llama.h 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  34. #define LLAMA_SESSION_VERSION 4
  35. #ifdef __cplusplus
  36. extern "C" {
  37. #endif
  38. //
  39. // C interface
  40. //
  41. // TODO: show sample usage
  42. //
  43. struct llama_model;
  44. struct llama_context;
  45. typedef int32_t llama_pos;
  46. typedef int32_t llama_token;
  47. typedef int32_t llama_seq_id;
  48. enum llama_vocab_type {
  49. LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab
  50. LLAMA_VOCAB_TYPE_SPM = 1, // SentencePiece
  51. LLAMA_VOCAB_TYPE_BPE = 2, // Byte Pair Encoding
  52. LLAMA_VOCAB_TYPE_WPM = 3, // WordPiece
  53. };
  54. // note: these values should be synchronized with ggml_rope
  55. // TODO: maybe move this enum to ggml.h (ggml_rope_type)
  56. enum llama_rope_type {
  57. LLAMA_ROPE_TYPE_NONE = -1,
  58. LLAMA_ROPE_TYPE_NORM = 0,
  59. LLAMA_ROPE_TYPE_NEOX = 2,
  60. LLAMA_ROPE_TYPE_GLM = 4,
  61. };
  62. enum llama_token_type {
  63. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  64. LLAMA_TOKEN_TYPE_NORMAL = 1,
  65. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  66. LLAMA_TOKEN_TYPE_CONTROL = 3,
  67. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  68. LLAMA_TOKEN_TYPE_UNUSED = 5,
  69. LLAMA_TOKEN_TYPE_BYTE = 6,
  70. };
  71. // model file types
  72. enum llama_ftype {
  73. LLAMA_FTYPE_ALL_F32 = 0,
  74. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  77. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  78. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  79. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  80. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors
  96. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors
  99. LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors
  100. LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors
  101. LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors
  102. LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors
  103. LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors
  104. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  105. };
  106. enum llama_rope_scaling_type {
  107. LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1,
  108. LLAMA_ROPE_SCALING_TYPE_NONE = 0,
  109. LLAMA_ROPE_SCALING_TYPE_LINEAR = 1,
  110. LLAMA_ROPE_SCALING_TYPE_YARN = 2,
  111. LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN,
  112. };
  113. enum llama_pooling_type {
  114. LLAMA_POOLING_TYPE_UNSPECIFIED = -1,
  115. LLAMA_POOLING_TYPE_NONE = 0,
  116. LLAMA_POOLING_TYPE_MEAN = 1,
  117. LLAMA_POOLING_TYPE_CLS = 2,
  118. };
  119. enum llama_split_mode {
  120. LLAMA_SPLIT_MODE_NONE = 0, // single GPU
  121. LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs
  122. LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs
  123. };
  124. typedef struct llama_token_data {
  125. llama_token id; // token id
  126. float logit; // log-odds of the token
  127. float p; // probability of the token
  128. } llama_token_data;
  129. typedef struct llama_token_data_array {
  130. llama_token_data * data;
  131. size_t size;
  132. bool sorted;
  133. } llama_token_data_array;
  134. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  135. // Input data for llama_decode
  136. // A llama_batch object can contain input about one or many sequences
  137. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  138. //
  139. // - token : the token ids of the input (used when embd is NULL)
  140. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  141. // - pos : the positions of the respective token in the sequence
  142. // - seq_id : the sequence to which the respective token belongs
  143. // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output
  144. //
  145. typedef struct llama_batch {
  146. int32_t n_tokens;
  147. llama_token * token;
  148. float * embd;
  149. llama_pos * pos;
  150. int32_t * n_seq_id;
  151. llama_seq_id ** seq_id;
  152. int8_t * logits; // TODO: rename this to "output"
  153. // NOTE: helpers for smooth API transition - can be deprecated in the future
  154. // for future-proof code, use the above fields instead and ignore everything below
  155. //
  156. // pos[i] = all_pos_0 + i*all_pos_1
  157. //
  158. llama_pos all_pos_0; // used if pos == NULL
  159. llama_pos all_pos_1; // used if pos == NULL
  160. llama_seq_id all_seq_id; // used if seq_id == NULL
  161. } llama_batch;
  162. enum llama_model_kv_override_type {
  163. LLAMA_KV_OVERRIDE_TYPE_INT,
  164. LLAMA_KV_OVERRIDE_TYPE_FLOAT,
  165. LLAMA_KV_OVERRIDE_TYPE_BOOL,
  166. };
  167. struct llama_model_kv_override {
  168. char key[128];
  169. enum llama_model_kv_override_type tag;
  170. union {
  171. int64_t int_value;
  172. double float_value;
  173. bool bool_value;
  174. };
  175. };
  176. struct llama_model_params {
  177. int32_t n_gpu_layers; // number of layers to store in VRAM
  178. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  179. // main_gpu interpretation depends on split_mode:
  180. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  181. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  182. // LLAMA_SPLIT_LAYER: ignored
  183. int32_t main_gpu;
  184. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  185. const float * tensor_split;
  186. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  187. // If the provided progress_callback returns true, model loading continues.
  188. // If it returns false, model loading is immediately aborted.
  189. llama_progress_callback progress_callback;
  190. // context pointer passed to the progress callback
  191. void * progress_callback_user_data;
  192. // override key-value pairs of the model meta data
  193. const struct llama_model_kv_override * kv_overrides;
  194. // Keep the booleans together to avoid misalignment during copy-by-value.
  195. bool vocab_only; // only load the vocabulary, no weights
  196. bool use_mmap; // use mmap if possible
  197. bool use_mlock; // force system to keep model in RAM
  198. };
  199. struct llama_context_params {
  200. uint32_t seed; // RNG seed, -1 for random
  201. uint32_t n_ctx; // text context, 0 = from model
  202. uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode
  203. uint32_t n_ubatch; // physical maximum batch size
  204. uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models)
  205. uint32_t n_threads; // number of threads to use for generation
  206. uint32_t n_threads_batch; // number of threads to use for batch processing
  207. enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  208. enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id
  209. // (ignored if no pooling layer)
  210. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  211. float rope_freq_base; // RoPE base frequency, 0 = from model
  212. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  213. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  214. float yarn_attn_factor; // YaRN magnitude scaling factor
  215. float yarn_beta_fast; // YaRN low correction dim
  216. float yarn_beta_slow; // YaRN high correction dim
  217. uint32_t yarn_orig_ctx; // YaRN original context size
  218. float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default)
  219. ggml_backend_sched_eval_callback cb_eval;
  220. void * cb_eval_user_data;
  221. enum ggml_type type_k; // data type for K cache
  222. enum ggml_type type_v; // data type for V cache
  223. // Keep the booleans together to avoid misalignment during copy-by-value.
  224. bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  225. bool embeddings; // if true, extract embeddings (together with logits)
  226. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  227. // Abort callback
  228. // if it returns true, execution of llama_decode() will be aborted
  229. // currently works only with CPU execution
  230. ggml_abort_callback abort_callback;
  231. void * abort_callback_data;
  232. };
  233. // model quantization parameters
  234. typedef struct llama_model_quantize_params {
  235. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  236. enum llama_ftype ftype; // quantize to this llama_ftype
  237. enum ggml_type output_tensor_type; // output tensor type
  238. enum ggml_type token_embedding_type; // itoken embeddings tensor type
  239. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  240. bool quantize_output_tensor; // quantize output.weight
  241. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  242. bool pure; // quantize all tensors to the default type
  243. void * imatrix; // pointer to importance matrix data
  244. void * kv_overrides; // pointer to vector containing overrides
  245. } llama_model_quantize_params;
  246. // grammar types
  247. struct llama_grammar;
  248. // grammar element type
  249. enum llama_gretype {
  250. // end of rule definition
  251. LLAMA_GRETYPE_END = 0,
  252. // start of alternate definition for rule
  253. LLAMA_GRETYPE_ALT = 1,
  254. // non-terminal element: reference to rule
  255. LLAMA_GRETYPE_RULE_REF = 2,
  256. // terminal element: character (code point)
  257. LLAMA_GRETYPE_CHAR = 3,
  258. // inverse char(s) ([^a], [^a-b] [^abc])
  259. LLAMA_GRETYPE_CHAR_NOT = 4,
  260. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  261. // be an inclusive range ([a-z])
  262. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  263. // modifies a preceding LLAMA_GRETYPE_CHAR or
  264. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  265. LLAMA_GRETYPE_CHAR_ALT = 6,
  266. };
  267. typedef struct llama_grammar_element {
  268. enum llama_gretype type;
  269. uint32_t value; // Unicode code point or rule ID
  270. } llama_grammar_element;
  271. // performance timing information
  272. struct llama_timings {
  273. double t_start_ms;
  274. double t_end_ms;
  275. double t_load_ms;
  276. double t_sample_ms;
  277. double t_p_eval_ms;
  278. double t_eval_ms;
  279. int32_t n_sample;
  280. int32_t n_p_eval;
  281. int32_t n_eval;
  282. };
  283. // used in chat template
  284. typedef struct llama_chat_message {
  285. const char * role;
  286. const char * content;
  287. } llama_chat_message;
  288. // Helpers for getting default parameters
  289. LLAMA_API struct llama_model_params llama_model_default_params(void);
  290. LLAMA_API struct llama_context_params llama_context_default_params(void);
  291. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  292. // Initialize the llama + ggml backend
  293. // If numa is true, use NUMA optimizations
  294. // Call once at the start of the program
  295. LLAMA_API void llama_backend_init(void);
  296. //optional:
  297. LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa);
  298. // Call once at the end of the program - currently only used for MPI
  299. LLAMA_API void llama_backend_free(void);
  300. LLAMA_API struct llama_model * llama_load_model_from_file(
  301. const char * path_model,
  302. struct llama_model_params params);
  303. LLAMA_API void llama_free_model(struct llama_model * model);
  304. LLAMA_API struct llama_context * llama_new_context_with_model(
  305. struct llama_model * model,
  306. struct llama_context_params params);
  307. // Frees all allocated memory
  308. LLAMA_API void llama_free(struct llama_context * ctx);
  309. LLAMA_API int64_t llama_time_us(void);
  310. LLAMA_API size_t llama_max_devices(void);
  311. LLAMA_API bool llama_supports_mmap (void);
  312. LLAMA_API bool llama_supports_mlock (void);
  313. LLAMA_API bool llama_supports_gpu_offload(void);
  314. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  315. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  316. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  317. LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx);
  318. LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx);
  319. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  320. LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
  321. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  322. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  323. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  324. LLAMA_API int32_t llama_n_layer (const struct llama_model * model);
  325. // Get the model's RoPE frequency scaling factor
  326. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  327. // Functions to access the model's GGUF metadata scalar values
  328. // - The functions return the length of the string on success, or -1 on failure
  329. // - The output string is always null-terminated and cleared on failure
  330. // - GGUF array values are not supported by these functions
  331. // Get metadata value as a string by key name
  332. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  333. // Get the number of metadata key/value pairs
  334. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  335. // Get metadata key name by index
  336. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  337. // Get metadata value as a string by index
  338. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  339. // Get a string describing the model type
  340. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  341. // Returns the total size of all the tensors in the model in bytes
  342. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  343. // Returns the total number of parameters in the model
  344. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  345. // Get a llama model tensor
  346. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  347. // Returns 0 on success
  348. LLAMA_API uint32_t llama_model_quantize(
  349. const char * fname_inp,
  350. const char * fname_out,
  351. const llama_model_quantize_params * params);
  352. // Apply a LoRA adapter to a loaded model
  353. // path_base_model is the path to a higher quality model to use as a base for
  354. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  355. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  356. // will be applied on top of the previous one
  357. // Returns 0 on success
  358. LLAMA_API int32_t llama_model_apply_lora_from_file(
  359. const struct llama_model * model,
  360. const char * path_lora,
  361. float scale,
  362. const char * path_base_model,
  363. int32_t n_threads);
  364. // Apply a loaded control vector to a llama_context, or if data is NULL, clear
  365. // the currently loaded vector.
  366. // n_embd should be the size of a single layer's control, and data should point
  367. // to an n_embd x n_layers buffer starting from layer 1.
  368. // il_start and il_end are the layer range the vector should apply to (both inclusive)
  369. // See llama_control_vector_load in common to load a control vector.
  370. LLAMA_API int32_t llama_control_vector_apply(
  371. struct llama_context * lctx,
  372. const float * data,
  373. size_t len,
  374. int32_t n_embd,
  375. int32_t il_start,
  376. int32_t il_end);
  377. //
  378. // KV cache
  379. //
  380. // Information associated with an individual cell in the KV cache view.
  381. struct llama_kv_cache_view_cell {
  382. // The position for this cell. Takes KV cache shifts into account.
  383. // May be negative if the cell is not populated.
  384. llama_pos pos;
  385. };
  386. // An updateable view of the KV cache.
  387. struct llama_kv_cache_view {
  388. // Number of KV cache cells. This will be the same as the context size.
  389. int32_t n_cells;
  390. // Maximum number of sequences that can exist in a cell. It's not an error
  391. // if there are more sequences in a cell than this value, however they will
  392. // not be visible in the view cells_sequences.
  393. int32_t n_seq_max;
  394. // Number of tokens in the cache. For example, if there are two populated
  395. // cells, the first with 1 sequence id in it and the second with 2 sequence
  396. // ids then you'll have 3 tokens.
  397. int32_t token_count;
  398. // Number of populated cache cells.
  399. int32_t used_cells;
  400. // Maximum contiguous empty slots in the cache.
  401. int32_t max_contiguous;
  402. // Index to the start of the max_contiguous slot range. Can be negative
  403. // when cache is full.
  404. int32_t max_contiguous_idx;
  405. // Information for an individual cell.
  406. struct llama_kv_cache_view_cell * cells;
  407. // The sequences for each cell. There will be n_seq_max items per cell.
  408. llama_seq_id * cells_sequences;
  409. };
  410. // Create an empty KV cache view. (use only for debugging purposes)
  411. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max);
  412. // Free a KV cache view. (use only for debugging purposes)
  413. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  414. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  415. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  416. // Returns the number of tokens in the KV cache (slow, use only for debug)
  417. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  418. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  419. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  420. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  421. // Clear the KV cache
  422. LLAMA_API void llama_kv_cache_clear(
  423. struct llama_context * ctx);
  424. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  425. // seq_id < 0 : match any sequence
  426. // p0 < 0 : [0, p1]
  427. // p1 < 0 : [p0, inf)
  428. LLAMA_API bool llama_kv_cache_seq_rm(
  429. struct llama_context * ctx,
  430. llama_seq_id seq_id,
  431. llama_pos p0,
  432. llama_pos p1);
  433. // Copy all tokens that belong to the specified sequence to another sequence
  434. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  435. // p0 < 0 : [0, p1]
  436. // p1 < 0 : [p0, inf)
  437. LLAMA_API void llama_kv_cache_seq_cp(
  438. struct llama_context * ctx,
  439. llama_seq_id seq_id_src,
  440. llama_seq_id seq_id_dst,
  441. llama_pos p0,
  442. llama_pos p1);
  443. // Removes all tokens that do not belong to the specified sequence
  444. LLAMA_API void llama_kv_cache_seq_keep(
  445. struct llama_context * ctx,
  446. llama_seq_id seq_id);
  447. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  448. // If the KV cache is RoPEd, the KV data is updated accordingly:
  449. // - lazily on next llama_decode()
  450. // - explicitly with llama_kv_cache_update()
  451. // p0 < 0 : [0, p1]
  452. // p1 < 0 : [p0, inf)
  453. LLAMA_API void llama_kv_cache_seq_add(
  454. struct llama_context * ctx,
  455. llama_seq_id seq_id,
  456. llama_pos p0,
  457. llama_pos p1,
  458. llama_pos delta);
  459. // Integer division of the positions by factor of `d > 1`
  460. // If the KV cache is RoPEd, the KV data is updated accordingly:
  461. // - lazily on next llama_decode()
  462. // - explicitly with llama_kv_cache_update()
  463. // p0 < 0 : [0, p1]
  464. // p1 < 0 : [p0, inf)
  465. LLAMA_API void llama_kv_cache_seq_div(
  466. struct llama_context * ctx,
  467. llama_seq_id seq_id,
  468. llama_pos p0,
  469. llama_pos p1,
  470. int d);
  471. // Returns the largest position present in the KV cache for the specified sequence
  472. LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
  473. struct llama_context * ctx,
  474. llama_seq_id seq_id);
  475. // Defragment the KV cache
  476. // This will be applied:
  477. // - lazily on next llama_decode()
  478. // - explicitly with llama_kv_cache_update()
  479. LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
  480. // Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
  481. LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
  482. //
  483. // State / sessions
  484. //
  485. // Returns the maximum size in bytes of the state (rng, logits, embedding
  486. // and kv_cache) - will often be smaller after compacting tokens
  487. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  488. // Copies the state to the specified destination address.
  489. // Destination needs to have allocated enough memory.
  490. // Returns the number of bytes copied
  491. LLAMA_API size_t llama_copy_state_data(
  492. struct llama_context * ctx,
  493. uint8_t * dst);
  494. // Set the state reading from the specified address
  495. // Returns the number of bytes read
  496. LLAMA_API size_t llama_set_state_data(
  497. struct llama_context * ctx,
  498. const uint8_t * src);
  499. // Save/load session file
  500. LLAMA_API bool llama_load_session_file(
  501. struct llama_context * ctx,
  502. const char * path_session,
  503. llama_token * tokens_out,
  504. size_t n_token_capacity,
  505. size_t * n_token_count_out);
  506. LLAMA_API bool llama_save_session_file(
  507. struct llama_context * ctx,
  508. const char * path_session,
  509. const llama_token * tokens,
  510. size_t n_token_count);
  511. //
  512. // Decoding
  513. //
  514. // Return batch for single sequence of tokens starting at pos_0
  515. //
  516. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  517. //
  518. LLAMA_API struct llama_batch llama_batch_get_one(
  519. llama_token * tokens,
  520. int32_t n_tokens,
  521. llama_pos pos_0,
  522. llama_seq_id seq_id);
  523. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  524. // Each token can be assigned up to n_seq_max sequence ids
  525. // The batch has to be freed with llama_batch_free()
  526. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  527. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  528. // The rest of the llama_batch members are allocated with size n_tokens
  529. // All members are left uninitialized
  530. LLAMA_API struct llama_batch llama_batch_init(
  531. int32_t n_tokens,
  532. int32_t embd,
  533. int32_t n_seq_max);
  534. // Frees a batch of tokens allocated with llama_batch_init()
  535. LLAMA_API void llama_batch_free(struct llama_batch batch);
  536. // Positive return values does not mean a fatal error, but rather a warning.
  537. // 0 - success
  538. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  539. // < 0 - error
  540. LLAMA_API int32_t llama_decode(
  541. struct llama_context * ctx,
  542. struct llama_batch batch);
  543. // Set the number of threads used for decoding
  544. // n_threads is the number of threads used for generation (single token)
  545. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  546. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  547. // Set whether to use causal attention or not
  548. // If set to true, the model will only attend to the past tokens
  549. LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);
  550. // Set abort callback
  551. LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data);
  552. // Wait until all computations are finished
  553. // This is automatically done when using one of the functions below to obtain the computation results
  554. // and is not necessary to call it explicitly in most cases
  555. LLAMA_API void llama_synchronize(struct llama_context * ctx);
  556. // Token logits obtained from the last call to llama_decode()
  557. // The logits for the last token are stored in the last row
  558. // Logits for which llama_batch.logits[i] == 0 are undefined
  559. // Rows: n_tokens provided with llama_batch
  560. // Cols: n_vocab
  561. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  562. // Logits for the ith token. Equivalent to:
  563. // llama_get_logits(ctx) + i*n_vocab
  564. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  565. // Get all output token embeddings
  566. // shape: [n_tokens*n_embd] (1-dimensional)
  567. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  568. // Get the embeddings for the ith token
  569. // llama_get_embeddings(ctx) + i*n_embd
  570. // shape: [n_embd] (1-dimensional)
  571. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  572. // Get the embeddings for a sequence id
  573. // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE
  574. // shape: [n_embd] (1-dimensional)
  575. LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id);
  576. //
  577. // Vocab
  578. //
  579. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  580. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  581. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  582. // Special tokens
  583. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  584. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  585. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  586. // Returns -1 if unknown, 1 for true or 0 for false.
  587. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  588. // Returns -1 if unknown, 1 for true or 0 for false.
  589. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  590. // codellama infill tokens
  591. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  592. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  593. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  594. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  595. //
  596. // Tokenization
  597. //
  598. /// @details Convert the provided text into tokens.
  599. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  600. /// @return Returns the number of tokens on success, no more than n_tokens_max
  601. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  602. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  603. /// Does not insert a leading space.
  604. LLAMA_API int32_t llama_tokenize(
  605. const struct llama_model * model,
  606. const char * text,
  607. int32_t text_len,
  608. llama_token * tokens,
  609. int32_t n_tokens_max,
  610. bool add_bos,
  611. bool special);
  612. // Token Id -> Piece.
  613. // Uses the vocabulary in the provided context.
  614. // Does not write null terminator to the buffer.
  615. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  616. LLAMA_API int32_t llama_token_to_piece(
  617. const struct llama_model * model,
  618. llama_token token,
  619. char * buf,
  620. int32_t length);
  621. /// Apply chat template. Inspired by hf apply_chat_template() on python.
  622. /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model"
  623. /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template
  624. /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead.
  625. /// @param chat Pointer to a list of multiple llama_chat_message
  626. /// @param n_msg Number of llama_chat_message in this chat
  627. /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message.
  628. /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages)
  629. /// @param length The size of the allocated buffer
  630. /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
  631. LLAMA_API int32_t llama_chat_apply_template(
  632. const struct llama_model * model,
  633. const char * tmpl,
  634. const struct llama_chat_message * chat,
  635. size_t n_msg,
  636. bool add_ass,
  637. char * buf,
  638. int32_t length);
  639. //
  640. // Grammar
  641. //
  642. LLAMA_API struct llama_grammar * llama_grammar_init(
  643. const llama_grammar_element ** rules,
  644. size_t n_rules,
  645. size_t start_rule_index);
  646. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  647. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  648. //
  649. // Sampling functions
  650. //
  651. // Sets the current rng seed.
  652. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  653. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  654. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  655. LLAMA_API void llama_sample_repetition_penalties(
  656. struct llama_context * ctx,
  657. llama_token_data_array * candidates,
  658. const llama_token * last_tokens,
  659. size_t penalty_last_n,
  660. float penalty_repeat,
  661. float penalty_freq,
  662. float penalty_present);
  663. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  664. /// @param logits Logits extracted from the original generation context.
  665. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  666. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  667. LLAMA_API void llama_sample_apply_guidance(
  668. struct llama_context * ctx,
  669. float * logits,
  670. float * logits_guidance,
  671. float scale);
  672. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  673. LLAMA_API void llama_sample_softmax(
  674. struct llama_context * ctx,
  675. llama_token_data_array * candidates);
  676. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  677. LLAMA_API void llama_sample_top_k(
  678. struct llama_context * ctx,
  679. llama_token_data_array * candidates,
  680. int32_t k,
  681. size_t min_keep);
  682. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  683. LLAMA_API void llama_sample_top_p(
  684. struct llama_context * ctx,
  685. llama_token_data_array * candidates,
  686. float p,
  687. size_t min_keep);
  688. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  689. LLAMA_API void llama_sample_min_p(
  690. struct llama_context * ctx,
  691. llama_token_data_array * candidates,
  692. float p,
  693. size_t min_keep);
  694. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  695. LLAMA_API void llama_sample_tail_free(
  696. struct llama_context * ctx,
  697. llama_token_data_array * candidates,
  698. float z,
  699. size_t min_keep);
  700. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  701. LLAMA_API void llama_sample_typical(
  702. struct llama_context * ctx,
  703. llama_token_data_array * candidates,
  704. float p,
  705. size_t min_keep);
  706. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  707. LLAMA_API void llama_sample_entropy(
  708. struct llama_context * ctx,
  709. llama_token_data_array * candidates_p,
  710. float min_temp,
  711. float max_temp,
  712. float exponent_val);
  713. LLAMA_API void llama_sample_temp(
  714. struct llama_context * ctx,
  715. llama_token_data_array * candidates,
  716. float temp);
  717. /// @details Apply constraints from grammar
  718. LLAMA_API void llama_sample_grammar(
  719. struct llama_context * ctx,
  720. llama_token_data_array * candidates,
  721. const struct llama_grammar * grammar);
  722. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  723. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  724. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  725. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  726. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  727. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  728. LLAMA_API llama_token llama_sample_token_mirostat(
  729. struct llama_context * ctx,
  730. llama_token_data_array * candidates,
  731. float tau,
  732. float eta,
  733. int32_t m,
  734. float * mu);
  735. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  736. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  737. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  738. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  739. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  740. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  741. struct llama_context * ctx,
  742. llama_token_data_array * candidates,
  743. float tau,
  744. float eta,
  745. float * mu);
  746. /// @details Selects the token with the highest probability.
  747. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  748. LLAMA_API llama_token llama_sample_token_greedy(
  749. struct llama_context * ctx,
  750. llama_token_data_array * candidates);
  751. /// @details Randomly selects a token from the candidates based on their probabilities.
  752. LLAMA_API llama_token llama_sample_token(
  753. struct llama_context * ctx,
  754. llama_token_data_array * candidates);
  755. /// @details Accepts the sampled token into the grammar
  756. LLAMA_API void llama_grammar_accept_token(
  757. struct llama_context * ctx,
  758. struct llama_grammar * grammar,
  759. llama_token token);
  760. //
  761. // Beam search
  762. //
  763. struct llama_beam_view {
  764. const llama_token * tokens;
  765. size_t n_tokens;
  766. float p; // Cumulative beam probability (renormalized relative to all beams)
  767. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  768. };
  769. // Passed to beam_search_callback function.
  770. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  771. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  772. // These pointers are valid only during the synchronous callback, so should not be saved.
  773. struct llama_beams_state {
  774. struct llama_beam_view * beam_views;
  775. size_t n_beams; // Number of elements in beam_views[].
  776. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  777. bool last_call; // True iff this is the last callback invocation.
  778. };
  779. // Type of pointer to the beam_search_callback function.
  780. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  781. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  782. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  783. /// @details Deterministically returns entire sentence constructed by a beam search.
  784. /// @param ctx Pointer to the llama_context.
  785. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  786. /// @param callback_data A pointer that is simply passed back to callback.
  787. /// @param n_beams Number of beams to use.
  788. /// @param n_past Number of tokens already evaluated.
  789. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  790. LLAMA_API void llama_beam_search(
  791. struct llama_context * ctx,
  792. llama_beam_search_callback_fn_t callback,
  793. void * callback_data,
  794. size_t n_beams,
  795. int32_t n_past,
  796. int32_t n_predict);
  797. /// @details Build a split GGUF final path for this chunk.
  798. /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
  799. // Returns the split_path length.
  800. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count);
  801. /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match.
  802. /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
  803. // Returns the split_prefix length.
  804. LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count);
  805. // Performance information
  806. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  807. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  808. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  809. // Print system information
  810. LLAMA_API const char * llama_print_system_info(void);
  811. // Set callback for all future logging events.
  812. // If this is not called, or NULL is supplied, everything is output on stderr.
  813. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  814. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  815. #ifdef __cplusplus
  816. }
  817. #endif
  818. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  819. #ifdef LLAMA_API_INTERNAL
  820. #include <vector>
  821. #include <string>
  822. struct ggml_tensor;
  823. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  824. struct llama_context * ctx
  825. );
  826. #endif // LLAMA_API_INTERNAL
  827. #endif // LLAMA_H