llama-graph.cpp 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695
  1. #include "llama-graph.h"
  2. #include "llama-impl.h"
  3. #include "llama-batch.h"
  4. #include "llama-cparams.h"
  5. #include "llama-kv-cache.h"
  6. #include <cassert>
  7. #include <cmath>
  8. #include <cstring>
  9. static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
  10. // TODO move to hparams if a T5 variant appears that uses a different value
  11. const int64_t max_distance = 128;
  12. if (bidirectional) {
  13. n_buckets >>= 1;
  14. }
  15. const int64_t max_exact = n_buckets >> 1;
  16. int32_t relative_position = x - y;
  17. int32_t relative_bucket = 0;
  18. if (bidirectional) {
  19. relative_bucket += (relative_position > 0) * n_buckets;
  20. relative_position = abs(relative_position);
  21. } else {
  22. relative_position = -std::min<int32_t>(relative_position, 0);
  23. }
  24. int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
  25. relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
  26. relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
  27. return relative_bucket;
  28. }
  29. void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
  30. if (ubatch->token) {
  31. const int64_t n_tokens = ubatch->n_tokens;
  32. ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
  33. }
  34. if (ubatch->embd) {
  35. const int64_t n_embd = embd->ne[0];
  36. const int64_t n_tokens = ubatch->n_tokens;
  37. ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
  38. }
  39. }
  40. void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
  41. if (ubatch->pos && pos) {
  42. const int64_t n_tokens = ubatch->n_tokens;
  43. ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_token*ggml_element_size(pos));
  44. }
  45. }
  46. void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
  47. if (pos_bucket) {
  48. const int64_t n_tokens = ubatch->n_tokens;
  49. GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
  50. GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
  51. int32_t * data = (int32_t *) pos_bucket->data;
  52. for (int h = 0; h < 1; ++h) {
  53. for (int j = 0; j < n_tokens; ++j) {
  54. for (int i = 0; i < n_tokens; ++i) {
  55. data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
  56. }
  57. }
  58. }
  59. }
  60. }
  61. void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
  62. if (pos_bucket) {
  63. const int64_t n_tokens = ubatch->n_tokens;
  64. GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
  65. GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
  66. int32_t * data = (int32_t *) pos_bucket->data;
  67. const int64_t n_kv = kv_self->n;
  68. for (int h = 0; h < 1; ++h) {
  69. for (int j = 0; j < n_tokens; ++j) {
  70. for (int i = 0; i < n_kv; ++i) {
  71. data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(kv_self->cells[i].pos, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
  72. }
  73. }
  74. }
  75. }
  76. }
  77. void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
  78. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  79. //GGML_ASSERT(out_ids && "every model that can must skip unused outputs");
  80. if (!out_ids) {
  81. LLAMA_LOG_WARN("%s: 'out_ids' is not created\n", __func__);
  82. } else {
  83. const int64_t n_tokens = ubatch->n_tokens;
  84. GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
  85. int32_t * data = (int32_t *) out_ids->data;
  86. if (n_outputs == n_tokens) {
  87. for (int i = 0; i < n_tokens; ++i) {
  88. data[i] = i;
  89. }
  90. } else if (ubatch->output) {
  91. int32_t n_outputs = 0;
  92. for (int i = 0; i < n_tokens; ++i) {
  93. if (ubatch->output[i]) {
  94. data[n_outputs++] = i;
  95. }
  96. }
  97. // the graph needs to have been passed the correct number of outputs
  98. GGML_ASSERT(n_outputs == n_outputs);
  99. } else if (n_outputs == 1) {
  100. // only keep last output
  101. data[0] = n_tokens - 1;
  102. } else {
  103. GGML_ASSERT(n_outputs == 0);
  104. }
  105. }
  106. }
  107. }
  108. void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
  109. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  110. const int64_t n_tokens = ubatch->n_tokens;
  111. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  112. const int64_t n_seqs = ubatch->n_seqs;
  113. GGML_ASSERT(mean);
  114. GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
  115. float * data = (float *) mean->data;
  116. memset(mean->data, 0, n_tokens * n_tokens * ggml_element_size(mean));
  117. std::vector<uint64_t> sum(n_tokens, 0);
  118. for (int s = 0; s < n_seqs; ++s) {
  119. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  120. // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
  121. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  122. sum[seq_id] += ubatch->n_seq_tokens;
  123. }
  124. std::vector<float> div(n_tokens, 0.0f);
  125. for (int i = 0; i < n_tokens; ++i) {
  126. const uint64_t s = sum[i];
  127. if (s > 0) {
  128. div[i] = 1.0f/float(s);
  129. }
  130. }
  131. for (int s = 0; s < n_seqs; ++s) {
  132. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  133. for (int i = 0; i < n_seq_tokens; ++i) {
  134. data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
  135. }
  136. }
  137. }
  138. }
  139. void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
  140. if (cparams.embeddings && (
  141. cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
  142. cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
  143. const int64_t n_tokens = ubatch->n_tokens;
  144. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  145. const int64_t n_seqs = ubatch->n_seqs;
  146. GGML_ASSERT(cls);
  147. GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
  148. uint32_t * data = (uint32_t *) cls->data;
  149. memset(cls->data, 0, n_tokens * ggml_element_size(cls));
  150. for (int s = 0; s < n_seqs; ++s) {
  151. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  152. // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
  153. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
  154. for (int i = 0; i < n_seq_tokens; ++i) {
  155. const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
  156. if (pos == 0) {
  157. data[seq_id] = s*n_seq_tokens + i;
  158. }
  159. }
  160. }
  161. }
  162. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
  163. const int64_t n_tokens = ubatch->n_tokens;
  164. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  165. const int64_t n_seqs = ubatch->n_seqs;
  166. GGML_ASSERT(cls);
  167. GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
  168. uint32_t * data = (uint32_t *) cls->data;
  169. memset(cls->data, 0, n_tokens * ggml_element_size(cls));
  170. std::vector<int> last_pos(n_tokens, -1);
  171. std::vector<int> last_row(n_tokens, -1);
  172. for (int s = 0; s < n_seqs; ++s) {
  173. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  174. // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
  175. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
  176. for (int i = 0; i < n_seq_tokens; ++i) {
  177. const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
  178. if (pos >= last_pos[seq_id]) {
  179. last_pos[seq_id] = pos;
  180. last_row[seq_id] = s*n_seq_tokens + i;
  181. }
  182. }
  183. }
  184. for (int i = 0; i < n_tokens; ++i) {
  185. if (last_row[i] >= 0) {
  186. data[i] = last_row[i];
  187. }
  188. }
  189. }
  190. }
  191. void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
  192. GGML_UNUSED(ubatch);
  193. const int64_t n_kv = kv_self->n;
  194. if (s_copy) {
  195. GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
  196. int32_t * data = (int32_t *) s_copy->data;
  197. // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
  198. for (uint32_t i = 0; i < n_kv; ++i) {
  199. const uint32_t cell_id = i + kv_self->head;
  200. //////////////////////////////////////////////
  201. // TODO: this should not mutate the KV cache !
  202. llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
  203. // prevent out-of-bound sources
  204. if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
  205. kv_cell.src = cell_id;
  206. }
  207. data[i] = kv_cell.src;
  208. // TODO: do not mutate the KV cache
  209. // ensure copy only happens once
  210. if (kv_cell.src != (int32_t) cell_id) {
  211. kv_cell.src = cell_id;
  212. }
  213. }
  214. }
  215. }
  216. void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
  217. GGML_UNUSED(ubatch);
  218. const int64_t n_kv = kv_self->n;
  219. if (s_mask) {
  220. GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
  221. float * data = (float *) s_mask->data;
  222. // clear unused states
  223. for (int i = 0; i < n_kv; ++i) {
  224. const uint32_t cell_id = i + kv_self->head;
  225. //////////////////////////////////////////////
  226. // TODO: this should not mutate the KV cache !
  227. llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
  228. data[i] = (float) (kv_cell.src >= 0);
  229. // only clear once
  230. if (kv_cell.src < 0) {
  231. kv_cell.src = cell_id;
  232. }
  233. }
  234. }
  235. }
  236. void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
  237. GGML_UNUSED(ubatch);
  238. if (cross_embd && !cross->v_embd.empty()) {
  239. assert(cross_embd->type == GGML_TYPE_F32);
  240. ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
  241. }
  242. }
  243. void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
  244. if (kq_mask) {
  245. if (cparams.causal_attn) {
  246. const int64_t n_kv = ubatch->n_tokens;
  247. const int64_t n_tokens = ubatch->n_tokens;
  248. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  249. const int64_t n_seqs = ubatch->n_seqs;
  250. GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
  251. float * data = (float *) kq_mask->data;
  252. for (int h = 0; h < 1; ++h) {
  253. for (int s1 = 0; s1 < n_seqs; ++s1) {
  254. const llama_seq_id seq_id = ubatch->seq_id[s1][0];
  255. for (int j = 0; j < n_seq_tokens; ++j) {
  256. const int32_t tj = s1*n_seq_tokens + j;
  257. for (int s0 = 0; s0 < n_seqs; ++s0) {
  258. for (int i = 0; i < n_seq_tokens; ++i) {
  259. const int32_t ti = s0*n_seq_tokens + i;
  260. float f = -INFINITY;
  261. for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
  262. if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
  263. if (hparams.use_alibi) {
  264. f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
  265. } else {
  266. f = 0.0f;
  267. }
  268. break;
  269. }
  270. }
  271. data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
  272. }
  273. }
  274. }
  275. }
  276. }
  277. } else {
  278. const int64_t n_tokens = ubatch->n_tokens;
  279. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  280. const int64_t n_seqs = ubatch->n_seqs;
  281. const int64_t n_stride = ubatch->n_tokens;
  282. GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
  283. float * data = (float *) kq_mask->data;
  284. for (int h = 0; h < 1; ++h) {
  285. for (int s1 = 0; s1 < n_seqs; ++s1) {
  286. const llama_seq_id seq_id = ubatch->seq_id[s1][0];
  287. for (int j = 0; j < n_seq_tokens; ++j) {
  288. const int32_t tj = s1*n_seq_tokens + j;
  289. for (int s0 = 0; s0 < n_seqs; ++s0) {
  290. for (int i = 0; i < n_seq_tokens; ++i) {
  291. const int32_t ti = s0*n_seq_tokens + i;
  292. float f = -INFINITY;
  293. for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
  294. if (ubatch->seq_id[s0][s] == seq_id) {
  295. if (hparams.use_alibi) {
  296. f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
  297. } else {
  298. f = 0.0f;
  299. }
  300. break;
  301. }
  302. }
  303. data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
  304. }
  305. }
  306. for (int i = n_tokens; i < n_stride; ++i) {
  307. data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
  308. }
  309. }
  310. }
  311. }
  312. }
  313. }
  314. }
  315. void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
  316. if (self_kq_mask || self_kq_mask_swa) {
  317. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  318. if (cparams.causal_attn) {
  319. const int64_t n_kv = kv_self->n;
  320. const int64_t n_tokens = ubatch->n_tokens;
  321. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  322. const int64_t n_seqs = ubatch->n_seqs;
  323. float * data = nullptr;
  324. float * data_swa = nullptr;
  325. if (self_kq_mask) {
  326. GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
  327. data = (float *) self_kq_mask->data;
  328. }
  329. if (self_kq_mask_swa) {
  330. GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
  331. data_swa = (float *) self_kq_mask_swa->data;
  332. }
  333. // For causal attention, use only the previous KV cells
  334. // of the correct sequence for each token of the ubatch.
  335. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  336. for (int h = 0; h < 1; ++h) {
  337. for (int s = 0; s < n_seqs; ++s) {
  338. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  339. for (int j = 0; j < n_seq_tokens; ++j) {
  340. const llama_pos pos = ubatch->pos[s*n_seq_tokens + j];
  341. for (int i = 0; i < n_kv; ++i) {
  342. float f;
  343. if (!kv_self->cells[i].has_seq_id(seq_id) || kv_self->cells[i].pos > pos) {
  344. f = -INFINITY;
  345. } else {
  346. if (hparams.use_alibi) {
  347. f = -std::abs(kv_self->cells[i].pos - pos);
  348. } else {
  349. f = 0.0f;
  350. }
  351. }
  352. if (data) {
  353. data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
  354. }
  355. // may need to cut off old tokens for sliding window
  356. if (data_swa) {
  357. if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
  358. f = -INFINITY;
  359. }
  360. data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
  361. }
  362. }
  363. }
  364. }
  365. if (data) {
  366. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  367. for (int j = 0; j < n_kv; ++j) {
  368. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  369. }
  370. }
  371. }
  372. if (data_swa) {
  373. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  374. for (int j = 0; j < n_kv; ++j) {
  375. data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  376. }
  377. }
  378. }
  379. }
  380. } else {
  381. const int64_t n_tokens = ubatch->n_tokens;
  382. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  383. const int64_t n_seqs = ubatch->n_seqs;
  384. // when using kv cache, the mask needs to match the kv cache size
  385. const int64_t n_stride = n_tokens;
  386. GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
  387. float * data = (float *) self_kq_mask->data;
  388. for (int h = 0; h < 1; ++h) {
  389. for (int s1 = 0; s1 < n_seqs; ++s1) {
  390. const llama_seq_id seq_id = ubatch->seq_id[s1][0];
  391. for (int j = 0; j < n_seq_tokens; ++j) {
  392. const int32_t tj = s1*n_seq_tokens + j;
  393. for (int s0 = 0; s0 < n_seqs; ++s0) {
  394. for (int i = 0; i < n_seq_tokens; ++i) {
  395. const int32_t ti = s0*n_seq_tokens + i;
  396. float f = -INFINITY;
  397. for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
  398. if (ubatch->seq_id[s0][s] == seq_id) {
  399. if (hparams.use_alibi) {
  400. f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
  401. } else {
  402. f = 0.0f;
  403. }
  404. break;
  405. }
  406. }
  407. data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
  408. }
  409. }
  410. for (int i = n_tokens; i < n_stride; ++i) {
  411. data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
  412. }
  413. }
  414. }
  415. }
  416. }
  417. }
  418. }
  419. void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
  420. if (cross_kq_mask) {
  421. const int64_t n_enc = cross_kq_mask->ne[0];
  422. const int64_t n_tokens = ubatch->n_tokens;
  423. GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
  424. GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
  425. float * data = (float *) cross_kq_mask->data;
  426. for (int h = 0; h < 1; ++h) {
  427. for (int j = 0; j < n_tokens; ++j) {
  428. for (int i = 0; i < n_enc; ++i) {
  429. float f = -INFINITY;
  430. for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
  431. const llama_seq_id seq_id = ubatch->seq_id[j][s];
  432. if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
  433. f = 0.0f;
  434. }
  435. }
  436. data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
  437. }
  438. }
  439. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  440. for (int j = 0; j < n_enc; ++j) {
  441. data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
  442. }
  443. }
  444. }
  445. }
  446. }
  447. //
  448. // llm_graph_context
  449. //
  450. llm_graph_context::llm_graph_context(const llm_graph_params & params) :
  451. arch (params.arch),
  452. hparams (params.hparams),
  453. cparams (params.cparams),
  454. ubatch (params.ubatch),
  455. n_embd (hparams.n_embd),
  456. n_layer (hparams.n_layer),
  457. n_rot (hparams.n_rot),
  458. n_ctx (cparams.n_ctx),
  459. n_ctx_per_seq (cparams.n_ctx / cparams.n_seq_max),
  460. n_head (hparams.n_head()),
  461. n_head_kv (hparams.n_head_kv()),
  462. n_embd_head_k (hparams.n_embd_head_k),
  463. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  464. n_embd_head_v (hparams.n_embd_head_v),
  465. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  466. n_expert (hparams.n_expert),
  467. n_expert_used (hparams.n_expert_used),
  468. freq_base (cparams.rope_freq_base),
  469. freq_scale (cparams.rope_freq_scale),
  470. ext_factor (cparams.yarn_ext_factor),
  471. attn_factor (cparams.yarn_attn_factor),
  472. beta_fast (cparams.yarn_beta_fast),
  473. beta_slow (cparams.yarn_beta_slow),
  474. norm_eps (hparams.f_norm_eps),
  475. norm_rms_eps (hparams.f_norm_rms_eps),
  476. n_tokens (ubatch.n_tokens),
  477. n_outputs (params.n_outputs),
  478. n_ctx_orig (cparams.n_ctx_orig_yarn),
  479. pooling_type (cparams.pooling_type),
  480. rope_type (hparams.rope_type),
  481. ctx0 (params.ctx),
  482. sched (params.sched),
  483. backend_cpu (params.backend_cpu),
  484. cvec (params.cvec),
  485. loras (params.loras),
  486. memory (params.memory),
  487. cross (params.cross),
  488. cb_func (params.cb),
  489. res (std::make_unique<llm_graph_result>()) {
  490. }
  491. int64_t llm_graph_context::n_pos_per_token() const {
  492. return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
  493. }
  494. void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
  495. if (cb_func) {
  496. cb_func(ubatch, cur, name, il);
  497. }
  498. }
  499. ggml_tensor * llm_graph_context::build_cvec(
  500. ggml_tensor * cur,
  501. int il) const {
  502. return cvec->apply_to(ctx0, cur, il);
  503. }
  504. ggml_tensor * llm_graph_context::build_lora_mm(
  505. ggml_tensor * w,
  506. ggml_tensor * cur) const {
  507. ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
  508. for (const auto & lora : *loras) {
  509. llama_adapter_lora_weight * lw = lora.first->get_weight(w);
  510. if (lw == nullptr) {
  511. continue;
  512. }
  513. const float adapter_scale = lora.second;
  514. const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
  515. ggml_tensor * ab_cur = ggml_mul_mat(
  516. ctx0, lw->b,
  517. ggml_mul_mat(ctx0, lw->a, cur)
  518. );
  519. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  520. res = ggml_add(ctx0, res, ab_cur);
  521. }
  522. return res;
  523. }
  524. ggml_tensor * llm_graph_context::build_lora_mm_id(
  525. ggml_tensor * w, // ggml_tensor * as
  526. ggml_tensor * cur, // ggml_tensor * b
  527. ggml_tensor * ids) const {
  528. ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
  529. for (const auto & lora : *loras) {
  530. llama_adapter_lora_weight * lw = lora.first->get_weight(w);
  531. if (lw == nullptr) {
  532. continue;
  533. }
  534. const float alpha = lora.first->alpha;
  535. const float rank = (float) lw->b->ne[0];
  536. const float scale = alpha ? lora.second * alpha / rank : lora.second;
  537. ggml_tensor * ab_cur = ggml_mul_mat_id(
  538. ctx0, lw->b,
  539. ggml_mul_mat_id(ctx0, lw->a, cur, ids),
  540. ids
  541. );
  542. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  543. res = ggml_add(ctx0, res, ab_cur);
  544. }
  545. return res;
  546. }
  547. ggml_tensor * llm_graph_context::build_norm(
  548. ggml_tensor * cur,
  549. ggml_tensor * mw,
  550. ggml_tensor * mb,
  551. llm_norm_type type,
  552. int il) const {
  553. switch (type) {
  554. case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
  555. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
  556. case LLM_NORM_GROUP:
  557. {
  558. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
  559. cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
  560. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
  561. } break;
  562. }
  563. if (mw || mb) {
  564. cb(cur, "norm", il);
  565. }
  566. if (mw) {
  567. cur = ggml_mul(ctx0, cur, mw);
  568. if (mb) {
  569. cb(cur, "norm_w", il);
  570. }
  571. }
  572. if (mb) {
  573. cur = ggml_add(ctx0, cur, mb);
  574. }
  575. return cur;
  576. }
  577. ggml_tensor * llm_graph_context::build_ffn(
  578. ggml_tensor * cur,
  579. ggml_tensor * up,
  580. ggml_tensor * up_b,
  581. ggml_tensor * up_s,
  582. ggml_tensor * gate,
  583. ggml_tensor * gate_b,
  584. ggml_tensor * gate_s,
  585. ggml_tensor * down,
  586. ggml_tensor * down_b,
  587. ggml_tensor * down_s,
  588. ggml_tensor * act_scales,
  589. llm_ffn_op_type type_op,
  590. llm_ffn_gate_type type_gate,
  591. int il) const {
  592. ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
  593. cb(tmp, "ffn_up", il);
  594. if (up_b) {
  595. tmp = ggml_add(ctx0, tmp, up_b);
  596. cb(tmp, "ffn_up_b", il);
  597. }
  598. if (up_s) {
  599. tmp = ggml_mul(ctx0, tmp, up_s);
  600. cb(tmp, "ffn_up_s", il);
  601. }
  602. if (gate) {
  603. switch (type_gate) {
  604. case LLM_FFN_SEQ:
  605. {
  606. cur = build_lora_mm(gate, tmp);
  607. cb(cur, "ffn_gate", il);
  608. } break;
  609. case LLM_FFN_PAR:
  610. {
  611. cur = build_lora_mm(gate, cur);
  612. cb(cur, "ffn_gate", il);
  613. } break;
  614. }
  615. if (gate_b) {
  616. cur = ggml_add(ctx0, cur, gate_b);
  617. cb(cur, "ffn_gate_b", il);
  618. }
  619. if (gate_s) {
  620. cur = ggml_mul(ctx0, cur, gate_s);
  621. cb(cur, "ffn_gate_s", il);
  622. }
  623. } else {
  624. cur = tmp;
  625. }
  626. switch (type_op) {
  627. case LLM_FFN_SILU:
  628. {
  629. cur = ggml_silu(ctx0, cur);
  630. cb(cur, "ffn_silu", il);
  631. } break;
  632. case LLM_FFN_GELU:
  633. {
  634. cur = ggml_gelu(ctx0, cur);
  635. cb(cur, "ffn_gelu", il);
  636. if (act_scales != NULL) {
  637. cur = ggml_div(ctx0, cur, act_scales);
  638. cb(cur, "ffn_act", il);
  639. }
  640. } break;
  641. case LLM_FFN_RELU:
  642. {
  643. cur = ggml_relu(ctx0, cur);
  644. cb(cur, "ffn_relu", il);
  645. } break;
  646. case LLM_FFN_RELU_SQR:
  647. {
  648. cur = ggml_relu(ctx0, cur);
  649. cb(cur, "ffn_relu", il);
  650. cur = ggml_sqr(ctx0, cur);
  651. cb(cur, "ffn_sqr(relu)", il);
  652. } break;
  653. case LLM_FFN_SWIGLU:
  654. {
  655. // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
  656. int64_t split_point = cur->ne[0] / 2;
  657. ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
  658. ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
  659. x0 = ggml_silu(ctx0, x0);
  660. cb(cur, "ffn_silu", il);
  661. cur = ggml_mul(ctx0, x0, x1);
  662. cb(cur, "ffn_mul", il);
  663. } break;
  664. }
  665. if (type_gate == LLM_FFN_PAR) {
  666. cur = ggml_mul(ctx0, cur, tmp);
  667. cb(cur, "ffn_gate_par", il);
  668. }
  669. if (down) {
  670. cur = build_lora_mm(down, cur);
  671. }
  672. if (down_b) {
  673. cb(cur, "ffn_down", il);
  674. }
  675. if (down_b) {
  676. cur = ggml_add(ctx0, cur, down_b);
  677. }
  678. if (down_s) {
  679. cur = ggml_mul(ctx0, cur, down_s);
  680. cb(cur, "ffn_down_s", il);
  681. }
  682. return cur;
  683. }
  684. ggml_tensor * llm_graph_context::build_moe_ffn(
  685. ggml_tensor * cur,
  686. ggml_tensor * gate_inp,
  687. ggml_tensor * up_exps,
  688. ggml_tensor * gate_exps,
  689. ggml_tensor * down_exps,
  690. ggml_tensor * exp_probs_b,
  691. int64_t n_expert,
  692. int64_t n_expert_used,
  693. llm_ffn_op_type type_op,
  694. bool norm_w,
  695. bool scale_w,
  696. float w_scale,
  697. llama_expert_gating_func_type gating_op,
  698. int il) const {
  699. int64_t n_embd = cur->ne[0];
  700. int64_t n_tokens = cur->ne[1];
  701. ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
  702. cb(logits, "ffn_moe_logits", il);
  703. ggml_tensor * probs = nullptr;
  704. switch (gating_op) {
  705. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
  706. {
  707. probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
  708. } break;
  709. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
  710. {
  711. probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
  712. } break;
  713. default:
  714. GGML_ABORT("fatal error");
  715. }
  716. cb(probs, "ffn_moe_probs", il);
  717. // add experts selection bias - introduced in DeepSeek V3
  718. // leave probs unbiased as it's later used to get expert weights
  719. ggml_tensor * selection_probs = probs;
  720. if (exp_probs_b != nullptr) {
  721. selection_probs = ggml_add(ctx0, probs, exp_probs_b);
  722. cb(selection_probs, "ffn_moe_probs_biased", il);
  723. }
  724. // select experts
  725. ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
  726. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  727. cb(selected_experts, "ffn_moe_topk", il);
  728. ggml_tensor * weights = ggml_get_rows(ctx0,
  729. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  730. cb(weights, "ffn_moe_weights", il);
  731. if (norm_w) {
  732. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
  733. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
  734. cb(weights_sum, "ffn_moe_weights_sum", il);
  735. weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
  736. cb(weights, "ffn_moe_weights_norm", il);
  737. weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
  738. }
  739. if (scale_w) {
  740. weights = ggml_scale(ctx0, weights, w_scale);
  741. cb(weights, "ffn_moe_weights_scaled", il);
  742. }
  743. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  744. ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  745. cb(up, "ffn_moe_up", il);
  746. ggml_tensor * gate = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  747. cb(gate, "ffn_moe_gate", il);
  748. switch (type_op) {
  749. case LLM_FFN_SILU:
  750. {
  751. gate = ggml_silu(ctx0, gate);
  752. cb(gate, "ffn_moe_silu", il);
  753. } break;
  754. case LLM_FFN_GELU:
  755. {
  756. gate = ggml_gelu(ctx0, gate);
  757. cb(gate, "ffn_moe_gelu", il);
  758. } break;
  759. default:
  760. GGML_ABORT("fatal error");
  761. }
  762. ggml_tensor * par = ggml_mul(ctx0, up, gate); // [n_ff, n_expert_used, n_tokens]
  763. cb(par, "ffn_moe_gate_par", il);
  764. ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  765. cb(experts, "ffn_moe_down", il);
  766. experts = ggml_mul(ctx0, experts, weights);
  767. // aggregate experts
  768. ggml_tensor * moe_out = nullptr;
  769. for (int i = 0; i < n_expert_used; ++i) {
  770. ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
  771. experts->nb[2], i*experts->nb[1]);
  772. if (i == 0) {
  773. moe_out = cur_expert;
  774. } else {
  775. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  776. }
  777. }
  778. if (n_expert_used == 1) {
  779. // avoid returning a non-contiguous tensor
  780. moe_out = ggml_cont(ctx0, moe_out);
  781. }
  782. return moe_out;
  783. }
  784. // input embeddings with optional lora
  785. ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
  786. const int64_t n_embd = hparams.n_embd;
  787. auto inp = std::make_unique<llm_graph_input_embd>();
  788. ggml_tensor * cur = nullptr;
  789. if (ubatch.token) {
  790. inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
  791. //cb(inp->tokens, "inp_tokens", -1);
  792. ggml_set_input(inp->tokens);
  793. cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
  794. // apply lora for embedding tokens if needed
  795. for (const auto & lora : *loras) {
  796. llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
  797. if (lw == nullptr) {
  798. continue;
  799. }
  800. const float adapter_scale = lora.second;
  801. const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
  802. ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
  803. ctx0, lw->b, // non-transposed lora_b
  804. ggml_get_rows(ctx0, lw->a, inp->tokens)
  805. ), scale);
  806. cur = ggml_add(ctx0, cur, inpL_delta);
  807. }
  808. } else {
  809. inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
  810. ggml_set_input(inp->embd);
  811. cur = inp->embd;
  812. }
  813. // For Granite architecture
  814. if (hparams.f_embedding_scale != 0.0f) {
  815. cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
  816. }
  817. cb(cur, "inp_embd", -1);
  818. res->add_input(std::move(inp));
  819. return cur;
  820. }
  821. ggml_tensor * llm_graph_context::build_inp_pos() const {
  822. auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_token());
  823. auto & cur = inp->pos;
  824. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_token());
  825. ggml_set_input(cur);
  826. res->add_input(std::move(inp));
  827. return cur;
  828. }
  829. ggml_tensor * llm_graph_context::build_inp_out_ids() const {
  830. auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
  831. auto & cur = inp->out_ids;
  832. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  833. ggml_set_input(cur);
  834. res->add_input(std::move(inp));
  835. return cur;
  836. }
  837. ggml_tensor * llm_graph_context::build_inp_mean() const {
  838. auto inp = std::make_unique<llm_graph_input_mean>(cparams);
  839. auto & cur = inp->mean;
  840. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  841. ggml_set_input(cur);
  842. res->add_input(std::move(inp));
  843. return cur;
  844. }
  845. ggml_tensor * llm_graph_context::build_inp_cls() const {
  846. auto inp = std::make_unique<llm_graph_input_cls>(cparams);
  847. auto & cur = inp->cls;
  848. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  849. ggml_set_input(cur);
  850. res->add_input(std::move(inp));
  851. return cur;
  852. }
  853. ggml_tensor * llm_graph_context::build_inp_s_copy() const {
  854. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  855. auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
  856. const auto n_kv = kv_self->n;
  857. auto & cur = inp->s_copy;
  858. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
  859. ggml_set_input(cur);
  860. res->add_input(std::move(inp));
  861. return cur;
  862. }
  863. ggml_tensor * llm_graph_context::build_inp_s_mask() const {
  864. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  865. auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
  866. const auto n_kv = kv_self->n;
  867. auto & cur = inp->s_mask;
  868. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  869. ggml_set_input(cur);
  870. res->add_input(std::move(inp));
  871. return cur;
  872. }
  873. ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
  874. auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
  875. auto & cur = inp->cross_embd;
  876. // if we have the output embeddings from the encoder, use them directly
  877. // TODO: needs more work to be correct, for now just use the tensor shape
  878. //if (cross->t_embd) {
  879. // cur = ggml_view_tensor(ctx0, cross->t_embd);
  880. // return cur;
  881. //}
  882. const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
  883. const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
  884. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
  885. ggml_set_input(cur);
  886. res->add_input(std::move(inp));
  887. return cur;
  888. }
  889. ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
  890. auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
  891. auto & cur = inp->pos_bucket;
  892. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
  893. ggml_set_input(cur);
  894. res->add_input(std::move(inp));
  895. return cur;
  896. }
  897. ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
  898. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  899. auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);
  900. const auto n_kv = kv_self->n;
  901. auto & cur = inp->pos_bucket;
  902. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  903. ggml_set_input(cur);
  904. res->add_input(std::move(inp));
  905. return cur;
  906. }
  907. ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
  908. ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
  909. cb(pos_bucket_1d, "pos_bucket_1d", -1);
  910. ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
  911. pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
  912. pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
  913. pos_bias = ggml_cont (ctx0, pos_bias);
  914. cb(pos_bias, "pos_bias", -1);
  915. return pos_bias;
  916. }
  917. ggml_tensor * llm_graph_context::build_attn_mha(
  918. ggml_cgraph * gf,
  919. ggml_tensor * q,
  920. ggml_tensor * k,
  921. ggml_tensor * v,
  922. ggml_tensor * kq_b,
  923. ggml_tensor * kq_mask,
  924. bool v_trans,
  925. float kq_scale) const {
  926. //const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  927. //const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  928. //const int64_t n_head = hparams.n_head(il);
  929. //const int64_t n_head_kv = hparams.n_head_kv(il);
  930. //const auto & n_embd_head_k = hparams.n_embd_head_k;
  931. //const auto & n_embd_head_v = hparams.n_embd_head_v;
  932. const auto n_embd_head_v = v_trans ? v->ne[1] : v->ne[0];
  933. const auto n_tokens = q->ne[1];
  934. const auto n_head = q->ne[2];
  935. const auto n_kv = k->ne[1];
  936. ggml_tensor * cur;
  937. // TODO: replace hardcoded padding with ggml-provided padding
  938. if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
  939. GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
  940. if (v_trans) {
  941. v = ggml_transpose(ctx0, v);
  942. }
  943. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
  944. hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
  945. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  946. cur = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
  947. } else {
  948. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  949. // note: this op tends to require high floating point range
  950. // while for some models F16 is enough, for others it is not, so we default to F32 here
  951. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  952. if (arch == LLM_ARCH_GROK) {
  953. // need to do the following:
  954. // multiply by attn_output_multiplyer of 0.08838834764831845
  955. // and then :
  956. // kq = 30 * tanh(kq / 30)
  957. // before the softmax below
  958. kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
  959. kq = ggml_scale(ctx0, kq, 30);
  960. }
  961. if (hparams.attn_soft_cap) {
  962. kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
  963. kq = ggml_tanh (ctx0, kq);
  964. kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
  965. }
  966. if (kq_b) {
  967. kq = ggml_add(ctx0, kq, kq_b);
  968. }
  969. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  970. if (!v_trans) {
  971. // note: avoid this branch
  972. v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
  973. }
  974. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  975. ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  976. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
  977. if (!cparams.offload_kqv) {
  978. // all nodes between the KV store and the attention output are run on the CPU
  979. ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
  980. }
  981. }
  982. ggml_build_forward_expand(gf, cur);
  983. return cur;
  984. }
  985. llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
  986. auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
  987. // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
  988. inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  989. //cb(inp_kq_mask, "KQ_mask", -1);
  990. ggml_set_input(inp->kq_mask);
  991. inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
  992. return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
  993. }
  994. ggml_tensor * llm_graph_context::build_attn(
  995. llm_graph_input_attn_no_cache * inp,
  996. ggml_cgraph * gf,
  997. ggml_tensor * wo,
  998. ggml_tensor * wo_b,
  999. ggml_tensor * q_cur,
  1000. ggml_tensor * k_cur,
  1001. ggml_tensor * v_cur,
  1002. ggml_tensor * kq_b,
  1003. float kq_scale,
  1004. int il) const {
  1005. GGML_UNUSED(n_tokens);
  1006. // these nodes are added to the graph together so that they are not reordered
  1007. // by doing so, the number of splits in the graph is reduced
  1008. ggml_build_forward_expand(gf, q_cur);
  1009. ggml_build_forward_expand(gf, k_cur);
  1010. ggml_build_forward_expand(gf, v_cur);
  1011. const auto & kq_mask = inp->get_kq_mask();
  1012. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1013. //cb(q, "q", il);
  1014. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1015. //cb(k, "k", il);
  1016. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1017. //cb(k, "v", il);
  1018. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
  1019. cb(cur, "kqv_out", il);
  1020. if (wo) {
  1021. cur = build_lora_mm(wo, cur);
  1022. }
  1023. if (wo_b) {
  1024. //cb(cur, "kqv_wo", il);
  1025. }
  1026. if (wo_b) {
  1027. cur = ggml_add(ctx0, cur, wo_b);
  1028. }
  1029. return cur;
  1030. }
  1031. llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified(
  1032. bool causal,
  1033. bool swa) const {
  1034. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  1035. auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);
  1036. const auto n_kv = kv_self->n;
  1037. inp->self_kq_mask = causal
  1038. ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
  1039. : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  1040. //cb(inp->self_kq_mask, "KQ_mask", -1);
  1041. ggml_set_input(inp->self_kq_mask);
  1042. inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
  1043. if (swa) {
  1044. GGML_ASSERT(hparams.n_swa > 0);
  1045. inp->self_kq_mask_swa = causal
  1046. ? ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD))
  1047. : ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  1048. //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
  1049. ggml_set_input(inp->self_kq_mask_swa);
  1050. inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
  1051. }
  1052. return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
  1053. }
  1054. ggml_tensor * llm_graph_context::build_attn(
  1055. llm_graph_input_attn_kv_unified * inp,
  1056. ggml_cgraph * gf,
  1057. ggml_tensor * wo,
  1058. ggml_tensor * wo_b,
  1059. ggml_tensor * q_cur,
  1060. ggml_tensor * k_cur,
  1061. ggml_tensor * v_cur,
  1062. ggml_tensor * kq_b,
  1063. float kq_scale,
  1064. int il) const {
  1065. // these nodes are added to the graph together so that they are not reordered
  1066. // by doing so, the number of splits in the graph is reduced
  1067. ggml_build_forward_expand(gf, q_cur);
  1068. ggml_build_forward_expand(gf, k_cur);
  1069. ggml_build_forward_expand(gf, v_cur);
  1070. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  1071. const auto & n_ctx = cparams.n_ctx;
  1072. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
  1073. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
  1074. const auto n_tokens = q_cur->ne[2];
  1075. const bool v_trans = !cparams.flash_attn;
  1076. // store to KV cache
  1077. {
  1078. GGML_ASSERT(!kv_self->recurrent);
  1079. const auto kv_head = kv_self->head;
  1080. GGML_ASSERT(kv_self->size == n_ctx);
  1081. ggml_tensor * k_cache_view = ggml_view_1d(ctx0, kv_self->k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa)*kv_head);
  1082. //cb(k_cache_view, "k_cache_view", il);
  1083. // note: storing RoPE-ed version of K in the KV cache
  1084. ggml_build_forward_expand(gf, ggml_cpy(ctx0, k_cur, k_cache_view));
  1085. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  1086. ggml_tensor * v_cache_view = nullptr;
  1087. if (!v_trans) {
  1088. v_cache_view = ggml_view_1d(ctx0, kv_self->v_l[il], n_tokens*n_embd_v_gqa, ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa)*kv_head);
  1089. } else {
  1090. // note: the V cache is transposed when not using flash attention
  1091. v_cache_view = ggml_view_2d(ctx0, kv_self->v_l[il], n_tokens, n_embd_v_gqa,
  1092. ( n_ctx)*ggml_element_size(kv_self->v_l[il]),
  1093. (kv_head)*ggml_element_size(kv_self->v_l[il]));
  1094. v_cur = ggml_transpose(ctx0, v_cur);
  1095. }
  1096. //cb(v_cache_view, "v_cache_view", il);
  1097. ggml_build_forward_expand(gf, ggml_cpy(ctx0, v_cur, v_cache_view));
  1098. }
  1099. // TODO: improve
  1100. bool is_sliding = false;
  1101. switch (arch) {
  1102. case LLM_ARCH_COHERE2:
  1103. {
  1104. const int32_t sliding_window_pattern = 4;
  1105. is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1);
  1106. } break;
  1107. case LLM_ARCH_GEMMA2:
  1108. {
  1109. const int32_t sliding_window_pattern = 2;
  1110. is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1);
  1111. } break;
  1112. case LLM_ARCH_GEMMA3:
  1113. {
  1114. const int32_t sliding_window_pattern = 6;
  1115. is_sliding = il % sliding_window_pattern < (sliding_window_pattern - 1);
  1116. } break;
  1117. case LLM_ARCH_PHI3:
  1118. {
  1119. is_sliding = hparams.n_swa > 0;
  1120. } break;
  1121. default:
  1122. {
  1123. is_sliding = false;
  1124. }
  1125. };
  1126. const auto & kq_mask = is_sliding ? inp->get_kq_mask_swa() : inp->get_kq_mask();
  1127. const auto n_kv = kv_self->n;
  1128. const int64_t n_head_kv = hparams.n_head_kv(il);
  1129. const auto & n_embd_head_k = hparams.n_embd_head_k;
  1130. const auto & n_embd_head_v = hparams.n_embd_head_v;
  1131. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1132. //cb(q, "q", il);
  1133. ggml_tensor * k =
  1134. ggml_view_3d(ctx0, kv_self->k_l[il],
  1135. n_embd_head_k, n_kv, n_head_kv,
  1136. ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
  1137. ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
  1138. 0);
  1139. //cb(k, "k", il);
  1140. ggml_tensor * v = !v_trans ?
  1141. ggml_view_3d(ctx0, kv_self->v_l[il],
  1142. n_embd_head_v, n_kv, n_head_kv,
  1143. ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
  1144. ggml_row_size(kv_self->v_l[il]->type, n_embd_head_v),
  1145. 0) :
  1146. ggml_view_3d(ctx0, kv_self->v_l[il],
  1147. n_kv, n_embd_head_v, n_head_kv,
  1148. ggml_element_size(kv_self->v_l[il])*n_ctx,
  1149. ggml_element_size(kv_self->v_l[il])*n_ctx*n_embd_head_v,
  1150. 0);
  1151. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_trans, kq_scale);
  1152. cb(cur, "kqv_out", il);
  1153. if (wo) {
  1154. cur = build_lora_mm(wo, cur);
  1155. }
  1156. if (wo_b) {
  1157. //cb(cur, "kqv_wo", il);
  1158. }
  1159. if (wo_b) {
  1160. cur = ggml_add(ctx0, cur, wo_b);
  1161. }
  1162. return cur;
  1163. }
  1164. llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
  1165. auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
  1166. const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
  1167. inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  1168. ggml_set_input(inp->cross_kq_mask);
  1169. inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
  1170. return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
  1171. }
  1172. ggml_tensor * llm_graph_context::build_attn(
  1173. llm_graph_input_attn_cross * inp,
  1174. ggml_cgraph * gf,
  1175. ggml_tensor * wo,
  1176. ggml_tensor * wo_b,
  1177. ggml_tensor * q_cur,
  1178. ggml_tensor * k_cur,
  1179. ggml_tensor * v_cur,
  1180. ggml_tensor * kq_b,
  1181. float kq_scale,
  1182. int il) const {
  1183. // these nodes are added to the graph together so that they are not reordered
  1184. // by doing so, the number of splits in the graph is reduced
  1185. ggml_build_forward_expand(gf, q_cur);
  1186. ggml_build_forward_expand(gf, k_cur);
  1187. ggml_build_forward_expand(gf, v_cur);
  1188. const auto & kq_mask = inp->get_kq_mask_cross();
  1189. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1190. //cb(q, "q", il);
  1191. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1192. //cb(k, "k", il);
  1193. ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
  1194. //cb(k, "v", il);
  1195. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
  1196. cb(cur, "kqv_out", il);
  1197. if (wo) {
  1198. cur = build_lora_mm(wo, cur);
  1199. }
  1200. if (wo_b) {
  1201. //cb(cur, "kqv_wo", il);
  1202. }
  1203. if (wo_b) {
  1204. cur = ggml_add(ctx0, cur, wo_b);
  1205. }
  1206. return cur;
  1207. }
  1208. ggml_tensor * llm_graph_context::build_copy_mask_state(
  1209. ggml_cgraph * gf,
  1210. ggml_tensor * s,
  1211. ggml_tensor * state_copy,
  1212. ggml_tensor * state_mask,
  1213. int32_t n_state,
  1214. int32_t n_seqs) const {
  1215. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  1216. const auto n_kv = kv_self->n;
  1217. const auto kv_head = kv_self->head;
  1218. ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size);
  1219. // copy states
  1220. // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
  1221. // this shrinks the tensors's ne[1] to n_kv
  1222. states = ggml_get_rows(ctx0, states, state_copy);
  1223. // clear states of sequences which are starting at the beginning of this batch
  1224. // FIXME: zero-out NANs?
  1225. states = ggml_mul(ctx0, states, state_mask);
  1226. // copy states which won't be changed further (between n_seqs and n_kv)
  1227. ggml_build_forward_expand(gf,
  1228. ggml_cpy(ctx0,
  1229. ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*ggml_element_size(states)),
  1230. ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
  1231. // the part of the states that will be used and modified
  1232. return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
  1233. }
  1234. ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
  1235. ggml_cgraph * gf,
  1236. ggml_tensor * state_copy,
  1237. ggml_tensor * state_mask,
  1238. const llama_ubatch & ubatch,
  1239. int il) const {
  1240. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  1241. const auto token_shift_count = hparams.token_shift_count;
  1242. const int64_t n_seqs = ubatch.n_seqs;
  1243. ggml_tensor * token_shift_all = kv_self->k_l[il];
  1244. ggml_tensor * token_shift = build_copy_mask_state(
  1245. gf, token_shift_all, state_copy, state_mask,
  1246. hparams.n_embd_k_s(), n_seqs);
  1247. token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
  1248. return token_shift;
  1249. }
  1250. ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
  1251. ggml_tensor * token_shift,
  1252. const llama_ubatch & ubatch,
  1253. int il) const {
  1254. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  1255. const auto token_shift_count = hparams.token_shift_count;
  1256. const auto n_embd = hparams.n_embd;
  1257. const int64_t n_seqs = ubatch.n_seqs;
  1258. const auto kv_head = kv_self->head;
  1259. return ggml_cpy(
  1260. ctx0,
  1261. ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
  1262. ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il]))
  1263. );
  1264. }
  1265. void llm_graph_context::build_pooling(
  1266. ggml_cgraph * gf,
  1267. ggml_tensor * cls,
  1268. ggml_tensor * cls_b,
  1269. ggml_tensor * cls_out,
  1270. ggml_tensor * cls_out_b) const {
  1271. if (!cparams.embeddings) {
  1272. return;
  1273. }
  1274. ggml_tensor * inp = res->t_embd;
  1275. //// find result_norm tensor for input
  1276. //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
  1277. // inp = ggml_graph_node(gf, i);
  1278. // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  1279. // break;
  1280. // }
  1281. // inp = nullptr;
  1282. //}
  1283. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  1284. ggml_tensor * cur;
  1285. switch (pooling_type) {
  1286. case LLAMA_POOLING_TYPE_NONE:
  1287. {
  1288. cur = inp;
  1289. } break;
  1290. case LLAMA_POOLING_TYPE_MEAN:
  1291. {
  1292. ggml_tensor * inp_mean = build_inp_mean();
  1293. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  1294. } break;
  1295. case LLAMA_POOLING_TYPE_CLS:
  1296. case LLAMA_POOLING_TYPE_LAST:
  1297. {
  1298. ggml_tensor * inp_cls = build_inp_cls();
  1299. cur = ggml_get_rows(ctx0, inp, inp_cls);
  1300. } break;
  1301. case LLAMA_POOLING_TYPE_RANK:
  1302. {
  1303. ggml_tensor * inp_cls = build_inp_cls();
  1304. inp = ggml_get_rows(ctx0, inp, inp_cls);
  1305. // classification head
  1306. // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
  1307. GGML_ASSERT(cls != nullptr);
  1308. GGML_ASSERT(cls_b != nullptr);
  1309. cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b);
  1310. cur = ggml_tanh(ctx0, cur);
  1311. // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  1312. // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
  1313. if (cls_out) {
  1314. GGML_ASSERT(cls_out_b != nullptr);
  1315. cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b);
  1316. }
  1317. } break;
  1318. default:
  1319. {
  1320. GGML_ABORT("unknown pooling type");
  1321. }
  1322. }
  1323. cb(cur, "result_embd_pooled", -1);
  1324. res->t_embd_pooled = cur;
  1325. ggml_build_forward_expand(gf, cur);
  1326. }