| 1234567891011121314151617181920212223242526272829303132333435363738 |
- import argparse
- import glob
- import os
- import torch
- ap = argparse.ArgumentParser()
- ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
- args = ap.parse_args()
- # find the model part that includes the the multimodal projector weights
- path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
- checkpoint = torch.load(path)
- # get a list of mm tensor names
- mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
- # store these tensors in a new dictionary and torch.save them
- projector = {name: checkpoint[name].float() for name in mm_tensors}
- torch.save(projector, f"{args.model}/llava.projector")
- # BakLLaVA models contain CLIP tensors in it
- clip_tensors = [k for k, v in checkpoint.items() if k.startswith("model.vision_tower")]
- if len(clip_tensors) > 0:
- clip = {name.replace("vision_tower.vision_tower.", ""): checkpoint[name].float() for name in clip_tensors}
- torch.save(clip, f"{args.model}/llava.clip")
- # added tokens should be removed to be able to convert Mistral models
- if os.path.exists(f"{args.model}/added_tokens.json"):
- with open(f"{args.model}/added_tokens.json", "w") as f:
- f.write("{}\n")
- print("Done!")
- print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
- print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|