE_F32, {8, 6, 4, 2}, {1, 1, 1, 2}, view));
  3249. }
  3250. test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
  3251. test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
  3252. test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
  3253. test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
  3254. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {0, 2, 1, 3}));
  3255. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows
  3256. test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3}));
  3257. test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous
  3258. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
  3259. test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
  3260. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3261. test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));
  3262. }
  3263. for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) {
  3264. test_cases.emplace_back(new test_set(GGML_TYPE_I32, GGML_TYPE_I32, {6, 5, 4, 3}, dim));
  3265. }
  3266. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3267. for (ggml_type type_dst : all_types) {
  3268. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3269. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3270. }
  3271. }
  3272. for (ggml_type type_dst : {GGML_TYPE_F32}) {
  3273. for (ggml_type type_src : all_types) {
  3274. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
  3275. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {0, 2, 1, 3})); // cpy by rows
  3276. }
  3277. }
  3278. for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3279. for (ggml_type type_dst : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3280. test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 2, 3, 4}, {1, 0, 2, 3})); // cpy not-contiguous
  3281. }
  3282. }
  3283. test_cases.emplace_back(new test_cont());
  3284. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 1 ,1}));
  3285. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 1, 3 ,5}));
  3286. test_cases.emplace_back(new test_cont(GGML_TYPE_F32, {2, 3, 5 ,7}));
  3287. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 1 ,1}));
  3288. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 1, 3 ,5}));
  3289. test_cases.emplace_back(new test_cont(GGML_TYPE_F16, {2, 3, 5 ,7}));
  3290. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 1 ,1}));
  3291. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 1, 3 ,5}));
  3292. test_cases.emplace_back(new test_cont(GGML_TYPE_BF16, {2, 3, 5 ,7}));
  3293. auto add_test_bin_bcast = [&](ggml_type type, std::array<int64_t, 4> ne, std::array<int, 4> nr) {
  3294. for (auto op : {ggml_add, ggml_sub, ggml_mul, ggml_div}) {
  3295. test_cases.emplace_back(new test_bin_bcast(op, type, ne, nr));
  3296. }
  3297. };
  3298. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3299. add_test_bin_bcast(type, {1, 1, 8, 1}, {1, 1, 1, 1});
  3300. add_test_bin_bcast(type, {1, 1, 1, 1}, {32, 1, 1, 1});
  3301. add_test_bin_bcast(type, {1, 1, 320, 320}, {1, 1, 1, 1});
  3302. add_test_bin_bcast(type, {10, 5, 1, 1}, {1, 1, 1, 1});
  3303. add_test_bin_bcast(type, {10, 5, 4, 1}, {1, 1, 1, 1});
  3304. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 1});
  3305. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 1, 1, 1});
  3306. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 1, 1});
  3307. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 1});
  3308. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 1, 2});
  3309. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 1, 2, 2});
  3310. add_test_bin_bcast(type, {10, 5, 4, 3}, {1, 2, 2, 2});
  3311. add_test_bin_bcast(type, {10, 5, 4, 3}, {2, 2, 2, 2});
  3312. // stable diffusion
  3313. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 1, 1, 1});
  3314. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 16, 16, 1});
  3315. add_test_bin_bcast(type, {1280, 16, 16, 1}, {1, 1, 1, 1});
  3316. add_test_bin_bcast(type, {1280, 1, 1, 1}, {1, 256, 1, 1});
  3317. add_test_bin_bcast(type, {1, 1, 1280, 1}, {16, 16, 1, 1});
  3318. add_test_bin_bcast(type, {16, 16, 1280, 1}, {1, 1, 1, 1});
  3319. add_test_bin_bcast(type, {1, 1, 1920, 1}, {16, 16, 1, 1});
  3320. add_test_bin_bcast(type, {1, 1, 2560, 1}, {16, 16, 1, 1});
  3321. add_test_bin_bcast(type, {1, 1, 1280, 1}, {32, 32, 1, 1});
  3322. add_test_bin_bcast(type, {1, 1, 1920, 1}, {32, 32, 1, 1});
  3323. add_test_bin_bcast(type, {1, 1, 640, 1}, {32, 32, 1, 1});
  3324. add_test_bin_bcast(type, {5120, 1, 1, 1}, {1, 256, 1, 1});
  3325. add_test_bin_bcast(type, {640, 1, 1, 1}, {1, 1, 1, 1});
  3326. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {1, 1, 1, 1});
  3327. //add_test_bin_bcast(type, {3, 3, 2560, 1280}, {2, 1, 1, 1});
  3328. }
  3329. test_cases.emplace_back(new test_add1());
  3330. test_cases.emplace_back(new test_scale());
  3331. test_cases.emplace_back(new test_silu_back());
  3332. for (float eps : {0.0f, 1e-6f, 1e-4f, 1e-1f}) {
  3333. for (bool v : {false, true}) {
  3334. test_cases.emplace_back(new test_norm (GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3335. test_cases.emplace_back(new test_rms_norm(GGML_TYPE_F32, {64, 5, 4, 3}, v, eps));
  3336. }
  3337. test_cases.emplace_back(new test_rms_norm_back(GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3338. test_cases.emplace_back(new test_l2_norm (GGML_TYPE_F32, {64, 5, 4, 3}, eps));
  3339. }
  3340. test_cases.emplace_back(new test_l2_norm(GGML_TYPE_F32, {64, 5, 4, 3}, 1e-12f));
  3341. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 1, 1}, {4, 1536, 1, 1}));
  3342. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {8, 1536, 1, 1}, {4, 1536, 1, 1}));
  3343. test_cases.emplace_back(new test_ssm_conv(GGML_TYPE_F32, {4, 1536, 4, 1}, {4, 1536, 1, 1}));
  3344. test_cases.emplace_back(new test_ssm_scan(GGML_TYPE_F32, 16, 1024, 32, 4));
  3345. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 1, 1));
  3346. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 1));
  3347. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 32, 4));
  3348. test_cases.emplace_back(new test_rwkv_wkv6(GGML_TYPE_F32, 32, 64, 128, 4));
  3349. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 1, 1));
  3350. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 1));
  3351. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 32, 4));
  3352. test_cases.emplace_back(new test_rwkv_wkv7(GGML_TYPE_F32, 32, 64, 128, 4));
  3353. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 1, 1));
  3354. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 1));
  3355. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 32, 4));
  3356. test_cases.emplace_back(new test_gla(GGML_TYPE_F32, 32, 64, 128, 4));
  3357. for (ggml_type type_a : all_types) {
  3358. for (int i = 1; i < 10; ++i) {
  3359. test_cases.emplace_back(new test_mul_mat(type_a, GGML_TYPE_F32, 16, i, 256, { 1, 1}, {1, 1}));
  3360. }
  3361. }
  3362. #if 1
  3363. for (ggml_type type_a : base_types) {
  3364. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3365. // test cases without permutation
  3366. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3367. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {2, 1}));
  3368. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 2}));
  3369. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {1, 1}));
  3370. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 1}, {2, 1}));
  3371. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 1}));
  3372. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 1}));
  3373. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {1, 2}));
  3374. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {3, 2}, {2, 2}));
  3375. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 1}));
  3376. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {2, 1}));
  3377. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {1, 1}, {1, 2}));
  3378. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {1, 1}));
  3379. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 1}, {2, 1}));
  3380. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 1}));
  3381. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 1}));
  3382. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {1, 2}));
  3383. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {3, 2}, {2, 2}));
  3384. // test cases with permutation
  3385. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3386. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3387. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3388. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3389. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3390. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 8, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3391. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 2, 1, 3}));
  3392. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 1, 3, 2}));
  3393. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {2, 3}, {1, 1}, {0, 3, 2, 1}));
  3394. }
  3395. }
  3396. for (ggml_type type_a : other_types) {
  3397. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3398. if (ggml_blck_size(type_a) != 256) {
  3399. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1}));
  3400. }
  3401. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1}));
  3402. }
  3403. }
  3404. #else
  3405. // m = a rows
  3406. // n = b rows
  3407. // k = cols
  3408. std::uniform_int_distribution<> dist_m(1, 128);
  3409. std::uniform_int_distribution<> dist_n(16, 128);
  3410. std::uniform_int_distribution<> dist_k(1, 16);
  3411. for (int i = 0; i < 1000; i++) {
  3412. for (ggml_type type_a : all_types) {
  3413. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3414. int m = dist_m(rng);
  3415. int n = dist_n(rng);
  3416. int k = dist_k(rng) * ggml_blck_size(type_a);
  3417. test_cases.emplace_back(new test_mul_mat(type_a, type_b, m, n, k, { 1, 1}, {1, 1}));
  3418. }
  3419. }
  3420. }
  3421. #endif
  3422. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1}));
  3423. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1}));
  3424. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1}));
  3425. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 64, { 8, 1}, {4, 1}));
  3426. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 45, 128, { 8, 1}, {4, 1}));
  3427. test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 128, 45, 64, { 8, 1}, {4, 1}));
  3428. // sycl backend will limit task global_range < MAX_INT
  3429. // test case for f16-type-convert-to-fp32 kernel with large k under fp32 compute dtype (occurs in stable-diffusion)
  3430. // however this case needs to alloc more memory which may fail in some devices (Intel Arc770, etc.)
  3431. // this case is verified (pass) in Intel(R) Data Center GPU Max 1100 (sycl backend) and NV A30 (cuda backend)
  3432. // test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F16, 512, 262144, 9216, {1, 1}, {1, 1}));
  3433. for (ggml_type type_a : base_types) {
  3434. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3435. for (int n_mats : {4, 8}) {
  3436. for (int n_used : {1, 2, 4}) {
  3437. for (bool b : {false, true}) {
  3438. for (int n : {1, 32, 129}) {
  3439. int m = 512;
  3440. int k = 256;
  3441. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3442. }
  3443. }
  3444. }
  3445. }
  3446. }
  3447. }
  3448. for (ggml_type type_a : other_types) {
  3449. for (ggml_type type_b : {GGML_TYPE_F32 /*, GGML_TYPE_F16 */}) {
  3450. for (int n_mats : {4}) {
  3451. for (int n_used : {2}) {
  3452. for (bool b : {false}) {
  3453. for (int n : {1, 32}) {
  3454. int m = 512;
  3455. int k = 256;
  3456. test_cases.emplace_back(new test_mul_mat_id(type_a, type_b, n_mats, n_used, b, m, n, k));
  3457. }
  3458. }
  3459. }
  3460. }
  3461. }
  3462. }
  3463. for (ggml_type type_a : base_types) {
  3464. for (ggml_type type_b : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3465. for (int n : {1, 16}) {
  3466. for (int k : {1, 16}) {
  3467. for (int bs2 : {1, 3}) {
  3468. for (int bs3 : {1, 3}) {
  3469. for (int nr2 : {1, 2}) {
  3470. for (int nr3 : {1, 2}) {
  3471. test_cases.emplace_back(new test_out_prod(type_a, type_b, 256, n, k, {bs2, bs3}, {nr2, nr3}));
  3472. }
  3473. }
  3474. }
  3475. }
  3476. }
  3477. }
  3478. }
  3479. }
  3480. for (ggml_type type : {GGML_TYPE_F16, GGML_TYPE_F32}) {
  3481. test_cases.emplace_back(new test_sqr(type));
  3482. test_cases.emplace_back(new test_sqrt(type));
  3483. test_cases.emplace_back(new test_log(type));
  3484. test_cases.emplace_back(new test_sin(type));
  3485. test_cases.emplace_back(new test_cos(type));
  3486. test_cases.emplace_back(new test_clamp(type));
  3487. }
  3488. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 1, 1}, 5));
  3489. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 1}, 5));
  3490. test_cases.emplace_back(new test_diag_mask_inf(GGML_TYPE_F32, {10, 10, 3, 2}, 5));
  3491. #if 0
  3492. std::uniform_int_distribution<> dist_ne1(1, 50);
  3493. int exponent = 1;
  3494. while (exponent < (1 << 17)) {
  3495. std::uniform_int_distribution<> dist_ne0(exponent, 2*exponent);
  3496. for (int n = 0; n < 10; ++n) {
  3497. int64_t ne0 = dist_ne0(rng);
  3498. int64_t ne1 = dist_ne1(rng);
  3499. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, GGML_TYPE_F32, {ne0, ne1, 1, 1}, n/2 == 0, 0.1f, ne0 < 1000 ? 4.0f : 0.0f));
  3500. }
  3501. exponent <<= 1;
  3502. }
  3503. #endif
  3504. for (bool mask : {false, true}) {
  3505. for (float max_bias : {0.0f, 8.0f}) {
  3506. if (!mask && max_bias > 0.0f) continue;
  3507. for (float scale : {1.0f, 0.1f}) {
  3508. for (int64_t ne0 : {16, 1024}) {
  3509. for (int64_t ne1 : {16, 1024}) {
  3510. if (mask) {
  3511. for (ggml_type m_prec : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3512. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, m_prec, scale, max_bias));
  3513. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, m_prec, scale, max_bias));
  3514. }
  3515. } else {
  3516. /* The precision of mask here doesn't matter as boolean mask is false */
  3517. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0, ne1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3518. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, mask, GGML_TYPE_F32, scale, max_bias));
  3519. }
  3520. }
  3521. }
  3522. }
  3523. }
  3524. }
  3525. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3526. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3527. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, false, GGML_TYPE_F32, 0.1f, 0.0f));
  3528. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 0.0f));
  3529. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 0.0f));
  3530. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F32, 0.1f, 8.0f));
  3531. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, true, GGML_TYPE_F16, 0.1f, 8.0f));
  3532. for (float max_bias : {0.0f, 8.0f}) {
  3533. for (float scale : {1.0f, 0.1f}) {
  3534. for (int64_t ne0 : {16, 1024}) {
  3535. for (int64_t ne1 : {16, 1024}) {
  3536. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0, ne1, 1, 1}, scale, max_bias));
  3537. test_cases.emplace_back(new test_soft_max_back(GGML_TYPE_F32, {ne0-1, ne1-1, 1, 1}, scale, max_bias));
  3538. }
  3539. }
  3540. }
  3541. }
  3542. for (bool fw : {true, false}) { // fw == forward
  3543. bool all = true;
  3544. for (float v : { 0, 1 }) {
  3545. for (float fs : { 1.0f, 1.4245f }) {
  3546. for (float ef : { 0.0f, 0.7465f }) {
  3547. for (float af : { 1.0f, 1.4245f }) {
  3548. for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
  3549. for (bool ff : {false, true}) { // freq_factors
  3550. test_cases.emplace_back(new test_rope(type, {128, 32, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 7B
  3551. if (all) {
  3552. test_cases.emplace_back(new test_rope(type, {128, 40, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 13B
  3553. test_cases.emplace_back(new test_rope(type, {128, 52, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 30B
  3554. test_cases.emplace_back(new test_rope(type, {128, 64, 2, 1}, 128, 0, 512, fs, ef, af, ff, v, fw)); // llama 65B
  3555. }
  3556. if (all) {
  3557. test_cases.emplace_back(new test_rope(type, { 64, 1, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3558. test_cases.emplace_back(new test_rope(type, { 64, 71, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 7B)
  3559. test_cases.emplace_back(new test_rope(type, { 64, 8, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3560. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 20, 2, 512, fs, ef, af, ff, v, fw)); // neox (stablelm)
  3561. test_cases.emplace_back(new test_rope(type, { 80, 32, 2, 1}, 32, 2, 512, fs, ef, af, ff, v, fw)); // neox (phi-2)
  3562. }
  3563. if (all) {
  3564. test_cases.emplace_back(new test_rope(type, {128, 12, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 2B)
  3565. test_cases.emplace_back(new test_rope(type, {128, 28, 2, 1}, 128, GGML_ROPE_TYPE_MROPE, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl 7B)
  3566. test_cases.emplace_back(new test_rope(type, { 80, 16, 2, 1}, 80, GGML_ROPE_TYPE_VISION, 512, fs, ef, af, ff, v, fw)); // rope_multi,m-rope (qwen2vl ViT)
  3567. }
  3568. test_cases.emplace_back(new test_rope(type, { 64, 128, 2, 1}, 64, 2, 512, fs, ef, af, ff, v, fw)); // neox (falcon 40B)
  3569. }
  3570. }
  3571. all = false;
  3572. }
  3573. }
  3574. }
  3575. }
  3576. }
  3577. for (int v : { 0, 1, 2, 3 }) {
  3578. for (int dim : { 0, 1, 2, 3, }) {
  3579. test_cases.emplace_back(new test_concat(GGML_TYPE_F32, {11, 12, 13, 14}, 7, dim, v));
  3580. test_cases.emplace_back(new test_concat(GGML_TYPE_I32, {11, 12, 13, 14}, 7, dim, v));
  3581. }
  3582. }
  3583. for (ggml_sort_order order : {GGML_SORT_ORDER_ASC, GGML_SORT_ORDER_DESC}) {
  3584. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
  3585. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {16, 10, 10, 10}, order));
  3586. test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {60, 10, 10, 10}, order)); // qwen
  3587. }
  3588. test_cases.emplace_back(new test_sum());
  3589. test_cases.emplace_back(new test_sum_rows());
  3590. test_cases.emplace_back(new test_mean());
  3591. test_cases.emplace_back(new test_upscale());
  3592. test_cases.emplace_back(new test_upscale(GGML_TYPE_F32, { 512, 512, 3, 1 }, 2, true));
  3593. test_cases.emplace_back(new test_upscale_ext());
  3594. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {64, 64, 320, 1}));
  3595. test_cases.emplace_back(new test_group_norm(GGML_TYPE_F32, {9, 9, 1280, 1}));
  3596. test_cases.emplace_back(new test_acc());
  3597. test_cases.emplace_back(new test_pad());
  3598. test_cases.emplace_back(new test_pad_reflect_1d());
  3599. test_cases.emplace_back(new test_arange());
  3600. test_cases.emplace_back(new test_timestep_embedding());
  3601. test_cases.emplace_back(new test_leaky_relu());
  3602. for (int hs : { 64, 80, 128, 256, }) {
  3603. for (bool mask : { true, false } ) {
  3604. for (float max_bias : { 0.0f, 8.0f }) {
  3605. if (!mask && max_bias > 0.0f) continue;
  3606. for (float logit_softcap : {0.0f, 10.0f}) {
  3607. if (hs != 128 && logit_softcap != 0.0f) continue;
  3608. for (int nh : { 4, }) {
  3609. for (int nr : { 1, 4, 16 }) {
  3610. if (nr == 16 && hs != 128) continue;
  3611. for (int kv : { 512, 1024, }) {
  3612. if (nr != 1 && kv != 512) continue;
  3613. for (int nb : { 1, 3, 32, 35, }) {
  3614. for (ggml_prec prec : {GGML_PREC_F32, GGML_PREC_DEFAULT}) {
  3615. if (hs != 128 && prec == GGML_PREC_DEFAULT) continue;
  3616. for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_BF16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
  3617. test_cases.emplace_back(new test_flash_attn_ext(
  3618. hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV));
  3619. // run fewer test cases permuted
  3620. if (mask == true && max_bias == 0.0f && logit_softcap == 0 && kv == 512) {
  3621. test_cases.emplace_back(new test_flash_attn_ext(
  3622. hs, nh, nr, kv, nb, mask, max_bias, logit_softcap, prec, type_KV, {0, 2, 1, 3}));
  3623. }
  3624. }
  3625. }
  3626. }
  3627. }
  3628. }
  3629. }
  3630. }
  3631. }
  3632. }
  3633. }
  3634. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, { 10, 5, 4, 3}));
  3635. test_cases.emplace_back(new test_cross_entropy_loss (GGML_TYPE_F32, {30000, 1, 1, 1}));
  3636. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, { 10, 5, 4, 3}));
  3637. test_cases.emplace_back(new test_cross_entropy_loss_back(GGML_TYPE_F32, {30000, 1, 1, 1}));
  3638. test_cases.emplace_back(new test_opt_step_adamw(GGML_TYPE_F32, {10, 5, 4, 3}));
  3639. // these tests are disabled to save execution time, but they can be handy for debugging
  3640. #if 0
  3641. test_cases.emplace_back(new test_llama(1));
  3642. test_cases.emplace_back(new test_llama(2));
  3643. test_cases.emplace_back(new test_falcon(1));
  3644. test_cases.emplace_back(new test_falcon(2));
  3645. #endif
  3646. return test_cases;
  3647. }
  3648. // Test cases for performance evaluation: should be representative of real-world use cases
  3649. static std::vector<std::unique_ptr<test_case>> make_test_cases_perf() {
  3650. std::vector<std::unique_ptr<test_case>> test_cases;
  3651. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 1, 1, 1}));
  3652. test_cases.emplace_back(new test_bin_bcast(ggml_add, GGML_TYPE_F32, {4096, 1, 1, 1}, {1, 512, 1, 1}));
  3653. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F16, {512, 3072, 1, 1}));
  3654. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {8192, 512, 2, 1}, {0, 2, 1, 3}));
  3655. test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, GGML_TYPE_F32, {3072, 512, 2, 1}, {0, 2, 1, 3}));
  3656. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {4096, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3657. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 4096, 5, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3658. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {1024, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3659. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 1024, 10, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3660. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {256, 256, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3661. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {64, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3662. test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {77, 64, 20, 1}, false, GGML_TYPE_F32, 1.0f, 0.0f));
  3663. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32, 10, 1, 1}));
  3664. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {1024, 10, 1, 1}));
  3665. test_cases.emplace_back(new test_argmax(GGML_TYPE_F32, {32000, 512, 1, 1}));
  3666. for (int bs : {1, 2, 3, 4, 5, 8, 512}) {
  3667. for (ggml_type type_a : all_types) {
  3668. for (ggml_type type_b : {GGML_TYPE_F32}) {
  3669. test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 14336, {1, 1}, {1, 1}));
  3670. }
  3671. }
  3672. }
  3673. for (int K : {3, 5}) {
  3674. for (int IC : {256, 2560}) {
  3675. for (int IW_IH : {32, 64, 256}) {
  3676. if (IC == 2560 && IW_IH == 256) {
  3677. // too big
  3678. continue;
  3679. }
  3680. test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32, {IW_IH, IW_IH, IC, 1}, {K, K, IC, 1}, 1, 1, 1, 1, 1, 1, true));
  3681. }
  3682. }
  3683. }
  3684. return test_cases;
  3685. }
  3686. static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name, const char * params_filter) {
  3687. auto filter_test_cases = [](std::vector<std::unique_ptr<test_case>> & test_cases, const char * params_filter) {
  3688. if (params_filter == nullptr) {
  3689. return;
  3690. }
  3691. std::regex params_filter_regex(params_filter);
  3692. for (auto it = test_cases.begin(); it != test_cases.end();) {
  3693. if (!std::regex_search((*it)->vars(), params_filter_regex)) {
  3694. it = test_cases.erase(it);
  3695. continue;
  3696. }
  3697. it++;
  3698. }
  3699. };
  3700. if (mode == MODE_TEST) {
  3701. auto test_cases = make_test_cases_eval();
  3702. filter_test_cases(test_cases, params_filter);
  3703. ggml_backend_t backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, NULL);
  3704. if (backend_cpu == NULL) {
  3705. printf(" Failed to initialize CPU backend\n");
  3706. return false;
  3707. }
  3708. size_t n_ok = 0;
  3709. for (auto & test : test_cases) {
  3710. if (test->eval(backend, backend_cpu, op_name)) {
  3711. n_ok++;
  3712. }
  3713. }
  3714. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3715. ggml_backend_free(backend_cpu);
  3716. return n_ok == test_cases.size();
  3717. }
  3718. if (mode == MODE_GRAD) {
  3719. auto test_cases = make_test_cases_eval();
  3720. filter_test_cases(test_cases, params_filter);
  3721. size_t n_ok = 0;
  3722. for (auto & test : test_cases) {
  3723. if (test->eval_grad(backend, op_name)) {
  3724. n_ok++;
  3725. }
  3726. }
  3727. printf(" %zu/%zu tests passed\n", n_ok, test_cases.size());
  3728. return n_ok == test_cases.size();
  3729. }
  3730. if (mode == MODE_PERF) {
  3731. auto test_cases = make_test_cases_perf();
  3732. filter_test_cases(test_cases, params_filter);
  3733. for (auto & test : test_cases) {
  3734. test->eval_perf(backend, op_name);
  3735. }
  3736. return true;
  3737. }
  3738. GGML_ABORT("fatal error");
  3739. }
  3740. static void usage(char ** argv) {
  3741. printf("Usage: %s [mode] [-o <op>] [-b <backend>] [-p <params regex>]\n", argv[0]);
  3742. printf(" valid modes:\n");
  3743. printf(" - test (default, compare with CPU backend for correctness)\n");
  3744. printf(" - grad (compare gradients from backpropagation with method of finite differences)\n");
  3745. printf(" - perf (performance evaluation)\n");
  3746. printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n");
  3747. }
  3748. int main(int argc, char ** argv) {
  3749. test_mode mode = MODE_TEST;
  3750. const char * op_name_filter = nullptr;
  3751. const char * backend_filter = nullptr;
  3752. const char * params_filter = nullptr;
  3753. for (int i = 1; i < argc; i++) {
  3754. if (strcmp(argv[i], "test") == 0) {
  3755. mode = MODE_TEST;
  3756. } else if (strcmp(argv[i], "perf") == 0) {
  3757. mode = MODE_PERF;
  3758. } else if (strcmp(argv[i], "grad") == 0) {
  3759. mode = MODE_GRAD;
  3760. } else if (strcmp(argv[i], "-o") == 0) {
  3761. if (i + 1 < argc) {
  3762. op_name_filter = argv[++i];
  3763. } else {
  3764. usage(argv);
  3765. return 1;
  3766. }
  3767. } else if (strcmp(argv[i], "-b") == 0) {
  3768. if (i + 1 < argc) {
  3769. backend_filter = argv[++i];
  3770. } else {
  3771. usage(argv);
  3772. return 1;
  3773. }
  3774. } else if (strcmp(argv[i], "-p") == 0) {
  3775. if (i + 1 < argc) {
  3776. params_filter = argv[++i];
  3777. } else {
  3778. usage(argv);
  3779. return 1;
  3780. }
  3781. } else {
  3782. usage(argv);
  3783. return 1;
  3784. }
  3785. }
  3786. // load and enumerate backends
  3787. ggml_backend_load_all();
  3788. printf("Testing %zu devices\n\n", ggml_backend_dev_count());
  3789. size_t n_ok = 0;
  3790. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  3791. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  3792. printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
  3793. if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
  3794. printf(" Skipping\n");
  3795. n_ok++;
  3796. continue;
  3797. }
  3798. if (backend_filter == NULL && ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU && mode != MODE_GRAD) {
  3799. printf(" Skipping CPU backend\n");
  3800. n_ok++;
  3801. continue;
  3802. }
  3803. ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
  3804. GGML_ASSERT(backend != NULL);
  3805. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  3806. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3807. if (ggml_backend_set_n_threads_fn) {
  3808. // TODO: better value for n_threads
  3809. ggml_backend_set_n_threads_fn(backend, std::thread::hardware_concurrency());
  3810. }
  3811. printf(" Device description: %s\n", ggml_backend_dev_description(dev));
  3812. size_t free, total; // NOLINT
  3813. ggml_backend_dev_memory(dev, &free, &total);
  3814. printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
  3815. printf("\n");
  3816. bool ok = test_backend(backend, mode, op_name_filter, params_filter);
  3817. printf(" Backend %s: ", ggml_backend_name(backend));
  3818. if (ok) {
  3819. printf("\033[1;32mOK\033[0m\n");
  3820. n_ok++;
  3821. } else {
  3822. printf("\033[1;31mFAIL\033[0m\n");
  3823. }
  3824. printf("\n");
  3825. ggml_backend_free(backend);
  3826. }
  3827. ggml_quantize_free();
  3828. printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
  3829. if (n_ok != ggml_backend_dev_count()) {
  3830. printf("\033[1;31mFAIL\033[0m\n");
  3831. return 1;
  3832. }
  3833. printf("\033[1;32mOK\033[0m\n");
  3834. return 0;
  3835. }