convert_hf_to_gguf.py 487 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_names |= set(weight_map.values())
  173. else:
  174. weight_map = {}
  175. else:
  176. weight_map = {}
  177. for part_name in part_names:
  178. logger.info(f"gguf: indexing model part '{part_name}'")
  179. ctx: ContextManager[Any]
  180. if is_safetensors:
  181. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. data: gguf.utility.LocalTensor = model_part[name]
  189. if self.lazy:
  190. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  191. else:
  192. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  193. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  194. else:
  195. data_torch: Tensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data_torch: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  231. scale = scale.float()
  232. if block_size is not None:
  233. for i, size in enumerate(block_size):
  234. scale = scale.repeat_interleave(size, i)
  235. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  236. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  237. return weight.float() * scale
  238. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  239. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  240. bits = quant_config["bits"]
  241. assert bits in (2, 3, 4, 8)
  242. assert qweight.dtype == qzeros.dtype
  243. maxq = (2 ** bits) - 1
  244. weight = None
  245. zeros = None
  246. pack_dtype_bits = qweight.dtype.itemsize * 8
  247. if bits in [2, 4, 8]:
  248. pack_factor = pack_dtype_bits // bits
  249. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  250. if self.lazy:
  251. wf = LazyTorchTensor.from_eager(wf)
  252. zeros = torch.bitwise_right_shift(
  253. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  254. wf.unsqueeze(0)
  255. ).to(torch.int16 if bits == 8 else torch.int8)
  256. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  257. weight = torch.bitwise_and(
  258. torch.bitwise_right_shift(
  259. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  260. wf.unsqueeze(-1)
  261. ).to(torch.int16 if bits == 8 else torch.int8),
  262. maxq
  263. )
  264. elif bits == 3:
  265. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  266. assert weight is not None
  267. assert zeros is not None
  268. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  269. # gptq_v2 doesn't need to offset zeros
  270. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  271. zeros += 1
  272. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  273. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  274. assert w.dtype == torch.int32
  275. shape = tuple(shape_tensor.tolist())
  276. assert len(shape) == 2
  277. mask = (1 << num_bits) - 1
  278. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  279. if self.lazy:
  280. shifts = LazyTorchTensor.from_eager(shifts)
  281. if zero_point is None:
  282. offset = 1 << (num_bits - 1)
  283. else:
  284. assert len(zero_point.shape) == 2
  285. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  286. offset = offset.reshape(-1, zero_point.shape[1])
  287. # trim padding, and prepare for broadcast
  288. # NOTE: the zero-point is packed along dim 0
  289. offset = offset[:shape[0], :].unsqueeze(-1)
  290. # extract values
  291. # NOTE: the weights are packed along dim 1
  292. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  293. unpacked = unpacked.reshape(shape[0], -1)
  294. # trim padding
  295. unpacked = unpacked[:, :shape[1]]
  296. # prepare for broadcast of the scale
  297. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  298. unpacked = unpacked - offset
  299. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  300. if quant_method == "bitnet":
  301. for name in self.model_tensors.keys():
  302. if name.endswith(".weight_scale"):
  303. weight_name = name.removesuffix("_scale")
  304. w = self.model_tensors[weight_name]
  305. s = self.model_tensors[name]
  306. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  307. tensors_to_remove.append(name)
  308. elif quant_method == "fp8":
  309. block_size = quant_config.get("weight_block_size")
  310. for name in self.model_tensors.keys():
  311. if name.endswith(".weight_scale_inv"):
  312. weight_name = name.removesuffix("_scale_inv")
  313. w = self.model_tensors[weight_name]
  314. s = self.model_tensors[name]
  315. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  316. tensors_to_remove.append(name)
  317. if name.endswith(".activation_scale"): # unused
  318. tensors_to_remove.append(name)
  319. # mistral format
  320. if name.endswith(".qscale_weight"):
  321. weight_name = name.removesuffix("qscale_weight") + "weight"
  322. w = self.model_tensors[weight_name]
  323. s = self.model_tensors[name]
  324. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  325. tensors_to_remove.append(name)
  326. if name.endswith(".qscale_act"):
  327. tensors_to_remove.append(name)
  328. elif quant_method == "gptq":
  329. for name in self.model_tensors.keys():
  330. if name.endswith(".qweight"):
  331. base_name = name.removesuffix(".qweight")
  332. g_idx = self.model_tensors[base_name + ".g_idx"]
  333. qweight = self.model_tensors[base_name + ".qweight"]
  334. qzeros = self.model_tensors[base_name + ".qzeros"]
  335. scales = self.model_tensors[base_name + ".scales"]
  336. new_tensors[base_name + ".weight"] = (
  337. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  338. g(), w(), z(), s()
  339. )
  340. )
  341. tensors_to_remove += [
  342. base_name + n
  343. for n in (
  344. ".g_idx",
  345. ".qzeros",
  346. ".qweight",
  347. ".scales",
  348. )
  349. ]
  350. elif quant_method == "compressed-tensors":
  351. quant_format = quant_config["format"]
  352. groups = quant_config["config_groups"]
  353. if len(groups) > 1:
  354. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  355. weight_config = tuple(groups.values())[0]["weights"]
  356. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  357. block_size = weight_config.get("block_structure", None)
  358. strategy = weight_config.get("strategy")
  359. assert strategy == "channel" or strategy == "block"
  360. assert weight_config.get("group_size") is None # didn't find a model using this yet
  361. for name in self.model_tensors.keys():
  362. if name.endswith(".weight_scale"):
  363. weight_name = name.removesuffix("_scale")
  364. w = self.model_tensors[weight_name]
  365. s = self.model_tensors[name]
  366. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  367. tensors_to_remove.append(name)
  368. elif quant_format == "pack-quantized":
  369. assert weight_config.get("strategy") == "group"
  370. assert weight_config.get("type", "int") == "int"
  371. num_bits = weight_config.get("num_bits")
  372. group_size = weight_config.get("group_size")
  373. assert isinstance(num_bits, int)
  374. assert isinstance(group_size, int)
  375. for name in self.model_tensors.keys():
  376. if name.endswith(".weight_packed"):
  377. base_name = name.removesuffix("_packed")
  378. w = self.model_tensors[name]
  379. scale = self.model_tensors[base_name + "_scale"]
  380. shape = self.model_tensors[base_name + "_shape"]
  381. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  382. new_tensors[base_name] = (
  383. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  384. w(), scale(), shape(), zero_point(), num_bits, group_size,
  385. )
  386. )
  387. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  388. if (base_name + "_zero_point") in self.model_tensors:
  389. tensors_to_remove.append(base_name + "_zero_point")
  390. else:
  391. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  392. else:
  393. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  394. for name in tensors_to_remove:
  395. if name in self.model_tensors:
  396. del self.model_tensors[name]
  397. for name, value in new_tensors.items():
  398. self.model_tensors[name] = value
  399. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  400. for name, gen in self.model_tensors.items():
  401. yield name, gen()
  402. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  403. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  404. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  405. name: str = gguf.TENSOR_NAMES[key]
  406. if "{bid}" in name:
  407. assert bid is not None
  408. name = name.format(bid=bid)
  409. return name + suffix
  410. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. return False
  413. key_name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in key_name:
  415. if bid is None:
  416. return False
  417. key_name = key_name.format(bid=bid)
  418. else:
  419. if bid is not None:
  420. return False
  421. return name == (key_name + suffix)
  422. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  423. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  424. if new_name is None:
  425. raise ValueError(f"Can not map tensor {name!r}")
  426. return new_name
  427. def set_gguf_parameters(self):
  428. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  429. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  430. del bid # unused
  431. return [(self.map_tensor_name(name), data_torch)]
  432. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  433. del name, new_name, bid, n_dims # unused
  434. return False
  435. # some models need extra generated tensors (like rope_freqs)
  436. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  437. return ()
  438. def prepare_tensors(self):
  439. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  440. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  441. # we don't need these
  442. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  443. continue
  444. old_dtype = data_torch.dtype
  445. # convert any unsupported data types to float32
  446. if data_torch.dtype not in (torch.float16, torch.float32):
  447. data_torch = data_torch.to(torch.float32)
  448. # use the first number-like part of the tensor name as the block id
  449. bid = None
  450. for part in name.split("."):
  451. if part.isdecimal():
  452. bid = int(part)
  453. break
  454. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  455. # TODO: why do we squeeze here?
  456. # data = data_torch.squeeze().numpy()
  457. data = data_torch.numpy()
  458. n_dims = len(data.shape)
  459. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  460. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  461. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  462. data_qtype = gguf.GGMLQuantizationType.F32
  463. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  464. # Some tensor types are always in float32
  465. if data_qtype is False and (
  466. any(
  467. self.match_model_tensor_name(new_name, key, bid)
  468. for key in (
  469. gguf.MODEL_TENSOR.FFN_GATE_INP,
  470. gguf.MODEL_TENSOR.POS_EMBD,
  471. gguf.MODEL_TENSOR.TOKEN_TYPES,
  472. gguf.MODEL_TENSOR.SSM_CONV1D,
  473. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  474. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  475. gguf.MODEL_TENSOR.TIME_MIX_W1,
  476. gguf.MODEL_TENSOR.TIME_MIX_W2,
  477. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  478. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  479. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  480. gguf.MODEL_TENSOR.POSNET_NORM1,
  481. gguf.MODEL_TENSOR.POSNET_NORM2,
  482. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  483. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  484. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  485. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  486. )
  487. )
  488. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  489. ):
  490. data_qtype = gguf.GGMLQuantizationType.F32
  491. if data_qtype is False and any(
  492. self.match_model_tensor_name(new_name, key, bid)
  493. for key in (
  494. gguf.MODEL_TENSOR.TOKEN_EMBD,
  495. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  496. gguf.MODEL_TENSOR.OUTPUT,
  497. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  498. gguf.MODEL_TENSOR.LAUREL_L,
  499. gguf.MODEL_TENSOR.LAUREL_R,
  500. )
  501. ):
  502. if self.ftype in (
  503. gguf.LlamaFileType.MOSTLY_TQ1_0,
  504. gguf.LlamaFileType.MOSTLY_TQ2_0,
  505. ):
  506. # TODO: use Q4_K and Q6_K
  507. data_qtype = gguf.GGMLQuantizationType.F16
  508. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  509. if isinstance(data_qtype, bool):
  510. if self.ftype == gguf.LlamaFileType.ALL_F32:
  511. data_qtype = gguf.GGMLQuantizationType.F32
  512. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  513. data_qtype = gguf.GGMLQuantizationType.F16
  514. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  515. data_qtype = gguf.GGMLQuantizationType.BF16
  516. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  517. data_qtype = gguf.GGMLQuantizationType.Q8_0
  518. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  519. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  521. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  522. else:
  523. raise ValueError(f"Unknown file type: {self.ftype.name}")
  524. try:
  525. data = gguf.quants.quantize(data, data_qtype)
  526. except gguf.QuantError as e:
  527. logger.warning("%s, %s", e, "falling back to F16")
  528. data_qtype = gguf.GGMLQuantizationType.F16
  529. data = gguf.quants.quantize(data, data_qtype)
  530. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  531. # reverse shape to make it similar to the internal ggml dimension order
  532. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  533. # n_dims is implicit in the shape
  534. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  535. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  536. def set_type(self):
  537. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  538. def prepare_metadata(self, vocab_only: bool):
  539. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  540. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  541. # If we are using HF model id, set the metadata name to the model id
  542. if self.remote_hf_model_id:
  543. self.metadata.name = self.remote_hf_model_id
  544. # Fallback to model directory name if metadata name is still missing
  545. if self.metadata.name is None:
  546. self.metadata.name = self.dir_model.name
  547. # Generate parameter weight class (useful for leader boards) if not yet determined
  548. if self.metadata.size_label is None and total_params > 0:
  549. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  550. self.set_type()
  551. logger.info("Set meta model")
  552. self.metadata.set_gguf_meta_model(self.gguf_writer)
  553. logger.info("Set model parameters")
  554. self.set_gguf_parameters()
  555. logger.info("Set model quantization version")
  556. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  557. def write_vocab(self):
  558. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  559. def write(self):
  560. self.prepare_tensors()
  561. self.prepare_metadata(vocab_only=False)
  562. self.gguf_writer.write_header_to_file(path=self.fname_out)
  563. self.gguf_writer.write_kv_data_to_file()
  564. self.gguf_writer.write_tensors_to_file(progress=True)
  565. self.gguf_writer.close()
  566. @staticmethod
  567. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  568. part_names: list[str] = []
  569. for filename in os.listdir(dir_model):
  570. if filename.startswith(prefix) and filename.endswith(suffix):
  571. part_names.append(filename)
  572. part_names.sort()
  573. return part_names
  574. @staticmethod
  575. def load_hparams(dir_model: Path, is_mistral_format: bool):
  576. if is_mistral_format:
  577. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  578. config = json.load(f)
  579. return config
  580. try:
  581. # for security reason, we don't allow loading remote code by default
  582. # if a model need remote code, we will fallback to config.json
  583. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  584. except Exception as e:
  585. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  586. logger.warning("Trying to load config.json instead")
  587. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  588. config = json.load(f)
  589. if "llm_config" in config:
  590. # rename for InternVL
  591. config["text_config"] = config["llm_config"]
  592. if "thinker_config" in config:
  593. # rename for Qwen2.5-Omni
  594. config["text_config"] = config["thinker_config"]["text_config"]
  595. return config
  596. @classmethod
  597. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  598. assert names
  599. def func(modelcls: AnyModel) -> AnyModel:
  600. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  601. for name in names:
  602. cls._model_classes[model_type][name] = modelcls
  603. return modelcls
  604. return func
  605. @classmethod
  606. def print_registered_models(cls):
  607. for model_type, model_classes in cls._model_classes.items():
  608. logger.error(f"{model_type.name} models:")
  609. for name in sorted(model_classes.keys()):
  610. logger.error(f" - {name}")
  611. @classmethod
  612. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  613. try:
  614. return cls._model_classes[model_type][arch]
  615. except KeyError:
  616. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  617. class TextModel(ModelBase):
  618. model_type = ModelType.TEXT
  619. hf_arch: str
  620. def __init__(self, *args, **kwargs):
  621. super().__init__(*args, **kwargs)
  622. if not self.is_mistral_format:
  623. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  624. else:
  625. self.hf_arch = ""
  626. if "text_config" in self.hparams:
  627. # move the text_config to the root level
  628. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  629. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  630. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  631. @classmethod
  632. def __init_subclass__(cls):
  633. # can't use an abstract property, because overriding it without type errors
  634. # would require using decorated functions instead of simply defining the property
  635. if "model_arch" not in cls.__dict__:
  636. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  637. def set_vocab(self):
  638. self._set_vocab_gpt2()
  639. def prepare_metadata(self, vocab_only: bool):
  640. super().prepare_metadata(vocab_only=vocab_only)
  641. total_params = self.gguf_writer.get_total_parameter_count()[0]
  642. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  643. output_type: str = self.ftype.name.partition("_")[2]
  644. # Filename Output
  645. if self.fname_out.is_dir():
  646. # Generate default filename based on model specification and available metadata
  647. if not vocab_only:
  648. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  649. else:
  650. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  651. # Use the default filename
  652. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  653. else:
  654. # Output path is a custom defined templated filename
  655. # Note: `not is_dir()` is used because `.is_file()` will not detect
  656. # file template strings as it doesn't actually exist as a file
  657. # Process templated file name with the output ftype, useful with the "auto" ftype
  658. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  659. logger.info("Set model tokenizer")
  660. self.set_vocab()
  661. def set_gguf_parameters(self):
  662. self.gguf_writer.add_block_count(self.block_count)
  663. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  664. self.gguf_writer.add_context_length(n_ctx)
  665. logger.info(f"gguf: context length = {n_ctx}")
  666. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  667. self.gguf_writer.add_embedding_length(n_embd)
  668. logger.info(f"gguf: embedding length = {n_embd}")
  669. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  670. self.gguf_writer.add_feed_forward_length(n_ff)
  671. logger.info(f"gguf: feed forward length = {n_ff}")
  672. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  673. self.gguf_writer.add_head_count(n_head)
  674. logger.info(f"gguf: head count = {n_head}")
  675. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  676. self.gguf_writer.add_head_count_kv(n_head_kv)
  677. logger.info(f"gguf: key-value head count = {n_head_kv}")
  678. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  679. self.gguf_writer.add_rope_freq_base(rope_theta)
  680. logger.info(f"gguf: rope theta = {rope_theta}")
  681. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  682. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  683. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  684. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  685. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  686. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  687. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  688. self.gguf_writer.add_expert_count(n_experts)
  689. logger.info(f"gguf: expert count = {n_experts}")
  690. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  691. self.gguf_writer.add_expert_used_count(n_experts_used)
  692. logger.info(f"gguf: experts used count = {n_experts_used}")
  693. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  694. self.gguf_writer.add_expert_group_count(n_expert_groups)
  695. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  696. if (n_group_used := self.hparams.get("topk_group")) is not None:
  697. self.gguf_writer.add_expert_group_used_count(n_group_used)
  698. logger.info(f"gguf: expert groups used count = {n_group_used}")
  699. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  700. if score_func == "sigmoid":
  701. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  702. elif score_func == "softmax":
  703. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  704. else:
  705. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  706. logger.info(f"gguf: expert score gating function = {score_func}")
  707. if (head_dim := self.hparams.get("head_dim")) is not None:
  708. self.gguf_writer.add_key_length(head_dim)
  709. self.gguf_writer.add_value_length(head_dim)
  710. self.gguf_writer.add_file_type(self.ftype)
  711. logger.info(f"gguf: file type = {self.ftype}")
  712. def write_vocab(self):
  713. if len(self.gguf_writer.tensors) != 1:
  714. raise ValueError('Splitting the vocabulary is not supported')
  715. self.prepare_metadata(vocab_only=True)
  716. self.gguf_writer.write_header_to_file(path=self.fname_out)
  717. self.gguf_writer.write_kv_data_to_file()
  718. self.gguf_writer.close()
  719. def does_token_look_special(self, token: str | bytes) -> bool:
  720. if isinstance(token, (bytes, bytearray)):
  721. token_text = token.decode(encoding="utf-8")
  722. elif isinstance(token, memoryview):
  723. token_text = token.tobytes().decode(encoding="utf-8")
  724. else:
  725. token_text = token
  726. # Some models mark some added tokens which ought to be control tokens as not special.
  727. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  728. seems_special = token_text in (
  729. "<pad>", # deepseek-coder
  730. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  731. )
  732. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  733. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  734. # TODO: should these be marked as UNUSED instead? (maybe not)
  735. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  736. return seems_special
  737. # used for GPT-2 BPE and WordPiece vocabs
  738. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  739. tokens: list[str] = []
  740. toktypes: list[int] = []
  741. from transformers import AutoTokenizer
  742. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  743. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  744. assert max(tokenizer.vocab.values()) < vocab_size
  745. tokpre = self.get_vocab_base_pre(tokenizer)
  746. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  747. added_vocab = tokenizer.get_added_vocab()
  748. added_tokens_decoder = tokenizer.added_tokens_decoder
  749. for i in range(vocab_size):
  750. if i not in reverse_vocab:
  751. tokens.append(f"[PAD{i}]")
  752. toktypes.append(gguf.TokenType.UNUSED)
  753. else:
  754. token: str = reverse_vocab[i]
  755. if token in added_vocab:
  756. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  757. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  758. if not added_tokens_decoder[i].normalized:
  759. previous_token = token
  760. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  761. if previous_token != token:
  762. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  763. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  764. toktypes.append(gguf.TokenType.CONTROL)
  765. else:
  766. # NOTE: this was added for Gemma.
  767. # Encoding and decoding the tokens above isn't sufficient for this case.
  768. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  769. toktypes.append(gguf.TokenType.USER_DEFINED)
  770. else:
  771. toktypes.append(gguf.TokenType.NORMAL)
  772. tokens.append(token)
  773. return tokens, toktypes, tokpre
  774. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  775. # do not modify it manually!
  776. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  777. # Marker: Start get_vocab_base_pre
  778. def get_vocab_base_pre(self, tokenizer) -> str:
  779. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  780. # is specific for the BPE pre-tokenizer used by the model
  781. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  782. # use in llama.cpp to implement the same pre-tokenizer
  783. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  784. chktok = tokenizer.encode(chktxt)
  785. chkhsh = sha256(str(chktok).encode()).hexdigest()
  786. logger.debug(f"chktok: {chktok}")
  787. logger.debug(f"chkhsh: {chkhsh}")
  788. res = None
  789. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  790. # or pull the latest version of the model from Huggingface
  791. # don't edit the hashes manually!
  792. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  793. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  794. res = "chatglm-bpe"
  795. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  796. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  797. res = "chatglm-bpe"
  798. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  799. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  800. res = "glm4"
  801. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  802. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  803. res = "glm4"
  804. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  805. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  806. res = "minerva-7b"
  807. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  808. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  809. res = "hunyuan"
  810. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  811. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  812. res = "hunyuan-dense"
  813. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  814. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  815. res = "falcon-h1"
  816. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  817. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  818. res = "falcon-h1"
  819. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  820. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  821. res = "falcon-h1"
  822. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  823. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  824. res = "falcon-h1"
  825. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  826. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  827. res = "kimi-k2"
  828. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  829. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  830. res = "qwen2"
  831. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  832. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  833. res = "grok-2"
  834. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  835. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  836. res = "llama-bpe"
  837. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  838. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  839. res = "deepseek-llm"
  840. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  841. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  842. res = "deepseek-coder"
  843. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  844. # ref: https://huggingface.co/tiiuae/falcon-7b
  845. res = "falcon"
  846. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  847. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  848. res = "bert-bge"
  849. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  850. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  851. res = "falcon3"
  852. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  853. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  854. res = "bert-bge-large"
  855. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  856. # ref: https://huggingface.co/mosaicml/mpt-7b
  857. res = "mpt"
  858. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  859. # ref: https://huggingface.co/bigcode/starcoder2-3b
  860. res = "starcoder"
  861. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  862. # ref: https://huggingface.co/openai-community/gpt2
  863. res = "gpt-2"
  864. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  865. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  866. res = "stablelm2"
  867. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  868. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  869. res = "refact"
  870. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  871. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  872. res = "command-r"
  873. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  874. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  875. res = "qwen2"
  876. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  877. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  878. res = "olmo"
  879. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  880. # ref: https://huggingface.co/databricks/dbrx-base
  881. res = "dbrx"
  882. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  883. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  884. res = "jina-v1-en"
  885. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  886. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  887. res = "jina-v2-en"
  888. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  889. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  890. res = "jina-v2-es"
  891. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  892. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  893. res = "jina-v2-de"
  894. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  895. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  896. res = "smaug-bpe"
  897. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  898. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  899. res = "poro-chat"
  900. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  901. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  902. res = "jina-v2-code"
  903. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  904. # ref: https://huggingface.co/LumiOpen/Viking-7B
  905. res = "viking"
  906. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  907. # ref: https://huggingface.co/core42/jais-13b
  908. res = "jais"
  909. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  910. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  911. res = "codeshell"
  912. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  913. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  914. res = "tekken"
  915. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  916. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  917. res = "smollm"
  918. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  919. # ref: https://huggingface.co/bigscience/bloom
  920. res = "bloom"
  921. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  922. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  923. res = "gpt3-finnish"
  924. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  925. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  926. res = "exaone"
  927. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  928. # ref: https://huggingface.co/microsoft/phi-2
  929. res = "phi-2"
  930. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  931. # ref: https://huggingface.co/facebook/chameleon-7b
  932. res = "chameleon"
  933. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  934. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  935. res = "roberta-bpe"
  936. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  937. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  938. res = "gigachat"
  939. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  940. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  941. res = "megrez"
  942. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  943. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  944. res = "deepseek-v3"
  945. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  946. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  947. res = "deepseek-r1-qwen"
  948. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  949. # ref: https://huggingface.co/Xenova/gpt-4o
  950. res = "gpt-4o"
  951. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  952. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  953. res = "superbpe"
  954. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  955. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  956. res = "trillion"
  957. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  958. # ref: https://huggingface.co/inclusionAI/Ling-lite
  959. res = "bailingmoe"
  960. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  961. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  962. res = "llama4"
  963. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  964. # ref: https://huggingface.co/mistral-community/pixtral-12b
  965. res = "pixtral"
  966. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  967. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  968. res = "seed-coder"
  969. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  970. # ref: https://huggingface.co/skt/A.X-4.0
  971. res = "a.x-4.0"
  972. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  973. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  974. res = "midm-2.0"
  975. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  976. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  977. res = "lfm2"
  978. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  979. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  980. res = "exaone4"
  981. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  982. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  983. res = "mellum"
  984. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  985. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  986. res = "afmoe"
  987. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  988. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  989. res = "bailingmoe2"
  990. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  991. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  992. res = "granite-docling"
  993. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  994. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  995. res = "minimax-m2"
  996. if res is None:
  997. logger.warning("\n")
  998. logger.warning("**************************************************************************************")
  999. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1000. logger.warning("** There are 2 possible reasons for this:")
  1001. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1002. logger.warning("** - the pre-tokenization config has changed upstream")
  1003. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1004. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1005. logger.warning("**")
  1006. logger.warning(f"** chkhsh: {chkhsh}")
  1007. logger.warning("**************************************************************************************")
  1008. logger.warning("\n")
  1009. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1010. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1011. logger.debug(f"chkhsh: {chkhsh}")
  1012. return res
  1013. # Marker: End get_vocab_base_pre
  1014. def _set_vocab_none(self) -> None:
  1015. self.gguf_writer.add_tokenizer_model("none")
  1016. def _set_vocab_gpt2(self) -> None:
  1017. tokens, toktypes, tokpre = self.get_vocab_base()
  1018. self.gguf_writer.add_tokenizer_model("gpt2")
  1019. self.gguf_writer.add_tokenizer_pre(tokpre)
  1020. self.gguf_writer.add_token_list(tokens)
  1021. self.gguf_writer.add_token_types(toktypes)
  1022. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1023. special_vocab.add_to_gguf(self.gguf_writer)
  1024. def _set_vocab_qwen(self):
  1025. dir_model = self.dir_model
  1026. hparams = self.hparams
  1027. tokens: list[str] = []
  1028. toktypes: list[int] = []
  1029. from transformers import AutoTokenizer
  1030. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1031. vocab_size = hparams["vocab_size"]
  1032. assert max(tokenizer.get_vocab().values()) < vocab_size
  1033. tokpre = self.get_vocab_base_pre(tokenizer)
  1034. merges = []
  1035. vocab = {}
  1036. mergeable_ranks = tokenizer.mergeable_ranks
  1037. for token, rank in mergeable_ranks.items():
  1038. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1039. if len(token) == 1:
  1040. continue
  1041. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1042. assert len(merged) == 2
  1043. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1044. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1045. added_vocab = tokenizer.special_tokens
  1046. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1047. for i in range(vocab_size):
  1048. if i not in reverse_vocab:
  1049. tokens.append(f"[PAD{i}]")
  1050. toktypes.append(gguf.TokenType.UNUSED)
  1051. elif reverse_vocab[i] in added_vocab:
  1052. tokens.append(reverse_vocab[i])
  1053. toktypes.append(gguf.TokenType.CONTROL)
  1054. else:
  1055. tokens.append(reverse_vocab[i])
  1056. toktypes.append(gguf.TokenType.NORMAL)
  1057. self.gguf_writer.add_tokenizer_model("gpt2")
  1058. self.gguf_writer.add_tokenizer_pre(tokpre)
  1059. self.gguf_writer.add_token_list(tokens)
  1060. self.gguf_writer.add_token_types(toktypes)
  1061. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1062. special_vocab.merges = merges
  1063. # only add special tokens when they were not already loaded from config.json
  1064. if len(special_vocab.special_token_ids) == 0:
  1065. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1066. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1067. # this one is usually not in config.json anyway
  1068. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1069. special_vocab.add_to_gguf(self.gguf_writer)
  1070. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1071. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1072. self.gguf_writer.add_tokenizer_model("llama")
  1073. self.gguf_writer.add_tokenizer_pre("default")
  1074. self.gguf_writer.add_token_list(tokens)
  1075. self.gguf_writer.add_token_scores(scores)
  1076. self.gguf_writer.add_token_types(toktypes)
  1077. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1078. special_vocab.add_to_gguf(self.gguf_writer)
  1079. def _create_vocab_sentencepiece(self):
  1080. from sentencepiece import SentencePieceProcessor
  1081. tokenizer_path = self.dir_model / 'tokenizer.model'
  1082. if not tokenizer_path.is_file():
  1083. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1084. tokenizer = SentencePieceProcessor()
  1085. tokenizer.LoadFromFile(str(tokenizer_path))
  1086. vocab_size = self.find_hparam([
  1087. "vocab_size_per_layer_input", # gemma3n
  1088. "vocab_size",
  1089. ], optional=True) or tokenizer.vocab_size()
  1090. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1091. scores: list[float] = [-10000.0] * vocab_size
  1092. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1093. for token_id in range(tokenizer.vocab_size()):
  1094. if token_id >= vocab_size:
  1095. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1096. break
  1097. piece = tokenizer.IdToPiece(token_id)
  1098. text = piece.encode("utf-8")
  1099. score = tokenizer.GetScore(token_id)
  1100. toktype = SentencePieceTokenTypes.NORMAL
  1101. if tokenizer.IsUnknown(token_id):
  1102. toktype = SentencePieceTokenTypes.UNKNOWN
  1103. elif tokenizer.IsControl(token_id):
  1104. toktype = SentencePieceTokenTypes.CONTROL
  1105. elif tokenizer.IsUnused(token_id):
  1106. toktype = SentencePieceTokenTypes.UNUSED
  1107. elif tokenizer.IsByte(token_id):
  1108. toktype = SentencePieceTokenTypes.BYTE
  1109. tokens[token_id] = text
  1110. scores[token_id] = score
  1111. toktypes[token_id] = toktype
  1112. added_tokens_file = self.dir_model / 'added_tokens.json'
  1113. if added_tokens_file.is_file():
  1114. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1115. added_tokens_json = json.load(f)
  1116. for key in added_tokens_json:
  1117. token_id = added_tokens_json[key]
  1118. if token_id >= vocab_size:
  1119. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1120. continue
  1121. tokens[token_id] = key.encode("utf-8")
  1122. scores[token_id] = -1000.0
  1123. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1124. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1125. if tokenizer_config_file.is_file():
  1126. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1127. tokenizer_config_json = json.load(f)
  1128. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1129. for token_id, token_data in added_tokens_decoder.items():
  1130. token_id = int(token_id)
  1131. token: str = token_data["content"]
  1132. if token_id >= vocab_size:
  1133. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1134. continue
  1135. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1136. if tokens[token_id] != token.encode("utf-8"):
  1137. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1138. if token_data.get("special") or self.does_token_look_special(token):
  1139. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1140. else:
  1141. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1142. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1143. scores[token_id] = -1000.0
  1144. tokens[token_id] = token.encode("utf-8")
  1145. if vocab_size > len(tokens):
  1146. pad_count = vocab_size - len(tokens)
  1147. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1148. for i in range(1, pad_count + 1):
  1149. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1150. scores.append(-1000.0)
  1151. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1152. return tokens, scores, toktypes
  1153. def _set_vocab_llama_hf(self):
  1154. vocab = gguf.LlamaHfVocab(self.dir_model)
  1155. tokens = []
  1156. scores = []
  1157. toktypes = []
  1158. for text, score, toktype in vocab.all_tokens():
  1159. tokens.append(text)
  1160. scores.append(score)
  1161. toktypes.append(toktype)
  1162. assert len(tokens) == vocab.vocab_size
  1163. self.gguf_writer.add_tokenizer_model("llama")
  1164. self.gguf_writer.add_tokenizer_pre("default")
  1165. self.gguf_writer.add_token_list(tokens)
  1166. self.gguf_writer.add_token_scores(scores)
  1167. self.gguf_writer.add_token_types(toktypes)
  1168. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1169. special_vocab.add_to_gguf(self.gguf_writer)
  1170. def _set_vocab_rwkv_world(self):
  1171. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1172. vocab_size = self.hparams.get("vocab_size", 65536)
  1173. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1174. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1175. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1176. lines = f.readlines()
  1177. for line in lines:
  1178. parts = line.split(' ')
  1179. assert len(parts) >= 3
  1180. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1181. token = token.encode("utf-8") if isinstance(token, str) else token
  1182. assert isinstance(token, bytes)
  1183. assert len(token) == token_len
  1184. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1185. tokens.append(token_text.encode("utf-8"))
  1186. toktypes.append(gguf.TokenType.NORMAL)
  1187. remainder = vocab_size - len(tokens)
  1188. assert remainder >= 0
  1189. for i in range(len(tokens), vocab_size):
  1190. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1191. toktypes.append(gguf.TokenType.UNUSED)
  1192. self.gguf_writer.add_tokenizer_model("rwkv")
  1193. self.gguf_writer.add_token_list(tokens)
  1194. self.gguf_writer.add_token_types(toktypes)
  1195. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1196. if special_vocab.chat_template is None:
  1197. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1198. if template_path.is_file():
  1199. with open(template_path, "r", encoding="utf-8") as f:
  1200. template = f.read()
  1201. else:
  1202. template = "rwkv-world"
  1203. special_vocab.chat_template = template
  1204. # hack: Add '\n\n' as the EOT token to make it chat normally
  1205. special_vocab._set_special_token("eot", 261)
  1206. # hack: Override these as they have already been set (incorrectly)
  1207. special_vocab.special_token_ids["bos"] = 0
  1208. special_vocab.special_token_ids["eos"] = 0
  1209. special_vocab.add_to_gguf(self.gguf_writer)
  1210. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1211. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1212. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1213. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1214. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1215. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1216. assert field # tokenizer model
  1217. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1218. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1219. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1220. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1221. assert field # token list
  1222. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1223. if model_name == "llama-spm":
  1224. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1225. assert field # token scores
  1226. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1227. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1228. assert field # token types
  1229. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1230. if model_name != "llama-spm":
  1231. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1232. assert field # token merges
  1233. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1234. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1235. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1236. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1237. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1238. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1239. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1240. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1241. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1242. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1243. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1244. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1245. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1246. def _try_set_pooling_type(self) -> None:
  1247. # get pooling path
  1248. pooling_path = None
  1249. module_path = self.dir_model / "modules.json"
  1250. if module_path.is_file():
  1251. with open(module_path, encoding="utf-8") as f:
  1252. modules = json.load(f)
  1253. for mod in modules:
  1254. if mod["type"] == "sentence_transformers.models.Pooling":
  1255. pooling_path = mod["path"]
  1256. break
  1257. # get pooling type
  1258. if pooling_path is not None:
  1259. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1260. pooling = json.load(f)
  1261. if pooling["pooling_mode_mean_tokens"]:
  1262. pooling_type = gguf.PoolingType.MEAN
  1263. elif pooling["pooling_mode_cls_token"]:
  1264. pooling_type = gguf.PoolingType.CLS
  1265. elif pooling["pooling_mode_lasttoken"]:
  1266. pooling_type = gguf.PoolingType.LAST
  1267. else:
  1268. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1269. self.gguf_writer.add_pooling_type(pooling_type)
  1270. def _set_vocab_interns1(self):
  1271. tokens: list[str] = []
  1272. toktypes: list[int] = []
  1273. from transformers import AutoTokenizer
  1274. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1275. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1276. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1277. assert max(vocab.values()) < vocab_size
  1278. tokpre = self.get_vocab_base_pre(tokenizer)
  1279. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1280. added_vocab = tokenizer.get_added_vocab()
  1281. added_tokens_decoder = tokenizer.added_tokens_decoder
  1282. for i in range(vocab_size):
  1283. if i not in reverse_vocab:
  1284. tokens.append(f"[PAD{i}]")
  1285. toktypes.append(gguf.TokenType.UNUSED)
  1286. else:
  1287. token: str = reverse_vocab[i]
  1288. if token in added_vocab:
  1289. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1290. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1291. if not added_tokens_decoder[i].normalized:
  1292. previous_token = token
  1293. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1294. if previous_token != token:
  1295. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1296. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1297. toktypes.append(gguf.TokenType.CONTROL)
  1298. else:
  1299. toktypes.append(gguf.TokenType.USER_DEFINED)
  1300. else:
  1301. toktypes.append(gguf.TokenType.NORMAL)
  1302. tokens.append(token)
  1303. self.gguf_writer.add_tokenizer_model("gpt2")
  1304. self.gguf_writer.add_tokenizer_pre(tokpre)
  1305. self.gguf_writer.add_token_list(tokens)
  1306. self.gguf_writer.add_token_types(toktypes)
  1307. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1308. special_vocab._set_special_token("bos", 151643)
  1309. special_vocab.add_to_gguf(self.gguf_writer)
  1310. def _set_vocab_mistral(self):
  1311. if not _mistral_common_installed:
  1312. raise ImportError(_mistral_import_error_msg)
  1313. vocab = MistralVocab(self.dir_model)
  1314. logger.info(
  1315. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1316. )
  1317. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1318. tokens = []
  1319. scores = []
  1320. toktypes = []
  1321. for text, score, toktype in vocab.all_tokens():
  1322. tokens.append(text)
  1323. scores.append(score)
  1324. toktypes.append(toktype)
  1325. assert len(tokens) == vocab.vocab_size, (
  1326. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1327. )
  1328. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1329. self.gguf_writer.add_tokenizer_pre("tekken")
  1330. self.gguf_writer.add_token_merges(
  1331. vocab.extract_vocab_merges_from_model()
  1332. )
  1333. logger.info(
  1334. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1335. )
  1336. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1337. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1338. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1339. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1340. self.gguf_writer.add_token_list(tokens)
  1341. self.gguf_writer.add_token_scores(scores)
  1342. self.gguf_writer.add_token_types(toktypes)
  1343. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1344. self.gguf_writer.add_add_bos_token(True)
  1345. self.gguf_writer.add_add_eos_token(False)
  1346. local_template_file_path = self.dir_model / "chat_template.jinja"
  1347. if self.is_mistral_format and local_template_file_path.is_file():
  1348. # Ministral-3 and other new Mistral models come with chat templates.
  1349. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1350. logger.info("Using an existing Mistral local chat template.")
  1351. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1352. template = f.read()
  1353. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1354. template_dir = Path(__file__).parent / "models/templates/"
  1355. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1356. if self.is_mistral_format:
  1357. logger.info(
  1358. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1359. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1360. )
  1361. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1362. else:
  1363. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1364. template = None
  1365. if template is not None:
  1366. self.gguf_writer.add_chat_template(template)
  1367. class MmprojModel(ModelBase):
  1368. model_type = ModelType.MMPROJ
  1369. model_arch = gguf.MODEL_ARCH.MMPROJ
  1370. preprocessor_config: dict[str, Any]
  1371. global_config: dict[str, Any]
  1372. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1373. has_vision_encoder: bool = True # by default
  1374. has_audio_encoder: bool = False
  1375. # for models having multiple encoders, we need to separate their hparams
  1376. hparams_vision: dict[str, Any] | None = None
  1377. hparams_audio: dict[str, Any] | None = None
  1378. def __init__(self, *args, **kwargs):
  1379. super().__init__(*args, **kwargs)
  1380. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1381. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1382. # get n_embd of the text model
  1383. if not self.is_mistral_format:
  1384. if "text_config" not in self.hparams:
  1385. self.hparams["text_config"] = {}
  1386. if "audio_config" not in self.hparams:
  1387. self.hparams["audio_config"] = {}
  1388. text_config = {**self.hparams, **self.hparams["text_config"]}
  1389. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1390. else:
  1391. text_config = {
  1392. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1393. }
  1394. self.n_embd_text = text_config.get("hidden_dim", 0)
  1395. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1396. # move vision config to the top level, while preserving the original hparams in global_config
  1397. import copy
  1398. self.global_config = copy.deepcopy(self.hparams)
  1399. self.hparams_vision = self.get_vision_config()
  1400. self.hparams_audio = self.get_audio_config()
  1401. if self.hparams_vision is None and self.hparams_audio is None:
  1402. raise ValueError("vision_config / audio_config not found in hparams")
  1403. # for compat with vision-only models
  1404. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1405. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1406. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1407. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1408. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1409. # load preprocessor config
  1410. self.preprocessor_config = {}
  1411. # prefer preprocessor_config.json if possible
  1412. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1413. if preprocessor_config_path.is_file():
  1414. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1415. self.preprocessor_config = json.load(f)
  1416. # prefer processor_config.json if possible
  1417. processor_config_path = self.dir_model / "processor_config.json"
  1418. if processor_config_path.is_file():
  1419. with open(processor_config_path, "r", encoding="utf-8") as f:
  1420. cfg = json.load(f)
  1421. # move image_processor to root level for compat
  1422. if "image_processor" in cfg:
  1423. cfg = {
  1424. **cfg,
  1425. **cfg["image_processor"],
  1426. }
  1427. # merge configs
  1428. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1429. def get_vision_config(self) -> dict[str, Any] | None:
  1430. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1431. return self.global_config.get(config_name)
  1432. def get_audio_config(self) -> dict[str, Any] | None:
  1433. return self.global_config.get("audio_config")
  1434. def set_type(self):
  1435. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1436. def prepare_metadata(self, vocab_only: bool):
  1437. super().prepare_metadata(vocab_only=vocab_only)
  1438. output_type: str = self.ftype.name.partition("_")[2]
  1439. if self.fname_out.is_dir():
  1440. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1441. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1442. else:
  1443. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1444. def set_gguf_parameters(self):
  1445. self.gguf_writer.add_file_type(self.ftype)
  1446. if self.has_vision_encoder:
  1447. self.gguf_writer.add_clip_has_vision_encoder(True)
  1448. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1449. # vision config
  1450. self.image_size = self.find_vparam(["image_size"])
  1451. self.gguf_writer.add_vision_image_size(self.image_size)
  1452. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1453. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1454. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1455. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1456. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1457. # preprocessor config
  1458. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1459. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1460. self.gguf_writer.add_vision_image_mean(image_mean)
  1461. self.gguf_writer.add_vision_image_std(image_std)
  1462. if self.has_audio_encoder:
  1463. self.gguf_writer.add_clip_has_audio_encoder(True)
  1464. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1465. # audio config
  1466. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1467. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1468. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1469. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1470. if not self.has_vision_encoder and not self.has_audio_encoder:
  1471. raise ValueError("MmprojModel must have either vision or audio encoder")
  1472. def write_vocab(self):
  1473. raise ValueError("MmprojModel does not support vocab writing")
  1474. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1475. assert self.hparams_vision is not None
  1476. return self._find_param(self.hparams_vision, keys, optional)
  1477. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1478. assert self.hparams_audio is not None
  1479. return self._find_param(self.hparams_audio, keys, optional)
  1480. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1481. key = next((k for k in keys if k in obj), None)
  1482. if key is not None:
  1483. return obj[key]
  1484. if optional:
  1485. return None
  1486. raise KeyError(f"could not find any of: {keys}")
  1487. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1488. del bid, name, n_dims # unused
  1489. if ".patch_embd.weight" in new_name:
  1490. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1491. return False
  1492. @ModelBase.register("GPTNeoXForCausalLM")
  1493. class GPTNeoXModel(TextModel):
  1494. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1495. def set_gguf_parameters(self):
  1496. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1497. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1498. self.gguf_writer.add_block_count(self.block_count)
  1499. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1500. self.gguf_writer.add_rope_dimension_count(
  1501. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1502. )
  1503. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1504. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1505. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1507. del bid # unused
  1508. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1509. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1510. tensors: list[tuple[str, Tensor]] = []
  1511. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1512. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1513. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1514. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1515. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1516. data_torch = torch.cat(
  1517. (
  1518. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1519. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1520. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1521. ),
  1522. dim=0,
  1523. )
  1524. logger.info("re-format attention.linear_qkv.weight")
  1525. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1526. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1527. data_torch = torch.cat(
  1528. (
  1529. qkv_bias[:, 0, :].reshape((n_embed,)),
  1530. qkv_bias[:, 1, :].reshape((n_embed,)),
  1531. qkv_bias[:, 2, :].reshape((n_embed,)),
  1532. ),
  1533. dim=0,
  1534. )
  1535. logger.info("re-format attention.linear_qkv.bias")
  1536. tensors.append((self.map_tensor_name(name), data_torch))
  1537. return tensors
  1538. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1539. class BloomModel(TextModel):
  1540. model_arch = gguf.MODEL_ARCH.BLOOM
  1541. def set_gguf_parameters(self):
  1542. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1543. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1544. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1545. self.gguf_writer.add_embedding_length(n_embed)
  1546. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1547. self.gguf_writer.add_block_count(self.block_count)
  1548. self.gguf_writer.add_head_count(n_head)
  1549. self.gguf_writer.add_head_count_kv(n_head)
  1550. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1551. self.gguf_writer.add_file_type(self.ftype)
  1552. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1553. del bid # unused
  1554. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1555. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1556. name = re.sub(r'transformer\.', '', name)
  1557. tensors: list[tuple[str, Tensor]] = []
  1558. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1559. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1560. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1561. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1562. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1563. data_torch = torch.cat(
  1564. (
  1565. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1566. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1567. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1568. ),
  1569. dim=0,
  1570. )
  1571. logger.info("re-format attention.linear_qkv.weight")
  1572. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1573. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1574. data_torch = torch.cat(
  1575. (
  1576. qkv_bias[:, 0, :].reshape((n_embed,)),
  1577. qkv_bias[:, 1, :].reshape((n_embed,)),
  1578. qkv_bias[:, 2, :].reshape((n_embed,)),
  1579. ),
  1580. dim=0,
  1581. )
  1582. logger.info("re-format attention.linear_qkv.bias")
  1583. tensors.append((self.map_tensor_name(name), data_torch))
  1584. return tensors
  1585. @ModelBase.register("MPTForCausalLM")
  1586. class MPTModel(TextModel):
  1587. model_arch = gguf.MODEL_ARCH.MPT
  1588. def set_vocab(self):
  1589. try:
  1590. self._set_vocab_gpt2()
  1591. except Exception:
  1592. # Fallback for SEA-LION model
  1593. self._set_vocab_sentencepiece()
  1594. self.gguf_writer.add_add_bos_token(False)
  1595. self.gguf_writer.add_pad_token_id(3)
  1596. self.gguf_writer.add_eos_token_id(1)
  1597. self.gguf_writer.add_unk_token_id(0)
  1598. def set_gguf_parameters(self):
  1599. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1600. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1601. self.gguf_writer.add_block_count(self.block_count)
  1602. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1603. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1604. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1605. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1606. self.gguf_writer.add_layer_norm_eps(1e-5)
  1607. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1608. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1609. if self.hparams["attn_config"]["alibi"]:
  1610. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1611. else:
  1612. self.gguf_writer.add_max_alibi_bias(0.0)
  1613. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1614. del bid # unused
  1615. if "scales" in name:
  1616. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1617. new_name = new_name.replace("scales", "act.scales")
  1618. else:
  1619. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1620. return [(new_name, data_torch)]
  1621. @ModelBase.register("OrionForCausalLM")
  1622. class OrionModel(TextModel):
  1623. model_arch = gguf.MODEL_ARCH.ORION
  1624. def set_vocab(self):
  1625. self._set_vocab_sentencepiece()
  1626. def set_gguf_parameters(self):
  1627. head_count = self.hparams["num_attention_heads"]
  1628. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1629. ctx_length = 0
  1630. if "max_sequence_length" in self.hparams:
  1631. ctx_length = self.hparams["max_sequence_length"]
  1632. elif "max_position_embeddings" in self.hparams:
  1633. ctx_length = self.hparams["max_position_embeddings"]
  1634. elif "model_max_length" in self.hparams:
  1635. ctx_length = self.hparams["model_max_length"]
  1636. else:
  1637. raise ValueError("gguf: can not find ctx length parameter.")
  1638. self.gguf_writer.add_file_type(self.ftype)
  1639. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1640. self.gguf_writer.add_context_length(ctx_length)
  1641. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1642. self.gguf_writer.add_block_count(self.block_count)
  1643. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1644. self.gguf_writer.add_head_count(head_count)
  1645. self.gguf_writer.add_head_count_kv(head_count_kv)
  1646. # note: config provides rms norm but it is actually layer norm
  1647. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1648. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1649. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1650. class BaichuanModel(TextModel):
  1651. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1652. def set_vocab(self):
  1653. self._set_vocab_sentencepiece()
  1654. def set_gguf_parameters(self):
  1655. head_count = self.hparams["num_attention_heads"]
  1656. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1657. ctx_length = 0
  1658. if "max_sequence_length" in self.hparams:
  1659. ctx_length = self.hparams["max_sequence_length"]
  1660. elif "max_position_embeddings" in self.hparams:
  1661. ctx_length = self.hparams["max_position_embeddings"]
  1662. elif "model_max_length" in self.hparams:
  1663. ctx_length = self.hparams["model_max_length"]
  1664. else:
  1665. raise ValueError("gguf: can not find ctx length parameter.")
  1666. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1667. self.gguf_writer.add_context_length(ctx_length)
  1668. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1669. self.gguf_writer.add_block_count(self.block_count)
  1670. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1671. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1672. self.gguf_writer.add_head_count(head_count)
  1673. self.gguf_writer.add_head_count_kv(head_count_kv)
  1674. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1675. self.gguf_writer.add_file_type(self.ftype)
  1676. rope_scaling = self.hparams.get("rope_scaling") or {}
  1677. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1678. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1679. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1681. head_count = self.hparams["num_attention_heads"]
  1682. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1683. tensors: list[tuple[str, Tensor]] = []
  1684. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1685. logger.info(f"Unpacking and permuting layer {bid}")
  1686. tensors = [
  1687. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1688. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1689. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1690. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1691. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1692. self._reverse_hf_part(data_torch, 2)),
  1693. ]
  1694. else:
  1695. tensors = [(self.map_tensor_name(name), data_torch)]
  1696. return tensors
  1697. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1698. if n_kv_head is not None and n_head != n_kv_head:
  1699. n_head //= n_kv_head
  1700. return (
  1701. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1702. .swapaxes(1, 2)
  1703. .reshape(weights.shape)
  1704. )
  1705. def _reverse_hf_permute_part(
  1706. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1707. ) -> Tensor:
  1708. r = weights.shape[0] // 3
  1709. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1710. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1711. r = weights.shape[0] // 3
  1712. return weights[r * n_part:r * n_part + r, ...]
  1713. @ModelBase.register("XverseForCausalLM")
  1714. class XverseModel(TextModel):
  1715. model_arch = gguf.MODEL_ARCH.XVERSE
  1716. def set_vocab(self):
  1717. assert (self.dir_model / "tokenizer.json").is_file()
  1718. dir_model = self.dir_model
  1719. hparams = self.hparams
  1720. tokens: list[bytes] = []
  1721. toktypes: list[int] = []
  1722. from transformers import AutoTokenizer
  1723. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1724. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1725. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1726. # because vocab_size is the count of items, and indexes start at 0.
  1727. max_vocab_index = max(tokenizer.get_vocab().values())
  1728. if max_vocab_index >= vocab_size:
  1729. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1730. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1731. added_vocab = tokenizer.get_added_vocab()
  1732. for token_id in range(vocab_size):
  1733. token_text = reverse_vocab[token_id].encode('utf-8')
  1734. # replace "\x00" to string with length > 0
  1735. if token_text == b"\x00":
  1736. toktype = gguf.TokenType.BYTE # special
  1737. token_text = f"<{token_text}>".encode('utf-8')
  1738. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1739. toktype = gguf.TokenType.BYTE # special
  1740. elif reverse_vocab[token_id] in added_vocab:
  1741. if tokenizer.added_tokens_decoder[token_id].special:
  1742. toktype = gguf.TokenType.CONTROL
  1743. else:
  1744. toktype = gguf.TokenType.USER_DEFINED
  1745. else:
  1746. toktype = gguf.TokenType.NORMAL
  1747. tokens.append(token_text)
  1748. toktypes.append(toktype)
  1749. self.gguf_writer.add_tokenizer_model("llama")
  1750. self.gguf_writer.add_tokenizer_pre("default")
  1751. self.gguf_writer.add_token_list(tokens)
  1752. self.gguf_writer.add_token_types(toktypes)
  1753. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1754. special_vocab.add_to_gguf(self.gguf_writer)
  1755. def set_gguf_parameters(self):
  1756. head_count = self.hparams["num_attention_heads"]
  1757. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1758. ctx_length = 0
  1759. if "max_sequence_length" in self.hparams:
  1760. ctx_length = self.hparams["max_sequence_length"]
  1761. elif "max_position_embeddings" in self.hparams:
  1762. ctx_length = self.hparams["max_position_embeddings"]
  1763. elif "model_max_length" in self.hparams:
  1764. ctx_length = self.hparams["model_max_length"]
  1765. else:
  1766. raise ValueError("gguf: can not find ctx length parameter.")
  1767. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1768. self.gguf_writer.add_context_length(ctx_length)
  1769. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1770. self.gguf_writer.add_block_count(self.block_count)
  1771. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1772. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1773. self.gguf_writer.add_head_count(head_count)
  1774. self.gguf_writer.add_head_count_kv(head_count_kv)
  1775. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1776. self.gguf_writer.add_file_type(self.ftype)
  1777. rope_scaling = self.hparams.get("rope_scaling") or {}
  1778. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1779. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1780. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1781. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1782. del bid # unused
  1783. head_count = self.hparams["num_attention_heads"]
  1784. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1785. # HF models permute some of the tensors, so we need to undo that
  1786. if name.endswith("q_proj.weight"):
  1787. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1788. if name.endswith("k_proj.weight"):
  1789. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1790. return [(self.map_tensor_name(name), data_torch)]
  1791. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1792. if n_kv_head is not None and n_head != n_kv_head:
  1793. n_head //= n_kv_head
  1794. return (
  1795. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1796. .swapaxes(1, 2)
  1797. .reshape(weights.shape)
  1798. )
  1799. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1800. class FalconModel(TextModel):
  1801. model_arch = gguf.MODEL_ARCH.FALCON
  1802. def set_gguf_parameters(self):
  1803. n_head = self.hparams.get("num_attention_heads")
  1804. if n_head is None:
  1805. n_head = self.hparams["n_head"] # old name
  1806. n_head_kv = self.hparams.get("num_kv_heads")
  1807. if n_head_kv is None:
  1808. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1809. self.gguf_writer.add_context_length(2048) # not in config.json
  1810. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1811. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1812. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1813. self.gguf_writer.add_block_count(self.block_count)
  1814. self.gguf_writer.add_head_count(n_head)
  1815. self.gguf_writer.add_head_count_kv(n_head_kv)
  1816. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1817. self.gguf_writer.add_file_type(self.ftype)
  1818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1819. del bid # unused
  1820. # QKV tensor transform
  1821. # The original query_key_value tensor contains n_head_kv "kv groups",
  1822. # each consisting of n_head/n_head_kv query weights followed by one key
  1823. # and one value weight (shared by all query heads in the kv group).
  1824. # This layout makes it a big pain to work with in GGML.
  1825. # So we rearrange them here,, so that we have n_head query weights
  1826. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1827. # in contiguous fashion.
  1828. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1829. if "query_key_value" in name:
  1830. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1831. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1832. head_dim = self.hparams["hidden_size"] // n_head
  1833. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1834. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1835. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1836. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1837. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1838. return [(self.map_tensor_name(name), data_torch)]
  1839. @ModelBase.register("GPTBigCodeForCausalLM")
  1840. class StarCoderModel(TextModel):
  1841. model_arch = gguf.MODEL_ARCH.STARCODER
  1842. def set_gguf_parameters(self):
  1843. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1844. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1845. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1846. self.gguf_writer.add_block_count(self.block_count)
  1847. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1848. self.gguf_writer.add_head_count_kv(1)
  1849. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1850. self.gguf_writer.add_file_type(self.ftype)
  1851. @ModelBase.register("GPTRefactForCausalLM")
  1852. class RefactModel(TextModel):
  1853. model_arch = gguf.MODEL_ARCH.REFACT
  1854. def set_vocab(self):
  1855. super().set_vocab()
  1856. # TODO: how to determine special FIM tokens automatically?
  1857. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1858. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1859. special_vocab._set_special_token("prefix", 1)
  1860. special_vocab._set_special_token("suffix", 3)
  1861. special_vocab._set_special_token("middle", 2)
  1862. special_vocab.chat_template = None # do not add it twice
  1863. special_vocab.add_to_gguf(self.gguf_writer)
  1864. def set_gguf_parameters(self):
  1865. hidden_dim = self.hparams["n_embd"]
  1866. inner_dim = 4 * hidden_dim
  1867. hidden_dim = int(2 * inner_dim / 3)
  1868. multiple_of = 256
  1869. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1870. # refact uses Alibi. So this is from config.json which might be used by training.
  1871. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1872. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1873. self.gguf_writer.add_feed_forward_length(ff_dim)
  1874. self.gguf_writer.add_block_count(self.block_count)
  1875. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1876. self.gguf_writer.add_head_count_kv(1)
  1877. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1878. self.gguf_writer.add_file_type(self.ftype)
  1879. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1880. hidden_dim = self.hparams["n_embd"]
  1881. inner_dim = 4 * hidden_dim
  1882. hidden_dim = int(2 * inner_dim / 3)
  1883. multiple_of = 256
  1884. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1885. n_head = self.hparams["n_head"]
  1886. n_head_kv = 1
  1887. head_dim = self.hparams["n_embd"] // n_head
  1888. tensors: list[tuple[str, Tensor]] = []
  1889. if bid is not None:
  1890. if name == f"transformer.h.{bid}.attn.kv.weight":
  1891. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1892. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1893. elif name == f"transformer.h.{bid}.attn.q.weight":
  1894. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1895. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1896. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1897. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1898. if len(tensors) == 0:
  1899. tensors.append((self.map_tensor_name(name), data_torch))
  1900. return tensors
  1901. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1902. class StableLMModel(TextModel):
  1903. model_arch = gguf.MODEL_ARCH.STABLELM
  1904. def set_vocab(self):
  1905. if (self.dir_model / "tokenizer.json").is_file():
  1906. self._set_vocab_gpt2()
  1907. else:
  1908. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1909. self._set_vocab_qwen()
  1910. def set_gguf_parameters(self):
  1911. hparams = self.hparams
  1912. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1913. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1914. self.gguf_writer.add_block_count(self.block_count)
  1915. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1916. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1917. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1918. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1919. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1920. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1921. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1922. self.gguf_writer.add_file_type(self.ftype)
  1923. _q_norms: list[dict[str, Tensor]] | None = None
  1924. _k_norms: list[dict[str, Tensor]] | None = None
  1925. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1926. n_head = self.hparams["num_attention_heads"]
  1927. n_kv_head = self.hparams["num_key_value_heads"]
  1928. if name.find("q_layernorm.norms") != -1:
  1929. assert bid is not None
  1930. if self._q_norms is None:
  1931. self._q_norms = [{} for _ in range(self.block_count)]
  1932. self._q_norms[bid][name] = data_torch
  1933. if len(self._q_norms[bid]) >= n_head:
  1934. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1935. else:
  1936. return []
  1937. if name.find("k_layernorm.norms") != -1:
  1938. assert bid is not None
  1939. if self._k_norms is None:
  1940. self._k_norms = [{} for _ in range(self.block_count)]
  1941. self._k_norms[bid][name] = data_torch
  1942. if len(self._k_norms[bid]) >= n_kv_head:
  1943. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1944. else:
  1945. return []
  1946. return [(self.map_tensor_name(name), data_torch)]
  1947. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1948. datas: list[Tensor] = []
  1949. # extract the norms in order
  1950. for xid in range(n_head):
  1951. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1952. datas.append(norms[ename])
  1953. del norms[ename]
  1954. data_torch = torch.stack(datas, dim=0)
  1955. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1956. new_name = self.map_tensor_name(merged_name)
  1957. return [(new_name, data_torch)]
  1958. def prepare_tensors(self):
  1959. super().prepare_tensors()
  1960. if self._q_norms is not None or self._k_norms is not None:
  1961. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1962. norms = (
  1963. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1964. ) + (
  1965. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1966. )
  1967. if len(norms) > 0:
  1968. raise ValueError(f"Unprocessed norms: {norms}")
  1969. @ModelBase.register(
  1970. "LLaMAForCausalLM",
  1971. "LlamaForCausalLM",
  1972. "MistralForCausalLM",
  1973. "MixtralForCausalLM",
  1974. "VLlama3ForCausalLM",
  1975. "LlavaForConditionalGeneration",
  1976. "VoxtralForConditionalGeneration",
  1977. "LlamaModel")
  1978. class LlamaModel(TextModel):
  1979. model_arch = gguf.MODEL_ARCH.LLAMA
  1980. undo_permute = True
  1981. def __init__(self, *args, **kwargs):
  1982. super().__init__(*args, **kwargs)
  1983. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1984. if self.hf_arch == "VLlama3ForCausalLM":
  1985. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1986. def set_vocab(self):
  1987. if self.is_mistral_format:
  1988. return self._set_vocab_mistral()
  1989. path_tekken_json = self.dir_model / "tekken.json"
  1990. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1991. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1992. self._set_vocab_mistral()
  1993. try:
  1994. self._set_vocab_sentencepiece()
  1995. except FileNotFoundError:
  1996. try:
  1997. self._set_vocab_llama_hf()
  1998. except (FileNotFoundError, TypeError):
  1999. # Llama 3
  2000. self._set_vocab_gpt2()
  2001. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2002. if self.hparams.get("vocab_size", 32000) == 32016:
  2003. special_vocab = gguf.SpecialVocab(
  2004. self.dir_model, load_merges=False,
  2005. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2006. )
  2007. special_vocab._set_special_token("prefix", 32007)
  2008. special_vocab._set_special_token("suffix", 32008)
  2009. special_vocab._set_special_token("middle", 32009)
  2010. special_vocab._set_special_token("eot", 32010)
  2011. special_vocab.add_to_gguf(self.gguf_writer)
  2012. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2013. if tokenizer_config_file.is_file():
  2014. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2015. tokenizer_config_json = json.load(f)
  2016. if "add_prefix_space" in tokenizer_config_json:
  2017. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2018. # Apply to granite small models only
  2019. if self.hparams.get("vocab_size", 32000) == 49152:
  2020. self.gguf_writer.add_add_bos_token(False)
  2021. def set_gguf_parameters(self):
  2022. super().set_gguf_parameters()
  2023. hparams = self.hparams
  2024. if not self.is_mistral_format:
  2025. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2026. if (rope_dim := hparams.get("head_dim")) is None:
  2027. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2028. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2029. rope_scaling = self.hparams.get("rope_scaling") or {}
  2030. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2031. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2032. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2033. @staticmethod
  2034. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2035. if n_head_kv is not None and n_head != n_head_kv:
  2036. n_head = n_head_kv
  2037. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2038. .swapaxes(1, 2)
  2039. .reshape(weights.shape))
  2040. _experts: list[dict[str, Tensor]] | None = None
  2041. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2042. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2043. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2044. vision_prefixes = [
  2045. "vision_encoder.",
  2046. "vision_language_adapter.",
  2047. "patch_merger.",
  2048. "pre_mm_projector_norm",
  2049. ]
  2050. is_multimodal_tensor = "vision_tower" in name \
  2051. or "vision_model" in name \
  2052. or "audio_tower" in name \
  2053. or "model.connector" in name \
  2054. or "multi_modal_projector" in name \
  2055. or any(
  2056. name.startswith(prefix)
  2057. for prefix in vision_prefixes
  2058. )
  2059. if is_multimodal_tensor:
  2060. return [] # skip vision tensors
  2061. elif self.hf_arch == "LlamaModel":
  2062. name = "model." + name
  2063. elif name.startswith("model.text_model"):
  2064. name = name.replace("text_model.", "") # for SmolVLM
  2065. elif name.startswith("language_model."):
  2066. name = name.replace("language_model.", "") # for the rest
  2067. if self.undo_permute:
  2068. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2069. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2070. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2071. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2072. # process the experts separately
  2073. if name.find("block_sparse_moe.experts") != -1:
  2074. n_experts = self.hparams["num_local_experts"]
  2075. assert bid is not None
  2076. if self._experts is None:
  2077. self._experts = [{} for _ in range(self.block_count)]
  2078. self._experts[bid][name] = data_torch
  2079. if len(self._experts[bid]) >= n_experts * 3:
  2080. tensors: list[tuple[str, Tensor]] = []
  2081. # merge the experts into a single 3d tensor
  2082. for wid in ["w1", "w2", "w3"]:
  2083. datas: list[Tensor] = []
  2084. for xid in range(n_experts):
  2085. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2086. datas.append(self._experts[bid][ename])
  2087. del self._experts[bid][ename]
  2088. data_torch = torch.stack(datas, dim=0)
  2089. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2090. new_name = self.map_tensor_name(merged_name)
  2091. tensors.append((new_name, data_torch))
  2092. return tensors
  2093. else:
  2094. return []
  2095. return [(self.map_tensor_name(name), data_torch)]
  2096. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2097. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2098. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2099. base = self.hparams.get("rope_theta", 10000.0)
  2100. if (dim := self.hparams.get("head_dim")) is None:
  2101. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2102. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2103. factor = rope_scaling.get("factor", 8.0)
  2104. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2105. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2106. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2107. low_freq_wavelen = old_context_len / low_freq_factor
  2108. high_freq_wavelen = old_context_len / high_freq_factor
  2109. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2110. rope_factors = []
  2111. for freq in freqs:
  2112. wavelen = 2 * math.pi / freq
  2113. if wavelen < high_freq_wavelen:
  2114. rope_factors.append(1)
  2115. elif wavelen > low_freq_wavelen:
  2116. rope_factors.append(factor)
  2117. else:
  2118. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2119. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2120. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2121. def prepare_tensors(self):
  2122. super().prepare_tensors()
  2123. if self._experts is not None:
  2124. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2125. experts = [k for d in self._experts for k in d.keys()]
  2126. if len(experts) > 0:
  2127. raise ValueError(f"Unprocessed experts: {experts}")
  2128. @ModelBase.register("ArceeForCausalLM")
  2129. class ArceeModel(LlamaModel):
  2130. model_arch = gguf.MODEL_ARCH.ARCEE
  2131. def set_gguf_parameters(self):
  2132. super().set_gguf_parameters()
  2133. self._try_set_pooling_type()
  2134. rope_scaling = self.hparams.get("rope_scaling") or {}
  2135. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2136. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2137. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2138. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2139. @ModelBase.register("AfmoeForCausalLM")
  2140. class AfmoeModel(LlamaModel):
  2141. model_arch = gguf.MODEL_ARCH.AFMOE
  2142. def set_gguf_parameters(self):
  2143. super().set_gguf_parameters()
  2144. # MoE parameters
  2145. if (n_experts := self.hparams.get("num_experts")) is not None:
  2146. self.gguf_writer.add_expert_count(n_experts)
  2147. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2148. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2149. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2150. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2151. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2152. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2153. # Route normalization and scaling
  2154. if (route_norm := self.hparams.get("route_norm")) is not None:
  2155. self.gguf_writer.add_expert_weights_norm(route_norm)
  2156. if (route_scale := self.hparams.get("route_scale")) is not None:
  2157. self.gguf_writer.add_expert_weights_scale(route_scale)
  2158. # Sliding window attention
  2159. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2160. self.gguf_writer.add_sliding_window(sliding_window)
  2161. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2162. # Handle expert weights - they're already merged in the HF format
  2163. # process the experts separately
  2164. if name.find("mlp.experts") != -1:
  2165. n_experts = self.hparams["num_experts"]
  2166. assert bid is not None
  2167. if self._experts is None:
  2168. self._experts = [{} for _ in range(self.block_count)]
  2169. self._experts[bid][name] = data_torch
  2170. if len(self._experts[bid]) >= n_experts * 3:
  2171. tensors: list[tuple[str, Tensor]] = []
  2172. # merge the experts into a single 3d tensor
  2173. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2174. datas: list[Tensor] = []
  2175. for xid in range(n_experts):
  2176. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2177. datas.append(self._experts[bid][ename_to_retrieve])
  2178. del self._experts[bid][ename_to_retrieve]
  2179. data_torch = torch.stack(datas, dim=0)
  2180. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2181. new_name = self.map_tensor_name(merged_name)
  2182. tensors.append((new_name, data_torch))
  2183. return tensors
  2184. else:
  2185. return []
  2186. if name.endswith(".expert_bias"):
  2187. name = name.replace(".expert_bias", ".expert_bias.bias")
  2188. return [(self.map_tensor_name(name), data_torch)]
  2189. @ModelBase.register(
  2190. "LlavaForConditionalGeneration", # pixtral
  2191. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2192. )
  2193. class LlavaVisionModel(MmprojModel):
  2194. img_break_tok_id = -1
  2195. use_break_tok = True
  2196. def __init__(self, *args, **kwargs):
  2197. super().__init__(*args, **kwargs)
  2198. if self.hparams.get("model_type") == "pixtral":
  2199. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2200. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2201. if self.use_break_tok:
  2202. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2203. elif self.is_mistral_format:
  2204. # hparams is already vision config here so norm_eps is only defined in global_config.
  2205. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2206. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2207. if self.use_break_tok:
  2208. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2209. else:
  2210. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2211. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2212. def get_token_id(self, token: str) -> int:
  2213. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2214. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2215. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2216. for id_, token_data in added_tokens_decoder.items():
  2217. if token_data["content"] == token:
  2218. return int(id_)
  2219. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2220. def set_gguf_parameters(self):
  2221. super().set_gguf_parameters()
  2222. hparams = self.hparams
  2223. if hparams.get("model_type") == "pixtral":
  2224. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2225. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2226. # hidden_act
  2227. if hparams["hidden_act"] == "silu":
  2228. self.gguf_writer.add_vision_use_silu(True)
  2229. elif hparams["hidden_act"] == "gelu":
  2230. self.gguf_writer.add_vision_use_gelu(True)
  2231. else:
  2232. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2233. # spatial_merge_size
  2234. if "spatial_merge_size" in self.global_config:
  2235. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2236. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2237. del bid # unused
  2238. n_head = (
  2239. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2240. )
  2241. n_kv_head = n_head
  2242. valid_prefixes = (
  2243. "multi_modal_projector.",
  2244. "vision_tower.",
  2245. "vision_encoder.",
  2246. "vision_language_adapter.",
  2247. "patch_merger.",
  2248. "pre_mm_projector_norm",
  2249. )
  2250. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2251. # process vision tensors
  2252. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2253. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2254. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2255. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2256. return [(self.map_tensor_name(name), data_torch)]
  2257. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2258. if self.img_break_tok_id > 0 and embed_key in name:
  2259. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2260. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2261. img_break_embd = data_torch[self.img_break_tok_id]
  2262. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2263. return [(self.map_tensor_name(name), img_break_embd)]
  2264. return [] # skip other tensors
  2265. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2266. class SmolVLMModel(MmprojModel):
  2267. def __init__(self, *args, **kwargs):
  2268. super().__init__(*args, **kwargs)
  2269. if self.hparams["model_type"] == "smolvlm_vision":
  2270. # fix for SmolVLM2, missing some keys in config.json
  2271. # default values are taken from transformers code
  2272. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2273. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2274. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2275. def set_gguf_parameters(self):
  2276. super().set_gguf_parameters()
  2277. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2278. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2279. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2280. self.gguf_writer.add_vision_use_gelu(True)
  2281. # Add the preprocessor longest edge size
  2282. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2283. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2284. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2285. if ".embeddings." in name:
  2286. return gguf.GGMLQuantizationType.F32
  2287. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2288. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2289. del bid # unused
  2290. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2291. if is_vision_tensor:
  2292. return [(self.map_tensor_name(name), data_torch)]
  2293. return [] # skip other tensors
  2294. @ModelBase.register(
  2295. "Llama4ForConditionalGeneration",
  2296. "Llama4ForCausalLM",
  2297. )
  2298. class Llama4Model(LlamaModel):
  2299. model_arch = gguf.MODEL_ARCH.LLAMA4
  2300. undo_permute = False
  2301. def __init__(self, *args, **kwargs):
  2302. super().__init__(*args, **kwargs)
  2303. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2304. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2305. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2306. def set_vocab(self):
  2307. self._set_vocab_gpt2()
  2308. def set_gguf_parameters(self):
  2309. super().set_gguf_parameters()
  2310. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2311. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2312. if "layer_types" in self.hparams:
  2313. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2314. # all layers are full attention (for MobileLLM), disable swa
  2315. self.gguf_writer.add_sliding_window(0)
  2316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2317. if name.startswith("language_model."):
  2318. name = name.replace("language_model.", "")
  2319. # split the gate_up into gate and up
  2320. if "gate_up_proj" in name:
  2321. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2322. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2323. dim_half = data_torch.shape[-1] // 2
  2324. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2325. return [
  2326. (self.map_tensor_name(name_gate), gate_proj_weight),
  2327. (self.map_tensor_name(name_up), up_proj_weight)
  2328. ]
  2329. if name.endswith("down_proj"):
  2330. name += ".weight"
  2331. data_torch = data_torch.transpose(-1, -2)
  2332. if "multi_modal_projector" in name or "vision_model" in name:
  2333. return []
  2334. return super().modify_tensors(data_torch, name, bid)
  2335. @ModelBase.register("Llama4ForConditionalGeneration")
  2336. class Llama4VisionModel(MmprojModel):
  2337. def set_gguf_parameters(self):
  2338. super().set_gguf_parameters()
  2339. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2340. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2341. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2342. assert self.hparams["hidden_act"] == "gelu"
  2343. self.gguf_writer.add_vision_use_gelu(True)
  2344. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2345. del bid # unused
  2346. if "multi_modal_projector" in name or "vision_model" in name:
  2347. # process vision tensors
  2348. if "positional_embedding_vlm" in name and ".weight" not in name:
  2349. name += ".weight"
  2350. if "multi_modal_projector.linear_1" in name:
  2351. # despite the name with number postfix, this is a single fully connected layer
  2352. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2353. return [(self.map_tensor_name(name), data_torch)]
  2354. return []
  2355. @ModelBase.register("Mistral3ForConditionalGeneration")
  2356. class Mistral3Model(LlamaModel):
  2357. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2358. def __init__(self, *args, **kwargs):
  2359. super().__init__(*args, **kwargs)
  2360. # for compatibility, we use LLAMA arch for older models
  2361. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2362. if self.hparams.get("model_type") != "ministral3":
  2363. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2364. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2365. self.gguf_writer.add_architecture()
  2366. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2367. def set_gguf_parameters(self):
  2368. super().set_gguf_parameters()
  2369. rope_params = self.hparams.get("rope_parameters")
  2370. if self.hparams.get("model_type") == "ministral3":
  2371. assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
  2372. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2373. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2374. self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
  2375. self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
  2376. self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
  2377. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2378. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  2379. self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
  2380. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2382. name = name.replace("language_model.", "")
  2383. if "multi_modal_projector" in name or "vision_tower" in name:
  2384. return []
  2385. return super().modify_tensors(data_torch, name, bid)
  2386. @ModelBase.register("DeciLMForCausalLM")
  2387. class DeciModel(TextModel):
  2388. model_arch = gguf.MODEL_ARCH.DECI
  2389. @staticmethod
  2390. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2391. # DeciLM-specific code
  2392. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2393. return DeciModel._find_multiple(intermediate_size, 256)
  2394. @staticmethod
  2395. def _find_multiple(n: int, k: int) -> int:
  2396. # DeciLM-specific code
  2397. if n % k == 0:
  2398. return n
  2399. return n + k - (n % k)
  2400. def __init__(self, *args, **kwargs):
  2401. super().__init__(*args, **kwargs)
  2402. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2403. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2404. assert self.block_count == len(_block_configs)
  2405. self._num_kv_heads = list()
  2406. self._num_heads = list()
  2407. _ffn_multipliers = list()
  2408. # ***linear attention layer***
  2409. # if n_heads_in_group is None and replace_with_linear is True
  2410. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2411. # ***attention-free layer***
  2412. # if n_heads_in_group is None and replace_with_linear is False
  2413. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2414. # ***normal attention-layer***
  2415. # if n_heads_in_group is not None, then
  2416. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2417. # _num_heads[il] is num_attention_head
  2418. # ***dummy layer*** for nemotron 253B
  2419. # if n_heads_in_group is None and ffn_mult is None
  2420. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2421. for il in range(len(_block_configs)):
  2422. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2423. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2424. self._num_kv_heads.append(0)
  2425. self._num_heads.append(self.hparams["num_attention_heads"])
  2426. else:
  2427. self._num_kv_heads.append(0)
  2428. self._num_heads.append(0)
  2429. else:
  2430. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2431. self._num_heads.append(self.hparams["num_attention_heads"])
  2432. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2433. _ffn_multipliers.append(0.0)
  2434. else:
  2435. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2436. assert self.block_count == len(self._num_kv_heads)
  2437. assert self.block_count == len(self._num_heads)
  2438. assert self.block_count == len(_ffn_multipliers)
  2439. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2440. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2441. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2442. self._ffn_dims: list[int] = [
  2443. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2444. for multiplier in _ffn_multipliers
  2445. ]
  2446. def set_vocab(self):
  2447. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2448. # eos_token from '|eot_id|' to '|end_of_text|'
  2449. if self.hparams.get("vocab_size", 128256) == 128256:
  2450. tokens, toktypes, tokpre = self.get_vocab_base()
  2451. self.gguf_writer.add_tokenizer_model("gpt2")
  2452. self.gguf_writer.add_tokenizer_pre(tokpre)
  2453. self.gguf_writer.add_token_list(tokens)
  2454. self.gguf_writer.add_token_types(toktypes)
  2455. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2456. special_vocab.add_to_gguf(self.gguf_writer)
  2457. else:
  2458. # DeciLM-7B
  2459. self._set_vocab_llama_hf()
  2460. def set_gguf_parameters(self):
  2461. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2462. assert self.block_count == len(self._num_kv_heads)
  2463. assert self.block_count == len(self._num_heads)
  2464. assert self.block_count == len(self._ffn_dims)
  2465. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2466. self.gguf_writer.add_rope_freq_base(rope_theta)
  2467. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2468. self.gguf_writer.add_head_count(self._num_heads)
  2469. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2470. self.gguf_writer.add_block_count(self.block_count)
  2471. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2472. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2473. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2474. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2475. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2476. self.gguf_writer.add_file_type(self.ftype)
  2477. else: # DeciLM-7B
  2478. super().set_gguf_parameters()
  2479. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2480. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2481. assert self.block_count == len(self._num_kv_heads)
  2482. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2483. hparams = self.hparams
  2484. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2485. if (rope_dim := hparams.get("head_dim")) is None:
  2486. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2487. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2488. rope_scaling = self.hparams.get("rope_scaling") or {}
  2489. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2490. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2491. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2492. @staticmethod
  2493. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2494. if n_head_kv is not None and n_head != n_head_kv:
  2495. n_head = n_head_kv
  2496. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2497. .swapaxes(1, 2)
  2498. .reshape(weights.shape))
  2499. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2500. n_head = self.hparams["num_attention_heads"]
  2501. if bid is not None:
  2502. if "num_key_value_heads_per_layer" in self.hparams:
  2503. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2504. elif "block_configs" in self.hparams:
  2505. n_kv_head = self._num_kv_heads[bid]
  2506. n_head = self._num_heads[bid]
  2507. else:
  2508. n_kv_head = self.hparams.get("num_key_value_heads")
  2509. else:
  2510. n_kv_head = self.hparams.get("num_key_value_heads")
  2511. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2512. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2513. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2514. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2515. return [(self.map_tensor_name(name), data_torch)]
  2516. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2517. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2518. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2519. base = self.hparams.get("rope_theta", 10000.0)
  2520. if (dim := self.hparams.get("head_dim")) is None:
  2521. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2522. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2523. factor = rope_scaling.get("factor", 8.0)
  2524. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2525. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2526. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2527. low_freq_wavelen = old_context_len / low_freq_factor
  2528. high_freq_wavelen = old_context_len / high_freq_factor
  2529. assert low_freq_wavelen != high_freq_wavelen
  2530. rope_factors = []
  2531. for freq in freqs:
  2532. wavelen = 2 * math.pi / freq
  2533. if wavelen < high_freq_wavelen:
  2534. rope_factors.append(1)
  2535. elif wavelen > low_freq_wavelen:
  2536. rope_factors.append(factor)
  2537. else:
  2538. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2539. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2540. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2541. def prepare_tensors(self):
  2542. super().prepare_tensors()
  2543. @ModelBase.register("BitnetForCausalLM")
  2544. class BitnetModel(TextModel):
  2545. model_arch = gguf.MODEL_ARCH.BITNET
  2546. def set_vocab(self):
  2547. self._set_vocab_sentencepiece()
  2548. def set_gguf_parameters(self):
  2549. super().set_gguf_parameters()
  2550. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2551. self.gguf_writer.add_rope_scaling_factor(1.0)
  2552. def weight_quant(self, weight: Tensor) -> Tensor:
  2553. dtype = weight.dtype
  2554. weight = weight.float()
  2555. scale = weight.abs().mean().clamp(min=1e-5)
  2556. iscale = 1 / scale
  2557. # TODO: multiply by the scale directly instead of inverting it twice
  2558. # (this is also unnecessarily doubly inverted upstream)
  2559. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2560. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2561. return result.type(dtype)
  2562. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2563. new_name = self.map_tensor_name(name)
  2564. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2565. gguf.MODEL_TENSOR.ATTN_Q,
  2566. gguf.MODEL_TENSOR.ATTN_K,
  2567. gguf.MODEL_TENSOR.ATTN_V,
  2568. gguf.MODEL_TENSOR.ATTN_OUT,
  2569. gguf.MODEL_TENSOR.FFN_UP,
  2570. gguf.MODEL_TENSOR.FFN_DOWN,
  2571. gguf.MODEL_TENSOR.FFN_GATE,
  2572. ]):
  2573. # transform weight into 1/0/-1 (in fp32)
  2574. data_torch = self.weight_quant(data_torch)
  2575. yield (new_name, data_torch)
  2576. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2577. class GrokModel(TextModel):
  2578. model_arch = gguf.MODEL_ARCH.GROK
  2579. def set_vocab(self):
  2580. if (self.dir_model / 'tokenizer.model').is_file():
  2581. self._set_vocab_sentencepiece()
  2582. return
  2583. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2584. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2585. sys.exit(1)
  2586. self._set_vocab_gpt2()
  2587. def __init__(self, *args, **kwargs):
  2588. super().__init__(*args, **kwargs)
  2589. def set_gguf_parameters(self):
  2590. super().set_gguf_parameters()
  2591. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2592. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2593. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2594. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2595. if (rope_dim := self.hparams.get("head_dim")) is None:
  2596. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2597. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2598. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2599. # Treat "original" as "yarn", seems to have been a mistake
  2600. if self.hparams.get("rope_type") in ("yarn", "original"):
  2601. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2602. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2603. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2604. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2605. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2606. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2607. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2608. if temp_len := self.hparams.get("attn_temperature_len"):
  2609. self.gguf_writer.add_attn_temperature_length(temp_len)
  2610. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2611. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2612. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2613. _experts: list[dict[str, list[Tensor]]] | None = None
  2614. _cur_expert = ""
  2615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2616. tensors: list[tuple[str, Tensor]] = []
  2617. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2618. if not is_expert:
  2619. tensors.append((self.map_tensor_name(name), data_torch))
  2620. # process the experts separately
  2621. if is_expert or self._cur_expert:
  2622. n_experts = self.hparams["num_local_experts"]
  2623. assert bid is not None
  2624. if self._experts is None:
  2625. self._experts = [{} for _ in range(self.block_count)]
  2626. # concatenate split tensors
  2627. if name in self._experts[bid]:
  2628. self._cur_expert = name
  2629. self._experts[bid][name].append(data_torch)
  2630. return []
  2631. elif is_expert:
  2632. self._cur_expert = name
  2633. self._experts[bid][name] = [data_torch]
  2634. return []
  2635. else:
  2636. self._cur_expert = ""
  2637. for bid in range(self.block_count):
  2638. if len(self._experts[bid]) >= n_experts * 3:
  2639. # merge the experts into a single 3d tensor
  2640. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2641. datas: list[Tensor] = []
  2642. for xid in range(n_experts):
  2643. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2644. if ename not in self._experts[bid]:
  2645. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2646. tensor_list = self._experts[bid][ename]
  2647. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2648. del self._experts[bid][ename]
  2649. data_torch = torch.stack(datas, dim=0)
  2650. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2651. new_name = self.map_tensor_name(merged_name)
  2652. yield (new_name, data_torch)
  2653. yield from tensors
  2654. @ModelBase.register("DbrxForCausalLM")
  2655. class DbrxModel(TextModel):
  2656. model_arch = gguf.MODEL_ARCH.DBRX
  2657. def set_gguf_parameters(self):
  2658. ffn_config = self.hparams["ffn_config"]
  2659. attn_config = self.hparams["attn_config"]
  2660. self.gguf_writer.add_block_count(self.block_count)
  2661. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2662. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2663. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2664. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2665. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2666. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2667. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2668. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2669. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2670. self.gguf_writer.add_layer_norm_eps(1e-5)
  2671. self.gguf_writer.add_file_type(self.ftype)
  2672. logger.info(f"gguf: file type = {self.ftype}")
  2673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2674. del bid # unused
  2675. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2676. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2677. n_embd = self.hparams["d_model"]
  2678. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2679. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2680. # But llama.cpp moe graph works differently
  2681. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2682. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2683. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2684. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2685. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2686. experts = False
  2687. for exp_tensor_name in exp_tensor_names.keys():
  2688. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2689. experts = True
  2690. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2691. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2692. data_torch = data_torch.permute(*permute_tensor)
  2693. break
  2694. # map tensor names
  2695. # In MoE models the ffn tensors are typically most of the model weights,
  2696. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2697. # Every other model has the weight names ending in .weight,
  2698. # let's assume that is the convention which is not the case for dbrx:
  2699. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2700. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2701. return [(new_name, data_torch)]
  2702. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2703. del name, new_name, bid # unused
  2704. return n_dims > 1
  2705. @ModelBase.register("MiniCPMForCausalLM")
  2706. class MiniCPMModel(TextModel):
  2707. model_arch = gguf.MODEL_ARCH.MINICPM
  2708. def set_gguf_parameters(self):
  2709. super().set_gguf_parameters()
  2710. embedding_scale = float(self.hparams["scale_emb"])
  2711. self.gguf_writer.add_embedding_scale(embedding_scale)
  2712. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2713. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2714. self.gguf_writer.add_residual_scale(residual_scale)
  2715. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2716. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2717. self.gguf_writer.add_logit_scale(logit_scale)
  2718. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2719. rope_scaling = self.hparams.get("rope_scaling") or {}
  2720. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2721. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2722. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2723. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2724. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2725. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2726. if rope_scaling is not None:
  2727. long_factors = rope_scaling.get('long_factor', None)
  2728. short_factors = rope_scaling.get('short_factor', None)
  2729. if long_factors is None or short_factors is None:
  2730. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2731. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2732. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2733. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2734. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2735. def set_vocab(self):
  2736. self._set_vocab_sentencepiece()
  2737. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2738. del bid # unused
  2739. n_head = self.hparams["num_attention_heads"]
  2740. n_kv_head = self.hparams.get("num_key_value_heads")
  2741. # HF models permute some of the tensors, so we need to undo that
  2742. if name.endswith(("q_proj.weight")):
  2743. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2744. if name.endswith(("k_proj.weight")):
  2745. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2746. return [(self.map_tensor_name(name), data_torch)]
  2747. @ModelBase.register("MiniCPM3ForCausalLM")
  2748. class MiniCPM3Model(TextModel):
  2749. model_arch = gguf.MODEL_ARCH.MINICPM3
  2750. def set_gguf_parameters(self):
  2751. hparams = self.hparams
  2752. self.gguf_writer.add_file_type(self.ftype)
  2753. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2754. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2755. self.gguf_writer.add_block_count(self.block_count)
  2756. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2757. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2758. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2759. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2760. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2761. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2762. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2763. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2764. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2765. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2766. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2767. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2768. if rope_scaling is not None:
  2769. rope_dims = self.hparams["qk_rope_head_dim"]
  2770. long_factors = rope_scaling.get('long_factor', None)
  2771. short_factors = rope_scaling.get('short_factor', None)
  2772. if long_factors is None or short_factors is None:
  2773. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2774. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2775. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2776. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2777. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2778. def set_vocab(self):
  2779. self._set_vocab_sentencepiece()
  2780. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2781. if n_kv_head is not None and n_head != n_kv_head:
  2782. n_head //= n_kv_head
  2783. return (
  2784. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2785. .swapaxes(1, 2)
  2786. .reshape(weights.shape)
  2787. )
  2788. @ModelBase.register("QWenLMHeadModel")
  2789. class QwenModel(TextModel):
  2790. model_arch = gguf.MODEL_ARCH.QWEN
  2791. @staticmethod
  2792. def token_bytes_to_string(b):
  2793. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2794. byte_encoder = bytes_to_unicode()
  2795. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2796. @staticmethod
  2797. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2798. parts = [bytes([b]) for b in token]
  2799. while True:
  2800. min_idx = None
  2801. min_rank = None
  2802. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2803. rank = mergeable_ranks.get(pair[0] + pair[1])
  2804. if rank is not None and (min_rank is None or rank < min_rank):
  2805. min_idx = i
  2806. min_rank = rank
  2807. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2808. break
  2809. assert min_idx is not None
  2810. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2811. return parts
  2812. def set_vocab(self):
  2813. self._set_vocab_qwen()
  2814. def set_gguf_parameters(self):
  2815. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2816. self.gguf_writer.add_block_count(self.block_count)
  2817. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2818. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2819. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2820. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2821. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2822. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2823. self.gguf_writer.add_file_type(self.ftype)
  2824. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2825. class Qwen2Model(TextModel):
  2826. model_arch = gguf.MODEL_ARCH.QWEN2
  2827. def set_vocab(self):
  2828. try:
  2829. self._set_vocab_sentencepiece()
  2830. except FileNotFoundError:
  2831. self._set_vocab_gpt2()
  2832. def set_gguf_parameters(self):
  2833. super().set_gguf_parameters()
  2834. self._try_set_pooling_type()
  2835. rope_scaling = self.hparams.get("rope_scaling") or {}
  2836. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2837. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2838. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2839. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2840. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2841. if self.hf_arch == "Qwen2Model":
  2842. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2843. if "language_model." in name:
  2844. name = name.replace("language_model.", "") # for InternVL
  2845. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2846. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2847. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2848. # skip vision and audio tensors
  2849. return []
  2850. yield from super().modify_tensors(data_torch, name, bid)
  2851. @ModelBase.register("DreamModel")
  2852. class DreamModel(TextModel):
  2853. model_arch = gguf.MODEL_ARCH.DREAM
  2854. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2855. tokens: list[str] = []
  2856. toktypes: list[int] = []
  2857. from transformers import AutoTokenizer
  2858. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2859. vocab_dict = tokenizer.get_vocab()
  2860. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2861. assert max(vocab_dict.values()) < vocab_size
  2862. tokpre = self.get_vocab_base_pre(tokenizer)
  2863. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2864. added_vocab = tokenizer.get_added_vocab()
  2865. for i in range(vocab_size):
  2866. if i not in reverse_vocab:
  2867. tokens.append(f"[PAD{i}]")
  2868. toktypes.append(gguf.TokenType.UNUSED)
  2869. elif reverse_vocab[i] in added_vocab:
  2870. tokens.append(reverse_vocab[i])
  2871. # Check if it's a special token - treat special tokens as CONTROL tokens
  2872. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2873. if tokenizer.added_tokens_decoder[i].special:
  2874. toktypes.append(gguf.TokenType.CONTROL)
  2875. else:
  2876. toktypes.append(gguf.TokenType.USER_DEFINED)
  2877. else:
  2878. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2879. toktypes.append(gguf.TokenType.CONTROL)
  2880. else:
  2881. tokens.append(reverse_vocab[i])
  2882. toktypes.append(gguf.TokenType.NORMAL)
  2883. return tokens, toktypes, tokpre
  2884. def set_vocab(self):
  2885. try:
  2886. self._set_vocab_sentencepiece()
  2887. except FileNotFoundError:
  2888. self._set_vocab_gpt2()
  2889. def set_gguf_parameters(self):
  2890. super().set_gguf_parameters()
  2891. self._try_set_pooling_type()
  2892. # Dream models use non-causal attention for diffusion
  2893. self.gguf_writer.add_causal_attention(False)
  2894. # Handle RoPE scaling similar to Qwen2
  2895. rope_scaling = self.hparams.get("rope_scaling") or {}
  2896. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2897. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2898. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2899. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2900. # Add Dream-specific parameters
  2901. mask_token_id = self.hparams.get("mask_token_id")
  2902. if mask_token_id is not None:
  2903. self.gguf_writer.add_mask_token_id(mask_token_id)
  2904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2905. # Dream model tensors should be mapped directly since it's the base model
  2906. yield from super().modify_tensors(data_torch, name, bid)
  2907. @ModelBase.register("LLaDAModelLM")
  2908. class LLaDAModel(TextModel):
  2909. model_arch = gguf.MODEL_ARCH.LLADA
  2910. undo_permute = True
  2911. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2912. tokens: list[str] = []
  2913. toktypes: list[int] = []
  2914. from transformers import AutoTokenizer
  2915. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2916. vocab_dict = tokenizer.get_vocab()
  2917. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2918. assert max(vocab_dict.values()) < vocab_size
  2919. tokpre = self.get_vocab_base_pre(tokenizer)
  2920. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2921. added_vocab = tokenizer.get_added_vocab()
  2922. for i in range(vocab_size):
  2923. if i not in reverse_vocab:
  2924. tokens.append(f"[PAD{i}]")
  2925. toktypes.append(gguf.TokenType.UNUSED)
  2926. elif reverse_vocab[i] in added_vocab:
  2927. tokens.append(reverse_vocab[i])
  2928. # Check if it's a special token - treat special tokens as CONTROL tokens
  2929. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2930. if tokenizer.added_tokens_decoder[i].special:
  2931. toktypes.append(gguf.TokenType.CONTROL)
  2932. else:
  2933. toktypes.append(gguf.TokenType.USER_DEFINED)
  2934. else:
  2935. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2936. toktypes.append(gguf.TokenType.CONTROL)
  2937. else:
  2938. tokens.append(reverse_vocab[i])
  2939. toktypes.append(gguf.TokenType.NORMAL)
  2940. return tokens, toktypes, tokpre
  2941. def set_vocab(self):
  2942. self._set_vocab_gpt2()
  2943. # LLaDA specific parameters
  2944. self.gguf_writer.add_add_bos_token(True)
  2945. def set_gguf_parameters(self):
  2946. super().set_gguf_parameters()
  2947. self._try_set_pooling_type()
  2948. # Add parameters similar to LlamaModel
  2949. hparams = self.hparams
  2950. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2951. if (rope_dim := hparams.get("head_dim")) is None:
  2952. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2953. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2954. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2955. # Set context length for LLaDA
  2956. context_length = self.hparams.get("max_sequence_length", 4096)
  2957. self.gguf_writer.add_context_length(context_length)
  2958. # Set embedding length (dimension size)
  2959. embedding_length = self.hparams.get("d_model", 4096)
  2960. self.gguf_writer.add_embedding_length(embedding_length)
  2961. # Set feed forward length (MLP hidden size)
  2962. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2963. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2964. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2965. self.gguf_writer.add_causal_attention(False)
  2966. # LLaDA models don't shift their logits
  2967. self.gguf_writer.add_diffusion_shift_logits(False)
  2968. @staticmethod
  2969. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2970. if n_head_kv is not None and n_head != n_head_kv:
  2971. n_head = n_head_kv
  2972. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2973. .swapaxes(1, 2)
  2974. .reshape(weights.shape))
  2975. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2976. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2977. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2978. if self.undo_permute:
  2979. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2980. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2981. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2982. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2983. # LLaDA model tensors should be mapped directly since it's the base model
  2984. yield from super().modify_tensors(data_torch, name, bid)
  2985. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2986. class Ernie4_5Model(TextModel):
  2987. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2988. def set_vocab(self):
  2989. self._set_vocab_sentencepiece()
  2990. def set_gguf_parameters(self):
  2991. super().set_gguf_parameters()
  2992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2993. num_heads = self.hparams["num_attention_heads"]
  2994. num_kv_heads = self.hparams["num_key_value_heads"]
  2995. if (head_dim := self.hparams.get("head_dim")) is None:
  2996. head_dim = self.hparams["hidden_size"] // num_heads
  2997. if "ernie." in name:
  2998. name = name.replace("ernie.", "model.")
  2999. # split the qkv weights
  3000. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3001. if "qkv_proj" in name:
  3002. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3003. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3004. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3005. total_q_dim = num_heads * head_dim
  3006. total_k_dim = num_kv_heads * head_dim
  3007. total_v_dim = num_kv_heads * head_dim
  3008. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3009. return [
  3010. (self.map_tensor_name(name_q), q_proj_weight),
  3011. (self.map_tensor_name(name_k), k_proj_weight),
  3012. (self.map_tensor_name(name_v), v_proj_weight)
  3013. ]
  3014. # split the up_gate_proj into gate and up
  3015. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3016. if "up_gate_proj" in name:
  3017. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3018. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3019. dim_half = data_torch.shape[0] // 2
  3020. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3021. return [
  3022. (self.map_tensor_name(name_gate), gate_proj_weight),
  3023. (self.map_tensor_name(name_up), up_proj_weight)
  3024. ]
  3025. return [(self.map_tensor_name(name), data_torch)]
  3026. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3027. class Ernie4_5MoeModel(Ernie4_5Model):
  3028. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3029. _experts: list[dict[str, Tensor]] | None = None
  3030. def __init__(self, *args, **kwargs):
  3031. super().__init__(*args, **kwargs)
  3032. self._experts = [{} for _ in range(self.block_count)]
  3033. def set_gguf_parameters(self):
  3034. super().set_gguf_parameters()
  3035. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3036. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3037. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3038. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3039. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3040. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3041. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3042. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3043. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3044. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3046. # Modify correction bias name as in DeepseekV2
  3047. if name.endswith("e_score_correction_bias"):
  3048. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3049. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3050. match = re.match(r"model.mtp_block.(\d+)", name)
  3051. if match:
  3052. return []
  3053. # skip all other MTP tensors for now
  3054. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3055. if match:
  3056. return []
  3057. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3058. if match:
  3059. return []
  3060. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3061. if match:
  3062. return []
  3063. # process the experts separately
  3064. if name.find("mlp.experts") != -1:
  3065. n_experts = self.hparams["moe_num_experts"]
  3066. assert bid is not None
  3067. if self._experts is None:
  3068. self._experts = [{} for _ in range(self.block_count)]
  3069. self._experts[bid][name] = data_torch
  3070. if len(self._experts[bid]) >= n_experts * 3:
  3071. tensors: list[tuple[str, Tensor]] = []
  3072. # merge the experts into a single 3d tensor
  3073. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3074. datas: list[Tensor] = []
  3075. for xid in range(n_experts):
  3076. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3077. datas.append(self._experts[bid][ename_to_retrieve])
  3078. del self._experts[bid][ename_to_retrieve]
  3079. data_torch = torch.stack(datas, dim=0)
  3080. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3081. new_name = self.map_tensor_name(merged_name)
  3082. tensors.append((new_name, data_torch))
  3083. return tensors
  3084. else:
  3085. return []
  3086. return [(self.map_tensor_name(name), data_torch)]
  3087. def prepare_tensors(self):
  3088. super().prepare_tensors()
  3089. if self._experts is not None:
  3090. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3091. experts = [k for d in self._experts for k in d.keys()]
  3092. if len(experts) > 0:
  3093. raise ValueError(f"Unprocessed experts: {experts}")
  3094. @ModelBase.register(
  3095. "Qwen2VLModel",
  3096. "Qwen2VLForConditionalGeneration",
  3097. "Qwen2_5_VLForConditionalGeneration",
  3098. "Qwen2_5OmniModel",
  3099. )
  3100. class Qwen2VLModel(TextModel):
  3101. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3102. def set_gguf_parameters(self):
  3103. super().set_gguf_parameters()
  3104. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3105. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3106. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3107. def set_vocab(self):
  3108. try:
  3109. self._set_vocab_sentencepiece()
  3110. except FileNotFoundError:
  3111. self._set_vocab_gpt2()
  3112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3113. del bid # unused
  3114. if name.startswith("thinker."):
  3115. name = name.replace("thinker.", "")
  3116. if name.startswith("visual") or name.startswith("audio") or \
  3117. name.startswith("talker") or name.startswith("token2wav"):
  3118. # skip multimodal tensors
  3119. return []
  3120. return [(self.map_tensor_name(name), data_torch)]
  3121. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3122. class Qwen2VLVisionModel(MmprojModel):
  3123. def __init__(self, *args, **kwargs):
  3124. super().__init__(*args, **kwargs)
  3125. assert self.hparams_vision is not None
  3126. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3127. # rename config.json values
  3128. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3129. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3130. if "embed_dim" in self.hparams_vision: # qwen2vl
  3131. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3132. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3133. def set_gguf_parameters(self):
  3134. super().set_gguf_parameters()
  3135. assert self.hparams_vision is not None
  3136. hparams = self.hparams_vision
  3137. model_type = self.global_config['model_type']
  3138. if model_type == 'qwen2_vl':
  3139. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3140. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3141. if model_type == 'qwen2_5_omni':
  3142. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3143. else:
  3144. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3145. self.gguf_writer.add_vision_use_silu(True)
  3146. # find n_wa_pattern (window attention pattern)
  3147. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3148. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3149. n_wa_pattern = fullatt_block_indexes[0] + 1
  3150. # validate n_wa_pattern
  3151. for i in range(1, len(fullatt_block_indexes)):
  3152. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3153. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3154. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3155. else:
  3156. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3157. # default values below are taken from HF tranformers code
  3158. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3159. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3160. if ".position_embd." in new_name:
  3161. return gguf.GGMLQuantizationType.F32
  3162. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3163. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3164. del bid # unused
  3165. if name.startswith("visual."):
  3166. # process visual tensors
  3167. # split QKV tensors if needed
  3168. if ".qkv." in name:
  3169. if data_torch.ndim == 2: # weight
  3170. c3, _ = data_torch.shape
  3171. else: # bias
  3172. c3 = data_torch.shape[0]
  3173. assert c3 % 3 == 0
  3174. c = c3 // 3
  3175. wq = data_torch[:c]
  3176. wk = data_torch[c: c * 2]
  3177. wv = data_torch[c * 2:]
  3178. return [
  3179. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3180. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3181. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3182. ]
  3183. elif 'patch_embed.proj.weight' in name:
  3184. # split Conv3D into Conv2Ds
  3185. c1, c2, kt, kh, kw = data_torch.shape
  3186. del c1, c2, kh, kw # unused
  3187. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3188. return [
  3189. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3190. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3191. ]
  3192. else:
  3193. return [(self.map_tensor_name(name), data_torch)]
  3194. return [] # skip other tensors
  3195. @ModelBase.register("Qwen2_5OmniModel")
  3196. class Qwen25OmniModel(Qwen2VLVisionModel):
  3197. has_vision_encoder = True
  3198. has_audio_encoder = True
  3199. def __init__(self, *args, **kwargs):
  3200. super().__init__(*args, **kwargs)
  3201. assert self.hparams_audio is not None
  3202. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3203. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3204. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3205. def set_gguf_parameters(self):
  3206. super().set_gguf_parameters()
  3207. assert self.hparams_audio is not None
  3208. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3209. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3210. def get_vision_config(self) -> dict[str, Any] | None:
  3211. return self.global_config["thinker_config"].get("vision_config")
  3212. def get_audio_config(self) -> dict[str, Any] | None:
  3213. return self.global_config["thinker_config"].get("audio_config")
  3214. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3215. # SinusoidsPositionEmbedding
  3216. assert self.hparams_audio is not None
  3217. max_timescale = 10000
  3218. length = 1500
  3219. channels = self.hparams_audio["hidden_size"]
  3220. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3221. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3222. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3223. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3224. yield ("audio_tower.embed_positions.weight", pos_embd)
  3225. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3226. if ".conv" in name and ".weight" in name:
  3227. return gguf.GGMLQuantizationType.F16
  3228. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3230. if name.startswith("thinker."):
  3231. name = name.replace("thinker.", "")
  3232. if name.startswith("audio_tower"):
  3233. # process audio tensors
  3234. if "conv1.bias" in name or "conv2.bias" in name:
  3235. # transpose conv1 and conv2 bias
  3236. data_torch = data_torch.unsqueeze(-1)
  3237. if "audio_bos_eos_token" in name:
  3238. # this tensor is left unused in transformers code
  3239. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3240. return []
  3241. return [(self.map_tensor_name(name), data_torch)]
  3242. return super().modify_tensors(data_torch, name, bid)
  3243. @ModelBase.register("InternVisionModel")
  3244. class InternVisionModel(MmprojModel):
  3245. def set_gguf_parameters(self):
  3246. assert self.hparams_vision is not None
  3247. if isinstance(self.hparams_vision['image_size'], list):
  3248. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3249. if isinstance(self.hparams_vision['patch_size'], list):
  3250. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3251. super().set_gguf_parameters()
  3252. hparams = self.hparams
  3253. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3254. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3255. # hidden_act
  3256. if hparams["hidden_act"] == "silu":
  3257. self.gguf_writer.add_vision_use_silu(True)
  3258. elif hparams["hidden_act"] == "gelu":
  3259. self.gguf_writer.add_vision_use_gelu(True)
  3260. else:
  3261. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3262. # downsample_ratio
  3263. downsample_ratio = self.global_config.get("downsample_ratio")
  3264. assert downsample_ratio is not None
  3265. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3266. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3267. if ".position_embd." in new_name:
  3268. return gguf.GGMLQuantizationType.F32
  3269. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3270. def _mapping_interns1_name(self, name):
  3271. names_map = {
  3272. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3273. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3274. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3275. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3276. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3277. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3278. }
  3279. if name in names_map:
  3280. name = names_map[name]
  3281. return name
  3282. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3283. del bid # unused
  3284. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3285. # deal with intern-s1 special case
  3286. name = self._mapping_interns1_name(name)
  3287. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3288. # process visual tensors
  3289. # correct name
  3290. if name.startswith("vision_model"):
  3291. name = "vision_tower." + name
  3292. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3293. name += ".weight"
  3294. # split QKV tensors if needed
  3295. if ".qkv." in name:
  3296. if data_torch.ndim == 2: # weight
  3297. c3, _ = data_torch.shape
  3298. else: # bias
  3299. c3 = data_torch.shape[0]
  3300. assert c3 % 3 == 0
  3301. c = c3 // 3
  3302. wq = data_torch[:c]
  3303. wk = data_torch[c: c * 2]
  3304. wv = data_torch[c * 2:]
  3305. return [
  3306. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3307. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3308. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3309. ]
  3310. return [(self.map_tensor_name(name), data_torch)]
  3311. return [] # skip other tensors
  3312. @ModelBase.register("WavTokenizerDec")
  3313. class WavTokenizerDecModel(TextModel):
  3314. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3316. del bid # unused
  3317. if \
  3318. name.endswith("codebook.cluster_size") or \
  3319. name.endswith("codebook.embed_avg") or \
  3320. name.endswith("codebook.inited"):
  3321. logger.debug(f"Skipping {name!r}")
  3322. return []
  3323. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3324. return [(self.map_tensor_name(name), data_torch)]
  3325. def set_vocab(self):
  3326. self._set_vocab_none()
  3327. def set_gguf_parameters(self):
  3328. super().set_gguf_parameters()
  3329. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3330. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3331. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3332. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3333. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3334. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3335. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3336. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3337. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3338. self.gguf_writer.add_causal_attention(False)
  3339. @ModelBase.register("Qwen2MoeForCausalLM")
  3340. class Qwen2MoeModel(TextModel):
  3341. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3342. def set_gguf_parameters(self):
  3343. super().set_gguf_parameters()
  3344. if (n_experts := self.hparams.get("num_experts")) is not None:
  3345. self.gguf_writer.add_expert_count(n_experts)
  3346. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3347. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3348. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3349. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3350. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3351. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3352. # YaRN is not enabled by default
  3353. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3354. rope_scaling = self.hparams.get("rope_scaling") or {}
  3355. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3356. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3357. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3358. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3359. _experts: list[dict[str, Tensor]] | None = None
  3360. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3361. # process the experts separately
  3362. name = name.replace("language_model.", "") # InternVL
  3363. # handle aggregated expert tensors
  3364. # GGUF stores dimensions reversed from PyTorch, so:
  3365. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3366. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3367. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3368. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3369. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3370. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3371. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3372. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3373. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3374. permuted = data_torch.permute(0, 2, 1).contiguous()
  3375. return [(self.map_tensor_name(mapped), permuted)]
  3376. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3377. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3378. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3379. split_dim = data_torch.shape[-1] // 2
  3380. gate = data_torch[..., :split_dim].contiguous()
  3381. up = data_torch[..., split_dim:].contiguous()
  3382. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3383. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3384. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3385. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3386. base_name = name.removesuffix(".weight")
  3387. base = base_name.rsplit('.', 1)[0]
  3388. mapped_gate = f"{base}.gate_proj.weight"
  3389. mapped_up = f"{base}.up_proj.weight"
  3390. perm_gate = gate.permute(0, 2, 1).contiguous()
  3391. perm_up = up.permute(0, 2, 1).contiguous()
  3392. return [
  3393. (self.map_tensor_name(mapped_gate), perm_gate),
  3394. (self.map_tensor_name(mapped_up), perm_up),
  3395. ]
  3396. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3397. # skip visual tensors
  3398. return []
  3399. if name.find("experts") != -1:
  3400. n_experts = self.hparams["num_experts"]
  3401. assert bid is not None
  3402. if self._experts is None:
  3403. self._experts = [{} for _ in range(self.block_count)]
  3404. self._experts[bid][name] = data_torch
  3405. if len(self._experts[bid]) >= n_experts * 3:
  3406. tensors: list[tuple[str, Tensor]] = []
  3407. # merge the experts into a single 3d tensor
  3408. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3409. datas: list[Tensor] = []
  3410. for xid in range(n_experts):
  3411. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3412. datas.append(self._experts[bid][ename])
  3413. del self._experts[bid][ename]
  3414. data_torch = torch.stack(datas, dim=0)
  3415. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3416. new_name = self.map_tensor_name(merged_name)
  3417. tensors.append((new_name, data_torch))
  3418. return tensors
  3419. else:
  3420. return []
  3421. return [(self.map_tensor_name(name), data_torch)]
  3422. def prepare_tensors(self):
  3423. super().prepare_tensors()
  3424. if self._experts is not None:
  3425. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3426. experts = [k for d in self._experts for k in d.keys()]
  3427. if len(experts) > 0:
  3428. raise ValueError(f"Unprocessed experts: {experts}")
  3429. @ModelBase.register("Qwen3ForCausalLM")
  3430. class Qwen3Model(Qwen2Model):
  3431. model_arch = gguf.MODEL_ARCH.QWEN3
  3432. # extra logic for rerank models
  3433. is_rerank: bool = False
  3434. is_tied_embeddings: bool = False
  3435. token_false_id: int | None = None
  3436. token_true_id: int | None = None
  3437. def __init__(self, *args, **kwargs):
  3438. super().__init__(*args, **kwargs)
  3439. # track for intern-s1-mini
  3440. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3441. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3442. # a bit hacky, but currently the only way to detect if this is a rerank model
  3443. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3444. readme_path = self.dir_model / "README.md"
  3445. readme_text = ""
  3446. if readme_path.exists():
  3447. with readme_path.open("r", encoding="utf-8") as f:
  3448. readme_text = f.read()
  3449. if "# Qwen3-Reranker" in readme_text:
  3450. self._find_rerank_config()
  3451. def set_vocab(self):
  3452. # deal with intern-s1-mini
  3453. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3454. self._set_vocab_interns1()
  3455. return
  3456. super().set_vocab()
  3457. def _find_rerank_config(self):
  3458. from transformers import AutoTokenizer
  3459. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3460. self.is_rerank = True
  3461. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3462. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3463. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3464. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3465. assert self.token_false_id is not None and self.token_true_id is not None
  3466. def set_gguf_parameters(self):
  3467. super().set_gguf_parameters()
  3468. if self.is_rerank:
  3469. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3470. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3471. self.gguf_writer.add_chat_template([{
  3472. "name": "rerank",
  3473. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3474. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3475. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3476. }])
  3477. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3478. # extract "yes" and "no" tokens from the output lm_head tensor
  3479. false_row = data_torch[self.token_false_id]
  3480. true_row = data_torch[self.token_true_id]
  3481. return torch.stack([true_row, false_row], dim=0)
  3482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3483. if "model.vision_" in name:
  3484. # skip multimodal tensors
  3485. return []
  3486. if self.is_rerank:
  3487. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3488. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3489. if is_tied_head or is_real_head:
  3490. cls_out_head = (
  3491. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3492. self._get_cls_out_tensor(data_torch),
  3493. )
  3494. if is_tied_head:
  3495. embed = (self.map_tensor_name(name), data_torch)
  3496. return [cls_out_head, embed]
  3497. if is_real_head:
  3498. return [cls_out_head]
  3499. return super().modify_tensors(data_torch, name, bid)
  3500. @ModelBase.register("Qwen3MoeForCausalLM")
  3501. class Qwen3MoeModel(Qwen2MoeModel):
  3502. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3503. def __init__(self, *args, **kwargs):
  3504. super().__init__(*args, **kwargs)
  3505. hparams = ModelBase.load_hparams(self.dir_model, False)
  3506. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3507. def set_vocab(self):
  3508. # deal with intern-s1
  3509. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3510. self._set_vocab_interns1()
  3511. return
  3512. super().set_vocab()
  3513. @ModelBase.register("Qwen3NextForCausalLM")
  3514. class Qwen3NextModel(Qwen2MoeModel):
  3515. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3516. def set_gguf_parameters(self):
  3517. super().set_gguf_parameters()
  3518. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3519. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3520. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3521. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3522. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3523. if (rope_dim := self.hparams.get("head_dim")) is None:
  3524. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3525. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3527. if name.startswith("mtp"):
  3528. return [] # ignore MTP layers for now
  3529. if name.endswith(".A_log"):
  3530. data_torch = -torch.exp(data_torch)
  3531. elif name.endswith(".dt_bias"):
  3532. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3533. elif "conv1d" in name:
  3534. data_torch = data_torch.squeeze()
  3535. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3536. data_torch = data_torch + 1
  3537. yield from super().modify_tensors(data_torch, name, bid)
  3538. @ModelBase.register("RND1")
  3539. class RND1Model(Qwen2MoeModel):
  3540. model_arch = gguf.MODEL_ARCH.RND1
  3541. def set_gguf_parameters(self):
  3542. super().set_gguf_parameters()
  3543. # RND1 specific parameters
  3544. # RND1 uses bidirectional attention
  3545. self.gguf_writer.add_causal_attention(False)
  3546. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3547. self.gguf_writer.add_mask_token_id(mask_token_id)
  3548. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3549. class Qwen3VLVisionModel(MmprojModel):
  3550. def __init__(self, *args, **kwargs):
  3551. super().__init__(*args, **kwargs)
  3552. assert self.hparams_vision is not None
  3553. # Compute image_size if not present
  3554. if "image_size" not in self.hparams_vision:
  3555. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3556. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3557. patch_size = self.hparams_vision.get("patch_size", 16)
  3558. # num_position_embeddings = (image_size / patch_size) ** 2
  3559. # So image_size = sqrt(num_position_embeddings) * patch_size
  3560. image_size = int(num_pos**0.5 * patch_size)
  3561. self.hparams_vision["image_size"] = image_size
  3562. # Rename config values for compatibility
  3563. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3564. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3565. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3566. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3567. self.is_deepstack_layers[idx] = True
  3568. def set_gguf_parameters(self):
  3569. super().set_gguf_parameters()
  3570. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3571. self.gguf_writer.add_vision_use_gelu(True)
  3572. if self.hparams_vision is not None:
  3573. merge_size = self.hparams_vision.get("spatial_merge_size")
  3574. if merge_size is not None:
  3575. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3576. # Use text config's rms_norm_eps for vision attention layernorm eps
  3577. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3578. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3579. if self.is_deepstack_layers:
  3580. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3581. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3582. assert self.hparams_vision is not None
  3583. # Skip text model tensors - they go in the text model file
  3584. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3585. return []
  3586. if name.startswith("model.visual."):
  3587. name = name.replace("model.visual.", "visual.", 1)
  3588. if name.startswith("visual.deepstack_merger_list."):
  3589. prefix, rest = name.split(".", maxsplit=3)[2:]
  3590. # prefix is the layer index, convert to absolute clip layer index!
  3591. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3592. target = rest
  3593. tensor_type: gguf.MODEL_TENSOR
  3594. if target.startswith("norm."):
  3595. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3596. suffix = target.split(".", 1)[1]
  3597. elif target.startswith("linear_fc1."):
  3598. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3599. suffix = target.split(".", 1)[1]
  3600. elif target.startswith("linear_fc2."):
  3601. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3602. suffix = target.split(".", 1)[1]
  3603. else:
  3604. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3605. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3606. return [(new_name, data_torch)]
  3607. if name.startswith("visual.merger."):
  3608. suffix = name.split(".", 2)[2]
  3609. if suffix.startswith("linear_fc"):
  3610. fc_idx_str, tail = suffix.split(".", 1)
  3611. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3612. # Qwen3VL has linear_fc1 and linear_fc2
  3613. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3614. if fc_num == 1:
  3615. fc_idx = 0
  3616. elif fc_num == 2:
  3617. fc_idx = 2
  3618. else:
  3619. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3620. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3621. elif suffix.startswith("norm."):
  3622. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3623. else:
  3624. raise ValueError(f"Unexpected merger tensor: {name}")
  3625. return [(new_name, data_torch)]
  3626. if name == "visual.patch_embed.proj.weight":
  3627. # split Conv3D into Conv2Ds along temporal dimension
  3628. c1, c2, kt, _, _ = data_torch.shape
  3629. del c1, c2
  3630. if kt != 2:
  3631. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3632. return [
  3633. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3634. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3635. ]
  3636. if name == "visual.patch_embed.proj.bias":
  3637. # Include the bias - it's used by the C++ code
  3638. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3639. if name.startswith("visual."):
  3640. return [(self.map_tensor_name(name), data_torch)]
  3641. # Fall back to parent class for other tensors
  3642. return super().modify_tensors(data_torch, name, bid)
  3643. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3644. class Qwen3VLTextModel(Qwen3Model):
  3645. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3646. def set_gguf_parameters(self):
  3647. super().set_gguf_parameters()
  3648. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3649. text_config = self.hparams.get("text_config", {})
  3650. # rope_scaling is deprecated in V5, use rope_parameters instead
  3651. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3652. if rope_scaling.get("mrope_section"):
  3653. # mrope_section contains [time, height, width] dimensions
  3654. mrope_section = rope_scaling["mrope_section"]
  3655. # Pad to 4 dimensions [time, height, width, extra]
  3656. while len(mrope_section) < 4:
  3657. mrope_section.append(0)
  3658. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3659. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3660. vision_config = self.hparams.get("vision_config", {})
  3661. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3662. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3664. # Skip vision tensors - they go in the mmproj file
  3665. if name.startswith("model.visual."):
  3666. return []
  3667. return super().modify_tensors(data_torch, name, bid)
  3668. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3669. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3670. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3671. def set_gguf_parameters(self):
  3672. super().set_gguf_parameters()
  3673. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3674. text_config = self.hparams.get("text_config", {})
  3675. # rope_scaling is deprecated in V5, use rope_parameters instead
  3676. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3677. if rope_scaling.get("mrope_section"):
  3678. # mrope_section contains [time, height, width] dimensions
  3679. mrope_section = rope_scaling["mrope_section"]
  3680. # Pad to 4 dimensions [time, height, width, extra]
  3681. while len(mrope_section) < 4:
  3682. mrope_section.append(0)
  3683. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3684. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3685. vision_config = self.hparams.get("vision_config", {})
  3686. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3687. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3689. # Skip vision tensors - they go in the mmproj file
  3690. if name.startswith("model.visual."):
  3691. return []
  3692. return super().modify_tensors(data_torch, name, bid)
  3693. @ModelBase.register("GPT2LMHeadModel")
  3694. class GPT2Model(TextModel):
  3695. model_arch = gguf.MODEL_ARCH.GPT2
  3696. def set_gguf_parameters(self):
  3697. self.gguf_writer.add_block_count(self.block_count)
  3698. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3699. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3700. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3701. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3702. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3703. self.gguf_writer.add_file_type(self.ftype)
  3704. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3705. del bid # unused
  3706. tensors: list[tuple[str, Tensor]] = []
  3707. # we don't need these
  3708. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3709. return tensors
  3710. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3711. data_torch = data_torch.transpose(1, 0)
  3712. new_name = self.map_tensor_name(name)
  3713. tensors.append((new_name, data_torch))
  3714. return tensors
  3715. @ModelBase.register("PhiForCausalLM")
  3716. class Phi2Model(TextModel):
  3717. model_arch = gguf.MODEL_ARCH.PHI2
  3718. def set_gguf_parameters(self):
  3719. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3720. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3721. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3722. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3723. self.gguf_writer.add_embedding_length(n_embd)
  3724. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3725. self.gguf_writer.add_block_count(self.block_count)
  3726. self.gguf_writer.add_head_count(n_head)
  3727. self.gguf_writer.add_head_count_kv(n_head)
  3728. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3729. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3730. self.gguf_writer.add_file_type(self.ftype)
  3731. self.gguf_writer.add_add_bos_token(False)
  3732. @ModelBase.register("Phi3ForCausalLM")
  3733. class Phi3MiniModel(TextModel):
  3734. model_arch = gguf.MODEL_ARCH.PHI3
  3735. def set_vocab(self):
  3736. # Phi-4 model uses GPT2Tokenizer
  3737. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3738. if tokenizer_config_file.is_file():
  3739. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3740. tokenizer_config_json = json.load(f)
  3741. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3742. if tokenizer_class == 'GPT2Tokenizer':
  3743. return self._set_vocab_gpt2()
  3744. from sentencepiece import SentencePieceProcessor
  3745. tokenizer_path = self.dir_model / 'tokenizer.model'
  3746. if not tokenizer_path.is_file():
  3747. raise ValueError(f'Error: Missing {tokenizer_path}')
  3748. tokenizer = SentencePieceProcessor()
  3749. tokenizer.LoadFromFile(str(tokenizer_path))
  3750. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3751. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3752. scores: list[float] = [-10000.0] * vocab_size
  3753. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3754. for token_id in range(tokenizer.vocab_size()):
  3755. piece = tokenizer.IdToPiece(token_id)
  3756. text = piece.encode("utf-8")
  3757. score = tokenizer.GetScore(token_id)
  3758. toktype = SentencePieceTokenTypes.NORMAL
  3759. if tokenizer.IsUnknown(token_id):
  3760. toktype = SentencePieceTokenTypes.UNKNOWN
  3761. elif tokenizer.IsControl(token_id):
  3762. toktype = SentencePieceTokenTypes.CONTROL
  3763. elif tokenizer.IsUnused(token_id):
  3764. toktype = SentencePieceTokenTypes.UNUSED
  3765. elif tokenizer.IsByte(token_id):
  3766. toktype = SentencePieceTokenTypes.BYTE
  3767. tokens[token_id] = text
  3768. scores[token_id] = score
  3769. toktypes[token_id] = toktype
  3770. added_tokens_file = self.dir_model / 'added_tokens.json'
  3771. if added_tokens_file.is_file():
  3772. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3773. added_tokens_json = json.load(f)
  3774. for key in added_tokens_json:
  3775. token_id = added_tokens_json[key]
  3776. if token_id >= vocab_size:
  3777. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3778. continue
  3779. tokens[token_id] = key.encode("utf-8")
  3780. scores[token_id] = -1000.0
  3781. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3782. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3783. if tokenizer_config_file.is_file():
  3784. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3785. tokenizer_config_json = json.load(f)
  3786. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3787. for token_id, foken_data in added_tokens_decoder.items():
  3788. token_id = int(token_id)
  3789. token = foken_data["content"].encode("utf-8")
  3790. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3791. if tokens[token_id] != token:
  3792. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3793. tokens[token_id] = token
  3794. scores[token_id] = -1000.0
  3795. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3796. if foken_data.get("special"):
  3797. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3798. tokenizer_file = self.dir_model / 'tokenizer.json'
  3799. if tokenizer_file.is_file():
  3800. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3801. tokenizer_json = json.load(f)
  3802. added_tokens = tokenizer_json.get("added_tokens", [])
  3803. for foken_data in added_tokens:
  3804. token_id = int(foken_data["id"])
  3805. token = foken_data["content"].encode("utf-8")
  3806. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3807. if tokens[token_id] != token:
  3808. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3809. tokens[token_id] = token
  3810. scores[token_id] = -1000.0
  3811. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3812. if foken_data.get("special"):
  3813. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3814. self.gguf_writer.add_tokenizer_model("llama")
  3815. self.gguf_writer.add_tokenizer_pre("default")
  3816. self.gguf_writer.add_token_list(tokens)
  3817. self.gguf_writer.add_token_scores(scores)
  3818. self.gguf_writer.add_token_types(toktypes)
  3819. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3820. special_vocab.add_to_gguf(self.gguf_writer)
  3821. def set_gguf_parameters(self):
  3822. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3823. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3824. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3825. rms_eps = self.find_hparam(["rms_norm_eps"])
  3826. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3827. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3828. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3829. rope_dims = int(rot_pct * n_embd) // n_head
  3830. self.gguf_writer.add_context_length(max_pos_embds)
  3831. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3832. self.gguf_writer.add_embedding_length(n_embd)
  3833. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3834. self.gguf_writer.add_block_count(self.block_count)
  3835. self.gguf_writer.add_head_count(n_head)
  3836. self.gguf_writer.add_head_count_kv(n_head_kv)
  3837. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3838. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3839. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3840. self.gguf_writer.add_file_type(self.ftype)
  3841. sliding_window = self.hparams.get("sliding_window")
  3842. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3843. if sliding_window is None:
  3844. sliding_window = 0
  3845. self.gguf_writer.add_sliding_window(sliding_window)
  3846. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3847. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3848. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3849. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3850. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3851. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3852. rope_dims = int(rot_pct * n_embd) // n_head
  3853. # write rope scaling for long context (128k) model
  3854. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3855. if rope_scaling is None:
  3856. return
  3857. scale = max_pos_embds / orig_max_pos_embds
  3858. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3859. if len(rope_scaling_type) == 0:
  3860. raise KeyError('Missing the required key rope_scaling.type')
  3861. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3862. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3863. elif rope_scaling_type == 'yarn':
  3864. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3865. else:
  3866. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3867. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3868. long_factors = rope_scaling.get('long_factor', None)
  3869. short_factors = rope_scaling.get('short_factor', None)
  3870. if long_factors is None or short_factors is None:
  3871. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3872. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3873. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3874. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3875. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3876. @ModelBase.register("PhiMoEForCausalLM")
  3877. class PhiMoeModel(Phi3MiniModel):
  3878. model_arch = gguf.MODEL_ARCH.PHIMOE
  3879. _experts: list[dict[str, Tensor]] | None = None
  3880. def set_gguf_parameters(self):
  3881. super().set_gguf_parameters()
  3882. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3883. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3884. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3885. # process the experts separately
  3886. if name.find("block_sparse_moe.experts") != -1:
  3887. n_experts = self.hparams["num_local_experts"]
  3888. assert bid is not None
  3889. if self._experts is None:
  3890. self._experts = [{} for _ in range(self.block_count)]
  3891. self._experts[bid][name] = data_torch
  3892. if len(self._experts[bid]) >= n_experts * 3:
  3893. tensors: list[tuple[str, Tensor]] = []
  3894. # merge the experts into a single 3d tensor
  3895. for w_name in ["w1", "w2", "w3"]:
  3896. datas: list[Tensor] = []
  3897. for xid in range(n_experts):
  3898. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3899. datas.append(self._experts[bid][ename])
  3900. del self._experts[bid][ename]
  3901. data_torch = torch.stack(datas, dim=0)
  3902. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3903. new_name = self.map_tensor_name(merged_name)
  3904. tensors.append((new_name, data_torch))
  3905. return tensors
  3906. else:
  3907. return []
  3908. return [(self.map_tensor_name(name), data_torch)]
  3909. def prepare_tensors(self):
  3910. super().prepare_tensors()
  3911. if self._experts is not None:
  3912. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3913. experts = [k for d in self._experts for k in d.keys()]
  3914. if len(experts) > 0:
  3915. raise ValueError(f"Unprocessed experts: {experts}")
  3916. @ModelBase.register("PlamoForCausalLM")
  3917. class PlamoModel(TextModel):
  3918. model_arch = gguf.MODEL_ARCH.PLAMO
  3919. def set_vocab(self):
  3920. self._set_vocab_sentencepiece()
  3921. def set_gguf_parameters(self):
  3922. hparams = self.hparams
  3923. self.gguf_writer.add_context_length(4096) # not in config.json
  3924. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3925. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3926. self.gguf_writer.add_block_count(self.block_count)
  3927. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3928. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3929. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3930. self.gguf_writer.add_file_type(self.ftype)
  3931. def shuffle_attn_q_weight(self, data_torch):
  3932. assert data_torch.size() == (5120, 5120)
  3933. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3934. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3935. data_torch = torch.reshape(data_torch, (5120, 5120))
  3936. return data_torch
  3937. def shuffle_attn_output_weight(self, data_torch):
  3938. assert data_torch.size() == (5120, 5120)
  3939. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3940. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3941. data_torch = torch.reshape(data_torch, (5120, 5120))
  3942. return data_torch
  3943. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3944. del bid # unused
  3945. new_name = self.map_tensor_name(name)
  3946. # shuffle for broadcasting of gqa in ggml_mul_mat
  3947. if new_name.endswith("attn_q.weight"):
  3948. data_torch = self.shuffle_attn_q_weight(data_torch)
  3949. elif new_name.endswith("attn_output.weight"):
  3950. data_torch = self.shuffle_attn_output_weight(data_torch)
  3951. return [(new_name, data_torch)]
  3952. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3953. class Plamo2Model(TextModel):
  3954. model_arch = gguf.MODEL_ARCH.PLAMO2
  3955. def set_vocab(self):
  3956. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3957. # We need to handle this specially
  3958. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3959. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3960. if not tokenizer_jsonl_path.is_file():
  3961. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3962. # Load tokenizer config
  3963. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3964. tokenizer_config = json.load(f)
  3965. # Load tokens from JSONL file (actually a list format)
  3966. tokens = []
  3967. scores = []
  3968. toktypes = []
  3969. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3970. for line_num, line in enumerate(f):
  3971. if line.strip():
  3972. token_data = json.loads(line)
  3973. # Format: [token, score, type, ?, ?, ?, ?]
  3974. token = token_data[0].encode("utf-8")
  3975. score = float(token_data[1])
  3976. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3977. tokens.append(token)
  3978. scores.append(score)
  3979. # Map token type strings to GGUF token types
  3980. if token_type_str == "UNKNOWN":
  3981. toktypes.append(gguf.TokenType.UNKNOWN)
  3982. elif token_type_str == "CONTROL":
  3983. toktypes.append(gguf.TokenType.CONTROL)
  3984. elif token_type_str == "BYTE":
  3985. toktypes.append(gguf.TokenType.BYTE)
  3986. else:
  3987. # Check for PLaMo-2 special tokens
  3988. token_str = token_data[0]
  3989. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3990. toktypes.append(gguf.TokenType.CONTROL)
  3991. else:
  3992. toktypes.append(gguf.TokenType.NORMAL)
  3993. vocab_size = self.hparams["vocab_size"]
  3994. if vocab_size > len(tokens):
  3995. pad_count = vocab_size - len(tokens)
  3996. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3997. for i in range(1, pad_count + 1):
  3998. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3999. scores.append(-1000.0)
  4000. toktypes.append(gguf.TokenType.UNUSED)
  4001. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  4002. self.gguf_writer.add_tokenizer_model("plamo2")
  4003. self.gguf_writer.add_tokenizer_pre("default")
  4004. self.gguf_writer.add_token_list(tokens)
  4005. self.gguf_writer.add_token_scores(scores)
  4006. self.gguf_writer.add_token_types(toktypes)
  4007. # Add special tokens from config
  4008. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  4009. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  4010. self.gguf_writer.add_bos_token_id(token_id)
  4011. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  4012. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  4013. self.gguf_writer.add_eos_token_id(token_id)
  4014. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  4015. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  4016. self.gguf_writer.add_pad_token_id(token_id)
  4017. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  4018. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  4019. self.gguf_writer.add_sep_token_id(token_id)
  4020. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  4021. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  4022. self.gguf_writer.add_unk_token_id(token_id)
  4023. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  4024. self.gguf_writer.add_eot_token_id(4)
  4025. self.gguf_writer.add_add_space_prefix(False)
  4026. def set_gguf_parameters(self):
  4027. hparams = self.hparams
  4028. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4029. # Which layers are Mamba layers
  4030. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4031. # This logic matches modeling_plamo.py's is_mamba function
  4032. mamba_step = hparams.get("mamba_step", 2)
  4033. mamba_enabled = hparams.get("mamba_enabled", True)
  4034. num_key_value_heads = []
  4035. num_attention_heads = []
  4036. if mamba_enabled:
  4037. for i in range(self.block_count):
  4038. if self.block_count <= (mamba_step // 2):
  4039. # use attention in last layer
  4040. is_mamba = (i != self.block_count - 1)
  4041. else:
  4042. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4043. if is_mamba:
  4044. num_key_value_heads.append(0)
  4045. num_attention_heads.append(0)
  4046. else:
  4047. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4048. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4049. if num_key_value_heads and num_attention_heads:
  4050. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4051. self.gguf_writer.add_head_count(num_attention_heads)
  4052. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4053. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4054. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4055. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4056. self.gguf_writer.add_block_count(self.block_count)
  4057. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4058. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  4059. # Mamba parameters
  4060. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4061. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4062. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4063. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4064. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4065. self.gguf_writer.add_ssm_group_count(0)
  4066. # MLP feed forward parameters (for attention layers)
  4067. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4068. self.gguf_writer.add_file_type(self.ftype)
  4069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4070. del bid # unused
  4071. if name.endswith(".A_log"):
  4072. data_torch = -torch.exp(data_torch)
  4073. elif name.endswith(".dt_bias"):
  4074. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4075. elif name.endswith(".dt_norm_weight"):
  4076. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4077. elif name.endswith(".B_norm_weight"):
  4078. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4079. elif name.endswith(".C_norm_weight"):
  4080. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4081. elif name.endswith(".k_weight"):
  4082. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4083. elif name.endswith(".q_weight"):
  4084. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4085. elif name.endswith(".conv1d.weight"):
  4086. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4087. assert data_torch.ndim == 2
  4088. elif name.endswith(".pre_mixer_norm.weight"):
  4089. data_torch += 1.0
  4090. elif name.endswith(".post_mixer_norm.weight"):
  4091. data_torch += 1.0 / 5
  4092. elif name.endswith(".pre_mlp_norm.weight"):
  4093. data_torch += 1.0
  4094. elif name.endswith(".post_mlp_norm.weight"):
  4095. data_torch += 1.0 / (5**1.5)
  4096. elif name.endswith(".norm.weight"):
  4097. data_torch += 1.0
  4098. new_name = self.map_tensor_name(name)
  4099. return [(new_name, data_torch)]
  4100. @ModelBase.register("CodeShellForCausalLM")
  4101. class CodeShellModel(TextModel):
  4102. model_arch = gguf.MODEL_ARCH.CODESHELL
  4103. def set_gguf_parameters(self):
  4104. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4105. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4106. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4107. self.gguf_writer.add_block_count(self.block_count)
  4108. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4109. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4110. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4111. self.gguf_writer.add_file_type(self.ftype)
  4112. self.gguf_writer.add_rope_freq_base(10000.0)
  4113. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4114. self.gguf_writer.add_rope_scaling_factor(1.0)
  4115. @ModelBase.register("InternLM2ForCausalLM")
  4116. class InternLM2Model(TextModel):
  4117. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4118. def set_vocab(self):
  4119. # (TODO): Is there a better way?
  4120. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4121. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4122. # recognized as an empty string in C++.
  4123. from sentencepiece import SentencePieceProcessor
  4124. from sentencepiece import sentencepiece_model_pb2 as model
  4125. tokenizer_path = self.dir_model / 'tokenizer.model'
  4126. tokens: list[bytes] = []
  4127. scores: list[float] = []
  4128. toktypes: list[int] = []
  4129. if not tokenizer_path.is_file():
  4130. logger.error(f'Error: Missing {tokenizer_path}')
  4131. sys.exit(1)
  4132. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4133. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4134. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4135. tokenizer = SentencePieceProcessor()
  4136. tokenizer.LoadFromFile(str(tokenizer_path))
  4137. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4138. for token_id in range(vocab_size):
  4139. piece = tokenizer.IdToPiece(token_id)
  4140. text = piece.encode("utf-8")
  4141. score = tokenizer.GetScore(token_id)
  4142. if text == b"\x00":
  4143. # (TODO): fixme
  4144. # Hack here and replace the \x00 characters.
  4145. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4146. text = "🐉".encode("utf-8")
  4147. toktype = SentencePieceTokenTypes.NORMAL
  4148. if tokenizer.IsUnknown(token_id):
  4149. toktype = SentencePieceTokenTypes.UNKNOWN
  4150. elif tokenizer.IsControl(token_id):
  4151. toktype = SentencePieceTokenTypes.CONTROL
  4152. elif tokenizer.IsUnused(token_id):
  4153. toktype = SentencePieceTokenTypes.UNUSED
  4154. elif tokenizer.IsByte(token_id):
  4155. toktype = SentencePieceTokenTypes.BYTE
  4156. # take care of ununsed raw token
  4157. if piece.startswith('[UNUSED'):
  4158. toktype = SentencePieceTokenTypes.UNUSED
  4159. tokens.append(text)
  4160. scores.append(score)
  4161. toktypes.append(toktype)
  4162. added_tokens_file = self.dir_model / 'added_tokens.json'
  4163. if added_tokens_file.is_file():
  4164. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4165. added_tokens_json = json.load(f)
  4166. for key in added_tokens_json:
  4167. tokens.append(key.encode("utf-8"))
  4168. scores.append(-1000.0)
  4169. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4170. chat_eos_token = '<|im_end|>'
  4171. chat_eos_token_id = None
  4172. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4173. if tokenizer_config_file.is_file():
  4174. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4175. tokenizer_config_json = json.load(f)
  4176. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4177. for token_id, foken_data in added_tokens_decoder.items():
  4178. token_id = int(token_id)
  4179. token = foken_data["content"]
  4180. if token == chat_eos_token:
  4181. chat_eos_token_id = token_id
  4182. token = token.encode("utf-8")
  4183. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4184. if tokens[token_id] != token:
  4185. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4186. tokens[token_id] = token
  4187. scores[token_id] = -1000.0
  4188. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4189. if foken_data.get("special"):
  4190. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4191. tokenizer_file = self.dir_model / 'tokenizer.json'
  4192. if tokenizer_file.is_file():
  4193. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4194. tokenizer_json = json.load(f)
  4195. added_tokens = tokenizer_json.get("added_tokens", [])
  4196. for foken_data in added_tokens:
  4197. token_id = int(foken_data["id"])
  4198. token = foken_data["content"]
  4199. if token == chat_eos_token:
  4200. chat_eos_token_id = token_id
  4201. token = token.encode("utf-8")
  4202. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4203. if tokens[token_id] != token:
  4204. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4205. tokens[token_id] = token
  4206. scores[token_id] = -1000.0
  4207. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4208. if foken_data.get("special"):
  4209. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4210. self.gguf_writer.add_tokenizer_model("llama")
  4211. self.gguf_writer.add_tokenizer_pre("default")
  4212. self.gguf_writer.add_token_list(tokens)
  4213. self.gguf_writer.add_token_scores(scores)
  4214. self.gguf_writer.add_token_types(toktypes)
  4215. self.gguf_writer.add_add_space_prefix(add_prefix)
  4216. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4217. old_eos = special_vocab.special_token_ids["eos"]
  4218. if chat_eos_token_id is not None:
  4219. # For the chat model, we replace the eos with '<|im_end|>'.
  4220. # TODO: this is a hack, should be fixed
  4221. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4222. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4223. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4224. " in chat mode so that the conversation can end normally.")
  4225. special_vocab.add_to_gguf(self.gguf_writer)
  4226. def set_gguf_parameters(self):
  4227. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4228. self.gguf_writer.add_block_count(self.block_count)
  4229. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4230. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4231. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4232. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4233. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4234. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4235. self.gguf_writer.add_file_type(self.ftype)
  4236. rope_scaling = self.hparams.get("rope_scaling") or {}
  4237. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4238. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4239. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4240. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4241. num_heads = self.hparams["num_attention_heads"]
  4242. num_kv_heads = self.hparams["num_key_value_heads"]
  4243. n_embd = self.hparams["hidden_size"]
  4244. q_per_kv = num_heads // num_kv_heads
  4245. head_dim = n_embd // num_heads
  4246. num_groups = num_heads // q_per_kv
  4247. name = name.replace("language_model.", "") # InternVL
  4248. if name.startswith("mlp") or name.startswith("vision_model"):
  4249. # skip visual tensors
  4250. return []
  4251. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4252. qkv = data_torch
  4253. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4254. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4255. # The model weights of q and k equire additional reshape.
  4256. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4257. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4258. v = v.reshape((-1, v.shape[-1]))
  4259. return [
  4260. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4261. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4262. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4263. ]
  4264. else:
  4265. return [(self.map_tensor_name(name), data_torch)]
  4266. @ModelBase.register("InternLM3ForCausalLM")
  4267. class InternLM3Model(TextModel):
  4268. model_arch = gguf.MODEL_ARCH.LLAMA
  4269. def set_vocab(self):
  4270. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4271. self.gguf_writer.add_tokenizer_model("llama")
  4272. self.gguf_writer.add_tokenizer_pre("default")
  4273. self.gguf_writer.add_token_list(tokens)
  4274. self.gguf_writer.add_token_scores(scores)
  4275. self.gguf_writer.add_token_types(toktypes)
  4276. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4277. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4278. if tokenizer_config_file.is_file():
  4279. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4280. tokenizer_config_json = json.load(f)
  4281. if "add_prefix_space" in tokenizer_config_json:
  4282. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4283. if "added_tokens_decoder" in tokenizer_config_json:
  4284. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4285. if token_data.get("special"):
  4286. token_id = int(token_id)
  4287. token = token_data["content"]
  4288. special_vocab._set_special_token(token, token_id)
  4289. # update eos token
  4290. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4291. special_vocab.special_token_ids["eos"] = token_id
  4292. special_vocab.add_to_gguf(self.gguf_writer)
  4293. def set_gguf_parameters(self):
  4294. super().set_gguf_parameters()
  4295. hparams = self.hparams
  4296. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4297. if (rope_dim := hparams.get("head_dim")) is None:
  4298. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4299. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4300. rope_scaling = self.hparams.get("rope_scaling") or {}
  4301. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4302. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4303. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4304. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4305. n_head = self.hparams["num_attention_heads"]
  4306. n_kv_head = self.hparams.get("num_key_value_heads")
  4307. name = name.replace("language_model.", "") # InternVL
  4308. if name.startswith("mlp") or name.startswith("vision_model"):
  4309. # skip visual tensors
  4310. return []
  4311. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4312. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4313. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4314. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4315. return [(self.map_tensor_name(name), data_torch)]
  4316. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4317. class BertModel(TextModel):
  4318. model_arch = gguf.MODEL_ARCH.BERT
  4319. def __init__(self, *args, **kwargs):
  4320. super().__init__(*args, **kwargs)
  4321. self.vocab_size = None
  4322. if cls_out_labels := self.hparams.get("id2label"):
  4323. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4324. # Remove dummy labels added by AutoConfig
  4325. cls_out_labels = None
  4326. self.cls_out_labels = cls_out_labels
  4327. def set_gguf_parameters(self):
  4328. super().set_gguf_parameters()
  4329. self.gguf_writer.add_causal_attention(False)
  4330. self._try_set_pooling_type()
  4331. if self.cls_out_labels:
  4332. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4333. def set_vocab(self):
  4334. tokens, toktypes, tokpre = self.get_vocab_base()
  4335. self.vocab_size = len(tokens)
  4336. # we need this to validate the size of the token_type embeddings
  4337. # though currently we are passing all zeros to the token_type embeddings
  4338. # "Sequence A" or "Sequence B"
  4339. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4340. # convert to phantom space vocab
  4341. def phantom(tok):
  4342. if tok.startswith("[") and tok.endswith("]"):
  4343. return tok
  4344. if tok.startswith("##"):
  4345. return tok[2:]
  4346. return "\u2581" + tok
  4347. tokens = list(map(phantom, tokens))
  4348. # add vocab to gguf
  4349. self.gguf_writer.add_tokenizer_model("bert")
  4350. self.gguf_writer.add_tokenizer_pre(tokpre)
  4351. self.gguf_writer.add_token_list(tokens)
  4352. self.gguf_writer.add_token_types(toktypes)
  4353. # handle special tokens
  4354. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4355. special_vocab.add_to_gguf(self.gguf_writer)
  4356. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4357. del bid # unused
  4358. if name.startswith("bert."):
  4359. name = name[5:]
  4360. if name.endswith(".gamma"):
  4361. name = name[:-6] + ".weight"
  4362. if name.endswith(".beta"):
  4363. name = name[:-5] + ".bias"
  4364. # we are only using BERT for embeddings so we don't need the pooling layer
  4365. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4366. return [] # we don't need these
  4367. if name.startswith("cls.predictions"):
  4368. return []
  4369. if name.startswith("cls.seq_relationship"):
  4370. return []
  4371. if self.cls_out_labels:
  4372. # For BertForSequenceClassification (direct projection layer)
  4373. if name == "classifier.weight":
  4374. name = "classifier.out_proj.weight"
  4375. if name == "classifier.bias":
  4376. name = "classifier.out_proj.bias"
  4377. return [(self.map_tensor_name(name), data_torch)]
  4378. def _xlmroberta_tokenizer_init(self) -> None:
  4379. # we need the pad_token_id to know how to chop down position_embd matrix
  4380. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4381. self._position_offset = 1 + pad_token_id
  4382. if "max_position_embeddings" in self.hparams:
  4383. self.hparams["max_position_embeddings"] -= self._position_offset
  4384. else:
  4385. self._position_offset = None
  4386. def _xlmroberta_set_vocab(self) -> None:
  4387. # to avoid TypeError: Descriptors cannot be created directly
  4388. # exception when importing sentencepiece_model_pb2
  4389. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4390. from sentencepiece import SentencePieceProcessor
  4391. from sentencepiece import sentencepiece_model_pb2 as model
  4392. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4393. tokenizer_json = {}
  4394. tokenizer_config_json = {}
  4395. if not tokenizer_path.is_file():
  4396. tokenizer_path = self.dir_model / 'tokenizer.json'
  4397. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4398. if not tokenizer_path.is_file():
  4399. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4400. from base64 import b64decode
  4401. from transformers import AutoTokenizer
  4402. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4403. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4404. tokenizer_json = json.load(fp)
  4405. if tokenizer_config_path.is_file():
  4406. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4407. tokenizer_config_json = json.load(fp)
  4408. add_prefix = tokenizer.add_prefix_space
  4409. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4410. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4411. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4412. else:
  4413. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4414. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4415. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4416. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4417. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4418. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4419. tokenizer = SentencePieceProcessor()
  4420. tokenizer.LoadFromFile(str(tokenizer_path))
  4421. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4422. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4423. scores: list[float] = [-10000.0] * vocab_size
  4424. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4425. if isinstance(tokenizer, SentencePieceProcessor):
  4426. for token_id in range(tokenizer.vocab_size()):
  4427. piece = tokenizer.IdToPiece(token_id)
  4428. text = piece.encode("utf-8")
  4429. score = tokenizer.GetScore(token_id)
  4430. toktype = SentencePieceTokenTypes.NORMAL
  4431. if tokenizer.IsUnknown(token_id):
  4432. toktype = SentencePieceTokenTypes.UNKNOWN
  4433. elif tokenizer.IsControl(token_id):
  4434. toktype = SentencePieceTokenTypes.CONTROL
  4435. elif tokenizer.IsUnused(token_id):
  4436. toktype = SentencePieceTokenTypes.UNUSED
  4437. elif tokenizer.IsByte(token_id):
  4438. toktype = SentencePieceTokenTypes.BYTE
  4439. tokens[token_id] = text
  4440. scores[token_id] = score
  4441. toktypes[token_id] = toktype
  4442. else:
  4443. added_vocab = tokenizer.get_added_vocab()
  4444. unk_token = tokenizer_config_json.get("unk_token")
  4445. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4446. for token_id in range(tokenizer.vocab_size):
  4447. piece = tokenizer._convert_id_to_token(token_id)
  4448. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4449. text = piece.encode("utf-8")
  4450. score = tokenizer_json["model"]["vocab"][token_id][1]
  4451. toktype = SentencePieceTokenTypes.NORMAL
  4452. if token_id == unk_token_id:
  4453. toktype = SentencePieceTokenTypes.UNKNOWN
  4454. elif token_id in tokenizer.all_special_ids:
  4455. toktype = SentencePieceTokenTypes.CONTROL
  4456. elif token_id in added_vocab.values():
  4457. toktype = SentencePieceTokenTypes.USER_DEFINED
  4458. # No reliable way to detect this, but jina doesn't have any
  4459. # elif tokenizer.IsByte(token_id):
  4460. # toktype = SentencePieceTokenTypes.BYTE
  4461. tokens[token_id] = text
  4462. scores[token_id] = score
  4463. toktypes[token_id] = toktype
  4464. if isinstance(tokenizer, SentencePieceProcessor):
  4465. # realign tokens (see HF tokenizer code)
  4466. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4467. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4468. toktypes = [
  4469. SentencePieceTokenTypes.CONTROL,
  4470. SentencePieceTokenTypes.CONTROL,
  4471. SentencePieceTokenTypes.CONTROL,
  4472. SentencePieceTokenTypes.UNKNOWN,
  4473. ] + toktypes[3:-1]
  4474. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4475. # Add mask token missing from sentencepiece.bpe.model
  4476. tokens[250001] = b'<mask>'
  4477. scores[250001] = 0.0
  4478. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4479. self.gguf_writer.add_tokenizer_model("t5")
  4480. self.gguf_writer.add_tokenizer_pre("default")
  4481. self.gguf_writer.add_token_list(tokens)
  4482. self.gguf_writer.add_token_scores(scores)
  4483. self.gguf_writer.add_token_types(toktypes)
  4484. self.gguf_writer.add_add_space_prefix(add_prefix)
  4485. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4486. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4487. if precompiled_charsmap:
  4488. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4489. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4490. special_vocab.add_to_gguf(self.gguf_writer)
  4491. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4492. class DistilBertModel(BertModel):
  4493. model_arch = gguf.MODEL_ARCH.BERT
  4494. def set_gguf_parameters(self):
  4495. self.gguf_writer.add_layer_norm_eps(1e-12)
  4496. logger.info("gguf: layer norm epsilon = 1e-12")
  4497. super().set_gguf_parameters()
  4498. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4499. if name.startswith("distilbert."):
  4500. name = name[11:]
  4501. # These layers act as MLM head, so we don't need them
  4502. if name.startswith("vocab_"):
  4503. return []
  4504. return super().modify_tensors(data_torch, name, bid)
  4505. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4506. class RobertaModel(BertModel):
  4507. model_arch = gguf.MODEL_ARCH.BERT
  4508. def __init__(self, *args, **kwargs):
  4509. super().__init__(*args, **kwargs)
  4510. # we need the pad_token_id to know how to chop down position_embd matrix
  4511. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4512. self._position_offset = 1 + pad_token_id
  4513. if "max_position_embeddings" in self.hparams:
  4514. self.hparams["max_position_embeddings"] -= self._position_offset
  4515. else:
  4516. self._position_offset = None
  4517. def set_vocab(self):
  4518. """Support BPE tokenizers for roberta models"""
  4519. bpe_tok_path = self.dir_model / "tokenizer.json"
  4520. if bpe_tok_path.exists():
  4521. self._set_vocab_gpt2()
  4522. # we need this to validate the size of the token_type embeddings
  4523. # though currently we are passing all zeros to the token_type embeddings
  4524. # "Sequence A" or "Sequence B"
  4525. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4526. else:
  4527. return super().set_vocab()
  4528. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4529. # if name starts with "roberta.", remove the prefix
  4530. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4531. if name.startswith("roberta."):
  4532. name = name[8:]
  4533. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4534. if name == "embeddings.position_embeddings.weight":
  4535. if self._position_offset is not None:
  4536. data_torch = data_torch[self._position_offset:,:]
  4537. return super().modify_tensors(data_torch, name, bid)
  4538. @ModelBase.register("NomicBertModel")
  4539. class NomicBertModel(BertModel):
  4540. model_arch = gguf.MODEL_ARCH.BERT
  4541. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4542. hparams = kwargs.pop("hparams", None)
  4543. if hparams is None:
  4544. hparams = ModelBase.load_hparams(dir_model, False)
  4545. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4546. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4547. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4548. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4549. if self._tokenizer_is_xlmroberta:
  4550. self._xlmroberta_tokenizer_init()
  4551. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4552. if npos == 8192 and mtp == 2048:
  4553. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4554. elif npos == 2048 and mtp == 2048:
  4555. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4556. else:
  4557. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4558. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4559. # this doesn't do anything in the HF version
  4560. assert self.hparams["causal"] is False
  4561. # no bias tensors unless MoE
  4562. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4563. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4564. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4565. # norm at end of layer
  4566. assert self.hparams["prenorm"] is False
  4567. # standard RoPE
  4568. assert self.hparams["rotary_emb_fraction"] == 1.0
  4569. assert self.hparams["rotary_emb_interleaved"] is False
  4570. assert self.hparams["rotary_emb_scale_base"] is None
  4571. def set_vocab(self) -> None:
  4572. if self._tokenizer_is_xlmroberta:
  4573. return self._xlmroberta_set_vocab()
  4574. return super().set_vocab()
  4575. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4576. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4577. if "mlp.experts.bias" in name:
  4578. return [] # Explicitly return an empty list.
  4579. if "mlp.experts.mlp.w1" in name:
  4580. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4581. name += ".weight"
  4582. if "mlp.experts.mlp.w2" in name:
  4583. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4584. data_torch = data_torch.transpose(1, 2)
  4585. name += ".weight"
  4586. return [(self.map_tensor_name(name), data_torch)]
  4587. def set_gguf_parameters(self):
  4588. super().set_gguf_parameters()
  4589. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4590. if self.is_moe:
  4591. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4592. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4593. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4594. def _is_tokenizer_xlmroberta(self) -> bool:
  4595. with open(self.dir_model / "tokenizer.json") as f:
  4596. tokenizer_json = json.load(f)
  4597. toktyp = tokenizer_json["model"]["type"]
  4598. if toktyp == "Unigram":
  4599. return True
  4600. if toktyp == "WordPiece":
  4601. return False
  4602. raise ValueError(f"unknown tokenizer: {toktyp}")
  4603. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4604. class NeoBert(BertModel):
  4605. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4606. def set_gguf_parameters(self):
  4607. super().set_gguf_parameters()
  4608. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4609. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4610. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4611. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4612. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4613. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4614. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4615. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4616. def modify_tensors(self, data_torch, name, bid):
  4617. if name.startswith("decoder."):
  4618. return []
  4619. if name.startswith("model."):
  4620. name = name[6:]
  4621. return super().modify_tensors(data_torch, name, bid)
  4622. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4623. class XLMRobertaModel(BertModel):
  4624. model_arch = gguf.MODEL_ARCH.BERT
  4625. _lora_files = {}
  4626. _lora_names = []
  4627. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4628. hparams = kwargs.pop("hparams", None)
  4629. if hparams is None:
  4630. hparams = ModelBase.load_hparams(dir_model, False)
  4631. if lora_names := hparams.get("lora_adaptations"):
  4632. self._lora_names = lora_names
  4633. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4634. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4635. self._xlmroberta_tokenizer_init()
  4636. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4637. if self._lora_names:
  4638. for name in self._lora_names:
  4639. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4640. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4641. return super().generate_extra_tensors()
  4642. def set_type(self):
  4643. for lora_writer in self._lora_files.values():
  4644. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4645. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4646. super().set_type()
  4647. def set_vocab(self):
  4648. self._xlmroberta_set_vocab()
  4649. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4650. # if name starts with "roberta.", remove the prefix
  4651. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4652. if name.startswith("roberta."):
  4653. name = name[8:]
  4654. # jina-embeddings-v3
  4655. if ".parametrizations." in name:
  4656. name = name.replace(".parametrizations.", ".")
  4657. if name.endswith(".original"):
  4658. name = name[:-9]
  4659. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4660. if name == "embeddings.position_embeddings.weight":
  4661. if self._position_offset is not None:
  4662. data_torch = data_torch[self._position_offset:,:]
  4663. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4664. if name.startswith("pooler.dense"):
  4665. return []
  4666. num_loras = data_torch.size(0)
  4667. assert num_loras == len(self._lora_names)
  4668. # Split out each LoRA in their own GGUF
  4669. for i, lora_writer in enumerate(self._lora_files.values()):
  4670. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4671. data = data_torch[i, :, :]
  4672. # Transpose/flip token_embd/types into correct shape
  4673. if new_name == "token_embd.weight.lora_b":
  4674. data = data.T
  4675. elif new_name.startswith("token_types.weight."):
  4676. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4677. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4678. return []
  4679. return super().modify_tensors(data_torch, name, bid)
  4680. def set_gguf_parameters(self):
  4681. super().set_gguf_parameters()
  4682. # jina-embeddings-v3
  4683. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4684. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4685. lora_alpha = self.hparams.get("lora_alpha")
  4686. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4687. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4688. for lora_name, lora_writer in self._lora_files.items():
  4689. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4690. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4691. if lora_prompt_prefixes:
  4692. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4693. def write(self):
  4694. super().write()
  4695. for lora_writer in self._lora_files.values():
  4696. lora_writer.write_header_to_file()
  4697. lora_writer.write_kv_data_to_file()
  4698. lora_writer.write_tensors_to_file(progress=True)
  4699. lora_writer.close()
  4700. @ModelBase.register("GemmaForCausalLM")
  4701. class GemmaModel(TextModel):
  4702. model_arch = gguf.MODEL_ARCH.GEMMA
  4703. def set_vocab(self):
  4704. self._set_vocab_sentencepiece()
  4705. # TODO: these special tokens should be exported only for the CodeGemma family
  4706. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4707. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4708. special_vocab._set_special_token("prefix", 67)
  4709. special_vocab._set_special_token("suffix", 69)
  4710. special_vocab._set_special_token("middle", 68)
  4711. special_vocab._set_special_token("fsep", 70)
  4712. special_vocab._set_special_token("eot", 107)
  4713. special_vocab.chat_template = None # do not add it twice
  4714. special_vocab.add_to_gguf(self.gguf_writer)
  4715. self.gguf_writer.add_add_space_prefix(False)
  4716. def set_gguf_parameters(self):
  4717. hparams = self.hparams
  4718. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4719. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4720. self.gguf_writer.add_block_count(self.block_count)
  4721. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4722. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4723. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4724. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4725. self.gguf_writer.add_key_length(hparams["head_dim"])
  4726. self.gguf_writer.add_value_length(hparams["head_dim"])
  4727. self.gguf_writer.add_file_type(self.ftype)
  4728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4729. del bid # unused
  4730. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4731. # To prevent errors, skip loading lm_head.weight.
  4732. if name == "lm_head.weight":
  4733. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4734. return []
  4735. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4736. if name.endswith("norm.weight"):
  4737. data_torch = data_torch + 1
  4738. return [(self.map_tensor_name(name), data_torch)]
  4739. @ModelBase.register("Gemma2ForCausalLM")
  4740. class Gemma2Model(TextModel):
  4741. model_arch = gguf.MODEL_ARCH.GEMMA2
  4742. def set_vocab(self):
  4743. self._set_vocab_sentencepiece()
  4744. self.gguf_writer.add_add_space_prefix(False)
  4745. def set_gguf_parameters(self):
  4746. hparams = self.hparams
  4747. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4748. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4749. self.gguf_writer.add_block_count(self.block_count)
  4750. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4751. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4752. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4753. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4754. self.gguf_writer.add_key_length(hparams["head_dim"])
  4755. self.gguf_writer.add_value_length(hparams["head_dim"])
  4756. self.gguf_writer.add_file_type(self.ftype)
  4757. self.gguf_writer.add_attn_logit_softcapping(
  4758. self.hparams["attn_logit_softcapping"]
  4759. )
  4760. self.gguf_writer.add_final_logit_softcapping(
  4761. self.hparams["final_logit_softcapping"]
  4762. )
  4763. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4765. del bid # unused
  4766. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4767. # To prevent errors, skip loading lm_head.weight.
  4768. if name == "lm_head.weight":
  4769. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4770. return []
  4771. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4772. if name.endswith("norm.weight"):
  4773. data_torch = data_torch + 1
  4774. return [(self.map_tensor_name(name), data_torch)]
  4775. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4776. class Gemma3Model(TextModel):
  4777. model_arch = gguf.MODEL_ARCH.GEMMA3
  4778. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4779. def set_vocab(self):
  4780. if (self.dir_model / "tokenizer.model").is_file():
  4781. self._set_vocab_sentencepiece()
  4782. self.gguf_writer.add_add_space_prefix(False)
  4783. else:
  4784. self._set_vocab_gpt2()
  4785. def set_gguf_parameters(self):
  4786. hparams = self.hparams
  4787. # some default values are not specified in the hparams
  4788. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4789. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4790. self.gguf_writer.add_block_count(self.block_count)
  4791. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4792. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4793. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4794. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4795. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4796. self.gguf_writer.add_file_type(self.ftype)
  4797. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4798. # attn_logit_softcapping is removed in Gemma3
  4799. assert hparams.get("attn_logit_softcapping") is None
  4800. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4801. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4802. if hparams.get("sliding_window_pattern") != 1:
  4803. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4804. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4805. if hparams.get("rope_scaling") is not None:
  4806. rope_scaling = hparams["rope_scaling"]
  4807. if rope_scaling["rope_type"] == "linear":
  4808. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4809. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4810. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4811. elif rope_scaling["rope_type"] == "yarn":
  4812. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4813. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4814. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4815. self.gguf_writer.add_rope_scaling_yarn_ext_factor(rope_scaling["extrapolation_factor"])
  4816. self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_scaling["beta_fast"])
  4817. self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_scaling["beta_slow"])
  4818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4819. del bid # unused
  4820. if "language_model." in name:
  4821. name = name.replace("language_model.", "")
  4822. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4823. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4824. return [] # skip vision tensors
  4825. # remove OOV (out-of-vocabulary) rows in token_embd
  4826. if "embed_tokens.weight" in name:
  4827. if (self.dir_model / "tokenizer.model").is_file():
  4828. tokens = self._create_vocab_sentencepiece()[0]
  4829. else:
  4830. tokens = self.get_vocab_base()[0]
  4831. data_torch = data_torch[:len(tokens)]
  4832. # ref code in Gemma3RMSNorm
  4833. # output = output * (1.0 + self.weight.float())
  4834. # note: this is not the case on gemma3n
  4835. if name.endswith("norm.weight"):
  4836. data_torch = data_torch + self.norm_shift
  4837. return [(self.map_tensor_name(name), data_torch)]
  4838. @ModelBase.register("Gemma3TextModel")
  4839. class EmbeddingGemma(Gemma3Model):
  4840. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4841. module_paths = []
  4842. dense_features_dims = {}
  4843. def __init__(self, *args, **kwargs):
  4844. super().__init__(*args, **kwargs)
  4845. if self.sentence_transformers_dense_modules:
  4846. # read modules.json to determine if model has Dense layers
  4847. modules_file = self.dir_model / "modules.json"
  4848. if modules_file.is_file():
  4849. with open(modules_file, encoding="utf-8") as modules_json_file:
  4850. mods = json.load(modules_json_file)
  4851. for mod in mods:
  4852. if mod["type"] == "sentence_transformers.models.Dense":
  4853. mod_path = mod["path"]
  4854. # check if model.safetensors file for Dense layer exists
  4855. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4856. if model_tensors_file.is_file():
  4857. self.module_paths.append(mod_path)
  4858. # read config.json of the Dense layer to get in/out features
  4859. mod_conf_file = self.dir_model / mod_path / "config.json"
  4860. if mod_conf_file.is_file():
  4861. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4862. mod_conf = json.load(mod_conf_json_file)
  4863. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4864. prefix = self._get_dense_prefix(mod_path)
  4865. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4866. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4867. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4868. from safetensors.torch import load_file
  4869. module_paths = list(self.module_paths)
  4870. for i, module_path in enumerate(module_paths):
  4871. tensors_file = self.dir_model / module_path / "model.safetensors"
  4872. local_tensors = load_file(tensors_file)
  4873. tensor_name = self._get_dense_prefix(module_path)
  4874. for name, local_tensor in local_tensors.items():
  4875. if not name.endswith(".weight"):
  4876. continue
  4877. orig_name = name.replace("linear", tensor_name)
  4878. name = self.map_tensor_name(orig_name)
  4879. yield name, local_tensor.clone()
  4880. @staticmethod
  4881. def _get_dense_prefix(module_path) -> str:
  4882. """Get the tensor name prefix for the Dense layer from module path."""
  4883. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4884. return tensor_name
  4885. def set_gguf_parameters(self):
  4886. super().set_gguf_parameters()
  4887. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4888. # constructor. We want to use the value from the original model's config.json.
  4889. # ref: https://github.com/huggingface/transformers/pull/40700
  4890. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4891. config = json.load(f)
  4892. orig_sliding_window = config.get("sliding_window")
  4893. if orig_sliding_window is None:
  4894. raise ValueError("sliding_window not found in model config - this is required for the model")
  4895. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4896. f"instead of {self.hparams['sliding_window']}")
  4897. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4898. if self.sentence_transformers_dense_modules:
  4899. for dense, dims in self.dense_features_dims.items():
  4900. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4901. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4902. self._try_set_pooling_type()
  4903. @ModelBase.register("Gemma3ForConditionalGeneration")
  4904. class Gemma3VisionModel(MmprojModel):
  4905. def set_gguf_parameters(self):
  4906. super().set_gguf_parameters()
  4907. hparams = self.hparams
  4908. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4909. # default values below are taken from HF tranformers code
  4910. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4911. self.gguf_writer.add_vision_use_gelu(True)
  4912. # calculate proj_scale_factor (used by tinygemma3 test model)
  4913. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4914. n_per_side = int(image_seq_length ** 0.5)
  4915. image_size = self.hparams["image_size"]
  4916. patch_size = self.hparams["patch_size"]
  4917. proj_scale_factor = (image_size // patch_size) // n_per_side
  4918. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4919. # we only need to write this if it's not the default value
  4920. # in this case, we are converting a test model
  4921. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4922. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4923. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4924. if "input_projection" in name:
  4925. return gguf.GGMLQuantizationType.F16
  4926. if ".embeddings." in name:
  4927. return gguf.GGMLQuantizationType.F32
  4928. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4929. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4930. del bid # unused
  4931. if "vision_model.head." in name:
  4932. return [] # skip redundant tensors for tinygemma3
  4933. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4934. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4935. # process vision tensors
  4936. name = name.replace("_weight", ".weight")
  4937. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4938. # the other norm values are part of SigLIP model, and they are already correct
  4939. # ref code: Gemma3RMSNorm
  4940. if "soft_emb_norm.weight" in name:
  4941. logger.info(f"Correcting norm value for '{name}'")
  4942. data_torch = data_torch + 1
  4943. return [(self.map_tensor_name(name), data_torch)]
  4944. return [] # skip other tensors
  4945. @ModelBase.register("Gemma3nForConditionalGeneration")
  4946. class Gemma3NModel(Gemma3Model):
  4947. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4948. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4949. _altup_proj: list[Tensor] = []
  4950. _altup_unembd: list[Tensor] = []
  4951. def __init__(self, *args, **kwargs):
  4952. super().__init__(*args, **kwargs)
  4953. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4954. self._altup_proj = [
  4955. torch.Tensor(), # to be replaced
  4956. torch.Tensor(), # to be replaced
  4957. torch.Tensor(), # to be replaced
  4958. ]
  4959. self._altup_unembd = [
  4960. torch.Tensor(), # to be replaced
  4961. torch.Tensor(), # to be replaced
  4962. torch.Tensor(), # to be replaced
  4963. ]
  4964. def set_vocab(self):
  4965. super().set_vocab()
  4966. def set_gguf_parameters(self):
  4967. super().set_gguf_parameters()
  4968. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4969. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4970. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4971. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4972. activation_sparsity_scale = []
  4973. for s in self.hparams["activation_sparsity_pattern"]:
  4974. normal_dist = torch.distributions.normal.Normal(0, 1)
  4975. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4976. activation_sparsity_scale.append(std_multiplier.item())
  4977. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4978. sliding_window_pattern = []
  4979. for t in self.hparams["layer_types"]:
  4980. sliding_window_pattern.append(t == "sliding_attention")
  4981. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4982. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4983. has_all = all(m.numel() > 0 for m in matrices)
  4984. if not has_all:
  4985. return None
  4986. else:
  4987. return torch.stack(matrices, dim=0)
  4988. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4989. if name.endswith("_scale"):
  4990. name = name + ".weight"
  4991. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4992. if "language_model." not in name:
  4993. return [] # skip non-language model tensors
  4994. if "altup_unembed_projections" in name:
  4995. data_torch = data_torch.to(device="cpu")
  4996. if ".0." in name:
  4997. self._altup_unembd[0] = data_torch
  4998. elif ".1." in name:
  4999. self._altup_unembd[1] = data_torch
  5000. elif ".2." in name:
  5001. self._altup_unembd[2] = data_torch
  5002. else:
  5003. raise ValueError(f"Unknown name: {name}")
  5004. out = self._stack_matrices(self._altup_unembd)
  5005. if out is not None:
  5006. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  5007. else:
  5008. return []
  5009. if "altup_projections" in name:
  5010. data_torch = data_torch.to(device="cpu")
  5011. if ".0." in name:
  5012. self._altup_proj[0] = data_torch
  5013. elif ".1." in name:
  5014. self._altup_proj[1] = data_torch
  5015. elif ".2." in name:
  5016. self._altup_proj[2] = data_torch
  5017. else:
  5018. raise ValueError(f"Unknown name: {name}")
  5019. out = self._stack_matrices(self._altup_proj)
  5020. if out is not None:
  5021. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5022. else:
  5023. return []
  5024. return super().modify_tensors(data_torch, name, bid)
  5025. @ModelBase.register("Starcoder2ForCausalLM")
  5026. class StarCoder2Model(TextModel):
  5027. model_arch = gguf.MODEL_ARCH.STARCODER2
  5028. @ModelBase.register("Rwkv6ForCausalLM")
  5029. class Rwkv6Model(TextModel):
  5030. model_arch = gguf.MODEL_ARCH.RWKV6
  5031. def set_vocab(self):
  5032. self._set_vocab_rwkv_world()
  5033. def set_gguf_parameters(self):
  5034. head_size = self.hparams["head_size"]
  5035. hidden_size = self.hparams["hidden_size"]
  5036. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5037. rescale_every_n_layers = self.hparams["rescale_every"]
  5038. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5039. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5040. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5041. # RWKV isn't context limited
  5042. self.gguf_writer.add_context_length(1048576)
  5043. self.gguf_writer.add_embedding_length(hidden_size)
  5044. self.gguf_writer.add_block_count(self.block_count)
  5045. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5046. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5047. self.gguf_writer.add_wkv_head_size(head_size)
  5048. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5049. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5050. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5051. self.gguf_writer.add_file_type(self.ftype)
  5052. # required by llama.cpp, unused
  5053. self.gguf_writer.add_head_count(0)
  5054. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5055. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5056. new_name = self.map_tensor_name(name)
  5057. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5058. new_name += ".weight"
  5059. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5060. data_torch = data_torch.transpose(0, 1)
  5061. if new_name.endswith("time_mix_w2.weight"):
  5062. data_torch = data_torch.permute(0, 2, 1)
  5063. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5064. data_torch = data_torch.squeeze()
  5065. try:
  5066. rescale_every_n_layers = self.hparams["rescale_every"]
  5067. if rescale_every_n_layers > 0:
  5068. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5069. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5070. except KeyError:
  5071. pass
  5072. # concat time_mix_lerp weights to reduce some cpu overhead
  5073. # also reduces the number of tensors in the model
  5074. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5075. try:
  5076. self.lerp_weights[bid][new_name] = data_torch
  5077. except KeyError:
  5078. self.lerp_weights[bid] = {new_name: data_torch}
  5079. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5080. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5081. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5082. yield (new_name, data)
  5083. return
  5084. yield (new_name, data_torch)
  5085. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5086. class RWKV6Qwen2Model(Rwkv6Model):
  5087. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5088. def set_vocab(self):
  5089. try:
  5090. self._set_vocab_sentencepiece()
  5091. except FileNotFoundError:
  5092. self._set_vocab_gpt2()
  5093. def set_gguf_parameters(self):
  5094. num_attention_heads = self.hparams["num_attention_heads"]
  5095. num_key_value_heads = self.hparams["num_key_value_heads"]
  5096. hidden_size = self.hparams["hidden_size"]
  5097. head_size = hidden_size // num_attention_heads
  5098. rms_norm_eps = self.hparams["rms_norm_eps"]
  5099. intermediate_size = self.hparams["intermediate_size"]
  5100. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5101. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5102. # RWKV isn't context limited
  5103. self.gguf_writer.add_context_length(1048576)
  5104. self.gguf_writer.add_embedding_length(hidden_size)
  5105. self.gguf_writer.add_block_count(self.block_count)
  5106. self.gguf_writer.add_wkv_head_size(head_size)
  5107. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5108. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5109. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5110. self.gguf_writer.add_file_type(self.ftype)
  5111. # special parameters for time_mixing in RWKV6QWEN2
  5112. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5113. self.gguf_writer.add_token_shift_count(1)
  5114. # RWKV6QWEN2 use grouped key/value like GQA
  5115. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5116. # required by llama.cpp, unused
  5117. self.gguf_writer.add_head_count(0)
  5118. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5119. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5120. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5121. data = data.view(5, -1, data.shape[-1])
  5122. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5123. # permute them here to avoid code changes
  5124. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5125. if "w2" in new_name:
  5126. data = data.view(5, -1, data.shape[-1])
  5127. yield (new_name, data)
  5128. continue
  5129. yield (new_name, data)
  5130. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5131. class Rwkv7Model(TextModel):
  5132. model_arch = gguf.MODEL_ARCH.RWKV7
  5133. def set_vocab(self):
  5134. self._set_vocab_rwkv_world()
  5135. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5136. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5137. def set_gguf_parameters(self):
  5138. try:
  5139. head_size = self.hparams["head_size"]
  5140. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5141. except KeyError:
  5142. head_size = self.hparams["head_dim"]
  5143. layer_norm_eps = self.hparams["norm_eps"]
  5144. hidden_size = self.hparams["hidden_size"]
  5145. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5146. # ICLR: In-Context-Learning-Rate
  5147. try:
  5148. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5149. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5150. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5151. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5152. except KeyError:
  5153. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5154. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5155. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5156. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5157. # RWKV isn't context limited
  5158. self.gguf_writer.add_context_length(1048576)
  5159. self.gguf_writer.add_embedding_length(hidden_size)
  5160. self.gguf_writer.add_block_count(self.block_count)
  5161. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5162. self.gguf_writer.add_wkv_head_size(head_size)
  5163. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5164. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5165. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5166. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5167. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5168. self.gguf_writer.add_file_type(self.ftype)
  5169. # required by llama.cpp, unused
  5170. self.gguf_writer.add_head_count(0)
  5171. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5172. lora_needs_transpose: bool = True
  5173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5174. # unify tensor names here to make life easier
  5175. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5176. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5177. name = name.replace("time_mixer.", "")
  5178. # lora layer names in fla-hub's impl
  5179. if "_lora.lora" in name:
  5180. self.lora_needs_transpose = False
  5181. name = name.replace("_lora.lora.0.weight", "1.weight")
  5182. name = name.replace("_lora.lora.2.weight", "2.weight")
  5183. name = name.replace("_lora.lora.2.bias", "0.weight")
  5184. name = name.replace("feed_forward_norm", "ln2")
  5185. name = name.replace("g_norm", "ln_x")
  5186. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5187. # some models have dummy v0/v1/v2 on first layer while others don't
  5188. # ignore them all since they are not used
  5189. return
  5190. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5191. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5192. if bid is not None and "attention.x_" in name:
  5193. if "attention.x_x" in name:
  5194. # already concatenated
  5195. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5196. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5197. yield (new_name, data)
  5198. else:
  5199. try:
  5200. self.lerp_weights[bid][name] = data_torch
  5201. except KeyError:
  5202. self.lerp_weights[bid] = {name: data_torch}
  5203. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5204. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5205. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5206. yield (new_name, data)
  5207. return
  5208. else:
  5209. data_torch = data_torch.squeeze()
  5210. new_name = self.map_tensor_name(name)
  5211. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5212. new_name += ".weight"
  5213. if self.lora_needs_transpose and any(
  5214. new_name.endswith(t) for t in [
  5215. "time_mix_w1.weight", "time_mix_w2.weight",
  5216. "time_mix_a1.weight", "time_mix_a2.weight",
  5217. "time_mix_v1.weight", "time_mix_v2.weight",
  5218. "time_mix_g1.weight", "time_mix_g2.weight",
  5219. ]
  5220. ):
  5221. data_torch = data_torch.transpose(0, 1)
  5222. if 'r_k' in new_name:
  5223. data_torch = data_torch.flatten()
  5224. if bid == 0 and "time_mix_a" in new_name:
  5225. # dummy v0/v1/v2 on first layer
  5226. # easist way to make llama happy
  5227. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5228. yield (new_name, data_torch)
  5229. @ModelBase.register("RwkvHybridForCausalLM")
  5230. class ARwkv7Model(Rwkv7Model):
  5231. model_arch = gguf.MODEL_ARCH.ARWKV7
  5232. def set_vocab(self):
  5233. try:
  5234. self._set_vocab_sentencepiece()
  5235. except FileNotFoundError:
  5236. self._set_vocab_gpt2()
  5237. def set_gguf_parameters(self):
  5238. hidden_size = self.hparams["hidden_size"]
  5239. head_size = self.hparams["head_size"]
  5240. rms_norm_eps = self.hparams["rms_norm_eps"]
  5241. intermediate_size = self.hparams["intermediate_size"]
  5242. wkv_has_gate = self.hparams["wkv_has_gate"]
  5243. assert self.hparams["wkv_version"] == 7
  5244. # ICLR: In-Context-Learning-Rate
  5245. lora_rank_decay = 64
  5246. lora_rank_iclr = 64
  5247. lora_rank_value_residual_mix = 32
  5248. lora_rank_gate = 128 if wkv_has_gate else 0
  5249. # RWKV isn't context limited
  5250. self.gguf_writer.add_context_length(1048576)
  5251. self.gguf_writer.add_embedding_length(hidden_size)
  5252. self.gguf_writer.add_block_count(self.block_count)
  5253. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5254. self.gguf_writer.add_wkv_head_size(head_size)
  5255. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5256. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5257. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5258. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5259. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5260. self.gguf_writer.add_file_type(self.ftype)
  5261. self.gguf_writer.add_token_shift_count(1)
  5262. # required by llama.cpp, unused
  5263. self.gguf_writer.add_head_count(0)
  5264. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5265. class MambaModel(TextModel):
  5266. model_arch = gguf.MODEL_ARCH.MAMBA
  5267. def __init__(self, dir_model: Path, *args, **kwargs):
  5268. # Avoid using AutoConfig for hparams
  5269. hparams = kwargs.pop("hparams", None)
  5270. if hparams is None:
  5271. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5272. hparams = json.load(f)
  5273. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5274. def set_vocab(self):
  5275. vocab_size = self.hparams["vocab_size"]
  5276. # Round vocab size to next multiple of 8
  5277. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5278. # pad using ceiling division
  5279. # ref: https://stackoverflow.com/a/17511341/22827863
  5280. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5281. self.hparams["vocab_size"] = vocab_size
  5282. if (self.dir_model / "tokenizer.json").is_file():
  5283. self._set_vocab_gpt2()
  5284. elif (self.dir_model / "tokenizer.model").is_file():
  5285. self._set_vocab_sentencepiece()
  5286. else:
  5287. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5288. self._set_vocab_builtin("gpt-neox", vocab_size)
  5289. def set_gguf_parameters(self):
  5290. d_model = self.find_hparam(["hidden_size", "d_model"])
  5291. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5292. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5293. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5294. # ceiling division
  5295. # ref: https://stackoverflow.com/a/17511341/22827863
  5296. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5297. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5298. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5299. use_dt_b_c_norm = False
  5300. # For falconmamba we do apply RMS norm on B / DT and C layers
  5301. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5302. use_dt_b_c_norm = True
  5303. # Fail early for models which don't have a block expansion factor of 2
  5304. assert d_inner == 2 * d_model
  5305. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5306. self.gguf_writer.add_embedding_length(d_model)
  5307. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5308. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5309. self.gguf_writer.add_block_count(self.block_count)
  5310. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5311. self.gguf_writer.add_ssm_inner_size(d_inner)
  5312. self.gguf_writer.add_ssm_state_size(d_state)
  5313. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5314. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5315. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5316. self.gguf_writer.add_file_type(self.ftype)
  5317. _tok_embd = None
  5318. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5319. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5320. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5321. new_name = self.map_tensor_name(name)
  5322. if name.endswith(".A_log"):
  5323. logger.debug("A_log --> A ==> " + new_name)
  5324. data_torch = -torch.exp(data_torch)
  5325. # [4 1 8192 1] -> [4 8192 1 1]
  5326. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5327. data_torch = data_torch.squeeze()
  5328. # assuming token_embd.weight is seen before output.weight
  5329. if self._tok_embd is not None and new_name == output_name:
  5330. if torch.equal(self._tok_embd, data_torch):
  5331. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5332. return []
  5333. elif new_name == tok_embd_name:
  5334. self._tok_embd = data_torch
  5335. return [(new_name, data_torch)]
  5336. @ModelBase.register("Mamba2ForCausalLM")
  5337. class Mamba2Model(TextModel):
  5338. model_arch = gguf.MODEL_ARCH.MAMBA2
  5339. def __init__(self, dir_model: Path, *args, **kwargs):
  5340. # Avoid using AutoConfig for hparams
  5341. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5342. hparams = kwargs.pop("hparams", None)
  5343. if hparams is None:
  5344. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5345. hparams = json.load(f)
  5346. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5347. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5348. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5349. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5350. def set_vocab(self):
  5351. vocab_size = self.hparams["vocab_size"]
  5352. # Round vocab size to next multiple of 16
  5353. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5354. # pad using ceiling division
  5355. # ref: https://stackoverflow.com/a/17511341/22827863
  5356. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5357. self.hparams["vocab_size"] = vocab_size
  5358. if (self.dir_model / "tokenizer.model").is_file():
  5359. self._set_vocab_sentencepiece()
  5360. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5361. # mamba-codestral
  5362. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5363. elif (self.dir_model / "tokenizer.json").is_file():
  5364. self._set_vocab_gpt2()
  5365. else:
  5366. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5367. self._set_vocab_builtin("gpt-neox", vocab_size)
  5368. def set_gguf_parameters(self):
  5369. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5370. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5371. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5372. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5373. # Fail early for models which don't have a block expansion factor of 2
  5374. # TODO: does this really matter?
  5375. # skip the assertion for FalconH1 Model
  5376. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5377. assert self.d_inner == 2 * self.d_model
  5378. assert self.d_inner % head_dim == 0
  5379. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5380. self.gguf_writer.add_embedding_length(self.d_model)
  5381. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5382. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5383. self.gguf_writer.add_block_count(self.block_count)
  5384. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5385. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5386. self.gguf_writer.add_ssm_state_size(d_state)
  5387. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5388. self.gguf_writer.add_ssm_group_count(self.n_group)
  5389. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5390. self.gguf_writer.add_file_type(self.ftype)
  5391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5392. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5393. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5394. name = name.removeprefix("model.")
  5395. if name.endswith(".dt_bias"):
  5396. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5397. new_name = self.map_tensor_name(name)
  5398. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5399. data_torch = data_torch.squeeze()
  5400. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5401. gguf.MODEL_TENSOR.SSM_A,
  5402. gguf.MODEL_TENSOR.SSM_D,
  5403. ]):
  5404. # unsqueeze A to use similar shape semantics as Mamba-1
  5405. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5406. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5407. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5408. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5409. if name.endswith(".A_log"):
  5410. logger.debug("A_log --> A ==> " + new_name)
  5411. data_torch = -torch.exp(data_torch)
  5412. yield (new_name, data_torch)
  5413. @ModelBase.register("JambaForCausalLM")
  5414. class JambaModel(TextModel):
  5415. model_arch = gguf.MODEL_ARCH.JAMBA
  5416. def set_vocab(self):
  5417. if (self.dir_model / "tokenizer.model").is_file():
  5418. self._set_vocab_sentencepiece()
  5419. else:
  5420. self._set_vocab_llama_hf()
  5421. self.gguf_writer.add_add_space_prefix(False)
  5422. def set_gguf_parameters(self):
  5423. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5424. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5425. d_inner = self.hparams["mamba_expand"] * d_model
  5426. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5427. # ceiling division
  5428. # ref: https://stackoverflow.com/a/17511341/22827863
  5429. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5430. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5431. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5432. n_kv_head = self.hparams["num_key_value_heads"]
  5433. attn_offset = self.hparams["attn_layer_offset"]
  5434. attn_period = self.hparams["attn_layer_period"]
  5435. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5436. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5437. ]
  5438. self.gguf_writer.add_block_count(self.block_count)
  5439. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5440. self.gguf_writer.add_embedding_length(d_model)
  5441. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5442. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5443. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5444. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5445. self.gguf_writer.add_ssm_inner_size(d_inner)
  5446. self.gguf_writer.add_ssm_state_size(d_state)
  5447. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5448. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5449. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5450. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5451. self.gguf_writer.add_file_type(self.ftype)
  5452. _experts: list[dict[str, Tensor]] | None = None
  5453. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5454. # Mini-Jamba
  5455. name = name.replace(".moe.", ".feed_forward.")
  5456. if bid is not None:
  5457. moe_offset = self.hparams["expert_layer_offset"]
  5458. moe_period = self.hparams["expert_layer_period"]
  5459. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5460. name = name.replace(".experts.0.", ".")
  5461. # process the experts separately
  5462. if ".feed_forward.experts." in name:
  5463. n_experts = self.hparams["num_experts"]
  5464. assert bid is not None
  5465. if self._experts is None:
  5466. self._experts = [{} for _ in range(self.block_count)]
  5467. self._experts[bid][name] = data_torch
  5468. if len(self._experts[bid]) >= n_experts * 3:
  5469. # merge the experts into a single 3d tensor
  5470. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5471. datas: list[Tensor] = []
  5472. for xid in range(n_experts):
  5473. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5474. datas.append(self._experts[bid][ename])
  5475. del self._experts[bid][ename]
  5476. data_torch = torch.stack(datas, dim=0)
  5477. # using the same merged name as qwen2moe
  5478. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5479. new_name = self.map_tensor_name(merged_name)
  5480. yield new_name, data_torch
  5481. return
  5482. new_name = self.map_tensor_name(name)
  5483. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5484. data_torch = data_torch.squeeze()
  5485. if name.endswith(".A_log"):
  5486. logger.debug("A_log --> A ==> " + new_name)
  5487. data_torch = -torch.exp(data_torch)
  5488. yield (new_name, data_torch)
  5489. def prepare_tensors(self):
  5490. super().prepare_tensors()
  5491. if self._experts is not None:
  5492. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5493. experts = [k for d in self._experts for k in d.keys()]
  5494. if len(experts) > 0:
  5495. raise ValueError(f"Unprocessed experts: {experts}")
  5496. @ModelBase.register("CohereForCausalLM")
  5497. class CommandR2Model(TextModel):
  5498. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5499. def __init__(self, *args, **kwargs):
  5500. super().__init__(*args, **kwargs)
  5501. # max_position_embeddings = 8192 in config.json but model was actually
  5502. # trained on 128k context length
  5503. # aya-23 models don't have model_max_length specified
  5504. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5505. def set_gguf_parameters(self):
  5506. super().set_gguf_parameters()
  5507. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5508. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5509. @ModelBase.register("Cohere2ForCausalLM")
  5510. class Cohere2Model(TextModel):
  5511. model_arch = gguf.MODEL_ARCH.COHERE2
  5512. def set_gguf_parameters(self):
  5513. super().set_gguf_parameters()
  5514. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5515. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5516. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5517. rotary_pct = self.hparams["rotary_pct"]
  5518. hidden_size = self.hparams["hidden_size"]
  5519. num_attention_heads = self.hparams["num_attention_heads"]
  5520. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5521. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5522. @ModelBase.register("OlmoForCausalLM")
  5523. @ModelBase.register("OLMoForCausalLM")
  5524. class OlmoModel(TextModel):
  5525. model_arch = gguf.MODEL_ARCH.OLMO
  5526. def set_gguf_parameters(self):
  5527. super().set_gguf_parameters()
  5528. self.gguf_writer.add_layer_norm_eps(1e-5)
  5529. clip_qkv = self.hparams.get("clip_qkv")
  5530. if clip_qkv is not None:
  5531. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5532. # Same as super class, but permuting q_proj, k_proj
  5533. # Copied from: LlamaModel
  5534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5535. del bid # unused
  5536. n_head = self.hparams["num_attention_heads"]
  5537. n_kv_head = self.hparams.get("num_key_value_heads")
  5538. if name.endswith("q_proj.weight"):
  5539. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5540. if name.endswith("k_proj.weight"):
  5541. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5542. return [(self.map_tensor_name(name), data_torch)]
  5543. @ModelBase.register("SeedOssForCausalLM")
  5544. class SeedOssModel(TextModel):
  5545. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5546. @ModelBase.register("Olmo2ForCausalLM")
  5547. @ModelBase.register("Olmo3ForCausalLM")
  5548. class Olmo2Model(TextModel):
  5549. model_arch = gguf.MODEL_ARCH.OLMO2
  5550. def set_gguf_parameters(self):
  5551. super().set_gguf_parameters()
  5552. rope_scaling = self.hparams.get("rope_scaling") or {}
  5553. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5554. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5555. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5556. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5557. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5558. if "sliding_window" in self.hparams:
  5559. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5560. sliding_window_pattern = []
  5561. if "layer_types" in self.hparams:
  5562. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5563. else:
  5564. # Olmo2 does not use sliding window attention.
  5565. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5566. for i in range(self.hparams["num_hidden_layers"]):
  5567. sliding_window_pattern.append((i + 1) % 4 != 0)
  5568. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5569. @ModelBase.register("OlmoeForCausalLM")
  5570. class OlmoeModel(TextModel):
  5571. model_arch = gguf.MODEL_ARCH.OLMOE
  5572. def set_gguf_parameters(self):
  5573. super().set_gguf_parameters()
  5574. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5575. if (n_experts := self.hparams.get("num_experts")) is not None:
  5576. self.gguf_writer.add_expert_count(n_experts)
  5577. _experts: list[dict[str, Tensor]] | None = None
  5578. # Copied from: Qwen2MoeModel
  5579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5580. # process the experts separately
  5581. if name.find("experts") != -1:
  5582. n_experts = self.hparams["num_experts"]
  5583. assert bid is not None
  5584. if self._experts is None:
  5585. self._experts = [{} for _ in range(self.block_count)]
  5586. self._experts[bid][name] = data_torch
  5587. if len(self._experts[bid]) >= n_experts * 3:
  5588. tensors: list[tuple[str, Tensor]] = []
  5589. # merge the experts into a single 3d tensor
  5590. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5591. datas: list[Tensor] = []
  5592. for xid in range(n_experts):
  5593. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5594. datas.append(self._experts[bid][ename])
  5595. del self._experts[bid][ename]
  5596. data_torch = torch.stack(datas, dim=0)
  5597. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5598. new_name = self.map_tensor_name(merged_name)
  5599. tensors.append((new_name, data_torch))
  5600. return tensors
  5601. else:
  5602. return []
  5603. return [(self.map_tensor_name(name), data_torch)]
  5604. # Copied from: Qwen2MoeModel
  5605. def prepare_tensors(self):
  5606. super().prepare_tensors()
  5607. if self._experts is not None:
  5608. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5609. experts = [k for d in self._experts for k in d.keys()]
  5610. if len(experts) > 0:
  5611. raise ValueError(f"Unprocessed experts: {experts}")
  5612. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5613. class JinaBertV2Model(BertModel):
  5614. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5615. def set_vocab(self):
  5616. tokenizer_class = 'BertTokenizer'
  5617. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5618. tokenizer_class = json.load(f)['tokenizer_class']
  5619. if tokenizer_class == 'BertTokenizer':
  5620. super().set_vocab()
  5621. elif tokenizer_class == 'RobertaTokenizer':
  5622. self._set_vocab_gpt2()
  5623. self.gguf_writer.add_token_type_count(2)
  5624. else:
  5625. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5626. @ModelBase.register("OpenELMForCausalLM")
  5627. class OpenELMModel(TextModel):
  5628. model_arch = gguf.MODEL_ARCH.OPENELM
  5629. @staticmethod
  5630. def _make_divisible(v: float | int, divisor: int) -> int:
  5631. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5632. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5633. # Make sure that round down does not go down by more than 10%.
  5634. if new_v < 0.9 * v:
  5635. new_v += divisor
  5636. return new_v
  5637. def __init__(self, *args, **kwargs):
  5638. super().__init__(*args, **kwargs)
  5639. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5640. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5641. self._n_embd: int = self.hparams["model_dim"]
  5642. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5643. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5644. self._ffn_dims: list[int] = [
  5645. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5646. for multiplier in ffn_multipliers
  5647. ]
  5648. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5649. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5650. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5651. def set_vocab(self):
  5652. try:
  5653. self._set_vocab_sentencepiece()
  5654. except FileNotFoundError:
  5655. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5656. def set_gguf_parameters(self):
  5657. n_embd = self._n_embd
  5658. head_dim = self.hparams["head_dim"]
  5659. rot_pct = 1.0
  5660. assert self.block_count == len(self._num_kv_heads)
  5661. assert self.block_count == len(self._num_query_heads)
  5662. assert self.block_count == len(self._ffn_dims)
  5663. self.gguf_writer.add_block_count(self.block_count)
  5664. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5665. self.gguf_writer.add_embedding_length(n_embd)
  5666. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5667. self.gguf_writer.add_head_count(self._num_query_heads)
  5668. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5669. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5670. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5671. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5672. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5673. self.gguf_writer.add_key_length(head_dim)
  5674. self.gguf_writer.add_value_length(head_dim)
  5675. self.gguf_writer.add_file_type(self.ftype)
  5676. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5677. if "n_layers" in keys:
  5678. return self.hparams["num_transformer_layers"]
  5679. return super().find_hparam(keys, optional)
  5680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5681. # split ff
  5682. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5683. ff_dim = self._ffn_dims[bid]
  5684. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5685. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5686. return
  5687. yield (self.map_tensor_name(name), data_torch)
  5688. @ModelBase.register("ArcticForCausalLM")
  5689. class ArcticModel(TextModel):
  5690. model_arch = gguf.MODEL_ARCH.ARCTIC
  5691. def set_vocab(self):
  5692. # The reason for using a custom implementation here is that the
  5693. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5694. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5695. from sentencepiece import SentencePieceProcessor
  5696. tokenizer_path = self.dir_model / 'tokenizer.model'
  5697. if not tokenizer_path.is_file():
  5698. logger.error(f'Error: Missing {tokenizer_path}')
  5699. sys.exit(1)
  5700. # Read the whole vocabulary from the tokenizer.model file
  5701. tokenizer = SentencePieceProcessor()
  5702. tokenizer.LoadFromFile(str(tokenizer_path))
  5703. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5704. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5705. scores: list[float] = [-10000.0] * vocab_size
  5706. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5707. for token_id in range(tokenizer.vocab_size()):
  5708. piece = tokenizer.IdToPiece(token_id)
  5709. text = piece.encode("utf-8")
  5710. score = tokenizer.GetScore(token_id)
  5711. toktype = SentencePieceTokenTypes.NORMAL
  5712. if tokenizer.IsUnknown(token_id):
  5713. toktype = SentencePieceTokenTypes.UNKNOWN
  5714. elif tokenizer.IsControl(token_id):
  5715. toktype = SentencePieceTokenTypes.CONTROL
  5716. elif tokenizer.IsUnused(token_id):
  5717. toktype = SentencePieceTokenTypes.UNUSED
  5718. elif tokenizer.IsByte(token_id):
  5719. toktype = SentencePieceTokenTypes.BYTE
  5720. tokens[token_id] = text
  5721. scores[token_id] = score
  5722. toktypes[token_id] = toktype
  5723. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5724. # of information about added/redefined tokens and modify them accordingly.
  5725. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5726. if tokenizer_config_file.is_file():
  5727. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5728. tokenizer_config_json = json.load(f)
  5729. if "added_tokens_decoder" in tokenizer_config_json:
  5730. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5731. for token_id, token_json in added_tokens_decoder.items():
  5732. token_id = int(token_id)
  5733. if token_id >= vocab_size:
  5734. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5735. continue
  5736. token_content = token_json["content"]
  5737. token_type = SentencePieceTokenTypes.USER_DEFINED
  5738. token_score = -10000.0
  5739. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5740. # Set the score to 0.0 as in the original tokenizer.model
  5741. if ("special" in token_json) and token_json["special"]:
  5742. if token_content == tokenizer_config_json["unk_token"]:
  5743. token_type = SentencePieceTokenTypes.UNKNOWN
  5744. else:
  5745. token_type = SentencePieceTokenTypes.CONTROL
  5746. token_score = 0.0
  5747. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5748. tokens[token_id] = token_content.encode("utf-8")
  5749. toktypes[token_id] = token_type
  5750. scores[token_id] = token_score
  5751. self.gguf_writer.add_tokenizer_model("llama")
  5752. self.gguf_writer.add_tokenizer_pre("default")
  5753. self.gguf_writer.add_token_list(tokens)
  5754. self.gguf_writer.add_token_scores(scores)
  5755. self.gguf_writer.add_token_types(toktypes)
  5756. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5757. special_vocab.add_to_gguf(self.gguf_writer)
  5758. def set_gguf_parameters(self):
  5759. super().set_gguf_parameters()
  5760. hparams = self.hparams
  5761. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5762. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5763. _experts: list[dict[str, Tensor]] | None = None
  5764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5765. n_head = self.hparams["num_attention_heads"]
  5766. n_kv_head = self.hparams.get("num_key_value_heads")
  5767. if name.endswith("q_proj.weight"):
  5768. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5769. if name.endswith("k_proj.weight"):
  5770. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5771. # process the experts separately
  5772. if name.find("block_sparse_moe.experts") != -1:
  5773. n_experts = self.hparams["num_local_experts"]
  5774. assert bid is not None
  5775. if self._experts is None:
  5776. self._experts = [{} for _ in range(self.block_count)]
  5777. self._experts[bid][name] = data_torch
  5778. if len(self._experts[bid]) >= n_experts * 3:
  5779. tensors: list[tuple[str, Tensor]] = []
  5780. # merge the experts into a single 3d tensor
  5781. for wid in ["w1", "w2", "w3"]:
  5782. datas: list[Tensor] = []
  5783. for xid in range(n_experts):
  5784. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5785. datas.append(self._experts[bid][ename])
  5786. del self._experts[bid][ename]
  5787. data_torch = torch.stack(datas, dim=0)
  5788. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5789. new_name = self.map_tensor_name(merged_name)
  5790. tensors.append((new_name, data_torch))
  5791. return tensors
  5792. else:
  5793. return []
  5794. return [(self.map_tensor_name(name), data_torch)]
  5795. def prepare_tensors(self):
  5796. super().prepare_tensors()
  5797. if self._experts is not None:
  5798. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5799. experts = [k for d in self._experts for k in d.keys()]
  5800. if len(experts) > 0:
  5801. raise ValueError(f"Unprocessed experts: {experts}")
  5802. @ModelBase.register("DeepseekForCausalLM")
  5803. class DeepseekModel(TextModel):
  5804. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5805. def set_vocab(self):
  5806. try:
  5807. self._set_vocab_sentencepiece()
  5808. except FileNotFoundError:
  5809. self._set_vocab_gpt2()
  5810. def set_gguf_parameters(self):
  5811. super().set_gguf_parameters()
  5812. hparams = self.hparams
  5813. if (rope_dim := hparams.get("head_dim")) is None:
  5814. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5815. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5816. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5817. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5818. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5819. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5820. self.gguf_writer.add_expert_weights_scale(1.0)
  5821. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5822. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5823. _experts: list[dict[str, Tensor]] | None = None
  5824. @staticmethod
  5825. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5826. if n_head_kv is not None and n_head != n_head_kv:
  5827. n_head = n_head_kv
  5828. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5829. .swapaxes(1, 2)
  5830. .reshape(weights.shape))
  5831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5832. n_head = self.hparams["num_attention_heads"]
  5833. n_kv_head = self.hparams.get("num_key_value_heads")
  5834. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5835. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5836. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5837. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5838. # process the experts separately
  5839. if name.find("mlp.experts") != -1:
  5840. n_experts = self.hparams["n_routed_experts"]
  5841. assert bid is not None
  5842. if self._experts is None:
  5843. self._experts = [{} for _ in range(self.block_count)]
  5844. self._experts[bid][name] = data_torch
  5845. if len(self._experts[bid]) >= n_experts * 3:
  5846. tensors: list[tuple[str, Tensor]] = []
  5847. # merge the experts into a single 3d tensor
  5848. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5849. datas: list[Tensor] = []
  5850. for xid in range(n_experts):
  5851. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5852. datas.append(self._experts[bid][ename])
  5853. del self._experts[bid][ename]
  5854. data_torch = torch.stack(datas, dim=0)
  5855. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5856. new_name = self.map_tensor_name(merged_name)
  5857. tensors.append((new_name, data_torch))
  5858. return tensors
  5859. else:
  5860. return []
  5861. return [(self.map_tensor_name(name), data_torch)]
  5862. def prepare_tensors(self):
  5863. super().prepare_tensors()
  5864. if self._experts is not None:
  5865. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5866. experts = [k for d in self._experts for k in d.keys()]
  5867. if len(experts) > 0:
  5868. raise ValueError(f"Unprocessed experts: {experts}")
  5869. @ModelBase.register(
  5870. "DeepseekV2ForCausalLM",
  5871. "DeepseekV3ForCausalLM",
  5872. "KimiVLForConditionalGeneration",
  5873. )
  5874. class DeepseekV2Model(TextModel):
  5875. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5876. def set_vocab(self):
  5877. try:
  5878. self._set_vocab_gpt2()
  5879. return
  5880. except Exception:
  5881. pass
  5882. from transformers import AutoTokenizer
  5883. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5884. tokpre = self.get_vocab_base_pre(tokenizer)
  5885. if tokpre == "kimi-k2":
  5886. # Build merges list using the approach similar to HunYuanMoE
  5887. merges = []
  5888. vocab = {}
  5889. mergeable_ranks = tokenizer.model._mergeable_ranks
  5890. for token, rank in mergeable_ranks.items():
  5891. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5892. if len(token) == 1:
  5893. continue
  5894. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5895. if len(merged) == 2:
  5896. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5897. # Build token list
  5898. vocab_size = self.hparams["vocab_size"]
  5899. special_tokens = tokenizer.special_tokens
  5900. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5901. tokens: list[str] = []
  5902. toktypes: list[int] = []
  5903. for i in range(vocab_size):
  5904. if i not in reverse_vocab:
  5905. tokens.append(f"[PAD{i}]")
  5906. toktypes.append(gguf.TokenType.UNUSED)
  5907. else:
  5908. token = reverse_vocab[i]
  5909. tokens.append(token)
  5910. if i in special_tokens.values():
  5911. toktypes.append(gguf.TokenType.CONTROL)
  5912. else:
  5913. toktypes.append(gguf.TokenType.NORMAL)
  5914. self.gguf_writer.add_tokenizer_model("gpt2")
  5915. self.gguf_writer.add_tokenizer_pre(tokpre)
  5916. self.gguf_writer.add_token_list(tokens)
  5917. self.gguf_writer.add_token_types(toktypes)
  5918. self.gguf_writer.add_token_merges(merges)
  5919. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5920. special_vocab.add_to_gguf(self.gguf_writer)
  5921. else:
  5922. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5923. def set_gguf_parameters(self):
  5924. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5925. self.hparams["num_key_value_heads"] = 1
  5926. super().set_gguf_parameters()
  5927. hparams = self.hparams
  5928. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5929. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5930. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5931. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5932. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5933. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5934. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5935. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5936. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5937. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5938. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5939. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5940. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5941. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5942. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5943. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5944. rope_scaling = self.hparams.get("rope_scaling") or {}
  5945. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5946. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5947. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5948. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5949. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5950. _experts: list[dict[str, Tensor]] | None = None
  5951. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5952. # skip vision tensors and remove "language_model." for Kimi-VL
  5953. if "vision_tower" in name or "multi_modal_projector" in name:
  5954. return []
  5955. if name.startswith("language_model."):
  5956. name = name.replace("language_model.", "")
  5957. # rename e_score_correction_bias tensors
  5958. if name.endswith("e_score_correction_bias"):
  5959. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5960. # skip Multi-Token Prediction (MTP) layers
  5961. block_count = self.hparams["num_hidden_layers"]
  5962. match = re.match(r"model.layers.(\d+)", name)
  5963. if match and int(match.group(1)) >= block_count:
  5964. return []
  5965. # process the experts separately
  5966. if name.find("mlp.experts") != -1:
  5967. n_experts = self.hparams["n_routed_experts"]
  5968. assert bid is not None
  5969. if self._experts is None:
  5970. self._experts = [{} for _ in range(self.block_count)]
  5971. self._experts[bid][name] = data_torch
  5972. if len(self._experts[bid]) >= n_experts * 3:
  5973. tensors: list[tuple[str, Tensor]] = []
  5974. # merge the experts into a single 3d tensor
  5975. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5976. datas: list[Tensor] = []
  5977. for xid in range(n_experts):
  5978. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5979. datas.append(self._experts[bid][ename])
  5980. del self._experts[bid][ename]
  5981. data_torch = torch.stack(datas, dim=0)
  5982. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5983. new_name = self.map_tensor_name(merged_name)
  5984. tensors.append((new_name, data_torch))
  5985. return tensors
  5986. else:
  5987. return []
  5988. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5989. if name.endswith("kv_b_proj.weight"):
  5990. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5991. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5992. n_head_kv = self.hparams["num_key_value_heads"]
  5993. v_head_dim = self.hparams["v_head_dim"]
  5994. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5995. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5996. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5997. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5998. k_b = k_b.transpose(1, 2)
  5999. return [
  6000. (self.map_tensor_name(name_kb), k_b),
  6001. (self.map_tensor_name(name_vb), v_b)
  6002. ]
  6003. return [(self.map_tensor_name(name), data_torch)]
  6004. def prepare_tensors(self):
  6005. super().prepare_tensors()
  6006. if self._experts is not None:
  6007. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6008. experts = [k for d in self._experts for k in d.keys()]
  6009. if len(experts) > 0:
  6010. raise ValueError(f"Unprocessed experts: {experts}")
  6011. @ModelBase.register("MiniMaxM2ForCausalLM")
  6012. class MiniMaxM2Model(TextModel):
  6013. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6014. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6015. def __init__(self, *args, **kwargs):
  6016. super().__init__(*args, **kwargs)
  6017. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6018. def set_gguf_parameters(self):
  6019. super().set_gguf_parameters()
  6020. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6021. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6022. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6023. if name.endswith("e_score_correction_bias"):
  6024. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6025. # merge expert weights
  6026. if 'experts' in name:
  6027. n_experts = self.hparams["num_experts"]
  6028. assert bid is not None
  6029. expert_cache = self._experts_cache.setdefault(bid, {})
  6030. expert_cache[name] = data_torch
  6031. expert_weights = ["w1", "w2", "w3"]
  6032. # not enough expert weights to merge
  6033. if len(expert_cache) < n_experts * len(expert_weights):
  6034. return []
  6035. tensors: list[tuple[str, Tensor]] = []
  6036. for w_name in expert_weights:
  6037. datas: list[Tensor] = []
  6038. for xid in range(n_experts):
  6039. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6040. datas.append(expert_cache[ename])
  6041. del expert_cache[ename]
  6042. data_torch = torch.stack(datas, dim=0)
  6043. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6044. new_name = self.map_tensor_name(merged_name)
  6045. tensors.append((new_name, data_torch))
  6046. del self._experts_cache[bid]
  6047. return tensors
  6048. return super().modify_tensors(data_torch, name, bid)
  6049. @ModelBase.register("PanguEmbeddedForCausalLM")
  6050. class PanguEmbeddedModel(TextModel):
  6051. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6052. def set_vocab(self):
  6053. self._set_vocab_sentencepiece()
  6054. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6055. if tokenizer_config_file.is_file():
  6056. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6057. tokenizer_config_json = json.load(f)
  6058. if "add_prefix_space" in tokenizer_config_json:
  6059. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6060. def set_gguf_parameters(self):
  6061. super().set_gguf_parameters()
  6062. hparams = self.hparams
  6063. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6064. # PanguEmbedded's hparam loaded from config.json without head_dim
  6065. if (rope_dim := hparams.get("head_dim")) is None:
  6066. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6067. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6068. if hparams.get("head_dim") is None:
  6069. self.gguf_writer.add_key_length(rope_dim)
  6070. self.gguf_writer.add_value_length(rope_dim)
  6071. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6072. if name == "lm_head.weight":
  6073. if self.hparams.get("tie_word_embeddings", False):
  6074. logger.info("Skipping tied output layer 'lm_head.weight'")
  6075. return []
  6076. return [(self.map_tensor_name(name), data_torch)]
  6077. @ModelBase.register("Dots1ForCausalLM")
  6078. class Dots1Model(Qwen2MoeModel):
  6079. model_arch = gguf.MODEL_ARCH.DOTS1
  6080. def __init__(self, *args, **kwargs):
  6081. super().__init__(*args, **kwargs)
  6082. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6083. def set_gguf_parameters(self):
  6084. super().set_gguf_parameters()
  6085. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6086. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6087. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6088. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6089. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6090. if name.endswith("e_score_correction_bias"):
  6091. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6092. if "shared_experts" in name:
  6093. return [(self.map_tensor_name(name), data_torch)]
  6094. return super().modify_tensors(data_torch, name, bid)
  6095. @ModelBase.register("PLMForCausalLM")
  6096. class PLMModel(TextModel):
  6097. model_arch = gguf.MODEL_ARCH.PLM
  6098. def set_vocab(self):
  6099. self._set_vocab_gpt2()
  6100. def set_gguf_parameters(self):
  6101. super().set_gguf_parameters()
  6102. hparams = self.hparams
  6103. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6104. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6105. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6106. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6107. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6109. return [(self.map_tensor_name(name), data_torch)]
  6110. def prepare_tensors(self):
  6111. super().prepare_tensors()
  6112. @ModelBase.register("T5WithLMHeadModel")
  6113. @ModelBase.register("T5ForConditionalGeneration")
  6114. @ModelBase.register("MT5ForConditionalGeneration")
  6115. @ModelBase.register("UMT5ForConditionalGeneration")
  6116. @ModelBase.register("UMT5Model")
  6117. class T5Model(TextModel):
  6118. model_arch = gguf.MODEL_ARCH.T5
  6119. def __init__(self, *args, **kwargs):
  6120. super().__init__(*args, **kwargs)
  6121. self.shared_token_embeddings_found = False
  6122. def set_vocab(self):
  6123. # to avoid TypeError: Descriptors cannot be created directly
  6124. # exception when importing sentencepiece_model_pb2
  6125. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6126. from sentencepiece import SentencePieceProcessor
  6127. from sentencepiece import sentencepiece_model_pb2 as model
  6128. tokenizer_path = self.dir_model / 'tokenizer.model'
  6129. # many older models use spiece.model tokenizer model filename
  6130. if not tokenizer_path.is_file():
  6131. tokenizer_path = self.dir_model / 'spiece.model'
  6132. if not tokenizer_path.is_file():
  6133. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6134. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6135. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6136. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6137. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6138. # assure the tokenizer model file name is correct
  6139. assert tokenizer_path.name == 'tokenizer.model'
  6140. return self._set_vocab_sentencepiece()
  6141. else:
  6142. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6143. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6144. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6145. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6146. tokenizer = SentencePieceProcessor()
  6147. tokenizer.LoadFromFile(str(tokenizer_path))
  6148. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6149. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6150. scores: list[float] = [-10000.0] * vocab_size
  6151. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6152. for token_id in range(tokenizer.vocab_size()):
  6153. piece = tokenizer.IdToPiece(token_id)
  6154. text = piece.encode("utf-8")
  6155. score = tokenizer.GetScore(token_id)
  6156. toktype = SentencePieceTokenTypes.NORMAL
  6157. if tokenizer.IsUnknown(token_id):
  6158. toktype = SentencePieceTokenTypes.UNKNOWN
  6159. elif tokenizer.IsControl(token_id):
  6160. toktype = SentencePieceTokenTypes.CONTROL
  6161. elif tokenizer.IsUnused(token_id):
  6162. toktype = SentencePieceTokenTypes.UNUSED
  6163. elif tokenizer.IsByte(token_id):
  6164. toktype = SentencePieceTokenTypes.BYTE
  6165. tokens[token_id] = text
  6166. scores[token_id] = score
  6167. toktypes[token_id] = toktype
  6168. added_tokens_file = self.dir_model / 'added_tokens.json'
  6169. if added_tokens_file.is_file():
  6170. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6171. added_tokens_json = json.load(f)
  6172. for key in added_tokens_json:
  6173. token_id = added_tokens_json[key]
  6174. if token_id >= vocab_size:
  6175. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6176. continue
  6177. tokens[token_id] = key.encode("utf-8")
  6178. scores[token_id] = -1000.0
  6179. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6180. if vocab_size > len(tokens):
  6181. pad_count = vocab_size - len(tokens)
  6182. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6183. for i in range(1, pad_count + 1):
  6184. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6185. scores.append(-1000.0)
  6186. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6187. self.gguf_writer.add_tokenizer_model("t5")
  6188. self.gguf_writer.add_tokenizer_pre("default")
  6189. self.gguf_writer.add_token_list(tokens)
  6190. self.gguf_writer.add_token_scores(scores)
  6191. self.gguf_writer.add_token_types(toktypes)
  6192. self.gguf_writer.add_add_space_prefix(add_prefix)
  6193. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6194. if precompiled_charsmap:
  6195. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6196. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6197. special_vocab.add_to_gguf(self.gguf_writer)
  6198. def set_gguf_parameters(self):
  6199. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6200. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6201. n_ctx = 512
  6202. self.gguf_writer.add_context_length(n_ctx)
  6203. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6204. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6205. self.gguf_writer.add_block_count(self.block_count)
  6206. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6207. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6208. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6209. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6210. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6211. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6212. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6213. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6214. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6215. self.gguf_writer.add_file_type(self.ftype)
  6216. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6217. del bid # unused
  6218. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6219. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6220. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6221. # and decoder and ignore the remaining ones.
  6222. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6223. if not self.shared_token_embeddings_found:
  6224. name = "shared.weight"
  6225. self.shared_token_embeddings_found = True
  6226. else:
  6227. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6228. return []
  6229. return [(self.map_tensor_name(name), data_torch)]
  6230. @ModelBase.register("T5EncoderModel")
  6231. class T5EncoderModel(TextModel):
  6232. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6233. def __init__(self, *args, **kwargs):
  6234. super().__init__(*args, **kwargs)
  6235. self.shared_token_embeddings_found = False
  6236. def set_vocab(self):
  6237. # to avoid TypeError: Descriptors cannot be created directly
  6238. # exception when importing sentencepiece_model_pb2
  6239. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6240. from sentencepiece import SentencePieceProcessor
  6241. from sentencepiece import sentencepiece_model_pb2 as model
  6242. tokenizer_path = self.dir_model / 'tokenizer.model'
  6243. # many older models use spiece.model tokenizer model filename
  6244. if not tokenizer_path.is_file():
  6245. tokenizer_path = self.dir_model / 'spiece.model'
  6246. if not tokenizer_path.is_file():
  6247. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6248. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6249. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6250. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6251. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6252. # assure the tokenizer model file name is correct
  6253. assert tokenizer_path.name == 'tokenizer.model'
  6254. return self._set_vocab_sentencepiece()
  6255. else:
  6256. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6257. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6258. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6259. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6260. tokenizer = SentencePieceProcessor()
  6261. tokenizer.LoadFromFile(str(tokenizer_path))
  6262. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6263. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6264. scores: list[float] = [-10000.0] * vocab_size
  6265. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6266. for token_id in range(tokenizer.vocab_size()):
  6267. piece = tokenizer.IdToPiece(token_id)
  6268. text = piece.encode("utf-8")
  6269. score = tokenizer.GetScore(token_id)
  6270. toktype = SentencePieceTokenTypes.NORMAL
  6271. if tokenizer.IsUnknown(token_id):
  6272. toktype = SentencePieceTokenTypes.UNKNOWN
  6273. elif tokenizer.IsControl(token_id):
  6274. toktype = SentencePieceTokenTypes.CONTROL
  6275. elif tokenizer.IsUnused(token_id):
  6276. toktype = SentencePieceTokenTypes.UNUSED
  6277. elif tokenizer.IsByte(token_id):
  6278. toktype = SentencePieceTokenTypes.BYTE
  6279. tokens[token_id] = text
  6280. scores[token_id] = score
  6281. toktypes[token_id] = toktype
  6282. added_tokens_file = self.dir_model / 'added_tokens.json'
  6283. if added_tokens_file.is_file():
  6284. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6285. added_tokens_json = json.load(f)
  6286. for key in added_tokens_json:
  6287. token_id = added_tokens_json[key]
  6288. if token_id >= vocab_size:
  6289. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6290. continue
  6291. tokens[token_id] = key.encode("utf-8")
  6292. scores[token_id] = -1000.0
  6293. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6294. if vocab_size > len(tokens):
  6295. pad_count = vocab_size - len(tokens)
  6296. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6297. for i in range(1, pad_count + 1):
  6298. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6299. scores.append(-1000.0)
  6300. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6301. self.gguf_writer.add_tokenizer_model("t5")
  6302. self.gguf_writer.add_tokenizer_pre("default")
  6303. self.gguf_writer.add_token_list(tokens)
  6304. self.gguf_writer.add_token_scores(scores)
  6305. self.gguf_writer.add_token_types(toktypes)
  6306. self.gguf_writer.add_add_space_prefix(add_prefix)
  6307. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6308. if precompiled_charsmap:
  6309. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6310. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6311. special_vocab.add_to_gguf(self.gguf_writer)
  6312. def set_gguf_parameters(self):
  6313. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6314. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6315. n_ctx = 512
  6316. self.gguf_writer.add_context_length(n_ctx)
  6317. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6318. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6319. self.gguf_writer.add_block_count(self.block_count)
  6320. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6321. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6322. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6323. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6324. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6325. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6326. self.gguf_writer.add_file_type(self.ftype)
  6327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6328. del bid # unused
  6329. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6330. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6331. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6332. # and decoder and ignore the remaining ones.
  6333. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6334. if not self.shared_token_embeddings_found:
  6335. name = "shared.weight"
  6336. self.shared_token_embeddings_found = True
  6337. else:
  6338. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6339. return []
  6340. return [(self.map_tensor_name(name), data_torch)]
  6341. @ModelBase.register("JAISLMHeadModel")
  6342. class JaisModel(TextModel):
  6343. model_arch = gguf.MODEL_ARCH.JAIS
  6344. def __init__(self, *args, **kwargs):
  6345. super().__init__(*args, **kwargs)
  6346. # SwigLU activation
  6347. assert self.hparams["activation_function"] == "swiglu"
  6348. # ALiBi position embedding
  6349. assert self.hparams["position_embedding_type"] == "alibi"
  6350. # Embeddings scale
  6351. self.embeddings_scale = 1.0
  6352. if 'mup_embeddings_scale' in self.hparams:
  6353. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6354. elif 'embeddings_scale' in self.hparams:
  6355. self.embeddings_scale = self.hparams['embeddings_scale']
  6356. else:
  6357. assert False
  6358. self.width_scale = 1.0
  6359. if 'mup_output_alpha' in self.hparams:
  6360. assert 'mup_width_scale' in self.hparams
  6361. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6362. elif 'width_scale' in self.hparams:
  6363. self.width_scale = self.hparams['width_scale']
  6364. else:
  6365. assert False
  6366. self.max_alibi_bias = 8.0
  6367. def set_vocab(self):
  6368. self._set_vocab_gpt2()
  6369. def set_gguf_parameters(self):
  6370. self.gguf_writer.add_block_count(self.block_count)
  6371. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6372. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6373. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6374. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6375. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6376. self.gguf_writer.add_file_type(self.ftype)
  6377. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6378. del bid # unused
  6379. tensors: list[tuple[str, Tensor]] = []
  6380. # we don't need these
  6381. if name.endswith((".attn.bias")):
  6382. return tensors
  6383. if name.endswith(("relative_pe.slopes")):
  6384. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6385. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6386. # but Jais's PyTorch model simply precalculates the slope values and places them
  6387. # in relative_pes.slopes
  6388. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6389. first_val = float(data_torch[0].item())
  6390. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6391. return tensors
  6392. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6393. data_torch = data_torch.transpose(1, 0)
  6394. new_name = self.map_tensor_name(name)
  6395. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6396. tensors.append((new_name, data_torch * self.embeddings_scale))
  6397. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6398. tensors.append((new_name, data_torch * self.width_scale))
  6399. else:
  6400. tensors.append((new_name, data_torch))
  6401. return tensors
  6402. def prepare_tensors(self):
  6403. super().prepare_tensors()
  6404. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6405. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6406. class Glm4Model(TextModel):
  6407. model_arch = gguf.MODEL_ARCH.GLM4
  6408. def set_vocab(self):
  6409. from transformers import AutoTokenizer
  6410. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6411. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6412. tokens, toktypes, tokpre = self.get_vocab_base()
  6413. self.gguf_writer.add_tokenizer_model("gpt2")
  6414. self.gguf_writer.add_tokenizer_pre(tokpre)
  6415. self.gguf_writer.add_token_list(tokens)
  6416. self.gguf_writer.add_token_types(toktypes)
  6417. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6418. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6419. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6420. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6421. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6422. special_vocab.add_to_gguf(self.gguf_writer)
  6423. def set_gguf_parameters(self):
  6424. super().set_gguf_parameters()
  6425. if (rope_dim := self.hparams.get("head_dim")) is None:
  6426. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6427. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6428. rope_scaling = self.hparams.get("rope_scaling") or {}
  6429. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6430. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6431. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6432. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6433. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6434. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6435. return []
  6436. elif name.startswith("model.language_model."):
  6437. name = name.replace("language_model.", "") # for Glm4v
  6438. return super().modify_tensors(data_torch, name, bid)
  6439. @ModelBase.register("Glm4MoeForCausalLM")
  6440. class Glm4MoeModel(TextModel):
  6441. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6442. def __init__(self, *args, **kwargs):
  6443. super().__init__(*args, **kwargs)
  6444. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6445. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6446. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6447. def set_vocab(self):
  6448. from transformers import AutoTokenizer
  6449. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6450. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6451. tokens, toktypes, tokpre = self.get_vocab_base()
  6452. self.gguf_writer.add_tokenizer_model("gpt2")
  6453. self.gguf_writer.add_tokenizer_pre(tokpre)
  6454. self.gguf_writer.add_token_list(tokens)
  6455. self.gguf_writer.add_token_types(toktypes)
  6456. # Special tokens
  6457. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6458. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6459. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6460. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6461. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6462. special_vocab.add_to_gguf(self.gguf_writer)
  6463. def set_gguf_parameters(self):
  6464. super().set_gguf_parameters()
  6465. if (rope_dim := self.hparams.get("head_dim")) is None:
  6466. rope_dim = (
  6467. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6468. )
  6469. self.gguf_writer.add_rope_dimension_count(
  6470. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6471. )
  6472. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6473. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6474. self.gguf_writer.add_expert_count(n_routed_experts)
  6475. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6476. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6477. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6478. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6479. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6480. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6481. # Expert gating function (sigmoid for GLM4_MOE)
  6482. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6483. # Routed scaling factor
  6484. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6485. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6486. # Normalise topk probabilities
  6487. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6488. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6489. # NextN/MTP prediction layers
  6490. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6491. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6492. _experts: list[dict[str, Tensor]] | None = None
  6493. def modify_tensors(
  6494. self, data_torch: Tensor, name: str, bid: int | None
  6495. ) -> Iterable[tuple[str, Tensor]]:
  6496. if name.startswith("model.visual."): # ignore visual part
  6497. return []
  6498. elif name.startswith("model.language_model."):
  6499. name = name.replace("language_model.", "") # for multimodal variants
  6500. # Handle main token embedding (but not layer-specific NextN embeddings)
  6501. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6502. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6503. # Handle routed experts
  6504. if name.find("mlp.experts") != -1:
  6505. n_experts = self.hparams["n_routed_experts"]
  6506. assert bid is not None
  6507. if self._experts is None:
  6508. self._experts = [{} for _ in range(self.block_count)]
  6509. self._experts[bid][name] = data_torch
  6510. if len(self._experts[bid]) >= n_experts * 3:
  6511. tensors: list[tuple[str, Tensor]] = []
  6512. # merge the experts into a single 3d tensor
  6513. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6514. datas: list[Tensor] = []
  6515. for xid in range(n_experts):
  6516. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6517. datas.append(self._experts[bid][ename])
  6518. del self._experts[bid][ename]
  6519. data_torch = torch.stack(datas, dim=0)
  6520. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6521. new_name = self.map_tensor_name(merged_name)
  6522. tensors.append((new_name, data_torch))
  6523. return tensors
  6524. else:
  6525. return []
  6526. if name.endswith("e_score_correction_bias"):
  6527. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6528. new_name = self.map_tensor_name(name)
  6529. return [(new_name, data_torch)]
  6530. def prepare_tensors(self):
  6531. super().prepare_tensors()
  6532. if self._experts is not None:
  6533. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6534. experts = [k for d in self._experts for k in d.keys()]
  6535. if len(experts) > 0:
  6536. raise ValueError(f"Unprocessed experts: {experts}")
  6537. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6538. class ChatGLMModel(TextModel):
  6539. model_arch = gguf.MODEL_ARCH.CHATGLM
  6540. def set_vocab_chatglm3(self):
  6541. dir_model = self.dir_model
  6542. hparams = self.hparams
  6543. tokens: list[bytes] = []
  6544. toktypes: list[int] = []
  6545. scores: list[float] = []
  6546. from transformers import AutoTokenizer
  6547. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6548. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6549. assert max(tokenizer.get_vocab().values()) < vocab_size
  6550. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6551. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6552. for token_id in range(vocab_size):
  6553. piece = tokenizer._convert_id_to_token(token_id)
  6554. if token_id == 0:
  6555. piece = "<unk>"
  6556. elif token_id == 1:
  6557. piece = "<bos>"
  6558. elif token_id == 2:
  6559. piece = "<eos>"
  6560. text = piece.encode("utf-8")
  6561. score = 0.0
  6562. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6563. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6564. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6565. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6566. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6567. if piece in special_tokens:
  6568. toktype = SentencePieceTokenTypes.CONTROL
  6569. elif len(piece) == 0:
  6570. text = f"[PAD{token_id}]".encode("utf-8")
  6571. toktype = SentencePieceTokenTypes.UNUSED
  6572. else:
  6573. toktype = SentencePieceTokenTypes.USER_DEFINED
  6574. tokens.append(text)
  6575. scores.append(score)
  6576. toktypes.append(toktype)
  6577. continue
  6578. toktype = SentencePieceTokenTypes.NORMAL
  6579. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6580. toktype = SentencePieceTokenTypes.UNKNOWN
  6581. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6582. toktype = SentencePieceTokenTypes.CONTROL
  6583. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6584. toktype = SentencePieceTokenTypes.UNUSED
  6585. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6586. toktype = SentencePieceTokenTypes.BYTE
  6587. tokens.append(text)
  6588. scores.append(score)
  6589. toktypes.append(toktype)
  6590. self.gguf_writer.add_tokenizer_model("llama")
  6591. # glm3 needs prefix and suffix formatted as:
  6592. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6593. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6594. self.gguf_writer.add_token_list(tokens)
  6595. self.gguf_writer.add_token_scores(scores)
  6596. self.gguf_writer.add_token_types(toktypes)
  6597. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6598. special_vocab.add_to_gguf(self.gguf_writer)
  6599. @staticmethod
  6600. def token_bytes_to_string(b):
  6601. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6602. byte_encoder = bytes_to_unicode()
  6603. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6604. @staticmethod
  6605. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6606. parts = [bytes([b]) for b in token]
  6607. while True:
  6608. min_idx = None
  6609. min_rank = None
  6610. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6611. rank = mergeable_ranks.get(pair[0] + pair[1])
  6612. if rank is not None and (min_rank is None or rank < min_rank):
  6613. min_idx = i
  6614. min_rank = rank
  6615. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6616. break
  6617. assert min_idx is not None
  6618. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6619. return parts
  6620. def set_vocab(self):
  6621. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6622. self.set_vocab_chatglm3()
  6623. return
  6624. dir_model = self.dir_model
  6625. hparams = self.hparams
  6626. tokens: list[str] = []
  6627. toktypes: list[int] = []
  6628. from transformers import AutoTokenizer
  6629. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6630. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6631. assert max(tokenizer.get_vocab().values()) < vocab_size
  6632. tokens, toktypes, tokpre = self.get_vocab_base()
  6633. self.gguf_writer.add_tokenizer_model("gpt2")
  6634. self.gguf_writer.add_tokenizer_pre(tokpre)
  6635. self.gguf_writer.add_token_list(tokens)
  6636. self.gguf_writer.add_token_types(toktypes)
  6637. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6638. # only add special tokens when they were not already loaded from config.json
  6639. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6640. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6641. # this one is usually not in config.json anyway
  6642. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6643. special_vocab.add_to_gguf(self.gguf_writer)
  6644. def set_gguf_parameters(self):
  6645. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6646. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6647. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6648. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6649. self.gguf_writer.add_embedding_length(n_embed)
  6650. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6651. self.gguf_writer.add_block_count(self.block_count)
  6652. self.gguf_writer.add_head_count(n_head)
  6653. self.gguf_writer.add_head_count_kv(n_head_kv)
  6654. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6655. self.gguf_writer.add_file_type(self.ftype)
  6656. if "attention_dim" in self.hparams:
  6657. rope_dim = self.hparams["attention_dim"]
  6658. else:
  6659. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6660. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6661. self.gguf_writer.add_add_bos_token(False)
  6662. rope_freq = 10000
  6663. if "rope_ratio" in self.hparams:
  6664. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6665. self.gguf_writer.add_rope_freq_base(rope_freq)
  6666. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6667. del bid # unused
  6668. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6669. return []
  6670. name = name.removeprefix("transformer.")
  6671. return [(self.map_tensor_name(name), data_torch)]
  6672. @ModelBase.register("NemotronForCausalLM")
  6673. class NemotronModel(TextModel):
  6674. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6675. def set_vocab(self):
  6676. self._set_vocab_sentencepiece()
  6677. self.gguf_writer.add_pad_token_id(0)
  6678. self.gguf_writer.add_unk_token_id(1)
  6679. def set_gguf_parameters(self):
  6680. super().set_gguf_parameters()
  6681. hparams = self.hparams
  6682. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6683. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6684. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6685. # * Partial RoPE
  6686. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6687. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6688. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6689. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6690. # * RopeScaling for Nemotron
  6691. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6692. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6693. else:
  6694. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6695. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6697. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6698. # model.layers.{l}.input_layernorm.weight
  6699. # model.layers.{l}.post_attention_layernorm.weight
  6700. # model.norm.weight
  6701. if name.endswith("norm.weight"):
  6702. data_torch = data_torch + 1
  6703. return [(self.map_tensor_name(name), data_torch)]
  6704. @ModelBase.register("ExaoneForCausalLM")
  6705. class ExaoneModel(TextModel):
  6706. model_arch = gguf.MODEL_ARCH.EXAONE
  6707. def set_gguf_parameters(self):
  6708. hparams = self.hparams
  6709. assert (hparams["activation_function"] == "silu")
  6710. max_position_embeddings = hparams["max_position_embeddings"]
  6711. embed_dim = hparams["hidden_size"]
  6712. num_heads = hparams["num_attention_heads"]
  6713. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6714. layer_norm_eps = hparams["layer_norm_epsilon"]
  6715. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6716. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6717. # attention_dropout_rate = hparams["attention_dropout"]
  6718. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6719. # embed_dropout_rate = hparams["embed_dropout"]
  6720. self.gguf_writer.add_embedding_length(embed_dim)
  6721. self.gguf_writer.add_head_count(num_heads)
  6722. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6723. self.gguf_writer.add_context_length(max_position_embeddings)
  6724. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6725. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6726. self.gguf_writer.add_block_count(self.block_count)
  6727. self.gguf_writer.add_file_type(self.ftype)
  6728. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6729. self.gguf_writer.add_rope_freq_base(rope_theta)
  6730. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6731. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6732. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6733. rope_scaling = self.hparams.get("rope_scaling") or {}
  6734. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6735. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6736. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6737. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6738. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6739. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6740. base = self.hparams.get("rope_theta", 10000.0)
  6741. if (dim := self.hparams.get("head_dim")) is None:
  6742. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6743. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6744. factor = rope_scaling.get("factor", 8.0)
  6745. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6746. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6747. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6748. low_freq_wavelen = old_context_len / low_freq_factor
  6749. high_freq_wavelen = old_context_len / high_freq_factor
  6750. assert low_freq_wavelen != high_freq_wavelen
  6751. rope_factors = []
  6752. for freq in freqs:
  6753. wavelen = 2 * math.pi / freq
  6754. if wavelen < high_freq_wavelen:
  6755. rope_factors.append(1)
  6756. elif wavelen > low_freq_wavelen:
  6757. rope_factors.append(factor)
  6758. else:
  6759. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6760. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6761. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6762. @ModelBase.register("Exaone4ForCausalLM")
  6763. class Exaone4Model(TextModel):
  6764. model_arch = gguf.MODEL_ARCH.EXAONE4
  6765. def set_vocab(self):
  6766. tokens, toktypes, tokpre = self.get_vocab_base()
  6767. self.gguf_writer.add_tokenizer_model("gpt2")
  6768. self.gguf_writer.add_tokenizer_pre(tokpre)
  6769. self.gguf_writer.add_token_list(tokens)
  6770. self.gguf_writer.add_token_types(toktypes)
  6771. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6772. special_vocab.add_to_gguf(self.gguf_writer)
  6773. def set_gguf_parameters(self):
  6774. super().set_gguf_parameters()
  6775. hparams = self.hparams
  6776. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6777. if hparams.get("sliding_window") is not None:
  6778. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6779. if "layer_types" in hparams:
  6780. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6781. elif "sliding_window_pattern" in hparams:
  6782. sliding_window_pattern = []
  6783. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6784. for i in range(hparams["num_hidden_layers"]):
  6785. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6786. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6787. for i in range(hparams["num_hidden_layers"]):
  6788. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6789. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6790. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6791. rope_scaling = self.hparams.get("rope_scaling") or {}
  6792. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6793. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6794. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6795. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6796. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6797. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6798. base = self.hparams.get("rope_theta", 10_000.0)
  6799. if (dim := self.hparams.get("head_dim")) is None:
  6800. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6801. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6802. factor = rope_scaling.get("factor", 16.0)
  6803. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6804. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6805. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6806. low_freq_wavelen = old_context_len / low_freq_factor
  6807. high_freq_wavelen = old_context_len / high_freq_factor
  6808. rope_factors = []
  6809. for freq in freqs:
  6810. wavelen = 2 * math.pi / freq
  6811. if wavelen < high_freq_wavelen:
  6812. rope_factors.append(1)
  6813. elif wavelen > low_freq_wavelen:
  6814. rope_factors.append(factor)
  6815. else:
  6816. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6817. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6818. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6819. @ModelBase.register("GraniteForCausalLM")
  6820. class GraniteModel(LlamaModel):
  6821. """Conversion for IBM's GraniteForCausalLM"""
  6822. model_arch = gguf.MODEL_ARCH.GRANITE
  6823. def set_gguf_parameters(self):
  6824. """Granite uses standard llama parameters with the following differences:
  6825. - No head_dim support
  6826. - New multiplier params:
  6827. - attention_scale
  6828. - embedding_scale
  6829. - residual_scale
  6830. - logits_scaling
  6831. """
  6832. if head_dim := self.hparams.pop("head_dim", None):
  6833. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6834. super().set_gguf_parameters()
  6835. # NOTE: Convert _multiplier params to _scale params for naming
  6836. # consistency
  6837. if attention_scale := self.hparams.get("attention_multiplier"):
  6838. self.gguf_writer.add_attention_scale(attention_scale)
  6839. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6840. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6841. self.gguf_writer.add_embedding_scale(embedding_scale)
  6842. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6843. if residual_scale := self.hparams.get("residual_multiplier"):
  6844. self.gguf_writer.add_residual_scale(residual_scale)
  6845. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6846. if logits_scale := self.hparams.get("logits_scaling"):
  6847. self.gguf_writer.add_logit_scale(logits_scale)
  6848. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6849. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6850. class GraniteMoeModel(GraniteModel):
  6851. """Conversion for IBM's GraniteMoeForCausalLM"""
  6852. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6853. def set_gguf_parameters(self):
  6854. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6855. - shared_intermediate_size
  6856. """
  6857. super().set_gguf_parameters()
  6858. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6859. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6860. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6862. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6863. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6864. the hidden size that is then split during forward. To keep compatibility
  6865. with existing mixtral support, we pull them apart here.
  6866. """
  6867. if name.endswith("block_sparse_moe.input_linear.weight"):
  6868. ffn_dim = self.hparams["intermediate_size"]
  6869. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6870. gate, up = data_torch.split(ffn_dim, dim=-2)
  6871. return [
  6872. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6873. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6874. ]
  6875. has_experts = bool(self.hparams.get('num_local_experts'))
  6876. if name.endswith("shared_mlp.input_linear.weight"):
  6877. ffn_dim = self.hparams["shared_intermediate_size"]
  6878. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6879. gate, up = data_torch.split(ffn_dim, dim=-2)
  6880. if has_experts:
  6881. return [
  6882. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6883. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6884. ]
  6885. return [
  6886. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6887. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6888. ]
  6889. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6890. return [
  6891. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6892. ]
  6893. return super().modify_tensors(data_torch, name, bid)
  6894. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6895. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6896. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6897. layers and optionally uses MoE w/ a shared expert"""
  6898. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6899. undo_permute = True
  6900. def __init__(self, *args, **kwargs):
  6901. # Hybrid mamba models use a prefix for the mamba-specific params.
  6902. # TODO: Extend this if the prefix(es) need to be configurable
  6903. self.hparam_prefixes = ["mamba"]
  6904. super().__init__(*args, **kwargs)
  6905. # Lists of which layers use ssm vs attention
  6906. self._attn_layers = self.get_attn_layers()
  6907. self._ssm_layers = [
  6908. i for i in range(self.block_count)
  6909. if i not in self._attn_layers
  6910. ]
  6911. # There are some models in this family that are non-hybrid, but keep the
  6912. # same parent class by setting all layers to "attention." If this is the
  6913. # case, the model architecture needs to be updated to a standard
  6914. # "granite" or "granitemoe" model
  6915. if not self._ssm_layers:
  6916. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6917. new_arch = (
  6918. gguf.MODEL_ARCH.GRANITE_MOE
  6919. if has_experts else
  6920. gguf.MODEL_ARCH.GRANITE
  6921. )
  6922. self.model_arch = new_arch
  6923. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6924. self.gguf_writer.add_architecture()
  6925. # n_group and d_inner are used during reshape_tensors for mamba2
  6926. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6927. # disambiguate with top-level head_dim
  6928. # NOTE 2: If needed for future models, this can be isolated in a method
  6929. # to separate the prefix setting and teh keys used
  6930. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6931. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6932. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6933. def get_attn_layers(self):
  6934. # Explicit list of layer type names
  6935. if layer_types := self.hparams.get("layer_types"):
  6936. return [
  6937. i for i, typ in enumerate(layer_types)
  6938. if typ == "attention"
  6939. ]
  6940. # Layer types indicated by index or period
  6941. attn_layers = self.hparams.get("attn_layer_indices", [])
  6942. if not attn_layers:
  6943. attn_period = self.hparams.get("attn_layer_period")
  6944. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6945. attn_offset = self.hparams.get("attn_layer_offset")
  6946. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6947. attn_layers = [
  6948. i for i in range(self.block_count)
  6949. if i % attn_period == attn_offset
  6950. ]
  6951. return attn_layers
  6952. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6953. prefixed = []
  6954. for pfx in self.hparam_prefixes:
  6955. prefixed.extend(
  6956. "_".join([pfx, k])
  6957. for k in keys
  6958. )
  6959. keys = list(keys) + prefixed
  6960. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6961. def modify_tensors(
  6962. self, data_torch: Tensor, name: str, bid: int | None
  6963. ) -> Iterable[tuple[str, Tensor]]:
  6964. if (
  6965. name.endswith("block_sparse_moe.input_linear.weight")
  6966. or "shared_mlp" in name
  6967. ):
  6968. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6969. # Determine whether this is a mamba layer or an attention layer
  6970. if bid in self._ssm_layers:
  6971. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6972. elif bid in self._attn_layers:
  6973. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6974. return [(self.map_tensor_name(name), data_torch)]
  6975. def set_gguf_parameters(self):
  6976. """This method merges params from both parents and some that are
  6977. specific to this model. The result is some duplication of how the params
  6978. get set. The following warnings are expected during conversion:
  6979. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6980. WARNING:Duplicated key name 'granitehybrid.context_length'
  6981. """
  6982. GraniteMoeModel.set_gguf_parameters(self)
  6983. ## Mamba mixer params ##
  6984. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6985. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6986. self.gguf_writer.add_ssm_group_count(self.n_group)
  6987. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6988. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6989. # in llama.cpp
  6990. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6991. ## Attention params ##
  6992. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6993. head_count_kv_vec = [
  6994. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6995. ]
  6996. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6997. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6998. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6999. ## If Bamba or non-hybrid, use rope, otherwise don't
  7000. use_rope = (
  7001. "BambaForCausalLM" in self.hparams["architectures"]
  7002. or not self._ssm_layers
  7003. )
  7004. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7005. if not use_rope:
  7006. self.gguf_writer.add_context_length(2**20)
  7007. ## Validation ##
  7008. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7009. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7010. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7011. def set_vocab(self):
  7012. self.hparams["pad_vocab_size_multiple"] = 8
  7013. Mamba2Model.set_vocab(self)
  7014. @ModelBase.register("NemotronHForCausalLM")
  7015. class NemotronHModel(GraniteHybridModel):
  7016. """Hybrid mamba2/attention model from NVIDIA"""
  7017. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7018. def __init__(self, *args, **kwargs):
  7019. super().__init__(*args, **kwargs)
  7020. # Save the top-level head_dim for later
  7021. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7022. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7023. # Don't use expand to calculate d_inner
  7024. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7025. # Update the ssm / attn / mlp layers
  7026. # M: Mamba2, *: Attention, -: MLP
  7027. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7028. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7029. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  7030. def get_attn_layers(self):
  7031. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7032. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7033. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7034. def set_gguf_parameters(self):
  7035. super().set_gguf_parameters()
  7036. self.gguf_writer.add_key_length(self.head_dim)
  7037. self.gguf_writer.add_value_length(self.head_dim)
  7038. # Set feed_forward_length
  7039. # NOTE: This will trigger an override warning. This is preferrable to
  7040. # duplicating all the parent logic
  7041. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7042. self.gguf_writer.add_feed_forward_length([
  7043. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7044. ])
  7045. def set_vocab(self):
  7046. super().set_vocab()
  7047. # The tokenizer _does_ add a BOS token (via post_processor type
  7048. # TemplateProcessing) but does not set add_bos_token to true in the
  7049. # config, so we need to explicitly override it here.
  7050. self.gguf_writer.add_add_bos_token(True)
  7051. @ModelBase.register("BailingMoeForCausalLM")
  7052. class BailingMoeModel(TextModel):
  7053. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7054. def set_vocab(self):
  7055. self._set_vocab_gpt2()
  7056. def set_gguf_parameters(self):
  7057. super().set_gguf_parameters()
  7058. hparams = self.hparams
  7059. if (rope_dim := hparams.get("head_dim")) is None:
  7060. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7061. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7062. rope_scaling = self.hparams.get("rope_scaling") or {}
  7063. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7064. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7065. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7066. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7067. else:
  7068. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7069. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7070. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7071. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7072. self.gguf_writer.add_expert_weights_scale(1.0)
  7073. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7074. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7075. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7076. _experts: list[dict[str, Tensor]] | None = None
  7077. @staticmethod
  7078. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7079. if n_head_kv is not None and n_head != n_head_kv:
  7080. n_head = n_head_kv
  7081. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7082. .swapaxes(1, 2)
  7083. .reshape(weights.shape))
  7084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7085. n_head = self.hparams["num_attention_heads"]
  7086. n_kv_head = self.hparams.get("num_key_value_heads")
  7087. n_embd = self.hparams["hidden_size"]
  7088. if (head_dim := self.hparams.get("head_dim")) is None:
  7089. head_dim = n_embd // n_head
  7090. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7091. if name.endswith("attention.dense.weight"):
  7092. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7093. elif name.endswith("query_key_value.weight"):
  7094. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7095. return [
  7096. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7097. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7098. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7099. ]
  7100. elif name.find("mlp.experts") != -1:
  7101. n_experts = self.hparams["num_experts"]
  7102. assert bid is not None
  7103. tensors: list[tuple[str, Tensor]] = []
  7104. if self._experts is None:
  7105. self._experts = [{} for _ in range(self.block_count)]
  7106. self._experts[bid][name] = data_torch
  7107. if len(self._experts[bid]) >= n_experts * 3:
  7108. # merge the experts into a single 3d tensor
  7109. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7110. datas: list[Tensor] = []
  7111. for xid in range(n_experts):
  7112. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7113. datas.append(self._experts[bid][ename])
  7114. del self._experts[bid][ename]
  7115. data_torch = torch.stack(datas, dim=0)
  7116. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7117. new_name = self.map_tensor_name(merged_name)
  7118. tensors.append((new_name, data_torch))
  7119. return tensors
  7120. new_name = self.map_tensor_name(name)
  7121. if new_name == output_name and self.hparams.get("norm_head"):
  7122. data_torch = data_torch.float()
  7123. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7124. return [(new_name, data_torch)]
  7125. def prepare_tensors(self):
  7126. super().prepare_tensors()
  7127. if self._experts is not None:
  7128. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7129. experts = [k for d in self._experts for k in d.keys()]
  7130. if len(experts) > 0:
  7131. raise ValueError(f"Unprocessed experts: {experts}")
  7132. @ModelBase.register("BailingMoeV2ForCausalLM")
  7133. class BailingMoeV2Model(TextModel):
  7134. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7135. def __init__(self, *args, **kwargs):
  7136. super().__init__(*args, **kwargs)
  7137. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7138. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7139. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7140. def set_vocab(self):
  7141. self._set_vocab_gpt2()
  7142. def set_gguf_parameters(self):
  7143. super().set_gguf_parameters()
  7144. hparams = self.hparams
  7145. if (rope_dim := hparams.get("head_dim")) is None:
  7146. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7147. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7148. rope_scaling = self.hparams.get("rope_scaling") or {}
  7149. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7150. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7151. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7152. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7153. else:
  7154. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7155. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7156. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7157. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7158. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7159. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7160. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7161. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7162. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7163. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7164. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7165. _experts: list[dict[str, Tensor]] | None = None
  7166. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7167. if "mlp.experts" in name:
  7168. n_experts = self.hparams["num_experts"]
  7169. assert bid is not None
  7170. tensors: list[tuple[str, Tensor]] = []
  7171. if self._experts is None:
  7172. self._experts = [{} for _ in range(self.block_count)]
  7173. self._experts[bid][name] = data_torch
  7174. if len(self._experts[bid]) >= n_experts * 3:
  7175. # merge the experts into a single 3d tensor
  7176. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7177. datas: list[Tensor] = []
  7178. for xid in range(n_experts):
  7179. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7180. datas.append(self._experts[bid][ename])
  7181. del self._experts[bid][ename]
  7182. data_torch = torch.stack(datas, dim=0)
  7183. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7184. new_name = self.map_tensor_name(merged_name)
  7185. tensors.append((new_name, data_torch))
  7186. return tensors
  7187. if name.endswith(".expert_bias"):
  7188. name = name.replace(".expert_bias", ".expert_bias.bias")
  7189. return [(self.map_tensor_name(name), data_torch)]
  7190. def prepare_tensors(self):
  7191. super().prepare_tensors()
  7192. if self._experts is not None:
  7193. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7194. experts = [k for d in self._experts for k in d.keys()]
  7195. if len(experts) > 0:
  7196. raise ValueError(f"Unprocessed experts: {experts}")
  7197. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7198. class GroveMoeModel(TextModel):
  7199. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7200. def set_gguf_parameters(self):
  7201. super().set_gguf_parameters()
  7202. if (n_experts := self.hparams.get("num_experts")) is not None:
  7203. self.gguf_writer.add_expert_count(n_experts)
  7204. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7205. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7206. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7207. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7208. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7209. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7210. self.gguf_writer.add_experts_per_group(2)
  7211. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7212. self.gguf_writer.add_expert_group_scale(0.05)
  7213. # YaRN is not enabled by default
  7214. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7215. rope_scaling = self.hparams.get("rope_scaling") or {}
  7216. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7217. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7218. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7219. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7220. _experts: list[dict[str, Tensor]] | None = None
  7221. _chunk_experts: list[dict[str, Tensor]] | None = None
  7222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7223. if name.endswith(".expert_bias"):
  7224. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7225. return []
  7226. # process the experts separately
  7227. if name.find("chunk_experts") != -1:
  7228. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7229. assert bid is not None
  7230. if self._chunk_experts is None:
  7231. self._chunk_experts = [{} for _ in range(self.block_count)]
  7232. self._chunk_experts[bid][name] = data_torch
  7233. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7234. tensors: list[tuple[str, Tensor]] = []
  7235. # merge the experts into a single 3d tensor
  7236. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7237. datas: list[Tensor] = []
  7238. for xid in range(n_experts):
  7239. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7240. datas.append(self._chunk_experts[bid][ename])
  7241. del self._chunk_experts[bid][ename]
  7242. data_torch = torch.stack(datas, dim=0)
  7243. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7244. new_name = self.map_tensor_name(merged_name)
  7245. tensors.append((new_name, data_torch))
  7246. return tensors
  7247. else:
  7248. return []
  7249. elif name.find("experts") != -1:
  7250. n_experts = self.hparams["num_experts"]
  7251. assert bid is not None
  7252. if self._experts is None:
  7253. self._experts = [{} for _ in range(self.block_count)]
  7254. self._experts[bid][name] = data_torch
  7255. if len(self._experts[bid]) >= n_experts * 3:
  7256. tensors: list[tuple[str, Tensor]] = []
  7257. # merge the experts into a single 3d tensor
  7258. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7259. datas: list[Tensor] = []
  7260. for xid in range(n_experts):
  7261. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7262. datas.append(self._experts[bid][ename])
  7263. del self._experts[bid][ename]
  7264. data_torch = torch.stack(datas, dim=0)
  7265. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7266. new_name = self.map_tensor_name(merged_name)
  7267. tensors.append((new_name, data_torch))
  7268. return tensors
  7269. else:
  7270. return []
  7271. return [(self.map_tensor_name(name), data_torch)]
  7272. def prepare_tensors(self):
  7273. super().prepare_tensors()
  7274. if self._chunk_experts is not None:
  7275. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7276. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7277. if len(chunk_experts) > 0:
  7278. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7279. if self._experts is not None:
  7280. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7281. experts = [k for d in self._experts for k in d.keys()]
  7282. if len(experts) > 0:
  7283. raise ValueError(f"Unprocessed experts: {experts}")
  7284. @ModelBase.register("ChameleonForConditionalGeneration")
  7285. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7286. class ChameleonModel(TextModel):
  7287. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7288. def set_gguf_parameters(self):
  7289. super().set_gguf_parameters()
  7290. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7291. def set_vocab(self):
  7292. self._set_vocab_gpt2()
  7293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7294. # ignore image tokenizer for now
  7295. # TODO: remove this once image support is implemented for Chameleon
  7296. if name.startswith("model.vqmodel"):
  7297. return []
  7298. n_head = self.hparams["num_attention_heads"]
  7299. n_kv_head = self.hparams.get("num_key_value_heads")
  7300. hidden_dim = self.hparams.get("hidden_size")
  7301. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7302. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7303. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7304. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7305. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7306. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7307. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7308. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7309. return [(self.map_tensor_name(name), data_torch)]
  7310. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7311. @staticmethod
  7312. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7313. head_dim = hidden_dim // n_heads
  7314. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7315. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7316. return data_torch
  7317. @ModelBase.register("UltravoxModel")
  7318. class UltravoxModel(TextModel):
  7319. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7320. def __init__(self, *args, **kwargs):
  7321. super().__init__(*args, **kwargs)
  7322. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7323. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7324. class WhisperEncoderModel(MmprojModel):
  7325. has_vision_encoder = False # no vision encoder
  7326. has_audio_encoder = True
  7327. def __init__(self, *args, **kwargs):
  7328. super().__init__(*args, **kwargs)
  7329. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7330. self.hparams["hidden_size"] = self.hparams["d_model"]
  7331. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7332. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7333. def set_gguf_parameters(self):
  7334. super().set_gguf_parameters()
  7335. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7336. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7337. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7338. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7339. if ".conv" in name and ".weight" in name:
  7340. return gguf.GGMLQuantizationType.F16
  7341. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7342. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7343. del bid # unused
  7344. if name.startswith("language_model."):
  7345. # skip language model tensors
  7346. return []
  7347. # prevent clash naming with vision tensors
  7348. if name.startswith("multi_modal_projector"):
  7349. name = "audio." + name
  7350. if "conv1.bias" in name or "conv2.bias" in name:
  7351. # transpose conv1 and conv2 bias
  7352. data_torch = data_torch.unsqueeze(-1)
  7353. return [(self.map_tensor_name(name), data_torch)]
  7354. @ModelBase.register("UltravoxModel")
  7355. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7356. has_vision_encoder = False # no vision encoder
  7357. has_audio_encoder = True
  7358. def set_gguf_parameters(self):
  7359. super().set_gguf_parameters()
  7360. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7361. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7362. @ModelBase.register("VoxtralForConditionalGeneration")
  7363. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7364. has_vision_encoder = False # no vision encoder
  7365. has_audio_encoder = True
  7366. def set_gguf_parameters(self):
  7367. super().set_gguf_parameters()
  7368. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7369. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7370. @ModelBase.register("FalconH1ForCausalLM")
  7371. class FalconH1Model(Mamba2Model):
  7372. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7373. def __init__(self, *args, **kwargs):
  7374. # Set the hparam prefixes for Falcon Mamba2
  7375. self.hparam_prefixes = ["mamba"]
  7376. # Initialize the base Mamba2Model
  7377. super().__init__(*args, **kwargs)
  7378. # Use Llama conversion for attention
  7379. self._transformer_model_class = LlamaModel
  7380. # n_group and d_inner are used during reshape_tensors for mamba2
  7381. self.n_group = self.find_hparam(["n_groups"])
  7382. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7383. self.d_head = self.find_hparam(["d_head"])
  7384. # Initialize any Falcon Mamba2 specific attributes
  7385. self.has_attention = True # Falcon Mamba2 has attention components
  7386. # Load Falcon-H1 multipliers from hyperparameters
  7387. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7388. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7389. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7390. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7391. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7392. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7393. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7394. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7395. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7396. prefixed = []
  7397. for pfx in self.hparam_prefixes:
  7398. prefixed.extend(
  7399. "_".join([pfx, k])
  7400. for k in keys
  7401. )
  7402. keys = list(keys) + prefixed
  7403. return super().find_hparam(keys, *args, **kwargs)
  7404. def set_vocab(self):
  7405. self._set_vocab_gpt2()
  7406. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7407. tensors = list(super().modify_tensors(data_torch, name, bid))
  7408. tensor = tensors[0][1]
  7409. if "down_proj" in name:
  7410. tensor = tensor * self.mlp_multipliers[1]
  7411. elif "gate_proj" in name:
  7412. tensor = tensor * self.mlp_multipliers[0]
  7413. elif "k_proj" in name:
  7414. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7415. elif "q_proj" in name:
  7416. tensor = tensor * self.attention_in_multiplier
  7417. elif "v_proj" in name:
  7418. tensor = tensor * self.attention_in_multiplier
  7419. elif "o_proj" in name:
  7420. tensor = tensor * self.attention_out_multiplier
  7421. elif "out_proj" in name:
  7422. tensor = tensor * self.ssm_out_multiplier
  7423. elif "in_proj" in name:
  7424. tensor = tensor * self.ssm_in_multiplier
  7425. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7426. intermediate_size = self.hparams["mamba_d_ssm"]
  7427. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7428. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7429. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7430. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7431. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7432. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7433. elif "lm_head" in name:
  7434. tensor = tensor * self.hparams["lm_head_multiplier"]
  7435. elif "embed_tokens" in name:
  7436. tensor = tensor * self.hparams["embedding_multiplier"]
  7437. elif "mamba.norm" in name:
  7438. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7439. tensors = [(tensors[0][0], tensor)]
  7440. return tensors
  7441. def set_gguf_parameters(self):
  7442. super().set_gguf_parameters()
  7443. ## General Params ##
  7444. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7445. # Override some Mamba2 defaults
  7446. self.gguf_writer.add_block_count(self.block_count)
  7447. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7448. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7449. ## Attention params ##
  7450. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7451. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7452. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7453. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7454. ## Validation ##
  7455. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7456. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7457. # Add any other Falcon Mamba2 specific configuration
  7458. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7459. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7460. class HunYuanMoEModel(TextModel):
  7461. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7462. def set_vocab(self):
  7463. from transformers import AutoTokenizer
  7464. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7465. # 1. Get the pre-tokenizer identifier hash
  7466. tokpre = self.get_vocab_base_pre(tokenizer)
  7467. # 2. Reverse-engineer the merges list from mergeable_ranks
  7468. merges = []
  7469. vocab = {}
  7470. mergeable_ranks = tokenizer.mergeable_ranks
  7471. for token, rank in mergeable_ranks.items():
  7472. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7473. if len(token) == 1:
  7474. continue
  7475. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7476. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7477. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7478. # 3. Generate the tokens and toktypes lists
  7479. vocab_size = self.hparams["vocab_size"]
  7480. assert tokenizer.vocab_size == vocab_size
  7481. special_tokens = tokenizer.special_tokens
  7482. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7483. tokens: list[str] = []
  7484. toktypes: list[int] = []
  7485. for i in range(vocab_size):
  7486. if i not in reverse_vocab:
  7487. tokens.append(f"[PAD{i}]")
  7488. toktypes.append(gguf.TokenType.UNUSED)
  7489. else:
  7490. token = reverse_vocab[i]
  7491. tokens.append(token)
  7492. if i in special_tokens.values():
  7493. toktypes.append(gguf.TokenType.CONTROL)
  7494. else:
  7495. toktypes.append(gguf.TokenType.NORMAL)
  7496. # 4. Write all vocab-related fields to the GGUF writer
  7497. self.gguf_writer.add_tokenizer_model("gpt2")
  7498. self.gguf_writer.add_tokenizer_pre(tokpre)
  7499. self.gguf_writer.add_token_list(tokens)
  7500. self.gguf_writer.add_token_types(toktypes)
  7501. self.gguf_writer.add_token_merges(merges)
  7502. # 5. Add special tokens and chat templates
  7503. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7504. special_vocab.add_to_gguf(self.gguf_writer)
  7505. # FIX for BOS token: Overwrite incorrect id read from config.json
  7506. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7507. def set_gguf_parameters(self):
  7508. super().set_gguf_parameters()
  7509. hparams = self.hparams
  7510. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7511. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7512. moe_intermediate_size = hparams["moe_intermediate_size"]
  7513. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7514. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7515. moe_topk = hparams["moe_topk"]
  7516. assert all(topk == moe_topk[0] for topk in moe_topk)
  7517. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7518. moe_shared_expert = hparams["num_shared_expert"]
  7519. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7520. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7521. # Rope
  7522. rope_scaling = hparams.get("rope_scaling", {})
  7523. if rope_scaling.get("type") == "dynamic":
  7524. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7525. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7526. alpha = rope_scaling.get("alpha", 1000)
  7527. base = hparams.get("rope_theta", 10000.0)
  7528. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7529. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7530. self.gguf_writer.add_rope_freq_base(scaled_base)
  7531. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7532. self.gguf_writer.add_rope_scaling_factor(1)
  7533. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7534. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7535. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7536. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7537. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7538. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7539. _experts: list[dict[str, Tensor]] | None = None
  7540. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7541. if name == "lm_head.weight":
  7542. if self.hparams.get("tie_word_embeddings", False):
  7543. logger.info("Skipping tied output layer 'lm_head.weight'")
  7544. return []
  7545. if name.find("mlp.experts") != -1:
  7546. n_experts = self.hparams["num_experts"]
  7547. assert bid is not None
  7548. if self._experts is None:
  7549. self._experts = [{} for _ in range(self.block_count)]
  7550. self._experts[bid][name] = data_torch
  7551. if len(self._experts[bid]) >= n_experts * 3:
  7552. # merge the experts into a single 3d tensor
  7553. tensors: list[tuple[str, Tensor]] = []
  7554. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7555. datas: list[Tensor] = []
  7556. for xid in range(n_experts):
  7557. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7558. datas.append(self._experts[bid][ename])
  7559. del self._experts[bid][ename]
  7560. data_torch = torch.stack(datas, dim=0)
  7561. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7562. new_name = self.map_tensor_name(merged_name)
  7563. tensors.append((new_name, data_torch))
  7564. return tensors
  7565. else:
  7566. return []
  7567. return [(self.map_tensor_name(name), data_torch)]
  7568. def prepare_tensors(self):
  7569. super().prepare_tensors()
  7570. if self._experts is not None:
  7571. experts = [k for d in self._experts for k in d.keys()]
  7572. if len(experts) > 0:
  7573. raise ValueError(f"Unprocessed experts: {experts}")
  7574. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7575. class LLaDAMoEModel(TextModel):
  7576. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7577. def set_gguf_parameters(self):
  7578. super().set_gguf_parameters()
  7579. if (n_experts := self.hparams.get("num_experts")) is not None:
  7580. self.gguf_writer.add_expert_count(n_experts)
  7581. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7582. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7583. # number of experts used per token (top-k)
  7584. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7585. self.gguf_writer.add_expert_used_count(n_experts_used)
  7586. self.gguf_writer.add_mask_token_id(156895)
  7587. self.gguf_writer.add_causal_attention(False)
  7588. self.gguf_writer.add_diffusion_shift_logits(False)
  7589. _experts: list[dict[str, Tensor]] | None = None
  7590. # Copied from: Qwen2MoeModel
  7591. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7592. # process the experts separately
  7593. if name.find("experts") != -1:
  7594. n_experts = self.hparams["num_experts"]
  7595. assert bid is not None
  7596. if self._experts is None:
  7597. self._experts = [{} for _ in range(self.block_count)]
  7598. self._experts[bid][name] = data_torch
  7599. if len(self._experts[bid]) >= n_experts * 3:
  7600. tensors: list[tuple[str, Tensor]] = []
  7601. # merge the experts into a single 3d tensor
  7602. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7603. datas: list[Tensor] = []
  7604. for xid in range(n_experts):
  7605. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7606. datas.append(self._experts[bid][ename])
  7607. del self._experts[bid][ename]
  7608. data_torch = torch.stack(datas, dim=0)
  7609. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7610. new_name = self.map_tensor_name(merged_name)
  7611. tensors.append((new_name, data_torch))
  7612. return tensors
  7613. else:
  7614. return []
  7615. return [(self.map_tensor_name(name), data_torch)]
  7616. # Copied from: Qwen2MoeModel
  7617. def prepare_tensors(self):
  7618. super().prepare_tensors()
  7619. if self._experts is not None:
  7620. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7621. experts = [k for d in self._experts for k in d.keys()]
  7622. if len(experts) > 0:
  7623. raise ValueError(f"Unprocessed experts: {experts}")
  7624. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7625. class HunYuanModel(TextModel):
  7626. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7627. def set_vocab(self):
  7628. if (self.dir_model / "tokenizer.json").is_file():
  7629. self._set_vocab_gpt2()
  7630. else:
  7631. from transformers import AutoTokenizer
  7632. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7633. # 1. Get the pre-tokenizer identifier hash
  7634. tokpre = self.get_vocab_base_pre(tokenizer)
  7635. # 2. Reverse-engineer the merges list from mergeable_ranks
  7636. merges = []
  7637. vocab = {}
  7638. mergeable_ranks = tokenizer.mergeable_ranks
  7639. for token, rank in mergeable_ranks.items():
  7640. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7641. if len(token) == 1:
  7642. continue
  7643. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7644. if len(merged) == 2:
  7645. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7646. # 3. Generate the tokens and toktypes lists
  7647. vocab_size = self.hparams["vocab_size"]
  7648. assert tokenizer.vocab_size == vocab_size
  7649. special_tokens = tokenizer.special_tokens
  7650. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7651. tokens: list[str] = []
  7652. toktypes: list[int] = []
  7653. for i in range(vocab_size):
  7654. if i not in reverse_vocab:
  7655. tokens.append(f"[PAD{i}]")
  7656. toktypes.append(gguf.TokenType.UNUSED)
  7657. else:
  7658. token = reverse_vocab[i]
  7659. tokens.append(token)
  7660. if i in special_tokens.values():
  7661. toktypes.append(gguf.TokenType.CONTROL)
  7662. else:
  7663. toktypes.append(gguf.TokenType.NORMAL)
  7664. # 4. Write all vocab-related fields to the GGUF writer
  7665. self.gguf_writer.add_tokenizer_model("gpt2")
  7666. self.gguf_writer.add_tokenizer_pre(tokpre)
  7667. self.gguf_writer.add_token_list(tokens)
  7668. self.gguf_writer.add_token_types(toktypes)
  7669. self.gguf_writer.add_token_merges(merges)
  7670. # 5. Add special tokens and chat templates
  7671. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7672. special_vocab.add_to_gguf(self.gguf_writer)
  7673. # FIX for BOS token: Overwrite incorrect id read from config.json
  7674. if self.hparams['hidden_size'] == 4096:
  7675. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7676. def set_gguf_parameters(self):
  7677. super().set_gguf_parameters()
  7678. hparams = self.hparams
  7679. # Rope
  7680. rope_scaling = hparams.get("rope_scaling", {})
  7681. if rope_scaling.get("type") == "dynamic":
  7682. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7683. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7684. alpha = rope_scaling.get("alpha", 50)
  7685. base = hparams.get("rope_theta", 10000.0)
  7686. dim = hparams["head_dim"]
  7687. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7688. self.gguf_writer.add_rope_freq_base(scaled_base)
  7689. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7690. self.gguf_writer.add_rope_scaling_factor(1)
  7691. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7692. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7693. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7694. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7695. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7696. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7697. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7698. if name == "lm_head.weight":
  7699. if self.hparams.get("tie_word_embeddings", False):
  7700. logger.info("Skipping tied output layer 'lm_head.weight'")
  7701. return []
  7702. return [(self.map_tensor_name(name), data_torch)]
  7703. @ModelBase.register("SmolLM3ForCausalLM")
  7704. class SmolLM3Model(LlamaModel):
  7705. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7706. @ModelBase.register("GptOssForCausalLM")
  7707. class GptOssModel(TextModel):
  7708. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7709. # TODO: remove once MXFP4 is supported more generally
  7710. def dequant_model(self):
  7711. quant_config = self.hparams.get("quantization_config")
  7712. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7713. return
  7714. return super().dequant_model()
  7715. def transform_nibble_layout(self, tensor):
  7716. assert tensor.dtype == torch.uint8
  7717. assert tensor.shape[-1] == 16
  7718. # swap nibbles
  7719. t_lo = tensor & 0x0F
  7720. t_hi = tensor & 0xF0
  7721. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7722. tensor = t_swapped
  7723. # transform aaaa...bbbb... to abababab...
  7724. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7725. # get a_
  7726. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7727. blk_a1 = (blk_a << 4).view(-1, 1)
  7728. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7729. # get _b
  7730. blk_b0 = (blk_b >> 4).view(-1, 1)
  7731. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7732. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7733. # swap once more
  7734. out = blk_a | blk_b
  7735. out_h = out & 0xF0
  7736. out_l = out & 0x0F
  7737. out = (out_h >> 4) | (out_l << 4)
  7738. return out
  7739. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7740. assert blocks.dtype == torch.uint8
  7741. assert scales.dtype == torch.uint8
  7742. scales = scales.unsqueeze(-1)
  7743. assert len(blocks.shape) == 4
  7744. assert len(scales.shape) == 4
  7745. blocks = self.transform_nibble_layout(blocks)
  7746. new_data = torch.concat((scales, blocks), dim=-1)
  7747. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7748. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7749. # flatten last dim
  7750. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7751. new_data = new_data.numpy()
  7752. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7753. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7754. blocks0: Tensor = torch.zeros(1)
  7755. blocks1: Tensor = torch.zeros(1)
  7756. # we assume that tensors are loaded in the correct order
  7757. for name, data_torch in self.get_tensors():
  7758. if "mlp.experts.down_proj_blocks" in name:
  7759. blocks0 = data_torch
  7760. elif "mlp.experts.down_proj_scales" in name:
  7761. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7762. self.repack_mxfp4(new_name, blocks0, data_torch)
  7763. elif "mlp.experts.gate_up_proj_blocks" in name:
  7764. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7765. elif "mlp.experts.gate_up_proj_scales" in name:
  7766. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7767. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7768. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7769. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7770. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7771. return []
  7772. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7773. del bid # unused
  7774. if "sinks" in name:
  7775. name += ".weight"
  7776. # correct naming for down_proj
  7777. if "down_proj" in name:
  7778. if name.endswith("_bias"):
  7779. name = name.replace("down_proj_bias", "down_proj.bias")
  7780. elif "_blocks" not in name and "_scales" not in name:
  7781. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7782. name = name.replace("down_proj", "down_proj.weight")
  7783. data_torch = data_torch.transpose(-1, -2)
  7784. else:
  7785. # otherwise, it should already be repacked to ggml MXFP4 format
  7786. return []
  7787. # split the gate_up into gate and up
  7788. if "gate_up_proj" in name:
  7789. if name.endswith("_bias"):
  7790. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7791. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7792. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7793. return [
  7794. (self.map_tensor_name(name_gate), gate_proj_bias),
  7795. (self.map_tensor_name(name_up), up_proj_bias)
  7796. ]
  7797. elif "_blocks" not in name and "_scales" not in name:
  7798. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7799. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7800. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7801. data_torch = data_torch.transpose(-1, -2)
  7802. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7803. return [
  7804. (self.map_tensor_name(name_gate), gate_proj_weight),
  7805. (self.map_tensor_name(name_up), up_proj_weight)
  7806. ]
  7807. else:
  7808. # otherwise, it should already be repacked to ggml MXFP4 format
  7809. return []
  7810. return [(self.map_tensor_name(name), data_torch)]
  7811. def set_vocab(self):
  7812. self._set_vocab_gpt2()
  7813. def set_gguf_parameters(self):
  7814. super().set_gguf_parameters()
  7815. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7816. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7817. rope_scaling = self.hparams.get("rope_scaling") or {}
  7818. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7819. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7820. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7821. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7822. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7823. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7824. class LFM2Model(TextModel):
  7825. model_arch = gguf.MODEL_ARCH.LFM2
  7826. def _add_feed_forward_length(self):
  7827. ff_dim = self.hparams["block_ff_dim"]
  7828. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7829. ff_dim = self.hparams["block_ff_dim"]
  7830. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7831. multiple_of = self.hparams["block_multiple_of"]
  7832. if auto_adjust_ff_dim:
  7833. ff_dim = int(2 * ff_dim / 3)
  7834. # custom dim factor multiplier
  7835. if ffn_dim_multiplier is not None:
  7836. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7837. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7838. self.gguf_writer.add_feed_forward_length(ff_dim)
  7839. def set_gguf_parameters(self):
  7840. # set num_key_value_heads only for attention layers
  7841. self.hparams["num_key_value_heads"] = [
  7842. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7843. for layer_type in self.hparams["layer_types"]
  7844. ]
  7845. super().set_gguf_parameters()
  7846. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7847. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7848. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7849. self._add_feed_forward_length()
  7850. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7851. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7852. if is_vision_tensor:
  7853. # skip vision tensors
  7854. return []
  7855. name = name.replace("language_model.", "")
  7856. # conv op requires 2d tensor
  7857. if 'conv.conv' in name:
  7858. data_torch = data_torch.squeeze(1)
  7859. return [(self.map_tensor_name(name), data_torch)]
  7860. @ModelBase.register("Lfm2MoeForCausalLM")
  7861. class LFM2MoeModel(TextModel):
  7862. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7863. def set_gguf_parameters(self):
  7864. # set num_key_value_heads only for attention layers
  7865. self.hparams["num_key_value_heads"] = [
  7866. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7867. for layer_type in self.hparams["layer_types"]
  7868. ]
  7869. super().set_gguf_parameters()
  7870. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7871. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7872. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7873. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7874. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7875. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7876. # cache for experts weights for merging
  7877. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7878. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7879. # conv op requires 2d tensor
  7880. if 'conv.conv' in name:
  7881. data_torch = data_torch.squeeze(1)
  7882. if name.endswith(".expert_bias"):
  7883. name = name.replace(".expert_bias", ".expert_bias.bias")
  7884. # merge expert weights
  7885. if 'experts' in name:
  7886. n_experts = self.hparams["num_experts"]
  7887. assert bid is not None
  7888. expert_cache = self._experts_cache.setdefault(bid, {})
  7889. expert_cache[name] = data_torch
  7890. expert_weights = ["w1", "w2", "w3"]
  7891. # not enough expert weights to merge
  7892. if len(expert_cache) < n_experts * len(expert_weights):
  7893. return []
  7894. tensors: list[tuple[str, Tensor]] = []
  7895. for w_name in expert_weights:
  7896. datas: list[Tensor] = []
  7897. for xid in range(n_experts):
  7898. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7899. datas.append(expert_cache[ename])
  7900. del expert_cache[ename]
  7901. data_torch = torch.stack(datas, dim=0)
  7902. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7903. new_name = self.map_tensor_name(merged_name)
  7904. tensors.append((new_name, data_torch))
  7905. del self._experts_cache[bid]
  7906. return tensors
  7907. return [(self.map_tensor_name(name), data_torch)]
  7908. def prepare_tensors(self):
  7909. super().prepare_tensors()
  7910. assert not self._experts_cache
  7911. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7912. class LFM2VLModel(MmprojModel):
  7913. def __init__(self, *args, **kwargs):
  7914. super().__init__(*args, **kwargs)
  7915. assert self.hparams_vision is not None
  7916. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7917. self.hparams_vision["image_size"] = 256
  7918. def set_gguf_parameters(self):
  7919. super().set_gguf_parameters()
  7920. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7921. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7922. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7923. self.gguf_writer.add_vision_use_gelu(True)
  7924. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7925. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7926. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7927. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7928. del bid # unused
  7929. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7930. if is_vision_tensor:
  7931. # remove "model." prefix
  7932. name = name.replace("model.vision_tower.", "vision_tower.")
  7933. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7934. if "patch_embedding.weight" in name:
  7935. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7936. return [(self.map_tensor_name(name), data_torch)]
  7937. return [] # skip other tensors
  7938. @ModelBase.register("SmallThinkerForCausalLM")
  7939. class SmallThinkerModel(TextModel):
  7940. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7941. def set_gguf_parameters(self):
  7942. super().set_gguf_parameters()
  7943. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7944. self.gguf_writer.add_expert_count(n_experts)
  7945. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7946. self.gguf_writer.add_expert_used_count(n_experts_used)
  7947. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7948. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7949. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7950. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7951. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7952. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7953. else:
  7954. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7955. # YaRN is not enabled by default
  7956. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7957. rope_scaling = self.hparams.get("rope_scaling") or {}
  7958. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7959. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7960. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7961. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7962. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7963. if sliding_window_layout:
  7964. for i in sliding_window_layout:
  7965. if i != 0:
  7966. sliding_window = self.hparams.get("sliding_window_size")
  7967. if sliding_window:
  7968. self.gguf_writer.add_sliding_window(sliding_window)
  7969. break
  7970. _experts: list[dict[str, Tensor]] | None = None
  7971. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7972. # process the experts separately
  7973. if name.find("experts") != -1:
  7974. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7975. assert bid is not None
  7976. if self._experts is None:
  7977. self._experts = [{} for _ in range(self.block_count)]
  7978. self._experts[bid][name] = data_torch
  7979. if len(self._experts[bid]) >= n_experts * 3:
  7980. tensors: list[tuple[str, Tensor]] = []
  7981. # merge the experts into a single 3d tensor
  7982. for w_name in ["down", "gate", "up"]:
  7983. datas: list[Tensor] = []
  7984. for xid in range(n_experts):
  7985. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7986. datas.append(self._experts[bid][ename])
  7987. del self._experts[bid][ename]
  7988. data_torch = torch.stack(datas, dim=0)
  7989. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7990. new_name = self.map_tensor_name(merged_name)
  7991. tensors.append((new_name, data_torch))
  7992. return tensors
  7993. else:
  7994. return []
  7995. return [(self.map_tensor_name(name), data_torch)]
  7996. def prepare_tensors(self):
  7997. super().prepare_tensors()
  7998. if self._experts is not None:
  7999. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8000. experts = [k for d in self._experts for k in d.keys()]
  8001. if len(experts) > 0:
  8002. raise ValueError(f"Unprocessed experts: {experts}")
  8003. @ModelBase.register("ApertusForCausalLM")
  8004. class ApertusModel(LlamaModel):
  8005. model_arch = gguf.MODEL_ARCH.APERTUS
  8006. undo_permute = False
  8007. _alpha_n = {}
  8008. _alpha_p = {}
  8009. _beta = {}
  8010. _eps = {}
  8011. def modify_tensors(self, data_torch, name, bid):
  8012. # Handle xIELU activation parameters
  8013. n_layers = self.hparams["num_hidden_layers"]
  8014. if name.endswith(".act_fn.alpha_n"):
  8015. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8016. if (len(self._alpha_n) == n_layers):
  8017. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8018. return []
  8019. if name.endswith(".act_fn.alpha_p"):
  8020. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8021. if (len(self._alpha_p) == n_layers):
  8022. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8023. return []
  8024. if name.endswith(".act_fn.beta"):
  8025. self._beta[bid] = data_torch.to("cpu").float().item()
  8026. if (len(self._beta) == n_layers):
  8027. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8028. return []
  8029. if name.endswith(".act_fn.eps"):
  8030. self._eps[bid] = data_torch.to("cpu").float().item()
  8031. if (len(self._eps) == n_layers):
  8032. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8033. return []
  8034. return super().modify_tensors(data_torch, name, bid)
  8035. class MistralModel(LlamaModel):
  8036. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8037. model_name = "Mistral"
  8038. hf_arch = ""
  8039. is_mistral_format = True
  8040. undo_permute = False
  8041. def __init__(self, *args, **kwargs):
  8042. super().__init__(*args, **kwargs)
  8043. # for compatibility, we use LLAMA arch for older models
  8044. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8045. if "llama_4_scaling" not in self.hparams:
  8046. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8047. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8048. self.gguf_writer.add_architecture()
  8049. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8050. def dequant_model(self):
  8051. # transform quantization config into HF format
  8052. quant_config = self.hparams.get("quantization")
  8053. if quant_config is not None:
  8054. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8055. self.hparams["quantization_config"] = {
  8056. "activation_scheme": "static",
  8057. "quant_method": "fp8",
  8058. "weight_block_size": None,
  8059. }
  8060. return super().dequant_model()
  8061. @staticmethod
  8062. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8063. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8064. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8065. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8066. )
  8067. if vocab.tokenizer.version == TokenizerVersion.v1:
  8068. return "mistral-v1"
  8069. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8070. return "mistral-v3"
  8071. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8072. return "mistral-v3-tekken"
  8073. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8074. return "mistral-v7"
  8075. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8076. return "mistral-v7-tekken"
  8077. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8078. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8079. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8080. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8081. else:
  8082. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8083. if is_mistral_format:
  8084. err_message += (
  8085. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8086. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8087. )
  8088. raise ValueError(err_message)
  8089. template_path = templates_dir / template_file
  8090. if not template_path.exists():
  8091. raise FileNotFoundError(f"Template file not found: {template_path}")
  8092. with open(template_path, "r", encoding="utf-8") as f:
  8093. template = f.read()
  8094. return template
  8095. def set_gguf_parameters(self):
  8096. super().set_gguf_parameters()
  8097. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8098. @staticmethod
  8099. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8100. if "yarn" in hparams:
  8101. yarn_params = hparams["yarn"]
  8102. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8103. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8104. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8105. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8106. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8107. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8108. if "llama_4_scaling" in hparams:
  8109. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8110. class MistralMoeModel(DeepseekV2Model):
  8111. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8112. model_name = "Mistral"
  8113. hf_arch = ""
  8114. is_mistral_format = True
  8115. def __init__(self, *args, **kwargs):
  8116. super().__init__(*args, **kwargs)
  8117. logger.info("Using MistralMoeModel")
  8118. # remap hparams from Mistral MoE format to DeepseekV2 format
  8119. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8120. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8121. config = self.hparams
  8122. # Mistral key -> HF key
  8123. config_mapping = {
  8124. "dim": "hidden_size",
  8125. "norm_eps": "rms_norm_eps",
  8126. "n_kv_heads": "num_key_value_heads",
  8127. "n_layers": "num_hidden_layers",
  8128. "n_heads": "num_attention_heads",
  8129. "hidden_dim": "intermediate_size",
  8130. }
  8131. # HF key -> (Mistral key, default value)
  8132. top_level_mapping_with_default = {
  8133. "model_type": ("model_type", "transformer"),
  8134. "hidden_act": ("activation", "silu"),
  8135. "tie_word_embeddings": ("tied_embeddings", False),
  8136. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8137. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8138. }
  8139. # mapping top-level keys
  8140. for key, new_key in config_mapping.items():
  8141. if key in config:
  8142. config[new_key] = config[key]
  8143. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8144. config[new_key] = config.get(key, default_value)
  8145. # mapping MoE-specific keys
  8146. moe_config_map = {
  8147. "route_every_n": "moe_layer_freq",
  8148. "first_k_dense_replace": "first_k_dense_replace",
  8149. "num_experts_per_tok": "num_experts_per_tok",
  8150. "num_experts": "n_routed_experts",
  8151. "expert_hidden_dim": "moe_intermediate_size",
  8152. "routed_scale": "routed_scaling_factor",
  8153. "num_shared_experts": "n_shared_experts",
  8154. "num_expert_groups": "n_group",
  8155. "num_expert_groups_per_tok": "topk_group",
  8156. }
  8157. moe = config["moe"]
  8158. for key, new_key in moe_config_map.items():
  8159. if key in moe:
  8160. config[new_key] = moe[key]
  8161. # provide missing values
  8162. config["topk_method"] = None
  8163. config["norm_topk_prob"] = True
  8164. config["scoring_func"] = "softmax"
  8165. def set_vocab(self):
  8166. self._set_vocab_mistral()
  8167. def set_gguf_parameters(self):
  8168. super().set_gguf_parameters()
  8169. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8170. yarn_params = self.hparams["yarn"]
  8171. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8172. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8174. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8175. return []
  8176. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8177. if name.endswith(".qscale_act"):
  8178. name = name.replace(".qscale_act", ".input_scale")
  8179. if name.endswith(".qscale_weight"):
  8180. name = name.replace(".qscale_weight", ".weight_scale")
  8181. if ".wkv_b." in name:
  8182. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8183. if ".experts." in name:
  8184. name = name.replace(".experts.", ".mlp.experts.")
  8185. name = name.replace(".w1.", ".gate_proj.")
  8186. name = name.replace(".w2.", ".down_proj.")
  8187. name = name.replace(".w3.", ".up_proj.")
  8188. name = "model." + name
  8189. return super().modify_tensors(data_torch, name, bid)
  8190. class PixtralModel(LlavaVisionModel):
  8191. model_name = "Pixtral"
  8192. hf_arch = ""
  8193. is_mistral_format = True
  8194. def set_gguf_parameters(self):
  8195. super().set_gguf_parameters()
  8196. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8197. self.gguf_writer.add_vision_attention_layernorm_eps(
  8198. self.find_hparam(["norm_eps"])
  8199. )
  8200. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8201. self.gguf_writer.add_vision_use_silu(True)
  8202. # spatial_merge_size
  8203. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8204. self.gguf_writer.add_vision_spatial_merge_size(
  8205. self.find_vparam(["spatial_merge_size"])
  8206. )
  8207. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8208. if name == "vision_language_adapter.w_in.weight":
  8209. return "mm.1.weight"
  8210. elif name == "vision_language_adapter.w_out.weight":
  8211. return "mm.2.weight"
  8212. return super().map_tensor_name(name, try_suffixes)
  8213. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8214. class LightOnOCRVisionModel(LlavaVisionModel):
  8215. is_mistral_format = False
  8216. use_break_tok = False
  8217. def set_gguf_parameters(self):
  8218. super().set_gguf_parameters()
  8219. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8221. name = name.replace("model.vision_encoder.", "vision_tower.")
  8222. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8223. return super().modify_tensors(data_torch, name, bid)
  8224. @ModelBase.register("KimiVLForConditionalGeneration")
  8225. class KimiVLModel(MmprojModel):
  8226. def __init__(self, *args, **kwargs):
  8227. super().__init__(*args, **kwargs)
  8228. assert self.hparams_vision is not None
  8229. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8230. def set_gguf_parameters(self):
  8231. super().set_gguf_parameters()
  8232. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8233. self.gguf_writer.add_vision_use_gelu(True)
  8234. self.gguf_writer.add_vision_projector_scale_factor(2)
  8235. # eps is the same as pytorch's default value
  8236. assert self.hparams_vision is not None
  8237. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8239. del bid # unused
  8240. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8241. if is_vision_tensor:
  8242. if "pos_emb.weight" in name:
  8243. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8244. elif "wqkv" in name:
  8245. split_dim = 0 if "weight" in name else -1
  8246. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8247. return [
  8248. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8249. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8250. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8251. ]
  8252. return [(self.map_tensor_name(name), data_torch)]
  8253. return [] # skip other tensors
  8254. @ModelBase.register("CogVLMForCausalLM")
  8255. class CogVLMVisionModel(MmprojModel):
  8256. def set_gguf_parameters(self):
  8257. super().set_gguf_parameters()
  8258. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8259. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8260. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8261. del bid # unused
  8262. if not name.startswith("model.vision."):
  8263. return []
  8264. return [(self.map_tensor_name(name), data_torch)]
  8265. @ModelBase.register("CogVLMForCausalLM")
  8266. class CogVLMModel(LlamaModel):
  8267. model_arch = gguf.MODEL_ARCH.COGVLM
  8268. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8269. del bid # unused
  8270. # block vision tensors
  8271. if name.startswith("model.vision."):
  8272. return []
  8273. return [(self.map_tensor_name(name), data_torch)]
  8274. @ModelBase.register("JanusForConditionalGeneration")
  8275. class JanusProModel(LlamaModel):
  8276. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8278. # Skip vision, aligner, and generation tensors
  8279. skip_prefixes = (
  8280. 'model.vision_model.',
  8281. 'model.aligner.',
  8282. 'model.vqmodel.',
  8283. 'model.generation_embeddings.',
  8284. 'model.generation_aligner.',
  8285. 'model.generation_head.',
  8286. )
  8287. if name.startswith(skip_prefixes):
  8288. return []
  8289. if name.startswith('model.language_model.'):
  8290. name = name.replace('model.language_model.', 'model.')
  8291. elif name.startswith('language_model.'):
  8292. name = name.replace('language_model.', '')
  8293. return super().modify_tensors(data_torch, name, bid)
  8294. @ModelBase.register("JanusForConditionalGeneration")
  8295. class JanusProVisionModel(MmprojModel):
  8296. def __init__(self, *args, **kwargs):
  8297. super().__init__(*args, **kwargs)
  8298. assert self.hparams_vision is not None
  8299. if "intermediate_size" not in self.hparams_vision:
  8300. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8301. hidden_size = self.hparams_vision.get("hidden_size")
  8302. if mlp_ratio is not None and hidden_size is not None:
  8303. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8304. def set_gguf_parameters(self):
  8305. super().set_gguf_parameters()
  8306. assert self.hparams_vision is not None
  8307. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8308. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8309. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8310. if hidden_act == "gelu":
  8311. self.gguf_writer.add_vision_use_gelu(True)
  8312. elif hidden_act == "silu":
  8313. self.gguf_writer.add_vision_use_silu(True)
  8314. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8315. """Map aligner tensors to projector format"""
  8316. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8317. if name.startswith("model.aligner."):
  8318. local_name = name[len("model.aligner."):]
  8319. elif name.startswith("aligner."):
  8320. local_name = name[len("aligner."):]
  8321. else:
  8322. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8323. if local_name.startswith("fc1."):
  8324. mm_index = 0
  8325. elif local_name.startswith("hidden_layers."):
  8326. parts = local_name.split(".", 2)
  8327. if len(parts) < 3:
  8328. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8329. mm_index = int(parts[1]) + 1
  8330. else:
  8331. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8332. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8333. return [(tensor_name, data_torch)]
  8334. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8335. del bid # unused
  8336. # Skip language model tensors as they will be handled by `JanusProModel`
  8337. if name.startswith(('model.language_model.', 'language_model.')):
  8338. return []
  8339. # Skip generation-related components
  8340. skip_generation_prefixes = (
  8341. 'model.vqmodel.',
  8342. 'vqmodel.',
  8343. 'model.generation_embeddings.',
  8344. 'generation_embeddings.',
  8345. 'model.generation_aligner.',
  8346. 'generation_aligner.',
  8347. 'model.generation_head.',
  8348. 'generation_head.',
  8349. )
  8350. if name.startswith(skip_generation_prefixes):
  8351. return []
  8352. # Handle aligner tensors
  8353. if name.startswith(('model.aligner.', 'aligner.')):
  8354. return list(self._map_aligner_tensor(data_torch, name))
  8355. # Handle vision tensors
  8356. if name.startswith(('model.vision_model.', 'vision_model.')):
  8357. return [(self.map_tensor_name(name), data_torch)]
  8358. return []
  8359. ###### CONVERSION LOGIC ######
  8360. # tree of lazy tensors
  8361. class LazyTorchTensor(gguf.LazyBase):
  8362. _tensor_type = torch.Tensor
  8363. # to keep the type-checker happy
  8364. dtype: torch.dtype
  8365. shape: torch.Size
  8366. # only used when converting a torch.Tensor to a np.ndarray
  8367. _dtype_map: dict[torch.dtype, type] = {
  8368. torch.float16: np.float16,
  8369. torch.float32: np.float32,
  8370. torch.uint8: np.uint8,
  8371. }
  8372. # only used when byteswapping data. Only correct size is needed
  8373. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8374. torch.float64: np.float64,
  8375. torch.float32: np.float32,
  8376. torch.bfloat16: np.float16,
  8377. torch.float16: np.float16,
  8378. torch.int64: np.int64,
  8379. torch.uint64: np.uint64,
  8380. torch.int32: np.int32,
  8381. torch.uint32: np.uint32,
  8382. torch.int16: np.int16,
  8383. torch.uint16: np.uint16,
  8384. torch.int8: np.int8,
  8385. torch.uint8: np.uint8,
  8386. torch.bool: np.uint8,
  8387. torch.float8_e4m3fn: np.uint8,
  8388. torch.float8_e5m2: np.uint8,
  8389. }
  8390. # used for safetensors slices
  8391. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8392. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8393. _dtype_str_map: dict[str, torch.dtype] = {
  8394. "F64": torch.float64,
  8395. "F32": torch.float32,
  8396. "BF16": torch.bfloat16,
  8397. "F16": torch.float16,
  8398. # "U64": torch.uint64,
  8399. "I64": torch.int64,
  8400. # "U32": torch.uint32,
  8401. "I32": torch.int32,
  8402. # "U16": torch.uint16,
  8403. "I16": torch.int16,
  8404. "U8": torch.uint8,
  8405. "I8": torch.int8,
  8406. "BOOL": torch.bool,
  8407. "F8_E4M3": torch.float8_e4m3fn,
  8408. "F8_E5M2": torch.float8_e5m2,
  8409. }
  8410. def numpy(self) -> gguf.LazyNumpyTensor:
  8411. dtype = self._dtype_map[self.dtype]
  8412. return gguf.LazyNumpyTensor(
  8413. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8414. args=(self,),
  8415. func=(lambda s: s.numpy())
  8416. )
  8417. @classmethod
  8418. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8419. return torch.empty(size=shape, dtype=dtype, device="meta")
  8420. @classmethod
  8421. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8422. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8423. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8424. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8425. return cast(torch.Tensor, lazy)
  8426. @classmethod
  8427. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8428. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8429. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8430. if sys.byteorder == 'big':
  8431. # switch data back to big endian
  8432. tensor = tensor.view(dtype).byteswap(inplace=False)
  8433. return tensor
  8434. dtype = cls._dtype_str_map[tensor.dtype]
  8435. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8436. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8437. dtype = cls._dtype_str_map[t.dtype]
  8438. shape = t.shape
  8439. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8440. return cast(torch.Tensor, lazy)
  8441. @classmethod
  8442. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8443. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8444. if sys.byteorder == 'big':
  8445. # switch data back to big endian
  8446. tensor = tensor.view(dtype).byteswap(inplace=False)
  8447. return tensor
  8448. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8449. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8450. shape = remote_tensor.shape
  8451. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8452. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8453. return cast(torch.Tensor, lazy)
  8454. @classmethod
  8455. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8456. del types # unused
  8457. if kwargs is None:
  8458. kwargs = {}
  8459. if func is torch.Tensor.numpy:
  8460. return args[0].numpy()
  8461. return cls._wrap_fn(func)(*args, **kwargs)
  8462. def parse_args() -> argparse.Namespace:
  8463. parser = argparse.ArgumentParser(
  8464. description="Convert a huggingface model to a GGML compatible file")
  8465. parser.add_argument(
  8466. "--vocab-only", action="store_true",
  8467. help="extract only the vocab",
  8468. )
  8469. parser.add_argument(
  8470. "--outfile", type=Path,
  8471. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8472. )
  8473. parser.add_argument(
  8474. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8475. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8476. )
  8477. parser.add_argument(
  8478. "--bigendian", action="store_true",
  8479. help="model is executed on big endian machine",
  8480. )
  8481. parser.add_argument(
  8482. "model", type=str,
  8483. help="directory containing model file or huggingface repository ID (if --remote)",
  8484. nargs="?",
  8485. )
  8486. parser.add_argument(
  8487. "--use-temp-file", action="store_true",
  8488. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8489. )
  8490. parser.add_argument(
  8491. "--no-lazy", action="store_true",
  8492. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8493. )
  8494. parser.add_argument(
  8495. "--model-name", type=str, default=None,
  8496. help="name of the model",
  8497. )
  8498. parser.add_argument(
  8499. "--verbose", action="store_true",
  8500. help="increase output verbosity",
  8501. )
  8502. parser.add_argument(
  8503. "--split-max-tensors", type=int, default=0,
  8504. help="max tensors in each split",
  8505. )
  8506. parser.add_argument(
  8507. "--split-max-size", type=str, default="0",
  8508. help="max size per split N(M|G)",
  8509. )
  8510. parser.add_argument(
  8511. "--dry-run", action="store_true",
  8512. help="only print out a split plan and exit, without writing any new files",
  8513. )
  8514. parser.add_argument(
  8515. "--no-tensor-first-split", action="store_true",
  8516. help="do not add tensors to the first split (disabled by default)"
  8517. )
  8518. parser.add_argument(
  8519. "--metadata", type=Path,
  8520. help="Specify the path for an authorship metadata override file"
  8521. )
  8522. parser.add_argument(
  8523. "--print-supported-models", action="store_true",
  8524. help="Print the supported models"
  8525. )
  8526. parser.add_argument(
  8527. "--remote", action="store_true",
  8528. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8529. )
  8530. parser.add_argument(
  8531. "--mmproj", action="store_true",
  8532. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8533. )
  8534. parser.add_argument(
  8535. "--mistral-format", action="store_true",
  8536. help="Whether the model is stored following the Mistral format.",
  8537. )
  8538. parser.add_argument(
  8539. "--disable-mistral-community-chat-template", action="store_true",
  8540. help=(
  8541. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8542. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8543. )
  8544. )
  8545. parser.add_argument(
  8546. "--sentence-transformers-dense-modules", action="store_true",
  8547. help=("Whether to include sentence-transformers dense modules."
  8548. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8549. "Default these modules are not included.")
  8550. )
  8551. args = parser.parse_args()
  8552. if not args.print_supported_models and args.model is None:
  8553. parser.error("the following arguments are required: model")
  8554. return args
  8555. def split_str_to_n_bytes(split_str: str) -> int:
  8556. if split_str.endswith("K"):
  8557. n = int(split_str[:-1]) * 1000
  8558. elif split_str.endswith("M"):
  8559. n = int(split_str[:-1]) * 1000 * 1000
  8560. elif split_str.endswith("G"):
  8561. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8562. elif split_str.isnumeric():
  8563. n = int(split_str)
  8564. else:
  8565. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8566. if n < 0:
  8567. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8568. return n
  8569. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8570. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8571. # maybe we should fallback to text model's arch in that case, since not many models have both
  8572. text_config = hparams.get("text_config", {})
  8573. vision_config = hparams.get("vision_config", {})
  8574. arch = None
  8575. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8576. arch = arches[0]
  8577. elif "ssm_cfg" in hparams:
  8578. # For non-hf Mamba and Mamba2 models
  8579. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8580. # if "architectures" is found in the sub-config, use that instead
  8581. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8582. arch = text_config["architectures"][0]
  8583. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8584. arch = vision_config["architectures"][0]
  8585. if arch is None:
  8586. raise ValueError("Failed to detect model architecture")
  8587. return arch
  8588. def main() -> None:
  8589. args = parse_args()
  8590. if args.print_supported_models:
  8591. logger.error("Supported models:")
  8592. ModelBase.print_registered_models()
  8593. sys.exit(0)
  8594. if args.verbose:
  8595. logging.basicConfig(level=logging.DEBUG)
  8596. else:
  8597. logging.basicConfig(level=logging.INFO)
  8598. if args.remote:
  8599. hf_repo_id = args.model
  8600. from huggingface_hub import snapshot_download
  8601. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8602. if args.sentence_transformers_dense_modules:
  8603. # include sentence-transformers dense modules safetensors files
  8604. allowed_patterns.append("*.safetensors")
  8605. local_dir = snapshot_download(
  8606. repo_id=hf_repo_id,
  8607. allow_patterns=allowed_patterns)
  8608. dir_model = Path(local_dir)
  8609. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8610. else:
  8611. hf_repo_id = None
  8612. dir_model = Path(args.model)
  8613. if not dir_model.is_dir():
  8614. logger.error(f'Error: {dir_model} is not a directory')
  8615. sys.exit(1)
  8616. ftype_map: dict[str, gguf.LlamaFileType] = {
  8617. "f32": gguf.LlamaFileType.ALL_F32,
  8618. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8619. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8620. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8621. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8622. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8623. "auto": gguf.LlamaFileType.GUESSED,
  8624. }
  8625. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8626. if args.use_temp_file and is_split:
  8627. logger.error("Error: Cannot use temp file when splitting")
  8628. sys.exit(1)
  8629. if args.outfile is not None:
  8630. fname_out = args.outfile
  8631. elif hf_repo_id:
  8632. # if remote, use the model ID as the output file name
  8633. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8634. else:
  8635. fname_out = dir_model
  8636. logger.info(f"Loading model: {dir_model.name}")
  8637. is_mistral_format = args.mistral_format
  8638. if is_mistral_format and not _mistral_common_installed:
  8639. raise ImportError(_mistral_import_error_msg)
  8640. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8641. with torch.inference_mode():
  8642. output_type = ftype_map[args.outtype]
  8643. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8644. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8645. if not is_mistral_format:
  8646. model_architecture = get_model_architecture(hparams, model_type)
  8647. logger.info(f"Model architecture: {model_architecture}")
  8648. try:
  8649. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8650. except NotImplementedError:
  8651. logger.error(f"Model {model_architecture} is not supported")
  8652. sys.exit(1)
  8653. elif args.mmproj:
  8654. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8655. model_class = PixtralModel
  8656. elif "moe" in hparams:
  8657. model_class = MistralMoeModel
  8658. else:
  8659. model_class = MistralModel
  8660. model_instance = model_class(dir_model, output_type, fname_out,
  8661. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8662. eager=args.no_lazy,
  8663. metadata_override=args.metadata, model_name=args.model_name,
  8664. split_max_tensors=args.split_max_tensors,
  8665. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8666. small_first_shard=args.no_tensor_first_split,
  8667. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8668. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8669. )
  8670. if args.vocab_only:
  8671. logger.info("Exporting model vocab...")
  8672. model_instance.write_vocab()
  8673. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8674. else:
  8675. logger.info("Exporting model...")
  8676. model_instance.write()
  8677. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8678. logger.info(f"Model successfully exported to {out_path}")
  8679. if __name__ == '__main__':
  8680. main()