| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- #include "arg.h"
- #include "common.h"
- #include "sampling.h"
- #include "speculative.h"
- #include "log.h"
- #include "llama.h"
- #include <cstdio>
- #include <cstring>
- #include <string>
- #include <vector>
- int main(int argc, char ** argv) {
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SPECULATIVE)) {
- return 1;
- }
- if (params.n_predict < -1) {
- LOG_ERR("%s: --n-predict must be >= -1\n", __func__);
- return 1;
- }
- common_init();
- if (params.speculative.model.empty()) {
- LOG_ERR("%s: --model-draft is required\n", __func__);
- return 1;
- }
- // init llama.cpp
- llama_backend_init();
- llama_numa_init(params.numa);
- llama_model * model_tgt = NULL;
- //llama_model * model_dft = NULL;
- llama_context * ctx_tgt = NULL;
- llama_context * ctx_dft = NULL;
- // load the target model
- common_init_result llama_init_tgt = common_init_from_params(params);
- model_tgt = llama_init_tgt.model.get();
- ctx_tgt = llama_init_tgt.context.get();
- const llama_vocab * vocab = llama_model_get_vocab(model_tgt);
- // load the draft model
- params.devices = params.speculative.devices;
- params.model = params.speculative.model;
- params.n_ctx = params.speculative.n_ctx;
- params.n_batch = params.speculative.n_ctx > 0 ? params.speculative.n_ctx : params.n_batch;
- params.n_gpu_layers = params.speculative.n_gpu_layers;
- if (params.speculative.cpuparams.n_threads > 0) {
- params.cpuparams.n_threads = params.speculative.cpuparams.n_threads;
- }
- params.cpuparams_batch.n_threads = params.speculative.cpuparams_batch.n_threads;
- common_init_result llama_init_dft = common_init_from_params(params);
- //model_dft = llama_init_dft.model.get();
- ctx_dft = llama_init_dft.context.get();
- if (!common_speculative_are_compatible(ctx_tgt, ctx_dft)) {
- return 1;
- }
- // Tokenize the prompt
- std::vector<llama_token> inp;
- inp = common_tokenize(ctx_tgt, params.prompt, true, true);
- if (llama_n_ctx(ctx_tgt) < (uint32_t) inp.size()) {
- LOG_ERR("%s: the prompt exceeds the context size (%d tokens, ctx %d)\n", __func__, (int) inp.size(), llama_n_ctx(ctx_tgt));
- return 1;
- }
- if (llama_n_batch(ctx_tgt) < (uint32_t) inp.size()) {
- LOG_ERR("%s: the prompt exceeds the batch size (%d tokens, batch %d)\n", __func__, (int) inp.size(), llama_n_batch(ctx_tgt));
- return 1;
- }
- LOG("\n\n");
- for (auto id : inp) {
- LOG("%s", common_token_to_piece(ctx_tgt, id).c_str());
- }
- // how many tokens to draft each time
- int n_draft = params.speculative.n_max;
- int n_draft_min = params.speculative.n_min;
- float p_min = params.speculative.p_min;
- int n_predict = 0;
- int n_drafted = 0;
- int n_accept = 0;
- // used to determine end of generation
- bool has_eos = false;
- // ================================================
- // everything until here is standard initialization
- // the relevant stuff for speculative decoding starts here
- const auto t_enc_start = ggml_time_us();
- // target model sampling context
- struct common_sampler * smpl = common_sampler_init(model_tgt, params.sampling);
- // eval the prompt
- llama_decode(ctx_tgt, llama_batch_get_one(inp.data(), inp.size() - 1));
- // note: keep the last token separate!
- llama_token id_last = inp.back();
- // all tokens currently in the target context
- llama_tokens prompt_tgt(inp.begin(), inp.end() - 1);
- prompt_tgt.reserve(llama_n_ctx(ctx_tgt));
- int n_past = inp.size() - 1;
- // init the speculator
- struct common_speculative_params params_spec;
- params_spec.n_draft = n_draft;
- params_spec.n_reuse = llama_n_ctx(ctx_dft) - n_draft;
- params_spec.p_min = p_min;
- struct common_speculative * spec = common_speculative_init(ctx_dft);
- llama_batch batch_tgt = llama_batch_init(llama_n_batch(ctx_tgt), 0, 1);
- const auto t_enc_end = ggml_time_us();
- const auto t_dec_start = ggml_time_us();
- while (true) {
- // optionally, generate draft tokens that can be appended to the target batch
- //
- // this is the most important part of the speculation. the more probable tokens that are provided here
- // the better the performance will be. in theory, this computation can be performed asynchronously and even
- // offloaded to a remote device. it doesn't even have to be based on an LLM. instead, it can provide tokens
- // from a cache or lookup tables.
- //
- llama_tokens draft = common_speculative_gen_draft(spec, params_spec, prompt_tgt, id_last);
- //LOG_DBG("draft: %s\n", string_from(ctx_dft, draft).c_str());
- // always have a token to evaluate from before - id_last
- common_batch_clear(batch_tgt);
- common_batch_add (batch_tgt, id_last, n_past++, { 0 }, true);
- // evaluate the target model on [id_last, draft0, draft1, ..., draftN-1]
- {
- // do not waste time on small drafts
- if (draft.size() < (size_t) n_draft_min) {
- draft.clear();
- }
- for (size_t i = 0; i < draft.size(); ++i) {
- common_batch_add(batch_tgt, draft[i], n_past + i, { 0 }, true);
- }
- //LOG_DBG("target batch: %s\n", string_from(ctx_tgt, batch_tgt).c_str());
- llama_decode(ctx_tgt, batch_tgt);
- }
- // sample from the full target batch and return the accepted tokens based on the target sampler
- //
- // for each token to be accepted, the sampler would have to sample that same token
- // in such cases, instead of decoding the sampled token as we normally do, we simply continue with the
- // available logits from the batch and sample the next token until we run out of logits or the sampler
- // disagrees with the draft
- //
- const auto ids = common_sampler_sample_and_accept_n(smpl, ctx_tgt, draft);
- //LOG_DBG("ids: %s\n", string_from(ctx_tgt, ids).c_str());
- GGML_ASSERT(ids.size() > 0); // there will always be at least one accepted token
- n_past += ids.size() - 1;
- n_drafted += draft.size(); // note: we ignore the discarded small drafts
- n_accept += ids.size() - 1;
- n_predict += ids.size();
- // process the accepted tokens and update contexts
- //
- // this is the standard token post-processing that we normally do
- // in this case, we do it for a group of accepted tokens at once
- //
- for (size_t i = 0; i < ids.size(); ++i) {
- prompt_tgt.push_back(id_last);
- id_last = ids[i];
- if (llama_vocab_is_eog(vocab, id_last)) {
- has_eos = true;
- break;
- }
- const std::string token_str = common_token_to_piece(ctx_tgt, id_last);
- if (params.use_color && i + 1 < ids.size()) {
- LOG("\u001b[%dm%s\u001b[37m", (36 - 0 % 6), token_str.c_str());
- } else {
- LOG("%s", token_str.c_str());
- }
- }
- LOG_DBG("accepted %d/%d draft tokens, the last target token is: (%d)\n", (int) ids.size() - 1, (int) draft.size(), id_last);
- {
- LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
- llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
- }
- if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {
- break;
- }
- }
- auto t_dec_end = ggml_time_us();
- const int n_input = inp.size();
- LOG("\n\n");
- LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
- LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
- LOG_INF("\n");
- LOG_INF("n_draft = %d\n", n_draft);
- LOG_INF("n_predict = %d\n", n_predict);
- LOG_INF("n_drafted = %d\n", n_drafted);
- LOG_INF("n_accept = %d\n", n_accept);
- LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
- LOG_INF("\n");
- LOG_INF("draft:\n\n");
- llama_perf_context_print(ctx_dft);
- LOG_INF("\n");
- LOG_INF("target:\n\n");
- common_perf_print(ctx_tgt, smpl);
- common_sampler_free(smpl);
- common_speculative_free(spec);
- llama_backend_free();
- LOG("\n\n");
- return 0;
- }
|