| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615 |
- #include "common.h"
- #include "llama.h"
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- #include <set>
- #define SPEC_VOCAB_MAX_SIZE_DIFFERENCE 100
- #define SPEC_VOCAB_CHECK_START_TOKEN_ID 5
- struct seq_draft {
- bool active = false;
- bool drafting = false;
- bool skip = false;
- int i_batch_dft = 0;
- std::vector<int> i_batch_tgt;
- std::vector<llama_token> tokens;
- std::vector<std::vector<llama_token_data>> dists;
- struct llama_sampling_context * ctx_sampling;
- };
- int main(int argc, char ** argv) {
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- gpt_params_print_usage(argc, argv, params);
- return 1;
- }
- if (params.model_draft.empty()) {
- fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
- return 1;
- }
- // max number of parallel drafting sequences (i.e. tree branches)
- const int n_seq_dft = params.n_parallel;
- // probability threshold for splitting a draft branch (only for n_seq_dft > 1)
- const float p_split = params.p_split;
- if (params.seed == LLAMA_DEFAULT_SEED) {
- params.seed = time(NULL);
- }
- std::default_random_engine rng(params.seed);
- std::uniform_real_distribution<> u_dist;
- #ifndef LOG_DISABLE_LOGS
- log_set_target(log_filename_generator("speculative", "log"));
- LOG_TEE("Log start\n");
- log_dump_cmdline(argc, argv);
- #endif // LOG_DISABLE_LOGS
- // init llama.cpp
- llama_backend_init();
- llama_numa_init(params.numa);
- llama_model * model_tgt = NULL;
- llama_model * model_dft = NULL;
- llama_context * ctx_tgt = NULL;
- llama_context * ctx_dft = NULL;
- // load the target model
- std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
- // load the draft model
- params.model = params.model_draft;
- params.n_gpu_layers = params.n_gpu_layers_draft;
- if (params.n_threads_draft > 0) {
- params.n_threads = params.n_threads_draft;
- }
- params.n_threads_batch = params.n_threads_batch_draft;
- std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
- const bool vocab_type_tgt = llama_vocab_type(model_tgt);
- LOG("vocab_type tgt: %d\n", vocab_type_tgt);
- const bool vocab_type_dft = llama_vocab_type(model_dft);
- LOG("vocab_type dft: %d\n", vocab_type_dft);
- if (vocab_type_tgt != vocab_type_dft) {
- fprintf(stderr, "%s: error: draft model vocab type must match target model to use speculation but ", __func__);
- fprintf(stderr, "vocab_type_dft = %d while vocab_type_tgt = %d\n", vocab_type_dft, vocab_type_tgt);
- return 1;
- }
- if (
- llama_add_bos_token(model_tgt) != llama_add_bos_token(model_dft) ||
- llama_add_eos_token(model_tgt) != llama_add_eos_token(model_dft) ||
- llama_token_bos(model_tgt) != llama_token_bos(model_dft) ||
- llama_token_eos(model_tgt) != llama_token_eos(model_dft)
- ) {
- fprintf(stderr, "%s: error: draft model special tokens must match target model to use speculation\n", __func__);
- return 1;
- }
- {
- const int n_vocab_tgt = llama_n_vocab(model_tgt);
- const int n_vocab_dft = llama_n_vocab(model_dft);
- const int vocab_diff = n_vocab_tgt > n_vocab_dft
- ? n_vocab_tgt - n_vocab_dft
- : n_vocab_dft - n_vocab_tgt;
- if (vocab_diff > SPEC_VOCAB_MAX_SIZE_DIFFERENCE) {
- fprintf(stderr, "%s: error: draft model vocab must closely match target model to use speculation but ", __func__);
- fprintf(stderr, "target vocab size %d does not match draft vocab size %d - difference %d, max allowed %d\n",
- n_vocab_tgt, llama_n_vocab(model_dft), vocab_diff, SPEC_VOCAB_MAX_SIZE_DIFFERENCE);
- return 1;
- }
- for (int i = SPEC_VOCAB_CHECK_START_TOKEN_ID; i < std::min(n_vocab_tgt, n_vocab_dft); ++i) {
- const char * token_text_tgt = llama_token_get_text(model_tgt, i);
- const char * token_text_dft = llama_token_get_text(model_dft, i);
- if (std::strcmp(token_text_tgt, token_text_dft) != 0) {
- fprintf(stderr, "%s: error: draft model vocab must match target model to use speculation but ", __func__);
- fprintf(stderr, "token %d content differs - target '%s', draft '%s'\n", i,
- llama_token_to_piece(ctx_tgt, i).c_str(),
- llama_token_to_piece(ctx_dft, i).c_str());
- return 1;
- }
- }
- }
- // Tokenize the prompt
- std::vector<llama_token> inp;
- inp = ::llama_tokenize(ctx_tgt, params.prompt, true, true);
- const int max_context_size = llama_n_ctx(ctx_tgt);
- const int max_tokens_list_size = max_context_size - 4;
- if ((int) inp.size() > max_tokens_list_size) {
- fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
- return 1;
- }
- fprintf(stderr, "\n\n");
- for (auto id : inp) {
- fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
- }
- fflush(stderr);
- const int n_input = inp.size();
- const auto t_enc_start = ggml_time_us();
- // eval the prompt with both models
- llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
- llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
- llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
- const auto t_enc_end = ggml_time_us();
- // the 2 models should have the same vocab
- //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
- // how many tokens to draft each time
- int n_draft = params.n_draft;
- int n_predict = 0;
- int n_drafted = 0;
- int n_accept = 0;
- int n_past_tgt = inp.size();
- int n_past_dft = inp.size();
- // used to determine end of generation
- bool has_eos = false;
- // target model sampling context
- struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
- // draft sequence data
- std::vector<seq_draft> drafts(n_seq_dft);
- params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
- if (params.sparams.temp == 0) {
- params.sparams.temp = -1.0f; // force greedy sampling with probs for the draft model
- }
- for (int s = 0; s < n_seq_dft; ++s) {
- drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
- }
- llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
- llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
- const auto t_dec_start = ggml_time_us();
- // sample from the last token of the prompt
- drafts[0].i_batch_tgt.resize(1);
- drafts[0].i_batch_tgt[0] = 0;
- while (true) {
- std::set<int> active_seqs = {};
- // print current draft sequences
- for (int s = 0; s < n_seq_dft; ++s) {
- if (!drafts[s].active) {
- continue;
- }
- active_seqs.insert(s);
- const auto & tokens = drafts[s].tokens;
- LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
- }
- int i_dft = 0;
- int s_keep = 0;
- llama_token token_id;
- std::string token_str;
- // loop until we fail to accept a drafted token or we run out of drafted tokens
- while (true) {
- // check if the target token matches any of the drafts
- // for stochastic sampling, attempt to match the token with the drafted tokens
- {
- bool accept = false;
- if (params.sparams.temp > 0) {
- // stochastic verification
- llama_token_data_array dist_tgt = llama_sampling_prepare(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft], true, NULL);
- llama_sample_softmax(ctx_tgt, &dist_tgt);
- float p_tgt = 0, p_dft = 0;
- // GGML_ASSERT(dist_tgt.size() == dist_dft.size());
- while (active_seqs.size() > 0) {
- // randomly select a sequence to verify from active sequences
- std::uniform_int_distribution<unsigned int> u_int_dist(0, active_seqs.size() - 1);
- int s = *std::next(active_seqs.begin(), u_int_dist(rng));
- if (i_dft >= (int) drafts[s].tokens.size()) {
- drafts[s].active = false;
- active_seqs.erase(s);
- continue;
- }
- if (accept) {
- // if we already accepted a token, we can skip the rest
- if (drafts[s].tokens[i_dft] != drafts[s_keep].tokens[i_dft]) {
- drafts[s].active = false;
- active_seqs.erase(s);
- }
- continue;
- }
- LOG("verifying sequence #%d at pos #%d from %d active sequence(s)\n", s, i_dft, (int) active_seqs.size());
- float r = u_dist(rng);
- llama_token_data_array dist_dft = { drafts[s].dists[i_dft].data() , drafts[s].dists[i_dft].size(), true };
- // acquire the token probabilities assigned by the draft and target models
- for (size_t i = 0; i < dist_tgt.size; i++) {
- if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
- p_tgt = dist_tgt.data[i].p;
- }
- if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
- p_dft = dist_dft.data[i].p;
- }
- if (p_tgt && p_dft) {
- break;
- }
- }
- LOG("r = %f, p_dft = %f, p_tgt = %f\n", r, p_dft, p_tgt);
- if (r <= p_tgt / p_dft) {
- s_keep = s;
- accept = true;
- token_id = drafts[s].tokens[i_dft];
- token_str = llama_token_to_piece(ctx_tgt, token_id);
- llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
- LOG("draft token %d of sequence %d (%d, '%s') accepted\n", i_dft, s, token_id, token_str.c_str());
- break;
- } else {
- LOG("draft token %d of sequence %d (%d, '%s') rejected\n", i_dft, s, drafts[s].tokens[i_dft], llama_token_to_piece(ctx_tgt, drafts[s].tokens[i_dft]).c_str());
- drafts[s].active = false;
- // calculate residual probability
- GGML_ASSERT(dist_tgt.sorted);
- GGML_ASSERT(dist_dft.sorted);
- float sum_probs = 0.0f;
- // sort dist by id
- std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
- return a.id < b.id;
- });
- std::sort(dist_dft.data, dist_dft.data + dist_dft.size, [](const llama_token_data &a, const llama_token_data &b) {
- return a.id < b.id;
- });
- for (size_t i = 0; i < dist_tgt.size; i++) {
- dist_tgt.data[i].p = std::max(0.0f, dist_tgt.data[i].p - dist_dft.data[i].p);
- sum_probs += dist_tgt.data[i].p;
- }
- for (size_t i = 0; i < dist_tgt.size; i++) {
- dist_tgt.data[i].p /= sum_probs;
- }
- // sort dist_tgt by p desc
- std::sort(dist_tgt.data, dist_tgt.data + dist_tgt.size, [](const llama_token_data &a, const llama_token_data &b) {
- return a.p > b.p;
- });
- }
- active_seqs.erase(s);
- for(int i = 0; i < n_seq_dft; i++) {
- if (i == s) {
- continue;
- }
- if (drafts[i].tokens[i_dft] == drafts[s].tokens[i_dft]) {
- // synchronize active status for sequences with the same drafted token
- drafts[i].active = drafts[i].active && accept;
- if (!drafts[i].active) {
- active_seqs.erase(s);
- }
- }
- }
- }
- if (!accept) {
- // all drafted tokens were rejected
- // sample from the target model
- LOG("all drafted tokens were rejected, sampling from residual distribution\n");
- token_id = llama_sample_token(ctx_tgt, &dist_tgt);
- llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
- token_str = llama_token_to_piece(ctx_tgt, token_id);
- }
- } else {
- // greedy verification
- // sample from the target model
- LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
- token_id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
- llama_sampling_accept(ctx_sampling, ctx_tgt, token_id, true);
- //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
- token_str = llama_token_to_piece(ctx_tgt, token_id);
- for (int s = 0; s < n_seq_dft; ++s) {
- if (!drafts[s].active) {
- continue;
- }
- if (i_dft < (int) drafts[s].tokens.size() && token_id == drafts[s].tokens[i_dft]) {
- LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, token_id, token_str.c_str());
- s_keep = s;
- accept = true;
- } else {
- drafts[s].active = false;
- }
- }
- }
- if (llama_token_is_eog(model_tgt, token_id)) {
- has_eos = true;
- }
- ++n_predict;
- if (accept) {
- ++n_accept;
- ++n_past_tgt;
- ++n_past_dft;
- ++i_dft;
- if (params.use_color) {
- // Color token according to its origin sequence
- printf("\u001b[%dm%s\u001b[37m", (36 - s_keep % 6), token_str.c_str());
- } else {
- printf("%s", token_str.c_str());
- }
- fflush(stdout);
- continue;
- } else {
- printf("%s", token_str.c_str());
- fflush(stdout);
- break;
- }
- }
- }
- {
- LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", token_id, token_str.c_str());
- // TODO: simplify
- {
- LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
- llama_kv_cache_seq_keep(ctx_dft, s_keep);
- llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
- llama_kv_cache_seq_keep(ctx_dft, 0);
- llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
- llama_kv_cache_seq_keep(ctx_tgt, s_keep);
- llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
- llama_kv_cache_seq_keep(ctx_tgt, 0);
- }
- for (int s = 0; s < n_seq_dft; ++s) {
- drafts[s].active = false;
- drafts[s].tokens.clear();
- drafts[s].i_batch_tgt.clear();
- drafts[s].dists.clear();
- }
- // note: will be erased after the speculation phase
- drafts[0].tokens.push_back(token_id);
- drafts[0].dists.push_back(std::vector<llama_token_data>());
- drafts[0].i_batch_tgt.push_back(0);
- llama_batch_clear(batch_dft);
- llama_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
- llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
- // LOG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
- llama_decode(ctx_dft, batch_dft);
- ++n_past_dft;
- }
- if (n_predict > params.n_predict || has_eos) {
- break;
- }
- llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
- int n_seq_cur = 1;
- int n_past_cur = n_past_dft;
- for (int s = 0; s < n_seq_dft; ++s) {
- drafts[s].active = false;
- drafts[s].drafting = false;
- }
- drafts[0].active = true;
- drafts[0].drafting = true;
- drafts[0].i_batch_dft = 0;
- llama_batch_clear(batch_tgt);
- llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
- // sample n_draft tokens from the draft model using tree-based sampling
- for (int i = 0; i < n_draft; ++i) {
- batch_dft.n_tokens = 0;
- for (int s = 0; s < n_seq_dft; ++s) {
- drafts[s].skip = false;
- }
- for (int s = 0; s < n_seq_dft; ++s) {
- if (!drafts[s].drafting || drafts[s].skip) {
- continue;
- }
- llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
- const auto & cur_p = drafts[s].ctx_sampling->cur;
- for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
- LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
- k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
- }
- std::vector<int> sa(1, s);
- // attempt to split the branch if the probability is high enough
- for (int f = 1; f < 8; ++f) {
- if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
- LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
- llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
- llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
- // all previous tokens from this branch are now also part of the new branch
- for (int t = 0; t < batch_tgt.n_tokens; ++t) {
- for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
- if (batch_tgt.seq_id[t][p] == s) {
- batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
- batch_tgt.n_seq_id[t]++;
- break;
- }
- }
- }
- // copy the draft state
- drafts[n_seq_cur].active = true;
- drafts[n_seq_cur].drafting = true;
- drafts[n_seq_cur].skip = true;
- drafts[n_seq_cur].tokens = drafts[s].tokens;
- drafts[n_seq_cur].dists = drafts[s].dists;
- drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
- drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
- llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
- sa.push_back(n_seq_cur);
- n_seq_cur++;
- } else {
- break;
- }
- }
- // add drafted token for each sequence
- for (int is = 0; is < (int) sa.size(); ++is) {
- const llama_token id = cur_p[is].id;
- const int s = sa[is];
- llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
- drafts[s].tokens.push_back(id);
- // save cur_p.data into drafts[s].dists
- drafts[s].dists.push_back(cur_p);
- // add unique drafted tokens to the target batch
- drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
- llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
- // add the token to the batch for batched decoding with the draft model
- drafts[s].i_batch_dft = batch_dft.n_tokens;
- llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
- if (batch_tgt.n_tokens > n_draft) {
- drafts[s].drafting = false;
- }
- }
- }
- // no sequence is drafting anymore
- if (batch_dft.n_tokens == 0) {
- break;
- }
- // evaluate the drafted tokens on the draft model
- llama_decode(ctx_dft, batch_dft);
- ++n_past_cur;
- ++n_drafted;
- if (batch_tgt.n_tokens > n_draft) {
- break;
- }
- }
- // evaluate the target model on the drafted tokens
- {
- llama_kv_cache_seq_keep(ctx_tgt, 0);
- for (int s = 1; s < n_seq_dft; ++s) {
- llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
- }
- // LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());
- llama_decode(ctx_tgt, batch_tgt);
- ++n_past_tgt;
- }
- // the first token is always proposed by the target model before the speculation loop so we erase it here
- for (int s = 0; s < n_seq_dft; ++s) {
- if (!drafts[s].active) {
- continue;
- }
- drafts[s].tokens.erase(drafts[s].tokens.begin());
- drafts[s].dists.erase(drafts[s].dists.begin());
- }
- }
- auto t_dec_end = ggml_time_us();
- LOG_TEE("\n\n");
- LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
- LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
- LOG_TEE("\n");
- LOG_TEE("n_draft = %d\n", n_draft);
- LOG_TEE("n_predict = %d\n", n_predict);
- LOG_TEE("n_drafted = %d\n", n_drafted);
- LOG_TEE("n_accept = %d\n", n_accept);
- LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
- LOG_TEE("\ndraft:\n");
- llama_print_timings(ctx_dft);
- LOG_TEE("\ntarget:\n");
- llama_print_timings(ctx_tgt);
- llama_sampling_free(ctx_sampling);
- for (int s = 0; s < n_seq_dft; ++s) {
- llama_sampling_free(drafts[s].ctx_sampling);
- }
- llama_batch_free(batch_dft);
- llama_free(ctx_tgt);
- llama_free_model(model_tgt);
- llama_free(ctx_dft);
- llama_free_model(model_dft);
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|