| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812 |
- #pragma once
- #include "ggml.h"
- #include "ggml-cuda.h"
- #include <cstdint>
- #include <memory>
- #if defined(GGML_USE_HIP)
- #define GGML_COMMON_DECL_HIP
- #define GGML_COMMON_IMPL_HIP
- #else
- #define GGML_COMMON_DECL_CUDA
- #define GGML_COMMON_IMPL_CUDA
- #if defined(GGML_USE_MUSA)
- #define GGML_COMMON_DECL_MUSA
- #define GGML_COMMON_IMPL_MUSA
- #endif
- #endif
- #include "ggml-common.h"
- #include <array>
- #include <cassert>
- #include <cfloat>
- #include <cstdio>
- #include <string>
- #include <vector>
- #if defined(GGML_USE_HIP)
- #include "vendors/hip.h"
- #elif defined(GGML_USE_MUSA)
- #include "vendors/musa.h"
- #else
- #include "vendors/cuda.h"
- #endif // defined(GGML_USE_HIP)
- #define STRINGIZE_IMPL(...) #__VA_ARGS__
- #define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
- #define WARP_SIZE 32
- #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
- #define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
- #define GGML_CUDA_CC_PASCAL 600
- #define GGML_CUDA_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
- #define GGML_CUDA_CC_VOLTA 700
- #define GGML_CUDA_CC_TURING 750
- #define GGML_CUDA_CC_AMPERE 800
- #define GGML_CUDA_CC_ADA_LOVELACE 890
- #define GGML_CUDA_CC_OFFSET_AMD 0x1000000
- #define GGML_CUDA_CC_OFFSET_MTHREADS 0x0100000
- #define GGML_CUDA_CC_IS_NVIDIA(cc) (cc < GGML_CUDA_CC_OFFSET_MTHREADS)
- // AMD
- // GCN/CDNA, wave size is 64
- #define GGML_CUDA_CC_GCN4 (GGML_CUDA_CC_OFFSET_AMD + 0x803) // Tonga, Fiji, Polaris, minimum for fast fp16
- #define GGML_CUDA_CC_VEGA (GGML_CUDA_CC_OFFSET_AMD + 0x900) // Vega56/64, minimum for fp16 dual issue
- #define GGML_CUDA_CC_VEGA20 (GGML_CUDA_CC_OFFSET_AMD + 0x906) // MI50/Radeon VII, minimum for dp4a
- #define GGML_CUDA_CC_CDNA (GGML_CUDA_CC_OFFSET_AMD + 0x908) // MI100, minimum for MFMA, acc registers
- #define GGML_CUDA_CC_CDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x910) // MI210, minimum acc register renameing
- #define GGML_CUDA_CC_CDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x942) // MI300
- // RDNA removes MFMA, dp4a, xnack, acc registers, wave size is 32
- #define GGML_CUDA_CC_RDNA1 (GGML_CUDA_CC_OFFSET_AMD + 0x1010) // RX 5000
- #define GGML_CUDA_CC_RDNA2 (GGML_CUDA_CC_OFFSET_AMD + 0x1030) // RX 6000, minimum for dp4a
- #define GGML_CUDA_CC_RDNA3 (GGML_CUDA_CC_OFFSET_AMD + 0x1100) // RX 7000, minimum for WMMA
- #define GGML_CUDA_CC_RDNA4 (GGML_CUDA_CC_OFFSET_AMD + 0x1200) // RX 9000
- #define GGML_CUDA_CC_IS_AMD(cc) (cc >= GGML_CUDA_CC_OFFSET_AMD)
- #define GGML_CUDA_CC_IS_RDNA(cc) (cc >= GGML_CUDA_CC_RDNA1)
- #define GGML_CUDA_CC_IS_RDNA1(cc) (cc >= GGML_CUDA_CC_RDNA1 && cc < GGML_CUDA_CC_RDNA2)
- #define GGML_CUDA_CC_IS_RDNA2(cc) (cc >= GGML_CUDA_CC_RDNA2 && cc < GGML_CUDA_CC_RDNA3)
- #define GGML_CUDA_CC_IS_RDNA3(cc) (cc >= GGML_CUDA_CC_RDNA3 && cc < GGML_CUDA_CC_RDNA4)
- #define GGML_CUDA_CC_IS_RDNA4(cc) (cc >= GGML_CUDA_CC_RDNA4)
- #define GGML_CUDA_CC_IS_GCN(cc) (cc > GGML_CUDA_CC_OFFSET_AMD && cc < GGML_CUDA_CC_CDNA)
- #define GGML_CUDA_CC_IS_CDNA(cc) (cc >= GGML_CUDA_CC_CDNA && cc < GGML_CUDA_CC_RDNA1)
- // Moore Threads
- #define GGML_CUDA_MUSA_ARCH_IS_QY1 (__MUSA_ARCH__ <= 210)
- #define GGML_CUDA_CC_QY1 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x210) // MTT S80, MTT S3000
- #define GGML_CUDA_CC_QY2 (GGML_CUDA_CC_OFFSET_MTHREADS + 0x220) // MTT S4000
- #define GGML_CUDA_CC_NG (GGML_CUDA_CC_OFFSET_MTHREADS + 0x310) // TBD
- #define GGML_CUDA_CC_IS_MTHREADS(cc) (cc >= GGML_CUDA_CC_OFFSET_MTHREADS && cc < GGML_CUDA_CC_OFFSET_AMD)
- #define GGML_CUDA_CC_IS_QY1(cc) (cc >= GGML_CUDA_CC_QY1 && cc < GGML_CUDA_CC_QY2)
- #define GGML_CUDA_CC_IS_QY2(cc) (cc >= GGML_CUDA_CC_QY2 && cc < GGML_CUDA_CC_NG)
- #define GGML_CUDA_CC_IS_NG(cc) (cc >= GGML_CUDA_CC_NG)
- #ifdef __CUDA_ARCH_LIST__
- constexpr bool ggml_cuda_has_arch_impl(int) {
- return false;
- }
- template<class ... Archs>
- constexpr bool ggml_cuda_has_arch_impl(const int arch, const int first, Archs... rest) {
- return arch == first || ggml_cuda_has_arch_impl(arch, rest...);
- }
- constexpr bool ggml_cuda_has_arch(const int arch) {
- return ggml_cuda_has_arch_impl(arch, __CUDA_ARCH_LIST__);
- }
- constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur) {
- if (cur == 0) {
- GGML_ABORT("ggml was not compiled with any CUDA arch <= %d", arch);
- }
- return cur;
- }
- template<class ... Archs>
- constexpr int ggml_cuda_highest_compiled_arch_impl(const int arch, const int cur, const int first, Archs... rest) {
- if (first <= arch && first > cur) {
- return ggml_cuda_highest_compiled_arch_impl(arch, first, rest...);
- } else {
- return ggml_cuda_highest_compiled_arch_impl(arch, cur, rest...);
- }
- }
- constexpr int ggml_cuda_highest_compiled_arch(const int arch) {
- return ggml_cuda_highest_compiled_arch_impl(arch, 0, __CUDA_ARCH_LIST__);
- }
- #else
- static int ggml_cuda_highest_compiled_arch(const int arch) {
- return arch;
- }
- #endif // __CUDA_ARCH_LIST__
- // ---------------------------------------------------------------------------------------------------------
- #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
- #define GGML_CUDA_MAX_STREAMS 8
- [[noreturn]]
- void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
- #define CUDA_CHECK_GEN(err, success, error_fn) \
- do { \
- auto err_ = (err); \
- if (err_ != (success)) { \
- ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
- } \
- } while (0)
- #define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
- #if CUDART_VERSION >= 12000 || defined(GGML_USE_MUSA)
- static const char * cublas_get_error_str(const cublasStatus_t err) {
- return cublasGetStatusString(err);
- }
- #else
- static const char * cublas_get_error_str(const cublasStatus_t err) {
- switch (err) {
- case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
- case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
- case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
- case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
- case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
- case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
- case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
- case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
- case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
- default: return "unknown error";
- }
- }
- #endif // CUDART_VERSION >= 12000
- #define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
- #if !defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)
- static const char * cu_get_error_str(CUresult err) {
- const char * err_str;
- cuGetErrorString(err, &err_str);
- return err_str;
- }
- #define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
- #endif
- #if CUDART_VERSION >= 11010 || defined(GGML_USE_MUSA)
- #define GGML_CUDA_ASSUME(x) __builtin_assume(x)
- #else
- #define GGML_CUDA_ASSUME(x)
- #endif // CUDART_VERSION >= 11010
- #ifdef GGML_CUDA_F16
- typedef half dfloat; // dequantize float
- typedef half2 dfloat2;
- #else
- typedef float dfloat; // dequantize float
- typedef float2 dfloat2;
- #endif // GGML_CUDA_F16
- #if (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
- #define GGML_USE_VMM
- #endif // (!defined(GGML_USE_HIP) && !defined(GGML_CUDA_NO_VMM)) || (defined(GGML_USE_HIP) && !defined(GGML_HIP_NO_VMM))
- #if (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
- #define FP16_AVAILABLE
- #endif // (defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL
- #if defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
- #define FAST_FP16_AVAILABLE
- #endif // defined(FP16_AVAILABLE) && __CUDA_ARCH__ != 610
- #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
- #define FP16_MMA_AVAILABLE
- #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_VOLTA
- #if defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
- #define FP16_MMA_AVAILABLE
- #endif // defined(GGML_HIP_ROCWMMA_FATTN) && (defined(CDNA) || defined(RDNA3) || (defined(GGML_HIP_ROCWMMA_FATTN_GFX12) && defined(RDNA4)))
- #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
- #define NEW_MMA_AVAILABLE
- #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_TURING
- #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
- #define CP_ASYNC_AVAILABLE
- #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
- #if !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && GGML_CUDA_MUSA_ARCH_IS_QY1)
- #define FLASH_ATTN_AVAILABLE
- #endif // !defined(GGML_CUDA_NO_FA) && !(defined(GGML_USE_MUSA) && GGML_CUDA_MUSA_ARCH_IS_QY1)
- static bool fp16_available(const int cc) {
- return ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_PASCAL;
- }
- static bool fast_fp16_available(const int cc) {
- return (GGML_CUDA_CC_IS_NVIDIA(cc) && fp16_available(cc) && cc != 610) || GGML_CUDA_CC_IS_AMD(cc);
- }
- // To be used for feature selection of external libraries, e.g. cuBLAS.
- static bool fast_fp16_hardware_available(const int cc) {
- return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_PASCAL && cc != 610) || GGML_CUDA_CC_IS_AMD(cc);
- }
- // Any FP16 tensor core instructions are available for ggml code.
- static bool fp16_mma_available(const int cc) {
- #if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
- return false;
- #else
- return (GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_VOLTA) ||
- GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc);
- #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && !defined(GGML_HIP_ROCWMMA_FATTN)
- }
- // To be used for feature selection of external libraries, e.g. cuBLAS.
- static bool fp16_mma_hardware_available(const int cc) {
- return (GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) ||
- GGML_CUDA_CC_IS_CDNA(cc) || GGML_CUDA_CC_IS_RDNA3(cc) || GGML_CUDA_CC_IS_RDNA4(cc);
- }
- // Volta technically had FP16 tensor cores but they work very differently compared to Turing and later.
- static bool new_mma_available(const int cc) {
- return GGML_CUDA_CC_IS_NVIDIA(cc) && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_TURING;
- }
- static bool cp_async_available(const int cc) {
- return cc < GGML_CUDA_CC_OFFSET_AMD && ggml_cuda_highest_compiled_arch(cc) >= GGML_CUDA_CC_AMPERE;
- }
- static constexpr __device__ int ggml_cuda_get_physical_warp_size() {
- #if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
- return 64;
- #else
- return 32;
- #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__) && (defined(__GFX9__) || defined(__GFX8__))
- }
- [[noreturn]]
- static __device__ void no_device_code(
- const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
- #if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
- printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
- file_name, line, function_name, arch);
- GGML_UNUSED(arch_list);
- #else
- printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
- file_name, line, function_name, arch, arch_list);
- #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
- __trap();
- GGML_UNUSED(no_device_code); // suppress unused function warning
- #if defined(GGML_USE_MUSA)
- __builtin_unreachable();
- #endif // defined(GGML_USE_MUSA)
- }
- #ifdef __CUDA_ARCH__
- #define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
- #else
- #define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.")
- #endif // __CUDA_ARCH__
- // The compiler is always able to unroll loops if they contain continue expressions.
- // In such cases loop unrolling can still be achieved via recursion:
- template <int n>
- struct ggml_cuda_unroll {
- template <typename Func, typename... Args>
- __device__ void operator()(const Func & f, Args... args) const {
- f(n - 1, args...);
- ggml_cuda_unroll<n - 1>{}(f, args...);
- }
- };
- template <>
- struct ggml_cuda_unroll<1> {
- template <typename Func, typename... Args>
- __device__ void operator()(const Func & f, Args... args) const {
- f(0, args...);
- }
- };
- template<int width = WARP_SIZE>
- static __device__ __forceinline__ int warp_reduce_sum(int x) {
- #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
- return __reduce_add_sync(0xffffffff, x);
- #else
- #pragma unroll
- for (int offset = width/2; offset > 0; offset >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, offset, width);
- }
- return x;
- #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
- }
- template<int width = WARP_SIZE>
- static __device__ __forceinline__ float warp_reduce_sum(float x) {
- #pragma unroll
- for (int offset = width/2; offset > 0; offset >>= 1) {
- x += __shfl_xor_sync(0xffffffff, x, offset, width);
- }
- return x;
- }
- template<int width = WARP_SIZE>
- static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
- #pragma unroll
- for (int offset = width/2; offset > 0; offset >>= 1) {
- a.x += __shfl_xor_sync(0xffffffff, a.x, offset, width);
- a.y += __shfl_xor_sync(0xffffffff, a.y, offset, width);
- }
- return a;
- }
- template<int width = WARP_SIZE>
- static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
- #ifdef FP16_AVAILABLE
- #pragma unroll
- for (int offset = width/2; offset > 0; offset >>= 1) {
- a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, offset, width));
- }
- return a;
- #else
- NO_DEVICE_CODE;
- return a;
- #endif // FP16_AVAILABLE
- }
- template<int width = WARP_SIZE>
- static __device__ __forceinline__ float warp_reduce_max(float x) {
- #pragma unroll
- for (int offset = width/2; offset > 0; offset >>= 1) {
- x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, offset, width));
- }
- return x;
- }
- static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
- #ifdef FP16_AVAILABLE
- #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
- return __float2half(fmaxf(__half2float(a), __half2float(b)));
- #else
- return __hmax(a, b);
- #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
- #else
- NO_DEVICE_CODE;
- GGML_UNUSED(b);
- return a;
- #endif // FP16_AVAILABLE
- }
- static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
- #if defined(GGML_USE_HIP) && HIP_VERSION >= 50700000
- return half2(__hmax(a.x, b.x), __hmax(a.y, b.y));
- #elif !defined(GGML_USE_HIP) && CUDART_VERSION >= CUDART_HMAX
- return __hmax2(a, b);
- #elif !defined(GGML_USE_HIP)
- half2 ret;
- reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
- reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
- return ret;
- #else
- GGML_UNUSED(a);
- GGML_UNUSED(b);
- NO_DEVICE_CODE;
- #endif
- }
- template<int width = WARP_SIZE>
- static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
- #if !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
- #pragma unroll
- for (int offset = width/2; offset > 0; offset >>= 1) {
- x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, offset, width));
- }
- return x;
- #else
- GGML_UNUSED(x);
- NO_DEVICE_CODE;
- #endif // !(defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= GGML_CUDA_CC_PASCAL || (defined(GGML_USE_HIP) && HIP_VERSION >= 50700000)
- }
- #if CUDART_VERSION < CUDART_HMASK
- static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
- const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
- const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
- return mask_low | mask_high;
- }
- #endif // CUDART_VERSION < CUDART_HMASK
- static __device__ __forceinline__ int ggml_cuda_dp4a(const int a, const int b, int c) {
- #if defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
- #if defined(CDNA) || defined(RDNA2) || defined(__gfx906__)
- c = __builtin_amdgcn_sdot4(a, b, c, false);
- #elif defined(RDNA3) || defined(RDNA4)
- c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
- #elif defined(RDNA1) || defined(__gfx900__)
- int tmp1;
- int tmp2;
- asm("\n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
- v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
- v_add3_u32 %0, %1, %2, %0 \n \
- "
- : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
- : "v"(a), "v"(b)
- );
- #else
- const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
- const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
- c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
- #endif
- return c;
- #else // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
- #if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
- return __dp4a(a, b, c);
- #else // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
- const int8_t * a8 = (const int8_t *) &a;
- const int8_t * b8 = (const int8_t *) &b;
- return c + a8[0]*b8[0] + a8[1]*b8[1] + a8[2]*b8[2] + a8[3]*b8[3];
- #endif // __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A || defined(GGML_USE_MUSA)
- #endif // defined(GGML_USE_HIP) && defined(__HIP_PLATFORM_AMD__)
- }
- typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
- static __device__ __forceinline__ float get_alibi_slope(
- const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
- ) {
- if (max_bias <= 0.0f) {
- return 1.0f;
- }
- const float base = h < n_head_log2 ? m0 : m1;
- const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
- return powf(base, exph);
- }
- template <ggml_type type>
- struct ggml_cuda_type_traits;
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_F16> {
- static constexpr int qk = 1;
- static constexpr int qr = 1;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
- static constexpr int qk = QK4_0;
- static constexpr int qr = QR4_0;
- static constexpr int qi = QI4_0;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
- static constexpr int qk = QK4_1;
- static constexpr int qr = QR4_1;
- static constexpr int qi = QI4_1;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
- static constexpr int qk = QK5_0;
- static constexpr int qr = QR5_0;
- static constexpr int qi = QI5_0;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
- static constexpr int qk = QK5_1;
- static constexpr int qr = QR5_1;
- static constexpr int qi = QI5_1;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
- static constexpr int qk = QK8_0;
- static constexpr int qr = QR8_0;
- static constexpr int qi = QI8_0;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR2_K;
- static constexpr int qi = QI2_K;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR3_K;
- static constexpr int qi = QI3_K;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR4_K;
- static constexpr int qi = QI4_K;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR5_K;
- static constexpr int qi = QI5_K;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR6_K;
- static constexpr int qi = QI6_K;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR2_XXS;
- static constexpr int qi = QI2_XXS;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR2_XS;
- static constexpr int qi = QI2_XS;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR2_S;
- static constexpr int qi = QI2_S;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR3_XXS;
- static constexpr int qi = QI3_XXS;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR1_S;
- static constexpr int qi = QI1_S;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR1_M;
- static constexpr int qi = QI1_M;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
- static constexpr int qk = QK4_NL;
- static constexpr int qr = QR4_NL;
- static constexpr int qi = QI4_NL;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR4_XS;
- static constexpr int qi = QI4_XS;
- };
- template<>
- struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
- static constexpr int qk = QK_K;
- static constexpr int qr = QR3_S;
- static constexpr int qi = QI3_S;
- };
- //////////////////////
- struct ggml_cuda_device_info {
- int device_count;
- struct cuda_device_info {
- int cc; // compute capability
- int nsm; // number of streaming multiprocessors
- size_t smpb; // max. shared memory per block
- size_t smpbo; // max. shared memory per block (with opt-in)
- bool integrated; // Device is integrated as opposed to discrete
- bool vmm; // virtual memory support
- size_t vmm_granularity; // granularity of virtual memory
- size_t total_vram;
- int warp_size; // Number of threads in a dispatch
- };
- cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
- std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
- };
- const ggml_cuda_device_info & ggml_cuda_info();
- void ggml_cuda_set_device(int device);
- int ggml_cuda_get_device();
- struct ggml_cuda_pool {
- virtual ~ggml_cuda_pool() = default;
- virtual void * alloc(size_t size, size_t * actual_size) = 0;
- virtual void free(void * ptr, size_t size) = 0;
- };
- template<typename T>
- struct ggml_cuda_pool_alloc {
- ggml_cuda_pool * pool = nullptr;
- T * ptr = nullptr;
- size_t actual_size = 0;
- ggml_cuda_pool_alloc() = default;
- explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
- }
- ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
- alloc(size);
- }
- ~ggml_cuda_pool_alloc() {
- if (ptr != nullptr) {
- pool->free(ptr, actual_size);
- }
- }
- // size is in number of elements
- T * alloc(size_t size) {
- GGML_ASSERT(pool != nullptr);
- GGML_ASSERT(ptr == nullptr);
- ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
- return ptr;
- }
- T * alloc(ggml_cuda_pool & pool, size_t size) {
- this->pool = &pool;
- return alloc(size);
- }
- T * get() {
- return ptr;
- }
- ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
- ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
- ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
- ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
- };
- // backend interface
- struct ggml_tensor_extra_gpu {
- void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
- cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
- };
- #if (defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS))
- #define USE_CUDA_GRAPH
- #endif
- struct ggml_graph_node_properties {
- void * node_address;
- ggml_op node_op;
- int64_t ne[GGML_MAX_DIMS];
- size_t nb[GGML_MAX_DIMS];
- void * src_address[GGML_MAX_SRC];
- int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
- };
- struct ggml_cuda_graph {
- #ifdef USE_CUDA_GRAPH
- ~ggml_cuda_graph() {
- if (instance != nullptr) {
- CUDA_CHECK(cudaGraphExecDestroy(instance));
- }
- if (graph != nullptr) {
- CUDA_CHECK(cudaGraphDestroy(graph));
- }
- }
- cudaGraph_t graph = nullptr;
- cudaGraphExec_t instance = nullptr;
- size_t num_nodes = 0;
- std::vector<cudaGraphNode_t> nodes;
- std::vector<cudaKernelNodeParams> params;
- bool disable_due_to_gpu_arch = false;
- bool disable_due_to_too_many_updates = false;
- bool disable_due_to_failed_graph_capture = false;
- int number_consecutive_updates = 0;
- std::vector<ggml_graph_node_properties> ggml_graph_properties;
- bool use_cpy_indirection = false;
- std::vector<char *> cpy_dest_ptrs;
- char ** dest_ptrs_d;
- int dest_ptrs_size = 0;
- // Index to allow each cpy kernel to be aware of it's position within the graph
- // relative to other cpy nodes.
- int graph_cpynode_index = -1;
- #endif
- };
- struct ggml_backend_cuda_context {
- int device;
- std::string name;
- cudaEvent_t copy_event = nullptr;
- cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
- cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
- std::unique_ptr<ggml_cuda_graph> cuda_graph;
- explicit ggml_backend_cuda_context(int device) :
- device(device),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
- ~ggml_backend_cuda_context();
- cudaStream_t stream(int device, int stream) {
- if (streams[device][stream] == nullptr) {
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
- }
- return streams[device][stream];
- }
- cudaStream_t stream() {
- return stream(device, 0);
- }
- cublasHandle_t cublas_handle(int device) {
- if (cublas_handles[device] == nullptr) {
- ggml_cuda_set_device(device);
- CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
- CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
- }
- return cublas_handles[device];
- }
- cublasHandle_t cublas_handle() {
- return cublas_handle(device);
- }
- // pool
- std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
- static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
- ggml_cuda_pool & pool(int device) {
- if (pools[device] == nullptr) {
- pools[device] = new_pool_for_device(device);
- }
- return *pools[device];
- }
- ggml_cuda_pool & pool() {
- return pool(device);
- }
- };
|