server.cpp 195 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. // Change JSON_ASSERT from assert() to GGML_ASSERT:
  12. #define JSON_ASSERT GGML_ASSERT
  13. #include "json.hpp"
  14. // mime type for sending response
  15. #define MIMETYPE_JSON "application/json; charset=utf-8"
  16. // auto generated files (see README.md for details)
  17. #include "index.html.gz.hpp"
  18. #include "loading.html.hpp"
  19. #include <atomic>
  20. #include <chrono>
  21. #include <condition_variable>
  22. #include <cstddef>
  23. #include <cinttypes>
  24. #include <deque>
  25. #include <memory>
  26. #include <mutex>
  27. #include <signal.h>
  28. #include <thread>
  29. #include <unordered_map>
  30. #include <unordered_set>
  31. using json = nlohmann::ordered_json;
  32. constexpr int HTTP_POLLING_SECONDS = 1;
  33. enum stop_type {
  34. STOP_TYPE_NONE,
  35. STOP_TYPE_EOS,
  36. STOP_TYPE_WORD,
  37. STOP_TYPE_LIMIT,
  38. };
  39. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  40. enum slot_state {
  41. SLOT_STATE_IDLE,
  42. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  43. SLOT_STATE_PROCESSING_PROMPT,
  44. SLOT_STATE_DONE_PROMPT,
  45. SLOT_STATE_GENERATING,
  46. };
  47. enum server_state {
  48. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  49. SERVER_STATE_READY, // Server is ready and model is loaded
  50. };
  51. enum server_task_type {
  52. SERVER_TASK_TYPE_COMPLETION,
  53. SERVER_TASK_TYPE_EMBEDDING,
  54. SERVER_TASK_TYPE_RERANK,
  55. SERVER_TASK_TYPE_INFILL,
  56. SERVER_TASK_TYPE_CANCEL,
  57. SERVER_TASK_TYPE_NEXT_RESPONSE,
  58. SERVER_TASK_TYPE_METRICS,
  59. SERVER_TASK_TYPE_SLOT_SAVE,
  60. SERVER_TASK_TYPE_SLOT_RESTORE,
  61. SERVER_TASK_TYPE_SLOT_ERASE,
  62. SERVER_TASK_TYPE_SET_LORA,
  63. };
  64. enum oaicompat_type {
  65. OAICOMPAT_TYPE_NONE,
  66. OAICOMPAT_TYPE_CHAT,
  67. OAICOMPAT_TYPE_COMPLETION,
  68. OAICOMPAT_TYPE_EMBEDDING,
  69. };
  70. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  71. enum error_type {
  72. ERROR_TYPE_INVALID_REQUEST,
  73. ERROR_TYPE_AUTHENTICATION,
  74. ERROR_TYPE_SERVER,
  75. ERROR_TYPE_NOT_FOUND,
  76. ERROR_TYPE_PERMISSION,
  77. ERROR_TYPE_UNAVAILABLE, // custom error
  78. ERROR_TYPE_NOT_SUPPORTED, // custom error
  79. };
  80. struct slot_params {
  81. bool stream = true;
  82. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  83. bool return_tokens = false;
  84. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  85. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  86. int32_t n_predict = -1; // new tokens to predict
  87. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  88. int64_t t_max_prompt_ms = -1; // TODO: implement
  89. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  90. std::vector<common_adapter_lora_info> lora;
  91. std::vector<std::string> antiprompt;
  92. std::vector<std::string> response_fields;
  93. bool timings_per_token = false;
  94. bool post_sampling_probs = false;
  95. bool ignore_eos = false;
  96. struct common_params_sampling sampling;
  97. struct common_params_speculative speculative;
  98. // OAI-compat fields
  99. bool verbose = false;
  100. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  101. std::string oaicompat_model;
  102. std::string oaicompat_cmpl_id;
  103. common_chat_syntax oaicompat_chat_syntax;
  104. json to_json() const {
  105. std::vector<std::string> samplers;
  106. samplers.reserve(sampling.samplers.size());
  107. for (const auto & sampler : sampling.samplers) {
  108. samplers.emplace_back(common_sampler_type_to_str(sampler));
  109. }
  110. json lora = json::array();
  111. for (size_t i = 0; i < this->lora.size(); ++i) {
  112. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  113. }
  114. auto grammar_triggers = json::array();
  115. for (const auto & trigger : sampling.grammar_triggers) {
  116. server_grammar_trigger ct(std::move(trigger));
  117. grammar_triggers.push_back(ct.to_json());
  118. }
  119. return json {
  120. {"n_predict", n_predict}, // Server configured n_predict
  121. {"seed", sampling.seed},
  122. {"temperature", sampling.temp},
  123. {"dynatemp_range", sampling.dynatemp_range},
  124. {"dynatemp_exponent", sampling.dynatemp_exponent},
  125. {"top_k", sampling.top_k},
  126. {"top_p", sampling.top_p},
  127. {"min_p", sampling.min_p},
  128. {"top_n_sigma", sampling.top_n_sigma},
  129. {"xtc_probability", sampling.xtc_probability},
  130. {"xtc_threshold", sampling.xtc_threshold},
  131. {"typical_p", sampling.typ_p},
  132. {"repeat_last_n", sampling.penalty_last_n},
  133. {"repeat_penalty", sampling.penalty_repeat},
  134. {"presence_penalty", sampling.penalty_present},
  135. {"frequency_penalty", sampling.penalty_freq},
  136. {"dry_multiplier", sampling.dry_multiplier},
  137. {"dry_base", sampling.dry_base},
  138. {"dry_allowed_length", sampling.dry_allowed_length},
  139. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  140. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  141. {"mirostat", sampling.mirostat},
  142. {"mirostat_tau", sampling.mirostat_tau},
  143. {"mirostat_eta", sampling.mirostat_eta},
  144. {"stop", antiprompt},
  145. {"max_tokens", n_predict}, // User configured n_predict
  146. {"n_keep", n_keep},
  147. {"n_discard", n_discard},
  148. {"ignore_eos", sampling.ignore_eos},
  149. {"stream", stream},
  150. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  151. {"n_probs", sampling.n_probs},
  152. {"min_keep", sampling.min_keep},
  153. {"grammar", sampling.grammar},
  154. {"grammar_lazy", sampling.grammar_lazy},
  155. {"grammar_triggers", grammar_triggers},
  156. {"preserved_tokens", sampling.preserved_tokens},
  157. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  158. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  159. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  160. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  161. {"samplers", samplers},
  162. {"speculative.n_max", speculative.n_max},
  163. {"speculative.n_min", speculative.n_min},
  164. {"speculative.p_min", speculative.p_min},
  165. {"timings_per_token", timings_per_token},
  166. {"post_sampling_probs", post_sampling_probs},
  167. {"lora", lora},
  168. };
  169. }
  170. };
  171. struct server_task {
  172. int id = -1; // to be filled by server_queue
  173. int index = -1; // used when there are multiple prompts (batch request)
  174. server_task_type type;
  175. // used by SERVER_TASK_TYPE_CANCEL
  176. int id_target = -1;
  177. // used by SERVER_TASK_TYPE_INFERENCE
  178. slot_params params;
  179. server_tokens prompt_tokens;
  180. int id_selected_slot = -1;
  181. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  182. struct slot_action {
  183. int slot_id;
  184. std::string filename;
  185. std::string filepath;
  186. };
  187. slot_action slot_action;
  188. // used by SERVER_TASK_TYPE_METRICS
  189. bool metrics_reset_bucket = false;
  190. // used by SERVER_TASK_TYPE_SET_LORA
  191. std::vector<common_adapter_lora_info> set_lora;
  192. server_task(server_task_type type) : type(type) {}
  193. static slot_params params_from_json_cmpl(
  194. const llama_context * ctx,
  195. const common_params & params_base,
  196. const json & data) {
  197. const llama_model * model = llama_get_model(ctx);
  198. const llama_vocab * vocab = llama_model_get_vocab(model);
  199. slot_params params;
  200. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  201. slot_params defaults;
  202. defaults.sampling = params_base.sampling;
  203. defaults.speculative = params_base.speculative;
  204. // enabling this will output extra debug information in the HTTP responses from the server
  205. params.verbose = params_base.verbosity > 9;
  206. params.timings_per_token = json_value(data, "timings_per_token", false);
  207. params.stream = json_value(data, "stream", false);
  208. params.cache_prompt = json_value(data, "cache_prompt", true);
  209. params.return_tokens = json_value(data, "return_tokens", false);
  210. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  211. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  212. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  213. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  214. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  215. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  216. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  217. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  218. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  219. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  220. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  221. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  222. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  223. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  224. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  225. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  226. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  227. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  228. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  229. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  230. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  231. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  232. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  233. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  234. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  235. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  236. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  237. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  238. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  239. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  240. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  241. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  242. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  243. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  244. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  245. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  246. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  247. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  248. // Use OpenAI API logprobs only if n_probs wasn't provided
  249. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  250. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  251. }
  252. if (data.contains("lora")) {
  253. if (data.at("lora").is_array()) {
  254. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  255. } else {
  256. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  257. }
  258. } else {
  259. params.lora = params_base.lora_adapters;
  260. }
  261. // TODO: add more sanity checks for the input parameters
  262. if (params.sampling.penalty_last_n < -1) {
  263. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  264. }
  265. if (params.sampling.dry_penalty_last_n < -1) {
  266. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  267. }
  268. if (params.sampling.penalty_last_n == -1) {
  269. // note: should be the slot's context and not the full context, but it's ok
  270. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  271. }
  272. if (params.sampling.dry_penalty_last_n == -1) {
  273. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  274. }
  275. if (params.sampling.dry_base < 1.0f) {
  276. params.sampling.dry_base = defaults.sampling.dry_base;
  277. }
  278. // sequence breakers for DRY
  279. {
  280. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  281. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  282. if (data.contains("dry_sequence_breakers")) {
  283. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  284. if (params.sampling.dry_sequence_breakers.empty()) {
  285. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  286. }
  287. }
  288. }
  289. // process "json_schema" and "grammar"
  290. if (data.contains("json_schema") && !data.contains("grammar")) {
  291. try {
  292. auto schema = json_value(data, "json_schema", json::object());
  293. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  294. params.sampling.grammar = json_schema_to_grammar(schema);
  295. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  296. } catch (const std::exception & e) {
  297. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  298. }
  299. } else {
  300. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  301. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  302. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  303. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  304. }
  305. {
  306. auto it = data.find("chat_format");
  307. if (it != data.end()) {
  308. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  309. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  310. } else {
  311. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  312. }
  313. params.oaicompat_chat_syntax.reasoning_format = params_base.reasoning_format;
  314. params.oaicompat_chat_syntax.reasoning_in_content = params.stream;
  315. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  316. }
  317. {
  318. const auto preserved_tokens = data.find("preserved_tokens");
  319. if (preserved_tokens != data.end()) {
  320. for (const auto & t : *preserved_tokens) {
  321. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  322. if (ids.size() == 1) {
  323. SRV_DBG("Preserved token: %d\n", ids[0]);
  324. params.sampling.preserved_tokens.insert(ids[0]);
  325. } else {
  326. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  327. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  328. }
  329. }
  330. }
  331. const auto grammar_triggers = data.find("grammar_triggers");
  332. if (grammar_triggers != data.end()) {
  333. for (const auto & t : *grammar_triggers) {
  334. server_grammar_trigger ct(t);
  335. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  336. const auto & word = ct.value.value;
  337. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  338. if (ids.size() == 1) {
  339. auto token = ids[0];
  340. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  341. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  342. }
  343. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  344. common_grammar_trigger trigger;
  345. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  346. trigger.value = word;
  347. trigger.token = token;
  348. params.sampling.grammar_triggers.push_back(std::move(trigger));
  349. } else {
  350. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  351. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  352. }
  353. } else {
  354. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  355. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  356. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  357. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  358. } else {
  359. throw std::runtime_error("Unknown grammar trigger type");
  360. }
  361. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  362. }
  363. }
  364. }
  365. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  366. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  367. }
  368. }
  369. {
  370. params.sampling.logit_bias.clear();
  371. params.ignore_eos = json_value(data, "ignore_eos", false);
  372. const auto & logit_bias = data.find("logit_bias");
  373. if (logit_bias != data.end() && logit_bias->is_array()) {
  374. const int n_vocab = llama_vocab_n_tokens(vocab);
  375. for (const auto & el : *logit_bias) {
  376. // TODO: we may want to throw errors here, in case "el" is incorrect
  377. if (el.is_array() && el.size() == 2) {
  378. float bias;
  379. if (el[1].is_number()) {
  380. bias = el[1].get<float>();
  381. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  382. bias = -INFINITY;
  383. } else {
  384. continue;
  385. }
  386. if (el[0].is_number_integer()) {
  387. llama_token tok = el[0].get<llama_token>();
  388. if (tok >= 0 && tok < n_vocab) {
  389. params.sampling.logit_bias.push_back({tok, bias});
  390. }
  391. } else if (el[0].is_string()) {
  392. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  393. for (auto tok : toks) {
  394. params.sampling.logit_bias.push_back({tok, bias});
  395. }
  396. }
  397. }
  398. }
  399. }
  400. }
  401. {
  402. params.antiprompt.clear();
  403. const auto & stop = data.find("stop");
  404. if (stop != data.end() && stop->is_array()) {
  405. for (const auto & word : *stop) {
  406. if (!word.empty()) {
  407. params.antiprompt.push_back(word);
  408. }
  409. }
  410. }
  411. }
  412. {
  413. const auto samplers = data.find("samplers");
  414. if (samplers != data.end()) {
  415. if (samplers->is_array()) {
  416. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  417. } else if (samplers->is_string()){
  418. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  419. }
  420. } else {
  421. params.sampling.samplers = defaults.sampling.samplers;
  422. }
  423. }
  424. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  425. params.oaicompat_model = json_value(data, "model", model_name);
  426. return params;
  427. }
  428. // utility function
  429. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  430. std::unordered_set<int> ids(tasks.size());
  431. for (size_t i = 0; i < tasks.size(); i++) {
  432. ids.insert(tasks[i].id);
  433. }
  434. return ids;
  435. }
  436. };
  437. struct result_timings {
  438. int32_t prompt_n = -1;
  439. double prompt_ms;
  440. double prompt_per_token_ms;
  441. double prompt_per_second;
  442. int32_t predicted_n = -1;
  443. double predicted_ms;
  444. double predicted_per_token_ms;
  445. double predicted_per_second;
  446. // Optional speculative metrics - only included when > 0
  447. int32_t draft_n = 0;
  448. int32_t draft_n_accepted = 0;
  449. json to_json() const {
  450. json base = {
  451. {"prompt_n", prompt_n},
  452. {"prompt_ms", prompt_ms},
  453. {"prompt_per_token_ms", prompt_per_token_ms},
  454. {"prompt_per_second", prompt_per_second},
  455. {"predicted_n", predicted_n},
  456. {"predicted_ms", predicted_ms},
  457. {"predicted_per_token_ms", predicted_per_token_ms},
  458. {"predicted_per_second", predicted_per_second},
  459. };
  460. if (draft_n > 0) {
  461. base["draft_n"] = draft_n;
  462. base["draft_n_accepted"] = draft_n_accepted;
  463. }
  464. return base;
  465. }
  466. };
  467. struct server_task_result {
  468. int id = -1;
  469. int id_slot = -1;
  470. virtual bool is_error() {
  471. // only used by server_task_result_error
  472. return false;
  473. }
  474. virtual bool is_stop() {
  475. // only used by server_task_result_cmpl_*
  476. return false;
  477. }
  478. virtual int get_index() {
  479. return -1;
  480. }
  481. virtual json to_json() = 0;
  482. virtual ~server_task_result() = default;
  483. };
  484. // using shared_ptr for polymorphism of server_task_result
  485. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  486. inline std::string stop_type_to_str(stop_type type) {
  487. switch (type) {
  488. case STOP_TYPE_EOS: return "eos";
  489. case STOP_TYPE_WORD: return "word";
  490. case STOP_TYPE_LIMIT: return "limit";
  491. default: return "none";
  492. }
  493. }
  494. struct completion_token_output {
  495. llama_token tok;
  496. float prob;
  497. std::string text_to_send;
  498. struct prob_info {
  499. llama_token tok;
  500. std::string txt;
  501. float prob;
  502. };
  503. std::vector<prob_info> probs;
  504. json to_json(bool post_sampling_probs) const {
  505. json probs_for_token = json::array();
  506. for (const auto & p : probs) {
  507. std::string txt(p.txt);
  508. txt.resize(validate_utf8(txt));
  509. probs_for_token.push_back(json {
  510. {"id", p.tok},
  511. {"token", txt},
  512. {"bytes", str_to_bytes(p.txt)},
  513. {
  514. post_sampling_probs ? "prob" : "logprob",
  515. post_sampling_probs ? p.prob : logarithm(p.prob)
  516. },
  517. });
  518. }
  519. return probs_for_token;
  520. }
  521. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  522. json out = json::array();
  523. for (const auto & p : probs) {
  524. std::string txt(p.text_to_send);
  525. txt.resize(validate_utf8(txt));
  526. out.push_back(json {
  527. {"id", p.tok},
  528. {"token", txt},
  529. {"bytes", str_to_bytes(p.text_to_send)},
  530. {
  531. post_sampling_probs ? "prob" : "logprob",
  532. post_sampling_probs ? p.prob : logarithm(p.prob)
  533. },
  534. {
  535. post_sampling_probs ? "top_probs" : "top_logprobs",
  536. p.to_json(post_sampling_probs)
  537. },
  538. });
  539. }
  540. return out;
  541. }
  542. static float logarithm(float x) {
  543. // nlohmann::json converts -inf to null, so we need to prevent that
  544. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  545. }
  546. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  547. std::vector<unsigned char> bytes;
  548. for (unsigned char c : str) {
  549. bytes.push_back(c);
  550. }
  551. return bytes;
  552. }
  553. };
  554. struct server_task_result_cmpl_final : server_task_result {
  555. int index = 0;
  556. std::string content;
  557. llama_tokens tokens;
  558. bool stream;
  559. result_timings timings;
  560. std::string prompt;
  561. bool truncated;
  562. int32_t n_decoded;
  563. int32_t n_prompt_tokens;
  564. int32_t n_tokens_cached;
  565. bool has_new_line;
  566. std::string stopping_word;
  567. stop_type stop = STOP_TYPE_NONE;
  568. bool post_sampling_probs;
  569. std::vector<completion_token_output> probs_output;
  570. std::vector<std::string> response_fields;
  571. slot_params generation_params;
  572. // OAI-compat fields
  573. bool verbose = false;
  574. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  575. std::string oaicompat_model;
  576. std::string oaicompat_cmpl_id;
  577. common_chat_msg oaicompat_msg;
  578. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  579. virtual int get_index() override {
  580. return index;
  581. }
  582. virtual bool is_stop() override {
  583. return true; // in stream mode, final responses are considered stop
  584. }
  585. virtual json to_json() override {
  586. switch (oaicompat) {
  587. case OAICOMPAT_TYPE_NONE:
  588. return to_json_non_oaicompat();
  589. case OAICOMPAT_TYPE_COMPLETION:
  590. return to_json_oaicompat();
  591. case OAICOMPAT_TYPE_CHAT:
  592. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  593. default:
  594. GGML_ASSERT(false && "Invalid oaicompat_type");
  595. }
  596. }
  597. json to_json_non_oaicompat() {
  598. json res = json {
  599. {"index", index},
  600. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  601. {"tokens", stream ? llama_tokens {} : tokens},
  602. {"id_slot", id_slot},
  603. {"stop", true},
  604. {"model", oaicompat_model},
  605. {"tokens_predicted", n_decoded},
  606. {"tokens_evaluated", n_prompt_tokens},
  607. {"generation_settings", generation_params.to_json()},
  608. {"prompt", prompt},
  609. {"has_new_line", has_new_line},
  610. {"truncated", truncated},
  611. {"stop_type", stop_type_to_str(stop)},
  612. {"stopping_word", stopping_word},
  613. {"tokens_cached", n_tokens_cached},
  614. {"timings", timings.to_json()},
  615. };
  616. if (!stream && !probs_output.empty()) {
  617. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  618. }
  619. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  620. }
  621. json to_json_oaicompat() {
  622. std::time_t t = std::time(0);
  623. json logprobs = json(nullptr); // OAI default to null
  624. if (!stream && probs_output.size() > 0) {
  625. logprobs = json{
  626. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  627. };
  628. }
  629. json finish_reason = "length";
  630. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  631. finish_reason = "stop";
  632. }
  633. json res = json {
  634. {"choices", json::array({
  635. json{
  636. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  637. {"index", index},
  638. {"logprobs", logprobs},
  639. {"finish_reason", finish_reason},
  640. }
  641. })},
  642. {"created", t},
  643. {"model", oaicompat_model},
  644. {"system_fingerprint", build_info},
  645. {"object", "text_completion"},
  646. {"usage", json {
  647. {"completion_tokens", n_decoded},
  648. {"prompt_tokens", n_prompt_tokens},
  649. {"total_tokens", n_decoded + n_prompt_tokens}
  650. }},
  651. {"id", oaicompat_cmpl_id}
  652. };
  653. // extra fields for debugging purposes
  654. if (verbose) {
  655. res["__verbose"] = to_json_non_oaicompat();
  656. }
  657. if (timings.prompt_n >= 0) {
  658. res.push_back({"timings", timings.to_json()});
  659. }
  660. return res;
  661. }
  662. json to_json_oaicompat_chat() {
  663. std::string finish_reason = "length";
  664. common_chat_msg msg;
  665. if (!oaicompat_msg.empty()) {
  666. msg = oaicompat_msg;
  667. } else {
  668. msg.role = "assistant";
  669. msg.content = content;
  670. }
  671. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  672. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  673. }
  674. json choice {
  675. {"finish_reason", finish_reason},
  676. {"index", 0},
  677. {"message", msg.to_json_oaicompat<json>()},
  678. };
  679. if (!stream && probs_output.size() > 0) {
  680. choice["logprobs"] = json{
  681. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  682. };
  683. }
  684. std::time_t t = std::time(0);
  685. json res = json {
  686. {"choices", json::array({choice})},
  687. {"created", t},
  688. {"model", oaicompat_model},
  689. {"system_fingerprint", build_info},
  690. {"object", "chat.completion"},
  691. {"usage", json {
  692. {"completion_tokens", n_decoded},
  693. {"prompt_tokens", n_prompt_tokens},
  694. {"total_tokens", n_decoded + n_prompt_tokens}
  695. }},
  696. {"id", oaicompat_cmpl_id}
  697. };
  698. // extra fields for debugging purposes
  699. if (verbose) {
  700. res["__verbose"] = to_json_non_oaicompat();
  701. }
  702. if (timings.prompt_n >= 0) {
  703. res.push_back({"timings", timings.to_json()});
  704. }
  705. return res;
  706. }
  707. json to_json_oaicompat_chat_stream() {
  708. std::time_t t = std::time(0);
  709. std::string finish_reason = "length";
  710. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  711. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  712. }
  713. json deltas = json::array();
  714. for (const auto & diff : oaicompat_msg_diffs) {
  715. deltas.push_back({
  716. {"choices", json::array({
  717. json {
  718. {"finish_reason", nullptr},
  719. {"index", 0},
  720. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  721. },
  722. })},
  723. {"created", t},
  724. {"id", oaicompat_cmpl_id},
  725. {"model", oaicompat_model},
  726. {"system_fingerprint", build_info},
  727. {"object", "chat.completion.chunk"},
  728. });
  729. }
  730. deltas.push_back({
  731. {"choices", json::array({
  732. json {
  733. {"finish_reason", finish_reason},
  734. {"index", 0},
  735. {"delta", json::object()},
  736. },
  737. })},
  738. {"created", t},
  739. {"id", oaicompat_cmpl_id},
  740. {"model", oaicompat_model},
  741. {"system_fingerprint", build_info},
  742. {"object", "chat.completion.chunk"},
  743. {"usage", json {
  744. {"completion_tokens", n_decoded},
  745. {"prompt_tokens", n_prompt_tokens},
  746. {"total_tokens", n_decoded + n_prompt_tokens},
  747. }},
  748. });
  749. if (timings.prompt_n >= 0) {
  750. deltas.back().push_back({"timings", timings.to_json()});
  751. }
  752. // extra fields for debugging purposes
  753. if (verbose && !deltas.empty()) {
  754. deltas.front()["__verbose"] = to_json_non_oaicompat();
  755. }
  756. return deltas;
  757. }
  758. };
  759. struct server_task_result_cmpl_partial : server_task_result {
  760. int index = 0;
  761. std::string content;
  762. llama_tokens tokens;
  763. int32_t n_decoded;
  764. int32_t n_prompt_tokens;
  765. bool post_sampling_probs;
  766. completion_token_output prob_output;
  767. result_timings timings;
  768. // OAI-compat fields
  769. bool verbose = false;
  770. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  771. std::string oaicompat_model;
  772. std::string oaicompat_cmpl_id;
  773. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  774. virtual int get_index() override {
  775. return index;
  776. }
  777. virtual bool is_stop() override {
  778. return false; // in stream mode, partial responses are not considered stop
  779. }
  780. virtual json to_json() override {
  781. switch (oaicompat) {
  782. case OAICOMPAT_TYPE_NONE:
  783. return to_json_non_oaicompat();
  784. case OAICOMPAT_TYPE_COMPLETION:
  785. return to_json_oaicompat();
  786. case OAICOMPAT_TYPE_CHAT:
  787. return to_json_oaicompat_chat();
  788. default:
  789. GGML_ASSERT(false && "Invalid oaicompat_type");
  790. }
  791. }
  792. json to_json_non_oaicompat() {
  793. // non-OAI-compat JSON
  794. json res = json {
  795. {"index", index},
  796. {"content", content},
  797. {"tokens", tokens},
  798. {"stop", false},
  799. {"id_slot", id_slot},
  800. {"tokens_predicted", n_decoded},
  801. {"tokens_evaluated", n_prompt_tokens},
  802. };
  803. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  804. if (timings.prompt_n > 0) {
  805. res.push_back({"timings", timings.to_json()});
  806. }
  807. if (!prob_output.probs.empty()) {
  808. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  809. }
  810. return res;
  811. }
  812. json to_json_oaicompat() {
  813. std::time_t t = std::time(0);
  814. json logprobs = json(nullptr); // OAI default to null
  815. if (prob_output.probs.size() > 0) {
  816. logprobs = json{
  817. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  818. };
  819. }
  820. json res = json {
  821. {"choices", json::array({
  822. json{
  823. {"text", content},
  824. {"index", index},
  825. {"logprobs", logprobs},
  826. {"finish_reason", nullptr},
  827. }
  828. })},
  829. {"created", t},
  830. {"model", oaicompat_model},
  831. {"system_fingerprint", build_info},
  832. {"object", "text_completion"},
  833. {"id", oaicompat_cmpl_id}
  834. };
  835. // extra fields for debugging purposes
  836. if (verbose) {
  837. res["__verbose"] = to_json_non_oaicompat();
  838. }
  839. if (timings.prompt_n >= 0) {
  840. res.push_back({"timings", timings.to_json()});
  841. }
  842. return res;
  843. }
  844. json to_json_oaicompat_chat() {
  845. bool first = n_decoded == 1;
  846. std::time_t t = std::time(0);
  847. json choices;
  848. std::vector<json> deltas;
  849. auto add_delta = [&](const json & delta) {
  850. deltas.push_back({
  851. {"choices", json::array({
  852. json {
  853. {"finish_reason", nullptr},
  854. {"index", 0},
  855. {"delta", delta},
  856. },
  857. })},
  858. {"created", t},
  859. {"id", oaicompat_cmpl_id},
  860. {"model", oaicompat_model},
  861. {"system_fingerprint", build_info},
  862. {"object", "chat.completion.chunk"},
  863. });
  864. };
  865. // We have to send an initial update to conform to openai behavior
  866. if (first) {
  867. add_delta({
  868. {"role", "assistant"},
  869. {"content", nullptr},
  870. });
  871. }
  872. for (const auto & diff : oaicompat_msg_diffs) {
  873. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  874. }
  875. if (!deltas.empty()) {
  876. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  877. if (prob_output.probs.size() > 0) {
  878. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  879. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  880. };
  881. }
  882. if (timings.prompt_n >= 0) {
  883. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  884. }
  885. }
  886. return deltas;
  887. }
  888. };
  889. struct server_task_result_embd : server_task_result {
  890. int index = 0;
  891. std::vector<std::vector<float>> embedding;
  892. int32_t n_tokens;
  893. // OAI-compat fields
  894. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  895. virtual int get_index() override {
  896. return index;
  897. }
  898. virtual json to_json() override {
  899. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  900. ? to_json_oaicompat()
  901. : to_json_non_oaicompat();
  902. }
  903. json to_json_non_oaicompat() {
  904. return json {
  905. {"index", index},
  906. {"embedding", embedding},
  907. };
  908. }
  909. json to_json_oaicompat() {
  910. return json {
  911. {"index", index},
  912. {"embedding", embedding[0]},
  913. {"tokens_evaluated", n_tokens},
  914. };
  915. }
  916. };
  917. struct server_task_result_rerank : server_task_result {
  918. int index = 0;
  919. float score = -1e6;
  920. int32_t n_tokens;
  921. virtual int get_index() override {
  922. return index;
  923. }
  924. virtual json to_json() override {
  925. return json {
  926. {"index", index},
  927. {"score", score},
  928. {"tokens_evaluated", n_tokens},
  929. };
  930. }
  931. };
  932. // this function maybe used outside of server_task_result_error
  933. static json format_error_response(const std::string & message, const enum error_type type) {
  934. std::string type_str;
  935. int code = 500;
  936. switch (type) {
  937. case ERROR_TYPE_INVALID_REQUEST:
  938. type_str = "invalid_request_error";
  939. code = 400;
  940. break;
  941. case ERROR_TYPE_AUTHENTICATION:
  942. type_str = "authentication_error";
  943. code = 401;
  944. break;
  945. case ERROR_TYPE_NOT_FOUND:
  946. type_str = "not_found_error";
  947. code = 404;
  948. break;
  949. case ERROR_TYPE_SERVER:
  950. type_str = "server_error";
  951. code = 500;
  952. break;
  953. case ERROR_TYPE_PERMISSION:
  954. type_str = "permission_error";
  955. code = 403;
  956. break;
  957. case ERROR_TYPE_NOT_SUPPORTED:
  958. type_str = "not_supported_error";
  959. code = 501;
  960. break;
  961. case ERROR_TYPE_UNAVAILABLE:
  962. type_str = "unavailable_error";
  963. code = 503;
  964. break;
  965. }
  966. return json {
  967. {"code", code},
  968. {"message", message},
  969. {"type", type_str},
  970. };
  971. }
  972. struct server_task_result_error : server_task_result {
  973. int index = 0;
  974. error_type err_type = ERROR_TYPE_SERVER;
  975. std::string err_msg;
  976. virtual bool is_error() override {
  977. return true;
  978. }
  979. virtual json to_json() override {
  980. return format_error_response(err_msg, err_type);
  981. }
  982. };
  983. struct server_task_result_metrics : server_task_result {
  984. int n_idle_slots;
  985. int n_processing_slots;
  986. int n_tasks_deferred;
  987. int64_t t_start;
  988. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  989. uint64_t n_prompt_tokens_processed_total = 0;
  990. uint64_t t_prompt_processing_total = 0;
  991. uint64_t n_tokens_predicted_total = 0;
  992. uint64_t t_tokens_generation_total = 0;
  993. uint64_t n_prompt_tokens_processed = 0;
  994. uint64_t t_prompt_processing = 0;
  995. uint64_t n_tokens_predicted = 0;
  996. uint64_t t_tokens_generation = 0;
  997. uint64_t n_decode_total = 0;
  998. uint64_t n_busy_slots_total = 0;
  999. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1000. // therefore, we use json to temporarily store the slot.to_json() result
  1001. json slots_data = json::array();
  1002. virtual json to_json() override {
  1003. return json {
  1004. { "idle", n_idle_slots },
  1005. { "processing", n_processing_slots },
  1006. { "deferred", n_tasks_deferred },
  1007. { "t_start", t_start },
  1008. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1009. { "t_tokens_generation_total", t_tokens_generation_total },
  1010. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1011. { "t_prompt_processing_total", t_prompt_processing_total },
  1012. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1013. { "t_prompt_processing", t_prompt_processing },
  1014. { "n_tokens_predicted", n_tokens_predicted },
  1015. { "t_tokens_generation", t_tokens_generation },
  1016. { "n_decode_total", n_decode_total },
  1017. { "n_busy_slots_total", n_busy_slots_total },
  1018. { "slots", slots_data },
  1019. };
  1020. }
  1021. };
  1022. struct server_task_result_slot_save_load : server_task_result {
  1023. std::string filename;
  1024. bool is_save; // true = save, false = load
  1025. size_t n_tokens;
  1026. size_t n_bytes;
  1027. double t_ms;
  1028. virtual json to_json() override {
  1029. if (is_save) {
  1030. return json {
  1031. { "id_slot", id_slot },
  1032. { "filename", filename },
  1033. { "n_saved", n_tokens },
  1034. { "n_written", n_bytes },
  1035. { "timings", {
  1036. { "save_ms", t_ms }
  1037. }},
  1038. };
  1039. } else {
  1040. return json {
  1041. { "id_slot", id_slot },
  1042. { "filename", filename },
  1043. { "n_restored", n_tokens },
  1044. { "n_read", n_bytes },
  1045. { "timings", {
  1046. { "restore_ms", t_ms }
  1047. }},
  1048. };
  1049. }
  1050. }
  1051. };
  1052. struct server_task_result_slot_erase : server_task_result {
  1053. size_t n_erased;
  1054. virtual json to_json() override {
  1055. return json {
  1056. { "id_slot", id_slot },
  1057. { "n_erased", n_erased },
  1058. };
  1059. }
  1060. };
  1061. struct server_task_result_apply_lora : server_task_result {
  1062. virtual json to_json() override {
  1063. return json {{ "success", true }};
  1064. }
  1065. };
  1066. struct server_slot {
  1067. int id;
  1068. int id_task = -1;
  1069. // only used for completion/embedding/infill/rerank
  1070. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1071. llama_batch batch_spec = {};
  1072. llama_context * ctx = nullptr;
  1073. llama_context * ctx_dft = nullptr;
  1074. // multimodal
  1075. mtmd_context * mctx = nullptr;
  1076. common_speculative * spec = nullptr;
  1077. std::vector<common_adapter_lora_info> lora;
  1078. // the index relative to completion multi-task request
  1079. size_t index = 0;
  1080. struct slot_params params;
  1081. slot_state state = SLOT_STATE_IDLE;
  1082. // used to determine the slot that has been used the longest
  1083. int64_t t_last_used = -1;
  1084. // generation props
  1085. int32_t n_ctx = 0; // context size per slot
  1086. int32_t n_past = 0;
  1087. int32_t n_decoded = 0;
  1088. int32_t n_remaining = -1;
  1089. int32_t i_batch = -1;
  1090. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1091. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1092. int32_t n_prompt_tokens = 0;
  1093. int32_t n_prompt_tokens_processed = 0;
  1094. // input prompt tokens
  1095. server_tokens prompt_tokens;
  1096. size_t last_nl_pos = 0;
  1097. std::string generated_text;
  1098. llama_tokens generated_tokens;
  1099. common_chat_msg chat_msg;
  1100. server_tokens cache_tokens;
  1101. std::vector<completion_token_output> generated_token_probs;
  1102. bool has_next_token = true;
  1103. bool has_new_line = false;
  1104. bool truncated = false;
  1105. stop_type stop;
  1106. std::string stopping_word;
  1107. // sampling
  1108. json json_schema;
  1109. struct common_sampler * smpl = nullptr;
  1110. llama_token sampled;
  1111. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1112. std::vector<std::string> generated_tool_call_ids;
  1113. // stats
  1114. size_t n_sent_text = 0; // number of sent text character
  1115. int64_t t_start_process_prompt;
  1116. int64_t t_start_generation;
  1117. double t_prompt_processing; // ms
  1118. double t_token_generation; // ms
  1119. std::function<void(int)> callback_on_release;
  1120. // Speculative decoding stats
  1121. int32_t n_draft_total = 0; // Total draft tokens generated
  1122. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1123. void reset() {
  1124. SLT_DBG(*this, "%s", "\n");
  1125. n_prompt_tokens = 0;
  1126. last_nl_pos = 0;
  1127. generated_text = "";
  1128. has_new_line = false;
  1129. truncated = false;
  1130. stop = STOP_TYPE_NONE;
  1131. stopping_word = "";
  1132. n_past = 0;
  1133. n_sent_text = 0;
  1134. task_type = SERVER_TASK_TYPE_COMPLETION;
  1135. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1136. generated_tokens.clear();
  1137. generated_token_probs.clear();
  1138. chat_msg = {};
  1139. json_schema = json();
  1140. generated_tool_call_ids.clear();
  1141. // clear speculative decoding stats
  1142. n_draft_total = 0;
  1143. n_draft_accepted = 0;
  1144. }
  1145. bool is_non_causal() const {
  1146. return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
  1147. }
  1148. bool can_batch_with(server_slot & other_slot) const {
  1149. return is_non_causal() == other_slot.is_non_causal()
  1150. && are_lora_equal(lora, other_slot.lora);
  1151. }
  1152. bool has_budget(const common_params & global_params) {
  1153. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1154. return true; // limitless
  1155. }
  1156. n_remaining = -1;
  1157. if (params.n_predict != -1) {
  1158. n_remaining = params.n_predict - n_decoded;
  1159. } else if (global_params.n_predict != -1) {
  1160. n_remaining = global_params.n_predict - n_decoded;
  1161. }
  1162. return n_remaining > 0; // no budget
  1163. }
  1164. bool is_processing() const {
  1165. return state != SLOT_STATE_IDLE;
  1166. }
  1167. bool can_speculate() const {
  1168. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1169. }
  1170. void add_token(const completion_token_output & token) {
  1171. if (!is_processing()) {
  1172. SLT_WRN(*this, "%s", "slot is not processing\n");
  1173. return;
  1174. }
  1175. generated_token_probs.push_back(token);
  1176. }
  1177. void release() {
  1178. if (is_processing()) {
  1179. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1180. t_last_used = ggml_time_us();
  1181. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1182. state = SLOT_STATE_IDLE;
  1183. callback_on_release(id);
  1184. }
  1185. }
  1186. result_timings get_timings() const {
  1187. result_timings timings;
  1188. timings.prompt_n = n_prompt_tokens_processed;
  1189. timings.prompt_ms = t_prompt_processing;
  1190. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1191. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1192. timings.predicted_n = n_decoded;
  1193. timings.predicted_ms = t_token_generation;
  1194. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1195. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1196. // Add speculative metrics
  1197. if (n_draft_total > 0) {
  1198. timings.draft_n = n_draft_total;
  1199. timings.draft_n_accepted = n_draft_accepted;
  1200. }
  1201. return timings;
  1202. }
  1203. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1204. auto previous_msg = chat_msg;
  1205. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1206. auto new_msg = common_chat_parse(
  1207. generated_text,
  1208. /* is_partial= */ stop != STOP_TYPE_EOS,
  1209. params.oaicompat_chat_syntax);
  1210. if (!new_msg.empty()) {
  1211. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1212. chat_msg = new_msg;
  1213. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1214. }
  1215. return chat_msg;
  1216. }
  1217. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1218. size_t stop_pos = std::string::npos;
  1219. for (const std::string & word : params.antiprompt) {
  1220. size_t pos;
  1221. if (is_full_stop) {
  1222. const size_t tmp = word.size() + last_token_size;
  1223. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1224. pos = text.find(word, from_pos);
  1225. } else {
  1226. // otherwise, partial stop
  1227. pos = string_find_partial_stop(text, word);
  1228. }
  1229. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1230. if (is_full_stop) {
  1231. stop = STOP_TYPE_WORD;
  1232. stopping_word = word;
  1233. has_next_token = false;
  1234. }
  1235. stop_pos = pos;
  1236. }
  1237. }
  1238. return stop_pos;
  1239. }
  1240. void print_timings() const {
  1241. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1242. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1243. const double t_gen = t_token_generation / n_decoded;
  1244. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1245. SLT_INF(*this,
  1246. "\n"
  1247. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1248. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1249. " total time = %10.2f ms / %5d tokens\n",
  1250. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1251. t_token_generation, n_decoded, t_gen, n_gen_second,
  1252. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1253. if (n_draft_total > 0) {
  1254. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1255. SLT_INF(*this,
  1256. "\n"
  1257. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1258. draft_ratio, n_draft_accepted, n_draft_total
  1259. );
  1260. }
  1261. }
  1262. json to_json() const {
  1263. return json {
  1264. {"id", id},
  1265. {"id_task", id_task},
  1266. {"n_ctx", n_ctx},
  1267. {"speculative", can_speculate()},
  1268. {"is_processing", is_processing()},
  1269. {"non_causal", is_non_causal()},
  1270. {"params", params.to_json()},
  1271. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1272. {"next_token",
  1273. {
  1274. {"has_next_token", has_next_token},
  1275. {"has_new_line", has_new_line},
  1276. {"n_remain", n_remaining},
  1277. {"n_decoded", n_decoded},
  1278. {"stopping_word", stopping_word},
  1279. }
  1280. },
  1281. };
  1282. }
  1283. };
  1284. struct server_metrics {
  1285. int64_t t_start = 0;
  1286. uint64_t n_prompt_tokens_processed_total = 0;
  1287. uint64_t t_prompt_processing_total = 0;
  1288. uint64_t n_tokens_predicted_total = 0;
  1289. uint64_t t_tokens_generation_total = 0;
  1290. uint64_t n_prompt_tokens_processed = 0;
  1291. uint64_t t_prompt_processing = 0;
  1292. uint64_t n_tokens_predicted = 0;
  1293. uint64_t t_tokens_generation = 0;
  1294. uint64_t n_decode_total = 0;
  1295. uint64_t n_busy_slots_total = 0;
  1296. void init() {
  1297. t_start = ggml_time_us();
  1298. }
  1299. void on_prompt_eval(const server_slot & slot) {
  1300. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1301. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1302. t_prompt_processing += slot.t_prompt_processing;
  1303. t_prompt_processing_total += slot.t_prompt_processing;
  1304. }
  1305. void on_prediction(const server_slot & slot) {
  1306. n_tokens_predicted_total += slot.n_decoded;
  1307. n_tokens_predicted += slot.n_decoded;
  1308. t_tokens_generation += slot.t_token_generation;
  1309. t_tokens_generation_total += slot.t_token_generation;
  1310. }
  1311. void on_decoded(const std::vector<server_slot> & slots) {
  1312. n_decode_total++;
  1313. for (const auto & slot : slots) {
  1314. if (slot.is_processing()) {
  1315. n_busy_slots_total++;
  1316. }
  1317. }
  1318. }
  1319. void reset_bucket() {
  1320. n_prompt_tokens_processed = 0;
  1321. t_prompt_processing = 0;
  1322. n_tokens_predicted = 0;
  1323. t_tokens_generation = 0;
  1324. }
  1325. };
  1326. struct server_queue {
  1327. int id = 0;
  1328. bool running;
  1329. // queues
  1330. std::deque<server_task> queue_tasks;
  1331. std::deque<server_task> queue_tasks_deferred;
  1332. std::mutex mutex_tasks;
  1333. std::condition_variable condition_tasks;
  1334. // callback functions
  1335. std::function<void(server_task &&)> callback_new_task;
  1336. std::function<void(void)> callback_update_slots;
  1337. // Add a new task to the end of the queue
  1338. int post(server_task && task, bool front = false) {
  1339. std::unique_lock<std::mutex> lock(mutex_tasks);
  1340. GGML_ASSERT(task.id != -1);
  1341. // if this is cancel task make sure to clean up pending tasks
  1342. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1343. cleanup_pending_task(task.id_target);
  1344. }
  1345. const int task_id = task.id;
  1346. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1347. if (front) {
  1348. queue_tasks.push_front(std::move(task));
  1349. } else {
  1350. queue_tasks.push_back(std::move(task));
  1351. }
  1352. condition_tasks.notify_one();
  1353. return task_id;
  1354. }
  1355. // multi-task version of post()
  1356. int post(std::vector<server_task> && tasks, bool front = false) {
  1357. std::unique_lock<std::mutex> lock(mutex_tasks);
  1358. for (auto & task : tasks) {
  1359. if (task.id == -1) {
  1360. task.id = id++;
  1361. }
  1362. // if this is cancel task make sure to clean up pending tasks
  1363. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1364. cleanup_pending_task(task.id_target);
  1365. }
  1366. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1367. if (front) {
  1368. queue_tasks.push_front(std::move(task));
  1369. } else {
  1370. queue_tasks.push_back(std::move(task));
  1371. }
  1372. }
  1373. condition_tasks.notify_one();
  1374. return 0;
  1375. }
  1376. // Add a new task, but defer until one slot is available
  1377. void defer(server_task && task) {
  1378. std::unique_lock<std::mutex> lock(mutex_tasks);
  1379. QUE_DBG("defer task, id = %d\n", task.id);
  1380. queue_tasks_deferred.push_back(std::move(task));
  1381. condition_tasks.notify_one();
  1382. }
  1383. // Get the next id for creating a new task
  1384. int get_new_id() {
  1385. std::unique_lock<std::mutex> lock(mutex_tasks);
  1386. int new_id = id++;
  1387. return new_id;
  1388. }
  1389. // Register function to process a new task
  1390. void on_new_task(std::function<void(server_task &&)> callback) {
  1391. callback_new_task = std::move(callback);
  1392. }
  1393. // Register the function to be called when all slots data is ready to be processed
  1394. void on_update_slots(std::function<void(void)> callback) {
  1395. callback_update_slots = std::move(callback);
  1396. }
  1397. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1398. void pop_deferred_task() {
  1399. std::unique_lock<std::mutex> lock(mutex_tasks);
  1400. if (!queue_tasks_deferred.empty()) {
  1401. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1402. queue_tasks_deferred.pop_front();
  1403. }
  1404. condition_tasks.notify_one();
  1405. }
  1406. // end the start_loop routine
  1407. void terminate() {
  1408. std::unique_lock<std::mutex> lock(mutex_tasks);
  1409. running = false;
  1410. condition_tasks.notify_all();
  1411. }
  1412. /**
  1413. * Main loop consists of these steps:
  1414. * - Wait until a new task arrives
  1415. * - Process the task (i.e. maybe copy data into slot)
  1416. * - Check if multitask is finished
  1417. * - Update all slots
  1418. */
  1419. void start_loop() {
  1420. running = true;
  1421. while (true) {
  1422. QUE_DBG("%s", "processing new tasks\n");
  1423. while (true) {
  1424. std::unique_lock<std::mutex> lock(mutex_tasks);
  1425. if (!running) {
  1426. QUE_DBG("%s", "terminate\n");
  1427. return;
  1428. }
  1429. if (queue_tasks.empty()) {
  1430. lock.unlock();
  1431. break;
  1432. }
  1433. server_task task = std::move(queue_tasks.front());
  1434. queue_tasks.pop_front();
  1435. lock.unlock();
  1436. QUE_DBG("processing task, id = %d\n", task.id);
  1437. callback_new_task(std::move(task));
  1438. }
  1439. // all tasks in the current loop is processed, slots data is now ready
  1440. QUE_DBG("%s", "update slots\n");
  1441. callback_update_slots();
  1442. QUE_DBG("%s", "waiting for new tasks\n");
  1443. {
  1444. std::unique_lock<std::mutex> lock(mutex_tasks);
  1445. if (!running) {
  1446. QUE_DBG("%s", "terminate\n");
  1447. return;
  1448. }
  1449. if (queue_tasks.empty()) {
  1450. condition_tasks.wait(lock, [&]{
  1451. return (!queue_tasks.empty() || !running);
  1452. });
  1453. }
  1454. }
  1455. }
  1456. }
  1457. private:
  1458. void cleanup_pending_task(int id_target) {
  1459. // no need lock because this is called exclusively by post()
  1460. auto rm_func = [id_target](const server_task & task) {
  1461. return task.id_target == id_target;
  1462. };
  1463. queue_tasks.erase(
  1464. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1465. queue_tasks.end());
  1466. queue_tasks_deferred.erase(
  1467. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1468. queue_tasks_deferred.end());
  1469. }
  1470. };
  1471. struct server_response {
  1472. bool running = true;
  1473. // for keeping track of all tasks waiting for the result
  1474. std::unordered_set<int> waiting_task_ids;
  1475. // the main result queue (using ptr for polymorphism)
  1476. std::vector<server_task_result_ptr> queue_results;
  1477. std::mutex mutex_results;
  1478. std::condition_variable condition_results;
  1479. // add the id_task to the list of tasks waiting for response
  1480. void add_waiting_task_id(int id_task) {
  1481. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1482. std::unique_lock<std::mutex> lock(mutex_results);
  1483. waiting_task_ids.insert(id_task);
  1484. }
  1485. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1486. std::unique_lock<std::mutex> lock(mutex_results);
  1487. for (const auto & task : tasks) {
  1488. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1489. waiting_task_ids.insert(task.id);
  1490. }
  1491. }
  1492. // when the request is finished, we can remove task associated with it
  1493. void remove_waiting_task_id(int id_task) {
  1494. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1495. std::unique_lock<std::mutex> lock(mutex_results);
  1496. waiting_task_ids.erase(id_task);
  1497. // make sure to clean up all pending results
  1498. queue_results.erase(
  1499. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1500. return res->id == id_task;
  1501. }),
  1502. queue_results.end());
  1503. }
  1504. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1505. std::unique_lock<std::mutex> lock(mutex_results);
  1506. for (const auto & id_task : id_tasks) {
  1507. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1508. waiting_task_ids.erase(id_task);
  1509. }
  1510. }
  1511. // This function blocks the thread until there is a response for one of the id_tasks
  1512. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1513. while (true) {
  1514. std::unique_lock<std::mutex> lock(mutex_results);
  1515. condition_results.wait(lock, [&]{
  1516. if (!running) {
  1517. SRV_DBG("%s : queue result stop\n", __func__);
  1518. std::terminate(); // we cannot return here since the caller is HTTP code
  1519. }
  1520. return !queue_results.empty();
  1521. });
  1522. for (size_t i = 0; i < queue_results.size(); i++) {
  1523. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1524. server_task_result_ptr res = std::move(queue_results[i]);
  1525. queue_results.erase(queue_results.begin() + i);
  1526. return res;
  1527. }
  1528. }
  1529. }
  1530. // should never reach here
  1531. }
  1532. // same as recv(), but have timeout in seconds
  1533. // if timeout is reached, nullptr is returned
  1534. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1535. while (true) {
  1536. std::unique_lock<std::mutex> lock(mutex_results);
  1537. for (int i = 0; i < (int) queue_results.size(); i++) {
  1538. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1539. server_task_result_ptr res = std::move(queue_results[i]);
  1540. queue_results.erase(queue_results.begin() + i);
  1541. return res;
  1542. }
  1543. }
  1544. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1545. if (!running) {
  1546. SRV_DBG("%s : queue result stop\n", __func__);
  1547. std::terminate(); // we cannot return here since the caller is HTTP code
  1548. }
  1549. if (cr_res == std::cv_status::timeout) {
  1550. return nullptr;
  1551. }
  1552. }
  1553. // should never reach here
  1554. }
  1555. // single-task version of recv()
  1556. server_task_result_ptr recv(int id_task) {
  1557. std::unordered_set<int> id_tasks = {id_task};
  1558. return recv(id_tasks);
  1559. }
  1560. // Send a new result to a waiting id_task
  1561. void send(server_task_result_ptr && result) {
  1562. SRV_DBG("sending result for task id = %d\n", result->id);
  1563. std::unique_lock<std::mutex> lock(mutex_results);
  1564. for (const auto & id_task : waiting_task_ids) {
  1565. if (result->id == id_task) {
  1566. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1567. queue_results.emplace_back(std::move(result));
  1568. condition_results.notify_all();
  1569. return;
  1570. }
  1571. }
  1572. }
  1573. // terminate the waiting loop
  1574. void terminate() {
  1575. running = false;
  1576. condition_results.notify_all();
  1577. }
  1578. };
  1579. struct server_context {
  1580. common_params params_base;
  1581. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1582. common_init_result llama_init;
  1583. common_init_result llama_init_dft;
  1584. llama_model * model = nullptr;
  1585. llama_context * ctx = nullptr;
  1586. // multimodal
  1587. mtmd_context * mctx = nullptr;
  1588. const llama_vocab * vocab = nullptr;
  1589. llama_model * model_dft = nullptr;
  1590. llama_context_params cparams_dft;
  1591. llama_batch batch {};
  1592. bool clean_kv_cache = true;
  1593. bool add_bos_token = true;
  1594. bool has_eos_token = false;
  1595. int32_t n_ctx; // total context for all clients / slots
  1596. // slots / clients
  1597. std::vector<server_slot> slots;
  1598. json default_generation_settings_for_props;
  1599. server_queue queue_tasks;
  1600. server_response queue_results;
  1601. server_metrics metrics;
  1602. // Necessary similarity of prompt for slot selection
  1603. float slot_prompt_similarity = 0.0f;
  1604. common_chat_templates_ptr chat_templates;
  1605. oaicompat_parser_options oai_parser_opt;
  1606. ~server_context() {
  1607. mtmd_free(mctx);
  1608. // Clear any sampling context
  1609. for (server_slot & slot : slots) {
  1610. common_sampler_free(slot.smpl);
  1611. slot.smpl = nullptr;
  1612. llama_free(slot.ctx_dft);
  1613. slot.ctx_dft = nullptr;
  1614. common_speculative_free(slot.spec);
  1615. slot.spec = nullptr;
  1616. llama_batch_free(slot.batch_spec);
  1617. }
  1618. llama_batch_free(batch);
  1619. }
  1620. bool load_model(const common_params & params) {
  1621. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1622. params_base = params;
  1623. llama_init = common_init_from_params(params_base);
  1624. model = llama_init.model.get();
  1625. ctx = llama_init.context.get();
  1626. if (model == nullptr) {
  1627. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1628. return false;
  1629. }
  1630. vocab = llama_model_get_vocab(model);
  1631. n_ctx = llama_n_ctx(ctx);
  1632. add_bos_token = llama_vocab_get_add_bos(vocab);
  1633. has_eos_token = llama_vocab_eos(vocab) != LLAMA_TOKEN_NULL;
  1634. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1635. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1636. auto params_dft = params_base;
  1637. params_dft.devices = params_base.speculative.devices;
  1638. params_dft.model = params_base.speculative.model;
  1639. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1640. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1641. params_dft.n_parallel = 1;
  1642. // force F16 KV cache for the draft model for extra performance
  1643. params_dft.cache_type_k = GGML_TYPE_F16;
  1644. params_dft.cache_type_v = GGML_TYPE_F16;
  1645. llama_init_dft = common_init_from_params(params_dft);
  1646. model_dft = llama_init_dft.model.get();
  1647. if (model_dft == nullptr) {
  1648. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1649. return false;
  1650. }
  1651. if (!common_speculative_are_compatible(ctx, llama_init_dft.context.get())) {
  1652. SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1653. return false;
  1654. }
  1655. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1656. cparams_dft = common_context_params_to_llama(params_dft);
  1657. cparams_dft.n_batch = n_ctx_dft;
  1658. // the context is not needed - we will create one for each slot
  1659. llama_init_dft.context.reset();
  1660. }
  1661. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1662. try {
  1663. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1664. } catch (const std::exception & e) {
  1665. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1666. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1667. chat_templates = common_chat_templates_init(model, "chatml");
  1668. }
  1669. std::string & mmproj_path = params_base.mmproj.path;
  1670. if (!mmproj_path.empty()) {
  1671. mtmd_context_params mparams = mtmd_context_params_default();
  1672. mparams.use_gpu = params_base.mmproj_use_gpu;
  1673. mparams.print_timings = false;
  1674. mparams.n_threads = params_base.cpuparams.n_threads;
  1675. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1676. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1677. if (mctx == nullptr) {
  1678. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1679. return false;
  1680. }
  1681. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1682. if (params_base.ctx_shift) {
  1683. params_base.ctx_shift = false;
  1684. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1685. }
  1686. if (params_base.n_cache_reuse) {
  1687. params_base.n_cache_reuse = 0;
  1688. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1689. }
  1690. if (!params_base.speculative.model.path.empty()) {
  1691. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1692. return false;
  1693. }
  1694. }
  1695. if (!llama_kv_self_can_shift(ctx)) {
  1696. if (params_base.ctx_shift) {
  1697. params_base.ctx_shift = false;
  1698. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1699. }
  1700. if (params_base.n_cache_reuse) {
  1701. params_base.n_cache_reuse = 0;
  1702. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1703. }
  1704. if (!params_base.speculative.model.path.empty()) {
  1705. SRV_ERR("%s\n", "err: speculative decode is not supported by this context");
  1706. return false;
  1707. }
  1708. }
  1709. return true;
  1710. }
  1711. void init() {
  1712. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1713. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1714. for (int i = 0; i < params_base.n_parallel; i++) {
  1715. server_slot slot;
  1716. slot.id = i;
  1717. slot.ctx = ctx;
  1718. slot.n_ctx = n_ctx_slot;
  1719. slot.n_predict = params_base.n_predict;
  1720. slot.mctx = mctx;
  1721. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1722. if (model_dft) {
  1723. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1724. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1725. if (slot.ctx_dft == nullptr) {
  1726. SRV_ERR("%s", "failed to create draft context\n");
  1727. return;
  1728. }
  1729. slot.spec = common_speculative_init(slot.ctx_dft);
  1730. if (slot.spec == nullptr) {
  1731. SRV_ERR("%s", "failed to create speculator\n");
  1732. return;
  1733. }
  1734. }
  1735. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1736. slot.params.sampling = params_base.sampling;
  1737. slot.callback_on_release = [this](int) {
  1738. queue_tasks.pop_deferred_task();
  1739. };
  1740. slot.reset();
  1741. slots.push_back(std::move(slot));
  1742. }
  1743. default_generation_settings_for_props = slots[0].to_json();
  1744. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1745. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1746. {
  1747. const int32_t n_batch = llama_n_batch(ctx);
  1748. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1749. }
  1750. metrics.init();
  1751. oai_parser_opt = {
  1752. /* use_jinja */ params_base.use_jinja,
  1753. /* prefill_assistant */ params_base.prefill_assistant,
  1754. /* reasoning_format */ params_base.reasoning_format,
  1755. /* common_chat_templates */ chat_templates.get(),
  1756. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1757. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1758. /* enable_thinking */ params_base.reasoning_budget != 0,
  1759. };
  1760. }
  1761. server_slot * get_slot_by_id(int id) {
  1762. for (server_slot & slot : slots) {
  1763. if (slot.id == id) {
  1764. return &slot;
  1765. }
  1766. }
  1767. return nullptr;
  1768. }
  1769. server_slot * get_available_slot(const server_task & task) {
  1770. server_slot * ret = nullptr;
  1771. // find the slot that has at least n% prompt similarity
  1772. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1773. int lcs_len = 0;
  1774. float similarity = 0;
  1775. for (server_slot & slot : slots) {
  1776. // skip the slot if it is not available
  1777. if (slot.is_processing()) {
  1778. continue;
  1779. }
  1780. // skip the slot if it does not contains cached tokens
  1781. if (slot.cache_tokens.empty()) {
  1782. continue;
  1783. }
  1784. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1785. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1786. // fraction of the common subsequence length compared to the current slot's prompt length
  1787. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1788. // select the current slot if the criteria match
  1789. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1790. lcs_len = cur_lcs_len;
  1791. similarity = cur_similarity;
  1792. ret = &slot;
  1793. }
  1794. }
  1795. if (ret != nullptr) {
  1796. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1797. }
  1798. }
  1799. // find the slot that has been least recently used
  1800. if (ret == nullptr) {
  1801. int64_t t_last = ggml_time_us();
  1802. for (server_slot & slot : slots) {
  1803. // skip the slot if it is not available
  1804. if (slot.is_processing()) {
  1805. continue;
  1806. }
  1807. // select the current slot if the criteria match
  1808. if (slot.t_last_used < t_last) {
  1809. t_last = slot.t_last_used;
  1810. ret = &slot;
  1811. }
  1812. }
  1813. if (ret != nullptr) {
  1814. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1815. }
  1816. }
  1817. return ret;
  1818. }
  1819. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1820. slot.reset();
  1821. slot.id_task = task.id;
  1822. slot.index = task.index;
  1823. slot.task_type = task.type;
  1824. slot.params = std::move(task.params);
  1825. slot.prompt_tokens = std::move(task.prompt_tokens);
  1826. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1827. // if lora is changed, we cannot reuse cached tokens
  1828. slot.cache_tokens.clear();
  1829. slot.lora = slot.params.lora;
  1830. }
  1831. if (!slot.prompt_tokens.validate(ctx)) {
  1832. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1833. return false;
  1834. }
  1835. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1836. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1837. // Might be better to reject the request with a 400 ?
  1838. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1839. slot.params.n_predict = slot.n_predict;
  1840. }
  1841. if (slot.params.ignore_eos && has_eos_token) {
  1842. slot.params.sampling.logit_bias.push_back({llama_vocab_eos(vocab), -INFINITY});
  1843. }
  1844. {
  1845. if (slot.smpl != nullptr) {
  1846. common_sampler_free(slot.smpl);
  1847. }
  1848. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1849. if (slot.smpl == nullptr) {
  1850. // for now, the only error that may happen here is invalid grammar
  1851. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1852. return false;
  1853. }
  1854. }
  1855. if (slot.ctx_dft) {
  1856. llama_batch_free(slot.batch_spec);
  1857. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1858. }
  1859. slot.state = SLOT_STATE_STARTED;
  1860. SLT_INF(slot, "%s", "processing task\n");
  1861. return true;
  1862. }
  1863. void kv_cache_clear() {
  1864. SRV_DBG("%s", "clearing KV cache\n");
  1865. // clear the entire KV cache
  1866. llama_kv_self_clear(ctx);
  1867. clean_kv_cache = false;
  1868. }
  1869. bool process_token(completion_token_output & result, server_slot & slot) {
  1870. // remember which tokens were sampled - used for repetition penalties during sampling
  1871. const std::string token_str = result.text_to_send;
  1872. slot.sampled = result.tok;
  1873. slot.generated_text += token_str;
  1874. if (slot.params.return_tokens) {
  1875. slot.generated_tokens.push_back(result.tok);
  1876. }
  1877. slot.has_next_token = true;
  1878. // check if there is incomplete UTF-8 character at the end
  1879. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1880. // search stop word and delete it
  1881. if (!incomplete) {
  1882. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1883. const std::string str_test = slot.generated_text.substr(pos);
  1884. bool send_text = true;
  1885. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1886. if (stop_pos != std::string::npos) {
  1887. slot.generated_text.erase(
  1888. slot.generated_text.begin() + pos + stop_pos,
  1889. slot.generated_text.end());
  1890. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1891. } else if (slot.has_next_token) {
  1892. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1893. send_text = stop_pos == std::string::npos;
  1894. }
  1895. // check if there is any token to predict
  1896. if (send_text) {
  1897. // no send the stop word in the response
  1898. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1899. slot.n_sent_text += result.text_to_send.size();
  1900. // add the token to slot queue and cache
  1901. } else {
  1902. result.text_to_send = "";
  1903. }
  1904. slot.add_token(result);
  1905. if (slot.params.stream) {
  1906. send_partial_response(slot, result);
  1907. }
  1908. }
  1909. if (incomplete) {
  1910. slot.has_next_token = true;
  1911. }
  1912. // if context shifting is disabled, make sure that we don't run out of context
  1913. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  1914. slot.stop = STOP_TYPE_LIMIT;
  1915. slot.has_next_token = false;
  1916. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  1917. }
  1918. // check the limits
  1919. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1920. slot.stop = STOP_TYPE_LIMIT;
  1921. slot.has_next_token = false;
  1922. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1923. }
  1924. if (slot.has_new_line) {
  1925. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1926. if (slot.params.n_indent > 0) {
  1927. // check the current indentation
  1928. // TODO: improve by not doing it more than once for each new line
  1929. if (slot.last_nl_pos > 0) {
  1930. size_t pos = slot.last_nl_pos;
  1931. int n_indent = 0;
  1932. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1933. n_indent++;
  1934. pos++;
  1935. }
  1936. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  1937. slot.stop = STOP_TYPE_LIMIT;
  1938. slot.has_next_token = false;
  1939. // cut the last line
  1940. slot.generated_text.erase(pos, std::string::npos);
  1941. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  1942. }
  1943. }
  1944. // find the next new line
  1945. {
  1946. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  1947. if (pos != std::string::npos) {
  1948. slot.last_nl_pos = pos + 1;
  1949. }
  1950. }
  1951. }
  1952. }
  1953. // check if there is a new line in the generated text
  1954. if (result.text_to_send.find('\n') != std::string::npos) {
  1955. slot.has_new_line = true;
  1956. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  1957. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  1958. slot.stop = STOP_TYPE_LIMIT;
  1959. slot.has_next_token = false;
  1960. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  1961. }
  1962. }
  1963. // if context shift is disabled, we stop when it reaches the context limit
  1964. if (slot.n_past >= slot.n_ctx) {
  1965. slot.truncated = true;
  1966. slot.stop = STOP_TYPE_LIMIT;
  1967. slot.has_next_token = false;
  1968. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  1969. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  1970. }
  1971. if (llama_vocab_is_eog(vocab, result.tok)) {
  1972. slot.stop = STOP_TYPE_EOS;
  1973. slot.has_next_token = false;
  1974. SLT_DBG(slot, "%s", "stopped by EOS\n");
  1975. }
  1976. const auto n_ctx_train = llama_model_n_ctx_train(model);
  1977. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  1978. slot.truncated = true;
  1979. slot.stop = STOP_TYPE_LIMIT;
  1980. slot.has_next_token = false; // stop prediction
  1981. SLT_WRN(slot,
  1982. "n_predict (%d) is set for infinite generation. "
  1983. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  1984. slot.params.n_predict, n_ctx_train);
  1985. }
  1986. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  1987. return slot.has_next_token; // continue
  1988. }
  1989. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  1990. size_t n_probs = slot.params.sampling.n_probs;
  1991. size_t n_vocab = llama_vocab_n_tokens(vocab);
  1992. if (post_sampling) {
  1993. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  1994. const size_t max_probs = cur_p->size;
  1995. // set probability for sampled token
  1996. for (size_t i = 0; i < max_probs; i++) {
  1997. if (cur_p->data[i].id == result.tok) {
  1998. result.prob = cur_p->data[i].p;
  1999. break;
  2000. }
  2001. }
  2002. // set probability for top n_probs tokens
  2003. result.probs.reserve(max_probs);
  2004. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2005. result.probs.push_back({
  2006. cur_p->data[i].id,
  2007. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2008. cur_p->data[i].p
  2009. });
  2010. }
  2011. } else {
  2012. // TODO: optimize this with min-p optimization
  2013. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2014. // set probability for sampled token
  2015. for (size_t i = 0; i < n_vocab; i++) {
  2016. // set probability for sampled token
  2017. if (cur[i].id == result.tok) {
  2018. result.prob = cur[i].p;
  2019. break;
  2020. }
  2021. }
  2022. // set probability for top n_probs tokens
  2023. result.probs.reserve(n_probs);
  2024. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2025. result.probs.push_back({
  2026. cur[i].id,
  2027. common_token_to_piece(ctx, cur[i].id, special),
  2028. cur[i].p
  2029. });
  2030. }
  2031. }
  2032. }
  2033. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2034. send_error(task.id, error, type);
  2035. }
  2036. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2037. send_error(slot.id_task, error, type);
  2038. }
  2039. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2040. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2041. auto res = std::make_unique<server_task_result_error>();
  2042. res->id = id_task;
  2043. res->err_type = type;
  2044. res->err_msg = error;
  2045. queue_results.send(std::move(res));
  2046. }
  2047. // if multimodal is enabled, send an error and return false
  2048. bool ensure_no_mtmd(const int id_task) {
  2049. if (mctx) {
  2050. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2051. return false;
  2052. }
  2053. return true;
  2054. }
  2055. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2056. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2057. res->id = slot.id_task;
  2058. res->index = slot.index;
  2059. res->content = tkn.text_to_send;
  2060. res->tokens = { tkn.tok };
  2061. res->n_decoded = slot.n_decoded;
  2062. res->n_prompt_tokens = slot.n_prompt_tokens;
  2063. res->post_sampling_probs = slot.params.post_sampling_probs;
  2064. res->verbose = slot.params.verbose;
  2065. res->oaicompat = slot.params.oaicompat;
  2066. res->oaicompat_model = slot.params.oaicompat_model;
  2067. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2068. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2069. // populate res.probs_output
  2070. if (slot.params.sampling.n_probs > 0) {
  2071. res->prob_output = tkn; // copy the token probs
  2072. }
  2073. // populate timings if this is final response or timings_per_token is enabled
  2074. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2075. res->timings = slot.get_timings();
  2076. }
  2077. queue_results.send(std::move(res));
  2078. }
  2079. void send_final_response(server_slot & slot) {
  2080. auto res = std::make_unique<server_task_result_cmpl_final>();
  2081. res->id = slot.id_task;
  2082. res->id_slot = slot.id;
  2083. res->index = slot.index;
  2084. res->content = slot.generated_text;
  2085. res->tokens = std::move(slot.generated_tokens);
  2086. res->timings = slot.get_timings();
  2087. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2088. res->response_fields = std::move(slot.params.response_fields);
  2089. res->truncated = slot.truncated;
  2090. res->n_decoded = slot.n_decoded;
  2091. res->n_prompt_tokens = slot.n_prompt_tokens;
  2092. res->n_tokens_cached = slot.n_past;
  2093. res->has_new_line = slot.has_new_line;
  2094. res->stopping_word = slot.stopping_word;
  2095. res->stop = slot.stop;
  2096. res->post_sampling_probs = slot.params.post_sampling_probs;
  2097. res->verbose = slot.params.verbose;
  2098. res->stream = slot.params.stream;
  2099. res->oaicompat = slot.params.oaicompat;
  2100. res->oaicompat_model = slot.params.oaicompat_model;
  2101. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2102. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2103. // populate res.probs_output
  2104. if (slot.params.sampling.n_probs > 0) {
  2105. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2106. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2107. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2108. res->probs_output = std::vector<completion_token_output>(
  2109. slot.generated_token_probs.begin(),
  2110. slot.generated_token_probs.end() - safe_offset);
  2111. } else {
  2112. res->probs_output = std::vector<completion_token_output>(
  2113. slot.generated_token_probs.begin(),
  2114. slot.generated_token_probs.end());
  2115. }
  2116. }
  2117. res->generation_params = slot.params; // copy the parameters
  2118. queue_results.send(std::move(res));
  2119. }
  2120. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2121. auto res = std::make_unique<server_task_result_embd>();
  2122. res->id = slot.id_task;
  2123. res->index = slot.index;
  2124. res->n_tokens = slot.n_prompt_tokens;
  2125. res->oaicompat = slot.params.oaicompat;
  2126. const int n_embd = llama_model_n_embd(model);
  2127. std::vector<float> embd_res(n_embd, 0.0f);
  2128. for (int i = 0; i < batch.n_tokens; ++i) {
  2129. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2130. continue;
  2131. }
  2132. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2133. if (embd == NULL) {
  2134. embd = llama_get_embeddings_ith(ctx, i);
  2135. }
  2136. if (embd == NULL) {
  2137. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2138. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2139. continue;
  2140. }
  2141. // normalize only when there is pooling
  2142. // TODO: configurable
  2143. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2144. common_embd_normalize(embd, embd_res.data(), n_embd, 2);
  2145. res->embedding.push_back(embd_res);
  2146. } else {
  2147. res->embedding.push_back({ embd, embd + n_embd });
  2148. }
  2149. }
  2150. SLT_DBG(slot, "%s", "sending embeddings\n");
  2151. queue_results.send(std::move(res));
  2152. }
  2153. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2154. auto res = std::make_unique<server_task_result_rerank>();
  2155. res->id = slot.id_task;
  2156. res->index = slot.index;
  2157. res->n_tokens = slot.n_prompt_tokens;
  2158. for (int i = 0; i < batch.n_tokens; ++i) {
  2159. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2160. continue;
  2161. }
  2162. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2163. if (embd == NULL) {
  2164. embd = llama_get_embeddings_ith(ctx, i);
  2165. }
  2166. if (embd == NULL) {
  2167. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2168. res->score = -1e6;
  2169. continue;
  2170. }
  2171. res->score = embd[0];
  2172. }
  2173. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2174. queue_results.send(std::move(res));
  2175. }
  2176. //
  2177. // Functions to create new task(s) and receive result(s)
  2178. //
  2179. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2180. std::vector<server_task> cancel_tasks;
  2181. cancel_tasks.reserve(id_tasks.size());
  2182. for (const auto & id_task : id_tasks) {
  2183. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2184. server_task task(SERVER_TASK_TYPE_CANCEL);
  2185. task.id_target = id_task;
  2186. queue_results.remove_waiting_task_id(id_task);
  2187. cancel_tasks.push_back(std::move(task));
  2188. }
  2189. // push to beginning of the queue, so it has highest priority
  2190. queue_tasks.post(std::move(cancel_tasks), true);
  2191. }
  2192. // receive the results from task(s)
  2193. void receive_multi_results(
  2194. const std::unordered_set<int> & id_tasks,
  2195. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2196. const std::function<void(json)> & error_handler,
  2197. const std::function<bool()> & is_connection_closed) {
  2198. std::vector<server_task_result_ptr> results(id_tasks.size());
  2199. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2200. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2201. if (is_connection_closed()) {
  2202. cancel_tasks(id_tasks);
  2203. return;
  2204. }
  2205. if (result == nullptr) {
  2206. i--; // retry
  2207. continue;
  2208. }
  2209. if (result->is_error()) {
  2210. error_handler(result->to_json());
  2211. cancel_tasks(id_tasks);
  2212. return;
  2213. }
  2214. GGML_ASSERT(
  2215. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2216. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2217. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2218. );
  2219. const size_t idx = result->get_index();
  2220. GGML_ASSERT(idx < results.size() && "index out of range");
  2221. results[idx] = std::move(result);
  2222. }
  2223. result_handler(results);
  2224. }
  2225. // receive the results from task(s), in stream mode
  2226. void receive_cmpl_results_stream(
  2227. const std::unordered_set<int> & id_tasks,
  2228. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2229. const std::function<void(json)> & error_handler,
  2230. const std::function<bool()> & is_connection_closed) {
  2231. size_t n_finished = 0;
  2232. while (true) {
  2233. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2234. if (is_connection_closed()) {
  2235. cancel_tasks(id_tasks);
  2236. return;
  2237. }
  2238. if (result == nullptr) {
  2239. continue; // retry
  2240. }
  2241. if (result->is_error()) {
  2242. error_handler(result->to_json());
  2243. cancel_tasks(id_tasks);
  2244. return;
  2245. }
  2246. GGML_ASSERT(
  2247. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2248. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2249. );
  2250. if (!result_handler(result)) {
  2251. cancel_tasks(id_tasks);
  2252. break;
  2253. }
  2254. if (result->is_stop()) {
  2255. if (++n_finished == id_tasks.size()) {
  2256. break;
  2257. }
  2258. }
  2259. }
  2260. }
  2261. //
  2262. // Functions to process the task
  2263. //
  2264. void process_single_task(server_task && task) {
  2265. switch (task.type) {
  2266. case SERVER_TASK_TYPE_COMPLETION:
  2267. case SERVER_TASK_TYPE_INFILL:
  2268. case SERVER_TASK_TYPE_EMBEDDING:
  2269. case SERVER_TASK_TYPE_RERANK:
  2270. {
  2271. const int id_slot = task.id_selected_slot;
  2272. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2273. if (slot == nullptr) {
  2274. // if no slot is available, we defer this task for processing later
  2275. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2276. queue_tasks.defer(std::move(task));
  2277. break;
  2278. }
  2279. if (slot->is_processing()) {
  2280. // if requested slot is unavailable, we defer this task for processing later
  2281. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2282. queue_tasks.defer(std::move(task));
  2283. break;
  2284. }
  2285. if (!launch_slot_with_task(*slot, std::move(task))) {
  2286. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2287. break;
  2288. }
  2289. } break;
  2290. case SERVER_TASK_TYPE_CANCEL:
  2291. {
  2292. // release slot linked with the task id
  2293. for (auto & slot : slots) {
  2294. if (slot.id_task == task.id_target) {
  2295. slot.release();
  2296. break;
  2297. }
  2298. }
  2299. } break;
  2300. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2301. {
  2302. // do nothing
  2303. } break;
  2304. case SERVER_TASK_TYPE_METRICS:
  2305. {
  2306. json slots_data = json::array();
  2307. int n_idle_slots = 0;
  2308. int n_processing_slots = 0;
  2309. for (server_slot & slot : slots) {
  2310. json slot_data = slot.to_json();
  2311. if (slot.is_processing()) {
  2312. n_processing_slots++;
  2313. } else {
  2314. n_idle_slots++;
  2315. }
  2316. slots_data.push_back(slot_data);
  2317. }
  2318. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2319. auto res = std::make_unique<server_task_result_metrics>();
  2320. res->id = task.id;
  2321. res->slots_data = std::move(slots_data);
  2322. res->n_idle_slots = n_idle_slots;
  2323. res->n_processing_slots = n_processing_slots;
  2324. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2325. res->t_start = metrics.t_start;
  2326. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2327. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2328. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2329. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2330. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2331. res->t_prompt_processing = metrics.t_prompt_processing;
  2332. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2333. res->t_tokens_generation = metrics.t_tokens_generation;
  2334. res->n_decode_total = metrics.n_decode_total;
  2335. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2336. if (task.metrics_reset_bucket) {
  2337. metrics.reset_bucket();
  2338. }
  2339. queue_results.send(std::move(res));
  2340. } break;
  2341. case SERVER_TASK_TYPE_SLOT_SAVE:
  2342. {
  2343. if (!ensure_no_mtmd(task.id)) {
  2344. break;
  2345. }
  2346. int id_slot = task.slot_action.slot_id;
  2347. server_slot * slot = get_slot_by_id(id_slot);
  2348. if (slot == nullptr) {
  2349. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2350. break;
  2351. }
  2352. if (slot->is_processing()) {
  2353. // if requested slot is unavailable, we defer this task for processing later
  2354. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2355. queue_tasks.defer(std::move(task));
  2356. break;
  2357. }
  2358. const size_t token_count = slot->cache_tokens.size();
  2359. const int64_t t_start = ggml_time_us();
  2360. std::string filename = task.slot_action.filename;
  2361. std::string filepath = task.slot_action.filepath;
  2362. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2363. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2364. const int64_t t_end = ggml_time_us();
  2365. const double t_save_ms = (t_end - t_start) / 1000.0;
  2366. auto res = std::make_unique<server_task_result_slot_save_load>();
  2367. res->id = task.id;
  2368. res->id_slot = id_slot;
  2369. res->filename = filename;
  2370. res->is_save = true;
  2371. res->n_tokens = token_count;
  2372. res->n_bytes = nwrite;
  2373. res->t_ms = t_save_ms;
  2374. queue_results.send(std::move(res));
  2375. } break;
  2376. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2377. {
  2378. if (!ensure_no_mtmd(task.id)) break;
  2379. int id_slot = task.slot_action.slot_id;
  2380. server_slot * slot = get_slot_by_id(id_slot);
  2381. if (slot == nullptr) {
  2382. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2383. break;
  2384. }
  2385. if (slot->is_processing()) {
  2386. // if requested slot is unavailable, we defer this task for processing later
  2387. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2388. queue_tasks.defer(std::move(task));
  2389. break;
  2390. }
  2391. const int64_t t_start = ggml_time_us();
  2392. std::string filename = task.slot_action.filename;
  2393. std::string filepath = task.slot_action.filepath;
  2394. llama_tokens tokens;
  2395. tokens.resize(slot->n_ctx);
  2396. size_t token_count = 0;
  2397. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2398. if (nread == 0) {
  2399. slot->cache_tokens.clear(); // KV may already been invalidated?
  2400. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2401. break;
  2402. }
  2403. tokens.resize(token_count);
  2404. slot->cache_tokens.clear();
  2405. slot->cache_tokens.insert(tokens);
  2406. const int64_t t_end = ggml_time_us();
  2407. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2408. auto res = std::make_unique<server_task_result_slot_save_load>();
  2409. res->id = task.id;
  2410. res->id_slot = id_slot;
  2411. res->filename = filename;
  2412. res->is_save = false;
  2413. res->n_tokens = token_count;
  2414. res->n_bytes = nread;
  2415. res->t_ms = t_restore_ms;
  2416. queue_results.send(std::move(res));
  2417. } break;
  2418. case SERVER_TASK_TYPE_SLOT_ERASE:
  2419. {
  2420. if (!ensure_no_mtmd(task.id)) break;
  2421. int id_slot = task.slot_action.slot_id;
  2422. server_slot * slot = get_slot_by_id(id_slot);
  2423. if (slot == nullptr) {
  2424. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2425. break;
  2426. }
  2427. if (slot->is_processing()) {
  2428. // if requested slot is unavailable, we defer this task for processing later
  2429. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2430. queue_tasks.defer(std::move(task));
  2431. break;
  2432. }
  2433. // Erase token cache
  2434. const size_t n_erased = slot->cache_tokens.size();
  2435. llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
  2436. slot->cache_tokens.clear();
  2437. auto res = std::make_unique<server_task_result_slot_erase>();
  2438. res->id = task.id;
  2439. res->id_slot = id_slot;
  2440. res->n_erased = n_erased;
  2441. queue_results.send(std::move(res));
  2442. } break;
  2443. case SERVER_TASK_TYPE_SET_LORA:
  2444. {
  2445. params_base.lora_adapters = std::move(task.set_lora);
  2446. auto res = std::make_unique<server_task_result_apply_lora>();
  2447. res->id = task.id;
  2448. queue_results.send(std::move(res));
  2449. } break;
  2450. }
  2451. }
  2452. void update_slots() {
  2453. // check if all slots are idle
  2454. {
  2455. bool all_idle = true;
  2456. for (auto & slot : slots) {
  2457. if (slot.is_processing()) {
  2458. all_idle = false;
  2459. break;
  2460. }
  2461. }
  2462. if (all_idle) {
  2463. SRV_INF("%s", "all slots are idle\n");
  2464. if (clean_kv_cache) {
  2465. kv_cache_clear();
  2466. }
  2467. return;
  2468. }
  2469. }
  2470. {
  2471. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2472. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2473. task.id = queue_tasks.get_new_id();
  2474. queue_tasks.post(std::move(task));
  2475. }
  2476. // apply context-shift if needed
  2477. // TODO: simplify and improve
  2478. for (server_slot & slot : slots) {
  2479. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2480. if (!params_base.ctx_shift) {
  2481. // this check is redundant (for good)
  2482. // we should never get here, because generation should already stopped in process_token()
  2483. slot.release();
  2484. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2485. continue;
  2486. }
  2487. if (mctx) {
  2488. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2489. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2490. GGML_ABORT("not supported by multimodal");
  2491. }
  2492. // Shift context
  2493. const int n_keep = slot.params.n_keep + add_bos_token;
  2494. const int n_left = slot.n_past - n_keep;
  2495. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2496. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2497. llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
  2498. llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2499. // add generated tokens to cache
  2500. {
  2501. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2502. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2503. new_tokens[i - n_discard] = new_tokens[i];
  2504. }
  2505. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2506. slot.cache_tokens.clear();
  2507. slot.cache_tokens.insert(new_tokens);
  2508. }
  2509. slot.n_past -= n_discard;
  2510. slot.truncated = true;
  2511. }
  2512. }
  2513. // start populating the batch for this iteration
  2514. common_batch_clear(batch);
  2515. // track if given slot can be batched with slots already in the batch
  2516. server_slot * slot_batched = nullptr;
  2517. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2518. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2519. };
  2520. // frist, add sampled tokens from any ongoing sequences
  2521. for (auto & slot : slots) {
  2522. if (slot.state != SLOT_STATE_GENERATING) {
  2523. continue;
  2524. }
  2525. // check if we can batch this slot with the previous one
  2526. if (!slot_batched) {
  2527. slot_batched = &slot;
  2528. } else if (!slot_batched->can_batch_with(slot)) {
  2529. continue;
  2530. }
  2531. slot.i_batch = batch.n_tokens;
  2532. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2533. slot.n_past += 1;
  2534. slot.cache_tokens.push_back(slot.sampled);
  2535. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2536. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2537. }
  2538. // process in chunks of params.n_batch
  2539. int32_t n_batch = llama_n_batch(ctx);
  2540. int32_t n_ubatch = llama_n_ubatch(ctx);
  2541. // next, batch any pending prompts without exceeding n_batch
  2542. if (params_base.cont_batching || batch.n_tokens == 0) {
  2543. for (auto & slot : slots) {
  2544. // check if we can batch this slot with the previous one
  2545. if (slot.is_processing()) {
  2546. if (!slot_batched) {
  2547. slot_batched = &slot;
  2548. } else if (!slot_batched->can_batch_with(slot)) {
  2549. continue;
  2550. }
  2551. }
  2552. // this slot still has a prompt to be processed
  2553. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2554. auto & prompt_tokens = slot.prompt_tokens;
  2555. // TODO: maybe move branch to outside of this loop in the future
  2556. if (slot.state == SLOT_STATE_STARTED) {
  2557. slot.t_start_process_prompt = ggml_time_us();
  2558. slot.t_start_generation = 0;
  2559. slot.n_past = 0;
  2560. slot.n_prompt_tokens = prompt_tokens.size();
  2561. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2562. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2563. // print prompt tokens (for debugging)
  2564. /*if (1) {
  2565. // first 16 tokens (avoid flooding logs)
  2566. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2567. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2568. }
  2569. } else {
  2570. // all
  2571. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2572. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2573. }
  2574. }*/
  2575. // empty prompt passed -> release the slot and send empty response
  2576. if (prompt_tokens.empty()) {
  2577. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2578. slot.release();
  2579. slot.print_timings();
  2580. send_final_response(slot);
  2581. continue;
  2582. }
  2583. if (slot.is_non_causal()) {
  2584. if (slot.n_prompt_tokens > n_ubatch) {
  2585. slot.release();
  2586. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2587. continue;
  2588. }
  2589. if (slot.n_prompt_tokens > slot.n_ctx) {
  2590. slot.release();
  2591. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2592. continue;
  2593. }
  2594. } else {
  2595. if (!params_base.ctx_shift) {
  2596. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2597. // TODO: there should be a separate parameter that control prompt truncation
  2598. // context shift should be applied only during the generation phase
  2599. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2600. slot.release();
  2601. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2602. continue;
  2603. }
  2604. }
  2605. if (slot.params.n_keep < 0) {
  2606. slot.params.n_keep = slot.n_prompt_tokens;
  2607. }
  2608. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2609. // if input prompt is too big, truncate it
  2610. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2611. if (mctx) {
  2612. // we should never reach this
  2613. GGML_ABORT("not supported by multimodal");
  2614. }
  2615. const int n_left = slot.n_ctx - slot.params.n_keep;
  2616. const int n_block_size = n_left / 2;
  2617. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2618. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2619. llama_tokens new_tokens(
  2620. curr_tokens.begin(),
  2621. curr_tokens.begin() + slot.params.n_keep);
  2622. new_tokens.insert(
  2623. new_tokens.end(),
  2624. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2625. curr_tokens.end());
  2626. prompt_tokens.clear();
  2627. prompt_tokens.insert(new_tokens);
  2628. slot.truncated = true;
  2629. slot.n_prompt_tokens = prompt_tokens.size();
  2630. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2631. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2632. }
  2633. if (slot.params.cache_prompt) {
  2634. // reuse any previously computed tokens that are common with the new prompt
  2635. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2636. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2637. if (params_base.n_cache_reuse > 0) {
  2638. size_t head_c = slot.n_past; // cache
  2639. size_t head_p = slot.n_past; // current prompt
  2640. if (mctx) {
  2641. // we should never reach this
  2642. GGML_ABORT("not supported by multimodal");
  2643. }
  2644. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2645. while (head_c < slot.cache_tokens.size() &&
  2646. head_p < prompt_tokens.size()) {
  2647. size_t n_match = 0;
  2648. while (head_c + n_match < slot.cache_tokens.size() &&
  2649. head_p + n_match < prompt_tokens.size() &&
  2650. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2651. n_match++;
  2652. }
  2653. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2654. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2655. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2656. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2657. //}
  2658. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2659. llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
  2660. llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
  2661. for (size_t i = 0; i < n_match; i++) {
  2662. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2663. slot.n_past++;
  2664. }
  2665. head_c += n_match;
  2666. head_p += n_match;
  2667. } else {
  2668. head_c += 1;
  2669. }
  2670. }
  2671. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2672. }
  2673. } else {
  2674. // if we don't cache the prompt, we have to remove the entire KV cache
  2675. llama_kv_self_seq_rm(ctx, slot.id, 0, -1);
  2676. slot.n_past = 0;
  2677. slot.cache_tokens.clear(); // TODO: not needed, will be cleared later via "keep_first()"
  2678. }
  2679. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2680. if (llama_kv_self_seq_pos_min(ctx, slot.id) > 0) {
  2681. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2682. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2683. slot.n_past = 0;
  2684. }
  2685. }
  2686. }
  2687. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2688. // we have to evaluate at least 1 token to generate logits.
  2689. SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2690. slot.n_past--;
  2691. }
  2692. slot.n_prompt_tokens_processed = 0;
  2693. }
  2694. // non-causal tasks require to fit the entire prompt in the physical batch
  2695. if (slot.is_non_causal()) {
  2696. // cannot fit the prompt in the current batch - will try next iter
  2697. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2698. continue;
  2699. }
  2700. }
  2701. // keep only the common part
  2702. if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
  2703. // could not partially delete (likely using a non-Transformer model)
  2704. llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
  2705. // there is no common part left
  2706. slot.n_past = 0;
  2707. }
  2708. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2709. // remove the non-common part from the cache
  2710. slot.cache_tokens.keep_first(slot.n_past);
  2711. // check if we should process the image
  2712. if (slot.n_past < slot.n_prompt_tokens
  2713. && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2714. // process the image
  2715. int32_t new_n_past;
  2716. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2717. int32_t n_pos = new_n_past - slot.n_past;
  2718. if (res != 0) {
  2719. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2720. slot.release();
  2721. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2722. continue;
  2723. }
  2724. // add the image chunk to cache
  2725. {
  2726. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2727. slot.cache_tokens.push_back(chunk.get()); // copy
  2728. }
  2729. slot.n_past += n_pos;
  2730. slot.n_prompt_tokens_processed += n_pos;
  2731. }
  2732. // add prompt tokens for processing in the current batch
  2733. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2734. // get next token to process
  2735. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2736. if (cur_tok == LLAMA_TOKEN_NULL) {
  2737. break; // end of text chunk
  2738. }
  2739. // without pooling, we want to output the embeddings for all the tokens in the batch
  2740. const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
  2741. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2742. slot.cache_tokens.push_back(cur_tok);
  2743. slot.n_prompt_tokens_processed++;
  2744. slot.n_past++;
  2745. }
  2746. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2747. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2748. // entire prompt has been processed
  2749. if (slot.n_past == slot.n_prompt_tokens) {
  2750. slot.state = SLOT_STATE_DONE_PROMPT;
  2751. GGML_ASSERT(batch.n_tokens > 0);
  2752. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2753. common_sampler_reset(slot.smpl);
  2754. // Process all prompt tokens through sampler system
  2755. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2756. llama_token id = slot.prompt_tokens[i];
  2757. if (id != LLAMA_TOKEN_NULL) {
  2758. common_sampler_accept(slot.smpl, id, false);
  2759. }
  2760. }
  2761. // extract the logits only for the last token
  2762. batch.logits[batch.n_tokens - 1] = true;
  2763. slot.n_decoded = 0;
  2764. slot.i_batch = batch.n_tokens - 1;
  2765. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2766. }
  2767. }
  2768. if (batch.n_tokens >= n_batch) {
  2769. break;
  2770. }
  2771. }
  2772. }
  2773. if (batch.n_tokens == 0) {
  2774. SRV_WRN("%s", "no tokens to decode\n");
  2775. return;
  2776. }
  2777. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2778. if (slot_batched) {
  2779. // make sure we're in the right embedding mode
  2780. llama_set_embeddings(ctx, slot_batched->is_non_causal());
  2781. // apply lora, only need to do it once per batch
  2782. common_set_adapter_lora(ctx, slot_batched->lora);
  2783. }
  2784. const bool do_encode = (params_base.embedding || params_base.reranking);
  2785. // pad the batch so that batch.n_tokens >= n_slots
  2786. // TODO: temporary workaround for https://github.com/ggml-org/llama.cpp/issues/13689
  2787. if (do_encode) {
  2788. const int n_slots = slots.size();
  2789. if (batch.n_tokens < n_slots) {
  2790. std::set<llama_seq_id> seq_ids;
  2791. for (int j = 0; j < batch.n_tokens; ++j) {
  2792. seq_ids.insert(batch.seq_id[j][0]);
  2793. }
  2794. // find unused sequence id
  2795. llama_seq_id seq_id = -1;
  2796. for (int i = 0; i < n_slots; ++i) {
  2797. if (seq_ids.find(i) == seq_ids.end()) {
  2798. seq_id = i;
  2799. }
  2800. }
  2801. const int n_add = n_slots - batch.n_tokens;
  2802. SRV_WRN("adding %d dummy tokens to the batch, seq_id = %d\n", n_add, seq_id);
  2803. for (int j = 0; j < n_add; ++j) {
  2804. common_batch_add(batch, 0, j, { seq_id }, false);
  2805. }
  2806. }
  2807. }
  2808. // process the created batch of tokens
  2809. for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
  2810. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2811. llama_batch batch_view = {
  2812. n_tokens,
  2813. batch.token + i,
  2814. nullptr,
  2815. batch.pos + i,
  2816. batch.n_seq_id + i,
  2817. batch.seq_id + i,
  2818. batch.logits + i,
  2819. };
  2820. int ret = 0;
  2821. if (do_encode) {
  2822. ret = llama_encode(ctx, batch_view);
  2823. } else {
  2824. ret = llama_decode(ctx, batch_view);
  2825. }
  2826. metrics.on_decoded(slots);
  2827. if (ret != 0) {
  2828. {
  2829. std::string err;
  2830. if (n_batch == 1 && ret == 1) {
  2831. err = "Context size has been exceeded.";
  2832. }
  2833. if (ret == -1) {
  2834. err = "Invalid input batch.";
  2835. }
  2836. if (ret < -1) {
  2837. err = "Compute error.";
  2838. }
  2839. if (!err.empty()) {
  2840. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2841. for (auto & slot : slots) {
  2842. slot.release();
  2843. send_error(slot, err);
  2844. }
  2845. break;
  2846. }
  2847. }
  2848. // retry with half the batch size to try to find a free slot in the KV cache
  2849. n_batch /= 2;
  2850. i -= n_batch;
  2851. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2852. continue; // continue loop of n_batch
  2853. }
  2854. for (auto & slot : slots) {
  2855. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2856. continue; // continue loop of slots
  2857. }
  2858. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2859. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2860. // prompt evaluated for embedding
  2861. send_embedding(slot, batch_view);
  2862. slot.release();
  2863. slot.i_batch = -1;
  2864. continue; // continue loop of slots
  2865. }
  2866. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2867. send_rerank(slot, batch_view);
  2868. slot.release();
  2869. slot.i_batch = -1;
  2870. continue; // continue loop of slots
  2871. }
  2872. // prompt evaluated for next-token prediction
  2873. slot.state = SLOT_STATE_GENERATING;
  2874. } else if (slot.state != SLOT_STATE_GENERATING) {
  2875. continue; // continue loop of slots
  2876. }
  2877. const int tok_idx = slot.i_batch - i;
  2878. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2879. slot.i_batch = -1;
  2880. common_sampler_accept(slot.smpl, id, true);
  2881. slot.n_decoded += 1;
  2882. const int64_t t_current = ggml_time_us();
  2883. if (slot.n_decoded == 1) {
  2884. slot.t_start_generation = t_current;
  2885. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2886. metrics.on_prompt_eval(slot);
  2887. }
  2888. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2889. completion_token_output result;
  2890. result.tok = id;
  2891. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2892. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2893. if (slot.params.sampling.n_probs > 0) {
  2894. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2895. }
  2896. if (!process_token(result, slot)) {
  2897. // release slot because of stop condition
  2898. slot.release();
  2899. slot.print_timings();
  2900. send_final_response(slot);
  2901. metrics.on_prediction(slot);
  2902. continue;
  2903. }
  2904. }
  2905. // do speculative decoding
  2906. for (auto & slot : slots) {
  2907. if (!slot.is_processing() || !slot.can_speculate()) {
  2908. continue;
  2909. }
  2910. if (slot.state != SLOT_STATE_GENERATING) {
  2911. continue;
  2912. }
  2913. if (mctx) {
  2914. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  2915. GGML_ABORT("not supported by multimodal");
  2916. }
  2917. // determine the max draft that fits the current slot state
  2918. int n_draft_max = slot.params.speculative.n_max;
  2919. // note: n_past is not yet increased for the `id` token sampled above
  2920. // also, need to leave space for 1 extra token to allow context shifts
  2921. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2922. if (slot.n_remaining > 0) {
  2923. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2924. }
  2925. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2926. if (n_draft_max < slot.params.speculative.n_min) {
  2927. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2928. continue;
  2929. }
  2930. llama_token id = slot.sampled;
  2931. struct common_speculative_params params_spec;
  2932. params_spec.n_draft = n_draft_max;
  2933. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2934. params_spec.p_min = slot.params.speculative.p_min;
  2935. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  2936. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  2937. // keep track of total number of tokens generated in the draft
  2938. slot.n_draft_total += draft.size();
  2939. // ignore small drafts
  2940. if (slot.params.speculative.n_min > (int) draft.size()) {
  2941. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2942. continue;
  2943. }
  2944. // construct the speculation batch
  2945. common_batch_clear(slot.batch_spec);
  2946. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2947. for (size_t i = 0; i < draft.size(); ++i) {
  2948. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2949. }
  2950. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  2951. llama_decode(ctx, slot.batch_spec);
  2952. // the accepted tokens from the speculation
  2953. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  2954. slot.n_past += ids.size();
  2955. slot.n_decoded += ids.size();
  2956. // update how many tokens out of draft was accepted
  2957. slot.n_draft_accepted += ids.size() - 1;
  2958. slot.cache_tokens.push_back(id);
  2959. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  2960. llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
  2961. for (size_t i = 0; i < ids.size(); ++i) {
  2962. completion_token_output result;
  2963. result.tok = ids[i];
  2964. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2965. result.prob = 1.0f; // set later
  2966. // TODO: set result.probs
  2967. if (!process_token(result, slot)) {
  2968. // release slot because of stop condition
  2969. slot.release();
  2970. slot.print_timings();
  2971. send_final_response(slot);
  2972. metrics.on_prediction(slot);
  2973. break;
  2974. }
  2975. }
  2976. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  2977. }
  2978. }
  2979. SRV_DBG("%s", "run slots completed\n");
  2980. }
  2981. json model_meta() const {
  2982. return json {
  2983. {"vocab_type", llama_vocab_type (vocab)},
  2984. {"n_vocab", llama_vocab_n_tokens (vocab)},
  2985. {"n_ctx_train", llama_model_n_ctx_train(model)},
  2986. {"n_embd", llama_model_n_embd (model)},
  2987. {"n_params", llama_model_n_params (model)},
  2988. {"size", llama_model_size (model)},
  2989. };
  2990. }
  2991. };
  2992. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  2993. // skip GH copilot requests when using default port
  2994. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  2995. return;
  2996. }
  2997. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  2998. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  2999. SRV_DBG("request: %s\n", req.body.c_str());
  3000. SRV_DBG("response: %s\n", res.body.c_str());
  3001. }
  3002. std::function<void(int)> shutdown_handler;
  3003. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3004. inline void signal_handler(int signal) {
  3005. if (is_terminating.test_and_set()) {
  3006. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3007. // this is for better developer experience, we can remove when the server is stable enough
  3008. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3009. exit(1);
  3010. }
  3011. shutdown_handler(signal);
  3012. }
  3013. int main(int argc, char ** argv) {
  3014. // own arguments required by this example
  3015. common_params params;
  3016. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3017. return 1;
  3018. }
  3019. common_init();
  3020. // struct that contains llama context and inference
  3021. server_context ctx_server;
  3022. llama_backend_init();
  3023. llama_numa_init(params.numa);
  3024. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3025. LOG_INF("\n");
  3026. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3027. LOG_INF("\n");
  3028. std::unique_ptr<httplib::Server> svr;
  3029. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3030. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3031. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3032. svr.reset(
  3033. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3034. );
  3035. } else {
  3036. LOG_INF("Running without SSL\n");
  3037. svr.reset(new httplib::Server());
  3038. }
  3039. #else
  3040. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3041. LOG_ERR("Server is built without SSL support\n");
  3042. return 1;
  3043. }
  3044. svr.reset(new httplib::Server());
  3045. #endif
  3046. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3047. svr->set_default_headers({{"Server", "llama.cpp"}});
  3048. svr->set_logger(log_server_request);
  3049. auto res_error = [](httplib::Response & res, const json & error_data) {
  3050. json final_response {{"error", error_data}};
  3051. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3052. res.status = json_value(error_data, "code", 500);
  3053. };
  3054. auto res_ok = [](httplib::Response & res, const json & data) {
  3055. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3056. res.status = 200;
  3057. };
  3058. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3059. std::string message;
  3060. try {
  3061. std::rethrow_exception(ep);
  3062. } catch (const std::exception & e) {
  3063. message = e.what();
  3064. } catch (...) {
  3065. message = "Unknown Exception";
  3066. }
  3067. try {
  3068. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3069. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3070. res_error(res, formatted_error);
  3071. } catch (const std::exception & e) {
  3072. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3073. }
  3074. });
  3075. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3076. if (res.status == 404) {
  3077. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3078. }
  3079. // for other error codes, we skip processing here because it's already done by res_error()
  3080. });
  3081. // set timeouts and change hostname and port
  3082. svr->set_read_timeout (params.timeout_read);
  3083. svr->set_write_timeout(params.timeout_write);
  3084. std::unordered_map<std::string, std::string> log_data;
  3085. log_data["hostname"] = params.hostname;
  3086. log_data["port"] = std::to_string(params.port);
  3087. if (params.api_keys.size() == 1) {
  3088. auto key = params.api_keys[0];
  3089. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3090. } else if (params.api_keys.size() > 1) {
  3091. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3092. }
  3093. // Necessary similarity of prompt for slot selection
  3094. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3095. //
  3096. // Middlewares
  3097. //
  3098. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3099. static const std::unordered_set<std::string> public_endpoints = {
  3100. "/health",
  3101. "/models",
  3102. "/v1/models",
  3103. "/api/tags"
  3104. };
  3105. // If API key is not set, skip validation
  3106. if (params.api_keys.empty()) {
  3107. return true;
  3108. }
  3109. // If path is public or is static file, skip validation
  3110. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3111. return true;
  3112. }
  3113. // Check for API key in the header
  3114. auto auth_header = req.get_header_value("Authorization");
  3115. std::string prefix = "Bearer ";
  3116. if (auth_header.substr(0, prefix.size()) == prefix) {
  3117. std::string received_api_key = auth_header.substr(prefix.size());
  3118. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3119. return true; // API key is valid
  3120. }
  3121. }
  3122. // API key is invalid or not provided
  3123. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3124. LOG_WRN("Unauthorized: Invalid API Key\n");
  3125. return false;
  3126. };
  3127. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3128. server_state current_state = state.load();
  3129. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3130. auto tmp = string_split<std::string>(req.path, '.');
  3131. if (req.path == "/" || tmp.back() == "html") {
  3132. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3133. res.status = 503;
  3134. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3135. // allow the models endpoint to be accessed during loading
  3136. return true;
  3137. } else {
  3138. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3139. }
  3140. return false;
  3141. }
  3142. return true;
  3143. };
  3144. // register server middlewares
  3145. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3146. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3147. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3148. if (req.method == "OPTIONS") {
  3149. res.set_header("Access-Control-Allow-Credentials", "true");
  3150. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3151. res.set_header("Access-Control-Allow-Headers", "*");
  3152. res.set_content("", "text/html"); // blank response, no data
  3153. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3154. }
  3155. if (!middleware_server_state(req, res)) {
  3156. return httplib::Server::HandlerResponse::Handled;
  3157. }
  3158. if (!middleware_validate_api_key(req, res)) {
  3159. return httplib::Server::HandlerResponse::Handled;
  3160. }
  3161. return httplib::Server::HandlerResponse::Unhandled;
  3162. });
  3163. //
  3164. // Route handlers (or controllers)
  3165. //
  3166. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3167. // error and loading states are handled by middleware
  3168. json health = {{"status", "ok"}};
  3169. res_ok(res, health);
  3170. };
  3171. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3172. if (!params.endpoint_slots) {
  3173. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3174. return;
  3175. }
  3176. // request slots data using task queue
  3177. int task_id = ctx_server.queue_tasks.get_new_id();
  3178. {
  3179. server_task task(SERVER_TASK_TYPE_METRICS);
  3180. task.id = task_id;
  3181. ctx_server.queue_results.add_waiting_task_id(task_id);
  3182. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3183. }
  3184. // get the result
  3185. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3186. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3187. if (result->is_error()) {
  3188. res_error(res, result->to_json());
  3189. return;
  3190. }
  3191. // TODO: get rid of this dynamic_cast
  3192. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3193. GGML_ASSERT(res_metrics != nullptr);
  3194. // optionally return "fail_on_no_slot" error
  3195. if (req.has_param("fail_on_no_slot")) {
  3196. if (res_metrics->n_idle_slots == 0) {
  3197. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3198. return;
  3199. }
  3200. }
  3201. res_ok(res, res_metrics->slots_data);
  3202. };
  3203. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3204. if (!params.endpoint_metrics) {
  3205. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3206. return;
  3207. }
  3208. // request slots data using task queue
  3209. int task_id = ctx_server.queue_tasks.get_new_id();
  3210. {
  3211. server_task task(SERVER_TASK_TYPE_METRICS);
  3212. task.id = task_id;
  3213. ctx_server.queue_results.add_waiting_task_id(task_id);
  3214. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3215. }
  3216. // get the result
  3217. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3218. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3219. if (result->is_error()) {
  3220. res_error(res, result->to_json());
  3221. return;
  3222. }
  3223. // TODO: get rid of this dynamic_cast
  3224. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3225. GGML_ASSERT(res_metrics != nullptr);
  3226. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3227. json all_metrics_def = json {
  3228. {"counter", {{
  3229. {"name", "prompt_tokens_total"},
  3230. {"help", "Number of prompt tokens processed."},
  3231. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3232. }, {
  3233. {"name", "prompt_seconds_total"},
  3234. {"help", "Prompt process time"},
  3235. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3236. }, {
  3237. {"name", "tokens_predicted_total"},
  3238. {"help", "Number of generation tokens processed."},
  3239. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3240. }, {
  3241. {"name", "tokens_predicted_seconds_total"},
  3242. {"help", "Predict process time"},
  3243. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3244. }, {
  3245. {"name", "n_decode_total"},
  3246. {"help", "Total number of llama_decode() calls"},
  3247. {"value", res_metrics->n_decode_total}
  3248. }, {
  3249. {"name", "n_busy_slots_per_decode"},
  3250. {"help", "Average number of busy slots per llama_decode() call"},
  3251. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3252. }}},
  3253. {"gauge", {{
  3254. {"name", "prompt_tokens_seconds"},
  3255. {"help", "Average prompt throughput in tokens/s."},
  3256. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3257. },{
  3258. {"name", "predicted_tokens_seconds"},
  3259. {"help", "Average generation throughput in tokens/s."},
  3260. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3261. },{
  3262. {"name", "requests_processing"},
  3263. {"help", "Number of requests processing."},
  3264. {"value", (uint64_t) res_metrics->n_processing_slots}
  3265. },{
  3266. {"name", "requests_deferred"},
  3267. {"help", "Number of requests deferred."},
  3268. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3269. }}}
  3270. };
  3271. std::stringstream prometheus;
  3272. for (const auto & el : all_metrics_def.items()) {
  3273. const auto & type = el.key();
  3274. const auto & metrics_def = el.value();
  3275. for (const auto & metric_def : metrics_def) {
  3276. const std::string name = metric_def.at("name");
  3277. const std::string help = metric_def.at("help");
  3278. auto value = json_value(metric_def, "value", 0.);
  3279. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3280. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3281. << "llamacpp:" << name << " " << value << "\n";
  3282. }
  3283. }
  3284. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3285. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3286. res.status = 200; // HTTP OK
  3287. };
  3288. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3289. json request_data = json::parse(req.body);
  3290. std::string filename = request_data.at("filename");
  3291. if (!fs_validate_filename(filename)) {
  3292. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3293. return;
  3294. }
  3295. std::string filepath = params.slot_save_path + filename;
  3296. int task_id = ctx_server.queue_tasks.get_new_id();
  3297. {
  3298. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3299. task.id = task_id;
  3300. task.slot_action.slot_id = id_slot;
  3301. task.slot_action.filename = filename;
  3302. task.slot_action.filepath = filepath;
  3303. ctx_server.queue_results.add_waiting_task_id(task_id);
  3304. ctx_server.queue_tasks.post(std::move(task));
  3305. }
  3306. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3307. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3308. if (result->is_error()) {
  3309. res_error(res, result->to_json());
  3310. return;
  3311. }
  3312. res_ok(res, result->to_json());
  3313. };
  3314. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3315. json request_data = json::parse(req.body);
  3316. std::string filename = request_data.at("filename");
  3317. if (!fs_validate_filename(filename)) {
  3318. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3319. return;
  3320. }
  3321. std::string filepath = params.slot_save_path + filename;
  3322. int task_id = ctx_server.queue_tasks.get_new_id();
  3323. {
  3324. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3325. task.id = task_id;
  3326. task.slot_action.slot_id = id_slot;
  3327. task.slot_action.filename = filename;
  3328. task.slot_action.filepath = filepath;
  3329. ctx_server.queue_results.add_waiting_task_id(task_id);
  3330. ctx_server.queue_tasks.post(std::move(task));
  3331. }
  3332. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3333. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3334. if (result->is_error()) {
  3335. res_error(res, result->to_json());
  3336. return;
  3337. }
  3338. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3339. res_ok(res, result->to_json());
  3340. };
  3341. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3342. int task_id = ctx_server.queue_tasks.get_new_id();
  3343. {
  3344. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3345. task.id = task_id;
  3346. task.slot_action.slot_id = id_slot;
  3347. ctx_server.queue_results.add_waiting_task_id(task_id);
  3348. ctx_server.queue_tasks.post(std::move(task));
  3349. }
  3350. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3351. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3352. if (result->is_error()) {
  3353. res_error(res, result->to_json());
  3354. return;
  3355. }
  3356. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3357. res_ok(res, result->to_json());
  3358. };
  3359. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3360. if (params.slot_save_path.empty()) {
  3361. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3362. return;
  3363. }
  3364. std::string id_slot_str = req.path_params.at("id_slot");
  3365. int id_slot;
  3366. try {
  3367. id_slot = std::stoi(id_slot_str);
  3368. } catch (const std::exception &) {
  3369. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3370. return;
  3371. }
  3372. std::string action = req.get_param_value("action");
  3373. if (action == "save") {
  3374. handle_slots_save(req, res, id_slot);
  3375. } else if (action == "restore") {
  3376. handle_slots_restore(req, res, id_slot);
  3377. } else if (action == "erase") {
  3378. handle_slots_erase(req, res, id_slot);
  3379. } else {
  3380. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3381. }
  3382. };
  3383. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3384. // this endpoint is publicly available, please only return what is safe to be exposed
  3385. json data = {
  3386. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3387. { "total_slots", ctx_server.params_base.n_parallel },
  3388. { "model_path", ctx_server.params_base.model.path },
  3389. { "modalities", json{
  3390. {"vision", ctx_server.oai_parser_opt.allow_image},
  3391. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3392. } },
  3393. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3394. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3395. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3396. { "build_info", build_info },
  3397. };
  3398. if (ctx_server.params_base.use_jinja) {
  3399. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3400. data["chat_template_tool_use"] = tool_use_src;
  3401. }
  3402. }
  3403. res_ok(res, data);
  3404. };
  3405. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3406. if (!ctx_server.params_base.endpoint_props) {
  3407. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3408. return;
  3409. }
  3410. json data = json::parse(req.body);
  3411. // update any props here
  3412. res_ok(res, {{ "success", true }});
  3413. };
  3414. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3415. json data = {
  3416. {
  3417. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3418. },
  3419. {
  3420. "model_info", {
  3421. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3422. }
  3423. },
  3424. {"modelfile", ""},
  3425. {"parameters", ""},
  3426. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3427. {"details", {
  3428. {"parent_model", ""},
  3429. {"format", "gguf"},
  3430. {"family", ""},
  3431. {"families", {""}},
  3432. {"parameter_size", ""},
  3433. {"quantization_level", ""}
  3434. }},
  3435. {"model_info", ""},
  3436. {"capabilities", {"completion"}}
  3437. };
  3438. res_ok(res, data);
  3439. };
  3440. // handle completion-like requests (completion, chat, infill)
  3441. // we can optionally provide a custom format for partial results and final results
  3442. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3443. server_task_type type,
  3444. json & data,
  3445. const std::vector<raw_buffer> & files,
  3446. const std::function<bool()> & is_connection_closed,
  3447. httplib::Response & res,
  3448. oaicompat_type oaicompat) -> void {
  3449. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3450. if (ctx_server.params_base.embedding) {
  3451. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3452. return;
  3453. }
  3454. auto completion_id = gen_chatcmplid();
  3455. std::unordered_set<int> task_ids;
  3456. try {
  3457. std::vector<server_task> tasks;
  3458. const auto & prompt = data.at("prompt");
  3459. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3460. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3461. // process files
  3462. mtmd::bitmaps bitmaps;
  3463. const bool has_mtmd = ctx_server.mctx != nullptr;
  3464. {
  3465. if (!has_mtmd && !files.empty()) {
  3466. throw std::runtime_error("This server does not support multimodal");
  3467. }
  3468. for (auto & file : files) {
  3469. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(file.data(), file.size()));
  3470. if (!bmp.ptr) {
  3471. throw std::runtime_error("Failed to load image or audio file");
  3472. }
  3473. // calculate bitmap hash (for KV caching)
  3474. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3475. bmp.set_id(hash.c_str());
  3476. bitmaps.entries.push_back(std::move(bmp));
  3477. }
  3478. }
  3479. // process prompt
  3480. std::vector<server_tokens> inputs;
  3481. if (oaicompat && !prompt.is_string()) {
  3482. throw std::runtime_error("prompt must be a string");
  3483. }
  3484. if (oaicompat && has_mtmd) {
  3485. // multimodal
  3486. std::string prompt_str = prompt.get<std::string>();
  3487. mtmd_input_text inp_txt = {
  3488. prompt_str.c_str(),
  3489. /* add_special */ true,
  3490. /* parse_special */ true,
  3491. };
  3492. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3493. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3494. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3495. chunks.ptr.get(),
  3496. &inp_txt,
  3497. bitmaps_c_ptr.data(),
  3498. bitmaps_c_ptr.size());
  3499. if (tokenized != 0) {
  3500. throw std::runtime_error("Failed to tokenize prompt");
  3501. }
  3502. server_tokens tmp(chunks, true);
  3503. inputs.push_back(std::move(tmp));
  3504. } else {
  3505. // non-multimodal version
  3506. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3507. for (auto & p : tokenized_prompts) {
  3508. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3509. inputs.push_back(std::move(tmp));
  3510. }
  3511. }
  3512. tasks.reserve(inputs.size());
  3513. for (size_t i = 0; i < inputs.size(); i++) {
  3514. server_task task = server_task(type);
  3515. task.id = ctx_server.queue_tasks.get_new_id();
  3516. task.index = i;
  3517. task.prompt_tokens = std::move(inputs[i]);
  3518. task.params = server_task::params_from_json_cmpl(
  3519. ctx_server.ctx,
  3520. ctx_server.params_base,
  3521. data);
  3522. task.id_selected_slot = json_value(data, "id_slot", -1);
  3523. // OAI-compat
  3524. task.params.oaicompat = oaicompat;
  3525. task.params.oaicompat_cmpl_id = completion_id;
  3526. // oaicompat_model is already populated by params_from_json_cmpl
  3527. tasks.push_back(std::move(task));
  3528. }
  3529. task_ids = server_task::get_list_id(tasks);
  3530. ctx_server.queue_results.add_waiting_tasks(tasks);
  3531. ctx_server.queue_tasks.post(std::move(tasks));
  3532. } catch (const std::exception & e) {
  3533. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3534. return;
  3535. }
  3536. bool stream = json_value(data, "stream", false);
  3537. if (!stream) {
  3538. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3539. if (results.size() == 1) {
  3540. // single result
  3541. res_ok(res, results[0]->to_json());
  3542. } else {
  3543. // multiple results (multitask)
  3544. json arr = json::array();
  3545. for (auto & res : results) {
  3546. arr.push_back(res->to_json());
  3547. }
  3548. res_ok(res, arr);
  3549. }
  3550. }, [&](const json & error_data) {
  3551. res_error(res, error_data);
  3552. }, is_connection_closed);
  3553. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3554. } else {
  3555. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3556. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3557. json res_json = result->to_json();
  3558. if (res_json.is_array()) {
  3559. for (const auto & res : res_json) {
  3560. if (!server_sent_event(sink, "data", res)) {
  3561. // sending failed (HTTP connection closed), cancel the generation
  3562. return false;
  3563. }
  3564. }
  3565. return true;
  3566. } else {
  3567. return server_sent_event(sink, "data", res_json);
  3568. }
  3569. }, [&](const json & error_data) {
  3570. server_sent_event(sink, "error", error_data);
  3571. }, [&sink]() {
  3572. // note: do not use req.is_connection_closed here because req is already destroyed
  3573. return !sink.is_writable();
  3574. });
  3575. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3576. static const std::string ev_done = "data: [DONE]\n\n";
  3577. sink.write(ev_done.data(), ev_done.size());
  3578. }
  3579. sink.done();
  3580. return false;
  3581. };
  3582. auto on_complete = [task_ids, &ctx_server] (bool) {
  3583. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3584. };
  3585. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3586. }
  3587. };
  3588. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3589. json data = json::parse(req.body);
  3590. std::vector<raw_buffer> files; // dummy
  3591. handle_completions_impl(
  3592. SERVER_TASK_TYPE_COMPLETION,
  3593. data,
  3594. files,
  3595. req.is_connection_closed,
  3596. res,
  3597. OAICOMPAT_TYPE_NONE);
  3598. };
  3599. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3600. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3601. std::vector<raw_buffer> files; // dummy
  3602. handle_completions_impl(
  3603. SERVER_TASK_TYPE_COMPLETION,
  3604. data,
  3605. files,
  3606. req.is_connection_closed,
  3607. res,
  3608. OAICOMPAT_TYPE_COMPLETION);
  3609. };
  3610. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3611. // check model compatibility
  3612. std::string err;
  3613. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3614. err += "prefix token is missing. ";
  3615. }
  3616. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3617. err += "suffix token is missing. ";
  3618. }
  3619. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3620. err += "middle token is missing. ";
  3621. }
  3622. if (!err.empty()) {
  3623. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3624. return;
  3625. }
  3626. json data = json::parse(req.body);
  3627. // validate input
  3628. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3629. // prompt is optional
  3630. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3631. }
  3632. if (!data.contains("input_prefix")) {
  3633. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3634. }
  3635. if (!data.contains("input_suffix")) {
  3636. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3637. }
  3638. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3639. // input_extra is optional
  3640. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3641. return;
  3642. }
  3643. json input_extra = json_value(data, "input_extra", json::array());
  3644. for (const auto & chunk : input_extra) {
  3645. // { "text": string, "filename": string }
  3646. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3647. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3648. return;
  3649. }
  3650. // filename is optional
  3651. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3652. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3653. return;
  3654. }
  3655. }
  3656. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3657. std::string prompt = json_value(data, "prompt", std::string());
  3658. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3659. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3660. data["prompt"] = format_infill(
  3661. ctx_server.vocab,
  3662. data.at("input_prefix"),
  3663. data.at("input_suffix"),
  3664. data.at("input_extra"),
  3665. ctx_server.params_base.n_batch,
  3666. ctx_server.params_base.n_predict,
  3667. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3668. ctx_server.params_base.spm_infill,
  3669. tokenized_prompts[0]
  3670. );
  3671. std::vector<raw_buffer> files; // dummy
  3672. handle_completions_impl(
  3673. SERVER_TASK_TYPE_INFILL,
  3674. data,
  3675. files,
  3676. req.is_connection_closed,
  3677. res,
  3678. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3679. };
  3680. const auto handle_chat_completions = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3681. LOG_DBG("request: %s\n", req.body.c_str());
  3682. if (ctx_server.params_base.embedding) {
  3683. res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3684. return;
  3685. }
  3686. auto body = json::parse(req.body);
  3687. std::vector<raw_buffer> files;
  3688. json data = oaicompat_chat_params_parse(
  3689. body,
  3690. ctx_server.oai_parser_opt,
  3691. files);
  3692. handle_completions_impl(
  3693. SERVER_TASK_TYPE_COMPLETION,
  3694. data,
  3695. files,
  3696. req.is_connection_closed,
  3697. res,
  3698. OAICOMPAT_TYPE_CHAT);
  3699. };
  3700. // same with handle_chat_completions, but without inference part
  3701. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3702. auto body = json::parse(req.body);
  3703. std::vector<raw_buffer> files; // dummy, unused
  3704. json data = oaicompat_chat_params_parse(
  3705. body,
  3706. ctx_server.oai_parser_opt,
  3707. files);
  3708. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3709. };
  3710. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3711. server_state current_state = state.load();
  3712. json model_meta = nullptr;
  3713. if (current_state == SERVER_STATE_READY) {
  3714. model_meta = ctx_server.model_meta();
  3715. }
  3716. json models = {
  3717. {"models", {
  3718. {
  3719. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3720. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3721. {"modified_at", ""},
  3722. {"size", ""},
  3723. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3724. {"type", "model"},
  3725. {"description", ""},
  3726. {"tags", {""}},
  3727. {"capabilities", {"completion"}},
  3728. {"parameters", ""},
  3729. {"details", {
  3730. {"parent_model", ""},
  3731. {"format", "gguf"},
  3732. {"family", ""},
  3733. {"families", {""}},
  3734. {"parameter_size", ""},
  3735. {"quantization_level", ""}
  3736. }}
  3737. }
  3738. }},
  3739. {"object", "list"},
  3740. {"data", {
  3741. {
  3742. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3743. {"object", "model"},
  3744. {"created", std::time(0)},
  3745. {"owned_by", "llamacpp"},
  3746. {"meta", model_meta},
  3747. },
  3748. }}
  3749. };
  3750. res_ok(res, models);
  3751. };
  3752. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3753. const json body = json::parse(req.body);
  3754. json tokens_response = json::array();
  3755. if (body.count("content") != 0) {
  3756. const bool add_special = json_value(body, "add_special", false);
  3757. const bool with_pieces = json_value(body, "with_pieces", false);
  3758. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, true);
  3759. if (with_pieces) {
  3760. for (const auto& token : tokens) {
  3761. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3762. json piece_json;
  3763. // Check if the piece is valid UTF-8
  3764. if (is_valid_utf8(piece)) {
  3765. piece_json = piece;
  3766. } else {
  3767. // If not valid UTF-8, store as array of byte values
  3768. piece_json = json::array();
  3769. for (unsigned char c : piece) {
  3770. piece_json.push_back(static_cast<int>(c));
  3771. }
  3772. }
  3773. tokens_response.push_back({
  3774. {"id", token},
  3775. {"piece", piece_json}
  3776. });
  3777. }
  3778. } else {
  3779. tokens_response = tokens;
  3780. }
  3781. }
  3782. const json data = format_tokenizer_response(tokens_response);
  3783. res_ok(res, data);
  3784. };
  3785. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3786. const json body = json::parse(req.body);
  3787. std::string content;
  3788. if (body.count("tokens") != 0) {
  3789. const llama_tokens tokens = body.at("tokens");
  3790. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3791. }
  3792. const json data = format_detokenized_response(content);
  3793. res_ok(res, data);
  3794. };
  3795. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3796. const json body = json::parse(req.body);
  3797. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3798. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3799. return;
  3800. }
  3801. // for the shape of input/content, see tokenize_input_prompts()
  3802. json prompt;
  3803. if (body.count("input") != 0) {
  3804. prompt = body.at("input");
  3805. } else if (body.contains("content")) {
  3806. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3807. prompt = body.at("content");
  3808. } else {
  3809. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3810. return;
  3811. }
  3812. bool use_base64 = false;
  3813. if (body.count("encoding_format") != 0) {
  3814. const std::string& format = body.at("encoding_format");
  3815. if (format == "base64") {
  3816. use_base64 = true;
  3817. } else if (format != "float") {
  3818. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3819. return;
  3820. }
  3821. }
  3822. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3823. for (const auto & tokens : tokenized_prompts) {
  3824. // this check is necessary for models that do not add BOS token to the input
  3825. if (tokens.empty()) {
  3826. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3827. return;
  3828. }
  3829. }
  3830. // create and queue the task
  3831. json responses = json::array();
  3832. bool error = false;
  3833. std::unordered_set<int> task_ids;
  3834. {
  3835. std::vector<server_task> tasks;
  3836. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3837. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3838. task.id = ctx_server.queue_tasks.get_new_id();
  3839. task.index = i;
  3840. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3841. // OAI-compat
  3842. task.params.oaicompat = oaicompat;
  3843. tasks.push_back(std::move(task));
  3844. }
  3845. task_ids = server_task::get_list_id(tasks);
  3846. ctx_server.queue_results.add_waiting_tasks(tasks);
  3847. ctx_server.queue_tasks.post(std::move(tasks));
  3848. }
  3849. // get the result
  3850. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3851. for (auto & res : results) {
  3852. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3853. responses.push_back(res->to_json());
  3854. }
  3855. }, [&](const json & error_data) {
  3856. res_error(res, error_data);
  3857. error = true;
  3858. }, req.is_connection_closed);
  3859. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3860. if (error) {
  3861. return;
  3862. }
  3863. // write JSON response
  3864. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3865. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3866. : json(responses);
  3867. res_ok(res, root);
  3868. };
  3869. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3870. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3871. };
  3872. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3873. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3874. };
  3875. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3876. if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
  3877. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
  3878. return;
  3879. }
  3880. const json body = json::parse(req.body);
  3881. // TODO: implement
  3882. //int top_n = 1;
  3883. //if (body.count("top_n") != 1) {
  3884. // top_n = body.at("top_n");
  3885. //} else {
  3886. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3887. // return;
  3888. //}
  3889. // if true, use TEI API format, otherwise use Jina API format
  3890. // Jina: https://jina.ai/reranker/
  3891. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3892. bool is_tei_format = body.contains("texts");
  3893. json query;
  3894. if (body.count("query") == 1) {
  3895. query = body.at("query");
  3896. if (!query.is_string()) {
  3897. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3898. return;
  3899. }
  3900. } else {
  3901. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3902. return;
  3903. }
  3904. std::vector<std::string> documents = json_value(body, "documents",
  3905. json_value(body, "texts", std::vector<std::string>()));
  3906. if (documents.empty()) {
  3907. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3908. return;
  3909. }
  3910. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3911. // create and queue the task
  3912. json responses = json::array();
  3913. bool error = false;
  3914. std::unordered_set<int> task_ids;
  3915. {
  3916. std::vector<server_task> tasks;
  3917. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3918. tasks.reserve(tokenized_docs.size());
  3919. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3920. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3921. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3922. task.id = ctx_server.queue_tasks.get_new_id();
  3923. task.index = i;
  3924. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  3925. tasks.push_back(std::move(task));
  3926. }
  3927. task_ids = server_task::get_list_id(tasks);
  3928. ctx_server.queue_results.add_waiting_tasks(tasks);
  3929. ctx_server.queue_tasks.post(std::move(tasks));
  3930. }
  3931. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3932. for (auto & res : results) {
  3933. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3934. responses.push_back(res->to_json());
  3935. }
  3936. }, [&](const json & error_data) {
  3937. res_error(res, error_data);
  3938. error = true;
  3939. }, req.is_connection_closed);
  3940. if (error) {
  3941. return;
  3942. }
  3943. // write JSON response
  3944. json root = format_response_rerank(
  3945. body,
  3946. responses,
  3947. is_tei_format,
  3948. documents);
  3949. res_ok(res, root);
  3950. };
  3951. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  3952. json result = json::array();
  3953. const auto & loras = ctx_server.params_base.lora_adapters;
  3954. for (size_t i = 0; i < loras.size(); ++i) {
  3955. auto & lora = loras[i];
  3956. result.push_back({
  3957. {"id", i},
  3958. {"path", lora.path},
  3959. {"scale", lora.scale},
  3960. });
  3961. }
  3962. res_ok(res, result);
  3963. res.status = 200; // HTTP OK
  3964. };
  3965. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  3966. const json body = json::parse(req.body);
  3967. if (!body.is_array()) {
  3968. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  3969. return;
  3970. }
  3971. int task_id = ctx_server.queue_tasks.get_new_id();
  3972. {
  3973. server_task task(SERVER_TASK_TYPE_SET_LORA);
  3974. task.id = task_id;
  3975. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  3976. ctx_server.queue_results.add_waiting_task_id(task_id);
  3977. ctx_server.queue_tasks.post(std::move(task));
  3978. }
  3979. // get the result
  3980. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3981. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3982. if (result->is_error()) {
  3983. res_error(res, result->to_json());
  3984. return;
  3985. }
  3986. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  3987. res_ok(res, result->to_json());
  3988. };
  3989. //
  3990. // Router
  3991. //
  3992. if (!params.webui) {
  3993. LOG_INF("Web UI is disabled\n");
  3994. } else {
  3995. // register static assets routes
  3996. if (!params.public_path.empty()) {
  3997. // Set the base directory for serving static files
  3998. bool is_found = svr->set_mount_point("/", params.public_path);
  3999. if (!is_found) {
  4000. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4001. return 1;
  4002. }
  4003. } else {
  4004. // using embedded static index.html
  4005. svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
  4006. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4007. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4008. } else {
  4009. res.set_header("Content-Encoding", "gzip");
  4010. // COEP and COOP headers, required by pyodide (python interpreter)
  4011. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4012. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4013. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4014. }
  4015. return false;
  4016. });
  4017. }
  4018. }
  4019. // register API routes
  4020. svr->Get ("/health", handle_health); // public endpoint (no API key check)
  4021. svr->Get ("/metrics", handle_metrics);
  4022. svr->Get ("/props", handle_props);
  4023. svr->Post("/props", handle_props_change);
  4024. svr->Post("/api/show", handle_api_show);
  4025. svr->Get ("/models", handle_models); // public endpoint (no API key check)
  4026. svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
  4027. svr->Get ("/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4028. svr->Post("/completion", handle_completions); // legacy
  4029. svr->Post("/completions", handle_completions);
  4030. svr->Post("/v1/completions", handle_completions_oai);
  4031. svr->Post("/chat/completions", handle_chat_completions);
  4032. svr->Post("/v1/chat/completions", handle_chat_completions);
  4033. svr->Post("/api/chat", handle_chat_completions); // ollama specific endpoint
  4034. svr->Post("/infill", handle_infill);
  4035. svr->Post("/embedding", handle_embeddings); // legacy
  4036. svr->Post("/embeddings", handle_embeddings);
  4037. svr->Post("/v1/embeddings", handle_embeddings_oai);
  4038. svr->Post("/rerank", handle_rerank);
  4039. svr->Post("/reranking", handle_rerank);
  4040. svr->Post("/v1/rerank", handle_rerank);
  4041. svr->Post("/v1/reranking", handle_rerank);
  4042. svr->Post("/tokenize", handle_tokenize);
  4043. svr->Post("/detokenize", handle_detokenize);
  4044. svr->Post("/apply-template", handle_apply_template);
  4045. // LoRA adapters hotswap
  4046. svr->Get ("/lora-adapters", handle_lora_adapters_list);
  4047. svr->Post("/lora-adapters", handle_lora_adapters_apply);
  4048. // Save & load slots
  4049. svr->Get ("/slots", handle_slots);
  4050. svr->Post("/slots/:id_slot", handle_slots_action);
  4051. //
  4052. // Start the server
  4053. //
  4054. if (params.n_threads_http < 1) {
  4055. // +2 threads for monitoring endpoints
  4056. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4057. }
  4058. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4059. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4060. // clean up function, to be called before exit
  4061. auto clean_up = [&svr, &ctx_server]() {
  4062. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4063. svr->stop();
  4064. ctx_server.queue_results.terminate();
  4065. llama_backend_free();
  4066. };
  4067. bool was_bound = false;
  4068. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4069. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4070. svr->set_address_family(AF_UNIX);
  4071. // bind_to_port requires a second arg, any value other than 0 should
  4072. // simply get ignored
  4073. was_bound = svr->bind_to_port(params.hostname, 8080);
  4074. } else {
  4075. LOG_INF("%s: binding port with default address family\n", __func__);
  4076. // bind HTTP listen port
  4077. if (params.port == 0) {
  4078. int bound_port = svr->bind_to_any_port(params.hostname);
  4079. if ((was_bound = (bound_port >= 0))) {
  4080. params.port = bound_port;
  4081. }
  4082. } else {
  4083. was_bound = svr->bind_to_port(params.hostname, params.port);
  4084. }
  4085. }
  4086. if (!was_bound) {
  4087. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4088. clean_up();
  4089. return 1;
  4090. }
  4091. // run the HTTP server in a thread
  4092. std::thread t([&]() { svr->listen_after_bind(); });
  4093. svr->wait_until_ready();
  4094. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4095. // load the model
  4096. LOG_INF("%s: loading model\n", __func__);
  4097. if (!ctx_server.load_model(params)) {
  4098. clean_up();
  4099. t.join();
  4100. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4101. return 1;
  4102. }
  4103. ctx_server.init();
  4104. state.store(SERVER_STATE_READY);
  4105. LOG_INF("%s: model loaded\n", __func__);
  4106. // print sample chat example to make it clear which template is used
  4107. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4108. common_chat_templates_source(ctx_server.chat_templates.get()),
  4109. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  4110. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4111. ctx_server.process_single_task(std::move(task));
  4112. });
  4113. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4114. ctx_server.update_slots();
  4115. });
  4116. shutdown_handler = [&](int) {
  4117. // this will unblock start_loop()
  4118. ctx_server.queue_tasks.terminate();
  4119. };
  4120. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4121. struct sigaction sigint_action;
  4122. sigint_action.sa_handler = signal_handler;
  4123. sigemptyset (&sigint_action.sa_mask);
  4124. sigint_action.sa_flags = 0;
  4125. sigaction(SIGINT, &sigint_action, NULL);
  4126. sigaction(SIGTERM, &sigint_action, NULL);
  4127. #elif defined (_WIN32)
  4128. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4129. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4130. };
  4131. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4132. #endif
  4133. LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
  4134. // this call blocks the main thread until queue_tasks.terminate() is called
  4135. ctx_server.queue_tasks.start_loop();
  4136. clean_up();
  4137. t.join();
  4138. return 0;
  4139. }