constants.py 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  34. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  35. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  36. EXPERT_COUNT = "{arch}.expert_count"
  37. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  38. POOLING_TYPE = "{arch}.pooling_type"
  39. LOGIT_SCALE = "{arch}.logit_scale"
  40. class Attention:
  41. HEAD_COUNT = "{arch}.attention.head_count"
  42. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  43. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  44. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  45. KEY_LENGTH = "{arch}.attention.key_length"
  46. VALUE_LENGTH = "{arch}.attention.value_length"
  47. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  48. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  49. CAUSAL = "{arch}.attention.causal"
  50. class Rope:
  51. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  52. FREQ_BASE = "{arch}.rope.freq_base"
  53. SCALING_TYPE = "{arch}.rope.scaling.type"
  54. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  55. SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
  56. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  57. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  58. class SSM:
  59. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  60. INNER_SIZE = "{arch}.ssm.inner_size"
  61. STATE_SIZE = "{arch}.ssm.state_size"
  62. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  63. class Tokenizer:
  64. MODEL = "tokenizer.ggml.model"
  65. PRE = "tokenizer.ggml.pre"
  66. LIST = "tokenizer.ggml.tokens"
  67. TOKEN_TYPE = "tokenizer.ggml.token_type"
  68. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  69. SCORES = "tokenizer.ggml.scores"
  70. MERGES = "tokenizer.ggml.merges"
  71. BOS_ID = "tokenizer.ggml.bos_token_id"
  72. EOS_ID = "tokenizer.ggml.eos_token_id"
  73. UNK_ID = "tokenizer.ggml.unknown_token_id"
  74. SEP_ID = "tokenizer.ggml.seperator_token_id"
  75. PAD_ID = "tokenizer.ggml.padding_token_id"
  76. CLS_ID = "tokenizer.ggml.cls_token_id"
  77. MASK_ID = "tokenizer.ggml.mask_token_id"
  78. ADD_BOS = "tokenizer.ggml.add_bos_token"
  79. ADD_EOS = "tokenizer.ggml.add_eos_token"
  80. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  81. HF_JSON = "tokenizer.huggingface.json"
  82. RWKV = "tokenizer.rwkv.world"
  83. CHAT_TEMPLATE = "tokenizer.chat_template"
  84. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  85. CHAT_TEMPLATES = "tokenizer.chat_templates"
  86. # FIM/Infill special tokens constants
  87. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  88. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  89. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  90. EOT_ID = "tokenizer.ggml.eot_token_id"
  91. #
  92. # recommended mapping of model tensor names for storage in gguf
  93. #
  94. class MODEL_ARCH(IntEnum):
  95. LLAMA = auto()
  96. FALCON = auto()
  97. BAICHUAN = auto()
  98. GROK = auto()
  99. GPT2 = auto()
  100. GPTJ = auto()
  101. GPTNEOX = auto()
  102. MPT = auto()
  103. STARCODER = auto()
  104. REFACT = auto()
  105. BERT = auto()
  106. NOMIC_BERT = auto()
  107. JINA_BERT_V2 = auto()
  108. BLOOM = auto()
  109. STABLELM = auto()
  110. QWEN = auto()
  111. QWEN2 = auto()
  112. QWEN2MOE = auto()
  113. PHI2 = auto()
  114. PHI3 = auto()
  115. PLAMO = auto()
  116. CODESHELL = auto()
  117. ORION = auto()
  118. INTERNLM2 = auto()
  119. MINICPM = auto()
  120. GEMMA = auto()
  121. STARCODER2 = auto()
  122. MAMBA = auto()
  123. XVERSE = auto()
  124. COMMAND_R = auto()
  125. DBRX = auto()
  126. OLMO = auto()
  127. ARCTIC = auto()
  128. class MODEL_TENSOR(IntEnum):
  129. TOKEN_EMBD = auto()
  130. TOKEN_EMBD_NORM = auto()
  131. TOKEN_TYPES = auto()
  132. POS_EMBD = auto()
  133. OUTPUT = auto()
  134. OUTPUT_NORM = auto()
  135. ROPE_FREQS = auto()
  136. ROPE_FACTORS_LONG = auto()
  137. ROPE_FACTORS_SHORT = auto()
  138. ATTN_Q = auto()
  139. ATTN_K = auto()
  140. ATTN_V = auto()
  141. ATTN_QKV = auto()
  142. ATTN_OUT = auto()
  143. ATTN_NORM = auto()
  144. ATTN_NORM_2 = auto()
  145. ATTN_OUT_NORM = auto()
  146. ATTN_ROT_EMBD = auto()
  147. FFN_GATE_INP = auto()
  148. FFN_GATE_INP_SHEXP = auto()
  149. FFN_NORM = auto()
  150. FFN_GATE = auto()
  151. FFN_DOWN = auto()
  152. FFN_UP = auto()
  153. FFN_ACT = auto()
  154. FFN_NORM_EXP = auto()
  155. FFN_GATE_EXP = auto()
  156. FFN_DOWN_EXP = auto()
  157. FFN_UP_EXP = auto()
  158. FFN_GATE_SHEXP = auto()
  159. FFN_DOWN_SHEXP = auto()
  160. FFN_UP_SHEXP = auto()
  161. ATTN_Q_NORM = auto()
  162. ATTN_K_NORM = auto()
  163. LAYER_OUT_NORM = auto()
  164. SSM_IN = auto()
  165. SSM_CONV1D = auto()
  166. SSM_X = auto()
  167. SSM_DT = auto()
  168. SSM_A = auto()
  169. SSM_D = auto()
  170. SSM_OUT = auto()
  171. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  172. MODEL_ARCH.LLAMA: "llama",
  173. MODEL_ARCH.FALCON: "falcon",
  174. MODEL_ARCH.BAICHUAN: "baichuan",
  175. MODEL_ARCH.GROK: "grok",
  176. MODEL_ARCH.GPT2: "gpt2",
  177. MODEL_ARCH.GPTJ: "gptj",
  178. MODEL_ARCH.GPTNEOX: "gptneox",
  179. MODEL_ARCH.MPT: "mpt",
  180. MODEL_ARCH.STARCODER: "starcoder",
  181. MODEL_ARCH.REFACT: "refact",
  182. MODEL_ARCH.BERT: "bert",
  183. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  184. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  185. MODEL_ARCH.BLOOM: "bloom",
  186. MODEL_ARCH.STABLELM: "stablelm",
  187. MODEL_ARCH.QWEN: "qwen",
  188. MODEL_ARCH.QWEN2: "qwen2",
  189. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  190. MODEL_ARCH.PHI2: "phi2",
  191. MODEL_ARCH.PHI3: "phi3",
  192. MODEL_ARCH.PLAMO: "plamo",
  193. MODEL_ARCH.CODESHELL: "codeshell",
  194. MODEL_ARCH.ORION: "orion",
  195. MODEL_ARCH.INTERNLM2: "internlm2",
  196. MODEL_ARCH.MINICPM: "minicpm",
  197. MODEL_ARCH.GEMMA: "gemma",
  198. MODEL_ARCH.STARCODER2: "starcoder2",
  199. MODEL_ARCH.MAMBA: "mamba",
  200. MODEL_ARCH.XVERSE: "xverse",
  201. MODEL_ARCH.COMMAND_R: "command-r",
  202. MODEL_ARCH.DBRX: "dbrx",
  203. MODEL_ARCH.OLMO: "olmo",
  204. MODEL_ARCH.ARCTIC: "arctic",
  205. }
  206. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  207. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  208. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  209. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  210. MODEL_TENSOR.POS_EMBD: "position_embd",
  211. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  212. MODEL_TENSOR.OUTPUT: "output",
  213. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  214. MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
  215. MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
  216. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  217. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  218. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  219. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  220. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  221. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  222. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  223. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  224. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  225. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  226. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  227. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  228. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  229. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  230. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  231. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  232. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  233. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  234. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  235. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  236. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  237. MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
  238. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  239. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  240. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  241. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  242. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  243. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  244. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  245. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  246. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  247. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  248. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  249. }
  250. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  251. MODEL_ARCH.LLAMA: [
  252. MODEL_TENSOR.TOKEN_EMBD,
  253. MODEL_TENSOR.OUTPUT_NORM,
  254. MODEL_TENSOR.OUTPUT,
  255. MODEL_TENSOR.ROPE_FREQS,
  256. MODEL_TENSOR.ATTN_NORM,
  257. MODEL_TENSOR.ATTN_Q,
  258. MODEL_TENSOR.ATTN_K,
  259. MODEL_TENSOR.ATTN_V,
  260. MODEL_TENSOR.ATTN_OUT,
  261. MODEL_TENSOR.ATTN_ROT_EMBD,
  262. MODEL_TENSOR.FFN_GATE_INP,
  263. MODEL_TENSOR.FFN_NORM,
  264. MODEL_TENSOR.FFN_GATE,
  265. MODEL_TENSOR.FFN_DOWN,
  266. MODEL_TENSOR.FFN_UP,
  267. MODEL_TENSOR.FFN_GATE_EXP,
  268. MODEL_TENSOR.FFN_DOWN_EXP,
  269. MODEL_TENSOR.FFN_UP_EXP,
  270. ],
  271. MODEL_ARCH.GROK: [
  272. MODEL_TENSOR.TOKEN_EMBD,
  273. MODEL_TENSOR.OUTPUT_NORM,
  274. MODEL_TENSOR.OUTPUT,
  275. MODEL_TENSOR.ROPE_FREQS,
  276. MODEL_TENSOR.ATTN_NORM,
  277. MODEL_TENSOR.ATTN_Q,
  278. MODEL_TENSOR.ATTN_K,
  279. MODEL_TENSOR.ATTN_V,
  280. MODEL_TENSOR.ATTN_OUT,
  281. MODEL_TENSOR.ATTN_ROT_EMBD,
  282. MODEL_TENSOR.ATTN_OUT_NORM,
  283. MODEL_TENSOR.FFN_GATE_INP,
  284. MODEL_TENSOR.FFN_NORM,
  285. MODEL_TENSOR.FFN_GATE,
  286. MODEL_TENSOR.FFN_DOWN,
  287. MODEL_TENSOR.FFN_UP,
  288. MODEL_TENSOR.FFN_GATE_EXP,
  289. MODEL_TENSOR.FFN_DOWN_EXP,
  290. MODEL_TENSOR.FFN_UP_EXP,
  291. MODEL_TENSOR.LAYER_OUT_NORM,
  292. ],
  293. MODEL_ARCH.GPTNEOX: [
  294. MODEL_TENSOR.TOKEN_EMBD,
  295. MODEL_TENSOR.OUTPUT_NORM,
  296. MODEL_TENSOR.OUTPUT,
  297. MODEL_TENSOR.ATTN_NORM,
  298. MODEL_TENSOR.ATTN_QKV,
  299. MODEL_TENSOR.ATTN_OUT,
  300. MODEL_TENSOR.FFN_NORM,
  301. MODEL_TENSOR.FFN_DOWN,
  302. MODEL_TENSOR.FFN_UP,
  303. ],
  304. MODEL_ARCH.FALCON: [
  305. MODEL_TENSOR.TOKEN_EMBD,
  306. MODEL_TENSOR.OUTPUT_NORM,
  307. MODEL_TENSOR.OUTPUT,
  308. MODEL_TENSOR.ATTN_NORM,
  309. MODEL_TENSOR.ATTN_NORM_2,
  310. MODEL_TENSOR.ATTN_QKV,
  311. MODEL_TENSOR.ATTN_OUT,
  312. MODEL_TENSOR.FFN_DOWN,
  313. MODEL_TENSOR.FFN_UP,
  314. ],
  315. MODEL_ARCH.BAICHUAN: [
  316. MODEL_TENSOR.TOKEN_EMBD,
  317. MODEL_TENSOR.OUTPUT_NORM,
  318. MODEL_TENSOR.OUTPUT,
  319. MODEL_TENSOR.ROPE_FREQS,
  320. MODEL_TENSOR.ATTN_NORM,
  321. MODEL_TENSOR.ATTN_Q,
  322. MODEL_TENSOR.ATTN_K,
  323. MODEL_TENSOR.ATTN_V,
  324. MODEL_TENSOR.ATTN_OUT,
  325. MODEL_TENSOR.ATTN_ROT_EMBD,
  326. MODEL_TENSOR.FFN_NORM,
  327. MODEL_TENSOR.FFN_GATE,
  328. MODEL_TENSOR.FFN_DOWN,
  329. MODEL_TENSOR.FFN_UP,
  330. ],
  331. MODEL_ARCH.STARCODER: [
  332. MODEL_TENSOR.TOKEN_EMBD,
  333. MODEL_TENSOR.POS_EMBD,
  334. MODEL_TENSOR.OUTPUT_NORM,
  335. MODEL_TENSOR.OUTPUT,
  336. MODEL_TENSOR.ATTN_NORM,
  337. MODEL_TENSOR.ATTN_QKV,
  338. MODEL_TENSOR.ATTN_OUT,
  339. MODEL_TENSOR.FFN_NORM,
  340. MODEL_TENSOR.FFN_DOWN,
  341. MODEL_TENSOR.FFN_UP,
  342. ],
  343. MODEL_ARCH.BERT: [
  344. MODEL_TENSOR.TOKEN_EMBD,
  345. MODEL_TENSOR.TOKEN_EMBD_NORM,
  346. MODEL_TENSOR.TOKEN_TYPES,
  347. MODEL_TENSOR.POS_EMBD,
  348. MODEL_TENSOR.OUTPUT_NORM,
  349. MODEL_TENSOR.ATTN_OUT_NORM,
  350. MODEL_TENSOR.ATTN_Q,
  351. MODEL_TENSOR.ATTN_K,
  352. MODEL_TENSOR.ATTN_V,
  353. MODEL_TENSOR.ATTN_OUT,
  354. MODEL_TENSOR.FFN_DOWN,
  355. MODEL_TENSOR.FFN_UP,
  356. MODEL_TENSOR.LAYER_OUT_NORM,
  357. ],
  358. MODEL_ARCH.NOMIC_BERT: [
  359. MODEL_TENSOR.TOKEN_EMBD,
  360. MODEL_TENSOR.TOKEN_EMBD_NORM,
  361. MODEL_TENSOR.TOKEN_TYPES,
  362. MODEL_TENSOR.POS_EMBD,
  363. MODEL_TENSOR.OUTPUT_NORM,
  364. MODEL_TENSOR.ATTN_OUT_NORM,
  365. MODEL_TENSOR.ATTN_QKV,
  366. MODEL_TENSOR.ATTN_OUT,
  367. MODEL_TENSOR.FFN_GATE,
  368. MODEL_TENSOR.FFN_DOWN,
  369. MODEL_TENSOR.FFN_UP,
  370. MODEL_TENSOR.LAYER_OUT_NORM,
  371. ],
  372. MODEL_ARCH.JINA_BERT_V2: [
  373. MODEL_TENSOR.TOKEN_EMBD,
  374. MODEL_TENSOR.TOKEN_EMBD_NORM,
  375. MODEL_TENSOR.TOKEN_TYPES,
  376. MODEL_TENSOR.ATTN_OUT_NORM,
  377. MODEL_TENSOR.ATTN_Q,
  378. MODEL_TENSOR.ATTN_Q_NORM,
  379. MODEL_TENSOR.ATTN_K,
  380. MODEL_TENSOR.ATTN_K_NORM,
  381. MODEL_TENSOR.ATTN_V,
  382. MODEL_TENSOR.ATTN_OUT,
  383. MODEL_TENSOR.FFN_UP,
  384. MODEL_TENSOR.FFN_GATE,
  385. MODEL_TENSOR.FFN_DOWN,
  386. MODEL_TENSOR.LAYER_OUT_NORM,
  387. ],
  388. MODEL_ARCH.MPT: [
  389. MODEL_TENSOR.TOKEN_EMBD,
  390. MODEL_TENSOR.OUTPUT_NORM,
  391. MODEL_TENSOR.OUTPUT,
  392. MODEL_TENSOR.ATTN_NORM,
  393. MODEL_TENSOR.ATTN_QKV,
  394. MODEL_TENSOR.ATTN_OUT,
  395. MODEL_TENSOR.FFN_NORM,
  396. MODEL_TENSOR.FFN_DOWN,
  397. MODEL_TENSOR.FFN_UP,
  398. MODEL_TENSOR.FFN_ACT,
  399. MODEL_TENSOR.ATTN_Q_NORM,
  400. MODEL_TENSOR.ATTN_K_NORM,
  401. MODEL_TENSOR.POS_EMBD,
  402. ],
  403. MODEL_ARCH.GPTJ: [
  404. MODEL_TENSOR.TOKEN_EMBD,
  405. MODEL_TENSOR.OUTPUT_NORM,
  406. MODEL_TENSOR.OUTPUT,
  407. MODEL_TENSOR.ATTN_NORM,
  408. MODEL_TENSOR.ATTN_Q,
  409. MODEL_TENSOR.ATTN_K,
  410. MODEL_TENSOR.ATTN_V,
  411. MODEL_TENSOR.ATTN_OUT,
  412. MODEL_TENSOR.FFN_DOWN,
  413. MODEL_TENSOR.FFN_UP,
  414. ],
  415. MODEL_ARCH.REFACT: [
  416. MODEL_TENSOR.TOKEN_EMBD,
  417. MODEL_TENSOR.OUTPUT_NORM,
  418. MODEL_TENSOR.OUTPUT,
  419. MODEL_TENSOR.ATTN_NORM,
  420. MODEL_TENSOR.ATTN_Q,
  421. MODEL_TENSOR.ATTN_K,
  422. MODEL_TENSOR.ATTN_V,
  423. MODEL_TENSOR.ATTN_OUT,
  424. MODEL_TENSOR.FFN_NORM,
  425. MODEL_TENSOR.FFN_GATE,
  426. MODEL_TENSOR.FFN_DOWN,
  427. MODEL_TENSOR.FFN_UP,
  428. ],
  429. MODEL_ARCH.BLOOM: [
  430. MODEL_TENSOR.TOKEN_EMBD,
  431. MODEL_TENSOR.TOKEN_EMBD_NORM,
  432. MODEL_TENSOR.OUTPUT_NORM,
  433. MODEL_TENSOR.OUTPUT,
  434. MODEL_TENSOR.ATTN_NORM,
  435. MODEL_TENSOR.ATTN_QKV,
  436. MODEL_TENSOR.ATTN_OUT,
  437. MODEL_TENSOR.FFN_NORM,
  438. MODEL_TENSOR.FFN_DOWN,
  439. MODEL_TENSOR.FFN_UP,
  440. ],
  441. MODEL_ARCH.STABLELM: [
  442. MODEL_TENSOR.TOKEN_EMBD,
  443. MODEL_TENSOR.OUTPUT_NORM,
  444. MODEL_TENSOR.OUTPUT,
  445. MODEL_TENSOR.ROPE_FREQS,
  446. MODEL_TENSOR.ATTN_NORM,
  447. MODEL_TENSOR.ATTN_Q,
  448. MODEL_TENSOR.ATTN_K,
  449. MODEL_TENSOR.ATTN_V,
  450. MODEL_TENSOR.ATTN_OUT,
  451. MODEL_TENSOR.FFN_NORM,
  452. MODEL_TENSOR.FFN_GATE,
  453. MODEL_TENSOR.FFN_DOWN,
  454. MODEL_TENSOR.FFN_UP,
  455. MODEL_TENSOR.ATTN_Q_NORM,
  456. MODEL_TENSOR.ATTN_K_NORM,
  457. ],
  458. MODEL_ARCH.QWEN: [
  459. MODEL_TENSOR.TOKEN_EMBD,
  460. MODEL_TENSOR.OUTPUT_NORM,
  461. MODEL_TENSOR.OUTPUT,
  462. MODEL_TENSOR.ROPE_FREQS,
  463. MODEL_TENSOR.ATTN_NORM,
  464. MODEL_TENSOR.ATTN_QKV,
  465. MODEL_TENSOR.ATTN_OUT,
  466. MODEL_TENSOR.ATTN_ROT_EMBD,
  467. MODEL_TENSOR.FFN_NORM,
  468. MODEL_TENSOR.FFN_GATE,
  469. MODEL_TENSOR.FFN_DOWN,
  470. MODEL_TENSOR.FFN_UP,
  471. ],
  472. MODEL_ARCH.QWEN2: [
  473. MODEL_TENSOR.TOKEN_EMBD,
  474. MODEL_TENSOR.OUTPUT_NORM,
  475. MODEL_TENSOR.OUTPUT,
  476. MODEL_TENSOR.ATTN_NORM,
  477. MODEL_TENSOR.ATTN_Q,
  478. MODEL_TENSOR.ATTN_K,
  479. MODEL_TENSOR.ATTN_V,
  480. MODEL_TENSOR.ATTN_OUT,
  481. MODEL_TENSOR.FFN_NORM,
  482. MODEL_TENSOR.FFN_GATE,
  483. MODEL_TENSOR.FFN_DOWN,
  484. MODEL_TENSOR.FFN_UP,
  485. ],
  486. MODEL_ARCH.QWEN2MOE: [
  487. MODEL_TENSOR.TOKEN_EMBD,
  488. MODEL_TENSOR.OUTPUT_NORM,
  489. MODEL_TENSOR.OUTPUT,
  490. MODEL_TENSOR.ATTN_NORM,
  491. MODEL_TENSOR.ATTN_Q,
  492. MODEL_TENSOR.ATTN_K,
  493. MODEL_TENSOR.ATTN_V,
  494. MODEL_TENSOR.ATTN_OUT,
  495. MODEL_TENSOR.FFN_NORM,
  496. MODEL_TENSOR.FFN_GATE_INP,
  497. MODEL_TENSOR.FFN_GATE_EXP,
  498. MODEL_TENSOR.FFN_DOWN_EXP,
  499. MODEL_TENSOR.FFN_UP_EXP,
  500. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  501. MODEL_TENSOR.FFN_GATE_SHEXP,
  502. MODEL_TENSOR.FFN_DOWN_SHEXP,
  503. MODEL_TENSOR.FFN_UP_SHEXP,
  504. ],
  505. MODEL_ARCH.PLAMO: [
  506. MODEL_TENSOR.TOKEN_EMBD,
  507. MODEL_TENSOR.OUTPUT_NORM,
  508. MODEL_TENSOR.OUTPUT,
  509. MODEL_TENSOR.ROPE_FREQS,
  510. MODEL_TENSOR.ATTN_NORM,
  511. MODEL_TENSOR.ATTN_Q,
  512. MODEL_TENSOR.ATTN_K,
  513. MODEL_TENSOR.ATTN_V,
  514. MODEL_TENSOR.ATTN_OUT,
  515. MODEL_TENSOR.ATTN_ROT_EMBD,
  516. MODEL_TENSOR.FFN_GATE,
  517. MODEL_TENSOR.FFN_DOWN,
  518. MODEL_TENSOR.FFN_UP,
  519. ],
  520. MODEL_ARCH.GPT2: [
  521. MODEL_TENSOR.TOKEN_EMBD,
  522. MODEL_TENSOR.POS_EMBD,
  523. MODEL_TENSOR.OUTPUT_NORM,
  524. MODEL_TENSOR.OUTPUT,
  525. MODEL_TENSOR.ATTN_NORM,
  526. MODEL_TENSOR.ATTN_QKV,
  527. MODEL_TENSOR.ATTN_OUT,
  528. MODEL_TENSOR.FFN_NORM,
  529. MODEL_TENSOR.FFN_DOWN,
  530. MODEL_TENSOR.FFN_UP,
  531. ],
  532. MODEL_ARCH.PHI2: [
  533. MODEL_TENSOR.TOKEN_EMBD,
  534. MODEL_TENSOR.OUTPUT_NORM,
  535. MODEL_TENSOR.OUTPUT,
  536. MODEL_TENSOR.ATTN_NORM,
  537. MODEL_TENSOR.ATTN_QKV,
  538. MODEL_TENSOR.ATTN_Q,
  539. MODEL_TENSOR.ATTN_K,
  540. MODEL_TENSOR.ATTN_V,
  541. MODEL_TENSOR.ATTN_OUT,
  542. MODEL_TENSOR.FFN_NORM,
  543. MODEL_TENSOR.FFN_DOWN,
  544. MODEL_TENSOR.FFN_UP,
  545. ],
  546. MODEL_ARCH.PHI3: [
  547. MODEL_TENSOR.TOKEN_EMBD,
  548. MODEL_TENSOR.OUTPUT_NORM,
  549. MODEL_TENSOR.OUTPUT,
  550. MODEL_TENSOR.ATTN_NORM,
  551. MODEL_TENSOR.ATTN_QKV,
  552. MODEL_TENSOR.ATTN_Q,
  553. MODEL_TENSOR.ATTN_K,
  554. MODEL_TENSOR.ATTN_V,
  555. MODEL_TENSOR.ATTN_OUT,
  556. MODEL_TENSOR.FFN_NORM,
  557. MODEL_TENSOR.FFN_DOWN,
  558. MODEL_TENSOR.FFN_UP,
  559. ],
  560. MODEL_ARCH.CODESHELL: [
  561. MODEL_TENSOR.TOKEN_EMBD,
  562. MODEL_TENSOR.POS_EMBD,
  563. MODEL_TENSOR.OUTPUT_NORM,
  564. MODEL_TENSOR.OUTPUT,
  565. MODEL_TENSOR.ATTN_NORM,
  566. MODEL_TENSOR.ATTN_QKV,
  567. MODEL_TENSOR.ATTN_OUT,
  568. MODEL_TENSOR.ATTN_ROT_EMBD,
  569. MODEL_TENSOR.FFN_NORM,
  570. MODEL_TENSOR.FFN_DOWN,
  571. MODEL_TENSOR.FFN_UP,
  572. ],
  573. MODEL_ARCH.ORION: [
  574. MODEL_TENSOR.TOKEN_EMBD,
  575. MODEL_TENSOR.OUTPUT_NORM,
  576. MODEL_TENSOR.OUTPUT,
  577. MODEL_TENSOR.ROPE_FREQS,
  578. MODEL_TENSOR.ATTN_NORM,
  579. MODEL_TENSOR.ATTN_Q,
  580. MODEL_TENSOR.ATTN_K,
  581. MODEL_TENSOR.ATTN_V,
  582. MODEL_TENSOR.ATTN_OUT,
  583. MODEL_TENSOR.ATTN_ROT_EMBD,
  584. MODEL_TENSOR.FFN_NORM,
  585. MODEL_TENSOR.FFN_GATE,
  586. MODEL_TENSOR.FFN_DOWN,
  587. MODEL_TENSOR.FFN_UP,
  588. ],
  589. MODEL_ARCH.INTERNLM2: [
  590. MODEL_TENSOR.TOKEN_EMBD,
  591. MODEL_TENSOR.OUTPUT_NORM,
  592. MODEL_TENSOR.OUTPUT,
  593. MODEL_TENSOR.ATTN_NORM,
  594. MODEL_TENSOR.ATTN_Q,
  595. MODEL_TENSOR.ATTN_K,
  596. MODEL_TENSOR.ATTN_V,
  597. MODEL_TENSOR.ATTN_OUT,
  598. MODEL_TENSOR.ATTN_ROT_EMBD,
  599. MODEL_TENSOR.FFN_NORM,
  600. MODEL_TENSOR.FFN_GATE,
  601. MODEL_TENSOR.FFN_DOWN,
  602. MODEL_TENSOR.FFN_UP,
  603. ],
  604. MODEL_ARCH.MINICPM: [
  605. MODEL_TENSOR.TOKEN_EMBD,
  606. MODEL_TENSOR.OUTPUT_NORM,
  607. MODEL_TENSOR.ROPE_FREQS,
  608. MODEL_TENSOR.ATTN_NORM,
  609. MODEL_TENSOR.ATTN_Q,
  610. MODEL_TENSOR.ATTN_K,
  611. MODEL_TENSOR.ATTN_V,
  612. MODEL_TENSOR.ATTN_OUT,
  613. MODEL_TENSOR.ATTN_ROT_EMBD,
  614. MODEL_TENSOR.FFN_GATE_INP,
  615. MODEL_TENSOR.FFN_NORM,
  616. MODEL_TENSOR.FFN_GATE,
  617. MODEL_TENSOR.FFN_DOWN,
  618. MODEL_TENSOR.FFN_UP,
  619. MODEL_TENSOR.FFN_GATE_EXP,
  620. MODEL_TENSOR.FFN_DOWN_EXP,
  621. MODEL_TENSOR.FFN_UP_EXP,
  622. ],
  623. MODEL_ARCH.GEMMA: [
  624. MODEL_TENSOR.TOKEN_EMBD,
  625. MODEL_TENSOR.OUTPUT_NORM,
  626. MODEL_TENSOR.ATTN_NORM,
  627. MODEL_TENSOR.ATTN_Q,
  628. MODEL_TENSOR.ATTN_K,
  629. MODEL_TENSOR.ATTN_V,
  630. MODEL_TENSOR.ATTN_OUT,
  631. MODEL_TENSOR.FFN_GATE,
  632. MODEL_TENSOR.FFN_DOWN,
  633. MODEL_TENSOR.FFN_UP,
  634. MODEL_TENSOR.FFN_NORM,
  635. ],
  636. MODEL_ARCH.STARCODER2: [
  637. MODEL_TENSOR.TOKEN_EMBD,
  638. MODEL_TENSOR.OUTPUT_NORM,
  639. MODEL_TENSOR.OUTPUT,
  640. MODEL_TENSOR.ROPE_FREQS,
  641. MODEL_TENSOR.ATTN_NORM,
  642. MODEL_TENSOR.ATTN_Q,
  643. MODEL_TENSOR.ATTN_K,
  644. MODEL_TENSOR.ATTN_V,
  645. MODEL_TENSOR.ATTN_OUT,
  646. MODEL_TENSOR.ATTN_ROT_EMBD,
  647. MODEL_TENSOR.FFN_NORM,
  648. MODEL_TENSOR.FFN_DOWN,
  649. MODEL_TENSOR.FFN_UP,
  650. ],
  651. MODEL_ARCH.MAMBA: [
  652. MODEL_TENSOR.TOKEN_EMBD,
  653. MODEL_TENSOR.OUTPUT_NORM,
  654. MODEL_TENSOR.OUTPUT,
  655. MODEL_TENSOR.ATTN_NORM,
  656. MODEL_TENSOR.SSM_IN,
  657. MODEL_TENSOR.SSM_CONV1D,
  658. MODEL_TENSOR.SSM_X,
  659. MODEL_TENSOR.SSM_DT,
  660. MODEL_TENSOR.SSM_A,
  661. MODEL_TENSOR.SSM_D,
  662. MODEL_TENSOR.SSM_OUT,
  663. ],
  664. MODEL_ARCH.XVERSE: [
  665. MODEL_TENSOR.TOKEN_EMBD,
  666. MODEL_TENSOR.OUTPUT_NORM,
  667. MODEL_TENSOR.OUTPUT,
  668. MODEL_TENSOR.ROPE_FREQS,
  669. MODEL_TENSOR.ATTN_NORM,
  670. MODEL_TENSOR.ATTN_Q,
  671. MODEL_TENSOR.ATTN_K,
  672. MODEL_TENSOR.ATTN_V,
  673. MODEL_TENSOR.ATTN_OUT,
  674. MODEL_TENSOR.ATTN_ROT_EMBD,
  675. MODEL_TENSOR.FFN_NORM,
  676. MODEL_TENSOR.FFN_GATE,
  677. MODEL_TENSOR.FFN_DOWN,
  678. MODEL_TENSOR.FFN_UP,
  679. ],
  680. MODEL_ARCH.COMMAND_R: [
  681. MODEL_TENSOR.TOKEN_EMBD,
  682. MODEL_TENSOR.OUTPUT_NORM,
  683. MODEL_TENSOR.ATTN_NORM,
  684. MODEL_TENSOR.ATTN_Q,
  685. MODEL_TENSOR.ATTN_K,
  686. MODEL_TENSOR.ATTN_V,
  687. MODEL_TENSOR.ATTN_OUT,
  688. MODEL_TENSOR.FFN_GATE,
  689. MODEL_TENSOR.FFN_DOWN,
  690. MODEL_TENSOR.FFN_UP,
  691. MODEL_TENSOR.ATTN_K_NORM,
  692. MODEL_TENSOR.ATTN_Q_NORM,
  693. ],
  694. MODEL_ARCH.DBRX: [
  695. MODEL_TENSOR.TOKEN_EMBD,
  696. MODEL_TENSOR.OUTPUT_NORM,
  697. MODEL_TENSOR.OUTPUT,
  698. MODEL_TENSOR.ATTN_NORM,
  699. MODEL_TENSOR.ATTN_QKV,
  700. MODEL_TENSOR.ATTN_OUT,
  701. MODEL_TENSOR.ATTN_OUT_NORM,
  702. MODEL_TENSOR.FFN_GATE_INP,
  703. MODEL_TENSOR.FFN_GATE_EXP,
  704. MODEL_TENSOR.FFN_DOWN_EXP,
  705. MODEL_TENSOR.FFN_UP_EXP,
  706. ],
  707. MODEL_ARCH.OLMO: [
  708. MODEL_TENSOR.TOKEN_EMBD,
  709. MODEL_TENSOR.OUTPUT,
  710. MODEL_TENSOR.ATTN_Q,
  711. MODEL_TENSOR.ATTN_K,
  712. MODEL_TENSOR.ATTN_V,
  713. MODEL_TENSOR.ATTN_OUT,
  714. MODEL_TENSOR.FFN_GATE,
  715. MODEL_TENSOR.FFN_DOWN,
  716. MODEL_TENSOR.FFN_UP,
  717. ],
  718. MODEL_ARCH.ARCTIC: [
  719. MODEL_TENSOR.TOKEN_EMBD,
  720. MODEL_TENSOR.OUTPUT_NORM,
  721. MODEL_TENSOR.OUTPUT,
  722. MODEL_TENSOR.ROPE_FREQS,
  723. MODEL_TENSOR.ATTN_NORM,
  724. MODEL_TENSOR.ATTN_Q,
  725. MODEL_TENSOR.ATTN_K,
  726. MODEL_TENSOR.ATTN_V,
  727. MODEL_TENSOR.ATTN_OUT,
  728. MODEL_TENSOR.ATTN_ROT_EMBD,
  729. MODEL_TENSOR.FFN_GATE_INP,
  730. MODEL_TENSOR.FFN_NORM,
  731. MODEL_TENSOR.FFN_GATE,
  732. MODEL_TENSOR.FFN_DOWN,
  733. MODEL_TENSOR.FFN_UP,
  734. MODEL_TENSOR.FFN_NORM_EXP,
  735. MODEL_TENSOR.FFN_GATE_EXP,
  736. MODEL_TENSOR.FFN_DOWN_EXP,
  737. MODEL_TENSOR.FFN_UP_EXP,
  738. ],
  739. # TODO
  740. }
  741. # tensors that will not be serialized
  742. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  743. MODEL_ARCH.LLAMA: [
  744. MODEL_TENSOR.ROPE_FREQS,
  745. MODEL_TENSOR.ATTN_ROT_EMBD,
  746. ],
  747. MODEL_ARCH.BAICHUAN: [
  748. MODEL_TENSOR.ROPE_FREQS,
  749. MODEL_TENSOR.ATTN_ROT_EMBD,
  750. ],
  751. MODEL_ARCH.QWEN: [
  752. MODEL_TENSOR.ROPE_FREQS,
  753. MODEL_TENSOR.ATTN_ROT_EMBD,
  754. ],
  755. MODEL_ARCH.CODESHELL: [
  756. MODEL_TENSOR.ROPE_FREQS,
  757. MODEL_TENSOR.ATTN_ROT_EMBD,
  758. ],
  759. MODEL_ARCH.ORION: [
  760. MODEL_TENSOR.ROPE_FREQS,
  761. MODEL_TENSOR.ATTN_ROT_EMBD,
  762. ],
  763. MODEL_ARCH.STARCODER2: [
  764. MODEL_TENSOR.ROPE_FREQS,
  765. MODEL_TENSOR.ATTN_ROT_EMBD,
  766. ],
  767. MODEL_ARCH.XVERSE: [
  768. MODEL_TENSOR.ROPE_FREQS,
  769. MODEL_TENSOR.ATTN_ROT_EMBD,
  770. ],
  771. }
  772. #
  773. # types
  774. #
  775. class TokenType(IntEnum):
  776. NORMAL = 1
  777. UNKNOWN = 2
  778. CONTROL = 3
  779. USER_DEFINED = 4
  780. UNUSED = 5
  781. BYTE = 6
  782. class RopeScalingType(Enum):
  783. NONE = 'none'
  784. LINEAR = 'linear'
  785. YARN = 'yarn'
  786. class PoolingType(IntEnum):
  787. NONE = 0
  788. MEAN = 1
  789. CLS = 2
  790. class GGMLQuantizationType(IntEnum):
  791. F32 = 0
  792. F16 = 1
  793. Q4_0 = 2
  794. Q4_1 = 3
  795. Q5_0 = 6
  796. Q5_1 = 7
  797. Q8_0 = 8
  798. Q8_1 = 9
  799. Q2_K = 10
  800. Q3_K = 11
  801. Q4_K = 12
  802. Q5_K = 13
  803. Q6_K = 14
  804. Q8_K = 15
  805. IQ2_XXS = 16
  806. IQ2_XS = 17
  807. IQ3_XXS = 18
  808. IQ1_S = 19
  809. IQ4_NL = 20
  810. IQ3_S = 21
  811. IQ2_S = 22
  812. IQ4_XS = 23
  813. I8 = 24
  814. I16 = 25
  815. I32 = 26
  816. I64 = 27
  817. F64 = 28
  818. IQ1_M = 29
  819. BF16 = 30
  820. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  821. # from llama_ftype in llama.h
  822. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  823. class LlamaFileType(IntEnum):
  824. ALL_F32 = 0
  825. MOSTLY_F16 = 1 # except 1d tensors
  826. MOSTLY_Q4_0 = 2 # except 1d tensors
  827. MOSTLY_Q4_1 = 3 # except 1d tensors
  828. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  829. # MOSTLY_Q4_2 = 5 # support has been removed
  830. # MOSTLY_Q4_3 = 6 # support has been removed
  831. MOSTLY_Q8_0 = 7 # except 1d tensors
  832. MOSTLY_Q5_0 = 8 # except 1d tensors
  833. MOSTLY_Q5_1 = 9 # except 1d tensors
  834. MOSTLY_Q2_K = 10 # except 1d tensors
  835. MOSTLY_Q3_K_S = 11 # except 1d tensors
  836. MOSTLY_Q3_K_M = 12 # except 1d tensors
  837. MOSTLY_Q3_K_L = 13 # except 1d tensors
  838. MOSTLY_Q4_K_S = 14 # except 1d tensors
  839. MOSTLY_Q4_K_M = 15 # except 1d tensors
  840. MOSTLY_Q5_K_S = 16 # except 1d tensors
  841. MOSTLY_Q5_K_M = 17 # except 1d tensors
  842. MOSTLY_Q6_K = 18 # except 1d tensors
  843. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  844. MOSTLY_IQ2_XS = 20 # except 1d tensors
  845. MOSTLY_Q2_K_S = 21 # except 1d tensors
  846. MOSTLY_IQ3_XS = 22 # except 1d tensors
  847. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  848. MOSTLY_IQ1_S = 24 # except 1d tensors
  849. MOSTLY_IQ4_NL = 25 # except 1d tensors
  850. MOSTLY_IQ3_S = 26 # except 1d tensors
  851. MOSTLY_IQ3_M = 27 # except 1d tensors
  852. MOSTLY_IQ2_S = 28 # except 1d tensors
  853. MOSTLY_IQ2_M = 29 # except 1d tensors
  854. MOSTLY_IQ4_XS = 30 # except 1d tensors
  855. MOSTLY_IQ1_M = 31 # except 1d tensors
  856. MOSTLY_BF16 = 32 # except 1d tensors
  857. GUESSED = 1024 # not specified in the model file
  858. class GGUFEndian(IntEnum):
  859. LITTLE = 0
  860. BIG = 1
  861. class GGUFValueType(IntEnum):
  862. UINT8 = 0
  863. INT8 = 1
  864. UINT16 = 2
  865. INT16 = 3
  866. UINT32 = 4
  867. INT32 = 5
  868. FLOAT32 = 6
  869. BOOL = 7
  870. STRING = 8
  871. ARRAY = 9
  872. UINT64 = 10
  873. INT64 = 11
  874. FLOAT64 = 12
  875. @staticmethod
  876. def get_type(val: Any) -> GGUFValueType:
  877. if isinstance(val, (str, bytes, bytearray)):
  878. return GGUFValueType.STRING
  879. elif isinstance(val, list):
  880. return GGUFValueType.ARRAY
  881. elif isinstance(val, float):
  882. return GGUFValueType.FLOAT32
  883. elif isinstance(val, bool):
  884. return GGUFValueType.BOOL
  885. elif isinstance(val, int):
  886. return GGUFValueType.INT32
  887. # TODO: need help with 64-bit types in Python
  888. else:
  889. raise ValueError(f"Unknown type: {type(val)}")
  890. # Items here are (block size, type size)
  891. QK_K = 256
  892. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  893. GGMLQuantizationType.F32: (1, 4),
  894. GGMLQuantizationType.F16: (1, 2),
  895. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  896. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  897. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  898. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  899. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  900. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  901. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  902. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  903. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  904. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  905. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  906. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  907. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  908. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  909. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  910. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  911. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  912. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  913. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  914. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  915. GGMLQuantizationType.I8: (1, 1),
  916. GGMLQuantizationType.I16: (1, 2),
  917. GGMLQuantizationType.I32: (1, 4),
  918. GGMLQuantizationType.I64: (1, 8),
  919. GGMLQuantizationType.F64: (1, 8),
  920. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  921. GGMLQuantizationType.BF16: (1, 2),
  922. }
  923. # Aliases for backward compatibility.
  924. # general
  925. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  926. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  927. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  928. KEY_GENERAL_NAME = Keys.General.NAME
  929. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  930. KEY_GENERAL_URL = Keys.General.URL
  931. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  932. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  933. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  934. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  935. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  936. # LLM
  937. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  938. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  939. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  940. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  941. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  942. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  943. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  944. # attention
  945. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  946. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  947. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  948. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  949. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  950. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  951. # RoPE
  952. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  953. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  954. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  955. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  956. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  957. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  958. # SSM
  959. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  960. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  961. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  962. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  963. # tokenization
  964. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  965. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  966. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  967. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  968. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  969. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  970. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  971. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  972. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  973. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  974. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  975. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  976. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  977. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  978. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  979. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  980. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  981. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  982. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID