ggml.c 574 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. // if C99 - static_assert is noop
  27. // ref: https://stackoverflow.com/a/53923785/4039976
  28. #ifndef static_assert
  29. #define static_assert(cond, msg) struct global_scope_noop_trick
  30. #endif
  31. #if defined(_WIN32)
  32. #include <windows.h>
  33. typedef volatile LONG atomic_int;
  34. typedef atomic_int atomic_bool;
  35. static void atomic_store(atomic_int* ptr, LONG val) {
  36. InterlockedExchange(ptr, val);
  37. }
  38. static LONG atomic_load(atomic_int* ptr) {
  39. return InterlockedCompareExchange(ptr, 0, 0);
  40. }
  41. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  42. return InterlockedExchangeAdd(ptr, inc);
  43. }
  44. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  45. return atomic_fetch_add(ptr, -(dec));
  46. }
  47. typedef HANDLE pthread_t;
  48. typedef DWORD thread_ret_t;
  49. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  50. (void) unused;
  51. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  52. if (handle == NULL)
  53. {
  54. return EAGAIN;
  55. }
  56. *out = handle;
  57. return 0;
  58. }
  59. static int pthread_join(pthread_t thread, void* unused) {
  60. (void) unused;
  61. return (int) WaitForSingleObject(thread, INFINITE);
  62. }
  63. static int sched_yield (void) {
  64. Sleep (0);
  65. return 0;
  66. }
  67. #else
  68. #include <pthread.h>
  69. #include <stdatomic.h>
  70. typedef void* thread_ret_t;
  71. #endif
  72. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  73. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  74. #ifndef __FMA__
  75. #define __FMA__
  76. #endif
  77. #ifndef __F16C__
  78. #define __F16C__
  79. #endif
  80. #ifndef __SSE3__
  81. #define __SSE3__
  82. #endif
  83. #endif
  84. #ifdef __HAIKU__
  85. #define static_assert(cond, msg) _Static_assert(cond, msg)
  86. #endif
  87. /*#define GGML_PERF*/
  88. #define GGML_DEBUG 0
  89. #define GGML_GELU_FP16
  90. #define GGML_SILU_FP16
  91. #define GGML_SOFT_MAX_UNROLL 4
  92. #define GGML_VEC_DOT_UNROLL 2
  93. #ifdef GGML_USE_ACCELERATE
  94. // uncomment to use vDSP for soft max computation
  95. // note: not sure if it is actually faster
  96. //#define GGML_SOFT_MAX_ACCELERATE
  97. #endif
  98. #if UINTPTR_MAX == 0xFFFFFFFF
  99. #define GGML_MEM_ALIGN 4
  100. #else
  101. #define GGML_MEM_ALIGN 16
  102. #endif
  103. #if defined(_MSC_VER) || defined(__MINGW32__)
  104. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  105. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  106. #else
  107. inline static void* ggml_aligned_malloc(size_t size) {
  108. void* aligned_memory = NULL;
  109. #ifdef GGML_USE_METAL
  110. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  111. #else
  112. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  113. #endif
  114. if (result != 0) {
  115. // Handle allocation failure
  116. return NULL;
  117. }
  118. return aligned_memory;
  119. }
  120. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  121. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  122. #endif
  123. #define UNUSED(x) (void)(x)
  124. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  125. #if defined(GGML_USE_ACCELERATE)
  126. #include <Accelerate/Accelerate.h>
  127. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  128. #include "ggml-opencl.h"
  129. #endif
  130. #elif defined(GGML_USE_OPENBLAS)
  131. #include <cblas.h>
  132. #elif defined(GGML_USE_CUBLAS)
  133. #include "ggml-cuda.h"
  134. #elif defined(GGML_USE_CLBLAST)
  135. #include "ggml-opencl.h"
  136. #endif
  137. #undef MIN
  138. #undef MAX
  139. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  140. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  141. // floating point type used to accumulate sums
  142. typedef double ggml_float;
  143. // 16-bit float
  144. // on Arm, we use __fp16
  145. // on x86, we use uint16_t
  146. #ifdef __ARM_NEON
  147. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  148. //
  149. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  150. //
  151. #include <arm_neon.h>
  152. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  153. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  154. #define GGML_FP16_TO_FP32(x) ((float) (x))
  155. #define GGML_FP32_TO_FP16(x) (x)
  156. #else
  157. #ifdef __wasm_simd128__
  158. #include <wasm_simd128.h>
  159. #else
  160. #ifdef __POWER9_VECTOR__
  161. #include <altivec.h>
  162. #undef bool
  163. #define bool _Bool
  164. #else
  165. #if defined(_MSC_VER) || defined(__MINGW32__)
  166. #include <intrin.h>
  167. #else
  168. #if !defined(__riscv)
  169. #include <immintrin.h>
  170. #endif
  171. #endif
  172. #endif
  173. #endif
  174. #ifdef __F16C__
  175. #ifdef _MSC_VER
  176. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  177. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  178. #else
  179. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  180. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  181. #endif
  182. #elif defined(__POWER9_VECTOR__)
  183. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  184. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  185. /* the inline asm below is about 12% faster than the lookup method */
  186. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  187. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  188. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  189. register float f;
  190. register double d;
  191. __asm__(
  192. "mtfprd %0,%2\n"
  193. "xscvhpdp %0,%0\n"
  194. "frsp %1,%0\n" :
  195. /* temp */ "=d"(d),
  196. /* out */ "=f"(f):
  197. /* in */ "r"(h));
  198. return f;
  199. }
  200. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  201. register double d;
  202. register ggml_fp16_t r;
  203. __asm__( /* xscvdphp can work on double or single precision */
  204. "xscvdphp %0,%2\n"
  205. "mffprd %1,%0\n" :
  206. /* temp */ "=d"(d),
  207. /* out */ "=r"(r):
  208. /* in */ "f"(f));
  209. return r;
  210. }
  211. #else
  212. // FP16 <-> FP32
  213. // ref: https://github.com/Maratyszcza/FP16
  214. static inline float fp32_from_bits(uint32_t w) {
  215. union {
  216. uint32_t as_bits;
  217. float as_value;
  218. } fp32;
  219. fp32.as_bits = w;
  220. return fp32.as_value;
  221. }
  222. static inline uint32_t fp32_to_bits(float f) {
  223. union {
  224. float as_value;
  225. uint32_t as_bits;
  226. } fp32;
  227. fp32.as_value = f;
  228. return fp32.as_bits;
  229. }
  230. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  231. const uint32_t w = (uint32_t) h << 16;
  232. const uint32_t sign = w & UINT32_C(0x80000000);
  233. const uint32_t two_w = w + w;
  234. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  235. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  236. const float exp_scale = 0x1.0p-112f;
  237. #else
  238. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  239. #endif
  240. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  241. const uint32_t magic_mask = UINT32_C(126) << 23;
  242. const float magic_bias = 0.5f;
  243. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  244. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  245. const uint32_t result = sign |
  246. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  247. return fp32_from_bits(result);
  248. }
  249. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  250. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  251. const float scale_to_inf = 0x1.0p+112f;
  252. const float scale_to_zero = 0x1.0p-110f;
  253. #else
  254. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  255. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  256. #endif
  257. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  258. const uint32_t w = fp32_to_bits(f);
  259. const uint32_t shl1_w = w + w;
  260. const uint32_t sign = w & UINT32_C(0x80000000);
  261. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  262. if (bias < UINT32_C(0x71000000)) {
  263. bias = UINT32_C(0x71000000);
  264. }
  265. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  266. const uint32_t bits = fp32_to_bits(base);
  267. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  268. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  269. const uint32_t nonsign = exp_bits + mantissa_bits;
  270. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  271. }
  272. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  273. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  274. #endif // __F16C__
  275. #endif // __ARM_NEON
  276. //
  277. // global data
  278. //
  279. // precomputed gelu table for f16 (128 KB)
  280. static ggml_fp16_t table_gelu_f16[1 << 16];
  281. // precomputed silu table for f16 (128 KB)
  282. static ggml_fp16_t table_silu_f16[1 << 16];
  283. // precomputed exp table for f16 (128 KB)
  284. static ggml_fp16_t table_exp_f16[1 << 16];
  285. // precomputed f32 table for f16 (256 KB)
  286. static float table_f32_f16[1 << 16];
  287. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  288. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  289. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  290. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  291. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  292. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  293. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  294. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  295. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  296. // precomputed tables for expanding 8bits to 8 bytes:
  297. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  298. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  299. #endif
  300. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  301. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  302. // This is also true for POWER9.
  303. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  304. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  305. uint16_t s;
  306. memcpy(&s, &f, sizeof(uint16_t));
  307. return table_f32_f16[s];
  308. }
  309. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  310. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  311. #endif
  312. // note: do not use these inside ggml.c
  313. // these are meant to be used via the ggml.h API
  314. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  315. return (float) GGML_FP16_TO_FP32(x);
  316. }
  317. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  318. return GGML_FP32_TO_FP16(x);
  319. }
  320. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  321. for (size_t i = 0; i < n; i++) {
  322. y[i] = GGML_FP16_TO_FP32(x[i]);
  323. }
  324. }
  325. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  326. size_t i = 0;
  327. #if defined(__F16C__)
  328. for (; i + 7 < n; i += 8) {
  329. __m256 x_vec = _mm256_loadu_ps(x + i);
  330. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  331. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  332. }
  333. for(; i + 3 < n; i += 4) {
  334. __m128 x_vec = _mm_loadu_ps(x + i);
  335. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  336. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  337. }
  338. #endif
  339. for (; i < n; i++) {
  340. y[i] = GGML_FP32_TO_FP16(x[i]);
  341. }
  342. }
  343. //
  344. // timing
  345. //
  346. #if defined(_MSC_VER) || defined(__MINGW32__)
  347. static int64_t timer_freq, timer_start;
  348. void ggml_time_init(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceFrequency(&t);
  351. timer_freq = t.QuadPart;
  352. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  353. // and the uptime is high enough.
  354. // We subtract the program start time to reduce the likelihood of that happening.
  355. QueryPerformanceCounter(&t);
  356. timer_start = t.QuadPart;
  357. }
  358. int64_t ggml_time_ms(void) {
  359. LARGE_INTEGER t;
  360. QueryPerformanceCounter(&t);
  361. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  362. }
  363. int64_t ggml_time_us(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceCounter(&t);
  366. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  367. }
  368. #else
  369. void ggml_time_init(void) {}
  370. int64_t ggml_time_ms(void) {
  371. struct timespec ts;
  372. clock_gettime(CLOCK_MONOTONIC, &ts);
  373. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  374. }
  375. int64_t ggml_time_us(void) {
  376. struct timespec ts;
  377. clock_gettime(CLOCK_MONOTONIC, &ts);
  378. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  379. }
  380. #endif
  381. int64_t ggml_cycles(void) {
  382. return clock();
  383. }
  384. int64_t ggml_cycles_per_ms(void) {
  385. return CLOCKS_PER_SEC/1000;
  386. }
  387. #ifdef GGML_PERF
  388. #define ggml_perf_time_ms() ggml_time_ms()
  389. #define ggml_perf_time_us() ggml_time_us()
  390. #define ggml_perf_cycles() ggml_cycles()
  391. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  392. #else
  393. #define ggml_perf_time_ms() 0
  394. #define ggml_perf_time_us() 0
  395. #define ggml_perf_cycles() 0
  396. #define ggml_perf_cycles_per_ms() 0
  397. #endif
  398. //
  399. // cache line
  400. //
  401. #if defined(__cpp_lib_hardware_interference_size)
  402. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  403. #else
  404. #if defined(__POWER9_VECTOR__)
  405. #define CACHE_LINE_SIZE 128
  406. #else
  407. #define CACHE_LINE_SIZE 64
  408. #endif
  409. #endif
  410. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  411. //
  412. // quantization
  413. //
  414. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  415. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  416. // multiply int8_t, add results pairwise twice
  417. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  418. // Get absolute values of x vectors
  419. const __m128i ax = _mm_sign_epi8(x, x);
  420. // Sign the values of the y vectors
  421. const __m128i sy = _mm_sign_epi8(y, x);
  422. // Perform multiplication and create 16-bit values
  423. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  424. const __m128i ones = _mm_set1_epi16(1);
  425. return _mm_madd_epi16(ones, dot);
  426. }
  427. #if __AVX__ || __AVX2__ || __AVX512F__
  428. // horizontally add 8 floats
  429. static inline float hsum_float_8(const __m256 x) {
  430. __m128 res = _mm256_extractf128_ps(x, 1);
  431. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  432. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  433. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  434. return _mm_cvtss_f32(res);
  435. }
  436. // horizontally add 8 int32_t
  437. static inline int hsum_i32_8(const __m256i a) {
  438. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  439. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  440. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  441. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  442. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  443. }
  444. // horizontally add 4 int32_t
  445. static inline int hsum_i32_4(const __m128i a) {
  446. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  447. const __m128i sum64 = _mm_add_epi32(hi64, a);
  448. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  449. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  450. }
  451. #if defined(__AVX2__) || defined(__AVX512F__)
  452. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  453. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  454. uint32_t x32;
  455. memcpy(&x32, x, sizeof(uint32_t));
  456. const __m256i shuf_mask = _mm256_set_epi64x(
  457. 0x0303030303030303, 0x0202020202020202,
  458. 0x0101010101010101, 0x0000000000000000);
  459. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  460. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  461. bytes = _mm256_or_si256(bytes, bit_mask);
  462. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  463. }
  464. // Unpack 32 4-bit fields into 32 bytes
  465. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  466. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  467. {
  468. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  469. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  470. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  471. return _mm256_and_si256(lowMask, bytes);
  472. }
  473. // add int16_t pairwise and return as float vector
  474. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  475. const __m256i ones = _mm256_set1_epi16(1);
  476. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. }
  479. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  480. #if __AVXVNNI__
  481. const __m256i zero = _mm256_setzero_si256();
  482. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  483. return _mm256_cvtepi32_ps(summed_pairs);
  484. #else
  485. // Perform multiplication and create 16-bit values
  486. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  487. return sum_i16_pairs_float(dot);
  488. #endif
  489. }
  490. // multiply int8_t, add results pairwise twice and return as float vector
  491. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  492. #if __AVXVNNIINT8__
  493. const __m256i zero = _mm256_setzero_si256();
  494. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  495. return _mm256_cvtepi32_ps(summed_pairs);
  496. #else
  497. // Get absolute values of x vectors
  498. const __m256i ax = _mm256_sign_epi8(x, x);
  499. // Sign the values of the y vectors
  500. const __m256i sy = _mm256_sign_epi8(y, x);
  501. return mul_sum_us8_pairs_float(ax, sy);
  502. #endif
  503. }
  504. static inline __m128i packNibbles( __m256i bytes )
  505. {
  506. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  507. #if __AVX512F__
  508. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  509. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  510. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  511. #else
  512. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  513. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  514. __m256i low = _mm256_and_si256( lowByte, bytes );
  515. high = _mm256_srli_epi16( high, 4 );
  516. bytes = _mm256_or_si256( low, high );
  517. // Compress uint16_t lanes into bytes
  518. __m128i r0 = _mm256_castsi256_si128( bytes );
  519. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  520. return _mm_packus_epi16( r0, r1 );
  521. #endif
  522. }
  523. #elif defined(__AVX__)
  524. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  525. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  526. uint32_t x32;
  527. memcpy(&x32, x, sizeof(uint32_t));
  528. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  529. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  530. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  531. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  532. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  533. bytesl = _mm_or_si128(bytesl, bit_mask);
  534. bytesh = _mm_or_si128(bytesh, bit_mask);
  535. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  536. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  537. return MM256_SET_M128I(bytesh, bytesl);
  538. }
  539. // Unpack 32 4-bit fields into 32 bytes
  540. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  541. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  542. {
  543. // Load 16 bytes from memory
  544. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  545. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  546. const __m128i lowMask = _mm_set1_epi8(0xF);
  547. tmpl = _mm_and_si128(lowMask, tmpl);
  548. tmph = _mm_and_si128(lowMask, tmph);
  549. return MM256_SET_M128I(tmph, tmpl);
  550. }
  551. // add int16_t pairwise and return as float vector
  552. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  553. const __m128i ones = _mm_set1_epi16(1);
  554. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  555. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  556. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  557. return _mm256_cvtepi32_ps(summed_pairs);
  558. }
  559. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  560. const __m128i axl = _mm256_castsi256_si128(ax);
  561. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  562. const __m128i syl = _mm256_castsi256_si128(sy);
  563. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  564. // Perform multiplication and create 16-bit values
  565. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  566. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  567. return sum_i16_pairs_float(doth, dotl);
  568. }
  569. // multiply int8_t, add results pairwise twice and return as float vector
  570. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  571. const __m128i xl = _mm256_castsi256_si128(x);
  572. const __m128i xh = _mm256_extractf128_si256(x, 1);
  573. const __m128i yl = _mm256_castsi256_si128(y);
  574. const __m128i yh = _mm256_extractf128_si256(y, 1);
  575. // Get absolute values of x vectors
  576. const __m128i axl = _mm_sign_epi8(xl, xl);
  577. const __m128i axh = _mm_sign_epi8(xh, xh);
  578. // Sign the values of the y vectors
  579. const __m128i syl = _mm_sign_epi8(yl, xl);
  580. const __m128i syh = _mm_sign_epi8(yh, xh);
  581. // Perform multiplication and create 16-bit values
  582. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  583. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  584. return sum_i16_pairs_float(doth, dotl);
  585. }
  586. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  587. {
  588. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  589. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  590. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  591. __m128i low = _mm_and_si128( lowByte, bytes1 );
  592. high = _mm_srli_epi16( high, 4 );
  593. bytes1 = _mm_or_si128( low, high );
  594. high = _mm_andnot_si128( lowByte, bytes2 );
  595. low = _mm_and_si128( lowByte, bytes2 );
  596. high = _mm_srli_epi16( high, 4 );
  597. bytes2 = _mm_or_si128( low, high );
  598. return _mm_packus_epi16( bytes1, bytes2);
  599. }
  600. #endif
  601. #elif defined(__SSSE3__)
  602. // horizontally add 4x4 floats
  603. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  604. __m128 res_0 =_mm_hadd_ps(a, b);
  605. __m128 res_1 =_mm_hadd_ps(c, d);
  606. __m128 res =_mm_hadd_ps(res_0, res_1);
  607. res =_mm_hadd_ps(res, res);
  608. res =_mm_hadd_ps(res, res);
  609. return _mm_cvtss_f32(res);
  610. }
  611. #endif // __AVX__ || __AVX2__ || __AVX512F__
  612. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  613. #if defined(__ARM_NEON)
  614. #if !defined(__aarch64__)
  615. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  616. return
  617. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  618. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  619. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  620. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  621. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  622. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  623. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  624. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  625. }
  626. inline static int16_t vaddvq_s8(int8x16_t v) {
  627. return
  628. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  629. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  630. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  631. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  632. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  633. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  634. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  635. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  636. }
  637. inline static int32_t vaddvq_s16(int16x8_t v) {
  638. return
  639. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  640. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  641. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  642. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  643. }
  644. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  645. return
  646. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  647. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  648. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  649. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  650. }
  651. inline static int32_t vaddvq_s32(int32x4_t v) {
  652. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  653. }
  654. inline static float vaddvq_f32(float32x4_t v) {
  655. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  656. }
  657. inline static float vminvq_f32(float32x4_t v) {
  658. return
  659. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  660. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  661. }
  662. inline static float vmaxvq_f32(float32x4_t v) {
  663. return
  664. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  665. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  666. }
  667. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  668. int32x4_t res;
  669. res[0] = roundf(vgetq_lane_f32(v, 0));
  670. res[1] = roundf(vgetq_lane_f32(v, 1));
  671. res[2] = roundf(vgetq_lane_f32(v, 2));
  672. res[3] = roundf(vgetq_lane_f32(v, 3));
  673. return res;
  674. }
  675. #endif
  676. #endif
  677. #define QK4_0 32
  678. typedef struct {
  679. ggml_fp16_t d; // delta
  680. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  681. } block_q4_0;
  682. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  683. #define QK4_1 32
  684. typedef struct {
  685. ggml_fp16_t d; // delta
  686. ggml_fp16_t m; // min
  687. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  688. } block_q4_1;
  689. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  690. #define QK5_0 32
  691. typedef struct {
  692. ggml_fp16_t d; // delta
  693. uint8_t qh[4]; // 5-th bit of quants
  694. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  695. } block_q5_0;
  696. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  697. #define QK5_1 32
  698. typedef struct {
  699. ggml_fp16_t d; // delta
  700. ggml_fp16_t m; // min
  701. uint8_t qh[4]; // 5-th bit of quants
  702. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  703. } block_q5_1;
  704. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  705. #define QK8_0 32
  706. typedef struct {
  707. ggml_fp16_t d; // delta
  708. int8_t qs[QK8_0]; // quants
  709. } block_q8_0;
  710. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  711. #define QK8_1 32
  712. typedef struct {
  713. float d; // delta
  714. float s; // d * sum(qs[i])
  715. int8_t qs[QK8_1]; // quants
  716. } block_q8_1;
  717. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  718. // reference implementation for deterministic creation of model files
  719. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  720. static const int qk = QK4_0;
  721. assert(k % qk == 0);
  722. const int nb = k / qk;
  723. for (int i = 0; i < nb; i++) {
  724. float amax = 0.0f; // absolute max
  725. float max = 0.0f;
  726. for (int j = 0; j < qk; j++) {
  727. const float v = x[i*qk + j];
  728. if (amax < fabsf(v)) {
  729. amax = fabsf(v);
  730. max = v;
  731. }
  732. }
  733. const float d = max / -8;
  734. const float id = d ? 1.0f/d : 0.0f;
  735. y[i].d = GGML_FP32_TO_FP16(d);
  736. for (int j = 0; j < qk/2; ++j) {
  737. const float x0 = x[i*qk + 0 + j]*id;
  738. const float x1 = x[i*qk + qk/2 + j]*id;
  739. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  740. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  741. y[i].qs[j] = xi0;
  742. y[i].qs[j] |= xi1 << 4;
  743. }
  744. }
  745. }
  746. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  747. quantize_row_q4_0_reference(x, y, k);
  748. }
  749. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  750. const int qk = QK4_1;
  751. assert(k % qk == 0);
  752. const int nb = k / qk;
  753. for (int i = 0; i < nb; i++) {
  754. float min = FLT_MAX;
  755. float max = -FLT_MAX;
  756. for (int j = 0; j < qk; j++) {
  757. const float v = x[i*qk + j];
  758. if (v < min) min = v;
  759. if (v > max) max = v;
  760. }
  761. const float d = (max - min) / ((1 << 4) - 1);
  762. const float id = d ? 1.0f/d : 0.0f;
  763. y[i].d = GGML_FP32_TO_FP16(d);
  764. y[i].m = GGML_FP32_TO_FP16(min);
  765. for (int j = 0; j < qk/2; ++j) {
  766. const float x0 = (x[i*qk + 0 + j] - min)*id;
  767. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  768. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  769. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  770. y[i].qs[j] = xi0;
  771. y[i].qs[j] |= xi1 << 4;
  772. }
  773. }
  774. }
  775. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  776. quantize_row_q4_1_reference(x, y, k);
  777. }
  778. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  779. static const int qk = QK5_0;
  780. assert(k % qk == 0);
  781. const int nb = k / qk;
  782. for (int i = 0; i < nb; i++) {
  783. float amax = 0.0f; // absolute max
  784. float max = 0.0f;
  785. for (int j = 0; j < qk; j++) {
  786. const float v = x[i*qk + j];
  787. if (amax < fabsf(v)) {
  788. amax = fabsf(v);
  789. max = v;
  790. }
  791. }
  792. const float d = max / -16;
  793. const float id = d ? 1.0f/d : 0.0f;
  794. y[i].d = GGML_FP32_TO_FP16(d);
  795. uint32_t qh = 0;
  796. for (int j = 0; j < qk/2; ++j) {
  797. const float x0 = x[i*qk + 0 + j]*id;
  798. const float x1 = x[i*qk + qk/2 + j]*id;
  799. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  800. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  801. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  802. // get the 5-th bit and store it in qh at the right position
  803. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  804. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  805. }
  806. memcpy(&y[i].qh, &qh, sizeof(qh));
  807. }
  808. }
  809. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  810. quantize_row_q5_0_reference(x, y, k);
  811. }
  812. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  813. const int qk = QK5_1;
  814. assert(k % qk == 0);
  815. const int nb = k / qk;
  816. for (int i = 0; i < nb; i++) {
  817. float min = FLT_MAX;
  818. float max = -FLT_MAX;
  819. for (int j = 0; j < qk; j++) {
  820. const float v = x[i*qk + j];
  821. if (v < min) min = v;
  822. if (v > max) max = v;
  823. }
  824. const float d = (max - min) / ((1 << 5) - 1);
  825. const float id = d ? 1.0f/d : 0.0f;
  826. y[i].d = GGML_FP32_TO_FP16(d);
  827. y[i].m = GGML_FP32_TO_FP16(min);
  828. uint32_t qh = 0;
  829. for (int j = 0; j < qk/2; ++j) {
  830. const float x0 = (x[i*qk + 0 + j] - min)*id;
  831. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  832. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  833. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  834. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  835. // get the 5-th bit and store it in qh at the right position
  836. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  837. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  838. }
  839. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  840. }
  841. }
  842. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  843. quantize_row_q5_1_reference(x, y, k);
  844. }
  845. // reference implementation for deterministic creation of model files
  846. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  847. assert(k % QK8_0 == 0);
  848. const int nb = k / QK8_0;
  849. for (int i = 0; i < nb; i++) {
  850. float amax = 0.0f; // absolute max
  851. for (int j = 0; j < QK8_0; j++) {
  852. const float v = x[i*QK8_0 + j];
  853. amax = MAX(amax, fabsf(v));
  854. }
  855. const float d = amax / ((1 << 7) - 1);
  856. const float id = d ? 1.0f/d : 0.0f;
  857. y[i].d = GGML_FP32_TO_FP16(d);
  858. for (int j = 0; j < QK8_0; ++j) {
  859. const float x0 = x[i*QK8_0 + j]*id;
  860. y[i].qs[j] = roundf(x0);
  861. }
  862. }
  863. }
  864. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  865. assert(QK8_0 == 32);
  866. assert(k % QK8_0 == 0);
  867. const int nb = k / QK8_0;
  868. block_q8_0 * restrict y = vy;
  869. #if defined(__ARM_NEON)
  870. for (int i = 0; i < nb; i++) {
  871. float32x4_t srcv [8];
  872. float32x4_t asrcv[8];
  873. float32x4_t amaxv[8];
  874. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  875. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  876. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  877. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  878. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  879. const float amax = vmaxvq_f32(amaxv[0]);
  880. const float d = amax / ((1 << 7) - 1);
  881. const float id = d ? 1.0f/d : 0.0f;
  882. y[i].d = GGML_FP32_TO_FP16(d);
  883. for (int j = 0; j < 8; j++) {
  884. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  885. const int32x4_t vi = vcvtnq_s32_f32(v);
  886. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  887. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  888. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  889. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  890. }
  891. }
  892. #elif defined(__wasm_simd128__)
  893. for (int i = 0; i < nb; i++) {
  894. v128_t srcv [8];
  895. v128_t asrcv[8];
  896. v128_t amaxv[8];
  897. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  898. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  899. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  900. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  901. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  902. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  903. wasm_f32x4_extract_lane(amaxv[0], 1)),
  904. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  905. wasm_f32x4_extract_lane(amaxv[0], 3)));
  906. const float d = amax / ((1 << 7) - 1);
  907. const float id = d ? 1.0f/d : 0.0f;
  908. y[i].d = GGML_FP32_TO_FP16(d);
  909. for (int j = 0; j < 8; j++) {
  910. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  911. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  912. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  913. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  914. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  915. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  916. }
  917. }
  918. #elif defined(__AVX2__) || defined(__AVX__)
  919. for (int i = 0; i < nb; i++) {
  920. // Load elements into 4 AVX vectors
  921. __m256 v0 = _mm256_loadu_ps( x );
  922. __m256 v1 = _mm256_loadu_ps( x + 8 );
  923. __m256 v2 = _mm256_loadu_ps( x + 16 );
  924. __m256 v3 = _mm256_loadu_ps( x + 24 );
  925. x += 32;
  926. // Compute max(abs(e)) for the block
  927. const __m256 signBit = _mm256_set1_ps( -0.0f );
  928. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  929. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  930. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  931. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  932. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  933. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  934. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  935. const float maxScalar = _mm_cvtss_f32( max4 );
  936. // Quantize these floats
  937. const float d = maxScalar / 127.f;
  938. y[i].d = GGML_FP32_TO_FP16(d);
  939. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  940. const __m256 mul = _mm256_set1_ps( id );
  941. // Apply the multiplier
  942. v0 = _mm256_mul_ps( v0, mul );
  943. v1 = _mm256_mul_ps( v1, mul );
  944. v2 = _mm256_mul_ps( v2, mul );
  945. v3 = _mm256_mul_ps( v3, mul );
  946. // Round to nearest integer
  947. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  948. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  949. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  950. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  951. // Convert floats to integers
  952. __m256i i0 = _mm256_cvtps_epi32( v0 );
  953. __m256i i1 = _mm256_cvtps_epi32( v1 );
  954. __m256i i2 = _mm256_cvtps_epi32( v2 );
  955. __m256i i3 = _mm256_cvtps_epi32( v3 );
  956. #if defined(__AVX2__)
  957. // Convert int32 to int16
  958. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  959. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  960. // Convert int16 to int8
  961. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  962. // We got our precious signed bytes, but the order is now wrong
  963. // These AVX2 pack instructions process 16-byte pieces independently
  964. // The following instruction is fixing the order
  965. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  966. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  967. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  968. #else
  969. // Since we don't have in AVX some necessary functions,
  970. // we split the registers in half and call AVX2 analogs from SSE
  971. __m128i ni0 = _mm256_castsi256_si128( i0 );
  972. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  973. __m128i ni2 = _mm256_castsi256_si128( i1 );
  974. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  975. __m128i ni4 = _mm256_castsi256_si128( i2 );
  976. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  977. __m128i ni6 = _mm256_castsi256_si128( i3 );
  978. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  979. // Convert int32 to int16
  980. ni0 = _mm_packs_epi32( ni0, ni1 );
  981. ni2 = _mm_packs_epi32( ni2, ni3 );
  982. ni4 = _mm_packs_epi32( ni4, ni5 );
  983. ni6 = _mm_packs_epi32( ni6, ni7 );
  984. // Convert int16 to int8
  985. ni0 = _mm_packs_epi16( ni0, ni2 );
  986. ni4 = _mm_packs_epi16( ni4, ni6 );
  987. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  988. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  989. #endif
  990. }
  991. #else
  992. // scalar
  993. quantize_row_q8_0_reference(x, y, k);
  994. #endif
  995. }
  996. // reference implementation for deterministic creation of model files
  997. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  998. assert(QK8_1 == 32);
  999. assert(k % QK8_1 == 0);
  1000. const int nb = k / QK8_1;
  1001. for (int i = 0; i < nb; i++) {
  1002. float amax = 0.0f; // absolute max
  1003. for (int j = 0; j < QK8_1; j++) {
  1004. const float v = x[i*QK8_1 + j];
  1005. amax = MAX(amax, fabsf(v));
  1006. }
  1007. const float d = amax / ((1 << 7) - 1);
  1008. const float id = d ? 1.0f/d : 0.0f;
  1009. y[i].d = d;
  1010. int sum = 0;
  1011. for (int j = 0; j < QK8_1/2; ++j) {
  1012. const float v0 = x[i*QK8_1 + j]*id;
  1013. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1014. y[i].qs[ j] = roundf(v0);
  1015. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1016. sum += y[i].qs[ j];
  1017. sum += y[i].qs[QK8_1/2 + j];
  1018. }
  1019. y[i].s = sum*d;
  1020. }
  1021. }
  1022. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1023. assert(k % QK8_1 == 0);
  1024. const int nb = k / QK8_1;
  1025. block_q8_1 * restrict y = vy;
  1026. #if defined(__ARM_NEON)
  1027. for (int i = 0; i < nb; i++) {
  1028. float32x4_t srcv [8];
  1029. float32x4_t asrcv[8];
  1030. float32x4_t amaxv[8];
  1031. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1032. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1033. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1034. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1035. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1036. const float amax = vmaxvq_f32(amaxv[0]);
  1037. const float d = amax / ((1 << 7) - 1);
  1038. const float id = d ? 1.0f/d : 0.0f;
  1039. y[i].d = d;
  1040. int32x4_t accv = vdupq_n_s32(0);
  1041. for (int j = 0; j < 8; j++) {
  1042. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1043. const int32x4_t vi = vcvtnq_s32_f32(v);
  1044. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1045. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1046. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1047. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1048. accv = vaddq_s32(accv, vi);
  1049. }
  1050. y[i].s = d * vaddvq_s32(accv);
  1051. }
  1052. #elif defined(__wasm_simd128__)
  1053. for (int i = 0; i < nb; i++) {
  1054. v128_t srcv [8];
  1055. v128_t asrcv[8];
  1056. v128_t amaxv[8];
  1057. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1058. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1059. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1060. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1061. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1062. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1063. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1064. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1065. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1066. const float d = amax / ((1 << 7) - 1);
  1067. const float id = d ? 1.0f/d : 0.0f;
  1068. y[i].d = d;
  1069. v128_t accv = wasm_i32x4_splat(0);
  1070. for (int j = 0; j < 8; j++) {
  1071. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1072. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1073. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1074. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1075. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1076. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1077. accv = wasm_i32x4_add(accv, vi);
  1078. }
  1079. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1080. wasm_i32x4_extract_lane(accv, 1) +
  1081. wasm_i32x4_extract_lane(accv, 2) +
  1082. wasm_i32x4_extract_lane(accv, 3));
  1083. }
  1084. #elif defined(__AVX2__) || defined(__AVX__)
  1085. for (int i = 0; i < nb; i++) {
  1086. // Load elements into 4 AVX vectors
  1087. __m256 v0 = _mm256_loadu_ps( x );
  1088. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1089. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1090. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1091. x += 32;
  1092. // Compute max(abs(e)) for the block
  1093. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1094. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1095. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1096. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1097. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1098. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1099. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1100. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1101. const float maxScalar = _mm_cvtss_f32( max4 );
  1102. // Quantize these floats
  1103. const float d = maxScalar / 127.f;
  1104. y[i].d = d;
  1105. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1106. const __m256 mul = _mm256_set1_ps( id );
  1107. // Apply the multiplier
  1108. v0 = _mm256_mul_ps( v0, mul );
  1109. v1 = _mm256_mul_ps( v1, mul );
  1110. v2 = _mm256_mul_ps( v2, mul );
  1111. v3 = _mm256_mul_ps( v3, mul );
  1112. // Round to nearest integer
  1113. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1114. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1115. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1116. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1117. // Convert floats to integers
  1118. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1119. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1120. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1121. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1122. #if defined(__AVX2__)
  1123. // Compute the sum of the quants and set y[i].s
  1124. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1125. // Convert int32 to int16
  1126. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1127. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1128. // Convert int16 to int8
  1129. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1130. // We got our precious signed bytes, but the order is now wrong
  1131. // These AVX2 pack instructions process 16-byte pieces independently
  1132. // The following instruction is fixing the order
  1133. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1134. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1135. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1136. #else
  1137. // Since we don't have in AVX some necessary functions,
  1138. // we split the registers in half and call AVX2 analogs from SSE
  1139. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1140. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1141. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1142. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1143. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1144. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1145. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1146. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1147. // Compute the sum of the quants and set y[i].s
  1148. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1149. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1150. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1151. // Convert int32 to int16
  1152. ni0 = _mm_packs_epi32( ni0, ni1 );
  1153. ni2 = _mm_packs_epi32( ni2, ni3 );
  1154. ni4 = _mm_packs_epi32( ni4, ni5 );
  1155. ni6 = _mm_packs_epi32( ni6, ni7 );
  1156. // Convert int16 to int8
  1157. ni0 = _mm_packs_epi16( ni0, ni2 );
  1158. ni4 = _mm_packs_epi16( ni4, ni6 );
  1159. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1160. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1161. #endif
  1162. }
  1163. #else
  1164. // scalar
  1165. quantize_row_q8_1_reference(x, y, k);
  1166. #endif
  1167. }
  1168. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1169. static const int qk = QK4_0;
  1170. assert(k % qk == 0);
  1171. const int nb = k / qk;
  1172. for (int i = 0; i < nb; i++) {
  1173. const float d = GGML_FP16_TO_FP32(x[i].d);
  1174. for (int j = 0; j < qk/2; ++j) {
  1175. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1176. const int x1 = (x[i].qs[j] >> 4) - 8;
  1177. y[i*qk + j + 0 ] = x0*d;
  1178. y[i*qk + j + qk/2] = x1*d;
  1179. }
  1180. }
  1181. }
  1182. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1183. static const int qk = QK4_1;
  1184. assert(k % qk == 0);
  1185. const int nb = k / qk;
  1186. for (int i = 0; i < nb; i++) {
  1187. const float d = GGML_FP16_TO_FP32(x[i].d);
  1188. const float m = GGML_FP16_TO_FP32(x[i].m);
  1189. for (int j = 0; j < qk/2; ++j) {
  1190. const int x0 = (x[i].qs[j] & 0x0F);
  1191. const int x1 = (x[i].qs[j] >> 4);
  1192. y[i*qk + j + 0 ] = x0*d + m;
  1193. y[i*qk + j + qk/2] = x1*d + m;
  1194. }
  1195. }
  1196. }
  1197. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1198. static const int qk = QK5_0;
  1199. assert(k % qk == 0);
  1200. const int nb = k / qk;
  1201. for (int i = 0; i < nb; i++) {
  1202. const float d = GGML_FP16_TO_FP32(x[i].d);
  1203. uint32_t qh;
  1204. memcpy(&qh, x[i].qh, sizeof(qh));
  1205. for (int j = 0; j < qk/2; ++j) {
  1206. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1207. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1208. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1209. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1210. y[i*qk + j + 0 ] = x0*d;
  1211. y[i*qk + j + qk/2] = x1*d;
  1212. }
  1213. }
  1214. }
  1215. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1216. static const int qk = QK5_1;
  1217. assert(k % qk == 0);
  1218. const int nb = k / qk;
  1219. for (int i = 0; i < nb; i++) {
  1220. const float d = GGML_FP16_TO_FP32(x[i].d);
  1221. const float m = GGML_FP16_TO_FP32(x[i].m);
  1222. uint32_t qh;
  1223. memcpy(&qh, x[i].qh, sizeof(qh));
  1224. for (int j = 0; j < qk/2; ++j) {
  1225. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1226. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1227. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1228. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1229. y[i*qk + j + 0 ] = x0*d + m;
  1230. y[i*qk + j + qk/2] = x1*d + m;
  1231. }
  1232. }
  1233. }
  1234. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1235. static const int qk = QK8_0;
  1236. assert(k % qk == 0);
  1237. const int nb = k / qk;
  1238. const block_q8_0 * restrict x = vx;
  1239. for (int i = 0; i < nb; i++) {
  1240. const float d = GGML_FP16_TO_FP32(x[i].d);
  1241. for (int j = 0; j < qk; ++j) {
  1242. y[i*qk + j] = x[i].qs[j]*d;
  1243. }
  1244. }
  1245. }
  1246. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1247. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1248. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1249. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1250. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1251. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1252. [GGML_TYPE_Q4_0] = {
  1253. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1254. .quantize_row_q = quantize_row_q4_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1258. .vec_dot_type = GGML_TYPE_Q8_0,
  1259. },
  1260. [GGML_TYPE_Q4_1] = {
  1261. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1262. .quantize_row_q = quantize_row_q4_1,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_1,
  1265. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1266. .vec_dot_type = GGML_TYPE_Q8_1,
  1267. },
  1268. [GGML_TYPE_Q5_0] = {
  1269. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1270. .quantize_row_q = quantize_row_q5_0,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_0,
  1273. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1274. .vec_dot_type = GGML_TYPE_Q8_0,
  1275. },
  1276. [GGML_TYPE_Q5_1] = {
  1277. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1278. .quantize_row_q = quantize_row_q5_1,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_1,
  1281. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1282. .vec_dot_type = GGML_TYPE_Q8_1,
  1283. },
  1284. [GGML_TYPE_Q8_0] = {
  1285. .dequantize_row_q = dequantize_row_q8_0,
  1286. .quantize_row_q = quantize_row_q8_0,
  1287. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1288. .quantize_row_q_dot = quantize_row_q8_0,
  1289. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1290. .vec_dot_type = GGML_TYPE_Q8_0,
  1291. },
  1292. [GGML_TYPE_Q8_1] = {
  1293. .dequantize_row_q = NULL, // TODO
  1294. .quantize_row_q = quantize_row_q8_1,
  1295. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1296. .quantize_row_q_dot = quantize_row_q8_1,
  1297. .vec_dot_q = NULL, // TODO
  1298. .vec_dot_type = GGML_TYPE_Q8_1,
  1299. },
  1300. #ifdef GGML_USE_K_QUANTS
  1301. [GGML_TYPE_Q2_K] = {
  1302. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1303. .quantize_row_q = quantize_row_q2_K,
  1304. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1305. .quantize_row_q_dot = quantize_row_q8_K,
  1306. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1307. .vec_dot_type = GGML_TYPE_Q8_K,
  1308. },
  1309. [GGML_TYPE_Q3_K] = {
  1310. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1311. .quantize_row_q = quantize_row_q3_K,
  1312. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1313. .quantize_row_q_dot = quantize_row_q8_K,
  1314. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1315. .vec_dot_type = GGML_TYPE_Q8_K,
  1316. },
  1317. [GGML_TYPE_Q4_K] = {
  1318. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1319. .quantize_row_q = quantize_row_q4_K,
  1320. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1321. .quantize_row_q_dot = quantize_row_q8_K,
  1322. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1323. .vec_dot_type = GGML_TYPE_Q8_K,
  1324. },
  1325. [GGML_TYPE_Q5_K] = {
  1326. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1327. .quantize_row_q = quantize_row_q5_K,
  1328. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1329. .quantize_row_q_dot = quantize_row_q8_K,
  1330. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1331. .vec_dot_type = GGML_TYPE_Q8_K,
  1332. },
  1333. [GGML_TYPE_Q6_K] = {
  1334. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1335. .quantize_row_q = quantize_row_q6_K,
  1336. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1337. .quantize_row_q_dot = quantize_row_q8_K,
  1338. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1339. .vec_dot_type = GGML_TYPE_Q8_K,
  1340. },
  1341. #endif
  1342. };
  1343. // For internal test use
  1344. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1345. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1346. return quantize_fns[i];
  1347. }
  1348. //
  1349. // simd mappings
  1350. //
  1351. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1352. // we then implement the fundamental computation operations below using only these macros
  1353. // adding support for new architectures requires to define the corresponding SIMD macros
  1354. //
  1355. // GGML_F32_STEP / GGML_F16_STEP
  1356. // number of elements to process in a single step
  1357. //
  1358. // GGML_F32_EPR / GGML_F16_EPR
  1359. // number of elements to fit in a single register
  1360. //
  1361. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1362. #define GGML_SIMD
  1363. // F32 NEON
  1364. #define GGML_F32_STEP 16
  1365. #define GGML_F32_EPR 4
  1366. #define GGML_F32x4 float32x4_t
  1367. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1368. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1369. #define GGML_F32x4_LOAD vld1q_f32
  1370. #define GGML_F32x4_STORE vst1q_f32
  1371. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1372. #define GGML_F32x4_ADD vaddq_f32
  1373. #define GGML_F32x4_MUL vmulq_f32
  1374. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1375. #define GGML_F32x4_REDUCE(res, x) \
  1376. { \
  1377. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1378. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1379. } \
  1380. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1381. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1382. } \
  1383. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1384. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1385. } \
  1386. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1387. }
  1388. #define GGML_F32_VEC GGML_F32x4
  1389. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1390. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1391. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1392. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1393. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1394. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1395. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1396. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1397. // F16 NEON
  1398. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1399. #define GGML_F16_STEP 32
  1400. #define GGML_F16_EPR 8
  1401. #define GGML_F16x8 float16x8_t
  1402. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1403. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1404. #define GGML_F16x8_LOAD vld1q_f16
  1405. #define GGML_F16x8_STORE vst1q_f16
  1406. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1407. #define GGML_F16x8_ADD vaddq_f16
  1408. #define GGML_F16x8_MUL vmulq_f16
  1409. #define GGML_F16x8_REDUCE(res, x) \
  1410. { \
  1411. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1412. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1413. } \
  1414. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1415. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1416. } \
  1417. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1418. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1419. } \
  1420. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1421. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1422. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1423. }
  1424. #define GGML_F16_VEC GGML_F16x8
  1425. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1426. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1427. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1428. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1429. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1430. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1431. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1432. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1433. #else
  1434. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1435. // and take advantage of the vcvt_ functions to convert to/from FP16
  1436. #define GGML_F16_STEP 16
  1437. #define GGML_F16_EPR 4
  1438. #define GGML_F32Cx4 float32x4_t
  1439. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1440. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1441. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1442. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1443. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1444. #define GGML_F32Cx4_ADD vaddq_f32
  1445. #define GGML_F32Cx4_MUL vmulq_f32
  1446. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1447. #define GGML_F16_VEC GGML_F32Cx4
  1448. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1449. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1450. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1451. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1452. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1453. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1454. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1455. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1456. #endif
  1457. #elif defined(__AVX__)
  1458. #define GGML_SIMD
  1459. // F32 AVX
  1460. #define GGML_F32_STEP 32
  1461. #define GGML_F32_EPR 8
  1462. #define GGML_F32x8 __m256
  1463. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1464. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1465. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1466. #define GGML_F32x8_STORE _mm256_storeu_ps
  1467. #if defined(__FMA__)
  1468. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1469. #else
  1470. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1471. #endif
  1472. #define GGML_F32x8_ADD _mm256_add_ps
  1473. #define GGML_F32x8_MUL _mm256_mul_ps
  1474. #define GGML_F32x8_REDUCE(res, x) \
  1475. { \
  1476. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1477. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1478. } \
  1479. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1480. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1481. } \
  1482. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1483. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1484. } \
  1485. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1486. _mm256_extractf128_ps(x[0], 1)); \
  1487. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1488. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1489. }
  1490. // TODO: is this optimal ?
  1491. #define GGML_F32_VEC GGML_F32x8
  1492. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1493. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1494. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1495. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1496. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1497. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1498. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1499. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1500. // F16 AVX
  1501. #define GGML_F16_STEP 32
  1502. #define GGML_F16_EPR 8
  1503. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1504. #define GGML_F32Cx8 __m256
  1505. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1506. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1507. #if defined(__F16C__)
  1508. // the _mm256_cvt intrinsics require F16C
  1509. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1510. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1511. #else
  1512. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1513. float tmp[8];
  1514. for (int i = 0; i < 8; i++) {
  1515. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1516. }
  1517. return _mm256_loadu_ps(tmp);
  1518. }
  1519. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1520. float arr[8];
  1521. _mm256_storeu_ps(arr, y);
  1522. for (int i = 0; i < 8; i++)
  1523. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1524. }
  1525. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1526. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1527. #endif
  1528. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1529. #define GGML_F32Cx8_ADD _mm256_add_ps
  1530. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1531. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1532. #define GGML_F16_VEC GGML_F32Cx8
  1533. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1534. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1535. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1536. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1537. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1538. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1539. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1540. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1541. #elif defined(__POWER9_VECTOR__)
  1542. #define GGML_SIMD
  1543. // F32 POWER9
  1544. #define GGML_F32_STEP 32
  1545. #define GGML_F32_EPR 4
  1546. #define GGML_F32x4 vector float
  1547. #define GGML_F32x4_ZERO 0.0f
  1548. #define GGML_F32x4_SET1 vec_splats
  1549. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1550. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1551. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1552. #define GGML_F32x4_ADD vec_add
  1553. #define GGML_F32x4_MUL vec_mul
  1554. #define GGML_F32x4_REDUCE(res, x) \
  1555. { \
  1556. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1557. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1558. } \
  1559. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1560. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1561. } \
  1562. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1563. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1564. } \
  1565. res = vec_extract(x[0], 0) + \
  1566. vec_extract(x[0], 1) + \
  1567. vec_extract(x[0], 2) + \
  1568. vec_extract(x[0], 3); \
  1569. }
  1570. #define GGML_F32_VEC GGML_F32x4
  1571. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1572. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1573. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1574. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1575. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1576. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1577. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1578. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1579. // F16 POWER9
  1580. #define GGML_F16_STEP GGML_F32_STEP
  1581. #define GGML_F16_EPR GGML_F32_EPR
  1582. #define GGML_F16_VEC GGML_F32x4
  1583. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1584. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1585. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1586. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1587. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1588. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1589. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1590. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1591. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1592. #define GGML_F16_VEC_STORE(p, r, i) \
  1593. if (i & 0x1) \
  1594. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1595. r[i - GGML_ENDIAN_BYTE(0)]), \
  1596. 0, p - GGML_F16_EPR)
  1597. #elif defined(__wasm_simd128__)
  1598. #define GGML_SIMD
  1599. // F32 WASM
  1600. #define GGML_F32_STEP 16
  1601. #define GGML_F32_EPR 4
  1602. #define GGML_F32x4 v128_t
  1603. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1604. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1605. #define GGML_F32x4_LOAD wasm_v128_load
  1606. #define GGML_F32x4_STORE wasm_v128_store
  1607. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1608. #define GGML_F32x4_ADD wasm_f32x4_add
  1609. #define GGML_F32x4_MUL wasm_f32x4_mul
  1610. #define GGML_F32x4_REDUCE(res, x) \
  1611. { \
  1612. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1613. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1614. } \
  1615. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1616. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1617. } \
  1618. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1619. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1620. } \
  1621. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1622. wasm_f32x4_extract_lane(x[0], 1) + \
  1623. wasm_f32x4_extract_lane(x[0], 2) + \
  1624. wasm_f32x4_extract_lane(x[0], 3); \
  1625. }
  1626. #define GGML_F32_VEC GGML_F32x4
  1627. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1628. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1629. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1630. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1631. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1632. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1633. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1634. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1635. // F16 WASM
  1636. #define GGML_F16_STEP 16
  1637. #define GGML_F16_EPR 4
  1638. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1639. float tmp[4];
  1640. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1641. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1642. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1643. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1644. return wasm_v128_load(tmp);
  1645. }
  1646. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1647. float tmp[4];
  1648. wasm_v128_store(tmp, x);
  1649. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1650. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1651. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1652. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1653. }
  1654. #define GGML_F16x4 v128_t
  1655. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1656. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1657. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1658. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1659. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1660. #define GGML_F16x4_ADD wasm_f32x4_add
  1661. #define GGML_F16x4_MUL wasm_f32x4_mul
  1662. #define GGML_F16x4_REDUCE(res, x) \
  1663. { \
  1664. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1665. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1666. } \
  1667. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1668. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1669. } \
  1670. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1671. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1672. } \
  1673. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1674. wasm_f32x4_extract_lane(x[0], 1) + \
  1675. wasm_f32x4_extract_lane(x[0], 2) + \
  1676. wasm_f32x4_extract_lane(x[0], 3); \
  1677. }
  1678. #define GGML_F16_VEC GGML_F16x4
  1679. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1680. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1681. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1682. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1683. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1684. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1685. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1686. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1687. #elif defined(__SSE3__)
  1688. #define GGML_SIMD
  1689. // F32 SSE
  1690. #define GGML_F32_STEP 32
  1691. #define GGML_F32_EPR 4
  1692. #define GGML_F32x4 __m128
  1693. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1694. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1695. #define GGML_F32x4_LOAD _mm_loadu_ps
  1696. #define GGML_F32x4_STORE _mm_storeu_ps
  1697. #if defined(__FMA__)
  1698. // TODO: Does this work?
  1699. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1700. #else
  1701. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1702. #endif
  1703. #define GGML_F32x4_ADD _mm_add_ps
  1704. #define GGML_F32x4_MUL _mm_mul_ps
  1705. #define GGML_F32x4_REDUCE(res, x) \
  1706. { \
  1707. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1708. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1709. } \
  1710. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1711. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1712. } \
  1713. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1714. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1715. } \
  1716. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1717. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1718. }
  1719. // TODO: is this optimal ?
  1720. #define GGML_F32_VEC GGML_F32x4
  1721. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1722. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1723. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1724. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1725. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1726. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1727. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1728. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1729. // F16 SSE
  1730. #define GGML_F16_STEP 32
  1731. #define GGML_F16_EPR 4
  1732. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1733. float tmp[4];
  1734. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1735. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1736. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1737. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1738. return _mm_loadu_ps(tmp);
  1739. }
  1740. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1741. float arr[4];
  1742. _mm_storeu_ps(arr, y);
  1743. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1744. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1745. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1746. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1747. }
  1748. #define GGML_F32Cx4 __m128
  1749. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1750. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1751. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1752. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1753. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1754. #define GGML_F32Cx4_ADD _mm_add_ps
  1755. #define GGML_F32Cx4_MUL _mm_mul_ps
  1756. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1757. #define GGML_F16_VEC GGML_F32Cx4
  1758. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1760. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1761. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1762. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1763. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1764. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1765. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1766. #endif
  1767. // GGML_F32_ARR / GGML_F16_ARR
  1768. // number of registers to use per step
  1769. #ifdef GGML_SIMD
  1770. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1771. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1772. #endif
  1773. //
  1774. // fundamental operations
  1775. //
  1776. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1777. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1778. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1779. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1780. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1781. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1782. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1783. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1784. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1785. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1786. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1787. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1788. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1789. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1790. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1791. #ifdef GGML_SIMD
  1792. float sumf = 0.0f;
  1793. const int np = (n & ~(GGML_F32_STEP - 1));
  1794. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1795. GGML_F32_VEC ax[GGML_F32_ARR];
  1796. GGML_F32_VEC ay[GGML_F32_ARR];
  1797. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1798. for (int j = 0; j < GGML_F32_ARR; j++) {
  1799. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1800. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1801. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1802. }
  1803. }
  1804. // reduce sum0..sum3 to sum0
  1805. GGML_F32_VEC_REDUCE(sumf, sum);
  1806. // leftovers
  1807. for (int i = np; i < n; ++i) {
  1808. sumf += x[i]*y[i];
  1809. }
  1810. #else
  1811. // scalar
  1812. ggml_float sumf = 0.0;
  1813. for (int i = 0; i < n; ++i) {
  1814. sumf += (ggml_float)(x[i]*y[i]);
  1815. }
  1816. #endif
  1817. *s = sumf;
  1818. }
  1819. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1820. ggml_float sumf = 0.0;
  1821. #if defined(GGML_SIMD)
  1822. const int np = (n & ~(GGML_F16_STEP - 1));
  1823. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1824. GGML_F16_VEC ax[GGML_F16_ARR];
  1825. GGML_F16_VEC ay[GGML_F16_ARR];
  1826. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1827. for (int j = 0; j < GGML_F16_ARR; j++) {
  1828. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1829. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1830. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1831. }
  1832. }
  1833. // reduce sum0..sum3 to sum0
  1834. GGML_F16_VEC_REDUCE(sumf, sum);
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1838. }
  1839. #else
  1840. for (int i = 0; i < n; ++i) {
  1841. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1842. }
  1843. #endif
  1844. *s = sumf;
  1845. }
  1846. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1847. const int qk = QK8_0;
  1848. const int nb = n / qk;
  1849. assert(n % qk == 0);
  1850. assert(nb % 2 == 0);
  1851. const block_q4_0 * restrict x = vx;
  1852. const block_q8_0 * restrict y = vy;
  1853. #if defined(__ARM_NEON)
  1854. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1855. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1856. for (int i = 0; i < nb; i += 2) {
  1857. const block_q4_0 * restrict x0 = &x[i + 0];
  1858. const block_q4_0 * restrict x1 = &x[i + 1];
  1859. const block_q8_0 * restrict y0 = &y[i + 0];
  1860. const block_q8_0 * restrict y1 = &y[i + 1];
  1861. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1862. const int8x16_t s8b = vdupq_n_s8(0x8);
  1863. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1864. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1865. // 4-bit -> 8-bit
  1866. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1867. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1868. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1869. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1870. // sub 8
  1871. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1872. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1873. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1874. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1875. // load y
  1876. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1877. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1878. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1879. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1880. #if defined(__ARM_FEATURE_DOTPROD)
  1881. // dot product into int32x4_t
  1882. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1883. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1884. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1885. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1886. #else
  1887. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1888. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1889. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1890. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1891. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1892. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1893. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1894. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1895. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1896. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1897. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1898. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1899. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1900. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1901. #endif
  1902. }
  1903. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1904. #elif defined(__AVX2__)
  1905. // Initialize accumulator with zeros
  1906. __m256 acc = _mm256_setzero_ps();
  1907. // Main loop
  1908. for (int i = 0; i < nb; ++i) {
  1909. /* Compute combined scale for the block */
  1910. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1911. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1912. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1913. const __m256i off = _mm256_set1_epi8( 8 );
  1914. bx = _mm256_sub_epi8( bx, off );
  1915. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1916. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1917. /* Multiply q with scale and accumulate */
  1918. acc = _mm256_fmadd_ps( d, q, acc );
  1919. }
  1920. *s = hsum_float_8(acc);
  1921. #elif defined(__AVX__)
  1922. // Initialize accumulator with zeros
  1923. __m256 acc = _mm256_setzero_ps();
  1924. // Main loop
  1925. for (int i = 0; i < nb; ++i) {
  1926. // Compute combined scale for the block
  1927. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1928. const __m128i lowMask = _mm_set1_epi8(0xF);
  1929. const __m128i off = _mm_set1_epi8(8);
  1930. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1931. __m128i bx = _mm_and_si128(lowMask, tmp);
  1932. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1933. bx = _mm_sub_epi8(bx, off);
  1934. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1935. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1936. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1937. bx = _mm_sub_epi8(bx, off);
  1938. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1939. // Convert int32_t to float
  1940. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  1941. // Apply the scale, and accumulate
  1942. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1943. }
  1944. *s = hsum_float_8(acc);
  1945. #elif defined(__SSSE3__)
  1946. // set constants
  1947. const __m128i lowMask = _mm_set1_epi8(0xF);
  1948. const __m128i off = _mm_set1_epi8(8);
  1949. // Initialize accumulator with zeros
  1950. __m128 acc_0 = _mm_setzero_ps();
  1951. __m128 acc_1 = _mm_setzero_ps();
  1952. __m128 acc_2 = _mm_setzero_ps();
  1953. __m128 acc_3 = _mm_setzero_ps();
  1954. // First round without accumulation
  1955. {
  1956. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1957. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1958. // Compute combined scale for the block 0 and 1
  1959. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1960. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1961. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1962. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1963. bx_0 = _mm_sub_epi8(bx_0, off);
  1964. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1965. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1966. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1967. bx_1 = _mm_sub_epi8(bx_1, off);
  1968. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1969. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1970. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1971. // Compute combined scale for the block 2 and 3
  1972. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1973. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1974. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1975. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1976. bx_2 = _mm_sub_epi8(bx_2, off);
  1977. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1978. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1979. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1980. bx_3 = _mm_sub_epi8(bx_3, off);
  1981. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1982. // Convert int32_t to float
  1983. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1984. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1985. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1986. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1987. // Apply the scale
  1988. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1989. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1990. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1991. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1992. }
  1993. // Main loop
  1994. for (int i = 2; i < nb; i+=2) {
  1995. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1996. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1997. // Compute combined scale for the block 0 and 1
  1998. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1999. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2000. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2001. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2002. bx_0 = _mm_sub_epi8(bx_0, off);
  2003. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2004. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2005. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2006. bx_1 = _mm_sub_epi8(bx_1, off);
  2007. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2008. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2009. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2010. // Compute combined scale for the block 2 and 3
  2011. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2012. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2013. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2014. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2015. bx_2 = _mm_sub_epi8(bx_2, off);
  2016. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2017. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2018. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2019. bx_3 = _mm_sub_epi8(bx_3, off);
  2020. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2021. // Convert int32_t to float
  2022. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2023. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2024. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2025. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2026. // Apply the scale
  2027. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2028. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2029. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2030. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2031. // Acummulate
  2032. acc_0 = _mm_add_ps(p0_d, acc_0);
  2033. acc_1 = _mm_add_ps(p1_d, acc_1);
  2034. acc_2 = _mm_add_ps(p2_d, acc_2);
  2035. acc_3 = _mm_add_ps(p3_d, acc_3);
  2036. }
  2037. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2038. #else
  2039. // scalar
  2040. float sumf = 0.0;
  2041. for (int i = 0; i < nb; i++) {
  2042. int sumi = 0;
  2043. for (int j = 0; j < qk/2; ++j) {
  2044. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2045. const int v1 = (x[i].qs[j] >> 4) - 8;
  2046. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2047. }
  2048. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2049. }
  2050. *s = sumf;
  2051. #endif
  2052. }
  2053. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2054. const int qk = QK8_1;
  2055. const int nb = n / qk;
  2056. assert(n % qk == 0);
  2057. assert(nb % 2 == 0);
  2058. const block_q4_1 * restrict x = vx;
  2059. const block_q8_1 * restrict y = vy;
  2060. // TODO: add WASM SIMD
  2061. #if defined(__ARM_NEON)
  2062. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2063. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2064. float summs = 0;
  2065. for (int i = 0; i < nb; i += 2) {
  2066. const block_q4_1 * restrict x0 = &x[i + 0];
  2067. const block_q4_1 * restrict x1 = &x[i + 1];
  2068. const block_q8_1 * restrict y0 = &y[i + 0];
  2069. const block_q8_1 * restrict y1 = &y[i + 1];
  2070. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2071. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2072. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2073. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2074. // 4-bit -> 8-bit
  2075. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2076. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2077. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2078. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2079. // load y
  2080. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2081. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2082. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2083. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2084. #if defined(__ARM_FEATURE_DOTPROD)
  2085. // dot product into int32x4_t
  2086. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2087. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2088. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2089. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2090. #else
  2091. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2092. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2093. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2094. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2095. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2096. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2097. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2098. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2099. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2100. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2101. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2102. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2103. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2104. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2105. #endif
  2106. }
  2107. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2108. #elif defined(__AVX2__) || defined(__AVX__)
  2109. // Initialize accumulator with zeros
  2110. __m256 acc = _mm256_setzero_ps();
  2111. float summs = 0;
  2112. // Main loop
  2113. for (int i = 0; i < nb; ++i) {
  2114. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2115. const float d1 = y[i].d;
  2116. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2117. const __m256 d0v = _mm256_set1_ps( d0 );
  2118. const __m256 d1v = _mm256_set1_ps( d1 );
  2119. // Compute combined scales
  2120. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2121. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2122. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2123. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2124. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2125. // Accumulate d0*d1*x*y
  2126. #if defined(__AVX2__)
  2127. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2128. #else
  2129. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2130. #endif
  2131. }
  2132. *s = hsum_float_8(acc) + summs;
  2133. #else
  2134. // scalar
  2135. float sumf = 0.0;
  2136. for (int i = 0; i < nb; i++) {
  2137. int sumi = 0;
  2138. for (int j = 0; j < qk/2; ++j) {
  2139. const int v0 = (x[i].qs[j] & 0x0F);
  2140. const int v1 = (x[i].qs[j] >> 4);
  2141. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2142. }
  2143. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2144. }
  2145. *s = sumf;
  2146. #endif
  2147. }
  2148. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2149. const int qk = QK8_0;
  2150. const int nb = n / qk;
  2151. assert(n % qk == 0);
  2152. assert(nb % 2 == 0);
  2153. assert(qk == QK5_0);
  2154. const block_q5_0 * restrict x = vx;
  2155. const block_q8_0 * restrict y = vy;
  2156. #if defined(__ARM_NEON)
  2157. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2158. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2159. uint32_t qh0;
  2160. uint32_t qh1;
  2161. uint64_t tmp0[4];
  2162. uint64_t tmp1[4];
  2163. for (int i = 0; i < nb; i += 2) {
  2164. const block_q5_0 * restrict x0 = &x[i];
  2165. const block_q5_0 * restrict x1 = &x[i + 1];
  2166. const block_q8_0 * restrict y0 = &y[i];
  2167. const block_q8_0 * restrict y1 = &y[i + 1];
  2168. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2169. // extract the 5th bit via lookup table ((!b) << 4)
  2170. memcpy(&qh0, x0->qh, sizeof(qh0));
  2171. memcpy(&qh1, x1->qh, sizeof(qh1));
  2172. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2173. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2174. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2175. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2176. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2177. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2178. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2179. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2180. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2181. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2182. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2183. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2184. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2185. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2186. // 4-bit -> 8-bit
  2187. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2188. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2189. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2190. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2191. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2192. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2193. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2194. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2195. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2196. // load y
  2197. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2198. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2199. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2200. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2201. #if defined(__ARM_FEATURE_DOTPROD)
  2202. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2203. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2204. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2205. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2206. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2207. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2208. #else
  2209. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2210. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2211. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2212. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2213. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2214. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2215. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2216. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2217. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2218. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2219. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2220. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2221. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2222. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2223. #endif
  2224. }
  2225. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2226. #elif defined(__wasm_simd128__)
  2227. v128_t sumv = wasm_f32x4_splat(0.0f);
  2228. uint32_t qh;
  2229. uint64_t tmp[4];
  2230. // TODO: check if unrolling this is better
  2231. for (int i = 0; i < nb; ++i) {
  2232. const block_q5_0 * restrict x0 = &x[i];
  2233. const block_q8_0 * restrict y0 = &y[i];
  2234. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2235. // extract the 5th bit
  2236. memcpy(&qh, x0->qh, sizeof(qh));
  2237. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2238. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2239. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2240. tmp[3] = table_b2b_1[(qh >> 24) ];
  2241. const v128_t qhl = wasm_v128_load(tmp + 0);
  2242. const v128_t qhh = wasm_v128_load(tmp + 2);
  2243. const v128_t v0 = wasm_v128_load(x0->qs);
  2244. // 4-bit -> 8-bit
  2245. const v128_t v0l = wasm_v128_and (v0, m4b);
  2246. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2247. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2248. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2249. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2250. // load y
  2251. const v128_t v1l = wasm_v128_load(y0->qs);
  2252. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2253. // int8x16 -> int16x8
  2254. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2255. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2256. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2257. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2258. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2259. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2260. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2261. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2262. // dot product
  2263. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2264. wasm_i32x4_add(
  2265. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2266. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2267. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2268. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2269. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2270. }
  2271. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2272. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2273. #elif defined(__AVX2__)
  2274. // Initialize accumulator with zeros
  2275. __m256 acc = _mm256_setzero_ps();
  2276. // Main loop
  2277. for (int i = 0; i < nb; i++) {
  2278. /* Compute combined scale for the block */
  2279. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2280. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2281. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2282. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2283. bx = _mm256_or_si256(bx, bxhi);
  2284. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2285. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2286. /* Multiply q with scale and accumulate */
  2287. acc = _mm256_fmadd_ps(d, q, acc);
  2288. }
  2289. *s = hsum_float_8(acc);
  2290. #elif defined(__AVX__)
  2291. // Initialize accumulator with zeros
  2292. __m256 acc = _mm256_setzero_ps();
  2293. __m128i mask = _mm_set1_epi8((char)0xF0);
  2294. // Main loop
  2295. for (int i = 0; i < nb; i++) {
  2296. /* Compute combined scale for the block */
  2297. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2298. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2299. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2300. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2301. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2302. bxhil = _mm_andnot_si128(bxhil, mask);
  2303. bxhih = _mm_andnot_si128(bxhih, mask);
  2304. __m128i bxl = _mm256_castsi256_si128(bx);
  2305. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2306. bxl = _mm_or_si128(bxl, bxhil);
  2307. bxh = _mm_or_si128(bxh, bxhih);
  2308. bx = MM256_SET_M128I(bxh, bxl);
  2309. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2310. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2311. /* Multiply q with scale and accumulate */
  2312. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2313. }
  2314. *s = hsum_float_8(acc);
  2315. #else
  2316. // scalar
  2317. float sumf = 0.0;
  2318. for (int i = 0; i < nb; i++) {
  2319. uint32_t qh;
  2320. memcpy(&qh, x[i].qh, sizeof(qh));
  2321. int sumi = 0;
  2322. for (int j = 0; j < qk/2; ++j) {
  2323. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2324. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2325. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2326. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2327. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2328. }
  2329. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2330. }
  2331. *s = sumf;
  2332. #endif
  2333. }
  2334. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2335. const int qk = QK8_1;
  2336. const int nb = n / qk;
  2337. assert(n % qk == 0);
  2338. assert(nb % 2 == 0);
  2339. assert(qk == QK5_1);
  2340. const block_q5_1 * restrict x = vx;
  2341. const block_q8_1 * restrict y = vy;
  2342. #if defined(__ARM_NEON)
  2343. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2344. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2345. float summs0 = 0.0f;
  2346. float summs1 = 0.0f;
  2347. uint32_t qh0;
  2348. uint32_t qh1;
  2349. uint64_t tmp0[4];
  2350. uint64_t tmp1[4];
  2351. for (int i = 0; i < nb; i += 2) {
  2352. const block_q5_1 * restrict x0 = &x[i];
  2353. const block_q5_1 * restrict x1 = &x[i + 1];
  2354. const block_q8_1 * restrict y0 = &y[i];
  2355. const block_q8_1 * restrict y1 = &y[i + 1];
  2356. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2357. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2358. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2359. // extract the 5th bit via lookup table ((b) << 4)
  2360. memcpy(&qh0, x0->qh, sizeof(qh0));
  2361. memcpy(&qh1, x1->qh, sizeof(qh1));
  2362. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2363. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2364. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2365. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2366. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2367. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2368. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2369. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2370. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2371. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2372. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2373. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2374. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2375. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2376. // 4-bit -> 8-bit
  2377. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2378. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2379. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2380. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2381. // add high bit
  2382. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2383. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2384. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2385. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2386. // load y
  2387. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2388. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2389. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2390. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2391. #if defined(__ARM_FEATURE_DOTPROD)
  2392. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2393. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2394. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2395. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2396. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2397. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2398. #else
  2399. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2400. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2401. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2402. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2403. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2404. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2405. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2406. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2407. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2408. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2409. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2410. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2411. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2412. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2413. #endif
  2414. }
  2415. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2416. #elif defined(__wasm_simd128__)
  2417. v128_t sumv = wasm_f32x4_splat(0.0f);
  2418. float summs = 0.0f;
  2419. uint32_t qh;
  2420. uint64_t tmp[4];
  2421. // TODO: check if unrolling this is better
  2422. for (int i = 0; i < nb; ++i) {
  2423. const block_q5_1 * restrict x0 = &x[i];
  2424. const block_q8_1 * restrict y0 = &y[i];
  2425. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2426. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2427. // extract the 5th bit
  2428. memcpy(&qh, x0->qh, sizeof(qh));
  2429. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2430. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2431. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2432. tmp[3] = table_b2b_0[(qh >> 24) ];
  2433. const v128_t qhl = wasm_v128_load(tmp + 0);
  2434. const v128_t qhh = wasm_v128_load(tmp + 2);
  2435. const v128_t v0 = wasm_v128_load(x0->qs);
  2436. // 4-bit -> 8-bit
  2437. const v128_t v0l = wasm_v128_and (v0, m4b);
  2438. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2439. // add high bit
  2440. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2441. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2442. // load y
  2443. const v128_t v1l = wasm_v128_load(y0->qs);
  2444. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2445. // int8x16 -> int16x8
  2446. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2447. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2448. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2449. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2450. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2451. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2452. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2453. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2454. // dot product
  2455. sumv = wasm_f32x4_add(sumv,
  2456. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2457. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2458. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2459. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2460. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2461. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2462. }
  2463. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2464. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2465. #elif defined(__AVX2__)
  2466. // Initialize accumulator with zeros
  2467. __m256 acc = _mm256_setzero_ps();
  2468. float summs = 0.0f;
  2469. // Main loop
  2470. for (int i = 0; i < nb; i++) {
  2471. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2472. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2473. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2474. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2475. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2476. bx = _mm256_or_si256(bx, bxhi);
  2477. const __m256 dy = _mm256_set1_ps(y[i].d);
  2478. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2479. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2480. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2481. }
  2482. *s = hsum_float_8(acc) + summs;
  2483. #elif defined(__AVX__)
  2484. // Initialize accumulator with zeros
  2485. __m256 acc = _mm256_setzero_ps();
  2486. __m128i mask = _mm_set1_epi8(0x10);
  2487. float summs = 0.0f;
  2488. // Main loop
  2489. for (int i = 0; i < nb; i++) {
  2490. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2491. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2492. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2493. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2494. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2495. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2496. bxhil = _mm_and_si128(bxhil, mask);
  2497. bxhih = _mm_and_si128(bxhih, mask);
  2498. __m128i bxl = _mm256_castsi256_si128(bx);
  2499. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2500. bxl = _mm_or_si128(bxl, bxhil);
  2501. bxh = _mm_or_si128(bxh, bxhih);
  2502. bx = MM256_SET_M128I(bxh, bxl);
  2503. const __m256 dy = _mm256_set1_ps(y[i].d);
  2504. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2505. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2506. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2507. }
  2508. *s = hsum_float_8(acc) + summs;
  2509. #else
  2510. // scalar
  2511. float sumf = 0.0;
  2512. for (int i = 0; i < nb; i++) {
  2513. uint32_t qh;
  2514. memcpy(&qh, x[i].qh, sizeof(qh));
  2515. int sumi = 0;
  2516. for (int j = 0; j < qk/2; ++j) {
  2517. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2518. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2519. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2520. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2521. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2522. }
  2523. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2524. }
  2525. *s = sumf;
  2526. #endif
  2527. }
  2528. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2529. const int qk = QK8_0;
  2530. const int nb = n / qk;
  2531. assert(n % qk == 0);
  2532. assert(nb % 2 == 0);
  2533. const block_q8_0 * restrict x = vx;
  2534. const block_q8_0 * restrict y = vy;
  2535. #if defined(__ARM_NEON)
  2536. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2537. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2538. for (int i = 0; i < nb; i += 2) {
  2539. const block_q8_0 * restrict x0 = &x[i + 0];
  2540. const block_q8_0 * restrict x1 = &x[i + 1];
  2541. const block_q8_0 * restrict y0 = &y[i + 0];
  2542. const block_q8_0 * restrict y1 = &y[i + 1];
  2543. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2544. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2545. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2546. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2547. // load y
  2548. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2549. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2550. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2551. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2552. #if defined(__ARM_FEATURE_DOTPROD)
  2553. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2554. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2555. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2556. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2557. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2558. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2559. #else
  2560. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2561. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2562. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2563. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2564. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2565. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2566. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2567. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2568. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2569. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2570. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2571. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2572. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2573. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2574. #endif
  2575. }
  2576. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2577. #elif defined(__AVX2__) || defined(__AVX__)
  2578. // Initialize accumulator with zeros
  2579. __m256 acc = _mm256_setzero_ps();
  2580. // Main loop
  2581. for (int i = 0; i < nb; ++i) {
  2582. // Compute combined scale for the block
  2583. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2584. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2585. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2586. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2587. // Multiply q with scale and accumulate
  2588. #if defined(__AVX2__)
  2589. acc = _mm256_fmadd_ps( d, q, acc );
  2590. #else
  2591. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2592. #endif
  2593. }
  2594. *s = hsum_float_8(acc);
  2595. #else
  2596. // scalar
  2597. float sumf = 0.0;
  2598. for (int i = 0; i < nb; i++) {
  2599. int sumi = 0;
  2600. for (int j = 0; j < qk; j++) {
  2601. sumi += x[i].qs[j]*y[i].qs[j];
  2602. }
  2603. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2604. }
  2605. *s = sumf;
  2606. #endif
  2607. }
  2608. // compute GGML_VEC_DOT_UNROLL dot products at once
  2609. // xs - x row stride in bytes
  2610. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2611. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2612. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2613. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2614. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2615. }
  2616. #if defined(GGML_SIMD)
  2617. const int np = (n & ~(GGML_F16_STEP - 1));
  2618. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2619. GGML_F16_VEC ax[GGML_F16_ARR];
  2620. GGML_F16_VEC ay[GGML_F16_ARR];
  2621. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2622. for (int j = 0; j < GGML_F16_ARR; j++) {
  2623. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2624. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2625. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2626. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2627. }
  2628. }
  2629. }
  2630. // reduce sum0..sum3 to sum0
  2631. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2632. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2633. }
  2634. // leftovers
  2635. for (int i = np; i < n; ++i) {
  2636. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2637. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2638. }
  2639. }
  2640. #else
  2641. for (int i = 0; i < n; ++i) {
  2642. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2643. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2644. }
  2645. }
  2646. #endif
  2647. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2648. s[i] = sumf[i];
  2649. }
  2650. }
  2651. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2652. #if defined(GGML_SIMD)
  2653. const int np = (n & ~(GGML_F32_STEP - 1));
  2654. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2655. GGML_F32_VEC ax[GGML_F32_ARR];
  2656. GGML_F32_VEC ay[GGML_F32_ARR];
  2657. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2658. for (int j = 0; j < GGML_F32_ARR; j++) {
  2659. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2660. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2661. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2662. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2663. }
  2664. }
  2665. // leftovers
  2666. for (int i = np; i < n; ++i) {
  2667. y[i] += x[i]*v;
  2668. }
  2669. #else
  2670. // scalar
  2671. for (int i = 0; i < n; ++i) {
  2672. y[i] += x[i]*v;
  2673. }
  2674. #endif
  2675. }
  2676. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2677. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2678. #if defined(GGML_SIMD)
  2679. const int np = (n & ~(GGML_F32_STEP - 1));
  2680. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2681. GGML_F32_VEC ay[GGML_F32_ARR];
  2682. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2683. for (int j = 0; j < GGML_F32_ARR; j++) {
  2684. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2685. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2686. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2687. }
  2688. }
  2689. // leftovers
  2690. for (int i = np; i < n; ++i) {
  2691. y[i] *= v;
  2692. }
  2693. #else
  2694. // scalar
  2695. for (int i = 0; i < n; ++i) {
  2696. y[i] *= v;
  2697. }
  2698. #endif
  2699. }
  2700. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2701. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2702. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2703. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2704. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2705. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2706. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2707. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2708. static const float GELU_COEF_A = 0.044715f;
  2709. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2710. inline static float ggml_gelu_f32(float x) {
  2711. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2712. }
  2713. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2714. const uint16_t * i16 = (const uint16_t *) x;
  2715. for (int i = 0; i < n; ++i) {
  2716. y[i] = table_gelu_f16[i16[i]];
  2717. }
  2718. }
  2719. #ifdef GGML_GELU_FP16
  2720. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2721. uint16_t t;
  2722. for (int i = 0; i < n; ++i) {
  2723. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2724. memcpy(&t, &fp16, sizeof(uint16_t));
  2725. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2726. }
  2727. }
  2728. #else
  2729. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2730. for (int i = 0; i < n; ++i) {
  2731. y[i] = ggml_gelu_f32(x[i]);
  2732. }
  2733. }
  2734. #endif
  2735. // Sigmoid Linear Unit (SiLU) function
  2736. inline static float ggml_silu_f32(float x) {
  2737. return x/(1.0f + expf(-x));
  2738. }
  2739. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2740. // const uint16_t * i16 = (const uint16_t *) x;
  2741. // for (int i = 0; i < n; ++i) {
  2742. // y[i] = table_silu_f16[i16[i]];
  2743. // }
  2744. //}
  2745. #ifdef GGML_SILU_FP16
  2746. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2747. uint16_t t;
  2748. for (int i = 0; i < n; ++i) {
  2749. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2750. memcpy(&t, &fp16, sizeof(uint16_t));
  2751. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2752. }
  2753. }
  2754. #else
  2755. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2756. for (int i = 0; i < n; ++i) {
  2757. y[i] = ggml_silu_f32(x[i]);
  2758. }
  2759. }
  2760. #endif
  2761. inline static float ggml_silu_backward_f32(float x, float dy) {
  2762. const float s = 1.0f/(1.0f + expf(-x));
  2763. return dy*s*(1.0f + x*(1.0f - s));
  2764. }
  2765. #ifdef GGML_SILU_FP16
  2766. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2767. for (int i = 0; i < n; ++i) {
  2768. // we did not use x[i] to compute forward silu but its f16 equivalent
  2769. // take derivative at f16 of x[i]:
  2770. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2771. float usedx = GGML_FP16_TO_FP32(fp16);
  2772. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2773. }
  2774. }
  2775. #else
  2776. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2777. for (int i = 0; i < n; ++i) {
  2778. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2779. }
  2780. }
  2781. #endif
  2782. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2783. #ifndef GGML_USE_ACCELERATE
  2784. ggml_float sum = 0.0;
  2785. for (int i = 0; i < n; ++i) {
  2786. sum += (ggml_float)x[i];
  2787. }
  2788. *s = sum;
  2789. #else
  2790. vDSP_sve(x, 1, s, n);
  2791. #endif
  2792. }
  2793. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2794. ggml_float sum = 0.0;
  2795. for (int i = 0; i < n; ++i) {
  2796. sum += (ggml_float)x[i];
  2797. }
  2798. *s = sum;
  2799. }
  2800. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2801. #ifndef GGML_USE_ACCELERATE
  2802. float max = -INFINITY;
  2803. for (int i = 0; i < n; ++i) {
  2804. max = MAX(max, x[i]);
  2805. }
  2806. *s = max;
  2807. #else
  2808. vDSP_maxv(x, 1, s, n);
  2809. #endif
  2810. }
  2811. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2812. ggml_vec_norm_f32(n, s, x);
  2813. *s = 1.f/(*s);
  2814. }
  2815. //
  2816. // logging
  2817. //
  2818. #if (GGML_DEBUG >= 1)
  2819. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2820. #else
  2821. #define GGML_PRINT_DEBUG(...)
  2822. #endif
  2823. #if (GGML_DEBUG >= 5)
  2824. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG_5(...)
  2827. #endif
  2828. #if (GGML_DEBUG >= 10)
  2829. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2830. #else
  2831. #define GGML_PRINT_DEBUG_10(...)
  2832. #endif
  2833. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2834. //
  2835. // data types
  2836. //
  2837. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2838. [GGML_TYPE_F32] = 1,
  2839. [GGML_TYPE_F16] = 1,
  2840. [GGML_TYPE_Q4_0] = QK4_0,
  2841. [GGML_TYPE_Q4_1] = QK4_1,
  2842. [GGML_TYPE_Q5_0] = QK5_0,
  2843. [GGML_TYPE_Q5_1] = QK5_1,
  2844. [GGML_TYPE_Q8_0] = QK8_0,
  2845. [GGML_TYPE_Q8_1] = QK8_1,
  2846. #ifdef GGML_USE_K_QUANTS
  2847. [GGML_TYPE_Q2_K] = QK_K,
  2848. [GGML_TYPE_Q3_K] = QK_K,
  2849. [GGML_TYPE_Q4_K] = QK_K,
  2850. [GGML_TYPE_Q5_K] = QK_K,
  2851. [GGML_TYPE_Q6_K] = QK_K,
  2852. [GGML_TYPE_Q8_K] = QK_K,
  2853. #endif
  2854. [GGML_TYPE_I8] = 1,
  2855. [GGML_TYPE_I16] = 1,
  2856. [GGML_TYPE_I32] = 1,
  2857. };
  2858. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2859. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2860. [GGML_TYPE_F32] = sizeof(float),
  2861. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2862. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2863. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2864. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2865. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2866. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2867. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2868. #ifdef GGML_USE_K_QUANTS
  2869. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2870. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2871. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2872. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2873. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2874. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2875. #endif
  2876. [GGML_TYPE_I8] = sizeof(int8_t),
  2877. [GGML_TYPE_I16] = sizeof(int16_t),
  2878. [GGML_TYPE_I32] = sizeof(int32_t),
  2879. };
  2880. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2881. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2882. [GGML_TYPE_F32] = "f32",
  2883. [GGML_TYPE_F16] = "f16",
  2884. [GGML_TYPE_Q4_0] = "q4_0",
  2885. [GGML_TYPE_Q4_1] = "q4_1",
  2886. [GGML_TYPE_Q5_0] = "q5_0",
  2887. [GGML_TYPE_Q5_1] = "q5_1",
  2888. [GGML_TYPE_Q8_0] = "q8_0",
  2889. [GGML_TYPE_Q8_1] = "q8_1",
  2890. [GGML_TYPE_Q2_K] = "q2_K",
  2891. [GGML_TYPE_Q3_K] = "q3_K",
  2892. [GGML_TYPE_Q4_K] = "q4_K",
  2893. [GGML_TYPE_Q5_K] = "q5_K",
  2894. [GGML_TYPE_Q6_K] = "q6_K",
  2895. [GGML_TYPE_Q8_K] = "q8_K",
  2896. [GGML_TYPE_I8] = "i8",
  2897. [GGML_TYPE_I16] = "i16",
  2898. [GGML_TYPE_I32] = "i32",
  2899. };
  2900. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2901. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2902. [GGML_TYPE_F32] = false,
  2903. [GGML_TYPE_F16] = false,
  2904. [GGML_TYPE_Q4_0] = true,
  2905. [GGML_TYPE_Q4_1] = true,
  2906. [GGML_TYPE_Q5_0] = true,
  2907. [GGML_TYPE_Q5_1] = true,
  2908. [GGML_TYPE_Q8_0] = true,
  2909. [GGML_TYPE_Q8_1] = true,
  2910. [GGML_TYPE_Q2_K] = true,
  2911. [GGML_TYPE_Q3_K] = true,
  2912. [GGML_TYPE_Q4_K] = true,
  2913. [GGML_TYPE_Q5_K] = true,
  2914. [GGML_TYPE_Q6_K] = true,
  2915. [GGML_TYPE_Q8_K] = true,
  2916. [GGML_TYPE_I8] = false,
  2917. [GGML_TYPE_I16] = false,
  2918. [GGML_TYPE_I32] = false,
  2919. };
  2920. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2921. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2922. "NONE",
  2923. "DUP",
  2924. "ADD",
  2925. "ADD1",
  2926. "ACC",
  2927. "SUB",
  2928. "MUL",
  2929. "DIV",
  2930. "SQR",
  2931. "SQRT",
  2932. "LOG",
  2933. "SUM",
  2934. "SUM_ROWS",
  2935. "MEAN",
  2936. "REPEAT",
  2937. "REPEAT_BACK",
  2938. "ABS",
  2939. "SGN",
  2940. "NEG",
  2941. "STEP",
  2942. "RELU",
  2943. "GELU",
  2944. "SILU",
  2945. "SILU_BACK",
  2946. "NORM",
  2947. "RMS_NORM",
  2948. "RMS_NORM_BACK",
  2949. "MUL_MAT",
  2950. "OUT_PROD",
  2951. "SCALE",
  2952. "SET",
  2953. "CPY",
  2954. "CONT",
  2955. "RESHAPE",
  2956. "VIEW",
  2957. "PERMUTE",
  2958. "TRANSPOSE",
  2959. "GET_ROWS",
  2960. "GET_ROWS_BACK",
  2961. "DIAG",
  2962. "DIAG_MASK_INF",
  2963. "DIAG_MASK_ZERO",
  2964. "SOFT_MAX",
  2965. "SOFT_MAX_BACK",
  2966. "ROPE",
  2967. "ROPE_BACK",
  2968. "ALIBI",
  2969. "CLAMP",
  2970. "CONV_1D_1S",
  2971. "CONV_1D_2S",
  2972. "FLASH_ATTN",
  2973. "FLASH_FF",
  2974. "FLASH_ATTN_BACK",
  2975. "MAP_UNARY",
  2976. "MAP_BINARY",
  2977. "CROSS_ENTROPY_LOSS",
  2978. "CROSS_ENTROPY_LOSS_BACK",
  2979. };
  2980. static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
  2981. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2982. "none",
  2983. "x",
  2984. "x+y",
  2985. "x+y",
  2986. "view(x,nb,offset)+=y->x",
  2987. "x-y",
  2988. "x*y",
  2989. "x/y",
  2990. "x^2",
  2991. "√x",
  2992. "log(x)",
  2993. "Σx",
  2994. "Σx_k",
  2995. "Σx/n",
  2996. "repeat(x)",
  2997. "repeat_back(x)",
  2998. "abs(x)",
  2999. "sgn(x)",
  3000. "-x",
  3001. "step(x)",
  3002. "relu(x)",
  3003. "gelu(x)",
  3004. "silu(x)",
  3005. "silu_back(x)",
  3006. "norm(x)",
  3007. "rms_norm(x)",
  3008. "rms_norm_back(x)",
  3009. "X*Y",
  3010. "X*Y",
  3011. "x*v",
  3012. "y-\\>view(x)",
  3013. "x-\\>y",
  3014. "cont(x)",
  3015. "reshape(x)",
  3016. "view(x)",
  3017. "permute(x)",
  3018. "transpose(x)",
  3019. "get_rows(x)",
  3020. "get_rows_back(x)",
  3021. "diag(x)",
  3022. "diag_mask_inf(x)",
  3023. "diag_mask_zero(x)",
  3024. "soft_max(x)",
  3025. "soft_max_back(x)",
  3026. "rope(x)",
  3027. "rope_back(x)",
  3028. "alibi(x)",
  3029. "clamp(x)",
  3030. "conv_1d_1s(x)",
  3031. "conv_1d_2s(x)",
  3032. "flash_attn(x)",
  3033. "flash_ff(x)",
  3034. "flash_attn_back(x)",
  3035. "f(x)",
  3036. "f(x,y)",
  3037. "cross_entropy_loss(x,y)",
  3038. "cross_entropy_loss_back(x,y)",
  3039. };
  3040. static_assert(GGML_OP_COUNT == 57, "GGML_OP_COUNT != 57");
  3041. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3042. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3043. //
  3044. // ggml context
  3045. //
  3046. struct ggml_context {
  3047. size_t mem_size;
  3048. void * mem_buffer;
  3049. bool mem_buffer_owned;
  3050. bool no_alloc;
  3051. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3052. int n_objects;
  3053. struct ggml_object * objects_begin;
  3054. struct ggml_object * objects_end;
  3055. struct ggml_scratch scratch;
  3056. struct ggml_scratch scratch_save;
  3057. };
  3058. struct ggml_context_container {
  3059. bool used;
  3060. struct ggml_context context;
  3061. };
  3062. //
  3063. // ggml state
  3064. //
  3065. struct ggml_state {
  3066. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3067. };
  3068. // global state
  3069. static struct ggml_state g_state;
  3070. static atomic_int g_state_barrier = 0;
  3071. // barrier via spin lock
  3072. inline static void ggml_critical_section_start(void) {
  3073. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3074. while (processing > 0) {
  3075. // wait for other threads to finish
  3076. atomic_fetch_sub(&g_state_barrier, 1);
  3077. sched_yield(); // TODO: reconsider this
  3078. processing = atomic_fetch_add(&g_state_barrier, 1);
  3079. }
  3080. }
  3081. // TODO: make this somehow automatically executed
  3082. // some sort of "sentry" mechanism
  3083. inline static void ggml_critical_section_end(void) {
  3084. atomic_fetch_sub(&g_state_barrier, 1);
  3085. }
  3086. ////////////////////////////////////////////////////////////////////////////////
  3087. void ggml_print_object(const struct ggml_object * obj) {
  3088. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3089. obj->offs, obj->size, (const void *) obj->next);
  3090. }
  3091. void ggml_print_objects(const struct ggml_context * ctx) {
  3092. struct ggml_object * obj = ctx->objects_begin;
  3093. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3094. while (obj != NULL) {
  3095. ggml_print_object(obj);
  3096. obj = obj->next;
  3097. }
  3098. GGML_PRINT("%s: --- end ---\n", __func__);
  3099. }
  3100. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3101. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3102. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3103. }
  3104. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3105. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3106. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3107. }
  3108. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3109. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3110. // this should handle cases where the tensor is not contiguous in memory
  3111. // probaby just:
  3112. //
  3113. // return tensor->ne[3]*tensor->nb[3]
  3114. //
  3115. // is enough, but just in case, adding the second part
  3116. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3117. }
  3118. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3119. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3120. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3121. }
  3122. int ggml_blck_size(enum ggml_type type) {
  3123. return GGML_BLCK_SIZE[type];
  3124. }
  3125. size_t ggml_type_size(enum ggml_type type) {
  3126. return GGML_TYPE_SIZE[type];
  3127. }
  3128. float ggml_type_sizef(enum ggml_type type) {
  3129. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3130. }
  3131. const char * ggml_type_name(enum ggml_type type) {
  3132. return GGML_TYPE_NAME[type];
  3133. }
  3134. const char * ggml_op_name(enum ggml_op op) {
  3135. return GGML_OP_NAME[op];
  3136. }
  3137. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3138. return GGML_TYPE_SIZE[tensor->type];
  3139. }
  3140. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3141. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3142. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3143. }
  3144. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3145. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3146. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3147. }
  3148. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3149. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3150. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3151. }
  3152. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3153. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3154. return
  3155. (t0->ne[0] == t1->ne[0]) &&
  3156. (t0->ne[2] == t1->ne[2]) &&
  3157. (t0->ne[3] == t1->ne[3]);
  3158. }
  3159. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3160. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3161. return
  3162. (t0->ne[1] == t1->ne[1]) &&
  3163. (t0->ne[2] == t1->ne[2]) &&
  3164. (t0->ne[3] == t1->ne[3]);
  3165. }
  3166. bool ggml_is_quantized(enum ggml_type type) {
  3167. return GGML_IS_QUANTIZED[type];
  3168. }
  3169. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3170. enum ggml_type wtype = GGML_TYPE_COUNT;
  3171. switch (ftype) {
  3172. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3173. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3174. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3175. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3176. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3177. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3178. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3179. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3180. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3181. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3182. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3183. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3184. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3185. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3186. }
  3187. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3188. return wtype;
  3189. }
  3190. size_t ggml_tensor_overhead(void) {
  3191. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3192. }
  3193. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3194. return tensor->nb[0] > tensor->nb[1];
  3195. }
  3196. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3197. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3198. return
  3199. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3200. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3201. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3202. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3203. }
  3204. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3205. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3206. return
  3207. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3208. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3209. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3210. }
  3211. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3212. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3213. return
  3214. (t0->ne[0] == t1->ne[0] ) &&
  3215. (t0->ne[1] == t1->ne[1] ) &&
  3216. (t0->ne[2] == t1->ne[2] ) &&
  3217. (t0->ne[3] == t1->ne[3] );
  3218. }
  3219. // check if t1 can be represented as a repeatition of t0
  3220. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3221. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3222. return
  3223. (t1->ne[0]%t0->ne[0] == 0) &&
  3224. (t1->ne[1]%t0->ne[1] == 0) &&
  3225. (t1->ne[2]%t0->ne[2] == 0) &&
  3226. (t1->ne[3]%t0->ne[3] == 0);
  3227. }
  3228. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3229. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3230. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3231. }
  3232. static inline int ggml_up32(int n) {
  3233. return (n + 31) & ~31;
  3234. }
  3235. //static inline int ggml_up64(int n) {
  3236. // return (n + 63) & ~63;
  3237. //}
  3238. static inline int ggml_up(int n, int m) {
  3239. // assert m is a power of 2
  3240. GGML_ASSERT((m & (m - 1)) == 0);
  3241. return (n + m - 1) & ~(m - 1);
  3242. }
  3243. // assert that pointer is aligned to GGML_MEM_ALIGN
  3244. #define ggml_assert_aligned(ptr) \
  3245. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3246. ////////////////////////////////////////////////////////////////////////////////
  3247. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3248. // make this function thread safe
  3249. ggml_critical_section_start();
  3250. static bool is_first_call = true;
  3251. if (is_first_call) {
  3252. // initialize time system (required on Windows)
  3253. ggml_time_init();
  3254. // initialize GELU, SILU and EXP F32 tables
  3255. {
  3256. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3257. ggml_fp16_t ii;
  3258. for (int i = 0; i < (1 << 16); ++i) {
  3259. uint16_t ui = i;
  3260. memcpy(&ii, &ui, sizeof(ii));
  3261. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3262. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3263. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3264. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3265. }
  3266. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3267. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3268. }
  3269. // initialize g_state
  3270. {
  3271. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3272. g_state = (struct ggml_state) {
  3273. /*.contexts =*/ { { 0 } },
  3274. };
  3275. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3276. g_state.contexts[i].used = false;
  3277. }
  3278. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3279. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3280. }
  3281. #if defined(GGML_USE_CUBLAS)
  3282. ggml_init_cublas();
  3283. #elif defined(GGML_USE_CLBLAST)
  3284. ggml_cl_init();
  3285. #endif
  3286. is_first_call = false;
  3287. }
  3288. // find non-used context in g_state
  3289. struct ggml_context * ctx = NULL;
  3290. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3291. if (!g_state.contexts[i].used) {
  3292. g_state.contexts[i].used = true;
  3293. ctx = &g_state.contexts[i].context;
  3294. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3295. break;
  3296. }
  3297. }
  3298. if (ctx == NULL) {
  3299. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3300. ggml_critical_section_end();
  3301. return NULL;
  3302. }
  3303. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3304. *ctx = (struct ggml_context) {
  3305. /*.mem_size =*/ mem_size,
  3306. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3307. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3308. /*.no_alloc =*/ params.no_alloc,
  3309. /*.no_alloc_save =*/ params.no_alloc,
  3310. /*.n_objects =*/ 0,
  3311. /*.objects_begin =*/ NULL,
  3312. /*.objects_end =*/ NULL,
  3313. /*.scratch =*/ { 0, 0, NULL, },
  3314. /*.scratch_save =*/ { 0, 0, NULL, },
  3315. };
  3316. GGML_ASSERT(ctx->mem_buffer != NULL);
  3317. ggml_assert_aligned(ctx->mem_buffer);
  3318. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3319. ggml_critical_section_end();
  3320. return ctx;
  3321. }
  3322. void ggml_free(struct ggml_context * ctx) {
  3323. // make this function thread safe
  3324. ggml_critical_section_start();
  3325. bool found = false;
  3326. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3327. if (&g_state.contexts[i].context == ctx) {
  3328. g_state.contexts[i].used = false;
  3329. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3330. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3331. if (ctx->mem_buffer_owned) {
  3332. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3333. }
  3334. found = true;
  3335. break;
  3336. }
  3337. }
  3338. if (!found) {
  3339. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3340. }
  3341. ggml_critical_section_end();
  3342. }
  3343. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3344. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3345. }
  3346. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3347. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3348. ctx->scratch = scratch;
  3349. return result;
  3350. }
  3351. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3352. ctx->no_alloc = no_alloc;
  3353. }
  3354. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3355. return ctx->mem_buffer;
  3356. }
  3357. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3358. return ctx->mem_size;
  3359. }
  3360. // IMPORTANT:
  3361. // when creating "opt" tensors, always save and load the scratch buffer
  3362. // this is an error prone process, but it is necessary to support inplace
  3363. // operators when using scratch buffers
  3364. // TODO: implement a better way
  3365. void ggml_scratch_save(struct ggml_context * ctx) {
  3366. // this is needed to allow opt tensors to store their data
  3367. // TODO: again, need to find a better way
  3368. ctx->no_alloc_save = ctx->no_alloc;
  3369. ctx->no_alloc = false;
  3370. ctx->scratch_save = ctx->scratch;
  3371. ctx->scratch.data = NULL;
  3372. }
  3373. void ggml_scratch_load(struct ggml_context * ctx) {
  3374. ctx->no_alloc = ctx->no_alloc_save;
  3375. ctx->scratch = ctx->scratch_save;
  3376. }
  3377. ////////////////////////////////////////////////////////////////////////////////
  3378. struct ggml_tensor * ggml_new_tensor_impl(
  3379. struct ggml_context * ctx,
  3380. enum ggml_type type,
  3381. int n_dims,
  3382. const int64_t* ne,
  3383. void* data) {
  3384. // always insert objects at the end of the context's memory pool
  3385. struct ggml_object * obj_cur = ctx->objects_end;
  3386. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3387. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3388. const size_t cur_end = cur_offs + cur_size;
  3389. size_t size_needed = 0;
  3390. if (data == NULL && !ctx->no_alloc) {
  3391. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3392. for (int i = 1; i < n_dims; i++) {
  3393. size_needed *= ne[i];
  3394. }
  3395. // align to GGML_MEM_ALIGN
  3396. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3397. }
  3398. char * const mem_buffer = ctx->mem_buffer;
  3399. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3400. if (ctx->scratch.data == NULL || data != NULL) {
  3401. size_needed += GGML_TENSOR_SIZE;
  3402. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3403. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3404. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3405. assert(false);
  3406. return NULL;
  3407. }
  3408. *obj_new = (struct ggml_object) {
  3409. .offs = cur_end + GGML_OBJECT_SIZE,
  3410. .size = size_needed,
  3411. .next = NULL,
  3412. };
  3413. } else {
  3414. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3415. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3416. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3417. assert(false);
  3418. return NULL;
  3419. }
  3420. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3421. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3422. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3423. assert(false);
  3424. return NULL;
  3425. }
  3426. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3427. *obj_new = (struct ggml_object) {
  3428. .offs = cur_end + GGML_OBJECT_SIZE,
  3429. .size = GGML_TENSOR_SIZE,
  3430. .next = NULL,
  3431. };
  3432. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3433. ctx->scratch.offs += size_needed;
  3434. }
  3435. if (obj_cur != NULL) {
  3436. obj_cur->next = obj_new;
  3437. } else {
  3438. // this is the first object in this context
  3439. ctx->objects_begin = obj_new;
  3440. }
  3441. ctx->objects_end = obj_new;
  3442. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3443. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3444. ggml_assert_aligned(result);
  3445. *result = (struct ggml_tensor) {
  3446. /*.type =*/ type,
  3447. /*.backend =*/ GGML_BACKEND_CPU,
  3448. /*.n_dims =*/ n_dims,
  3449. /*.ne =*/ { 1, 1, 1, 1 },
  3450. /*.nb =*/ { 0, 0, 0, 0 },
  3451. /*.op =*/ GGML_OP_NONE,
  3452. /*.is_param =*/ false,
  3453. /*.grad =*/ NULL,
  3454. /*.src0 =*/ NULL,
  3455. /*.src1 =*/ NULL,
  3456. /*.opt =*/ { NULL },
  3457. /*.n_tasks =*/ 0,
  3458. /*.perf_runs =*/ 0,
  3459. /*.perf_cycles =*/ 0,
  3460. /*.perf_time_us =*/ 0,
  3461. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3462. /*.name =*/ { 0 },
  3463. /*.extra =*/ NULL,
  3464. /*.pad =*/ { 0 },
  3465. };
  3466. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3467. //ggml_assert_aligned(result->data);
  3468. for (int i = 0; i < n_dims; i++) {
  3469. result->ne[i] = ne[i];
  3470. }
  3471. result->nb[0] = GGML_TYPE_SIZE[type];
  3472. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3473. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3474. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3475. }
  3476. ctx->n_objects++;
  3477. return result;
  3478. }
  3479. struct ggml_tensor * ggml_new_tensor(
  3480. struct ggml_context * ctx,
  3481. enum ggml_type type,
  3482. int n_dims,
  3483. const int64_t * ne) {
  3484. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3485. }
  3486. struct ggml_tensor * ggml_new_tensor_1d(
  3487. struct ggml_context * ctx,
  3488. enum ggml_type type,
  3489. int64_t ne0) {
  3490. return ggml_new_tensor(ctx, type, 1, &ne0);
  3491. }
  3492. struct ggml_tensor * ggml_new_tensor_2d(
  3493. struct ggml_context * ctx,
  3494. enum ggml_type type,
  3495. int64_t ne0,
  3496. int64_t ne1) {
  3497. const int64_t ne[2] = { ne0, ne1 };
  3498. return ggml_new_tensor(ctx, type, 2, ne);
  3499. }
  3500. struct ggml_tensor * ggml_new_tensor_3d(
  3501. struct ggml_context * ctx,
  3502. enum ggml_type type,
  3503. int64_t ne0,
  3504. int64_t ne1,
  3505. int64_t ne2) {
  3506. const int64_t ne[3] = { ne0, ne1, ne2 };
  3507. return ggml_new_tensor(ctx, type, 3, ne);
  3508. }
  3509. struct ggml_tensor * ggml_new_tensor_4d(
  3510. struct ggml_context * ctx,
  3511. enum ggml_type type,
  3512. int64_t ne0,
  3513. int64_t ne1,
  3514. int64_t ne2,
  3515. int64_t ne3) {
  3516. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3517. return ggml_new_tensor(ctx, type, 4, ne);
  3518. }
  3519. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3520. ggml_scratch_save(ctx);
  3521. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3522. ggml_scratch_load(ctx);
  3523. ggml_set_i32(result, value);
  3524. return result;
  3525. }
  3526. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3527. ggml_scratch_save(ctx);
  3528. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3529. ggml_scratch_load(ctx);
  3530. ggml_set_f32(result, value);
  3531. return result;
  3532. }
  3533. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3534. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3535. }
  3536. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3537. memset(tensor->data, 0, ggml_nbytes(tensor));
  3538. return tensor;
  3539. }
  3540. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3541. const int n = ggml_nrows(tensor);
  3542. const int nc = tensor->ne[0];
  3543. const size_t n1 = tensor->nb[1];
  3544. char * const data = tensor->data;
  3545. switch (tensor->type) {
  3546. case GGML_TYPE_I8:
  3547. {
  3548. assert(tensor->nb[0] == sizeof(int8_t));
  3549. for (int i = 0; i < n; i++) {
  3550. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3551. }
  3552. } break;
  3553. case GGML_TYPE_I16:
  3554. {
  3555. assert(tensor->nb[0] == sizeof(int16_t));
  3556. for (int i = 0; i < n; i++) {
  3557. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3558. }
  3559. } break;
  3560. case GGML_TYPE_I32:
  3561. {
  3562. assert(tensor->nb[0] == sizeof(int32_t));
  3563. for (int i = 0; i < n; i++) {
  3564. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3565. }
  3566. } break;
  3567. case GGML_TYPE_F16:
  3568. {
  3569. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3570. for (int i = 0; i < n; i++) {
  3571. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3572. }
  3573. } break;
  3574. case GGML_TYPE_F32:
  3575. {
  3576. assert(tensor->nb[0] == sizeof(float));
  3577. for (int i = 0; i < n; i++) {
  3578. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3579. }
  3580. } break;
  3581. default:
  3582. {
  3583. GGML_ASSERT(false);
  3584. } break;
  3585. }
  3586. return tensor;
  3587. }
  3588. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3589. const int n = ggml_nrows(tensor);
  3590. const int nc = tensor->ne[0];
  3591. const size_t n1 = tensor->nb[1];
  3592. char * const data = tensor->data;
  3593. switch (tensor->type) {
  3594. case GGML_TYPE_I8:
  3595. {
  3596. assert(tensor->nb[0] == sizeof(int8_t));
  3597. for (int i = 0; i < n; i++) {
  3598. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3599. }
  3600. } break;
  3601. case GGML_TYPE_I16:
  3602. {
  3603. assert(tensor->nb[0] == sizeof(int16_t));
  3604. for (int i = 0; i < n; i++) {
  3605. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3606. }
  3607. } break;
  3608. case GGML_TYPE_I32:
  3609. {
  3610. assert(tensor->nb[0] == sizeof(int32_t));
  3611. for (int i = 0; i < n; i++) {
  3612. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3613. }
  3614. } break;
  3615. case GGML_TYPE_F16:
  3616. {
  3617. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3618. for (int i = 0; i < n; i++) {
  3619. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3620. }
  3621. } break;
  3622. case GGML_TYPE_F32:
  3623. {
  3624. assert(tensor->nb[0] == sizeof(float));
  3625. for (int i = 0; i < n; i++) {
  3626. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3627. }
  3628. } break;
  3629. default:
  3630. {
  3631. GGML_ASSERT(false);
  3632. } break;
  3633. }
  3634. return tensor;
  3635. }
  3636. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3637. switch (tensor->type) {
  3638. case GGML_TYPE_I8:
  3639. {
  3640. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3641. return ((int8_t *)(tensor->data))[i];
  3642. } break;
  3643. case GGML_TYPE_I16:
  3644. {
  3645. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3646. return ((int16_t *)(tensor->data))[i];
  3647. } break;
  3648. case GGML_TYPE_I32:
  3649. {
  3650. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3651. return ((int32_t *)(tensor->data))[i];
  3652. } break;
  3653. case GGML_TYPE_F16:
  3654. {
  3655. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3656. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3657. } break;
  3658. case GGML_TYPE_F32:
  3659. {
  3660. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3661. return ((float *)(tensor->data))[i];
  3662. } break;
  3663. default:
  3664. {
  3665. GGML_ASSERT(false);
  3666. } break;
  3667. }
  3668. return 0.0f;
  3669. }
  3670. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3671. switch (tensor->type) {
  3672. case GGML_TYPE_I8:
  3673. {
  3674. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3675. ((int8_t *)(tensor->data))[i] = value;
  3676. } break;
  3677. case GGML_TYPE_I16:
  3678. {
  3679. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3680. ((int16_t *)(tensor->data))[i] = value;
  3681. } break;
  3682. case GGML_TYPE_I32:
  3683. {
  3684. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3685. ((int32_t *)(tensor->data))[i] = value;
  3686. } break;
  3687. case GGML_TYPE_F16:
  3688. {
  3689. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3690. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3691. } break;
  3692. case GGML_TYPE_F32:
  3693. {
  3694. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3695. ((float *)(tensor->data))[i] = value;
  3696. } break;
  3697. default:
  3698. {
  3699. GGML_ASSERT(false);
  3700. } break;
  3701. }
  3702. }
  3703. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3704. switch (tensor->type) {
  3705. case GGML_TYPE_I8:
  3706. {
  3707. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3708. return ((int8_t *)(tensor->data))[i];
  3709. } break;
  3710. case GGML_TYPE_I16:
  3711. {
  3712. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3713. return ((int16_t *)(tensor->data))[i];
  3714. } break;
  3715. case GGML_TYPE_I32:
  3716. {
  3717. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3718. return ((int32_t *)(tensor->data))[i];
  3719. } break;
  3720. case GGML_TYPE_F16:
  3721. {
  3722. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3723. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3724. } break;
  3725. case GGML_TYPE_F32:
  3726. {
  3727. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3728. return ((float *)(tensor->data))[i];
  3729. } break;
  3730. default:
  3731. {
  3732. GGML_ASSERT(false);
  3733. } break;
  3734. }
  3735. return 0.0f;
  3736. }
  3737. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3738. switch (tensor->type) {
  3739. case GGML_TYPE_I8:
  3740. {
  3741. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3742. ((int8_t *)(tensor->data))[i] = value;
  3743. } break;
  3744. case GGML_TYPE_I16:
  3745. {
  3746. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3747. ((int16_t *)(tensor->data))[i] = value;
  3748. } break;
  3749. case GGML_TYPE_I32:
  3750. {
  3751. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3752. ((int32_t *)(tensor->data))[i] = value;
  3753. } break;
  3754. case GGML_TYPE_F16:
  3755. {
  3756. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3757. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3758. } break;
  3759. case GGML_TYPE_F32:
  3760. {
  3761. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3762. ((float *)(tensor->data))[i] = value;
  3763. } break;
  3764. default:
  3765. {
  3766. GGML_ASSERT(false);
  3767. } break;
  3768. }
  3769. }
  3770. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3771. return tensor->data;
  3772. }
  3773. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3774. assert(tensor->type == GGML_TYPE_F32);
  3775. return (float *)(tensor->data);
  3776. }
  3777. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3778. return tensor->name;
  3779. }
  3780. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3781. strncpy(tensor->name, name, sizeof(tensor->name));
  3782. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3783. }
  3784. struct ggml_tensor * ggml_view_tensor(
  3785. struct ggml_context * ctx,
  3786. const struct ggml_tensor * src) {
  3787. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3788. result->nb[0] = src->nb[0];
  3789. result->nb[1] = src->nb[1];
  3790. result->nb[2] = src->nb[2];
  3791. result->nb[3] = src->nb[3];
  3792. return result;
  3793. }
  3794. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3795. struct ggml_object * obj = ctx->objects_begin;
  3796. char * const mem_buffer = ctx->mem_buffer;
  3797. while (obj != NULL) {
  3798. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3799. if (strcmp(cur->name, name) == 0) {
  3800. return cur;
  3801. }
  3802. obj = obj->next;
  3803. }
  3804. return NULL;
  3805. }
  3806. ////////////////////////////////////////////////////////////////////////////////
  3807. // ggml_dup
  3808. struct ggml_tensor * ggml_dup_impl(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. bool inplace) {
  3812. bool is_node = false;
  3813. if (!inplace && (a->grad)) {
  3814. is_node = true;
  3815. }
  3816. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3817. result->op = GGML_OP_DUP;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src0 = a;
  3820. result->src1 = NULL;
  3821. return result;
  3822. }
  3823. struct ggml_tensor * ggml_dup(
  3824. struct ggml_context * ctx,
  3825. struct ggml_tensor * a) {
  3826. return ggml_dup_impl(ctx, a, false);
  3827. }
  3828. struct ggml_tensor * ggml_dup_inplace(
  3829. struct ggml_context * ctx,
  3830. struct ggml_tensor * a) {
  3831. return ggml_dup_impl(ctx, a, true);
  3832. }
  3833. // ggml_add
  3834. struct ggml_tensor * ggml_add_impl(
  3835. struct ggml_context * ctx,
  3836. struct ggml_tensor * a,
  3837. struct ggml_tensor * b,
  3838. bool inplace) {
  3839. GGML_ASSERT(ggml_are_same_shape(a, b));
  3840. bool is_node = false;
  3841. if (a->grad || b->grad) {
  3842. is_node = true;
  3843. }
  3844. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3845. result->op = GGML_OP_ADD;
  3846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3847. result->src0 = a;
  3848. result->src1 = b;
  3849. return result;
  3850. }
  3851. struct ggml_tensor * ggml_add(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. struct ggml_tensor * b) {
  3855. return ggml_add_impl(ctx, a, b, false);
  3856. }
  3857. struct ggml_tensor * ggml_add_inplace(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. struct ggml_tensor * b) {
  3861. return ggml_add_impl(ctx, a, b, true);
  3862. }
  3863. // ggml_add1
  3864. struct ggml_tensor * ggml_add1_impl(
  3865. struct ggml_context * ctx,
  3866. struct ggml_tensor * a,
  3867. struct ggml_tensor * b,
  3868. bool inplace) {
  3869. GGML_ASSERT(ggml_is_scalar(b));
  3870. GGML_ASSERT(ggml_is_padded_1d(a));
  3871. bool is_node = false;
  3872. if (a->grad || b->grad) {
  3873. is_node = true;
  3874. }
  3875. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3876. result->op = GGML_OP_ADD1;
  3877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3878. result->src0 = a;
  3879. result->src1 = b;
  3880. return result;
  3881. }
  3882. struct ggml_tensor * ggml_add1(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b) {
  3886. return ggml_add1_impl(ctx, a, b, false);
  3887. }
  3888. struct ggml_tensor * ggml_add1_inplace(
  3889. struct ggml_context * ctx,
  3890. struct ggml_tensor * a,
  3891. struct ggml_tensor * b) {
  3892. return ggml_add1_impl(ctx, a, b, true);
  3893. }
  3894. // ggml_acc
  3895. struct ggml_tensor * ggml_acc_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. struct ggml_tensor * b,
  3899. size_t nb1,
  3900. size_t nb2,
  3901. size_t nb3,
  3902. size_t offset,
  3903. bool inplace) {
  3904. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3905. GGML_ASSERT(ggml_is_contiguous(a));
  3906. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3907. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3908. bool is_node = false;
  3909. if (!inplace && (a->grad || b->grad)) {
  3910. is_node = true;
  3911. }
  3912. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3913. ggml_scratch_save(ctx);
  3914. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3915. ((int32_t *) c->data)[0] = nb1;
  3916. ((int32_t *) c->data)[1] = nb2;
  3917. ((int32_t *) c->data)[2] = nb3;
  3918. ((int32_t *) c->data)[3] = offset;
  3919. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3920. ggml_scratch_load(ctx);
  3921. result->op = GGML_OP_ACC;
  3922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3923. result->src0 = a;
  3924. result->src1 = b;
  3925. result->opt[0] = c;
  3926. return result;
  3927. }
  3928. struct ggml_tensor * ggml_acc(
  3929. struct ggml_context * ctx,
  3930. struct ggml_tensor * a,
  3931. struct ggml_tensor * b,
  3932. size_t nb1,
  3933. size_t nb2,
  3934. size_t nb3,
  3935. size_t offset) {
  3936. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3937. }
  3938. struct ggml_tensor * ggml_acc_inplace(
  3939. struct ggml_context * ctx,
  3940. struct ggml_tensor * a,
  3941. struct ggml_tensor * b,
  3942. size_t nb1,
  3943. size_t nb2,
  3944. size_t nb3,
  3945. size_t offset) {
  3946. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3947. }
  3948. // ggml_sub
  3949. struct ggml_tensor * ggml_sub_impl(
  3950. struct ggml_context * ctx,
  3951. struct ggml_tensor * a,
  3952. struct ggml_tensor * b,
  3953. bool inplace) {
  3954. GGML_ASSERT(ggml_are_same_shape(a, b));
  3955. bool is_node = false;
  3956. if (!inplace && (a->grad || b->grad)) {
  3957. is_node = true;
  3958. }
  3959. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3960. result->op = GGML_OP_SUB;
  3961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3962. result->src0 = a;
  3963. result->src1 = b;
  3964. return result;
  3965. }
  3966. struct ggml_tensor * ggml_sub(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. struct ggml_tensor * b) {
  3970. return ggml_sub_impl(ctx, a, b, false);
  3971. }
  3972. struct ggml_tensor * ggml_sub_inplace(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. struct ggml_tensor * b) {
  3976. return ggml_sub_impl(ctx, a, b, true);
  3977. }
  3978. // ggml_mul
  3979. struct ggml_tensor * ggml_mul_impl(
  3980. struct ggml_context * ctx,
  3981. struct ggml_tensor * a,
  3982. struct ggml_tensor * b,
  3983. bool inplace) {
  3984. // TODO: support less-strict constraint
  3985. // GGML_ASSERT(ggml_can_repeat(b, a));
  3986. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3987. bool is_node = false;
  3988. if (!inplace && (a->grad || b->grad)) {
  3989. // TODO: support backward pass for broadcasting
  3990. GGML_ASSERT(ggml_are_same_shape(a, b));
  3991. is_node = true;
  3992. }
  3993. if (inplace) {
  3994. GGML_ASSERT(is_node == false);
  3995. }
  3996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3997. result->op = GGML_OP_MUL;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src0 = a;
  4000. result->src1 = b;
  4001. return result;
  4002. }
  4003. struct ggml_tensor * ggml_mul(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. struct ggml_tensor * b) {
  4007. return ggml_mul_impl(ctx, a, b, false);
  4008. }
  4009. struct ggml_tensor * ggml_mul_inplace(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. struct ggml_tensor * b) {
  4013. return ggml_mul_impl(ctx, a, b, true);
  4014. }
  4015. // ggml_div
  4016. struct ggml_tensor * ggml_div_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. struct ggml_tensor * b,
  4020. bool inplace) {
  4021. GGML_ASSERT(ggml_are_same_shape(a, b));
  4022. bool is_node = false;
  4023. if (!inplace && (a->grad || b->grad)) {
  4024. is_node = true;
  4025. }
  4026. if (inplace) {
  4027. GGML_ASSERT(is_node == false);
  4028. }
  4029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4030. result->op = GGML_OP_DIV;
  4031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4032. result->src0 = a;
  4033. result->src1 = b;
  4034. return result;
  4035. }
  4036. struct ggml_tensor * ggml_div(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. struct ggml_tensor * b) {
  4040. return ggml_div_impl(ctx, a, b, false);
  4041. }
  4042. struct ggml_tensor * ggml_div_inplace(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. struct ggml_tensor * b) {
  4046. return ggml_div_impl(ctx, a, b, true);
  4047. }
  4048. // ggml_sqr
  4049. struct ggml_tensor * ggml_sqr_impl(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. bool inplace) {
  4053. bool is_node = false;
  4054. if (!inplace && (a->grad)) {
  4055. is_node = true;
  4056. }
  4057. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4058. result->op = GGML_OP_SQR;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src0 = a;
  4061. result->src1 = NULL;
  4062. return result;
  4063. }
  4064. struct ggml_tensor * ggml_sqr(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. return ggml_sqr_impl(ctx, a, false);
  4068. }
  4069. struct ggml_tensor * ggml_sqr_inplace(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a) {
  4072. return ggml_sqr_impl(ctx, a, true);
  4073. }
  4074. // ggml_sqrt
  4075. struct ggml_tensor * ggml_sqrt_impl(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. bool inplace) {
  4079. bool is_node = false;
  4080. if (!inplace && (a->grad)) {
  4081. is_node = true;
  4082. }
  4083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4084. result->op = GGML_OP_SQRT;
  4085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4086. result->src0 = a;
  4087. result->src1 = NULL;
  4088. return result;
  4089. }
  4090. struct ggml_tensor * ggml_sqrt(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. return ggml_sqrt_impl(ctx, a, false);
  4094. }
  4095. struct ggml_tensor * ggml_sqrt_inplace(
  4096. struct ggml_context * ctx,
  4097. struct ggml_tensor * a) {
  4098. return ggml_sqrt_impl(ctx, a, true);
  4099. }
  4100. // ggml_log
  4101. struct ggml_tensor * ggml_log_impl(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. bool inplace) {
  4105. bool is_node = false;
  4106. if (!inplace && (a->grad)) {
  4107. is_node = true;
  4108. }
  4109. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4110. result->op = GGML_OP_LOG;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src0 = a;
  4113. result->src1 = NULL;
  4114. return result;
  4115. }
  4116. struct ggml_tensor * ggml_log(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a) {
  4119. return ggml_log_impl(ctx, a, false);
  4120. }
  4121. struct ggml_tensor * ggml_log_inplace(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a) {
  4124. return ggml_log_impl(ctx, a, true);
  4125. }
  4126. // ggml_sum
  4127. struct ggml_tensor * ggml_sum(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a) {
  4130. bool is_node = false;
  4131. if (a->grad) {
  4132. is_node = true;
  4133. }
  4134. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4135. result->op = GGML_OP_SUM;
  4136. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4137. result->src0 = a;
  4138. result->src1 = NULL;
  4139. return result;
  4140. }
  4141. // ggml_sum_rows
  4142. struct ggml_tensor * ggml_sum_rows(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a) {
  4145. bool is_node = false;
  4146. if (a->grad) {
  4147. is_node = true;
  4148. }
  4149. int64_t ne[4] = {1,1,1,1};
  4150. for (int i=1; i<a->n_dims; ++i) {
  4151. ne[i] = a->ne[i];
  4152. }
  4153. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4154. result->op = GGML_OP_SUM_ROWS;
  4155. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4156. result->src0 = a;
  4157. result->src1 = NULL;
  4158. return result;
  4159. }
  4160. // ggml_mean
  4161. struct ggml_tensor * ggml_mean(
  4162. struct ggml_context * ctx,
  4163. struct ggml_tensor * a) {
  4164. bool is_node = false;
  4165. if (a->grad) {
  4166. GGML_ASSERT(false); // TODO: implement
  4167. is_node = true;
  4168. }
  4169. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4170. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4171. result->op = GGML_OP_MEAN;
  4172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4173. result->src0 = a;
  4174. result->src1 = NULL;
  4175. return result;
  4176. }
  4177. // ggml_repeat
  4178. struct ggml_tensor * ggml_repeat(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a,
  4181. struct ggml_tensor * b) {
  4182. GGML_ASSERT(ggml_can_repeat(a, b));
  4183. bool is_node = false;
  4184. if (a->grad) {
  4185. is_node = true;
  4186. }
  4187. if (ggml_are_same_shape(a, b) && !is_node) {
  4188. return a;
  4189. }
  4190. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4191. result->op = GGML_OP_REPEAT;
  4192. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4193. result->src0 = a;
  4194. result->src1 = b;
  4195. return result;
  4196. }
  4197. // ggml_repeat_back
  4198. struct ggml_tensor * ggml_repeat_back(
  4199. struct ggml_context * ctx,
  4200. struct ggml_tensor * a,
  4201. struct ggml_tensor * b) {
  4202. GGML_ASSERT(ggml_can_repeat(b, a));
  4203. bool is_node = false;
  4204. if (a->grad) {
  4205. is_node = true;
  4206. }
  4207. if (ggml_are_same_shape(a, b) && !is_node) {
  4208. return a;
  4209. }
  4210. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4211. result->op = GGML_OP_REPEAT_BACK;
  4212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4213. result->src0 = a;
  4214. result->src1 = b;
  4215. return result;
  4216. }
  4217. // ggml_abs
  4218. struct ggml_tensor * ggml_abs_impl(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. bool inplace) {
  4222. bool is_node = false;
  4223. if (!inplace && (a->grad)) {
  4224. is_node = true;
  4225. }
  4226. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4227. result->op = GGML_OP_ABS;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src0 = a;
  4230. result->src1 = NULL;
  4231. return result;
  4232. }
  4233. struct ggml_tensor * ggml_abs(
  4234. struct ggml_context * ctx,
  4235. struct ggml_tensor * a) {
  4236. return ggml_abs_impl(ctx, a, false);
  4237. }
  4238. struct ggml_tensor * ggml_abs_inplace(
  4239. struct ggml_context * ctx,
  4240. struct ggml_tensor * a) {
  4241. return ggml_abs_impl(ctx, a, true);
  4242. }
  4243. // ggml_sgn
  4244. struct ggml_tensor * ggml_sgn_impl(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a,
  4247. bool inplace) {
  4248. bool is_node = false;
  4249. if (!inplace && (a->grad)) {
  4250. is_node = true;
  4251. }
  4252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4253. result->op = GGML_OP_SGN;
  4254. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4255. result->src0 = a;
  4256. result->src1 = NULL;
  4257. return result;
  4258. }
  4259. struct ggml_tensor * ggml_sgn(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a) {
  4262. return ggml_sgn_impl(ctx, a, false);
  4263. }
  4264. struct ggml_tensor * ggml_sgn_inplace(
  4265. struct ggml_context * ctx,
  4266. struct ggml_tensor * a) {
  4267. return ggml_sgn_impl(ctx, a, true);
  4268. }
  4269. // ggml_neg
  4270. struct ggml_tensor * ggml_neg_impl(
  4271. struct ggml_context * ctx,
  4272. struct ggml_tensor * a,
  4273. bool inplace) {
  4274. bool is_node = false;
  4275. if (!inplace && (a->grad)) {
  4276. is_node = true;
  4277. }
  4278. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4279. result->op = GGML_OP_NEG;
  4280. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4281. result->src0 = a;
  4282. result->src1 = NULL;
  4283. return result;
  4284. }
  4285. struct ggml_tensor * ggml_neg(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_neg_impl(ctx, a, false);
  4289. }
  4290. struct ggml_tensor * ggml_neg_inplace(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a) {
  4293. return ggml_neg_impl(ctx, a, true);
  4294. }
  4295. // ggml_step
  4296. struct ggml_tensor * ggml_step_impl(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. bool inplace) {
  4300. bool is_node = false;
  4301. if (!inplace && (a->grad)) {
  4302. is_node = true;
  4303. }
  4304. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4305. result->op = GGML_OP_STEP;
  4306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4307. result->src0 = a;
  4308. result->src1 = NULL;
  4309. return result;
  4310. }
  4311. struct ggml_tensor * ggml_step(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_step_impl(ctx, a, false);
  4315. }
  4316. struct ggml_tensor * ggml_step_inplace(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a) {
  4319. return ggml_step_impl(ctx, a, true);
  4320. }
  4321. // ggml_relu
  4322. struct ggml_tensor * ggml_relu_impl(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. bool inplace) {
  4326. bool is_node = false;
  4327. if (!inplace && (a->grad)) {
  4328. is_node = true;
  4329. }
  4330. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4331. result->op = GGML_OP_RELU;
  4332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4333. result->src0 = a;
  4334. result->src1 = NULL;
  4335. return result;
  4336. }
  4337. struct ggml_tensor * ggml_relu(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a) {
  4340. return ggml_relu_impl(ctx, a, false);
  4341. }
  4342. struct ggml_tensor * ggml_relu_inplace(
  4343. struct ggml_context * ctx,
  4344. struct ggml_tensor * a) {
  4345. return ggml_relu_impl(ctx, a, true);
  4346. }
  4347. // ggml_gelu
  4348. struct ggml_tensor * ggml_gelu_impl(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. bool inplace) {
  4352. bool is_node = false;
  4353. if (!inplace && (a->grad)) {
  4354. is_node = true;
  4355. }
  4356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4357. result->op = GGML_OP_GELU;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src0 = a;
  4360. result->src1 = NULL;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_gelu(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a) {
  4366. return ggml_gelu_impl(ctx, a, false);
  4367. }
  4368. struct ggml_tensor * ggml_gelu_inplace(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a) {
  4371. return ggml_gelu_impl(ctx, a, true);
  4372. }
  4373. // ggml_silu
  4374. struct ggml_tensor * ggml_silu_impl(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. bool inplace) {
  4378. bool is_node = false;
  4379. if (!inplace && (a->grad)) {
  4380. is_node = true;
  4381. }
  4382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4383. result->op = GGML_OP_SILU;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src0 = a;
  4386. result->src1 = NULL;
  4387. return result;
  4388. }
  4389. struct ggml_tensor * ggml_silu(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a) {
  4392. return ggml_silu_impl(ctx, a, false);
  4393. }
  4394. struct ggml_tensor * ggml_silu_inplace(
  4395. struct ggml_context * ctx,
  4396. struct ggml_tensor * a) {
  4397. return ggml_silu_impl(ctx, a, true);
  4398. }
  4399. // ggml_silu_back
  4400. struct ggml_tensor * ggml_silu_back(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. struct ggml_tensor * b) {
  4404. bool is_node = false;
  4405. if (a->grad || b->grad) {
  4406. // TODO: implement backward
  4407. is_node = true;
  4408. }
  4409. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4410. result->op = GGML_OP_SILU_BACK;
  4411. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4412. result->src0 = a;
  4413. result->src1 = b;
  4414. return result;
  4415. }
  4416. // ggml_norm
  4417. struct ggml_tensor * ggml_norm_impl(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a,
  4420. bool inplace) {
  4421. bool is_node = false;
  4422. if (!inplace && (a->grad)) {
  4423. GGML_ASSERT(false); // TODO: implement backward
  4424. is_node = true;
  4425. }
  4426. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4427. result->op = GGML_OP_NORM;
  4428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4429. result->src0 = a;
  4430. result->src1 = NULL; // TODO: maybe store epsilon here?
  4431. return result;
  4432. }
  4433. struct ggml_tensor * ggml_norm(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a) {
  4436. return ggml_norm_impl(ctx, a, false);
  4437. }
  4438. struct ggml_tensor * ggml_norm_inplace(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a) {
  4441. return ggml_norm_impl(ctx, a, true);
  4442. }
  4443. struct ggml_tensor * ggml_rms_norm_impl(
  4444. struct ggml_context * ctx,
  4445. struct ggml_tensor * a,
  4446. bool inplace) {
  4447. bool is_node = false;
  4448. if (!inplace && (a->grad)) {
  4449. is_node = true;
  4450. }
  4451. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4452. result->op = GGML_OP_RMS_NORM;
  4453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4454. result->src0 = a;
  4455. result->src1 = NULL; // TODO: maybe store epsilon here?
  4456. return result;
  4457. }
  4458. struct ggml_tensor * ggml_rms_norm(
  4459. struct ggml_context * ctx,
  4460. struct ggml_tensor * a) {
  4461. return ggml_rms_norm_impl(ctx, a, false);
  4462. }
  4463. struct ggml_tensor * ggml_rms_norm_inplace(
  4464. struct ggml_context * ctx,
  4465. struct ggml_tensor * a) {
  4466. return ggml_rms_norm_impl(ctx, a, true);
  4467. }
  4468. struct ggml_tensor * ggml_rms_norm_back(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a,
  4471. struct ggml_tensor * b) {
  4472. bool is_node = false;
  4473. if (a->grad) {
  4474. // TODO: implement backward
  4475. is_node = true;
  4476. }
  4477. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4478. result->op = GGML_OP_RMS_NORM_BACK;
  4479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4480. result->src0 = a;
  4481. result->src1 = b;
  4482. return result;
  4483. }
  4484. // ggml_mul_mat
  4485. struct ggml_tensor * ggml_mul_mat(
  4486. struct ggml_context * ctx,
  4487. struct ggml_tensor * a,
  4488. struct ggml_tensor * b) {
  4489. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4490. GGML_ASSERT(!ggml_is_transposed(a));
  4491. bool is_node = false;
  4492. if (a->grad || b->grad) {
  4493. is_node = true;
  4494. }
  4495. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4496. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4497. result->op = GGML_OP_MUL_MAT;
  4498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4499. result->src0 = a;
  4500. result->src1 = b;
  4501. return result;
  4502. }
  4503. // ggml_out_prod
  4504. struct ggml_tensor * ggml_out_prod(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. struct ggml_tensor * b) {
  4508. GGML_ASSERT(ggml_can_out_prod(a, b));
  4509. GGML_ASSERT(!ggml_is_transposed(a));
  4510. bool is_node = false;
  4511. if (a->grad || b->grad) {
  4512. is_node = true;
  4513. }
  4514. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4515. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4516. result->op = GGML_OP_OUT_PROD;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src0 = a;
  4519. result->src1 = b;
  4520. return result;
  4521. }
  4522. // ggml_scale
  4523. struct ggml_tensor * ggml_scale_impl(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. struct ggml_tensor * b,
  4527. bool inplace) {
  4528. GGML_ASSERT(ggml_is_scalar(b));
  4529. GGML_ASSERT(ggml_is_padded_1d(a));
  4530. bool is_node = false;
  4531. if (a->grad || b->grad) {
  4532. is_node = true;
  4533. }
  4534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4535. result->op = GGML_OP_SCALE;
  4536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4537. result->src0 = a;
  4538. result->src1 = b;
  4539. return result;
  4540. }
  4541. struct ggml_tensor * ggml_scale(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. struct ggml_tensor * b) {
  4545. return ggml_scale_impl(ctx, a, b, false);
  4546. }
  4547. struct ggml_tensor * ggml_scale_inplace(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a,
  4550. struct ggml_tensor * b) {
  4551. return ggml_scale_impl(ctx, a, b, true);
  4552. }
  4553. // ggml_set
  4554. struct ggml_tensor * ggml_set_impl(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a,
  4557. struct ggml_tensor * b,
  4558. size_t nb1,
  4559. size_t nb2,
  4560. size_t nb3,
  4561. size_t offset,
  4562. bool inplace) {
  4563. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4564. bool is_node = false;
  4565. if (a->grad || b->grad) {
  4566. is_node = true;
  4567. }
  4568. // make a view of the destination
  4569. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4570. ggml_scratch_save(ctx);
  4571. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4572. (( int32_t * ) c->data)[0] = nb1;
  4573. (( int32_t * ) c->data)[1] = nb2;
  4574. (( int32_t * ) c->data)[2] = nb3;
  4575. (( int32_t * ) c->data)[3] = offset;
  4576. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4577. ggml_scratch_load(ctx);
  4578. result->op = GGML_OP_SET;
  4579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4580. result->src0 = a;
  4581. result->src1 = b;
  4582. result->opt[0] = c;
  4583. return result;
  4584. }
  4585. struct ggml_tensor * ggml_set(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a,
  4588. struct ggml_tensor * b,
  4589. size_t nb1,
  4590. size_t nb2,
  4591. size_t nb3,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4594. }
  4595. struct ggml_tensor * ggml_set_inplace(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t nb1,
  4600. size_t nb2,
  4601. size_t nb3,
  4602. size_t offset) {
  4603. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4604. }
  4605. struct ggml_tensor * ggml_set_1d(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a,
  4608. struct ggml_tensor * b,
  4609. size_t offset) {
  4610. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4611. }
  4612. struct ggml_tensor * ggml_set_1d_inplace(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. struct ggml_tensor * b,
  4616. size_t offset) {
  4617. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4618. }
  4619. struct ggml_tensor * ggml_set_2d(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b,
  4623. size_t nb1,
  4624. size_t offset) {
  4625. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4626. }
  4627. struct ggml_tensor * ggml_set_2d_inplace(
  4628. struct ggml_context * ctx,
  4629. struct ggml_tensor * a,
  4630. struct ggml_tensor * b,
  4631. size_t nb1,
  4632. size_t offset) {
  4633. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4634. }
  4635. // ggml_cpy
  4636. struct ggml_tensor * ggml_cpy_impl(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a,
  4639. struct ggml_tensor * b,
  4640. bool inplace) {
  4641. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4642. bool is_node = false;
  4643. if (!inplace && (a->grad || b->grad)) {
  4644. is_node = true;
  4645. }
  4646. // make a view of the destination
  4647. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4648. result->op = GGML_OP_CPY;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src0 = a;
  4651. result->src1 = b;
  4652. return result;
  4653. }
  4654. struct ggml_tensor * ggml_cpy(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a,
  4657. struct ggml_tensor * b) {
  4658. return ggml_cpy_impl(ctx, a, b, false);
  4659. }
  4660. struct ggml_tensor * ggml_cpy_inplace(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a,
  4663. struct ggml_tensor * b) {
  4664. return ggml_cpy_impl(ctx, a, b, true);
  4665. }
  4666. // ggml_cont
  4667. struct ggml_tensor * ggml_cont_impl(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a,
  4670. bool inplace) {
  4671. bool is_node = false;
  4672. if (!inplace && a->grad) {
  4673. is_node = true;
  4674. }
  4675. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4676. result->op = GGML_OP_CONT;
  4677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4678. result->src0 = a;
  4679. result->src1 = NULL;
  4680. return result;
  4681. }
  4682. struct ggml_tensor * ggml_cont(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a) {
  4685. return ggml_cont_impl(ctx, a, false);
  4686. }
  4687. struct ggml_tensor * ggml_cont_inplace(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a) {
  4690. return ggml_cont_impl(ctx, a, true);
  4691. }
  4692. // ggml_reshape
  4693. struct ggml_tensor * ggml_reshape(
  4694. struct ggml_context * ctx,
  4695. struct ggml_tensor * a,
  4696. struct ggml_tensor * b) {
  4697. GGML_ASSERT(ggml_is_contiguous(a));
  4698. GGML_ASSERT(ggml_is_contiguous(b));
  4699. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4700. bool is_node = false;
  4701. if (a->grad) {
  4702. is_node = true;
  4703. }
  4704. if (b->grad) {
  4705. // gradient propagation is not supported
  4706. //GGML_ASSERT(false);
  4707. }
  4708. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4709. result->op = GGML_OP_RESHAPE;
  4710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4711. result->src0 = a;
  4712. result->src1 = NULL;
  4713. return result;
  4714. }
  4715. struct ggml_tensor * ggml_reshape_1d(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a,
  4718. int64_t ne0) {
  4719. GGML_ASSERT(ggml_is_contiguous(a));
  4720. GGML_ASSERT(ggml_nelements(a) == ne0);
  4721. bool is_node = false;
  4722. if (a->grad) {
  4723. is_node = true;
  4724. }
  4725. const int64_t ne[1] = { ne0 };
  4726. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4727. result->op = GGML_OP_RESHAPE;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src0 = a;
  4730. result->src1 = NULL;
  4731. return result;
  4732. }
  4733. struct ggml_tensor * ggml_reshape_2d(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. int64_t ne0,
  4737. int64_t ne1) {
  4738. GGML_ASSERT(ggml_is_contiguous(a));
  4739. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4740. bool is_node = false;
  4741. if (a->grad) {
  4742. is_node = true;
  4743. }
  4744. const int64_t ne[2] = { ne0, ne1 };
  4745. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4746. result->op = GGML_OP_RESHAPE;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src0 = a;
  4749. result->src1 = NULL;
  4750. return result;
  4751. }
  4752. struct ggml_tensor * ggml_reshape_3d(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. int64_t ne0,
  4756. int64_t ne1,
  4757. int64_t ne2) {
  4758. GGML_ASSERT(ggml_is_contiguous(a));
  4759. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4760. bool is_node = false;
  4761. if (a->grad) {
  4762. is_node = true;
  4763. }
  4764. const int64_t ne[3] = { ne0, ne1, ne2 };
  4765. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4766. result->op = GGML_OP_RESHAPE;
  4767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4768. result->src0 = a;
  4769. result->src1 = NULL;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_reshape_4d(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. int64_t ne0,
  4776. int64_t ne1,
  4777. int64_t ne2,
  4778. int64_t ne3) {
  4779. GGML_ASSERT(ggml_is_contiguous(a));
  4780. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4781. bool is_node = false;
  4782. if (a->grad) {
  4783. is_node = true;
  4784. }
  4785. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4786. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4787. result->op = GGML_OP_RESHAPE;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src0 = a;
  4790. result->src1 = NULL;
  4791. return result;
  4792. }
  4793. // ggml_view_1d
  4794. struct ggml_tensor * ggml_view_1d(
  4795. struct ggml_context * ctx,
  4796. struct ggml_tensor * a,
  4797. int64_t ne0,
  4798. size_t offset) {
  4799. bool is_node = false;
  4800. if (a->grad) {
  4801. is_node = true;
  4802. }
  4803. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4804. ggml_scratch_save(ctx);
  4805. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4806. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4807. ggml_scratch_load(ctx);
  4808. result->op = GGML_OP_VIEW;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src0 = a;
  4811. result->src1 = NULL;
  4812. result->opt[0] = offs;
  4813. return result;
  4814. }
  4815. // ggml_view_2d
  4816. struct ggml_tensor * ggml_view_2d(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. int64_t ne0,
  4820. int64_t ne1,
  4821. size_t nb1,
  4822. size_t offset) {
  4823. bool is_node = false;
  4824. if (a->grad) {
  4825. is_node = true;
  4826. }
  4827. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4828. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4829. ggml_scratch_save(ctx);
  4830. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4831. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4832. ggml_scratch_load(ctx);
  4833. result->nb[1] = nb1;
  4834. result->nb[2] = result->nb[1]*ne1;
  4835. result->nb[3] = result->nb[2];
  4836. result->op = GGML_OP_VIEW;
  4837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4838. result->src0 = a;
  4839. result->src1 = NULL;
  4840. result->opt[0] = offs;
  4841. return result;
  4842. }
  4843. // ggml_view_3d
  4844. struct ggml_tensor * ggml_view_3d(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. int64_t ne0,
  4848. int64_t ne1,
  4849. int64_t ne2,
  4850. size_t nb1,
  4851. size_t nb2,
  4852. size_t offset) {
  4853. bool is_node = false;
  4854. if (a->grad) {
  4855. is_node = true;
  4856. }
  4857. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4858. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4859. ggml_scratch_save(ctx);
  4860. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4861. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4862. ggml_scratch_load(ctx);
  4863. result->nb[1] = nb1;
  4864. result->nb[2] = nb2;
  4865. result->nb[3] = result->nb[2]*ne2;
  4866. result->op = GGML_OP_VIEW;
  4867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4868. result->src0 = a;
  4869. result->src1 = NULL;
  4870. result->opt[0] = offs;
  4871. return result;
  4872. }
  4873. // ggml_view_4d
  4874. struct ggml_tensor * ggml_view_4d(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. int64_t ne0,
  4878. int64_t ne1,
  4879. int64_t ne2,
  4880. int64_t ne3,
  4881. size_t nb1,
  4882. size_t nb2,
  4883. size_t nb3,
  4884. size_t offset) {
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. is_node = true;
  4888. }
  4889. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4890. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4891. ggml_scratch_save(ctx);
  4892. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4893. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4894. ggml_scratch_load(ctx);
  4895. result->nb[1] = nb1;
  4896. result->nb[2] = nb2;
  4897. result->nb[3] = nb3;
  4898. result->op = GGML_OP_VIEW;
  4899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4900. result->src0 = a;
  4901. result->src1 = NULL;
  4902. result->opt[0] = offs;
  4903. return result;
  4904. }
  4905. // ggml_permute
  4906. struct ggml_tensor * ggml_permute(
  4907. struct ggml_context * ctx,
  4908. struct ggml_tensor * a,
  4909. int axis0,
  4910. int axis1,
  4911. int axis2,
  4912. int axis3) {
  4913. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4914. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4915. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4916. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4917. GGML_ASSERT(axis0 != axis1);
  4918. GGML_ASSERT(axis0 != axis2);
  4919. GGML_ASSERT(axis0 != axis3);
  4920. GGML_ASSERT(axis1 != axis2);
  4921. GGML_ASSERT(axis1 != axis3);
  4922. GGML_ASSERT(axis2 != axis3);
  4923. bool is_node = false;
  4924. if (a->grad) {
  4925. is_node = true;
  4926. }
  4927. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4928. int ne[GGML_MAX_DIMS];
  4929. int nb[GGML_MAX_DIMS];
  4930. ne[axis0] = a->ne[0];
  4931. ne[axis1] = a->ne[1];
  4932. ne[axis2] = a->ne[2];
  4933. ne[axis3] = a->ne[3];
  4934. nb[axis0] = a->nb[0];
  4935. nb[axis1] = a->nb[1];
  4936. nb[axis2] = a->nb[2];
  4937. nb[axis3] = a->nb[3];
  4938. result->ne[0] = ne[0];
  4939. result->ne[1] = ne[1];
  4940. result->ne[2] = ne[2];
  4941. result->ne[3] = ne[3];
  4942. result->nb[0] = nb[0];
  4943. result->nb[1] = nb[1];
  4944. result->nb[2] = nb[2];
  4945. result->nb[3] = nb[3];
  4946. result->op = GGML_OP_PERMUTE;
  4947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4948. result->src0 = a;
  4949. result->src1 = NULL;
  4950. if (is_node) {
  4951. ggml_scratch_save(ctx);
  4952. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  4953. ((int32_t *) b->data)[0] = axis0;
  4954. ((int32_t *) b->data)[1] = axis1;
  4955. ((int32_t *) b->data)[2] = axis2;
  4956. ((int32_t *) b->data)[3] = axis3;
  4957. ggml_scratch_load(ctx);
  4958. result->opt[0] = b;
  4959. }
  4960. return result;
  4961. }
  4962. // ggml_transpose
  4963. struct ggml_tensor * ggml_transpose(
  4964. struct ggml_context * ctx,
  4965. struct ggml_tensor * a) {
  4966. bool is_node = false;
  4967. if (a->grad) {
  4968. is_node = true;
  4969. }
  4970. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4971. result->ne[0] = a->ne[1];
  4972. result->ne[1] = a->ne[0];
  4973. result->nb[0] = a->nb[1];
  4974. result->nb[1] = a->nb[0];
  4975. result->op = GGML_OP_TRANSPOSE;
  4976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4977. result->src0 = a;
  4978. result->src1 = NULL;
  4979. return result;
  4980. }
  4981. // ggml_get_rows
  4982. struct ggml_tensor * ggml_get_rows(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b) {
  4986. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4987. bool is_node = false;
  4988. if (a->grad || b->grad) {
  4989. is_node = true;
  4990. }
  4991. // TODO: implement non F32 return
  4992. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4993. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4994. result->op = GGML_OP_GET_ROWS;
  4995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4996. result->src0 = a;
  4997. result->src1 = b;
  4998. return result;
  4999. }
  5000. // ggml_get_rows_back
  5001. struct ggml_tensor * ggml_get_rows_back(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. struct ggml_tensor * b,
  5005. struct ggml_tensor * c) {
  5006. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5007. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5008. bool is_node = false;
  5009. if (a->grad || b->grad) {
  5010. is_node = true;
  5011. }
  5012. // TODO: implement non F32 return
  5013. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5014. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5015. result->op = GGML_OP_GET_ROWS_BACK;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src0 = a;
  5018. result->src1 = b;
  5019. result->opt[0] = c;
  5020. return result;
  5021. }
  5022. // ggml_diag
  5023. struct ggml_tensor * ggml_diag(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a) {
  5026. GGML_ASSERT(a->ne[1] == 1);
  5027. bool is_node = false;
  5028. if (a->grad) {
  5029. is_node = true;
  5030. }
  5031. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5032. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5033. result->op = GGML_OP_DIAG;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src0 = a;
  5036. result->src1 = NULL;
  5037. return result;
  5038. }
  5039. // ggml_diag_mask_inf
  5040. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. int n_past,
  5044. bool inplace) {
  5045. bool is_node = false;
  5046. if (a->grad) {
  5047. is_node = true;
  5048. }
  5049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5050. ggml_scratch_save(ctx);
  5051. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5052. ((int32_t *) b->data)[0] = n_past;
  5053. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5054. ggml_scratch_load(ctx);
  5055. result->op = GGML_OP_DIAG_MASK_INF;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src0 = a;
  5058. result->src1 = b;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_diag_mask_inf(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a,
  5064. int n_past) {
  5065. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5066. }
  5067. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. int n_past) {
  5071. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5072. }
  5073. // ggml_diag_mask_zero
  5074. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int n_past,
  5078. bool inplace) {
  5079. bool is_node = false;
  5080. if (a->grad) {
  5081. is_node = true;
  5082. }
  5083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5084. ggml_scratch_save(ctx);
  5085. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5086. ggml_set_name(b, "n_past, inplace");
  5087. ((int32_t *) b->data)[0] = n_past;
  5088. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5089. ggml_scratch_load(ctx);
  5090. result->op = GGML_OP_DIAG_MASK_ZERO;
  5091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5092. result->src0 = a;
  5093. result->src1 = b;
  5094. return result;
  5095. }
  5096. struct ggml_tensor * ggml_diag_mask_zero(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. int n_past) {
  5100. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5101. }
  5102. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. int n_past) {
  5106. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5107. }
  5108. // ggml_soft_max
  5109. struct ggml_tensor * ggml_soft_max_impl(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a,
  5112. bool inplace) {
  5113. bool is_node = false;
  5114. if (a->grad) {
  5115. is_node = true;
  5116. }
  5117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5118. result->op = GGML_OP_SOFT_MAX;
  5119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5120. result->src0 = a;
  5121. result->src1 = NULL;
  5122. return result;
  5123. }
  5124. struct ggml_tensor * ggml_soft_max(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a) {
  5127. return ggml_soft_max_impl(ctx, a, false);
  5128. }
  5129. struct ggml_tensor * ggml_soft_max_inplace(
  5130. struct ggml_context * ctx,
  5131. struct ggml_tensor * a) {
  5132. return ggml_soft_max_impl(ctx, a, true);
  5133. }
  5134. // ggml_soft_max_back
  5135. struct ggml_tensor * ggml_soft_max_back_impl(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * a,
  5138. struct ggml_tensor * b,
  5139. bool inplace) {
  5140. bool is_node = false;
  5141. if (a->grad || b->grad) {
  5142. is_node = true; // TODO : implement backward pass
  5143. }
  5144. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5145. result->op = GGML_OP_SOFT_MAX_BACK;
  5146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5147. result->src0 = a;
  5148. result->src1 = b;
  5149. return result;
  5150. }
  5151. struct ggml_tensor * ggml_soft_max_back(
  5152. struct ggml_context * ctx,
  5153. struct ggml_tensor * a,
  5154. struct ggml_tensor * b) {
  5155. return ggml_soft_max_back_impl(ctx, a, b, false);
  5156. }
  5157. struct ggml_tensor * ggml_soft_max_back_inplace(
  5158. struct ggml_context * ctx,
  5159. struct ggml_tensor * a,
  5160. struct ggml_tensor * b) {
  5161. return ggml_soft_max_back_impl(ctx, a, b, true);
  5162. }
  5163. // ggml_rope
  5164. struct ggml_tensor * ggml_rope_impl(
  5165. struct ggml_context * ctx,
  5166. struct ggml_tensor * a,
  5167. int n_past,
  5168. int n_dims,
  5169. int mode,
  5170. bool inplace) {
  5171. GGML_ASSERT(n_past >= 0);
  5172. bool is_node = false;
  5173. if (a->grad) {
  5174. is_node = true;
  5175. }
  5176. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5177. ggml_scratch_save(ctx);
  5178. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5179. ((int32_t *) b->data)[0] = n_past;
  5180. ((int32_t *) b->data)[1] = n_dims;
  5181. ((int32_t *) b->data)[2] = mode;
  5182. ggml_scratch_load(ctx);
  5183. result->op = GGML_OP_ROPE;
  5184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5185. result->src0 = a;
  5186. result->src1 = b;
  5187. return result;
  5188. }
  5189. struct ggml_tensor * ggml_rope(
  5190. struct ggml_context * ctx,
  5191. struct ggml_tensor * a,
  5192. int n_past,
  5193. int n_dims,
  5194. int mode) {
  5195. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5196. }
  5197. struct ggml_tensor * ggml_rope_inplace(
  5198. struct ggml_context * ctx,
  5199. struct ggml_tensor * a,
  5200. int n_past,
  5201. int n_dims,
  5202. int mode) {
  5203. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5204. }
  5205. // ggml_rope_back
  5206. struct ggml_tensor * ggml_rope_back(
  5207. struct ggml_context * ctx,
  5208. struct ggml_tensor * a,
  5209. int n_past,
  5210. int n_dims,
  5211. int mode) {
  5212. GGML_ASSERT(n_past >= 0);
  5213. bool is_node = false;
  5214. if (a->grad) {
  5215. is_node = false; // TODO: implement backward
  5216. }
  5217. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5218. ggml_scratch_save(ctx);
  5219. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5220. ggml_set_name(b, "n_past, n_dims, mode");
  5221. ((int32_t *) b->data)[0] = n_past;
  5222. ((int32_t *) b->data)[1] = n_dims;
  5223. ((int32_t *) b->data)[2] = mode;
  5224. ggml_scratch_load(ctx);
  5225. result->op = GGML_OP_ROPE_BACK;
  5226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5227. result->src0 = a;
  5228. result->src1 = b;
  5229. return result;
  5230. }
  5231. // ggml_alibi
  5232. struct ggml_tensor * ggml_alibi(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. int n_past,
  5236. int n_head,
  5237. float bias_max) {
  5238. GGML_ASSERT(n_past >= 0);
  5239. bool is_node = false;
  5240. if (a->grad) {
  5241. GGML_ASSERT(false); // TODO: implement backward
  5242. is_node = true;
  5243. }
  5244. // TODO: when implement backward, fix this:
  5245. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5246. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5247. ggml_scratch_save(ctx);
  5248. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5249. ((int32_t *) b->data)[0] = n_past;
  5250. ((int32_t *) b->data)[1] = n_head;
  5251. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5252. (((float *) b->data)[2]) = bias_max;
  5253. ggml_scratch_load(ctx);
  5254. result->op = GGML_OP_ALIBI;
  5255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5256. result->src0 = a;
  5257. result->src1 = b;
  5258. return result;
  5259. }
  5260. // ggml_clamp
  5261. struct ggml_tensor * ggml_clamp(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. float min,
  5265. float max) {
  5266. bool is_node = false;
  5267. if (a->grad) {
  5268. GGML_ASSERT(false); // TODO: implement backward
  5269. is_node = true;
  5270. }
  5271. // TODO: when implement backward, fix this:
  5272. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5273. ggml_scratch_save(ctx);
  5274. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5275. ((float *) b->data)[0] = min;
  5276. ((float *) b->data)[1] = max;
  5277. ggml_scratch_load(ctx);
  5278. result->op = GGML_OP_CLAMP;
  5279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5280. result->src0 = a;
  5281. result->src1 = b;
  5282. return result;
  5283. }
  5284. // ggml_conv_1d_1s
  5285. struct ggml_tensor * ggml_conv_1d_1s(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. struct ggml_tensor * b) {
  5289. GGML_ASSERT(ggml_is_matrix(b));
  5290. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5291. GGML_ASSERT(a->ne[3] == 1);
  5292. bool is_node = false;
  5293. if (a->grad || b->grad) {
  5294. GGML_ASSERT(false); // TODO: implement backward
  5295. is_node = true;
  5296. }
  5297. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5298. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5299. result->op = GGML_OP_CONV_1D_1S;
  5300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5301. result->src0 = a;
  5302. result->src1 = b;
  5303. return result;
  5304. }
  5305. // ggml_conv_1d_2s
  5306. struct ggml_tensor * ggml_conv_1d_2s(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. struct ggml_tensor * b) {
  5310. GGML_ASSERT(ggml_is_matrix(b));
  5311. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5312. GGML_ASSERT(a->ne[3] == 1);
  5313. bool is_node = false;
  5314. if (a->grad || b->grad) {
  5315. GGML_ASSERT(false); // TODO: implement backward
  5316. is_node = true;
  5317. }
  5318. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5320. result->op = GGML_OP_CONV_1D_2S;
  5321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5322. result->src0 = a;
  5323. result->src1 = b;
  5324. return result;
  5325. }
  5326. // ggml_flash_attn
  5327. struct ggml_tensor * ggml_flash_attn(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * q,
  5330. struct ggml_tensor * k,
  5331. struct ggml_tensor * v,
  5332. bool masked) {
  5333. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5334. // TODO: check if vT can be multiplied by (k*qT)
  5335. bool is_node = false;
  5336. if (q->grad || k->grad || v->grad) {
  5337. is_node = true;
  5338. }
  5339. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5340. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5341. result->op = GGML_OP_FLASH_ATTN;
  5342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5343. result->src0 = q;
  5344. result->src1 = k;
  5345. result->opt[0] = v;
  5346. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5347. return result;
  5348. }
  5349. // ggml_flash_ff
  5350. struct ggml_tensor * ggml_flash_ff(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * a,
  5353. struct ggml_tensor * b0,
  5354. struct ggml_tensor * b1,
  5355. struct ggml_tensor * c0,
  5356. struct ggml_tensor * c1) {
  5357. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5358. // TODO: more checks
  5359. bool is_node = false;
  5360. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5361. is_node = true;
  5362. }
  5363. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5364. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5365. result->op = GGML_OP_FLASH_FF;
  5366. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5367. result->src0 = a;
  5368. result->src1 = b0;
  5369. result->opt[0] = b1;
  5370. result->opt[1] = c0;
  5371. result->opt[2] = c1;
  5372. return result;
  5373. }
  5374. // ggml_flash_attn_back
  5375. struct ggml_tensor * ggml_flash_attn_back(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * q,
  5378. struct ggml_tensor * k,
  5379. struct ggml_tensor * v,
  5380. struct ggml_tensor * d,
  5381. bool masked) {
  5382. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5383. // TODO: check if vT can be multiplied by (k*qT)
  5384. // d shape [D,N,ne2,ne3]
  5385. // q shape [D,N,ne2,ne3]
  5386. // k shape [D,M,ne2,ne3]
  5387. // v shape [M,D,ne2,ne3]
  5388. const int64_t D = q->ne[0];
  5389. const int64_t N = q->ne[1];
  5390. const int64_t M = k->ne[1];
  5391. const int64_t ne2 = q->ne[2];
  5392. const int64_t ne3 = q->ne[3];
  5393. GGML_ASSERT(k->ne[0] == D);
  5394. GGML_ASSERT(v->ne[0] == M);
  5395. GGML_ASSERT(v->ne[1] == D);
  5396. GGML_ASSERT(d->ne[0] == D);
  5397. GGML_ASSERT(d->ne[1] == N);
  5398. GGML_ASSERT(k->ne[2] == ne2);
  5399. GGML_ASSERT(k->ne[3] == ne3);
  5400. GGML_ASSERT(v->ne[2] == ne2);
  5401. GGML_ASSERT(v->ne[3] == ne3);
  5402. GGML_ASSERT(d->ne[2] == ne2);
  5403. GGML_ASSERT(d->ne[3] == ne3);
  5404. bool is_node = false;
  5405. if (q->grad || k->grad || v->grad) {
  5406. // when using this operation (in backwards pass) these grads are set.
  5407. // we don't want to create (big) grad of our result, so is_node is false.
  5408. is_node = false;
  5409. }
  5410. // store gradients of q, k and v as continuous tensors concatenated in result.
  5411. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5412. // gradq->data = result->data
  5413. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5414. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5415. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5416. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5417. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5418. result->op = GGML_OP_FLASH_ATTN_BACK;
  5419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5420. result->src0 = q;
  5421. result->src1 = k;
  5422. result->opt[0] = v;
  5423. result->opt[1] = d;
  5424. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5425. return result;
  5426. }
  5427. // ggml_map_unary
  5428. struct ggml_tensor * ggml_map_unary_impl_f32(
  5429. struct ggml_context * ctx,
  5430. struct ggml_tensor * a,
  5431. const ggml_unary_op_f32_t fun,
  5432. bool inplace) {
  5433. bool is_node = false;
  5434. if (!inplace && a->grad) {
  5435. is_node = true;
  5436. }
  5437. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5438. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5439. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5440. result->op = GGML_OP_MAP_UNARY;
  5441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5442. result->src0 = a;
  5443. result->opt[0] = addr_tensor;
  5444. return result;
  5445. }
  5446. struct ggml_tensor * ggml_map_unary_f32(
  5447. struct ggml_context * ctx,
  5448. struct ggml_tensor * a,
  5449. const ggml_unary_op_f32_t fun) {
  5450. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5451. }
  5452. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5453. struct ggml_context * ctx,
  5454. struct ggml_tensor * a,
  5455. const ggml_unary_op_f32_t fun) {
  5456. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5457. }
  5458. // ggml_map_binary
  5459. struct ggml_tensor * ggml_map_binary_impl_f32(
  5460. struct ggml_context * ctx,
  5461. struct ggml_tensor * a,
  5462. struct ggml_tensor * b,
  5463. const ggml_binary_op_f32_t fun,
  5464. bool inplace) {
  5465. GGML_ASSERT(ggml_are_same_shape(a, b));
  5466. bool is_node = false;
  5467. if (!inplace && (a->grad || b->grad)) {
  5468. is_node = true;
  5469. }
  5470. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5471. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5472. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5473. result->op = GGML_OP_MAP_BINARY;
  5474. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5475. result->src0 = a;
  5476. result->src1 = b;
  5477. result->opt[0] = addr_tensor;
  5478. return result;
  5479. }
  5480. struct ggml_tensor * ggml_map_binary_f32(
  5481. struct ggml_context * ctx,
  5482. struct ggml_tensor * a,
  5483. struct ggml_tensor * b,
  5484. const ggml_binary_op_f32_t fun) {
  5485. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5486. }
  5487. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. struct ggml_tensor * b,
  5491. const ggml_binary_op_f32_t fun) {
  5492. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5493. }
  5494. // ggml_cross_entropy_loss
  5495. struct ggml_tensor * ggml_cross_entropy_loss(
  5496. struct ggml_context * ctx,
  5497. struct ggml_tensor * a,
  5498. struct ggml_tensor * b) {
  5499. GGML_ASSERT(ggml_are_same_shape(a, b));
  5500. bool is_node = false;
  5501. if (a->grad || b->grad) {
  5502. is_node = true;
  5503. }
  5504. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5505. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5507. result->src0 = a;
  5508. result->src1 = b;
  5509. return result;
  5510. }
  5511. // ggml_cross_entropy_loss_back
  5512. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b,
  5516. struct ggml_tensor * c) {
  5517. GGML_ASSERT(ggml_are_same_shape(a, b));
  5518. GGML_ASSERT(ggml_is_scalar(c));
  5519. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5520. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5521. result->grad = NULL;
  5522. result->src0 = a;
  5523. result->src1 = b;
  5524. result->opt[0] = c;
  5525. return result;
  5526. }
  5527. ////////////////////////////////////////////////////////////////////////////////
  5528. void ggml_set_param(
  5529. struct ggml_context * ctx,
  5530. struct ggml_tensor * tensor) {
  5531. tensor->is_param = true;
  5532. GGML_ASSERT(tensor->grad == NULL);
  5533. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5534. }
  5535. // ggml_compute_forward_dup
  5536. static void ggml_compute_forward_dup_same_cont(
  5537. const struct ggml_compute_params * params,
  5538. const struct ggml_tensor * src0,
  5539. struct ggml_tensor * dst) {
  5540. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5541. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5542. GGML_ASSERT(src0->type == dst->type);
  5543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5544. return;
  5545. }
  5546. const size_t nb00 = src0->nb[0];
  5547. const size_t nb0 = dst->nb[0];
  5548. const int ith = params->ith; // thread index
  5549. const int nth = params->nth; // number of threads
  5550. // parallelize by elements
  5551. const int ne = ggml_nelements(dst);
  5552. const int dr = (ne + nth - 1) / nth;
  5553. const int ie0 = dr * ith;
  5554. const int ie1 = MIN(ie0 + dr, ne);
  5555. if (ie0 < ie1) {
  5556. memcpy(
  5557. ((char *) dst->data + ie0*nb0),
  5558. ((char *) src0->data + ie0*nb00),
  5559. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5560. }
  5561. }
  5562. static void ggml_compute_forward_dup_f16(
  5563. const struct ggml_compute_params * params,
  5564. const struct ggml_tensor * src0,
  5565. struct ggml_tensor * dst) {
  5566. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5568. return;
  5569. }
  5570. const int64_t ne00 = src0->ne[0];
  5571. const int64_t ne01 = src0->ne[1];
  5572. const int64_t ne02 = src0->ne[2];
  5573. const int64_t ne03 = src0->ne[3];
  5574. const int64_t ne0 = dst->ne[0];
  5575. const int64_t ne1 = dst->ne[1];
  5576. const int64_t ne2 = dst->ne[2];
  5577. const int64_t ne3 = dst->ne[3];
  5578. const size_t nb00 = src0->nb[0];
  5579. const size_t nb01 = src0->nb[1];
  5580. const size_t nb02 = src0->nb[2];
  5581. const size_t nb03 = src0->nb[3];
  5582. const size_t nb0 = dst->nb[0];
  5583. const size_t nb1 = dst->nb[1];
  5584. const size_t nb2 = dst->nb[2];
  5585. const size_t nb3 = dst->nb[3];
  5586. const int ith = params->ith; // thread index
  5587. const int nth = params->nth; // number of threads
  5588. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5589. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5590. return;
  5591. }
  5592. // parallelize by rows
  5593. const int nr = ne01;
  5594. // number of rows per thread
  5595. const int dr = (nr + nth - 1) / nth;
  5596. // row range for this thread
  5597. const int ir0 = dr * ith;
  5598. const int ir1 = MIN(ir0 + dr, nr);
  5599. if (src0->type == dst->type &&
  5600. ne00 == ne0 &&
  5601. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5602. // copy by rows
  5603. const size_t rs = ne00*nb00;
  5604. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5605. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5606. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5607. memcpy(
  5608. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5609. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5610. rs);
  5611. }
  5612. }
  5613. }
  5614. return;
  5615. }
  5616. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5617. if (ggml_is_contiguous(dst)) {
  5618. if (nb00 == sizeof(ggml_fp16_t)) {
  5619. if (dst->type == GGML_TYPE_F16) {
  5620. size_t id = 0;
  5621. const size_t rs = ne00 * nb00;
  5622. char * dst_ptr = (char *) dst->data;
  5623. for (int i03 = 0; i03 < ne03; i03++) {
  5624. for (int i02 = 0; i02 < ne02; i02++) {
  5625. id += rs * ir0;
  5626. for (int i01 = ir0; i01 < ir1; i01++) {
  5627. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5628. memcpy(dst_ptr + id, src0_ptr, rs);
  5629. id += rs;
  5630. }
  5631. id += rs * (ne01 - ir1);
  5632. }
  5633. }
  5634. } else if (dst->type == GGML_TYPE_F32) {
  5635. size_t id = 0;
  5636. float * dst_ptr = (float *) dst->data;
  5637. for (int i03 = 0; i03 < ne03; i03++) {
  5638. for (int i02 = 0; i02 < ne02; i02++) {
  5639. id += ne00 * ir0;
  5640. for (int i01 = ir0; i01 < ir1; i01++) {
  5641. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5642. for (int i00 = 0; i00 < ne00; i00++) {
  5643. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5644. id++;
  5645. }
  5646. }
  5647. id += ne00 * (ne01 - ir1);
  5648. }
  5649. }
  5650. } else if (ggml_is_quantized(dst->type)) {
  5651. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5652. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5653. size_t id = 0;
  5654. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5655. char * dst_ptr = (char *) dst->data;
  5656. for (int i03 = 0; i03 < ne03; i03++) {
  5657. for (int i02 = 0; i02 < ne02; i02++) {
  5658. id += rs * ir0;
  5659. for (int i01 = ir0; i01 < ir1; i01++) {
  5660. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5661. for (int i00 = 0; i00 < ne00; i00++) {
  5662. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5663. }
  5664. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5665. id += rs;
  5666. }
  5667. id += rs * (ne01 - ir1);
  5668. }
  5669. }
  5670. } else {
  5671. GGML_ASSERT(false); // TODO: implement
  5672. }
  5673. } else {
  5674. //printf("%s: this is not optimal - fix me\n", __func__);
  5675. if (dst->type == GGML_TYPE_F32) {
  5676. size_t id = 0;
  5677. float * dst_ptr = (float *) dst->data;
  5678. for (int i03 = 0; i03 < ne03; i03++) {
  5679. for (int i02 = 0; i02 < ne02; i02++) {
  5680. id += ne00 * ir0;
  5681. for (int i01 = ir0; i01 < ir1; i01++) {
  5682. for (int i00 = 0; i00 < ne00; i00++) {
  5683. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5684. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5685. id++;
  5686. }
  5687. }
  5688. id += ne00 * (ne01 - ir1);
  5689. }
  5690. }
  5691. } else if (dst->type == GGML_TYPE_F16) {
  5692. size_t id = 0;
  5693. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5694. for (int i03 = 0; i03 < ne03; i03++) {
  5695. for (int i02 = 0; i02 < ne02; i02++) {
  5696. id += ne00 * ir0;
  5697. for (int i01 = ir0; i01 < ir1; i01++) {
  5698. for (int i00 = 0; i00 < ne00; i00++) {
  5699. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5700. dst_ptr[id] = *src0_ptr;
  5701. id++;
  5702. }
  5703. }
  5704. id += ne00 * (ne01 - ir1);
  5705. }
  5706. }
  5707. } else {
  5708. GGML_ASSERT(false); // TODO: implement
  5709. }
  5710. }
  5711. return;
  5712. }
  5713. // dst counters
  5714. int64_t i10 = 0;
  5715. int64_t i11 = 0;
  5716. int64_t i12 = 0;
  5717. int64_t i13 = 0;
  5718. if (dst->type == GGML_TYPE_F16) {
  5719. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5720. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5721. i10 += ne00 * ir0;
  5722. while (i10 >= ne0) {
  5723. i10 -= ne0;
  5724. if (++i11 == ne1) {
  5725. i11 = 0;
  5726. if (++i12 == ne2) {
  5727. i12 = 0;
  5728. if (++i13 == ne3) {
  5729. i13 = 0;
  5730. }
  5731. }
  5732. }
  5733. }
  5734. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5735. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5736. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5737. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5738. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5739. if (++i10 == ne00) {
  5740. i10 = 0;
  5741. if (++i11 == ne01) {
  5742. i11 = 0;
  5743. if (++i12 == ne02) {
  5744. i12 = 0;
  5745. if (++i13 == ne03) {
  5746. i13 = 0;
  5747. }
  5748. }
  5749. }
  5750. }
  5751. }
  5752. }
  5753. i10 += ne00 * (ne01 - ir1);
  5754. while (i10 >= ne0) {
  5755. i10 -= ne0;
  5756. if (++i11 == ne1) {
  5757. i11 = 0;
  5758. if (++i12 == ne2) {
  5759. i12 = 0;
  5760. if (++i13 == ne3) {
  5761. i13 = 0;
  5762. }
  5763. }
  5764. }
  5765. }
  5766. }
  5767. }
  5768. } else if (dst->type == GGML_TYPE_F32) {
  5769. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5770. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5771. i10 += ne00 * ir0;
  5772. while (i10 >= ne0) {
  5773. i10 -= ne0;
  5774. if (++i11 == ne1) {
  5775. i11 = 0;
  5776. if (++i12 == ne2) {
  5777. i12 = 0;
  5778. if (++i13 == ne3) {
  5779. i13 = 0;
  5780. }
  5781. }
  5782. }
  5783. }
  5784. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5785. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5786. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5787. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5788. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5789. if (++i10 == ne0) {
  5790. i10 = 0;
  5791. if (++i11 == ne1) {
  5792. i11 = 0;
  5793. if (++i12 == ne2) {
  5794. i12 = 0;
  5795. if (++i13 == ne3) {
  5796. i13 = 0;
  5797. }
  5798. }
  5799. }
  5800. }
  5801. }
  5802. }
  5803. i10 += ne00 * (ne01 - ir1);
  5804. while (i10 >= ne0) {
  5805. i10 -= ne0;
  5806. if (++i11 == ne1) {
  5807. i11 = 0;
  5808. if (++i12 == ne2) {
  5809. i12 = 0;
  5810. if (++i13 == ne3) {
  5811. i13 = 0;
  5812. }
  5813. }
  5814. }
  5815. }
  5816. }
  5817. }
  5818. } else {
  5819. GGML_ASSERT(false); // TODO: implement
  5820. }
  5821. }
  5822. static void ggml_compute_forward_dup_f32(
  5823. const struct ggml_compute_params * params,
  5824. const struct ggml_tensor * src0,
  5825. struct ggml_tensor * dst) {
  5826. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5827. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5828. return;
  5829. }
  5830. const int64_t ne00 = src0->ne[0];
  5831. const int64_t ne01 = src0->ne[1];
  5832. const int64_t ne02 = src0->ne[2];
  5833. const int64_t ne03 = src0->ne[3];
  5834. const int64_t ne0 = dst->ne[0];
  5835. const int64_t ne1 = dst->ne[1];
  5836. const int64_t ne2 = dst->ne[2];
  5837. const int64_t ne3 = dst->ne[3];
  5838. const size_t nb00 = src0->nb[0];
  5839. const size_t nb01 = src0->nb[1];
  5840. const size_t nb02 = src0->nb[2];
  5841. const size_t nb03 = src0->nb[3];
  5842. const size_t nb0 = dst->nb[0];
  5843. const size_t nb1 = dst->nb[1];
  5844. const size_t nb2 = dst->nb[2];
  5845. const size_t nb3 = dst->nb[3];
  5846. const int ith = params->ith; // thread index
  5847. const int nth = params->nth; // number of threads
  5848. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5849. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5850. return;
  5851. }
  5852. // parallelize by rows
  5853. const int nr = ne01;
  5854. // number of rows per thread
  5855. const int dr = (nr + nth - 1) / nth;
  5856. // row range for this thread
  5857. const int ir0 = dr * ith;
  5858. const int ir1 = MIN(ir0 + dr, nr);
  5859. if (src0->type == dst->type &&
  5860. ne00 == ne0 &&
  5861. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5862. // copy by rows
  5863. const size_t rs = ne00*nb00;
  5864. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5865. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5866. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5867. memcpy(
  5868. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5869. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5870. rs);
  5871. }
  5872. }
  5873. }
  5874. return;
  5875. }
  5876. if (ggml_is_contiguous(dst)) {
  5877. // TODO: simplify
  5878. if (nb00 == sizeof(float)) {
  5879. if (dst->type == GGML_TYPE_F32) {
  5880. size_t id = 0;
  5881. const size_t rs = ne00 * nb00;
  5882. char * dst_ptr = (char *) dst->data;
  5883. for (int i03 = 0; i03 < ne03; i03++) {
  5884. for (int i02 = 0; i02 < ne02; i02++) {
  5885. id += rs * ir0;
  5886. for (int i01 = ir0; i01 < ir1; i01++) {
  5887. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5888. memcpy(dst_ptr + id, src0_ptr, rs);
  5889. id += rs;
  5890. }
  5891. id += rs * (ne01 - ir1);
  5892. }
  5893. }
  5894. } else if (dst->type == GGML_TYPE_F16) {
  5895. size_t id = 0;
  5896. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5897. for (int i03 = 0; i03 < ne03; i03++) {
  5898. for (int i02 = 0; i02 < ne02; i02++) {
  5899. id += ne00 * ir0;
  5900. for (int i01 = ir0; i01 < ir1; i01++) {
  5901. for (int i00 = 0; i00 < ne00; i00++) {
  5902. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5903. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5904. id++;
  5905. }
  5906. }
  5907. id += ne00 * (ne01 - ir1);
  5908. }
  5909. }
  5910. } else if (ggml_is_quantized(dst->type)) {
  5911. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5912. size_t id = 0;
  5913. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5914. char * dst_ptr = (char *) dst->data;
  5915. for (int i03 = 0; i03 < ne03; i03++) {
  5916. for (int i02 = 0; i02 < ne02; i02++) {
  5917. id += rs * ir0;
  5918. for (int i01 = ir0; i01 < ir1; i01++) {
  5919. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5920. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5921. id += rs;
  5922. }
  5923. id += rs * (ne01 - ir1);
  5924. }
  5925. }
  5926. } else {
  5927. GGML_ASSERT(false); // TODO: implement
  5928. }
  5929. } else {
  5930. //printf("%s: this is not optimal - fix me\n", __func__);
  5931. if (dst->type == GGML_TYPE_F32) {
  5932. size_t id = 0;
  5933. float * dst_ptr = (float *) dst->data;
  5934. for (int i03 = 0; i03 < ne03; i03++) {
  5935. for (int i02 = 0; i02 < ne02; i02++) {
  5936. id += ne00 * ir0;
  5937. for (int i01 = ir0; i01 < ir1; i01++) {
  5938. for (int i00 = 0; i00 < ne00; i00++) {
  5939. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5940. dst_ptr[id] = *src0_ptr;
  5941. id++;
  5942. }
  5943. }
  5944. id += ne00 * (ne01 - ir1);
  5945. }
  5946. }
  5947. } else if (dst->type == GGML_TYPE_F16) {
  5948. size_t id = 0;
  5949. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5950. for (int i03 = 0; i03 < ne03; i03++) {
  5951. for (int i02 = 0; i02 < ne02; i02++) {
  5952. id += ne00 * ir0;
  5953. for (int i01 = ir0; i01 < ir1; i01++) {
  5954. for (int i00 = 0; i00 < ne00; i00++) {
  5955. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5956. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5957. id++;
  5958. }
  5959. }
  5960. id += ne00 * (ne01 - ir1);
  5961. }
  5962. }
  5963. } else {
  5964. GGML_ASSERT(false); // TODO: implement
  5965. }
  5966. }
  5967. return;
  5968. }
  5969. // dst counters
  5970. int64_t i10 = 0;
  5971. int64_t i11 = 0;
  5972. int64_t i12 = 0;
  5973. int64_t i13 = 0;
  5974. if (dst->type == GGML_TYPE_F32) {
  5975. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5976. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5977. i10 += ne00 * ir0;
  5978. while (i10 >= ne0) {
  5979. i10 -= ne0;
  5980. if (++i11 == ne1) {
  5981. i11 = 0;
  5982. if (++i12 == ne2) {
  5983. i12 = 0;
  5984. if (++i13 == ne3) {
  5985. i13 = 0;
  5986. }
  5987. }
  5988. }
  5989. }
  5990. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5991. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5992. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5993. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5994. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5995. if (++i10 == ne0) {
  5996. i10 = 0;
  5997. if (++i11 == ne1) {
  5998. i11 = 0;
  5999. if (++i12 == ne2) {
  6000. i12 = 0;
  6001. if (++i13 == ne3) {
  6002. i13 = 0;
  6003. }
  6004. }
  6005. }
  6006. }
  6007. }
  6008. }
  6009. i10 += ne00 * (ne01 - ir1);
  6010. while (i10 >= ne0) {
  6011. i10 -= ne0;
  6012. if (++i11 == ne1) {
  6013. i11 = 0;
  6014. if (++i12 == ne2) {
  6015. i12 = 0;
  6016. if (++i13 == ne3) {
  6017. i13 = 0;
  6018. }
  6019. }
  6020. }
  6021. }
  6022. }
  6023. }
  6024. } else if (dst->type == GGML_TYPE_F16) {
  6025. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6026. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6027. i10 += ne00 * ir0;
  6028. while (i10 >= ne0) {
  6029. i10 -= ne0;
  6030. if (++i11 == ne1) {
  6031. i11 = 0;
  6032. if (++i12 == ne2) {
  6033. i12 = 0;
  6034. if (++i13 == ne3) {
  6035. i13 = 0;
  6036. }
  6037. }
  6038. }
  6039. }
  6040. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6041. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6042. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6043. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6044. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6045. if (++i10 == ne0) {
  6046. i10 = 0;
  6047. if (++i11 == ne1) {
  6048. i11 = 0;
  6049. if (++i12 == ne2) {
  6050. i12 = 0;
  6051. if (++i13 == ne3) {
  6052. i13 = 0;
  6053. }
  6054. }
  6055. }
  6056. }
  6057. }
  6058. }
  6059. i10 += ne00 * (ne01 - ir1);
  6060. while (i10 >= ne0) {
  6061. i10 -= ne0;
  6062. if (++i11 == ne1) {
  6063. i11 = 0;
  6064. if (++i12 == ne2) {
  6065. i12 = 0;
  6066. if (++i13 == ne3) {
  6067. i13 = 0;
  6068. }
  6069. }
  6070. }
  6071. }
  6072. }
  6073. }
  6074. } else {
  6075. GGML_ASSERT(false); // TODO: implement
  6076. }
  6077. }
  6078. static void ggml_compute_forward_dup(
  6079. const struct ggml_compute_params * params,
  6080. const struct ggml_tensor * src0,
  6081. struct ggml_tensor * dst) {
  6082. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6083. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6084. return;
  6085. }
  6086. switch (src0->type) {
  6087. case GGML_TYPE_F16:
  6088. {
  6089. ggml_compute_forward_dup_f16(params, src0, dst);
  6090. } break;
  6091. case GGML_TYPE_F32:
  6092. {
  6093. ggml_compute_forward_dup_f32(params, src0, dst);
  6094. } break;
  6095. default:
  6096. {
  6097. GGML_ASSERT(false);
  6098. } break;
  6099. }
  6100. }
  6101. // ggml_compute_forward_add
  6102. static void ggml_compute_forward_add_f32(
  6103. const struct ggml_compute_params * params,
  6104. const struct ggml_tensor * src0,
  6105. const struct ggml_tensor * src1,
  6106. struct ggml_tensor * dst) {
  6107. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6109. return;
  6110. }
  6111. const int ith = params->ith;
  6112. const int nth = params->nth;
  6113. const int nr = ggml_nrows(src0);
  6114. const int64_t ne0 = src0->ne[0];
  6115. const int64_t ne1 = src0->ne[1];
  6116. const int64_t ne2 = src0->ne[2];
  6117. const size_t nb00 = src0->nb[0];
  6118. const size_t nb01 = src0->nb[1];
  6119. const size_t nb02 = src0->nb[2];
  6120. const size_t nb03 = src0->nb[3];
  6121. const size_t nb10 = src1->nb[0];
  6122. const size_t nb11 = src1->nb[1];
  6123. const size_t nb12 = src1->nb[2];
  6124. const size_t nb13 = src1->nb[3];
  6125. const size_t nb0 = dst->nb[0];
  6126. const size_t nb1 = dst->nb[1];
  6127. const size_t nb2 = dst->nb[2];
  6128. const size_t nb3 = dst->nb[3];
  6129. GGML_ASSERT( nb0 == sizeof(float));
  6130. GGML_ASSERT(nb00 == sizeof(float));
  6131. // rows per thread
  6132. const int dr = (nr + nth - 1)/nth;
  6133. // row range for this thread
  6134. const int ir0 = dr*ith;
  6135. const int ir1 = MIN(ir0 + dr, nr);
  6136. if (nb10 == sizeof(float)) {
  6137. for (int ir = ir0; ir < ir1; ++ir) {
  6138. // src0, src1 and dst are same shape => same indices
  6139. const int i3 = ir/(ne2*ne1);
  6140. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6141. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6142. #ifdef GGML_USE_ACCELERATE
  6143. vDSP_vadd(
  6144. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6145. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6146. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6147. ne0);
  6148. #else
  6149. ggml_vec_add_f32(ne0,
  6150. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6151. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6152. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6153. #endif
  6154. // }
  6155. // }
  6156. }
  6157. } else {
  6158. // src1 is not contiguous
  6159. for (int ir = ir0; ir < ir1; ++ir) {
  6160. // src0, src1 and dst are same shape => same indices
  6161. const int i3 = ir/(ne2*ne1);
  6162. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6163. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6164. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6165. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6166. for (int i0 = 0; i0 < ne0; i0++) {
  6167. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6168. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6169. }
  6170. }
  6171. }
  6172. }
  6173. static void ggml_compute_forward_add_f16_f32(
  6174. const struct ggml_compute_params * params,
  6175. const struct ggml_tensor * src0,
  6176. const struct ggml_tensor * src1,
  6177. struct ggml_tensor * dst) {
  6178. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6180. return;
  6181. }
  6182. const int ith = params->ith;
  6183. const int nth = params->nth;
  6184. const int nr = ggml_nrows(src0);
  6185. const int64_t ne0 = src0->ne[0];
  6186. const int64_t ne1 = src0->ne[1];
  6187. const int64_t ne2 = src0->ne[2];
  6188. const size_t nb00 = src0->nb[0];
  6189. const size_t nb01 = src0->nb[1];
  6190. const size_t nb02 = src0->nb[2];
  6191. const size_t nb03 = src0->nb[3];
  6192. const size_t nb10 = src1->nb[0];
  6193. const size_t nb11 = src1->nb[1];
  6194. const size_t nb12 = src1->nb[2];
  6195. const size_t nb13 = src1->nb[3];
  6196. const size_t nb0 = dst->nb[0];
  6197. const size_t nb1 = dst->nb[1];
  6198. const size_t nb2 = dst->nb[2];
  6199. const size_t nb3 = dst->nb[3];
  6200. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6201. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6202. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6203. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6204. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6205. // rows per thread
  6206. const int dr = (nr + nth - 1)/nth;
  6207. // row range for this thread
  6208. const int ir0 = dr*ith;
  6209. const int ir1 = MIN(ir0 + dr, nr);
  6210. if (nb10 == sizeof(float)) {
  6211. for (int ir = ir0; ir < ir1; ++ir) {
  6212. // src0, src1 and dst are same shape => same indices
  6213. const int i3 = ir/(ne2*ne1);
  6214. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6215. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6216. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6217. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6218. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6219. for (int i = 0; i < ne0; i++) {
  6220. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6221. }
  6222. }
  6223. }
  6224. else {
  6225. // src1 is not contiguous
  6226. GGML_ASSERT(false);
  6227. }
  6228. }
  6229. static void ggml_compute_forward_add_f16_f16(
  6230. const struct ggml_compute_params * params,
  6231. const struct ggml_tensor * src0,
  6232. const struct ggml_tensor * src1,
  6233. struct ggml_tensor * dst) {
  6234. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6236. return;
  6237. }
  6238. const int ith = params->ith;
  6239. const int nth = params->nth;
  6240. const int nr = ggml_nrows(src0);
  6241. const int64_t ne0 = src0->ne[0];
  6242. const int64_t ne1 = src0->ne[1];
  6243. const int64_t ne2 = src0->ne[2];
  6244. const size_t nb00 = src0->nb[0];
  6245. const size_t nb01 = src0->nb[1];
  6246. const size_t nb02 = src0->nb[2];
  6247. const size_t nb03 = src0->nb[3];
  6248. const size_t nb10 = src1->nb[0];
  6249. const size_t nb11 = src1->nb[1];
  6250. const size_t nb12 = src1->nb[2];
  6251. const size_t nb13 = src1->nb[3];
  6252. const size_t nb0 = dst->nb[0];
  6253. const size_t nb1 = dst->nb[1];
  6254. const size_t nb2 = dst->nb[2];
  6255. const size_t nb3 = dst->nb[3];
  6256. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6257. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6258. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6259. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6260. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6261. // rows per thread
  6262. const int dr = (nr + nth - 1)/nth;
  6263. // row range for this thread
  6264. const int ir0 = dr*ith;
  6265. const int ir1 = MIN(ir0 + dr, nr);
  6266. if (nb10 == sizeof(ggml_fp16_t)) {
  6267. for (int ir = ir0; ir < ir1; ++ir) {
  6268. // src0, src1 and dst are same shape => same indices
  6269. const int i3 = ir/(ne2*ne1);
  6270. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6271. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6272. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6273. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6274. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6275. for (int i = 0; i < ne0; i++) {
  6276. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6277. }
  6278. }
  6279. }
  6280. else {
  6281. // src1 is not contiguous
  6282. GGML_ASSERT(false);
  6283. }
  6284. }
  6285. static void ggml_compute_forward_add_q_f32(
  6286. const struct ggml_compute_params * params,
  6287. const struct ggml_tensor * src0,
  6288. const struct ggml_tensor * src1,
  6289. struct ggml_tensor * dst) {
  6290. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6292. return;
  6293. }
  6294. const int nr = ggml_nrows(src0);
  6295. const int64_t ne00 = src0->ne[0];
  6296. const int64_t ne01 = src0->ne[1];
  6297. const int64_t ne02 = src0->ne[2];
  6298. //const int64_t ne03 = src0->ne[3];
  6299. const size_t nb00 = src0->nb[0];
  6300. const size_t nb01 = src0->nb[1];
  6301. const size_t nb02 = src0->nb[2];
  6302. const size_t nb03 = src0->nb[3];
  6303. const size_t nb10 = src1->nb[0];
  6304. const size_t nb11 = src1->nb[1];
  6305. const size_t nb12 = src1->nb[2];
  6306. const size_t nb13 = src1->nb[3];
  6307. const size_t nb0 = dst->nb[0];
  6308. const size_t nb1 = dst->nb[1];
  6309. const size_t nb2 = dst->nb[2];
  6310. const size_t nb3 = dst->nb[3];
  6311. const int ith = params->ith;
  6312. const int nth = params->nth;
  6313. const enum ggml_type type = src0->type;
  6314. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6315. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6316. // we don't support permuted src0 or src1
  6317. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6318. GGML_ASSERT(nb10 == sizeof(float));
  6319. // dst cannot be transposed or permuted
  6320. GGML_ASSERT(nb0 <= nb1);
  6321. GGML_ASSERT(nb1 <= nb2);
  6322. GGML_ASSERT(nb2 <= nb3);
  6323. GGML_ASSERT(ggml_is_quantized(src0->type));
  6324. GGML_ASSERT(dst->type == src0->type);
  6325. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6326. // rows per thread
  6327. const int dr = (nr + nth - 1)/nth;
  6328. // row range for this thread
  6329. const int ir0 = dr*ith;
  6330. const int ir1 = MIN(ir0 + dr, nr);
  6331. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6332. for (int ir = ir0; ir < ir1; ++ir) {
  6333. // src0 indices
  6334. const int i03 = ir/(ne02*ne01);
  6335. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6336. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6337. // src1 and dst are same shape as src0 => same indices
  6338. const int i13 = i03;
  6339. const int i12 = i02;
  6340. const int i11 = i01;
  6341. const int i3 = i03;
  6342. const int i2 = i02;
  6343. const int i1 = i01;
  6344. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6345. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6346. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6347. assert(ne00 % 32 == 0);
  6348. // unquantize row from src0 to temp buffer
  6349. dequantize_row_q(src0_row, wdata, ne00);
  6350. // add src1
  6351. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6352. // quantize row to dst
  6353. quantize_row_q(wdata, dst_row, ne00);
  6354. }
  6355. }
  6356. static void ggml_compute_forward_add(
  6357. const struct ggml_compute_params * params,
  6358. const struct ggml_tensor * src0,
  6359. const struct ggml_tensor * src1,
  6360. struct ggml_tensor * dst) {
  6361. switch (src0->type) {
  6362. case GGML_TYPE_F32:
  6363. {
  6364. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6365. } break;
  6366. case GGML_TYPE_F16:
  6367. {
  6368. if (src1->type == GGML_TYPE_F16) {
  6369. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6370. }
  6371. else if (src1->type == GGML_TYPE_F32) {
  6372. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6373. }
  6374. else {
  6375. GGML_ASSERT(false);
  6376. }
  6377. } break;
  6378. case GGML_TYPE_Q4_0:
  6379. case GGML_TYPE_Q4_1:
  6380. case GGML_TYPE_Q5_0:
  6381. case GGML_TYPE_Q5_1:
  6382. case GGML_TYPE_Q8_0:
  6383. case GGML_TYPE_Q2_K:
  6384. case GGML_TYPE_Q3_K:
  6385. case GGML_TYPE_Q4_K:
  6386. case GGML_TYPE_Q5_K:
  6387. case GGML_TYPE_Q6_K:
  6388. {
  6389. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6390. } break;
  6391. default:
  6392. {
  6393. GGML_ASSERT(false);
  6394. } break;
  6395. }
  6396. }
  6397. // ggml_compute_forward_add1
  6398. static void ggml_compute_forward_add1_f32(
  6399. const struct ggml_compute_params * params,
  6400. const struct ggml_tensor * src0,
  6401. const struct ggml_tensor * src1,
  6402. struct ggml_tensor * dst) {
  6403. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6404. GGML_ASSERT(ggml_is_scalar(src1));
  6405. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6406. return;
  6407. }
  6408. const int ith = params->ith;
  6409. const int nth = params->nth;
  6410. const int nr = ggml_nrows(src0);
  6411. const int64_t ne0 = src0->ne[0];
  6412. const int64_t ne1 = src0->ne[1];
  6413. const int64_t ne2 = src0->ne[2];
  6414. const size_t nb00 = src0->nb[0];
  6415. const size_t nb01 = src0->nb[1];
  6416. const size_t nb02 = src0->nb[2];
  6417. const size_t nb03 = src0->nb[3];
  6418. const size_t nb0 = dst->nb[0];
  6419. const size_t nb1 = dst->nb[1];
  6420. const size_t nb2 = dst->nb[2];
  6421. const size_t nb3 = dst->nb[3];
  6422. GGML_ASSERT( nb0 == sizeof(float));
  6423. GGML_ASSERT(nb00 == sizeof(float));
  6424. // rows per thread
  6425. const int dr = (nr + nth - 1)/nth;
  6426. // row range for this thread
  6427. const int ir0 = dr*ith;
  6428. const int ir1 = MIN(ir0 + dr, nr);
  6429. for (int ir = ir0; ir < ir1; ++ir) {
  6430. // src0 and dst are same shape => same indices
  6431. const int i3 = ir/(ne2*ne1);
  6432. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6433. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6434. #ifdef GGML_USE_ACCELERATE
  6435. UNUSED(ggml_vec_add1_f32);
  6436. vDSP_vadd(
  6437. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6438. (float *) ((char *) src1->data), 0,
  6439. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6440. ne0);
  6441. #else
  6442. ggml_vec_add1_f32(ne0,
  6443. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6444. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6445. *(float *) src1->data);
  6446. #endif
  6447. }
  6448. }
  6449. static void ggml_compute_forward_add1_f16_f32(
  6450. const struct ggml_compute_params * params,
  6451. const struct ggml_tensor * src0,
  6452. const struct ggml_tensor * src1,
  6453. struct ggml_tensor * dst) {
  6454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6455. GGML_ASSERT(ggml_is_scalar(src1));
  6456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6457. return;
  6458. }
  6459. // scalar to add
  6460. const float v = *(float *) src1->data;
  6461. const int ith = params->ith;
  6462. const int nth = params->nth;
  6463. const int nr = ggml_nrows(src0);
  6464. const int64_t ne0 = src0->ne[0];
  6465. const int64_t ne1 = src0->ne[1];
  6466. const int64_t ne2 = src0->ne[2];
  6467. const size_t nb00 = src0->nb[0];
  6468. const size_t nb01 = src0->nb[1];
  6469. const size_t nb02 = src0->nb[2];
  6470. const size_t nb03 = src0->nb[3];
  6471. const size_t nb0 = dst->nb[0];
  6472. const size_t nb1 = dst->nb[1];
  6473. const size_t nb2 = dst->nb[2];
  6474. const size_t nb3 = dst->nb[3];
  6475. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6476. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6477. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6478. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6479. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6480. // rows per thread
  6481. const int dr = (nr + nth - 1)/nth;
  6482. // row range for this thread
  6483. const int ir0 = dr*ith;
  6484. const int ir1 = MIN(ir0 + dr, nr);
  6485. for (int ir = ir0; ir < ir1; ++ir) {
  6486. // src0 and dst are same shape => same indices
  6487. const int i3 = ir/(ne2*ne1);
  6488. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6489. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6490. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6491. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6492. for (int i = 0; i < ne0; i++) {
  6493. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6494. }
  6495. }
  6496. }
  6497. static void ggml_compute_forward_add1_f16_f16(
  6498. const struct ggml_compute_params * params,
  6499. const struct ggml_tensor * src0,
  6500. const struct ggml_tensor * src1,
  6501. struct ggml_tensor * dst) {
  6502. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6503. GGML_ASSERT(ggml_is_scalar(src1));
  6504. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6505. return;
  6506. }
  6507. // scalar to add
  6508. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6509. const int ith = params->ith;
  6510. const int nth = params->nth;
  6511. const int nr = ggml_nrows(src0);
  6512. const int64_t ne0 = src0->ne[0];
  6513. const int64_t ne1 = src0->ne[1];
  6514. const int64_t ne2 = src0->ne[2];
  6515. const size_t nb00 = src0->nb[0];
  6516. const size_t nb01 = src0->nb[1];
  6517. const size_t nb02 = src0->nb[2];
  6518. const size_t nb03 = src0->nb[3];
  6519. const size_t nb0 = dst->nb[0];
  6520. const size_t nb1 = dst->nb[1];
  6521. const size_t nb2 = dst->nb[2];
  6522. const size_t nb3 = dst->nb[3];
  6523. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6524. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6525. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6526. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6527. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6528. // rows per thread
  6529. const int dr = (nr + nth - 1)/nth;
  6530. // row range for this thread
  6531. const int ir0 = dr*ith;
  6532. const int ir1 = MIN(ir0 + dr, nr);
  6533. for (int ir = ir0; ir < ir1; ++ir) {
  6534. // src0 and dst are same shape => same indices
  6535. const int i3 = ir/(ne2*ne1);
  6536. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6537. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6538. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6539. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6540. for (int i = 0; i < ne0; i++) {
  6541. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6542. }
  6543. }
  6544. }
  6545. static void ggml_compute_forward_add1_q_f32(
  6546. const struct ggml_compute_params * params,
  6547. const struct ggml_tensor * src0,
  6548. const struct ggml_tensor * src1,
  6549. struct ggml_tensor * dst) {
  6550. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6551. GGML_ASSERT(ggml_is_scalar(src1));
  6552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6553. return;
  6554. }
  6555. // scalar to add
  6556. const float v = *(float *) src1->data;
  6557. const int ith = params->ith;
  6558. const int nth = params->nth;
  6559. const int nr = ggml_nrows(src0);
  6560. const int64_t ne0 = src0->ne[0];
  6561. const int64_t ne1 = src0->ne[1];
  6562. const int64_t ne2 = src0->ne[2];
  6563. const size_t nb00 = src0->nb[0];
  6564. const size_t nb01 = src0->nb[1];
  6565. const size_t nb02 = src0->nb[2];
  6566. const size_t nb03 = src0->nb[3];
  6567. const size_t nb0 = dst->nb[0];
  6568. const size_t nb1 = dst->nb[1];
  6569. const size_t nb2 = dst->nb[2];
  6570. const size_t nb3 = dst->nb[3];
  6571. const enum ggml_type type = src0->type;
  6572. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6573. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6574. // we don't support permuted src0
  6575. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6576. // dst cannot be transposed or permuted
  6577. GGML_ASSERT(nb0 <= nb1);
  6578. GGML_ASSERT(nb1 <= nb2);
  6579. GGML_ASSERT(nb2 <= nb3);
  6580. GGML_ASSERT(ggml_is_quantized(src0->type));
  6581. GGML_ASSERT(dst->type == src0->type);
  6582. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6583. // rows per thread
  6584. const int dr = (nr + nth - 1)/nth;
  6585. // row range for this thread
  6586. const int ir0 = dr*ith;
  6587. const int ir1 = MIN(ir0 + dr, nr);
  6588. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6589. for (int ir = ir0; ir < ir1; ++ir) {
  6590. // src0 and dst are same shape => same indices
  6591. const int i3 = ir/(ne2*ne1);
  6592. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6593. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6594. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6595. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6596. assert(ne0 % 32 == 0);
  6597. // unquantize row from src0 to temp buffer
  6598. dequantize_row_q(src0_row, wdata, ne0);
  6599. // add src1
  6600. ggml_vec_acc1_f32(ne0, wdata, v);
  6601. // quantize row to dst
  6602. quantize_row_q(wdata, dst_row, ne0);
  6603. }
  6604. }
  6605. static void ggml_compute_forward_add1(
  6606. const struct ggml_compute_params * params,
  6607. const struct ggml_tensor * src0,
  6608. const struct ggml_tensor * src1,
  6609. struct ggml_tensor * dst) {
  6610. switch (src0->type) {
  6611. case GGML_TYPE_F32:
  6612. {
  6613. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6614. } break;
  6615. case GGML_TYPE_F16:
  6616. {
  6617. if (src1->type == GGML_TYPE_F16) {
  6618. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6619. }
  6620. else if (src1->type == GGML_TYPE_F32) {
  6621. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6622. }
  6623. else {
  6624. GGML_ASSERT(false);
  6625. }
  6626. } break;
  6627. case GGML_TYPE_Q4_0:
  6628. case GGML_TYPE_Q4_1:
  6629. case GGML_TYPE_Q5_0:
  6630. case GGML_TYPE_Q5_1:
  6631. case GGML_TYPE_Q8_0:
  6632. case GGML_TYPE_Q8_1:
  6633. case GGML_TYPE_Q2_K:
  6634. case GGML_TYPE_Q3_K:
  6635. case GGML_TYPE_Q4_K:
  6636. case GGML_TYPE_Q5_K:
  6637. case GGML_TYPE_Q6_K:
  6638. {
  6639. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6640. } break;
  6641. default:
  6642. {
  6643. GGML_ASSERT(false);
  6644. } break;
  6645. }
  6646. }
  6647. // ggml_compute_forward_acc
  6648. static void ggml_compute_forward_acc_f32(
  6649. const struct ggml_compute_params * params,
  6650. const struct ggml_tensor * src0,
  6651. const struct ggml_tensor * src1,
  6652. const struct ggml_tensor * opt0,
  6653. struct ggml_tensor * dst) {
  6654. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6655. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6656. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6657. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6658. // view src0 and dst with these strides and data offset inbytes during acc
  6659. // nb0 is implicitely element_size because src0 and dst are contiguous
  6660. size_t nb1 = ((int32_t *) opt0->data)[0];
  6661. size_t nb2 = ((int32_t *) opt0->data)[1];
  6662. size_t nb3 = ((int32_t *) opt0->data)[2];
  6663. size_t offset = ((int32_t *) opt0->data)[3];
  6664. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6665. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6666. // memcpy needs to be synchronized across threads to avoid race conditions.
  6667. // => do it in INIT phase
  6668. memcpy(
  6669. ((char *) dst->data),
  6670. ((char *) src0->data),
  6671. ggml_nbytes(dst));
  6672. }
  6673. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6674. return;
  6675. }
  6676. const int ith = params->ith;
  6677. const int nth = params->nth;
  6678. const int nr = ggml_nrows(src1);
  6679. const int nc = src1->ne[0];
  6680. const int64_t ne10 = src1->ne[0];
  6681. const int64_t ne11 = src1->ne[1];
  6682. const int64_t ne12 = src1->ne[2];
  6683. const int64_t ne13 = src1->ne[3];
  6684. const size_t nb10 = src1->nb[0];
  6685. const size_t nb11 = src1->nb[1];
  6686. const size_t nb12 = src1->nb[2];
  6687. const size_t nb13 = src1->nb[3];
  6688. // src0 and dst as viewed during acc
  6689. const size_t nb0 = ggml_element_size(src0);
  6690. const size_t nb00 = nb0;
  6691. const size_t nb01 = nb1;
  6692. const size_t nb02 = nb2;
  6693. const size_t nb03 = nb3;
  6694. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6695. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6696. GGML_ASSERT(nb10 == sizeof(float));
  6697. // rows per thread
  6698. const int dr = (nr + nth - 1)/nth;
  6699. // row range for this thread
  6700. const int ir0 = dr*ith;
  6701. const int ir1 = MIN(ir0 + dr, nr);
  6702. for (int ir = ir0; ir < ir1; ++ir) {
  6703. // src0 and dst are viewed with shape of src1 and offset
  6704. // => same indices
  6705. const int i3 = ir/(ne12*ne11);
  6706. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6707. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6708. #ifdef GGML_USE_ACCELERATE
  6709. vDSP_vadd(
  6710. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6711. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6712. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6713. #else
  6714. ggml_vec_add_f32(nc,
  6715. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6716. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6717. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6718. #endif
  6719. }
  6720. }
  6721. static void ggml_compute_forward_acc(
  6722. const struct ggml_compute_params * params,
  6723. const struct ggml_tensor * src0,
  6724. const struct ggml_tensor * src1,
  6725. const struct ggml_tensor * opt0,
  6726. struct ggml_tensor * dst) {
  6727. switch (src0->type) {
  6728. case GGML_TYPE_F32:
  6729. {
  6730. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6731. } break;
  6732. case GGML_TYPE_F16:
  6733. case GGML_TYPE_Q4_0:
  6734. case GGML_TYPE_Q4_1:
  6735. case GGML_TYPE_Q5_0:
  6736. case GGML_TYPE_Q5_1:
  6737. case GGML_TYPE_Q8_0:
  6738. case GGML_TYPE_Q8_1:
  6739. case GGML_TYPE_Q2_K:
  6740. case GGML_TYPE_Q3_K:
  6741. case GGML_TYPE_Q4_K:
  6742. case GGML_TYPE_Q5_K:
  6743. case GGML_TYPE_Q6_K:
  6744. default:
  6745. {
  6746. GGML_ASSERT(false);
  6747. } break;
  6748. }
  6749. }
  6750. // ggml_compute_forward_sub
  6751. static void ggml_compute_forward_sub_f32(
  6752. const struct ggml_compute_params * params,
  6753. const struct ggml_tensor * src0,
  6754. const struct ggml_tensor * src1,
  6755. struct ggml_tensor * dst) {
  6756. assert(params->ith == 0);
  6757. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6758. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6759. return;
  6760. }
  6761. const int nr = ggml_nrows(src0);
  6762. const int64_t ne0 = src0->ne[0];
  6763. const int64_t ne1 = src0->ne[1];
  6764. const int64_t ne2 = src0->ne[2];
  6765. const size_t nb00 = src0->nb[0];
  6766. const size_t nb01 = src0->nb[1];
  6767. const size_t nb02 = src0->nb[2];
  6768. const size_t nb03 = src0->nb[3];
  6769. const size_t nb10 = src1->nb[0];
  6770. const size_t nb11 = src1->nb[1];
  6771. const size_t nb12 = src1->nb[2];
  6772. const size_t nb13 = src1->nb[3];
  6773. const size_t nb0 = dst->nb[0];
  6774. const size_t nb1 = dst->nb[1];
  6775. const size_t nb2 = dst->nb[2];
  6776. const size_t nb3 = dst->nb[3];
  6777. GGML_ASSERT( nb0 == sizeof(float));
  6778. GGML_ASSERT(nb00 == sizeof(float));
  6779. if (nb10 == sizeof(float)) {
  6780. for (int ir = 0; ir < nr; ++ir) {
  6781. // src0, src1 and dst are same shape => same indices
  6782. const int i3 = ir/(ne2*ne1);
  6783. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6784. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6785. #ifdef GGML_USE_ACCELERATE
  6786. vDSP_vsub(
  6787. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6788. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6789. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6790. ne0);
  6791. #else
  6792. ggml_vec_sub_f32(ne0,
  6793. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6794. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6795. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6796. #endif
  6797. // }
  6798. // }
  6799. }
  6800. } else {
  6801. // src1 is not contiguous
  6802. for (int ir = 0; ir < nr; ++ir) {
  6803. // src0, src1 and dst are same shape => same indices
  6804. const int i3 = ir/(ne2*ne1);
  6805. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6806. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6807. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6808. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6809. for (int i0 = 0; i0 < ne0; i0++) {
  6810. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6811. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6812. }
  6813. }
  6814. }
  6815. }
  6816. static void ggml_compute_forward_sub(
  6817. const struct ggml_compute_params * params,
  6818. const struct ggml_tensor * src0,
  6819. const struct ggml_tensor * src1,
  6820. struct ggml_tensor * dst) {
  6821. switch (src0->type) {
  6822. case GGML_TYPE_F32:
  6823. {
  6824. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6825. } break;
  6826. default:
  6827. {
  6828. GGML_ASSERT(false);
  6829. } break;
  6830. }
  6831. }
  6832. // ggml_compute_forward_mul
  6833. static void ggml_compute_forward_mul_f32(
  6834. const struct ggml_compute_params * params,
  6835. const struct ggml_tensor * src0,
  6836. const struct ggml_tensor * src1,
  6837. struct ggml_tensor * dst) {
  6838. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6840. return;
  6841. }
  6842. const int ith = params->ith;
  6843. const int nth = params->nth;
  6844. #ifdef GGML_USE_CLBLAST
  6845. if (src1->backend == GGML_BACKEND_GPU) {
  6846. if (ith == 0) {
  6847. ggml_cl_mul(src0, src1, dst);
  6848. }
  6849. return;
  6850. }
  6851. #endif
  6852. const int64_t nr = ggml_nrows(src0);
  6853. const int64_t ne00 = src0->ne[0];
  6854. const int64_t ne01 = src0->ne[1];
  6855. const int64_t ne02 = src0->ne[2];
  6856. const int64_t ne10 = src1->ne[0];
  6857. const int64_t ne11 = src1->ne[1];
  6858. const int64_t ne12 = src1->ne[2];
  6859. const int64_t ne13 = src1->ne[3];
  6860. const size_t nb00 = src0->nb[0];
  6861. const size_t nb01 = src0->nb[1];
  6862. const size_t nb02 = src0->nb[2];
  6863. const size_t nb03 = src0->nb[3];
  6864. const size_t nb10 = src1->nb[0];
  6865. const size_t nb11 = src1->nb[1];
  6866. const size_t nb12 = src1->nb[2];
  6867. const size_t nb13 = src1->nb[3];
  6868. const size_t nb0 = dst->nb[0];
  6869. const size_t nb1 = dst->nb[1];
  6870. const size_t nb2 = dst->nb[2];
  6871. const size_t nb3 = dst->nb[3];
  6872. GGML_ASSERT( nb0 == sizeof(float));
  6873. GGML_ASSERT(nb00 == sizeof(float));
  6874. GGML_ASSERT(ne00 == ne10);
  6875. if (nb10 == sizeof(float)) {
  6876. for (int64_t ir = ith; ir < nr; ir += nth) {
  6877. // src0 and dst are same shape => same indices
  6878. const int64_t i03 = ir/(ne02*ne01);
  6879. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6880. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6881. const int64_t i13 = i03 % ne13;
  6882. const int64_t i12 = i02 % ne12;
  6883. const int64_t i11 = i01 % ne11;
  6884. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6885. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6886. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6887. #ifdef GGML_USE_ACCELERATE
  6888. UNUSED(ggml_vec_mul_f32);
  6889. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6890. #else
  6891. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6892. #endif
  6893. // }
  6894. // }
  6895. }
  6896. } else {
  6897. // src1 is not contiguous
  6898. for (int64_t ir = ith; ir < nr; ir += nth) {
  6899. // src0 and dst are same shape => same indices
  6900. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6901. const int64_t i03 = ir/(ne02*ne01);
  6902. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6903. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6904. const int64_t i13 = i03 % ne13;
  6905. const int64_t i12 = i02 % ne12;
  6906. const int64_t i11 = i01 % ne11;
  6907. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6908. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6909. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6910. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6911. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6912. }
  6913. }
  6914. }
  6915. }
  6916. static void ggml_compute_forward_mul(
  6917. const struct ggml_compute_params * params,
  6918. const struct ggml_tensor * src0,
  6919. const struct ggml_tensor * src1,
  6920. struct ggml_tensor * dst) {
  6921. switch (src0->type) {
  6922. case GGML_TYPE_F32:
  6923. {
  6924. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6925. } break;
  6926. default:
  6927. {
  6928. GGML_ASSERT(false);
  6929. } break;
  6930. }
  6931. }
  6932. // ggml_compute_forward_div
  6933. static void ggml_compute_forward_div_f32(
  6934. const struct ggml_compute_params * params,
  6935. const struct ggml_tensor * src0,
  6936. const struct ggml_tensor * src1,
  6937. struct ggml_tensor * dst) {
  6938. assert(params->ith == 0);
  6939. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6941. return;
  6942. }
  6943. const int nr = ggml_nrows(src0);
  6944. const int64_t ne0 = src0->ne[0];
  6945. const int64_t ne1 = src0->ne[1];
  6946. const int64_t ne2 = src0->ne[2];
  6947. const size_t nb00 = src0->nb[0];
  6948. const size_t nb01 = src0->nb[1];
  6949. const size_t nb02 = src0->nb[2];
  6950. const size_t nb03 = src0->nb[3];
  6951. const size_t nb10 = src1->nb[0];
  6952. const size_t nb11 = src1->nb[1];
  6953. const size_t nb12 = src1->nb[2];
  6954. const size_t nb13 = src1->nb[3];
  6955. const size_t nb0 = dst->nb[0];
  6956. const size_t nb1 = dst->nb[1];
  6957. const size_t nb2 = dst->nb[2];
  6958. const size_t nb3 = dst->nb[3];
  6959. GGML_ASSERT( nb0 == sizeof(float));
  6960. GGML_ASSERT(nb00 == sizeof(float));
  6961. if (nb10 == sizeof(float)) {
  6962. for (int ir = 0; ir < nr; ++ir) {
  6963. // src0, src1 and dst are same shape => same indices
  6964. const int i3 = ir/(ne2*ne1);
  6965. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6966. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6967. #ifdef GGML_USE_ACCELERATE
  6968. vDSP_vdiv(
  6969. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6970. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6971. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6972. ne0);
  6973. #else
  6974. ggml_vec_div_f32(ne0,
  6975. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6976. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6977. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6978. #endif
  6979. // }
  6980. // }
  6981. }
  6982. } else {
  6983. // src1 is not contiguous
  6984. for (int ir = 0; ir < nr; ++ir) {
  6985. // src0, src1 and dst are same shape => same indices
  6986. const int i3 = ir/(ne2*ne1);
  6987. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6988. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6989. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6990. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6991. for (int i0 = 0; i0 < ne0; i0++) {
  6992. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6993. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6994. }
  6995. }
  6996. }
  6997. }
  6998. static void ggml_compute_forward_div(
  6999. const struct ggml_compute_params * params,
  7000. const struct ggml_tensor * src0,
  7001. const struct ggml_tensor * src1,
  7002. struct ggml_tensor * dst) {
  7003. switch (src0->type) {
  7004. case GGML_TYPE_F32:
  7005. {
  7006. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7007. } break;
  7008. default:
  7009. {
  7010. GGML_ASSERT(false);
  7011. } break;
  7012. }
  7013. }
  7014. // ggml_compute_forward_sqr
  7015. static void ggml_compute_forward_sqr_f32(
  7016. const struct ggml_compute_params * params,
  7017. const struct ggml_tensor * src0,
  7018. struct ggml_tensor * dst) {
  7019. assert(params->ith == 0);
  7020. assert(ggml_are_same_shape(src0, dst));
  7021. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7022. return;
  7023. }
  7024. const int n = ggml_nrows(src0);
  7025. const int nc = src0->ne[0];
  7026. assert( dst->nb[0] == sizeof(float));
  7027. assert(src0->nb[0] == sizeof(float));
  7028. for (int i = 0; i < n; i++) {
  7029. ggml_vec_sqr_f32(nc,
  7030. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7031. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7032. }
  7033. }
  7034. static void ggml_compute_forward_sqr(
  7035. const struct ggml_compute_params * params,
  7036. const struct ggml_tensor * src0,
  7037. struct ggml_tensor * dst) {
  7038. switch (src0->type) {
  7039. case GGML_TYPE_F32:
  7040. {
  7041. ggml_compute_forward_sqr_f32(params, src0, dst);
  7042. } break;
  7043. default:
  7044. {
  7045. GGML_ASSERT(false);
  7046. } break;
  7047. }
  7048. }
  7049. // ggml_compute_forward_sqrt
  7050. static void ggml_compute_forward_sqrt_f32(
  7051. const struct ggml_compute_params * params,
  7052. const struct ggml_tensor * src0,
  7053. struct ggml_tensor * dst) {
  7054. assert(params->ith == 0);
  7055. assert(ggml_are_same_shape(src0, dst));
  7056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7057. return;
  7058. }
  7059. const int n = ggml_nrows(src0);
  7060. const int nc = src0->ne[0];
  7061. assert( dst->nb[0] == sizeof(float));
  7062. assert(src0->nb[0] == sizeof(float));
  7063. for (int i = 0; i < n; i++) {
  7064. ggml_vec_sqrt_f32(nc,
  7065. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7066. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7067. }
  7068. }
  7069. static void ggml_compute_forward_sqrt(
  7070. const struct ggml_compute_params * params,
  7071. const struct ggml_tensor * src0,
  7072. struct ggml_tensor * dst) {
  7073. switch (src0->type) {
  7074. case GGML_TYPE_F32:
  7075. {
  7076. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7077. } break;
  7078. default:
  7079. {
  7080. GGML_ASSERT(false);
  7081. } break;
  7082. }
  7083. }
  7084. // ggml_compute_forward_log
  7085. static void ggml_compute_forward_log_f32(
  7086. const struct ggml_compute_params * params,
  7087. const struct ggml_tensor * src0,
  7088. struct ggml_tensor * dst) {
  7089. GGML_ASSERT(params->ith == 0);
  7090. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7091. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7092. return;
  7093. }
  7094. const int n = ggml_nrows(src0);
  7095. const int nc = src0->ne[0];
  7096. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7097. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7098. for (int i = 0; i < n; i++) {
  7099. ggml_vec_log_f32(nc,
  7100. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7101. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7102. }
  7103. }
  7104. static void ggml_compute_forward_log(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0,
  7107. struct ggml_tensor * dst) {
  7108. switch (src0->type) {
  7109. case GGML_TYPE_F32:
  7110. {
  7111. ggml_compute_forward_log_f32(params, src0, dst);
  7112. } break;
  7113. default:
  7114. {
  7115. GGML_ASSERT(false);
  7116. } break;
  7117. }
  7118. }
  7119. // ggml_compute_forward_sum
  7120. static void ggml_compute_forward_sum_f32(
  7121. const struct ggml_compute_params * params,
  7122. const struct ggml_tensor * src0,
  7123. struct ggml_tensor * dst) {
  7124. assert(params->ith == 0);
  7125. assert(ggml_is_scalar(dst));
  7126. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7127. return;
  7128. }
  7129. assert(ggml_is_scalar(dst));
  7130. assert(src0->nb[0] == sizeof(float));
  7131. const int64_t ne00 = src0->ne[0];
  7132. const int64_t ne01 = src0->ne[1];
  7133. const int64_t ne02 = src0->ne[2];
  7134. const int64_t ne03 = src0->ne[3];
  7135. const size_t nb01 = src0->nb[1];
  7136. const size_t nb02 = src0->nb[2];
  7137. const size_t nb03 = src0->nb[3];
  7138. ggml_float sum = 0;
  7139. ggml_float row_sum = 0;
  7140. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7141. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7142. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7143. ggml_vec_sum_ggf(ne00,
  7144. &row_sum,
  7145. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7146. sum += row_sum;
  7147. }
  7148. }
  7149. }
  7150. ((float *) dst->data)[0] = sum;
  7151. }
  7152. static void ggml_compute_forward_sum(
  7153. const struct ggml_compute_params * params,
  7154. const struct ggml_tensor * src0,
  7155. struct ggml_tensor * dst) {
  7156. switch (src0->type) {
  7157. case GGML_TYPE_F32:
  7158. {
  7159. ggml_compute_forward_sum_f32(params, src0, dst);
  7160. } break;
  7161. default:
  7162. {
  7163. GGML_ASSERT(false);
  7164. } break;
  7165. }
  7166. }
  7167. // ggml_compute_forward_sum_rows
  7168. static void ggml_compute_forward_sum_rows_f32(
  7169. const struct ggml_compute_params * params,
  7170. const struct ggml_tensor * src0,
  7171. struct ggml_tensor * dst) {
  7172. GGML_ASSERT(params->ith == 0);
  7173. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7174. return;
  7175. }
  7176. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7177. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7178. const int64_t ne00 = src0->ne[0];
  7179. const int64_t ne01 = src0->ne[1];
  7180. const int64_t ne02 = src0->ne[2];
  7181. const int64_t ne03 = src0->ne[3];
  7182. const int64_t ne0 = dst->ne[0];
  7183. const int64_t ne1 = dst->ne[1];
  7184. const int64_t ne2 = dst->ne[2];
  7185. const int64_t ne3 = dst->ne[3];
  7186. GGML_ASSERT(ne0 == 1);
  7187. GGML_ASSERT(ne1 == ne01);
  7188. GGML_ASSERT(ne2 == ne02);
  7189. GGML_ASSERT(ne3 == ne03);
  7190. const size_t nb01 = src0->nb[1];
  7191. const size_t nb02 = src0->nb[2];
  7192. const size_t nb03 = src0->nb[3];
  7193. const size_t nb1 = dst->nb[1];
  7194. const size_t nb2 = dst->nb[2];
  7195. const size_t nb3 = dst->nb[3];
  7196. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7197. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7198. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7199. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7200. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7201. float row_sum = 0;
  7202. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7203. dst_row[0] = row_sum;
  7204. }
  7205. }
  7206. }
  7207. }
  7208. static void ggml_compute_forward_sum_rows(
  7209. const struct ggml_compute_params * params,
  7210. const struct ggml_tensor * src0,
  7211. struct ggml_tensor * dst) {
  7212. switch (src0->type) {
  7213. case GGML_TYPE_F32:
  7214. {
  7215. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7216. } break;
  7217. default:
  7218. {
  7219. GGML_ASSERT(false);
  7220. } break;
  7221. }
  7222. }
  7223. // ggml_compute_forward_mean
  7224. static void ggml_compute_forward_mean_f32(
  7225. const struct ggml_compute_params * params,
  7226. const struct ggml_tensor * src0,
  7227. struct ggml_tensor * dst) {
  7228. assert(params->ith == 0);
  7229. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7230. return;
  7231. }
  7232. assert(src0->nb[0] == sizeof(float));
  7233. const int64_t ne00 = src0->ne[0];
  7234. const int64_t ne01 = src0->ne[1];
  7235. const int64_t ne02 = src0->ne[2];
  7236. const int64_t ne03 = src0->ne[3];
  7237. const size_t nb01 = src0->nb[1];
  7238. const size_t nb02 = src0->nb[2];
  7239. const size_t nb03 = src0->nb[3];
  7240. const int64_t ne0 = dst->ne[0];
  7241. const int64_t ne1 = dst->ne[1];
  7242. const int64_t ne2 = dst->ne[2];
  7243. const int64_t ne3 = dst->ne[3];
  7244. assert(ne0 == 1);
  7245. assert(ne1 == ne01);
  7246. assert(ne2 == ne02);
  7247. assert(ne3 == ne03);
  7248. UNUSED(ne0);
  7249. UNUSED(ne1);
  7250. UNUSED(ne2);
  7251. UNUSED(ne3);
  7252. const size_t nb1 = dst->nb[1];
  7253. const size_t nb2 = dst->nb[2];
  7254. const size_t nb3 = dst->nb[3];
  7255. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7256. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7257. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7258. ggml_vec_sum_f32(ne00,
  7259. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7260. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7261. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7262. }
  7263. }
  7264. }
  7265. }
  7266. static void ggml_compute_forward_mean(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. struct ggml_tensor * dst) {
  7270. switch (src0->type) {
  7271. case GGML_TYPE_F32:
  7272. {
  7273. ggml_compute_forward_mean_f32(params, src0, dst);
  7274. } break;
  7275. default:
  7276. {
  7277. GGML_ASSERT(false);
  7278. } break;
  7279. }
  7280. }
  7281. // ggml_compute_forward_repeat
  7282. static void ggml_compute_forward_repeat_f32(
  7283. const struct ggml_compute_params * params,
  7284. const struct ggml_tensor * src0,
  7285. struct ggml_tensor * dst) {
  7286. GGML_ASSERT(params->ith == 0);
  7287. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7288. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7289. return;
  7290. }
  7291. const int64_t ne0 = dst->ne[0];
  7292. const int64_t ne1 = dst->ne[1];
  7293. const int64_t ne2 = dst->ne[2];
  7294. const int64_t ne3 = dst->ne[3];
  7295. const int64_t ne00 = src0->ne[0];
  7296. const int64_t ne01 = src0->ne[1];
  7297. const int64_t ne02 = src0->ne[2];
  7298. const int64_t ne03 = src0->ne[3];
  7299. const size_t nb0 = dst->nb[0];
  7300. const size_t nb1 = dst->nb[1];
  7301. const size_t nb2 = dst->nb[2];
  7302. const size_t nb3 = dst->nb[3];
  7303. const size_t nb00 = src0->nb[0];
  7304. const size_t nb01 = src0->nb[1];
  7305. const size_t nb02 = src0->nb[2];
  7306. const size_t nb03 = src0->nb[3];
  7307. // guaranteed to be an integer due to the check in ggml_can_repeat
  7308. const int nr0 = (int)(ne0/ne00);
  7309. const int nr1 = (int)(ne1/ne01);
  7310. const int nr2 = (int)(ne2/ne02);
  7311. const int nr3 = (int)(ne3/ne03);
  7312. // TODO: support for transposed / permuted tensors
  7313. GGML_ASSERT(nb0 == sizeof(float));
  7314. GGML_ASSERT(nb00 == sizeof(float));
  7315. // TODO: maybe this is not optimal?
  7316. for (int i3 = 0; i3 < nr3; i3++) {
  7317. for (int k3 = 0; k3 < ne03; k3++) {
  7318. for (int i2 = 0; i2 < nr2; i2++) {
  7319. for (int k2 = 0; k2 < ne02; k2++) {
  7320. for (int i1 = 0; i1 < nr1; i1++) {
  7321. for (int k1 = 0; k1 < ne01; k1++) {
  7322. for (int i0 = 0; i0 < nr0; i0++) {
  7323. ggml_vec_cpy_f32(ne00,
  7324. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7325. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7326. }
  7327. }
  7328. }
  7329. }
  7330. }
  7331. }
  7332. }
  7333. }
  7334. static void ggml_compute_forward_repeat(
  7335. const struct ggml_compute_params * params,
  7336. const struct ggml_tensor * src0,
  7337. struct ggml_tensor * dst) {
  7338. switch (src0->type) {
  7339. case GGML_TYPE_F32:
  7340. {
  7341. ggml_compute_forward_repeat_f32(params, src0, dst);
  7342. } break;
  7343. default:
  7344. {
  7345. GGML_ASSERT(false);
  7346. } break;
  7347. }
  7348. }
  7349. // ggml_compute_forward_repeat_back
  7350. static void ggml_compute_forward_repeat_back_f32(
  7351. const struct ggml_compute_params * params,
  7352. const struct ggml_tensor * src0,
  7353. struct ggml_tensor * dst) {
  7354. GGML_ASSERT(params->ith == 0);
  7355. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7357. return;
  7358. }
  7359. const int64_t ne0 = dst->ne[0];
  7360. const int64_t ne1 = dst->ne[1];
  7361. const int64_t ne2 = dst->ne[2];
  7362. const int64_t ne3 = dst->ne[3];
  7363. const int64_t ne00 = src0->ne[0];
  7364. const int64_t ne01 = src0->ne[1];
  7365. const int64_t ne02 = src0->ne[2];
  7366. const int64_t ne03 = src0->ne[3];
  7367. const size_t nb0 = dst->nb[0];
  7368. const size_t nb1 = dst->nb[1];
  7369. const size_t nb2 = dst->nb[2];
  7370. const size_t nb3 = dst->nb[3];
  7371. const size_t nb00 = src0->nb[0];
  7372. const size_t nb01 = src0->nb[1];
  7373. const size_t nb02 = src0->nb[2];
  7374. const size_t nb03 = src0->nb[3];
  7375. // guaranteed to be an integer due to the check in ggml_can_repeat
  7376. const int nr0 = (int)(ne00/ne0);
  7377. const int nr1 = (int)(ne01/ne1);
  7378. const int nr2 = (int)(ne02/ne2);
  7379. const int nr3 = (int)(ne03/ne3);
  7380. // TODO: support for transposed / permuted tensors
  7381. GGML_ASSERT(nb0 == sizeof(float));
  7382. GGML_ASSERT(nb00 == sizeof(float));
  7383. if (ggml_is_contiguous(dst)) {
  7384. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7385. } else {
  7386. for (int k3 = 0; k3 < ne3; k3++) {
  7387. for (int k2 = 0; k2 < ne2; k2++) {
  7388. for (int k1 = 0; k1 < ne1; k1++) {
  7389. ggml_vec_set_f32(ne0,
  7390. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7391. 0);
  7392. }
  7393. }
  7394. }
  7395. }
  7396. // TODO: maybe this is not optimal?
  7397. for (int i3 = 0; i3 < nr3; i3++) {
  7398. for (int k3 = 0; k3 < ne3; k3++) {
  7399. for (int i2 = 0; i2 < nr2; i2++) {
  7400. for (int k2 = 0; k2 < ne2; k2++) {
  7401. for (int i1 = 0; i1 < nr1; i1++) {
  7402. for (int k1 = 0; k1 < ne1; k1++) {
  7403. for (int i0 = 0; i0 < nr0; i0++) {
  7404. ggml_vec_acc_f32(ne0,
  7405. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7406. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7407. }
  7408. }
  7409. }
  7410. }
  7411. }
  7412. }
  7413. }
  7414. }
  7415. static void ggml_compute_forward_repeat_back(
  7416. const struct ggml_compute_params * params,
  7417. const struct ggml_tensor * src0,
  7418. struct ggml_tensor * dst) {
  7419. switch (src0->type) {
  7420. case GGML_TYPE_F32:
  7421. {
  7422. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7423. } break;
  7424. default:
  7425. {
  7426. GGML_ASSERT(false);
  7427. } break;
  7428. }
  7429. }
  7430. // ggml_compute_forward_abs
  7431. static void ggml_compute_forward_abs_f32(
  7432. const struct ggml_compute_params * params,
  7433. const struct ggml_tensor * src0,
  7434. struct ggml_tensor * dst) {
  7435. assert(params->ith == 0);
  7436. assert(ggml_are_same_shape(src0, dst));
  7437. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7438. return;
  7439. }
  7440. const int n = ggml_nrows(src0);
  7441. const int nc = src0->ne[0];
  7442. assert(dst->nb[0] == sizeof(float));
  7443. assert(src0->nb[0] == sizeof(float));
  7444. for (int i = 0; i < n; i++) {
  7445. ggml_vec_abs_f32(nc,
  7446. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7447. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7448. }
  7449. }
  7450. static void ggml_compute_forward_abs(
  7451. const struct ggml_compute_params * params,
  7452. const struct ggml_tensor * src0,
  7453. struct ggml_tensor * dst) {
  7454. switch (src0->type) {
  7455. case GGML_TYPE_F32:
  7456. {
  7457. ggml_compute_forward_abs_f32(params, src0, dst);
  7458. } break;
  7459. default:
  7460. {
  7461. GGML_ASSERT(false);
  7462. } break;
  7463. }
  7464. }
  7465. // ggml_compute_forward_sgn
  7466. static void ggml_compute_forward_sgn_f32(
  7467. const struct ggml_compute_params * params,
  7468. const struct ggml_tensor * src0,
  7469. struct ggml_tensor * dst) {
  7470. assert(params->ith == 0);
  7471. assert(ggml_are_same_shape(src0, dst));
  7472. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7473. return;
  7474. }
  7475. const int n = ggml_nrows(src0);
  7476. const int nc = src0->ne[0];
  7477. assert(dst->nb[0] == sizeof(float));
  7478. assert(src0->nb[0] == sizeof(float));
  7479. for (int i = 0; i < n; i++) {
  7480. ggml_vec_sgn_f32(nc,
  7481. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7482. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7483. }
  7484. }
  7485. static void ggml_compute_forward_sgn(
  7486. const struct ggml_compute_params * params,
  7487. const struct ggml_tensor * src0,
  7488. struct ggml_tensor * dst) {
  7489. switch (src0->type) {
  7490. case GGML_TYPE_F32:
  7491. {
  7492. ggml_compute_forward_sgn_f32(params, src0, dst);
  7493. } break;
  7494. default:
  7495. {
  7496. GGML_ASSERT(false);
  7497. } break;
  7498. }
  7499. }
  7500. // ggml_compute_forward_neg
  7501. static void ggml_compute_forward_neg_f32(
  7502. const struct ggml_compute_params * params,
  7503. const struct ggml_tensor * src0,
  7504. struct ggml_tensor * dst) {
  7505. assert(params->ith == 0);
  7506. assert(ggml_are_same_shape(src0, dst));
  7507. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7508. return;
  7509. }
  7510. const int n = ggml_nrows(src0);
  7511. const int nc = src0->ne[0];
  7512. assert(dst->nb[0] == sizeof(float));
  7513. assert(src0->nb[0] == sizeof(float));
  7514. for (int i = 0; i < n; i++) {
  7515. ggml_vec_neg_f32(nc,
  7516. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7517. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7518. }
  7519. }
  7520. static void ggml_compute_forward_neg(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. struct ggml_tensor * dst) {
  7524. switch (src0->type) {
  7525. case GGML_TYPE_F32:
  7526. {
  7527. ggml_compute_forward_neg_f32(params, src0, dst);
  7528. } break;
  7529. default:
  7530. {
  7531. GGML_ASSERT(false);
  7532. } break;
  7533. }
  7534. }
  7535. // ggml_compute_forward_step
  7536. static void ggml_compute_forward_step_f32(
  7537. const struct ggml_compute_params * params,
  7538. const struct ggml_tensor * src0,
  7539. struct ggml_tensor * dst) {
  7540. assert(params->ith == 0);
  7541. assert(ggml_are_same_shape(src0, dst));
  7542. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7543. return;
  7544. }
  7545. const int n = ggml_nrows(src0);
  7546. const int nc = src0->ne[0];
  7547. assert(dst->nb[0] == sizeof(float));
  7548. assert(src0->nb[0] == sizeof(float));
  7549. for (int i = 0; i < n; i++) {
  7550. ggml_vec_step_f32(nc,
  7551. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7552. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7553. }
  7554. }
  7555. static void ggml_compute_forward_step(
  7556. const struct ggml_compute_params * params,
  7557. const struct ggml_tensor * src0,
  7558. struct ggml_tensor * dst) {
  7559. switch (src0->type) {
  7560. case GGML_TYPE_F32:
  7561. {
  7562. ggml_compute_forward_step_f32(params, src0, dst);
  7563. } break;
  7564. default:
  7565. {
  7566. GGML_ASSERT(false);
  7567. } break;
  7568. }
  7569. }
  7570. // ggml_compute_forward_relu
  7571. static void ggml_compute_forward_relu_f32(
  7572. const struct ggml_compute_params * params,
  7573. const struct ggml_tensor * src0,
  7574. struct ggml_tensor * dst) {
  7575. assert(params->ith == 0);
  7576. assert(ggml_are_same_shape(src0, dst));
  7577. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7578. return;
  7579. }
  7580. const int n = ggml_nrows(src0);
  7581. const int nc = src0->ne[0];
  7582. assert(dst->nb[0] == sizeof(float));
  7583. assert(src0->nb[0] == sizeof(float));
  7584. for (int i = 0; i < n; i++) {
  7585. ggml_vec_relu_f32(nc,
  7586. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7587. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7588. }
  7589. }
  7590. static void ggml_compute_forward_relu(
  7591. const struct ggml_compute_params * params,
  7592. const struct ggml_tensor * src0,
  7593. struct ggml_tensor * dst) {
  7594. switch (src0->type) {
  7595. case GGML_TYPE_F32:
  7596. {
  7597. ggml_compute_forward_relu_f32(params, src0, dst);
  7598. } break;
  7599. default:
  7600. {
  7601. GGML_ASSERT(false);
  7602. } break;
  7603. }
  7604. }
  7605. // ggml_compute_forward_gelu
  7606. static void ggml_compute_forward_gelu_f32(
  7607. const struct ggml_compute_params * params,
  7608. const struct ggml_tensor * src0,
  7609. struct ggml_tensor * dst) {
  7610. GGML_ASSERT(ggml_is_contiguous(src0));
  7611. GGML_ASSERT(ggml_is_contiguous(dst));
  7612. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7613. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7614. return;
  7615. }
  7616. const int ith = params->ith;
  7617. const int nth = params->nth;
  7618. const int nc = src0->ne[0];
  7619. const int nr = ggml_nrows(src0);
  7620. // rows per thread
  7621. const int dr = (nr + nth - 1)/nth;
  7622. // row range for this thread
  7623. const int ir0 = dr*ith;
  7624. const int ir1 = MIN(ir0 + dr, nr);
  7625. for (int i1 = ir0; i1 < ir1; i1++) {
  7626. ggml_vec_gelu_f32(nc,
  7627. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7628. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7629. #ifndef NDEBUG
  7630. for (int k = 0; k < nc; k++) {
  7631. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7632. UNUSED(x);
  7633. assert(!isnan(x));
  7634. assert(!isinf(x));
  7635. }
  7636. #endif
  7637. }
  7638. }
  7639. static void ggml_compute_forward_gelu(
  7640. const struct ggml_compute_params * params,
  7641. const struct ggml_tensor * src0,
  7642. struct ggml_tensor * dst) {
  7643. switch (src0->type) {
  7644. case GGML_TYPE_F32:
  7645. {
  7646. ggml_compute_forward_gelu_f32(params, src0, dst);
  7647. } break;
  7648. default:
  7649. {
  7650. GGML_ASSERT(false);
  7651. } break;
  7652. }
  7653. //printf("XXXXXXXX gelu\n");
  7654. }
  7655. // ggml_compute_forward_silu
  7656. static void ggml_compute_forward_silu_f32(
  7657. const struct ggml_compute_params * params,
  7658. const struct ggml_tensor * src0,
  7659. struct ggml_tensor * dst) {
  7660. GGML_ASSERT(ggml_is_contiguous(src0));
  7661. GGML_ASSERT(ggml_is_contiguous(dst));
  7662. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7664. return;
  7665. }
  7666. const int ith = params->ith;
  7667. const int nth = params->nth;
  7668. const int nc = src0->ne[0];
  7669. const int nr = ggml_nrows(src0);
  7670. // rows per thread
  7671. const int dr = (nr + nth - 1)/nth;
  7672. // row range for this thread
  7673. const int ir0 = dr*ith;
  7674. const int ir1 = MIN(ir0 + dr, nr);
  7675. for (int i1 = ir0; i1 < ir1; i1++) {
  7676. ggml_vec_silu_f32(nc,
  7677. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7678. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7679. #ifndef NDEBUG
  7680. for (int k = 0; k < nc; k++) {
  7681. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7682. UNUSED(x);
  7683. assert(!isnan(x));
  7684. assert(!isinf(x));
  7685. }
  7686. #endif
  7687. }
  7688. }
  7689. static void ggml_compute_forward_silu(
  7690. const struct ggml_compute_params * params,
  7691. const struct ggml_tensor * src0,
  7692. struct ggml_tensor * dst) {
  7693. switch (src0->type) {
  7694. case GGML_TYPE_F32:
  7695. {
  7696. ggml_compute_forward_silu_f32(params, src0, dst);
  7697. } break;
  7698. default:
  7699. {
  7700. GGML_ASSERT(false);
  7701. } break;
  7702. }
  7703. }
  7704. // ggml_compute_forward_silu_back
  7705. static void ggml_compute_forward_silu_back_f32(
  7706. const struct ggml_compute_params * params,
  7707. const struct ggml_tensor * src0,
  7708. const struct ggml_tensor * grad,
  7709. struct ggml_tensor * dst) {
  7710. GGML_ASSERT(ggml_is_contiguous(grad));
  7711. GGML_ASSERT(ggml_is_contiguous(src0));
  7712. GGML_ASSERT(ggml_is_contiguous(dst));
  7713. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7714. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7715. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7716. return;
  7717. }
  7718. const int ith = params->ith;
  7719. const int nth = params->nth;
  7720. const int nc = src0->ne[0];
  7721. const int nr = ggml_nrows(src0);
  7722. // rows per thread
  7723. const int dr = (nr + nth - 1)/nth;
  7724. // row range for this thread
  7725. const int ir0 = dr*ith;
  7726. const int ir1 = MIN(ir0 + dr, nr);
  7727. for (int i1 = ir0; i1 < ir1; i1++) {
  7728. ggml_vec_silu_backward_f32(nc,
  7729. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7730. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7731. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7732. #ifndef NDEBUG
  7733. for (int k = 0; k < nc; k++) {
  7734. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7735. UNUSED(x);
  7736. assert(!isnan(x));
  7737. assert(!isinf(x));
  7738. }
  7739. #endif
  7740. }
  7741. }
  7742. static void ggml_compute_forward_silu_back(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. const struct ggml_tensor * grad,
  7746. struct ggml_tensor * dst) {
  7747. switch (src0->type) {
  7748. case GGML_TYPE_F32:
  7749. {
  7750. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7751. } break;
  7752. default:
  7753. {
  7754. GGML_ASSERT(false);
  7755. } break;
  7756. }
  7757. }
  7758. // ggml_compute_forward_norm
  7759. static void ggml_compute_forward_norm_f32(
  7760. const struct ggml_compute_params * params,
  7761. const struct ggml_tensor * src0,
  7762. struct ggml_tensor * dst) {
  7763. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7764. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7765. return;
  7766. }
  7767. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7768. const int ith = params->ith;
  7769. const int nth = params->nth;
  7770. const int64_t ne00 = src0->ne[0];
  7771. const int64_t ne01 = src0->ne[1];
  7772. const int64_t ne02 = src0->ne[2];
  7773. const int64_t ne03 = src0->ne[3];
  7774. const size_t nb01 = src0->nb[1];
  7775. const size_t nb02 = src0->nb[2];
  7776. const size_t nb03 = src0->nb[3];
  7777. const size_t nb1 = dst->nb[1];
  7778. const size_t nb2 = dst->nb[2];
  7779. const size_t nb3 = dst->nb[3];
  7780. const float eps = 1e-5f; // TODO: make this a parameter
  7781. // TODO: optimize
  7782. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7783. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7784. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7785. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7786. ggml_float sum = 0.0;
  7787. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7788. sum += (ggml_float)x[i00];
  7789. }
  7790. float mean = sum/ne00;
  7791. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7792. ggml_float sum2 = 0.0;
  7793. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7794. float v = x[i00] - mean;
  7795. y[i00] = v;
  7796. sum2 += (ggml_float)(v*v);
  7797. }
  7798. float variance = sum2/ne00;
  7799. const float scale = 1.0f/sqrtf(variance + eps);
  7800. ggml_vec_scale_f32(ne00, y, scale);
  7801. }
  7802. }
  7803. }
  7804. }
  7805. static void ggml_compute_forward_norm(
  7806. const struct ggml_compute_params * params,
  7807. const struct ggml_tensor * src0,
  7808. struct ggml_tensor * dst) {
  7809. switch (src0->type) {
  7810. case GGML_TYPE_F32:
  7811. {
  7812. ggml_compute_forward_norm_f32(params, src0, dst);
  7813. } break;
  7814. default:
  7815. {
  7816. GGML_ASSERT(false);
  7817. } break;
  7818. }
  7819. }
  7820. static void ggml_compute_forward_rms_norm_f32(
  7821. const struct ggml_compute_params * params,
  7822. const struct ggml_tensor * src0,
  7823. struct ggml_tensor * dst) {
  7824. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7825. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7826. return;
  7827. }
  7828. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7829. const int ith = params->ith;
  7830. const int nth = params->nth;
  7831. const int64_t ne00 = src0->ne[0];
  7832. const int64_t ne01 = src0->ne[1];
  7833. const int64_t ne02 = src0->ne[2];
  7834. const int64_t ne03 = src0->ne[3];
  7835. const size_t nb01 = src0->nb[1];
  7836. const size_t nb02 = src0->nb[2];
  7837. const size_t nb03 = src0->nb[3];
  7838. const size_t nb1 = dst->nb[1];
  7839. const size_t nb2 = dst->nb[2];
  7840. const size_t nb3 = dst->nb[3];
  7841. const float eps = 1e-6f; // TODO: make this a parameter
  7842. // TODO: optimize
  7843. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7844. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7845. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7846. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7847. ggml_float sum = 0.0;
  7848. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7849. sum += (ggml_float)(x[i00] * x[i00]);
  7850. }
  7851. const float mean = sum/ne00;
  7852. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7853. memcpy(y, x, ne00 * sizeof(float));
  7854. // for (int i00 = 0; i00 < ne00; i00++) {
  7855. // y[i00] = x[i00];
  7856. // }
  7857. const float scale = 1.0f/sqrtf(mean + eps);
  7858. ggml_vec_scale_f32(ne00, y, scale);
  7859. }
  7860. }
  7861. }
  7862. }
  7863. static void ggml_compute_forward_rms_norm(
  7864. const struct ggml_compute_params * params,
  7865. const struct ggml_tensor * src0,
  7866. struct ggml_tensor * dst) {
  7867. switch (src0->type) {
  7868. case GGML_TYPE_F32:
  7869. {
  7870. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7871. } break;
  7872. default:
  7873. {
  7874. GGML_ASSERT(false);
  7875. } break;
  7876. }
  7877. }
  7878. static void ggml_compute_forward_rms_norm_back_f32(
  7879. const struct ggml_compute_params * params,
  7880. const struct ggml_tensor * src0,
  7881. const struct ggml_tensor * src1,
  7882. struct ggml_tensor * dst) {
  7883. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7885. return;
  7886. }
  7887. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7888. const int ith = params->ith;
  7889. const int nth = params->nth;
  7890. const int64_t ne00 = src0->ne[0];
  7891. const int64_t ne01 = src0->ne[1];
  7892. const int64_t ne02 = src0->ne[2];
  7893. const int64_t ne03 = src0->ne[3];
  7894. const size_t nb01 = src0->nb[1];
  7895. const size_t nb02 = src0->nb[2];
  7896. const size_t nb03 = src0->nb[3];
  7897. const size_t nb11 = src1->nb[1];
  7898. const size_t nb12 = src1->nb[2];
  7899. const size_t nb13 = src1->nb[3];
  7900. const size_t nb1 = dst->nb[1];
  7901. const size_t nb2 = dst->nb[2];
  7902. const size_t nb3 = dst->nb[3];
  7903. const float eps = 1e-6f; // TODO: make this a parameter
  7904. // TODO: optimize
  7905. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7907. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7908. // src1 is same shape as src0 => same indices
  7909. const int64_t i11 = i01;
  7910. const int64_t i12 = i02;
  7911. const int64_t i13 = i03;
  7912. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7913. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7914. ggml_float sum_xx = 0.0;
  7915. ggml_float sum_xdz = 0.0;
  7916. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7917. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7918. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7919. }
  7920. //const float mean = (float)(sum_xx)/ne00;
  7921. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7922. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7923. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7924. // we could cache rms from forward pass to improve performance.
  7925. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7926. //const float rms = sqrtf(mean_eps);
  7927. const float rrms = 1.0f / sqrtf(mean_eps);
  7928. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7929. {
  7930. // z = rms_norm(x)
  7931. //
  7932. // rms_norm(src0) =
  7933. // scale(
  7934. // src0,
  7935. // div(
  7936. // 1,
  7937. // sqrt(
  7938. // add(
  7939. // scale(
  7940. // sum(
  7941. // sqr(
  7942. // src0)),
  7943. // (1.0/N)),
  7944. // eps))));
  7945. // postorder:
  7946. // ## op args grad
  7947. // 00 param src0 grad[#00]
  7948. // 01 const 1
  7949. // 02 sqr (#00) grad[#02]
  7950. // 03 sum (#02) grad[#03]
  7951. // 04 const 1/N
  7952. // 05 scale (#03, #04) grad[#05]
  7953. // 06 const eps
  7954. // 07 add (#05, #06) grad[#07]
  7955. // 08 sqrt (#07) grad[#08]
  7956. // 09 div (#01,#08) grad[#09]
  7957. // 10 scale (#00,#09) grad[#10]
  7958. //
  7959. // backward pass, given grad[#10]
  7960. // #10: scale
  7961. // grad[#00] += scale(grad[#10],#09)
  7962. // grad[#09] += sum(mul(grad[#10],#00))
  7963. // #09: div
  7964. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7965. // #08: sqrt
  7966. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7967. // #07: add
  7968. // grad[#05] += grad[#07]
  7969. // #05: scale
  7970. // grad[#03] += scale(grad[#05],#04)
  7971. // #03: sum
  7972. // grad[#02] += repeat(grad[#03], #02)
  7973. // #02:
  7974. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7975. //
  7976. // substitute and simplify:
  7977. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7978. // grad[#02] = repeat(grad[#03], #02)
  7979. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7980. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7981. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7982. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7983. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7984. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7985. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7986. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7987. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7988. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7989. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7990. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7991. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7992. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7993. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7994. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7995. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7996. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7997. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7998. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7999. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8000. // a = b*c + d*e
  8001. // a = b*c*f/f + d*e*f/f
  8002. // a = (b*c*f + d*e*f)*(1/f)
  8003. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8004. // a = (b + d*e/c)*c
  8005. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8006. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8007. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8008. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8009. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8010. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8011. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8012. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8013. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8014. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8015. }
  8016. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8017. // post-order:
  8018. // dx := x
  8019. // dx := scale(dx,-mean_xdz/mean_eps)
  8020. // dx := add(dx, dz)
  8021. // dx := scale(dx, rrms)
  8022. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8023. ggml_vec_cpy_f32 (ne00, dx, x);
  8024. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8025. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8026. ggml_vec_acc_f32 (ne00, dx, dz);
  8027. ggml_vec_scale_f32(ne00, dx, rrms);
  8028. }
  8029. }
  8030. }
  8031. }
  8032. static void ggml_compute_forward_rms_norm_back(
  8033. const struct ggml_compute_params * params,
  8034. const struct ggml_tensor * src0,
  8035. const struct ggml_tensor * src1,
  8036. struct ggml_tensor * dst) {
  8037. switch (src0->type) {
  8038. case GGML_TYPE_F32:
  8039. {
  8040. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8041. } break;
  8042. default:
  8043. {
  8044. GGML_ASSERT(false);
  8045. } break;
  8046. }
  8047. }
  8048. // ggml_compute_forward_mul_mat
  8049. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8050. // helper function to determine if it is better to use BLAS or not
  8051. // for large matrices, BLAS is faster
  8052. static bool ggml_compute_forward_mul_mat_use_blas(
  8053. const struct ggml_tensor * src0,
  8054. const struct ggml_tensor * src1,
  8055. struct ggml_tensor * dst) {
  8056. //const int64_t ne00 = src0->ne[0];
  8057. //const int64_t ne01 = src0->ne[1];
  8058. const int64_t ne10 = src1->ne[0];
  8059. const int64_t ne0 = dst->ne[0];
  8060. const int64_t ne1 = dst->ne[1];
  8061. // TODO: find the optimal values for these
  8062. if (ggml_is_contiguous(src0) &&
  8063. ggml_is_contiguous(src1) &&
  8064. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8065. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8066. return true;
  8067. }
  8068. return false;
  8069. }
  8070. #endif
  8071. static void ggml_compute_forward_mul_mat_f32(
  8072. const struct ggml_compute_params * params,
  8073. const struct ggml_tensor * src0,
  8074. const struct ggml_tensor * src1,
  8075. struct ggml_tensor * dst) {
  8076. int64_t t0 = ggml_perf_time_us();
  8077. UNUSED(t0);
  8078. const int64_t ne00 = src0->ne[0];
  8079. const int64_t ne01 = src0->ne[1];
  8080. const int64_t ne02 = src0->ne[2];
  8081. const int64_t ne03 = src0->ne[3];
  8082. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8083. const int64_t ne10 = src1->ne[0];
  8084. #endif
  8085. const int64_t ne11 = src1->ne[1];
  8086. #ifndef NDEBUG
  8087. const int64_t ne12 = src1->ne[2];
  8088. const int64_t ne13 = src1->ne[3];
  8089. const int64_t ne0 = dst->ne[0];
  8090. const int64_t ne1 = dst->ne[1];
  8091. const int64_t ne2 = dst->ne[2];
  8092. const int64_t ne3 = dst->ne[3];
  8093. const int nb00 = src0->nb[0];
  8094. #endif
  8095. const int nb01 = src0->nb[1];
  8096. const int nb02 = src0->nb[2];
  8097. const int nb03 = src0->nb[3];
  8098. #ifndef NDEBUG
  8099. const int nb10 = src1->nb[0];
  8100. #endif
  8101. const int nb11 = src1->nb[1];
  8102. const int nb12 = src1->nb[2];
  8103. const int nb13 = src1->nb[3];
  8104. const int nb0 = dst->nb[0];
  8105. const int nb1 = dst->nb[1];
  8106. const int nb2 = dst->nb[2];
  8107. const int nb3 = dst->nb[3];
  8108. const int ith = params->ith;
  8109. const int nth = params->nth;
  8110. assert(ne02 == ne12);
  8111. assert(ne03 == ne13);
  8112. assert(ne2 == ne12);
  8113. assert(ne3 == ne13);
  8114. // we don't support permuted src0 or src1
  8115. assert(nb00 == sizeof(float));
  8116. assert(nb10 == sizeof(float));
  8117. // dst cannot be transposed or permuted
  8118. assert(nb0 == sizeof(float));
  8119. assert(nb0 <= nb1);
  8120. assert(nb1 <= nb2);
  8121. assert(nb2 <= nb3);
  8122. assert(ne0 == ne01);
  8123. assert(ne1 == ne11);
  8124. assert(ne2 == ne02);
  8125. assert(ne3 == ne03);
  8126. // nb01 >= nb00 - src0 is not transposed
  8127. // compute by src0 rows
  8128. #if defined(GGML_USE_CLBLAST)
  8129. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8130. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8131. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8132. }
  8133. return;
  8134. }
  8135. #endif
  8136. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8137. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8138. if (params->ith != 0) {
  8139. return;
  8140. }
  8141. if (params->type == GGML_TASK_INIT) {
  8142. return;
  8143. }
  8144. if (params->type == GGML_TASK_FINALIZE) {
  8145. return;
  8146. }
  8147. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8148. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8149. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8150. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8151. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8152. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8153. ne11, ne01, ne10,
  8154. 1.0f, y, ne10,
  8155. x, ne00,
  8156. 0.0f, d, ne01);
  8157. }
  8158. }
  8159. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8160. return;
  8161. }
  8162. #endif
  8163. if (params->type == GGML_TASK_INIT) {
  8164. return;
  8165. }
  8166. if (params->type == GGML_TASK_FINALIZE) {
  8167. return;
  8168. }
  8169. // parallelize by src0 rows using ggml_vec_dot_f32
  8170. // total rows in src0
  8171. const int nr = ne01*ne02*ne03;
  8172. // rows per thread
  8173. const int dr = (nr + nth - 1)/nth;
  8174. // row range for this thread
  8175. const int ir0 = dr*ith;
  8176. const int ir1 = MIN(ir0 + dr, nr);
  8177. for (int ir = ir0; ir < ir1; ++ir) {
  8178. // src0 indices
  8179. const int i03 = ir/(ne02*ne01);
  8180. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8181. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8182. for (int64_t ic = 0; ic < ne11; ++ic) {
  8183. // src1 indices
  8184. const int i13 = i03;
  8185. const int i12 = i02;
  8186. const int i11 = ic;
  8187. // dst indices
  8188. const int i0 = i01;
  8189. const int i1 = i11;
  8190. const int i2 = i02;
  8191. const int i3 = i03;
  8192. ggml_vec_dot_f32(ne00,
  8193. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8194. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8195. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8196. }
  8197. }
  8198. //int64_t t1 = ggml_perf_time_us();
  8199. //static int64_t acc = 0;
  8200. //acc += t1 - t0;
  8201. //if (t1 - t0 > 10) {
  8202. // printf("\n");
  8203. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8204. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8205. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8206. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8207. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8208. //}
  8209. }
  8210. static void ggml_compute_forward_mul_mat_f16_f32(
  8211. const struct ggml_compute_params * params,
  8212. const struct ggml_tensor * src0,
  8213. const struct ggml_tensor * src1,
  8214. struct ggml_tensor * dst) {
  8215. int64_t t0 = ggml_perf_time_us();
  8216. UNUSED(t0);
  8217. const int64_t ne00 = src0->ne[0];
  8218. const int64_t ne01 = src0->ne[1];
  8219. const int64_t ne02 = src0->ne[2];
  8220. const int64_t ne03 = src0->ne[3];
  8221. const int64_t ne10 = src1->ne[0];
  8222. const int64_t ne11 = src1->ne[1];
  8223. const int64_t ne12 = src1->ne[2];
  8224. const int64_t ne13 = src1->ne[3];
  8225. const int64_t ne0 = dst->ne[0];
  8226. const int64_t ne1 = dst->ne[1];
  8227. const int64_t ne2 = dst->ne[2];
  8228. const int64_t ne3 = dst->ne[3];
  8229. //const int64_t ne = ne0*ne1*ne2*ne3;
  8230. const int nb00 = src0->nb[0];
  8231. const int nb01 = src0->nb[1];
  8232. const int nb02 = src0->nb[2];
  8233. const int nb03 = src0->nb[3];
  8234. const int nb10 = src1->nb[0];
  8235. const int nb11 = src1->nb[1];
  8236. const int nb12 = src1->nb[2];
  8237. const int nb13 = src1->nb[3];
  8238. const int nb0 = dst->nb[0];
  8239. const int nb1 = dst->nb[1];
  8240. const int nb2 = dst->nb[2];
  8241. const int nb3 = dst->nb[3];
  8242. const int ith = params->ith;
  8243. const int nth = params->nth;
  8244. GGML_ASSERT(ne02 == ne12);
  8245. GGML_ASSERT(ne03 == ne13);
  8246. GGML_ASSERT(ne2 == ne12);
  8247. GGML_ASSERT(ne3 == ne13);
  8248. // TODO: we don't support permuted src0
  8249. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8250. // dst cannot be transposed or permuted
  8251. GGML_ASSERT(nb0 == sizeof(float));
  8252. GGML_ASSERT(nb0 <= nb1);
  8253. GGML_ASSERT(nb1 <= nb2);
  8254. GGML_ASSERT(nb2 <= nb3);
  8255. GGML_ASSERT(ne0 == ne01);
  8256. GGML_ASSERT(ne1 == ne11);
  8257. GGML_ASSERT(ne2 == ne02);
  8258. GGML_ASSERT(ne3 == ne03);
  8259. // nb01 >= nb00 - src0 is not transposed
  8260. // compute by src0 rows
  8261. #if defined(GGML_USE_CLBLAST)
  8262. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8263. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8264. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8265. }
  8266. return;
  8267. }
  8268. #endif
  8269. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8270. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8271. GGML_ASSERT(nb10 == sizeof(float));
  8272. if (params->ith != 0) {
  8273. return;
  8274. }
  8275. if (params->type == GGML_TASK_INIT) {
  8276. return;
  8277. }
  8278. if (params->type == GGML_TASK_FINALIZE) {
  8279. return;
  8280. }
  8281. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8282. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8283. float * const wdata = params->wdata;
  8284. {
  8285. size_t id = 0;
  8286. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8287. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8288. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8289. }
  8290. }
  8291. assert(id*sizeof(float) <= params->wsize);
  8292. }
  8293. const float * x = wdata;
  8294. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8295. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8296. // zT = y * xT
  8297. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8298. ne11, ne01, ne10,
  8299. 1.0f, y, ne10,
  8300. x, ne00,
  8301. 0.0f, d, ne01);
  8302. }
  8303. }
  8304. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8305. return;
  8306. }
  8307. #endif
  8308. if (params->type == GGML_TASK_INIT) {
  8309. ggml_fp16_t * const wdata = params->wdata;
  8310. size_t id = 0;
  8311. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8312. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8313. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8314. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8315. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8316. }
  8317. }
  8318. }
  8319. }
  8320. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8321. return;
  8322. }
  8323. if (params->type == GGML_TASK_FINALIZE) {
  8324. return;
  8325. }
  8326. // fp16 -> half the size, so divide by 2
  8327. // TODO: do not support transposed src1
  8328. assert(nb10/2 == sizeof(ggml_fp16_t));
  8329. // parallelize by src0 rows using ggml_vec_dot_f16
  8330. // total rows in src0
  8331. const int nr = ne01*ne02*ne03;
  8332. // rows per thread
  8333. const int dr = (nr + nth - 1)/nth;
  8334. // row range for this thread
  8335. const int ir0 = dr*ith;
  8336. const int ir1 = MIN(ir0 + dr, nr);
  8337. ggml_fp16_t * wdata = params->wdata;
  8338. for (int ir = ir0; ir < ir1; ++ir) {
  8339. // src0 indices
  8340. const int i03 = ir/(ne02*ne01);
  8341. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8342. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8343. const int i13 = i03;
  8344. const int i12 = i02;
  8345. const int i0 = i01;
  8346. const int i2 = i02;
  8347. const int i3 = i03;
  8348. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8349. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8350. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8351. for (int64_t ic = 0; ic < ne11; ++ic) {
  8352. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8353. }
  8354. }
  8355. //int64_t t1 = ggml_time_us();
  8356. //static int64_t acc = 0;
  8357. //acc += t1 - t0;
  8358. //if (t1 - t0 > 10) {
  8359. // printf("\n");
  8360. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8361. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8362. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8363. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8364. //}
  8365. }
  8366. static void ggml_compute_forward_mul_mat_q_f32(
  8367. const struct ggml_compute_params * params,
  8368. const struct ggml_tensor * src0,
  8369. const struct ggml_tensor * src1,
  8370. struct ggml_tensor * dst) {
  8371. int64_t t0 = ggml_perf_time_us();
  8372. UNUSED(t0);
  8373. const int64_t ne00 = src0->ne[0];
  8374. const int64_t ne01 = src0->ne[1];
  8375. const int64_t ne02 = src0->ne[2];
  8376. const int64_t ne03 = src0->ne[3];
  8377. const int64_t ne10 = src1->ne[0];
  8378. const int64_t ne11 = src1->ne[1];
  8379. const int64_t ne12 = src1->ne[2];
  8380. const int64_t ne13 = src1->ne[3];
  8381. const int64_t ne0 = dst->ne[0];
  8382. const int64_t ne1 = dst->ne[1];
  8383. const int64_t ne2 = dst->ne[2];
  8384. const int64_t ne3 = dst->ne[3];
  8385. const int nb00 = src0->nb[0];
  8386. const int nb01 = src0->nb[1];
  8387. const int nb02 = src0->nb[2];
  8388. const int nb03 = src0->nb[3];
  8389. const int nb10 = src1->nb[0];
  8390. const int nb11 = src1->nb[1];
  8391. const int nb12 = src1->nb[2];
  8392. const int nb13 = src1->nb[3];
  8393. const int nb0 = dst->nb[0];
  8394. const int nb1 = dst->nb[1];
  8395. const int nb2 = dst->nb[2];
  8396. const int nb3 = dst->nb[3];
  8397. const int ith = params->ith;
  8398. const int nth = params->nth;
  8399. GGML_ASSERT(ne02 == ne12);
  8400. GGML_ASSERT(ne03 == ne13);
  8401. GGML_ASSERT(ne2 == ne12);
  8402. GGML_ASSERT(ne3 == ne13);
  8403. const enum ggml_type type = src0->type;
  8404. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8405. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8406. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8407. // we don't support permuted src0 or src1
  8408. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8409. GGML_ASSERT(nb10 == sizeof(float));
  8410. // dst cannot be transposed or permuted
  8411. GGML_ASSERT(nb0 == sizeof(float));
  8412. GGML_ASSERT(nb0 <= nb1);
  8413. GGML_ASSERT(nb1 <= nb2);
  8414. GGML_ASSERT(nb2 <= nb3);
  8415. GGML_ASSERT(ne0 == ne01);
  8416. GGML_ASSERT(ne1 == ne11);
  8417. GGML_ASSERT(ne2 == ne02);
  8418. GGML_ASSERT(ne3 == ne03);
  8419. // nb01 >= nb00 - src0 is not transposed
  8420. // compute by src0 rows
  8421. #if defined(GGML_USE_CLBLAST)
  8422. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8423. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8424. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8425. }
  8426. return;
  8427. }
  8428. #endif
  8429. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8430. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8431. if (params->ith != 0) {
  8432. return;
  8433. }
  8434. if (params->type == GGML_TASK_INIT) {
  8435. return;
  8436. }
  8437. if (params->type == GGML_TASK_FINALIZE) {
  8438. return;
  8439. }
  8440. float * const wdata = params->wdata;
  8441. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8444. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8445. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8446. {
  8447. size_t id = 0;
  8448. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8449. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8450. id += ne00;
  8451. }
  8452. assert(id*sizeof(float) <= params->wsize);
  8453. }
  8454. const float * x = wdata;
  8455. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8456. ne11, ne01, ne10,
  8457. 1.0f, y, ne10,
  8458. x, ne00,
  8459. 0.0f, d, ne01);
  8460. }
  8461. }
  8462. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8463. return;
  8464. }
  8465. #endif
  8466. if (params->type == GGML_TASK_INIT) {
  8467. char * wdata = params->wdata;
  8468. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8469. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8470. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8471. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8472. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8473. wdata += row_size;
  8474. }
  8475. }
  8476. }
  8477. return;
  8478. }
  8479. if (params->type == GGML_TASK_FINALIZE) {
  8480. return;
  8481. }
  8482. // parallelize by src0 rows using ggml_vec_dot_q
  8483. // total rows in src0
  8484. const int nr = ne01*ne02*ne03;
  8485. // rows per thread
  8486. const int dr = (nr + nth - 1)/nth;
  8487. // row range for this thread
  8488. const int ir0 = dr*ith;
  8489. const int ir1 = MIN(ir0 + dr, nr);
  8490. void * wdata = params->wdata;
  8491. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8492. for (int ir = ir0; ir < ir1; ++ir) {
  8493. // src0 indices
  8494. const int i03 = ir/(ne02*ne01);
  8495. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8496. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8497. const int i13 = i03;
  8498. const int i12 = i02;
  8499. const int i0 = i01;
  8500. const int i2 = i02;
  8501. const int i3 = i03;
  8502. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8503. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8504. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8505. assert(ne00 % 32 == 0);
  8506. for (int64_t ic = 0; ic < ne11; ++ic) {
  8507. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8508. }
  8509. }
  8510. //int64_t t1 = ggml_time_us();
  8511. //static int64_t acc = 0;
  8512. //acc += t1 - t0;
  8513. //if (t1 - t0 > 10) {
  8514. // printf("\n");
  8515. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8516. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8517. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8518. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8519. //}
  8520. }
  8521. static void ggml_compute_forward_mul_mat(
  8522. const struct ggml_compute_params * params,
  8523. const struct ggml_tensor * src0,
  8524. const struct ggml_tensor * src1,
  8525. struct ggml_tensor * dst) {
  8526. switch (src0->type) {
  8527. case GGML_TYPE_Q4_0:
  8528. case GGML_TYPE_Q4_1:
  8529. case GGML_TYPE_Q5_0:
  8530. case GGML_TYPE_Q5_1:
  8531. case GGML_TYPE_Q8_0:
  8532. case GGML_TYPE_Q8_1:
  8533. case GGML_TYPE_Q2_K:
  8534. case GGML_TYPE_Q3_K:
  8535. case GGML_TYPE_Q4_K:
  8536. case GGML_TYPE_Q5_K:
  8537. case GGML_TYPE_Q6_K:
  8538. {
  8539. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8540. } break;
  8541. case GGML_TYPE_F16:
  8542. {
  8543. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8544. } break;
  8545. case GGML_TYPE_F32:
  8546. {
  8547. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8548. } break;
  8549. default:
  8550. {
  8551. GGML_ASSERT(false);
  8552. } break;
  8553. }
  8554. }
  8555. // ggml_compute_forward_out_prod
  8556. static void ggml_compute_forward_out_prod_f32(
  8557. const struct ggml_compute_params * params,
  8558. const struct ggml_tensor * src0,
  8559. const struct ggml_tensor * src1,
  8560. struct ggml_tensor * dst) {
  8561. int64_t t0 = ggml_perf_time_us();
  8562. UNUSED(t0);
  8563. const int64_t ne00 = src0->ne[0];
  8564. const int64_t ne01 = src0->ne[1];
  8565. const int64_t ne02 = src0->ne[2];
  8566. const int64_t ne03 = src0->ne[3];
  8567. const int64_t ne10 = src1->ne[0];
  8568. //const int64_t ne11 = src1->ne[1];
  8569. const int64_t ne12 = src1->ne[2];
  8570. const int64_t ne13 = src1->ne[3];
  8571. const int64_t ne0 = dst->ne[0];
  8572. const int64_t ne1 = dst->ne[1];
  8573. const int64_t ne2 = dst->ne[2];
  8574. const int64_t ne3 = dst->ne[3];
  8575. const int nb00 = src0->nb[0];
  8576. const int nb01 = src0->nb[1];
  8577. const int nb02 = src0->nb[2];
  8578. const int nb03 = src0->nb[3];
  8579. const int nb10 = src1->nb[0];
  8580. const int nb11 = src1->nb[1];
  8581. const int nb12 = src1->nb[2];
  8582. const int nb13 = src1->nb[3];
  8583. const int nb0 = dst->nb[0];
  8584. const int nb1 = dst->nb[1];
  8585. const int nb2 = dst->nb[2];
  8586. const int nb3 = dst->nb[3];
  8587. const int ith = params->ith;
  8588. const int nth = params->nth;
  8589. GGML_ASSERT(ne02 == ne12);
  8590. GGML_ASSERT(ne03 == ne13);
  8591. GGML_ASSERT(ne2 == ne12);
  8592. GGML_ASSERT(ne3 == ne13);
  8593. // we don't support permuted src0 or src1
  8594. GGML_ASSERT(nb00 == sizeof(float));
  8595. // dst cannot be transposed or permuted
  8596. GGML_ASSERT(nb0 == sizeof(float));
  8597. // GGML_ASSERT(nb0 <= nb1);
  8598. // GGML_ASSERT(nb1 <= nb2);
  8599. // GGML_ASSERT(nb2 <= nb3);
  8600. GGML_ASSERT(ne0 == ne00);
  8601. GGML_ASSERT(ne1 == ne10);
  8602. GGML_ASSERT(ne2 == ne02);
  8603. GGML_ASSERT(ne3 == ne03);
  8604. // nb01 >= nb00 - src0 is not transposed
  8605. // compute by src0 rows
  8606. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8607. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8608. if (params->type == GGML_TASK_INIT) {
  8609. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8610. return;
  8611. }
  8612. if (params->type == GGML_TASK_FINALIZE) {
  8613. return;
  8614. }
  8615. // parallelize by last three dimensions
  8616. // total rows in dst
  8617. const int64_t nr = ne1*ne2*ne3;
  8618. // rows per thread
  8619. const int64_t dr = (nr + nth - 1)/nth;
  8620. // row range for this thread
  8621. const int64_t ir0 = dr*ith;
  8622. const int64_t ir1 = MIN(ir0 + dr, nr);
  8623. // dst[:,:,:,:] = 0
  8624. // for i2,i3:
  8625. // for i1:
  8626. // for i01:
  8627. // for i0:
  8628. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8629. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8630. // dst indices
  8631. const int64_t i3 = ir/(ne2*ne1);
  8632. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8633. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8634. const int64_t i02 = i2;
  8635. const int64_t i03 = i3;
  8636. //const int64_t i10 = i1;
  8637. const int64_t i12 = i2;
  8638. const int64_t i13 = i3;
  8639. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8640. const int64_t i11 = i01;
  8641. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8642. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8643. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8644. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8645. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8646. // d[i0] += s0[i0] * s1[i1];
  8647. // }
  8648. }
  8649. }
  8650. //int64_t t1 = ggml_perf_time_us();
  8651. //static int64_t acc = 0;
  8652. //acc += t1 - t0;
  8653. //if (t1 - t0 > 10) {
  8654. // printf("\n");
  8655. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8656. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8657. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8658. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8659. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8660. //}
  8661. }
  8662. static void ggml_compute_forward_out_prod(
  8663. const struct ggml_compute_params * params,
  8664. const struct ggml_tensor * src0,
  8665. const struct ggml_tensor * src1,
  8666. struct ggml_tensor * dst) {
  8667. switch (src0->type) {
  8668. case GGML_TYPE_Q4_0:
  8669. case GGML_TYPE_Q4_1:
  8670. case GGML_TYPE_Q5_0:
  8671. case GGML_TYPE_Q5_1:
  8672. case GGML_TYPE_Q8_0:
  8673. case GGML_TYPE_Q8_1:
  8674. {
  8675. GGML_ASSERT(false); // todo
  8676. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8677. } break;
  8678. case GGML_TYPE_F16:
  8679. {
  8680. GGML_ASSERT(false); // todo
  8681. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8682. } break;
  8683. case GGML_TYPE_F32:
  8684. {
  8685. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8686. } break;
  8687. default:
  8688. {
  8689. GGML_ASSERT(false);
  8690. } break;
  8691. }
  8692. }
  8693. // ggml_compute_forward_scale
  8694. static void ggml_compute_forward_scale_f32(
  8695. const struct ggml_compute_params * params,
  8696. const struct ggml_tensor * src0,
  8697. const struct ggml_tensor * src1,
  8698. struct ggml_tensor * dst) {
  8699. GGML_ASSERT(ggml_is_contiguous(src0));
  8700. GGML_ASSERT(ggml_is_contiguous(dst));
  8701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8702. GGML_ASSERT(ggml_is_scalar(src1));
  8703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8704. return;
  8705. }
  8706. // scale factor
  8707. const float v = *(float *) src1->data;
  8708. const int ith = params->ith;
  8709. const int nth = params->nth;
  8710. const int nc = src0->ne[0];
  8711. const int nr = ggml_nrows(src0);
  8712. // rows per thread
  8713. const int dr = (nr + nth - 1)/nth;
  8714. // row range for this thread
  8715. const int ir0 = dr*ith;
  8716. const int ir1 = MIN(ir0 + dr, nr);
  8717. const size_t nb01 = src0->nb[1];
  8718. const size_t nb1 = dst->nb[1];
  8719. for (int i1 = ir0; i1 < ir1; i1++) {
  8720. if (dst->data != src0->data) {
  8721. // src0 is same shape as dst => same indices
  8722. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8723. }
  8724. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8725. }
  8726. }
  8727. static void ggml_compute_forward_scale(
  8728. const struct ggml_compute_params * params,
  8729. const struct ggml_tensor * src0,
  8730. const struct ggml_tensor * src1,
  8731. struct ggml_tensor * dst) {
  8732. switch (src0->type) {
  8733. case GGML_TYPE_F32:
  8734. {
  8735. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8736. } break;
  8737. default:
  8738. {
  8739. GGML_ASSERT(false);
  8740. } break;
  8741. }
  8742. }
  8743. // ggml_compute_forward_set
  8744. static void ggml_compute_forward_set_f32(
  8745. const struct ggml_compute_params * params,
  8746. const struct ggml_tensor * src0,
  8747. const struct ggml_tensor * src1,
  8748. const struct ggml_tensor * opt0,
  8749. struct ggml_tensor * dst) {
  8750. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8751. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8752. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8753. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8754. // view src0 and dst with these strides and data offset inbytes during set
  8755. // nb0 is implicitely element_size because src0 and dst are contiguous
  8756. size_t nb1 = ((int32_t *) opt0->data)[0];
  8757. size_t nb2 = ((int32_t *) opt0->data)[1];
  8758. size_t nb3 = ((int32_t *) opt0->data)[2];
  8759. size_t offset = ((int32_t *) opt0->data)[3];
  8760. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8761. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8762. // memcpy needs to be synchronized across threads to avoid race conditions.
  8763. // => do it in INIT phase
  8764. memcpy(
  8765. ((char *) dst->data),
  8766. ((char *) src0->data),
  8767. ggml_nbytes(dst));
  8768. }
  8769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8770. return;
  8771. }
  8772. const int ith = params->ith;
  8773. const int nth = params->nth;
  8774. const int nr = ggml_nrows(src1);
  8775. const int nc = src1->ne[0];
  8776. const int64_t ne10 = src1->ne[0];
  8777. const int64_t ne11 = src1->ne[1];
  8778. const int64_t ne12 = src1->ne[2];
  8779. const int64_t ne13 = src1->ne[3];
  8780. const size_t nb10 = src1->nb[0];
  8781. const size_t nb11 = src1->nb[1];
  8782. const size_t nb12 = src1->nb[2];
  8783. const size_t nb13 = src1->nb[3];
  8784. // src0 and dst as viewed during set
  8785. const size_t nb0 = ggml_element_size(src0);
  8786. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8787. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8788. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8789. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8790. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8791. GGML_ASSERT(nb10 == sizeof(float));
  8792. // rows per thread
  8793. const int dr = (nr + nth - 1)/nth;
  8794. // row range for this thread
  8795. const int ir0 = dr*ith;
  8796. const int ir1 = MIN(ir0 + dr, nr);
  8797. for (int ir = ir0; ir < ir1; ++ir) {
  8798. // src0 and dst are viewed with shape of src1 and offset
  8799. // => same indices
  8800. const int i3 = ir/(ne12*ne11);
  8801. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8802. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8803. ggml_vec_cpy_f32(nc,
  8804. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8805. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8806. }
  8807. }
  8808. static void ggml_compute_forward_set(
  8809. const struct ggml_compute_params * params,
  8810. const struct ggml_tensor * src0,
  8811. const struct ggml_tensor * src1,
  8812. const struct ggml_tensor * opt0,
  8813. struct ggml_tensor * dst) {
  8814. switch (src0->type) {
  8815. case GGML_TYPE_F32:
  8816. {
  8817. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8818. } break;
  8819. case GGML_TYPE_F16:
  8820. case GGML_TYPE_Q4_0:
  8821. case GGML_TYPE_Q4_1:
  8822. case GGML_TYPE_Q5_0:
  8823. case GGML_TYPE_Q5_1:
  8824. case GGML_TYPE_Q8_0:
  8825. case GGML_TYPE_Q8_1:
  8826. case GGML_TYPE_Q2_K:
  8827. case GGML_TYPE_Q3_K:
  8828. case GGML_TYPE_Q4_K:
  8829. case GGML_TYPE_Q5_K:
  8830. case GGML_TYPE_Q6_K:
  8831. default:
  8832. {
  8833. GGML_ASSERT(false);
  8834. } break;
  8835. }
  8836. }
  8837. // ggml_compute_forward_cpy
  8838. static void ggml_compute_forward_cpy(
  8839. const struct ggml_compute_params * params,
  8840. const struct ggml_tensor * src0,
  8841. struct ggml_tensor * dst) {
  8842. ggml_compute_forward_dup(params, src0, dst);
  8843. }
  8844. // ggml_compute_forward_cont
  8845. static void ggml_compute_forward_cont(
  8846. const struct ggml_compute_params * params,
  8847. const struct ggml_tensor * src0,
  8848. struct ggml_tensor * dst) {
  8849. ggml_compute_forward_dup(params, src0, dst);
  8850. }
  8851. // ggml_compute_forward_reshape
  8852. static void ggml_compute_forward_reshape(
  8853. const struct ggml_compute_params * params,
  8854. const struct ggml_tensor * src0,
  8855. struct ggml_tensor * dst) {
  8856. // NOP
  8857. UNUSED(params);
  8858. UNUSED(src0);
  8859. UNUSED(dst);
  8860. }
  8861. // ggml_compute_forward_view
  8862. static void ggml_compute_forward_view(
  8863. const struct ggml_compute_params * params,
  8864. const struct ggml_tensor * src0) {
  8865. // NOP
  8866. UNUSED(params);
  8867. UNUSED(src0);
  8868. }
  8869. // ggml_compute_forward_permute
  8870. static void ggml_compute_forward_permute(
  8871. const struct ggml_compute_params * params,
  8872. const struct ggml_tensor * src0) {
  8873. // NOP
  8874. UNUSED(params);
  8875. UNUSED(src0);
  8876. }
  8877. // ggml_compute_forward_transpose
  8878. static void ggml_compute_forward_transpose(
  8879. const struct ggml_compute_params * params,
  8880. const struct ggml_tensor * src0) {
  8881. // NOP
  8882. UNUSED(params);
  8883. UNUSED(src0);
  8884. }
  8885. // ggml_compute_forward_get_rows
  8886. static void ggml_compute_forward_get_rows_q(
  8887. const struct ggml_compute_params * params,
  8888. const struct ggml_tensor * src0,
  8889. const struct ggml_tensor * src1,
  8890. struct ggml_tensor * dst) {
  8891. assert(params->ith == 0);
  8892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8893. return;
  8894. }
  8895. const int nc = src0->ne[0];
  8896. const int nr = ggml_nelements(src1);
  8897. const enum ggml_type type = src0->type;
  8898. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8899. assert( dst->ne[0] == nc);
  8900. assert( dst->ne[1] == nr);
  8901. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8902. for (int i = 0; i < nr; ++i) {
  8903. const int r = ((int32_t *) src1->data)[i];
  8904. dequantize_row_q(
  8905. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8906. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8907. }
  8908. }
  8909. static void ggml_compute_forward_get_rows_f16(
  8910. const struct ggml_compute_params * params,
  8911. const struct ggml_tensor * src0,
  8912. const struct ggml_tensor * src1,
  8913. struct ggml_tensor * dst) {
  8914. assert(params->ith == 0);
  8915. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8916. return;
  8917. }
  8918. const int nc = src0->ne[0];
  8919. const int nr = ggml_nelements(src1);
  8920. assert( dst->ne[0] == nc);
  8921. assert( dst->ne[1] == nr);
  8922. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8923. for (int i = 0; i < nr; ++i) {
  8924. const int r = ((int32_t *) src1->data)[i];
  8925. for (int j = 0; j < nc; ++j) {
  8926. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8927. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8928. }
  8929. }
  8930. }
  8931. static void ggml_compute_forward_get_rows_f32(
  8932. const struct ggml_compute_params * params,
  8933. const struct ggml_tensor * src0,
  8934. const struct ggml_tensor * src1,
  8935. struct ggml_tensor * dst) {
  8936. assert(params->ith == 0);
  8937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8938. return;
  8939. }
  8940. const int nc = src0->ne[0];
  8941. const int nr = ggml_nelements(src1);
  8942. assert( dst->ne[0] == nc);
  8943. assert( dst->ne[1] == nr);
  8944. assert(src0->nb[0] == sizeof(float));
  8945. for (int i = 0; i < nr; ++i) {
  8946. const int r = ((int32_t *) src1->data)[i];
  8947. ggml_vec_cpy_f32(nc,
  8948. (float *) ((char *) dst->data + i*dst->nb[1]),
  8949. (float *) ((char *) src0->data + r*src0->nb[1]));
  8950. }
  8951. }
  8952. static void ggml_compute_forward_get_rows(
  8953. const struct ggml_compute_params * params,
  8954. const struct ggml_tensor * src0,
  8955. const struct ggml_tensor * src1,
  8956. struct ggml_tensor * dst) {
  8957. switch (src0->type) {
  8958. case GGML_TYPE_Q4_0:
  8959. case GGML_TYPE_Q4_1:
  8960. case GGML_TYPE_Q5_0:
  8961. case GGML_TYPE_Q5_1:
  8962. case GGML_TYPE_Q8_0:
  8963. case GGML_TYPE_Q8_1:
  8964. case GGML_TYPE_Q2_K:
  8965. case GGML_TYPE_Q3_K:
  8966. case GGML_TYPE_Q4_K:
  8967. case GGML_TYPE_Q5_K:
  8968. case GGML_TYPE_Q6_K:
  8969. {
  8970. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8971. } break;
  8972. case GGML_TYPE_F16:
  8973. {
  8974. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8975. } break;
  8976. case GGML_TYPE_F32:
  8977. {
  8978. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8979. } break;
  8980. default:
  8981. {
  8982. GGML_ASSERT(false);
  8983. } break;
  8984. }
  8985. //static bool first = true;
  8986. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8987. //if (first) {
  8988. // first = false;
  8989. //} else {
  8990. // for (int k = 0; k < dst->ne[1]; ++k) {
  8991. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8992. // for (int i = 0; i < 16; ++i) {
  8993. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8994. // }
  8995. // printf("\n");
  8996. // }
  8997. // printf("\n");
  8998. // }
  8999. // printf("\n");
  9000. // exit(0);
  9001. //}
  9002. }
  9003. // ggml_compute_forward_get_rows_back
  9004. static void ggml_compute_forward_get_rows_back_f32_f16(
  9005. const struct ggml_compute_params * params,
  9006. const struct ggml_tensor * src0,
  9007. const struct ggml_tensor * src1,
  9008. const struct ggml_tensor * opt0,
  9009. struct ggml_tensor * dst) {
  9010. GGML_ASSERT(params->ith == 0);
  9011. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9012. GGML_ASSERT(ggml_is_contiguous(opt0));
  9013. GGML_ASSERT(ggml_is_contiguous(dst));
  9014. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9016. return;
  9017. }
  9018. const int nc = src0->ne[0];
  9019. const int nr = ggml_nelements(src1);
  9020. GGML_ASSERT( dst->ne[0] == nc);
  9021. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9022. for (int i = 0; i < nr; ++i) {
  9023. const int r = ((int32_t *) src1->data)[i];
  9024. for (int j = 0; j < nc; ++j) {
  9025. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9026. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9027. }
  9028. }
  9029. }
  9030. static void ggml_compute_forward_get_rows_back_f32(
  9031. const struct ggml_compute_params * params,
  9032. const struct ggml_tensor * src0,
  9033. const struct ggml_tensor * src1,
  9034. const struct ggml_tensor * opt0,
  9035. struct ggml_tensor * dst) {
  9036. GGML_ASSERT(params->ith == 0);
  9037. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9038. GGML_ASSERT(ggml_is_contiguous(opt0));
  9039. GGML_ASSERT(ggml_is_contiguous(dst));
  9040. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9041. if (params->type == GGML_TASK_INIT) {
  9042. memset(dst->data, 0, ggml_nbytes(dst));
  9043. }
  9044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9045. return;
  9046. }
  9047. const int nc = src0->ne[0];
  9048. const int nr = ggml_nelements(src1);
  9049. GGML_ASSERT( dst->ne[0] == nc);
  9050. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9051. for (int i = 0; i < nr; ++i) {
  9052. const int r = ((int32_t *) src1->data)[i];
  9053. ggml_vec_add_f32(nc,
  9054. (float *) ((char *) dst->data + r*dst->nb[1]),
  9055. (float *) ((char *) dst->data + r*dst->nb[1]),
  9056. (float *) ((char *) src0->data + i*src0->nb[1]));
  9057. }
  9058. }
  9059. static void ggml_compute_forward_get_rows_back(
  9060. const struct ggml_compute_params * params,
  9061. const struct ggml_tensor * src0,
  9062. const struct ggml_tensor * src1,
  9063. const struct ggml_tensor * opt0,
  9064. struct ggml_tensor * dst) {
  9065. switch (src0->type) {
  9066. case GGML_TYPE_F16:
  9067. {
  9068. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9069. } break;
  9070. case GGML_TYPE_F32:
  9071. {
  9072. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9073. } break;
  9074. default:
  9075. {
  9076. GGML_ASSERT(false);
  9077. } break;
  9078. }
  9079. //static bool first = true;
  9080. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9081. //if (first) {
  9082. // first = false;
  9083. //} else {
  9084. // for (int k = 0; k < dst->ne[1]; ++k) {
  9085. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9086. // for (int i = 0; i < 16; ++i) {
  9087. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9088. // }
  9089. // printf("\n");
  9090. // }
  9091. // printf("\n");
  9092. // }
  9093. // printf("\n");
  9094. // exit(0);
  9095. //}
  9096. }
  9097. // ggml_compute_forward_diag
  9098. static void ggml_compute_forward_diag_f32(
  9099. const struct ggml_compute_params * params,
  9100. const struct ggml_tensor * src0,
  9101. struct ggml_tensor * dst) {
  9102. GGML_ASSERT(params->ith == 0);
  9103. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9104. return;
  9105. }
  9106. // TODO: handle transposed/permuted matrices
  9107. const int ne00 = src0->ne[0];
  9108. const int ne01 = src0->ne[1];
  9109. const int ne02 = src0->ne[2];
  9110. const int ne03 = src0->ne[3];
  9111. const int ne0 = dst->ne[0];
  9112. const int ne1 = dst->ne[1];
  9113. const int ne2 = dst->ne[2];
  9114. const int ne3 = dst->ne[3];
  9115. GGML_ASSERT(ne00 == ne0);
  9116. GGML_ASSERT(ne00 == ne1);
  9117. GGML_ASSERT(ne01 == 1);
  9118. GGML_ASSERT(ne02 == ne2);
  9119. GGML_ASSERT(ne03 == ne3);
  9120. const int nb00 = src0->nb[0];
  9121. //const int nb01 = src0->nb[1];
  9122. const int nb02 = src0->nb[2];
  9123. const int nb03 = src0->nb[3];
  9124. const int nb0 = dst->nb[0];
  9125. const int nb1 = dst->nb[1];
  9126. const int nb2 = dst->nb[2];
  9127. const int nb3 = dst->nb[3];
  9128. GGML_ASSERT(nb00 == sizeof(float));
  9129. GGML_ASSERT(nb0 == sizeof(float));
  9130. for (int i3 = 0; i3 < ne3; i3++) {
  9131. for (int i2 = 0; i2 < ne2; i2++) {
  9132. for (int i1 = 0; i1 < ne1; i1++) {
  9133. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9134. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9135. for (int i0 = 0; i0 < i1; i0++) {
  9136. d[i0] = 0;
  9137. }
  9138. d[i1] = s[i1];
  9139. for (int i0 = i1+1; i0 < ne0; i0++) {
  9140. d[i0] = 0;
  9141. }
  9142. }
  9143. }
  9144. }
  9145. }
  9146. static void ggml_compute_forward_diag(
  9147. const struct ggml_compute_params * params,
  9148. const struct ggml_tensor * src0,
  9149. struct ggml_tensor * dst) {
  9150. switch (src0->type) {
  9151. case GGML_TYPE_F32:
  9152. {
  9153. ggml_compute_forward_diag_f32(params, src0, dst);
  9154. } break;
  9155. default:
  9156. {
  9157. GGML_ASSERT(false);
  9158. } break;
  9159. }
  9160. }
  9161. // ggml_compute_forward_diag_mask_inf
  9162. static void ggml_compute_forward_diag_mask_f32(
  9163. const struct ggml_compute_params * params,
  9164. const struct ggml_tensor * src0,
  9165. const struct ggml_tensor * src1,
  9166. struct ggml_tensor * dst,
  9167. const float value) {
  9168. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9169. GGML_ASSERT(ggml_nelements(src1) == 2);
  9170. const int ith = params->ith;
  9171. const int nth = params->nth;
  9172. const int n_past = ((int32_t *) src1->data)[0];
  9173. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9174. GGML_ASSERT(n_past >= 0);
  9175. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9176. // memcpy needs to be synchronized across threads to avoid race conditions.
  9177. // => do it in INIT phase
  9178. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9179. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9180. memcpy(
  9181. ((char *) dst->data),
  9182. ((char *) src0->data),
  9183. ggml_nbytes(dst));
  9184. }
  9185. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9186. return;
  9187. }
  9188. // TODO: handle transposed/permuted matrices
  9189. const int n = ggml_nrows(src0);
  9190. const int nc = src0->ne[0];
  9191. const int nr = src0->ne[1];
  9192. const int nz = n/nr;
  9193. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9194. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9195. for (int k = 0; k < nz; k++) {
  9196. for (int j = ith; j < nr; j += nth) {
  9197. for (int i = n_past; i < nc; i++) {
  9198. if (i > n_past + j) {
  9199. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9200. }
  9201. }
  9202. }
  9203. }
  9204. }
  9205. static void ggml_compute_forward_diag_mask_inf(
  9206. const struct ggml_compute_params * params,
  9207. const struct ggml_tensor * src0,
  9208. const struct ggml_tensor * src1,
  9209. struct ggml_tensor * dst) {
  9210. switch (src0->type) {
  9211. case GGML_TYPE_F32:
  9212. {
  9213. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9214. } break;
  9215. default:
  9216. {
  9217. GGML_ASSERT(false);
  9218. } break;
  9219. }
  9220. }
  9221. static void ggml_compute_forward_diag_mask_zero(
  9222. const struct ggml_compute_params * params,
  9223. const struct ggml_tensor * src0,
  9224. const struct ggml_tensor * src1,
  9225. struct ggml_tensor * dst) {
  9226. switch (src0->type) {
  9227. case GGML_TYPE_F32:
  9228. {
  9229. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9230. } break;
  9231. default:
  9232. {
  9233. GGML_ASSERT(false);
  9234. } break;
  9235. }
  9236. }
  9237. // ggml_compute_forward_soft_max
  9238. static void ggml_compute_forward_soft_max_f32(
  9239. const struct ggml_compute_params * params,
  9240. const struct ggml_tensor * src0,
  9241. struct ggml_tensor * dst) {
  9242. GGML_ASSERT(ggml_is_contiguous(src0));
  9243. GGML_ASSERT(ggml_is_contiguous(dst));
  9244. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9246. return;
  9247. }
  9248. // TODO: handle transposed/permuted matrices
  9249. const int ith = params->ith;
  9250. const int nth = params->nth;
  9251. const int nc = src0->ne[0];
  9252. const int nr = ggml_nrows(src0);
  9253. // rows per thread
  9254. const int dr = (nr + nth - 1)/nth;
  9255. // row range for this thread
  9256. const int ir0 = dr*ith;
  9257. const int ir1 = MIN(ir0 + dr, nr);
  9258. for (int i1 = ir0; i1 < ir1; i1++) {
  9259. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9260. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9261. #ifndef NDEBUG
  9262. for (int i = 0; i < nc; ++i) {
  9263. //printf("p[%d] = %f\n", i, p[i]);
  9264. assert(!isnan(sp[i]));
  9265. }
  9266. #endif
  9267. float max = -INFINITY;
  9268. ggml_vec_max_f32(nc, &max, sp);
  9269. ggml_float sum = 0.0;
  9270. uint16_t scvt;
  9271. for (int i = 0; i < nc; i++) {
  9272. if (sp[i] == -INFINITY) {
  9273. dp[i] = 0.0f;
  9274. } else {
  9275. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9276. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9277. memcpy(&scvt, &s, sizeof(scvt));
  9278. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9279. sum += (ggml_float)val;
  9280. dp[i] = val;
  9281. }
  9282. }
  9283. assert(sum > 0.0);
  9284. sum = 1.0/sum;
  9285. ggml_vec_scale_f32(nc, dp, sum);
  9286. #ifndef NDEBUG
  9287. for (int i = 0; i < nc; ++i) {
  9288. assert(!isnan(dp[i]));
  9289. assert(!isinf(dp[i]));
  9290. }
  9291. #endif
  9292. }
  9293. }
  9294. static void ggml_compute_forward_soft_max(
  9295. const struct ggml_compute_params * params,
  9296. const struct ggml_tensor * src0,
  9297. struct ggml_tensor * dst) {
  9298. switch (src0->type) {
  9299. case GGML_TYPE_F32:
  9300. {
  9301. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9302. } break;
  9303. default:
  9304. {
  9305. GGML_ASSERT(false);
  9306. } break;
  9307. }
  9308. }
  9309. // ggml_compute_forward_soft_max_back
  9310. static void ggml_compute_forward_soft_max_back_f32(
  9311. const struct ggml_compute_params * params,
  9312. const struct ggml_tensor * src0,
  9313. const struct ggml_tensor * src1,
  9314. struct ggml_tensor * dst) {
  9315. GGML_ASSERT(ggml_is_contiguous(src0));
  9316. GGML_ASSERT(ggml_is_contiguous(src1));
  9317. GGML_ASSERT(ggml_is_contiguous(dst));
  9318. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9319. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9320. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9321. return;
  9322. }
  9323. // TODO: handle transposed/permuted matrices
  9324. const int ith = params->ith;
  9325. const int nth = params->nth;
  9326. const int nc = src0->ne[0];
  9327. const int nr = ggml_nrows(src0);
  9328. // rows per thread
  9329. const int dr = (nr + nth - 1)/nth;
  9330. // row range for this thread
  9331. const int ir0 = dr*ith;
  9332. const int ir1 = MIN(ir0 + dr, nr);
  9333. for (int i1 = ir0; i1 < ir1; i1++) {
  9334. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9335. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9336. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9337. #ifndef NDEBUG
  9338. for (int i = 0; i < nc; ++i) {
  9339. //printf("p[%d] = %f\n", i, p[i]);
  9340. assert(!isnan(dy[i]));
  9341. assert(!isnan(y[i]));
  9342. }
  9343. #endif
  9344. // Jii = yi - yi*yi
  9345. // Jij = -yi*yj
  9346. // J = diag(y)-y.T*y
  9347. // dx = J * dy
  9348. // dxk = sum_i(Jki * dyi)
  9349. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9350. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9351. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9352. // dxk = -yk * dot(y, dy) + yk*dyk
  9353. // dxk = yk * (- dot(y, dy) + dyk)
  9354. // dxk = yk * (dyk - dot(y, dy))
  9355. //
  9356. // post-order:
  9357. // dot_y_dy := dot(y, dy)
  9358. // dx := dy
  9359. // dx := dx - dot_y_dy
  9360. // dx := dx * y
  9361. // linear runtime, no additional memory
  9362. float dot_y_dy = 0;
  9363. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9364. ggml_vec_cpy_f32 (nc, dx, dy);
  9365. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9366. ggml_vec_mul_f32 (nc, dx, dx, y);
  9367. #ifndef NDEBUG
  9368. for (int i = 0; i < nc; ++i) {
  9369. assert(!isnan(dx[i]));
  9370. assert(!isinf(dx[i]));
  9371. }
  9372. #endif
  9373. }
  9374. }
  9375. static void ggml_compute_forward_soft_max_back(
  9376. const struct ggml_compute_params * params,
  9377. const struct ggml_tensor * src0,
  9378. const struct ggml_tensor * src1,
  9379. struct ggml_tensor * dst) {
  9380. switch (src0->type) {
  9381. case GGML_TYPE_F32:
  9382. {
  9383. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9384. } break;
  9385. default:
  9386. {
  9387. GGML_ASSERT(false);
  9388. } break;
  9389. }
  9390. }
  9391. // ggml_compute_forward_alibi
  9392. static void ggml_compute_forward_alibi_f32(
  9393. const struct ggml_compute_params * params,
  9394. const struct ggml_tensor * src0,
  9395. const struct ggml_tensor * src1,
  9396. struct ggml_tensor * dst) {
  9397. assert(params->ith == 0);
  9398. assert(src1->type == GGML_TYPE_I32);
  9399. assert(ggml_nelements(src1) == 3);
  9400. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9401. return;
  9402. }
  9403. const int n_past = ((int32_t *) src1->data)[0];
  9404. const int n_head = ((int32_t *) src1->data)[1];
  9405. const float max_bias = ((float *) src1->data)[2];
  9406. assert(n_past >= 0);
  9407. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9408. const int ne1 = src0->ne[1]; // seq_len_without_past
  9409. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9410. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9411. const int n = ggml_nrows(src0);
  9412. const int ne2_ne3 = n/ne1; // ne2*ne3
  9413. const int nb0 = src0->nb[0];
  9414. const int nb1 = src0->nb[1];
  9415. const int nb2 = src0->nb[2];
  9416. //const int nb3 = src0->nb[3];
  9417. assert(nb0 == sizeof(float));
  9418. assert(ne1 + n_past == ne0); (void) n_past;
  9419. // add alibi to src0 (KQ_scaled)
  9420. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9421. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9422. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9423. for (int i = 0; i < ne0; i++) {
  9424. for (int j = 0; j < ne1; j++) {
  9425. for (int k = 0; k < ne2_ne3; k++) {
  9426. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9427. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9428. // TODO: k*nb2 or k*nb3
  9429. float m_k;
  9430. if (k < n_heads_log2_floor) {
  9431. m_k = powf(m0, k + 1);
  9432. } else {
  9433. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9434. }
  9435. pdst[0] = (i-ne0+1) * m_k + src[0];
  9436. }
  9437. }
  9438. }
  9439. }
  9440. static void ggml_compute_forward_alibi_f16(
  9441. const struct ggml_compute_params * params,
  9442. const struct ggml_tensor * src0,
  9443. const struct ggml_tensor * src1,
  9444. struct ggml_tensor * dst) {
  9445. assert(params->ith == 0);
  9446. assert(src1->type == GGML_TYPE_I32);
  9447. assert(ggml_nelements(src1) == 3);
  9448. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9449. return;
  9450. }
  9451. const int n_past = ((int32_t *) src1->data)[0];
  9452. const int n_head = ((int32_t *) src1->data)[1];
  9453. const float max_bias = ((float *) src1->data)[2];
  9454. assert(n_past >= 0);
  9455. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9456. const int ne1 = src0->ne[1]; // seq_len_without_past
  9457. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9458. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9459. const int n = ggml_nrows(src0);
  9460. const int ne2_ne3 = n/ne1; // ne2*ne3
  9461. const int nb0 = src0->nb[0];
  9462. const int nb1 = src0->nb[1];
  9463. const int nb2 = src0->nb[2];
  9464. //const int nb3 = src0->nb[3];
  9465. assert(nb0 == sizeof(ggml_fp16_t));
  9466. assert(ne1 + n_past == ne0); (void) n_past;
  9467. // add alibi to src0 (KQ_scaled)
  9468. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9469. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9470. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9471. for (int i = 0; i < ne0; i++) {
  9472. for (int j = 0; j < ne1; j++) {
  9473. for (int k = 0; k < ne2_ne3; k++) {
  9474. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9475. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9476. // TODO: k*nb2 or k*nb3
  9477. float m_k;
  9478. if (k < n_heads_log2_floor) {
  9479. m_k = powf(m0, k + 1);
  9480. } else {
  9481. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9482. }
  9483. // we return F32
  9484. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9485. }
  9486. }
  9487. }
  9488. }
  9489. static void ggml_compute_forward_alibi(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * src0,
  9492. const struct ggml_tensor * src1,
  9493. struct ggml_tensor * dst) {
  9494. switch (src0->type) {
  9495. case GGML_TYPE_F16:
  9496. {
  9497. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9498. } break;
  9499. case GGML_TYPE_F32:
  9500. {
  9501. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9502. } break;
  9503. case GGML_TYPE_Q4_0:
  9504. case GGML_TYPE_Q4_1:
  9505. case GGML_TYPE_Q5_0:
  9506. case GGML_TYPE_Q5_1:
  9507. case GGML_TYPE_Q8_0:
  9508. case GGML_TYPE_Q8_1:
  9509. case GGML_TYPE_Q2_K:
  9510. case GGML_TYPE_Q3_K:
  9511. case GGML_TYPE_Q4_K:
  9512. case GGML_TYPE_Q5_K:
  9513. case GGML_TYPE_Q6_K:
  9514. case GGML_TYPE_Q8_K:
  9515. case GGML_TYPE_I8:
  9516. case GGML_TYPE_I16:
  9517. case GGML_TYPE_I32:
  9518. case GGML_TYPE_COUNT:
  9519. {
  9520. GGML_ASSERT(false);
  9521. } break;
  9522. }
  9523. }
  9524. // ggml_compute_forward_clamp
  9525. static void ggml_compute_forward_clamp_f32(
  9526. const struct ggml_compute_params * params,
  9527. const struct ggml_tensor * src0,
  9528. const struct ggml_tensor * src1,
  9529. struct ggml_tensor * dst) {
  9530. assert(params->ith == 0);
  9531. assert(src1->type == GGML_TYPE_I32);
  9532. assert(ggml_nelements(src1) == 2);
  9533. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9534. return;
  9535. }
  9536. const int min = ((float *) src1->data)[0];
  9537. const int max = ((float *) src1->data)[1];
  9538. const int ith = params->ith;
  9539. const int nth = params->nth;
  9540. const int n = ggml_nrows(src0);
  9541. const int nc = src0->ne[0];
  9542. const size_t nb00 = src0->nb[0];
  9543. const size_t nb01 = src0->nb[1];
  9544. const size_t nb0 = dst->nb[0];
  9545. const size_t nb1 = dst->nb[1];
  9546. GGML_ASSERT( nb0 == sizeof(float));
  9547. GGML_ASSERT(nb00 == sizeof(float));
  9548. for (int j = ith; j < n; j += nth) {
  9549. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9550. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9551. for (int i = 0; i < nc; i++) {
  9552. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9553. }
  9554. }
  9555. }
  9556. static void ggml_compute_forward_clamp(
  9557. const struct ggml_compute_params * params,
  9558. const struct ggml_tensor * src0,
  9559. const struct ggml_tensor * src1,
  9560. struct ggml_tensor * dst) {
  9561. switch (src0->type) {
  9562. case GGML_TYPE_F32:
  9563. {
  9564. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9565. } break;
  9566. case GGML_TYPE_F16:
  9567. case GGML_TYPE_Q4_0:
  9568. case GGML_TYPE_Q4_1:
  9569. case GGML_TYPE_Q5_0:
  9570. case GGML_TYPE_Q5_1:
  9571. case GGML_TYPE_Q8_0:
  9572. case GGML_TYPE_Q8_1:
  9573. case GGML_TYPE_Q2_K:
  9574. case GGML_TYPE_Q3_K:
  9575. case GGML_TYPE_Q4_K:
  9576. case GGML_TYPE_Q5_K:
  9577. case GGML_TYPE_Q6_K:
  9578. case GGML_TYPE_Q8_K:
  9579. case GGML_TYPE_I8:
  9580. case GGML_TYPE_I16:
  9581. case GGML_TYPE_I32:
  9582. case GGML_TYPE_COUNT:
  9583. {
  9584. GGML_ASSERT(false);
  9585. } break;
  9586. }
  9587. }
  9588. // ggml_compute_forward_rope
  9589. static void ggml_compute_forward_rope_f32(
  9590. const struct ggml_compute_params * params,
  9591. const struct ggml_tensor * src0,
  9592. const struct ggml_tensor * src1,
  9593. struct ggml_tensor * dst) {
  9594. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9595. GGML_ASSERT(ggml_nelements(src1) == 3);
  9596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9597. return;
  9598. }
  9599. const int n_past = ((int32_t *) src1->data)[0];
  9600. const int n_dims = ((int32_t *) src1->data)[1];
  9601. const int mode = ((int32_t *) src1->data)[2];
  9602. assert(n_past >= 0);
  9603. const size_t nb00 = src0->nb[0];
  9604. const size_t nb01 = src0->nb[1];
  9605. const size_t nb02 = src0->nb[2];
  9606. const size_t nb03 = src0->nb[3];
  9607. const int64_t ne0 = dst->ne[0];
  9608. const int64_t ne1 = dst->ne[1];
  9609. const int64_t ne2 = dst->ne[2];
  9610. const int64_t ne3 = dst->ne[3];
  9611. const size_t nb0 = dst->nb[0];
  9612. const size_t nb1 = dst->nb[1];
  9613. const size_t nb2 = dst->nb[2];
  9614. const size_t nb3 = dst->nb[3];
  9615. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9616. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9617. GGML_ASSERT(nb00 == sizeof(float));
  9618. const int ith = params->ith;
  9619. const int nth = params->nth;
  9620. const int nr = ggml_nrows(dst);
  9621. GGML_ASSERT(n_dims <= ne0);
  9622. GGML_ASSERT(n_dims % 2 == 0);
  9623. // rows per thread
  9624. const int dr = (nr + nth - 1)/nth;
  9625. // row range for this thread
  9626. const int ir0 = dr*ith;
  9627. const int ir1 = MIN(ir0 + dr, nr);
  9628. // row index used to determine which thread to use
  9629. int ir = 0;
  9630. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9631. const bool is_neox = mode & 2;
  9632. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9633. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9634. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9635. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9636. if (ir++ < ir0) continue;
  9637. if (ir > ir1) break;
  9638. float theta = (float)p;
  9639. if (!is_neox) {
  9640. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9641. const float cos_theta = cosf(theta);
  9642. const float sin_theta = sinf(theta);
  9643. theta *= theta_scale;
  9644. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9645. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9646. const float x0 = src[0];
  9647. const float x1 = src[1];
  9648. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9649. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9650. }
  9651. } else {
  9652. // TODO: this is probably wrong, but I can't figure it out ..
  9653. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9654. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9655. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9656. const float cos_theta = cosf(theta);
  9657. const float sin_theta = sinf(theta);
  9658. theta *= theta_scale;
  9659. const int64_t i0 = ib*n_dims + ic/2;
  9660. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9661. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9662. const float x0 = src[0];
  9663. const float x1 = src[n_dims/2];
  9664. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9665. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9666. }
  9667. }
  9668. }
  9669. }
  9670. }
  9671. }
  9672. }
  9673. static void ggml_compute_forward_rope_f16(
  9674. const struct ggml_compute_params * params,
  9675. const struct ggml_tensor * src0,
  9676. const struct ggml_tensor * src1,
  9677. struct ggml_tensor * dst) {
  9678. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9679. GGML_ASSERT(ggml_nelements(src1) == 3);
  9680. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9681. return;
  9682. }
  9683. const int n_past = ((int32_t *) src1->data)[0];
  9684. const int n_dims = ((int32_t *) src1->data)[1];
  9685. const int mode = ((int32_t *) src1->data)[2];
  9686. assert(n_past >= 0);
  9687. const size_t nb00 = src0->nb[0];
  9688. const size_t nb01 = src0->nb[1];
  9689. const size_t nb02 = src0->nb[2];
  9690. const size_t nb03 = src0->nb[3];
  9691. const int64_t ne0 = dst->ne[0];
  9692. const int64_t ne1 = dst->ne[1];
  9693. const int64_t ne2 = dst->ne[2];
  9694. const int64_t ne3 = dst->ne[3];
  9695. const size_t nb0 = dst->nb[0];
  9696. const size_t nb1 = dst->nb[1];
  9697. const size_t nb2 = dst->nb[2];
  9698. const size_t nb3 = dst->nb[3];
  9699. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9700. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9701. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9702. const int ith = params->ith;
  9703. const int nth = params->nth;
  9704. const int nr = ggml_nrows(dst);
  9705. GGML_ASSERT(n_dims <= ne0);
  9706. GGML_ASSERT(n_dims % 2 == 0);
  9707. // rows per thread
  9708. const int dr = (nr + nth - 1)/nth;
  9709. // row range for this thread
  9710. const int ir0 = dr*ith;
  9711. const int ir1 = MIN(ir0 + dr, nr);
  9712. // row index used to determine which thread to use
  9713. int ir = 0;
  9714. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9715. const bool is_neox = mode & 2;
  9716. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9717. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9718. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9719. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9720. if (ir++ < ir0) continue;
  9721. if (ir > ir1) break;
  9722. float theta = (float)p;
  9723. if (!is_neox) {
  9724. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9725. const float cos_theta = cosf(theta);
  9726. const float sin_theta = sinf(theta);
  9727. theta *= theta_scale;
  9728. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9729. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9730. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9731. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9732. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9733. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9734. }
  9735. } else {
  9736. // TODO: this is probably wrong, but I can't figure it out ..
  9737. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9738. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9739. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9740. const float cos_theta = cosf(theta);
  9741. const float sin_theta = sinf(theta);
  9742. theta *= theta_scale;
  9743. const int64_t i0 = ib*n_dims + ic/2;
  9744. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9745. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9746. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9747. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9748. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9749. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9750. }
  9751. }
  9752. }
  9753. }
  9754. }
  9755. }
  9756. }
  9757. static void ggml_compute_forward_rope(
  9758. const struct ggml_compute_params * params,
  9759. const struct ggml_tensor * src0,
  9760. const struct ggml_tensor * src1,
  9761. struct ggml_tensor * dst) {
  9762. switch (src0->type) {
  9763. case GGML_TYPE_F16:
  9764. {
  9765. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9766. } break;
  9767. case GGML_TYPE_F32:
  9768. {
  9769. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9770. } break;
  9771. default:
  9772. {
  9773. GGML_ASSERT(false);
  9774. } break;
  9775. }
  9776. }
  9777. // ggml_compute_forward_rope_back
  9778. static void ggml_compute_forward_rope_back_f32(
  9779. const struct ggml_compute_params * params,
  9780. const struct ggml_tensor * src0,
  9781. const struct ggml_tensor * src1,
  9782. struct ggml_tensor * dst) {
  9783. assert(src1->type == GGML_TYPE_I32);
  9784. assert(ggml_nelements(src1) == 3);
  9785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9786. return;
  9787. }
  9788. // y = rope(x, src1)
  9789. // dx = rope_back(dy, src1)
  9790. // src0 is dy, src1 contains options
  9791. const int n_past = ((int32_t *) src1->data)[0];
  9792. const int n_dims = ((int32_t *) src1->data)[1];
  9793. const int mode = ((int32_t *) src1->data)[2];
  9794. assert(n_past >= 0);
  9795. const size_t nb00 = src0->nb[0];
  9796. const size_t nb01 = src0->nb[1];
  9797. const size_t nb02 = src0->nb[2];
  9798. const size_t nb03 = src0->nb[3];
  9799. const int64_t ne0 = dst->ne[0];
  9800. const int64_t ne1 = dst->ne[1];
  9801. const int64_t ne2 = dst->ne[2];
  9802. const int64_t ne3 = dst->ne[3];
  9803. const size_t nb0 = dst->nb[0];
  9804. const size_t nb1 = dst->nb[1];
  9805. const size_t nb2 = dst->nb[2];
  9806. const size_t nb3 = dst->nb[3];
  9807. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9808. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9809. assert(nb0 == sizeof(float));
  9810. const int ith = params->ith;
  9811. const int nth = params->nth;
  9812. const int nr = ggml_nrows(dst);
  9813. // rows per thread
  9814. const int dr = (nr + nth - 1)/nth;
  9815. // row range for this thread
  9816. const int ir0 = dr*ith;
  9817. const int ir1 = MIN(ir0 + dr, nr);
  9818. // row index used to determine which thread to use
  9819. int ir = 0;
  9820. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9821. const bool is_neox = mode & 2;
  9822. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9823. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9824. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9825. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9826. if (ir++ < ir0) continue;
  9827. if (ir > ir1) break;
  9828. float theta = (float)p;
  9829. if (!is_neox) {
  9830. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9831. const float cos_theta = cosf(theta);
  9832. const float sin_theta = sinf(theta);
  9833. theta *= theta_scale;
  9834. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9835. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9836. const float dy0 = dy[0];
  9837. const float dy1 = dy[1];
  9838. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9839. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9840. }
  9841. } else {
  9842. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9843. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9844. const float cos_theta = cosf(theta);
  9845. const float sin_theta = sinf(theta);
  9846. theta *= theta_scale;
  9847. const int64_t i0 = ib*n_dims + ic/2;
  9848. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9849. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9850. const float dy0 = dy[0];
  9851. const float dy1 = dy[n_dims/2];
  9852. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9853. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9854. }
  9855. }
  9856. }
  9857. }
  9858. }
  9859. }
  9860. }
  9861. static void ggml_compute_forward_rope_back_f16(
  9862. const struct ggml_compute_params * params,
  9863. const struct ggml_tensor * src0,
  9864. const struct ggml_tensor * src1,
  9865. struct ggml_tensor * dst) {
  9866. assert(src1->type == GGML_TYPE_I32);
  9867. assert(ggml_nelements(src1) == 3);
  9868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9869. return;
  9870. }
  9871. // y = rope(x, src1)
  9872. // dx = rope_back(dy, src1)
  9873. // src0 is dy, src1 contains options
  9874. const int n_past = ((int32_t *) src1->data)[0];
  9875. const int n_dims = ((int32_t *) src1->data)[1];
  9876. const int mode = ((int32_t *) src1->data)[2];
  9877. assert(n_past >= 0);
  9878. const size_t nb00 = src0->nb[0];
  9879. const size_t nb01 = src0->nb[1];
  9880. const size_t nb02 = src0->nb[2];
  9881. const size_t nb03 = src0->nb[3];
  9882. const int64_t ne0 = dst->ne[0];
  9883. const int64_t ne1 = dst->ne[1];
  9884. const int64_t ne2 = dst->ne[2];
  9885. const int64_t ne3 = dst->ne[3];
  9886. const size_t nb0 = dst->nb[0];
  9887. const size_t nb1 = dst->nb[1];
  9888. const size_t nb2 = dst->nb[2];
  9889. const size_t nb3 = dst->nb[3];
  9890. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9891. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9892. assert(nb0 == sizeof(ggml_fp16_t));
  9893. const int ith = params->ith;
  9894. const int nth = params->nth;
  9895. const int nr = ggml_nrows(dst);
  9896. // rows per thread
  9897. const int dr = (nr + nth - 1)/nth;
  9898. // row range for this thread
  9899. const int ir0 = dr*ith;
  9900. const int ir1 = MIN(ir0 + dr, nr);
  9901. // row index used to determine which thread to use
  9902. int ir = 0;
  9903. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9904. const bool is_neox = mode & 2;
  9905. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9906. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9907. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9908. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9909. if (ir++ < ir0) continue;
  9910. if (ir > ir1) break;
  9911. float theta = (float)p;
  9912. if (!is_neox) {
  9913. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9914. const float cos_theta = cosf(theta);
  9915. const float sin_theta = sinf(theta);
  9916. theta *= theta_scale;
  9917. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9918. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9919. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9920. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9921. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9922. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9923. }
  9924. } else {
  9925. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9926. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9927. const float cos_theta = cosf(theta);
  9928. const float sin_theta = sinf(theta);
  9929. theta *= theta_scale;
  9930. const int64_t i0 = ib*n_dims + ic/2;
  9931. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9932. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9933. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9934. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9935. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9936. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9937. }
  9938. }
  9939. }
  9940. }
  9941. }
  9942. }
  9943. }
  9944. static void ggml_compute_forward_rope_back(
  9945. const struct ggml_compute_params * params,
  9946. const struct ggml_tensor * src0,
  9947. const struct ggml_tensor * src1,
  9948. struct ggml_tensor * dst) {
  9949. switch (src0->type) {
  9950. case GGML_TYPE_F16:
  9951. {
  9952. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9953. } break;
  9954. case GGML_TYPE_F32:
  9955. {
  9956. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9957. } break;
  9958. default:
  9959. {
  9960. GGML_ASSERT(false);
  9961. } break;
  9962. }
  9963. }
  9964. // ggml_compute_forward_conv_1d_1s
  9965. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9966. const struct ggml_compute_params * params,
  9967. const struct ggml_tensor * src0,
  9968. const struct ggml_tensor * src1,
  9969. struct ggml_tensor * dst) {
  9970. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9971. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9972. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9973. int64_t t0 = ggml_perf_time_us();
  9974. UNUSED(t0);
  9975. const int64_t ne00 = src0->ne[0];
  9976. const int64_t ne01 = src0->ne[1];
  9977. const int64_t ne02 = src0->ne[2];
  9978. //const int64_t ne03 = src0->ne[3];
  9979. const int64_t ne10 = src1->ne[0];
  9980. const int64_t ne11 = src1->ne[1];
  9981. //const int64_t ne12 = src1->ne[2];
  9982. //const int64_t ne13 = src1->ne[3];
  9983. //const int64_t ne0 = dst->ne[0];
  9984. //const int64_t ne1 = dst->ne[1];
  9985. //const int64_t ne2 = dst->ne[2];
  9986. //const int64_t ne3 = dst->ne[3];
  9987. //const int64_t ne = ne0*ne1*ne2*ne3;
  9988. const int nb00 = src0->nb[0];
  9989. const int nb01 = src0->nb[1];
  9990. const int nb02 = src0->nb[2];
  9991. //const int nb03 = src0->nb[3];
  9992. const int nb10 = src1->nb[0];
  9993. const int nb11 = src1->nb[1];
  9994. //const int nb12 = src1->nb[2];
  9995. //const int nb13 = src1->nb[3];
  9996. //const int nb0 = dst->nb[0];
  9997. const int nb1 = dst->nb[1];
  9998. //const int nb2 = dst->nb[2];
  9999. //const int nb3 = dst->nb[3];
  10000. const int ith = params->ith;
  10001. const int nth = params->nth;
  10002. const int nk = ne00;
  10003. const int nh = nk/2;
  10004. const int ew0 = ggml_up32(ne01);
  10005. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10006. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10007. GGML_ASSERT(nb10 == sizeof(float));
  10008. if (params->type == GGML_TASK_INIT) {
  10009. // TODO: fix this memset (wsize is overestimated)
  10010. memset(params->wdata, 0, params->wsize);
  10011. // prepare kernel data (src0)
  10012. {
  10013. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10014. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10015. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10016. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10017. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10018. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10019. dst_data[i00*ew0 + i01] = src[i00];
  10020. }
  10021. }
  10022. }
  10023. }
  10024. // prepare source data (src1)
  10025. {
  10026. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10027. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10028. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10029. ggml_fp16_t * dst_data = wdata;
  10030. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10031. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10032. }
  10033. }
  10034. }
  10035. return;
  10036. }
  10037. if (params->type == GGML_TASK_FINALIZE) {
  10038. return;
  10039. }
  10040. // total rows in dst
  10041. const int nr = ne02;
  10042. // rows per thread
  10043. const int dr = (nr + nth - 1)/nth;
  10044. // row range for this thread
  10045. const int ir0 = dr*ith;
  10046. const int ir1 = MIN(ir0 + dr, nr);
  10047. for (int i1 = ir0; i1 < ir1; i1++) {
  10048. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10049. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10050. dst_data[i0] = 0;
  10051. for (int k = -nh; k <= nh; k++) {
  10052. float v = 0.0f;
  10053. ggml_vec_dot_f16(ew0, &v,
  10054. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10055. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10056. dst_data[i0] += v;
  10057. }
  10058. }
  10059. }
  10060. }
  10061. static void ggml_compute_forward_conv_1d_1s_f32(
  10062. const struct ggml_compute_params * params,
  10063. const struct ggml_tensor * src0,
  10064. const struct ggml_tensor * src1,
  10065. struct ggml_tensor * dst) {
  10066. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10067. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10068. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10069. int64_t t0 = ggml_perf_time_us();
  10070. UNUSED(t0);
  10071. const int64_t ne00 = src0->ne[0];
  10072. const int64_t ne01 = src0->ne[1];
  10073. const int64_t ne02 = src0->ne[2];
  10074. //const int64_t ne03 = src0->ne[3];
  10075. const int64_t ne10 = src1->ne[0];
  10076. const int64_t ne11 = src1->ne[1];
  10077. //const int64_t ne12 = src1->ne[2];
  10078. //const int64_t ne13 = src1->ne[3];
  10079. //const int64_t ne0 = dst->ne[0];
  10080. //const int64_t ne1 = dst->ne[1];
  10081. //const int64_t ne2 = dst->ne[2];
  10082. //const int64_t ne3 = dst->ne[3];
  10083. //const int64_t ne = ne0*ne1*ne2*ne3;
  10084. const int nb00 = src0->nb[0];
  10085. const int nb01 = src0->nb[1];
  10086. const int nb02 = src0->nb[2];
  10087. //const int nb03 = src0->nb[3];
  10088. const int nb10 = src1->nb[0];
  10089. const int nb11 = src1->nb[1];
  10090. //const int nb12 = src1->nb[2];
  10091. //const int nb13 = src1->nb[3];
  10092. //const int nb0 = dst->nb[0];
  10093. const int nb1 = dst->nb[1];
  10094. //const int nb2 = dst->nb[2];
  10095. //const int nb3 = dst->nb[3];
  10096. const int ith = params->ith;
  10097. const int nth = params->nth;
  10098. const int nk = ne00;
  10099. const int nh = nk/2;
  10100. const int ew0 = ggml_up32(ne01);
  10101. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10102. GGML_ASSERT(nb00 == sizeof(float));
  10103. GGML_ASSERT(nb10 == sizeof(float));
  10104. if (params->type == GGML_TASK_INIT) {
  10105. // TODO: fix this memset (wsize is overestimated)
  10106. memset(params->wdata, 0, params->wsize);
  10107. // prepare kernel data (src0)
  10108. {
  10109. float * const wdata = (float *) params->wdata + 0;
  10110. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10111. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10112. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10113. float * dst_data = wdata + i02*ew0*ne00;
  10114. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10115. dst_data[i00*ew0 + i01] = src[i00];
  10116. }
  10117. }
  10118. }
  10119. }
  10120. // prepare source data (src1)
  10121. {
  10122. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10123. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10124. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10125. float * dst_data = wdata;
  10126. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10127. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10128. }
  10129. }
  10130. }
  10131. return;
  10132. }
  10133. if (params->type == GGML_TASK_FINALIZE) {
  10134. return;
  10135. }
  10136. // total rows in dst
  10137. const int nr = ne02;
  10138. // rows per thread
  10139. const int dr = (nr + nth - 1)/nth;
  10140. // row range for this thread
  10141. const int ir0 = dr*ith;
  10142. const int ir1 = MIN(ir0 + dr, nr);
  10143. for (int i1 = ir0; i1 < ir1; i1++) {
  10144. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10145. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10146. dst_data[i0] = 0;
  10147. for (int k = -nh; k <= nh; k++) {
  10148. float v = 0.0f;
  10149. ggml_vec_dot_f32(ew0, &v,
  10150. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10151. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10152. dst_data[i0] += v;
  10153. }
  10154. }
  10155. }
  10156. }
  10157. static void ggml_compute_forward_conv_1d_1s(
  10158. const struct ggml_compute_params * params,
  10159. const struct ggml_tensor * src0,
  10160. const struct ggml_tensor * src1,
  10161. struct ggml_tensor * dst) {
  10162. switch (src0->type) {
  10163. case GGML_TYPE_F16:
  10164. {
  10165. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  10166. } break;
  10167. case GGML_TYPE_F32:
  10168. {
  10169. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  10170. } break;
  10171. default:
  10172. {
  10173. GGML_ASSERT(false);
  10174. } break;
  10175. }
  10176. }
  10177. // ggml_compute_forward_conv_1d_2s
  10178. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  10179. const struct ggml_compute_params * params,
  10180. const struct ggml_tensor * src0,
  10181. const struct ggml_tensor * src1,
  10182. struct ggml_tensor * dst) {
  10183. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10184. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10185. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10186. int64_t t0 = ggml_perf_time_us();
  10187. UNUSED(t0);
  10188. const int64_t ne00 = src0->ne[0];
  10189. const int64_t ne01 = src0->ne[1];
  10190. const int64_t ne02 = src0->ne[2];
  10191. //const int64_t ne03 = src0->ne[3];
  10192. const int64_t ne10 = src1->ne[0];
  10193. const int64_t ne11 = src1->ne[1];
  10194. //const int64_t ne12 = src1->ne[2];
  10195. //const int64_t ne13 = src1->ne[3];
  10196. //const int64_t ne0 = dst->ne[0];
  10197. //const int64_t ne1 = dst->ne[1];
  10198. //const int64_t ne2 = dst->ne[2];
  10199. //const int64_t ne3 = dst->ne[3];
  10200. //const int64_t ne = ne0*ne1*ne2*ne3;
  10201. const int nb00 = src0->nb[0];
  10202. const int nb01 = src0->nb[1];
  10203. const int nb02 = src0->nb[2];
  10204. //const int nb03 = src0->nb[3];
  10205. const int nb10 = src1->nb[0];
  10206. const int nb11 = src1->nb[1];
  10207. //const int nb12 = src1->nb[2];
  10208. //const int nb13 = src1->nb[3];
  10209. //const int nb0 = dst->nb[0];
  10210. const int nb1 = dst->nb[1];
  10211. //const int nb2 = dst->nb[2];
  10212. //const int nb3 = dst->nb[3];
  10213. const int ith = params->ith;
  10214. const int nth = params->nth;
  10215. const int nk = ne00;
  10216. const int nh = nk/2;
  10217. const int ew0 = ggml_up32(ne01);
  10218. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10219. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10220. GGML_ASSERT(nb10 == sizeof(float));
  10221. if (params->type == GGML_TASK_INIT) {
  10222. // TODO: fix this memset (wsize is overestimated)
  10223. memset(params->wdata, 0, params->wsize);
  10224. // prepare kernel data (src0)
  10225. {
  10226. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10227. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10228. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10229. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10230. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10231. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10232. dst_data[i00*ew0 + i01] = src[i00];
  10233. }
  10234. }
  10235. }
  10236. }
  10237. // prepare source data (src1)
  10238. {
  10239. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10240. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10241. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10242. ggml_fp16_t * dst_data = wdata;
  10243. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10244. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10245. }
  10246. }
  10247. }
  10248. return;
  10249. }
  10250. if (params->type == GGML_TASK_FINALIZE) {
  10251. return;
  10252. }
  10253. // total rows in dst
  10254. const int nr = ne02;
  10255. // rows per thread
  10256. const int dr = (nr + nth - 1)/nth;
  10257. // row range for this thread
  10258. const int ir0 = dr*ith;
  10259. const int ir1 = MIN(ir0 + dr, nr);
  10260. for (int i1 = ir0; i1 < ir1; i1++) {
  10261. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10262. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10263. dst_data[i0/2] = 0;
  10264. for (int k = -nh; k <= nh; k++) {
  10265. float v = 0.0f;
  10266. ggml_vec_dot_f16(ew0, &v,
  10267. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10268. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10269. dst_data[i0/2] += v;
  10270. }
  10271. }
  10272. }
  10273. }
  10274. static void ggml_compute_forward_conv_1d_2s_f32(
  10275. const struct ggml_compute_params * params,
  10276. const struct ggml_tensor * src0,
  10277. const struct ggml_tensor * src1,
  10278. struct ggml_tensor * dst) {
  10279. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10280. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10281. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10282. int64_t t0 = ggml_perf_time_us();
  10283. UNUSED(t0);
  10284. const int64_t ne00 = src0->ne[0];
  10285. const int64_t ne01 = src0->ne[1];
  10286. const int64_t ne02 = src0->ne[2];
  10287. //const int64_t ne03 = src0->ne[3];
  10288. const int64_t ne10 = src1->ne[0];
  10289. const int64_t ne11 = src1->ne[1];
  10290. //const int64_t ne12 = src1->ne[2];
  10291. //const int64_t ne13 = src1->ne[3];
  10292. //const int64_t ne0 = dst->ne[0];
  10293. //const int64_t ne1 = dst->ne[1];
  10294. //const int64_t ne2 = dst->ne[2];
  10295. //const int64_t ne3 = dst->ne[3];
  10296. //const int64_t ne = ne0*ne1*ne2*ne3;
  10297. const int nb00 = src0->nb[0];
  10298. const int nb01 = src0->nb[1];
  10299. const int nb02 = src0->nb[2];
  10300. //const int nb03 = src0->nb[3];
  10301. const int nb10 = src1->nb[0];
  10302. const int nb11 = src1->nb[1];
  10303. //const int nb12 = src1->nb[2];
  10304. //const int nb13 = src1->nb[3];
  10305. //const int nb0 = dst->nb[0];
  10306. const int nb1 = dst->nb[1];
  10307. //const int nb2 = dst->nb[2];
  10308. //const int nb3 = dst->nb[3];
  10309. const int ith = params->ith;
  10310. const int nth = params->nth;
  10311. const int nk = ne00;
  10312. const int nh = nk/2;
  10313. const int ew0 = ggml_up32(ne01);
  10314. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10315. GGML_ASSERT(nb00 == sizeof(float));
  10316. GGML_ASSERT(nb10 == sizeof(float));
  10317. if (params->type == GGML_TASK_INIT) {
  10318. // TODO: fix this memset (wsize is overestimated)
  10319. memset(params->wdata, 0, params->wsize);
  10320. // prepare kernel data (src0)
  10321. {
  10322. float * const wdata = (float *) params->wdata + 0;
  10323. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10324. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10325. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10326. float * dst_data = wdata + i02*ew0*ne00;
  10327. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10328. dst_data[i00*ew0 + i01] = src[i00];
  10329. }
  10330. }
  10331. }
  10332. }
  10333. // prepare source data (src1)
  10334. {
  10335. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10336. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10337. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10338. float * dst_data = wdata;
  10339. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10340. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10341. }
  10342. }
  10343. }
  10344. return;
  10345. }
  10346. if (params->type == GGML_TASK_FINALIZE) {
  10347. return;
  10348. }
  10349. // total rows in dst
  10350. const int nr = ne02;
  10351. // rows per thread
  10352. const int dr = (nr + nth - 1)/nth;
  10353. // row range for this thread
  10354. const int ir0 = dr*ith;
  10355. const int ir1 = MIN(ir0 + dr, nr);
  10356. for (int i1 = ir0; i1 < ir1; i1++) {
  10357. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10358. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10359. dst_data[i0/2] = 0;
  10360. for (int k = -nh; k <= nh; k++) {
  10361. float v = 0.0f;
  10362. ggml_vec_dot_f32(ew0, &v,
  10363. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10364. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10365. dst_data[i0/2] += v;
  10366. }
  10367. }
  10368. }
  10369. }
  10370. static void ggml_compute_forward_conv_1d_2s(
  10371. const struct ggml_compute_params * params,
  10372. const struct ggml_tensor * src0,
  10373. const struct ggml_tensor * src1,
  10374. struct ggml_tensor * dst) {
  10375. switch (src0->type) {
  10376. case GGML_TYPE_F16:
  10377. {
  10378. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  10379. } break;
  10380. case GGML_TYPE_F32:
  10381. {
  10382. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  10383. } break;
  10384. default:
  10385. {
  10386. GGML_ASSERT(false);
  10387. } break;
  10388. }
  10389. }
  10390. // ggml_compute_forward_flash_attn
  10391. static void ggml_compute_forward_flash_attn_f32(
  10392. const struct ggml_compute_params * params,
  10393. const struct ggml_tensor * q,
  10394. const struct ggml_tensor * k,
  10395. const struct ggml_tensor * v,
  10396. const bool masked,
  10397. struct ggml_tensor * dst) {
  10398. int64_t t0 = ggml_perf_time_us();
  10399. UNUSED(t0);
  10400. const int64_t neq0 = q->ne[0];
  10401. const int64_t neq1 = q->ne[1];
  10402. const int64_t neq2 = q->ne[2];
  10403. const int64_t neq3 = q->ne[3];
  10404. const int64_t nek0 = k->ne[0];
  10405. const int64_t nek1 = k->ne[1];
  10406. //const int64_t nek2 = k->ne[2];
  10407. //const int64_t nek3 = k->ne[3];
  10408. //const int64_t nev0 = v->ne[0];
  10409. const int64_t nev1 = v->ne[1];
  10410. //const int64_t nev2 = v->ne[2];
  10411. //const int64_t nev3 = v->ne[3];
  10412. const int64_t ne0 = dst->ne[0];
  10413. const int64_t ne1 = dst->ne[1];
  10414. //const int64_t ne2 = dst->ne[2];
  10415. //const int64_t ne3 = dst->ne[3];
  10416. const int nbk0 = k->nb[0];
  10417. const int nbk1 = k->nb[1];
  10418. const int nbk2 = k->nb[2];
  10419. const int nbk3 = k->nb[3];
  10420. const int nbq0 = q->nb[0];
  10421. const int nbq1 = q->nb[1];
  10422. const int nbq2 = q->nb[2];
  10423. const int nbq3 = q->nb[3];
  10424. const int nbv0 = v->nb[0];
  10425. const int nbv1 = v->nb[1];
  10426. const int nbv2 = v->nb[2];
  10427. const int nbv3 = v->nb[3];
  10428. const int nb0 = dst->nb[0];
  10429. const int nb1 = dst->nb[1];
  10430. const int nb2 = dst->nb[2];
  10431. const int nb3 = dst->nb[3];
  10432. const int ith = params->ith;
  10433. const int nth = params->nth;
  10434. const int64_t D = neq0;
  10435. const int64_t N = neq1;
  10436. const int64_t P = nek1 - N;
  10437. const int64_t M = P + N;
  10438. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10439. GGML_ASSERT(ne0 == D);
  10440. GGML_ASSERT(ne1 == N);
  10441. GGML_ASSERT(P >= 0);
  10442. GGML_ASSERT(nbq0 == sizeof(float));
  10443. GGML_ASSERT(nbk0 == sizeof(float));
  10444. GGML_ASSERT(nbv0 == sizeof(float));
  10445. GGML_ASSERT(neq0 == D);
  10446. GGML_ASSERT(nek0 == D);
  10447. GGML_ASSERT(nev1 == D);
  10448. GGML_ASSERT(neq1 == N);
  10449. GGML_ASSERT(nek1 == N + P);
  10450. GGML_ASSERT(nev1 == D);
  10451. // dst cannot be transposed or permuted
  10452. GGML_ASSERT(nb0 == sizeof(float));
  10453. GGML_ASSERT(nb0 <= nb1);
  10454. GGML_ASSERT(nb1 <= nb2);
  10455. GGML_ASSERT(nb2 <= nb3);
  10456. if (params->type == GGML_TASK_INIT) {
  10457. return;
  10458. }
  10459. if (params->type == GGML_TASK_FINALIZE) {
  10460. return;
  10461. }
  10462. // parallelize by q rows using ggml_vec_dot_f32
  10463. // total rows in q
  10464. const int nr = neq1*neq2*neq3;
  10465. // rows per thread
  10466. const int dr = (nr + nth - 1)/nth;
  10467. // row range for this thread
  10468. const int ir0 = dr*ith;
  10469. const int ir1 = MIN(ir0 + dr, nr);
  10470. const float scale = 1.0f/sqrtf(D);
  10471. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10472. for (int ir = ir0; ir < ir1; ++ir) {
  10473. // q indices
  10474. const int iq3 = ir/(neq2*neq1);
  10475. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10476. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10477. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10478. for (int i = M; i < Mup; ++i) {
  10479. S[i] = -INFINITY;
  10480. }
  10481. for (int64_t ic = 0; ic < nek1; ++ic) {
  10482. // k indices
  10483. const int ik3 = iq3;
  10484. const int ik2 = iq2;
  10485. const int ik1 = ic;
  10486. // S indices
  10487. const int i1 = ik1;
  10488. ggml_vec_dot_f32(neq0,
  10489. S + i1,
  10490. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10491. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10492. }
  10493. // scale
  10494. ggml_vec_scale_f32(nek1, S, scale);
  10495. if (masked) {
  10496. for (int64_t i = P; i < M; i++) {
  10497. if (i > P + iq1) {
  10498. S[i] = -INFINITY;
  10499. }
  10500. }
  10501. }
  10502. // softmax
  10503. {
  10504. float max = -INFINITY;
  10505. ggml_vec_max_f32(M, &max, S);
  10506. ggml_float sum = 0.0;
  10507. {
  10508. #ifdef GGML_SOFT_MAX_ACCELERATE
  10509. max = -max;
  10510. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10511. vvexpf(S, S, &Mup);
  10512. ggml_vec_sum_f32(Mup, &sum, S);
  10513. #else
  10514. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10515. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10516. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10517. float * SS = S + i;
  10518. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10519. if (SS[j] == -INFINITY) {
  10520. SS[j] = 0.0f;
  10521. } else {
  10522. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10523. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10524. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10525. sump[j] += (ggml_float)val;
  10526. SS[j] = val;
  10527. }
  10528. }
  10529. }
  10530. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10531. sum += sump[i];
  10532. }
  10533. #endif
  10534. }
  10535. assert(sum > 0.0);
  10536. sum = 1.0/sum;
  10537. ggml_vec_scale_f32(M, S, sum);
  10538. #ifndef NDEBUG
  10539. for (int i = 0; i < M; ++i) {
  10540. assert(!isnan(S[i]));
  10541. assert(!isinf(S[i]));
  10542. }
  10543. #endif
  10544. }
  10545. for (int64_t ic = 0; ic < nev1; ++ic) {
  10546. // dst indices
  10547. const int i1 = iq1;
  10548. const int i2 = iq2;
  10549. const int i3 = iq3;
  10550. ggml_vec_dot_f32(nek1,
  10551. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10552. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10553. S);
  10554. }
  10555. }
  10556. }
  10557. static void ggml_compute_forward_flash_attn_f16(
  10558. const struct ggml_compute_params * params,
  10559. const struct ggml_tensor * q,
  10560. const struct ggml_tensor * k,
  10561. const struct ggml_tensor * v,
  10562. const bool masked,
  10563. struct ggml_tensor * dst) {
  10564. int64_t t0 = ggml_perf_time_us();
  10565. UNUSED(t0);
  10566. const int64_t neq0 = q->ne[0];
  10567. const int64_t neq1 = q->ne[1];
  10568. const int64_t neq2 = q->ne[2];
  10569. const int64_t neq3 = q->ne[3];
  10570. const int64_t nek0 = k->ne[0];
  10571. const int64_t nek1 = k->ne[1];
  10572. //const int64_t nek2 = k->ne[2];
  10573. //const int64_t nek3 = k->ne[3];
  10574. //const int64_t nev0 = v->ne[0];
  10575. const int64_t nev1 = v->ne[1];
  10576. //const int64_t nev2 = v->ne[2];
  10577. //const int64_t nev3 = v->ne[3];
  10578. const int64_t ne0 = dst->ne[0];
  10579. const int64_t ne1 = dst->ne[1];
  10580. //const int64_t ne2 = dst->ne[2];
  10581. //const int64_t ne3 = dst->ne[3];
  10582. const int nbk0 = k->nb[0];
  10583. const int nbk1 = k->nb[1];
  10584. const int nbk2 = k->nb[2];
  10585. const int nbk3 = k->nb[3];
  10586. const int nbq0 = q->nb[0];
  10587. const int nbq1 = q->nb[1];
  10588. const int nbq2 = q->nb[2];
  10589. const int nbq3 = q->nb[3];
  10590. const int nbv0 = v->nb[0];
  10591. const int nbv1 = v->nb[1];
  10592. const int nbv2 = v->nb[2];
  10593. const int nbv3 = v->nb[3];
  10594. const int nb0 = dst->nb[0];
  10595. const int nb1 = dst->nb[1];
  10596. const int nb2 = dst->nb[2];
  10597. const int nb3 = dst->nb[3];
  10598. const int ith = params->ith;
  10599. const int nth = params->nth;
  10600. const int64_t D = neq0;
  10601. const int64_t N = neq1;
  10602. const int64_t P = nek1 - N;
  10603. const int64_t M = P + N;
  10604. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10605. GGML_ASSERT(ne0 == D);
  10606. GGML_ASSERT(ne1 == N);
  10607. GGML_ASSERT(P >= 0);
  10608. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10609. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10610. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10611. GGML_ASSERT(neq0 == D);
  10612. GGML_ASSERT(nek0 == D);
  10613. GGML_ASSERT(nev1 == D);
  10614. GGML_ASSERT(neq1 == N);
  10615. GGML_ASSERT(nek1 == N + P);
  10616. GGML_ASSERT(nev1 == D);
  10617. // dst cannot be transposed or permuted
  10618. GGML_ASSERT(nb0 == sizeof(float));
  10619. GGML_ASSERT(nb0 <= nb1);
  10620. GGML_ASSERT(nb1 <= nb2);
  10621. GGML_ASSERT(nb2 <= nb3);
  10622. if (params->type == GGML_TASK_INIT) {
  10623. return;
  10624. }
  10625. if (params->type == GGML_TASK_FINALIZE) {
  10626. return;
  10627. }
  10628. // parallelize by q rows using ggml_vec_dot_f32
  10629. // total rows in q
  10630. const int nr = neq1*neq2*neq3;
  10631. // rows per thread
  10632. const int dr = (nr + nth - 1)/nth;
  10633. // row range for this thread
  10634. const int ir0 = dr*ith;
  10635. const int ir1 = MIN(ir0 + dr, nr);
  10636. const float scale = 1.0f/sqrtf(D);
  10637. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10638. for (int ir = ir0; ir < ir1; ++ir) {
  10639. // q indices
  10640. const int iq3 = ir/(neq2*neq1);
  10641. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10642. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10643. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10644. for (int i = M; i < Mup; ++i) {
  10645. S[i] = -INFINITY;
  10646. }
  10647. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10648. for (int64_t ic = 0; ic < nek1; ++ic) {
  10649. // k indices
  10650. const int ik3 = iq3;
  10651. const int ik2 = iq2;
  10652. const int ik1 = ic;
  10653. // S indices
  10654. const int i1 = ik1;
  10655. ggml_vec_dot_f16(neq0,
  10656. S + i1,
  10657. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10658. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10659. }
  10660. } else {
  10661. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10662. // k indices
  10663. const int ik3 = iq3;
  10664. const int ik2 = iq2;
  10665. const int ik1 = ic;
  10666. // S indices
  10667. const int i1 = ik1;
  10668. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10669. S + i1,
  10670. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10671. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10672. }
  10673. }
  10674. // scale
  10675. ggml_vec_scale_f32(nek1, S, scale);
  10676. if (masked) {
  10677. for (int64_t i = P; i < M; i++) {
  10678. if (i > P + iq1) {
  10679. S[i] = -INFINITY;
  10680. }
  10681. }
  10682. }
  10683. // softmax
  10684. {
  10685. float max = -INFINITY;
  10686. ggml_vec_max_f32(M, &max, S);
  10687. ggml_float sum = 0.0;
  10688. {
  10689. #ifdef GGML_SOFT_MAX_ACCELERATE
  10690. max = -max;
  10691. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10692. vvexpf(S, S, &Mup);
  10693. ggml_vec_sum_f32(Mup, &sum, S);
  10694. #else
  10695. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10696. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10697. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10698. float * SS = S + i;
  10699. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10700. if (SS[j] == -INFINITY) {
  10701. SS[j] = 0.0f;
  10702. } else {
  10703. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10704. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10705. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10706. sump[j] += (ggml_float)val;
  10707. SS[j] = val;
  10708. }
  10709. }
  10710. }
  10711. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10712. sum += sump[i];
  10713. }
  10714. #endif
  10715. }
  10716. assert(sum > 0.0);
  10717. sum = 1.0/sum;
  10718. ggml_vec_scale_f32(M, S, sum);
  10719. #ifndef NDEBUG
  10720. for (int i = 0; i < M; ++i) {
  10721. assert(!isnan(S[i]));
  10722. assert(!isinf(S[i]));
  10723. }
  10724. #endif
  10725. }
  10726. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10727. for (int64_t i = 0; i < M; i++) {
  10728. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10729. }
  10730. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10731. for (int64_t ic = 0; ic < nev1; ++ic) {
  10732. // dst indices
  10733. const int i1 = iq1;
  10734. const int i2 = iq2;
  10735. const int i3 = iq3;
  10736. ggml_vec_dot_f16(nek1,
  10737. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10738. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10739. S16);
  10740. }
  10741. } else {
  10742. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10743. // dst indices
  10744. const int i1 = iq1;
  10745. const int i2 = iq2;
  10746. const int i3 = iq3;
  10747. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10748. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10749. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10750. S16);
  10751. }
  10752. }
  10753. }
  10754. }
  10755. static void ggml_compute_forward_flash_attn(
  10756. const struct ggml_compute_params * params,
  10757. const struct ggml_tensor * q,
  10758. const struct ggml_tensor * k,
  10759. const struct ggml_tensor * v,
  10760. const bool masked,
  10761. struct ggml_tensor * dst) {
  10762. switch (q->type) {
  10763. case GGML_TYPE_F16:
  10764. {
  10765. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10766. } break;
  10767. case GGML_TYPE_F32:
  10768. {
  10769. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10770. } break;
  10771. default:
  10772. {
  10773. GGML_ASSERT(false);
  10774. } break;
  10775. }
  10776. }
  10777. // ggml_compute_forward_flash_ff
  10778. static void ggml_compute_forward_flash_ff_f16(
  10779. const struct ggml_compute_params * params,
  10780. const struct ggml_tensor * a, // F16
  10781. const struct ggml_tensor * b0, // F16 fc_w
  10782. const struct ggml_tensor * b1, // F32 fc_b
  10783. const struct ggml_tensor * c0, // F16 proj_w
  10784. const struct ggml_tensor * c1, // F32 proj_b
  10785. struct ggml_tensor * dst) {
  10786. int64_t t0 = ggml_perf_time_us();
  10787. UNUSED(t0);
  10788. const int64_t nea0 = a->ne[0];
  10789. const int64_t nea1 = a->ne[1];
  10790. const int64_t nea2 = a->ne[2];
  10791. const int64_t nea3 = a->ne[3];
  10792. const int64_t neb00 = b0->ne[0];
  10793. const int64_t neb01 = b0->ne[1];
  10794. //const int64_t neb02 = b0->ne[2];
  10795. //const int64_t neb03 = b0->ne[3];
  10796. const int64_t neb10 = b1->ne[0];
  10797. const int64_t neb11 = b1->ne[1];
  10798. //const int64_t neb12 = b1->ne[2];
  10799. //const int64_t neb13 = b1->ne[3];
  10800. const int64_t nec00 = c0->ne[0];
  10801. const int64_t nec01 = c0->ne[1];
  10802. //const int64_t nec02 = c0->ne[2];
  10803. //const int64_t nec03 = c0->ne[3];
  10804. const int64_t nec10 = c1->ne[0];
  10805. const int64_t nec11 = c1->ne[1];
  10806. //const int64_t nec12 = c1->ne[2];
  10807. //const int64_t nec13 = c1->ne[3];
  10808. const int64_t ne0 = dst->ne[0];
  10809. const int64_t ne1 = dst->ne[1];
  10810. const int64_t ne2 = dst->ne[2];
  10811. //const int64_t ne3 = dst->ne[3];
  10812. const int nba0 = a->nb[0];
  10813. const int nba1 = a->nb[1];
  10814. const int nba2 = a->nb[2];
  10815. const int nba3 = a->nb[3];
  10816. const int nbb00 = b0->nb[0];
  10817. const int nbb01 = b0->nb[1];
  10818. const int nbb02 = b0->nb[2];
  10819. const int nbb03 = b0->nb[3];
  10820. const int nbb10 = b1->nb[0];
  10821. //const int nbb11 = b1->nb[1];
  10822. //const int nbb12 = b1->nb[2];
  10823. //const int nbb13 = b1->nb[3];
  10824. const int nbc00 = c0->nb[0];
  10825. const int nbc01 = c0->nb[1];
  10826. const int nbc02 = c0->nb[2];
  10827. const int nbc03 = c0->nb[3];
  10828. const int nbc10 = c1->nb[0];
  10829. //const int nbc11 = c1->nb[1];
  10830. //const int nbc12 = c1->nb[2];
  10831. //const int nbc13 = c1->nb[3];
  10832. const int nb0 = dst->nb[0];
  10833. const int nb1 = dst->nb[1];
  10834. const int nb2 = dst->nb[2];
  10835. const int nb3 = dst->nb[3];
  10836. const int ith = params->ith;
  10837. const int nth = params->nth;
  10838. const int64_t D = nea0;
  10839. //const int64_t N = nea1;
  10840. const int64_t M = neb01;
  10841. GGML_ASSERT(ne0 == nea0);
  10842. GGML_ASSERT(ne1 == nea1);
  10843. GGML_ASSERT(ne2 == nea2);
  10844. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10845. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10846. GGML_ASSERT(nbb10 == sizeof(float));
  10847. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10848. GGML_ASSERT(nbc10 == sizeof(float));
  10849. GGML_ASSERT(neb00 == D);
  10850. GGML_ASSERT(neb01 == M);
  10851. GGML_ASSERT(neb10 == M);
  10852. GGML_ASSERT(neb11 == 1);
  10853. GGML_ASSERT(nec00 == M);
  10854. GGML_ASSERT(nec01 == D);
  10855. GGML_ASSERT(nec10 == D);
  10856. GGML_ASSERT(nec11 == 1);
  10857. // dst cannot be transposed or permuted
  10858. GGML_ASSERT(nb0 == sizeof(float));
  10859. GGML_ASSERT(nb0 <= nb1);
  10860. GGML_ASSERT(nb1 <= nb2);
  10861. GGML_ASSERT(nb2 <= nb3);
  10862. if (params->type == GGML_TASK_INIT) {
  10863. return;
  10864. }
  10865. if (params->type == GGML_TASK_FINALIZE) {
  10866. return;
  10867. }
  10868. // parallelize by a rows using ggml_vec_dot_f32
  10869. // total rows in a
  10870. const int nr = nea1*nea2*nea3;
  10871. // rows per thread
  10872. const int dr = (nr + nth - 1)/nth;
  10873. // row range for this thread
  10874. const int ir0 = dr*ith;
  10875. const int ir1 = MIN(ir0 + dr, nr);
  10876. for (int ir = ir0; ir < ir1; ++ir) {
  10877. // a indices
  10878. const int ia3 = ir/(nea2*nea1);
  10879. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10880. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10881. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10882. for (int64_t ic = 0; ic < neb01; ++ic) {
  10883. // b0 indices
  10884. const int ib03 = ia3;
  10885. const int ib02 = ia2;
  10886. const int ib01 = ic;
  10887. // S indices
  10888. const int i1 = ib01;
  10889. ggml_vec_dot_f16(nea0,
  10890. S + i1,
  10891. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10892. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10893. }
  10894. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10895. //ggml_vec_gelu_f32(neb01, S, S);
  10896. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10897. for (int64_t i = 0; i < M; i++) {
  10898. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10899. }
  10900. ggml_vec_gelu_f16(neb01, S16, S16);
  10901. {
  10902. // dst indices
  10903. const int i1 = ia1;
  10904. const int i2 = ia2;
  10905. const int i3 = ia3;
  10906. for (int64_t ic = 0; ic < nec01; ++ic) {
  10907. ggml_vec_dot_f16(neb01,
  10908. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10909. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10910. S16);
  10911. }
  10912. ggml_vec_add_f32(nec01,
  10913. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10914. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10915. (float *) c1->data);
  10916. }
  10917. }
  10918. }
  10919. static void ggml_compute_forward_flash_ff(
  10920. const struct ggml_compute_params * params,
  10921. const struct ggml_tensor * a,
  10922. const struct ggml_tensor * b0,
  10923. const struct ggml_tensor * b1,
  10924. const struct ggml_tensor * c0,
  10925. const struct ggml_tensor * c1,
  10926. struct ggml_tensor * dst) {
  10927. switch (b0->type) {
  10928. case GGML_TYPE_F16:
  10929. {
  10930. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10931. } break;
  10932. case GGML_TYPE_F32:
  10933. {
  10934. GGML_ASSERT(false); // TODO
  10935. } break;
  10936. default:
  10937. {
  10938. GGML_ASSERT(false);
  10939. } break;
  10940. }
  10941. }
  10942. // ggml_compute_forward_flash_attn_back
  10943. static void ggml_compute_forward_flash_attn_back_f32(
  10944. const struct ggml_compute_params * params,
  10945. const struct ggml_tensor * q,
  10946. const struct ggml_tensor * k,
  10947. const struct ggml_tensor * v,
  10948. const struct ggml_tensor * d,
  10949. const bool masked,
  10950. struct ggml_tensor * dst) {
  10951. int64_t t0 = ggml_perf_time_us();
  10952. UNUSED(t0);
  10953. const int64_t neq0 = q->ne[0];
  10954. const int64_t neq1 = q->ne[1];
  10955. const int64_t neq2 = q->ne[2];
  10956. const int64_t neq3 = q->ne[3];
  10957. const int64_t nek0 = k->ne[0];
  10958. const int64_t nek1 = k->ne[1];
  10959. //const int64_t nek2 = k->ne[2];
  10960. //const int64_t nek3 = k->ne[3];
  10961. const int64_t nev0 = v->ne[0];
  10962. const int64_t nev1 = v->ne[1];
  10963. //const int64_t nev2 = v->ne[2];
  10964. //const int64_t nev3 = v->ne[3];
  10965. const int64_t ned0 = d->ne[0];
  10966. const int64_t ned1 = d->ne[1];
  10967. //const int64_t ned2 = d->ne[2];
  10968. //const int64_t ned3 = d->ne[3];
  10969. const int64_t ne0 = dst->ne[0];
  10970. const int64_t ne1 = dst->ne[1];
  10971. const int64_t ne2 = dst->ne[2];
  10972. const int64_t ne3 = dst->ne[3];
  10973. const int nbk0 = k->nb[0];
  10974. const int nbk1 = k->nb[1];
  10975. const int nbk2 = k->nb[2];
  10976. const int nbk3 = k->nb[3];
  10977. const int nbq0 = q->nb[0];
  10978. const int nbq1 = q->nb[1];
  10979. const int nbq2 = q->nb[2];
  10980. const int nbq3 = q->nb[3];
  10981. const int nbv0 = v->nb[0];
  10982. const int nbv1 = v->nb[1];
  10983. const int nbv2 = v->nb[2];
  10984. const int nbv3 = v->nb[3];
  10985. const int nbd0 = d->nb[0];
  10986. const int nbd1 = d->nb[1];
  10987. const int nbd2 = d->nb[2];
  10988. const int nbd3 = d->nb[3];
  10989. const int nb0 = dst->nb[0];
  10990. const int nb1 = dst->nb[1];
  10991. const int nb2 = dst->nb[2];
  10992. const int nb3 = dst->nb[3];
  10993. const int ith = params->ith;
  10994. const int nth = params->nth;
  10995. const int64_t D = neq0;
  10996. const int64_t N = neq1;
  10997. const int64_t P = nek1 - N;
  10998. const int64_t M = P + N;
  10999. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11000. const int mxDM = MAX(D, Mup);
  11001. // GGML_ASSERT(ne0 == D);
  11002. // GGML_ASSERT(ne1 == N);
  11003. GGML_ASSERT(P >= 0);
  11004. GGML_ASSERT(nbq0 == sizeof(float));
  11005. GGML_ASSERT(nbk0 == sizeof(float));
  11006. GGML_ASSERT(nbv0 == sizeof(float));
  11007. GGML_ASSERT(neq0 == D);
  11008. GGML_ASSERT(nek0 == D);
  11009. GGML_ASSERT(nev1 == D);
  11010. GGML_ASSERT(ned0 == D);
  11011. GGML_ASSERT(neq1 == N);
  11012. GGML_ASSERT(nek1 == N + P);
  11013. GGML_ASSERT(nev1 == D);
  11014. GGML_ASSERT(ned1 == N);
  11015. // dst cannot be transposed or permuted
  11016. GGML_ASSERT(nb0 == sizeof(float));
  11017. GGML_ASSERT(nb0 <= nb1);
  11018. GGML_ASSERT(nb1 <= nb2);
  11019. GGML_ASSERT(nb2 <= nb3);
  11020. if (params->type == GGML_TASK_INIT) {
  11021. if (ith == 0) {
  11022. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11023. }
  11024. return;
  11025. }
  11026. if (params->type == GGML_TASK_FINALIZE) {
  11027. return;
  11028. }
  11029. // parallelize by q rows using ggml_vec_dot_f32
  11030. // total rows in q
  11031. const int nr = neq2*neq3;
  11032. // rows per thread
  11033. const int dr = (nr + nth - 1)/nth;
  11034. // row range for this thread
  11035. const int ir0 = dr*ith;
  11036. const int ir1 = MIN(ir0 + dr, nr);
  11037. const float scale = 1.0f/sqrtf(D);
  11038. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11039. for (int ir = ir0; ir < ir1; ++ir) {
  11040. // q indices
  11041. const int iq3 = ir/(neq2);
  11042. const int iq2 = ir - iq3*neq2;
  11043. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11044. // not sure about CACHE_LINE_SIZE_F32..
  11045. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11046. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11047. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11048. for (int i = M; i < Mup; ++i) {
  11049. S[i] = -INFINITY;
  11050. }
  11051. for (int64_t ic = 0; ic < nek1; ++ic) {
  11052. // k indices
  11053. const int ik3 = iq3;
  11054. const int ik2 = iq2;
  11055. const int ik1 = ic;
  11056. // S indices
  11057. const int i1 = ik1;
  11058. ggml_vec_dot_f32(neq0,
  11059. S + i1,
  11060. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11061. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11062. }
  11063. // scale
  11064. ggml_vec_scale_f32(nek1, S, scale);
  11065. if (masked) {
  11066. for (int64_t i = P; i < M; i++) {
  11067. if (i > P + iq1) {
  11068. S[i] = -INFINITY;
  11069. }
  11070. }
  11071. }
  11072. // softmax
  11073. {
  11074. float max = -INFINITY;
  11075. ggml_vec_max_f32(M, &max, S);
  11076. ggml_float sum = 0.0;
  11077. {
  11078. #ifdef GGML_SOFT_MAX_ACCELERATE
  11079. max = -max;
  11080. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11081. vvexpf(SM, SM, &Mup);
  11082. ggml_vec_sum_f32(Mup, &sum, SM);
  11083. #else
  11084. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11085. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11086. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11087. float * SR = S + i;
  11088. float * SW = SM + i;
  11089. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11090. if (SR[j] == -INFINITY) {
  11091. SW[j] = 0.0f;
  11092. } else {
  11093. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11094. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11095. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11096. sump[j] += (ggml_float)val;
  11097. SW[j] = val;
  11098. }
  11099. }
  11100. }
  11101. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11102. sum += sump[i];
  11103. }
  11104. #endif
  11105. }
  11106. assert(sum > 0.0);
  11107. sum = 1.0/sum;
  11108. ggml_vec_scale_f32(M, SM, sum);
  11109. }
  11110. // step-by-step explanation
  11111. {
  11112. // forward-process shape grads from backward process
  11113. // parallel_for iq2,iq3:
  11114. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11115. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11116. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11117. // for iq1:
  11118. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11119. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11120. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11121. // S0 = -Inf [D,1,1,1]
  11122. // ~S1[i] = dot(kcur[:D,i], qcur)
  11123. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11124. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11125. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11126. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11127. // ~S5[i] = dot(vcur[:,i], S4)
  11128. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11129. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11130. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11131. // dst backward-/ grad[dst] = d
  11132. //
  11133. // output gradients with their dependencies:
  11134. //
  11135. // grad[kcur] = grad[S1].T @ qcur
  11136. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11137. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11138. // grad[S4] = grad[S5] @ vcur
  11139. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11140. // grad[qcur] = grad[S1] @ kcur
  11141. // grad[vcur] = grad[S5].T @ S4
  11142. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11143. //
  11144. // in post-order:
  11145. //
  11146. // S1 = qcur @ kcur.T
  11147. // S2 = S1 * scale
  11148. // S3 = diag_mask_inf(S2, P)
  11149. // S4 = softmax(S3)
  11150. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11151. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11152. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11153. // grad[qcur] = grad[S1] @ kcur
  11154. // grad[kcur] = grad[S1].T @ qcur
  11155. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11156. //
  11157. // using less variables (SM=S4):
  11158. //
  11159. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11160. // SM = softmax(S)
  11161. // S = d[:D,iq1,iq2,iq3] @ vcur
  11162. // dot_SM_gradSM = dot(SM, S)
  11163. // S = SM * (S - dot(SM, S))
  11164. // S = diag_mask_zero(S, P) * scale
  11165. //
  11166. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11167. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11168. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11169. }
  11170. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11171. // S = d[:D,iq1,iq2,iq3] @ vcur
  11172. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11173. ggml_vec_set_f32(M, S, 0);
  11174. for (int64_t ic = 0; ic < D; ++ic) {
  11175. // dst indices
  11176. const int i1 = iq1;
  11177. const int i2 = iq2;
  11178. const int i3 = iq3;
  11179. ggml_vec_mad_f32(M,
  11180. S,
  11181. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11182. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11183. }
  11184. // S = SM * (S - dot(SM, S))
  11185. float dot_SM_gradSM = 0;
  11186. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11187. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11188. ggml_vec_mul_f32 (M, S, S, SM);
  11189. // S = diag_mask_zero(S, P) * scale
  11190. if (masked) {
  11191. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11192. // S[i] = 0;
  11193. // }
  11194. for (int64_t i = P; i < M; i++) {
  11195. if (i > P + iq1) {
  11196. S[i] = 0;
  11197. }
  11198. }
  11199. }
  11200. ggml_vec_scale_f32(M, S, scale);
  11201. void * grad_q = (char *) dst->data;
  11202. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11203. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11204. const size_t nbgq1 = nb0*neq0;
  11205. const size_t nbgq2 = nb0*neq0*neq1;
  11206. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11207. const size_t nbgk1 = nb0*nek0;
  11208. const size_t nbgk2 = nb0*nek0*nek1;
  11209. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11210. const size_t nbgv1 = nb0*nev0;
  11211. const size_t nbgv2 = nb0*nev0*nev1;
  11212. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11213. // S shape [M,1]
  11214. // SM shape [M,1]
  11215. // kcur shape [D,M]
  11216. // qcur shape [D,1]
  11217. // vcur shape [M,D]
  11218. //
  11219. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11220. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11221. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11222. //
  11223. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11224. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11225. for (int64_t ic = 0; ic < M; ++ic) {
  11226. // dst indices
  11227. const int i1 = iq1;
  11228. const int i2 = iq2;
  11229. const int i3 = iq3;
  11230. ggml_vec_mad_f32(D,
  11231. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11232. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11233. S[ic]);
  11234. }
  11235. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11236. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11237. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11238. for (int64_t ic = 0; ic < M; ++ic) {
  11239. // dst indices
  11240. const int i1 = iq1;
  11241. const int i2 = iq2;
  11242. const int i3 = iq3;
  11243. // ggml_vec_set_f32(D,
  11244. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11245. // 0);
  11246. ggml_vec_mad_f32(D,
  11247. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11248. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11249. S[ic]);
  11250. }
  11251. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11252. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11253. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11254. for (int64_t ic = 0; ic < D; ++ic) {
  11255. // dst indices
  11256. const int i1 = iq1;
  11257. const int i2 = iq2;
  11258. const int i3 = iq3;
  11259. // ggml_vec_set_f32(M,
  11260. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11261. // 0);
  11262. ggml_vec_mad_f32(M,
  11263. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11264. SM,
  11265. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11266. }
  11267. }
  11268. }
  11269. }
  11270. static void ggml_compute_forward_flash_attn_back(
  11271. const struct ggml_compute_params * params,
  11272. const struct ggml_tensor * q,
  11273. const struct ggml_tensor * k,
  11274. const struct ggml_tensor * v,
  11275. const struct ggml_tensor * d,
  11276. const bool masked,
  11277. struct ggml_tensor * dst) {
  11278. switch (q->type) {
  11279. case GGML_TYPE_F32:
  11280. {
  11281. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11282. } break;
  11283. default:
  11284. {
  11285. GGML_ASSERT(false);
  11286. } break;
  11287. }
  11288. }
  11289. // ggml_compute_forward_map_unary
  11290. static void ggml_compute_forward_map_unary_f32(
  11291. const struct ggml_compute_params * params,
  11292. const struct ggml_tensor * src0,
  11293. struct ggml_tensor * dst,
  11294. const ggml_unary_op_f32_t fun) {
  11295. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11297. return;
  11298. }
  11299. const int n = ggml_nrows(src0);
  11300. const int nc = src0->ne[0];
  11301. assert( dst->nb[0] == sizeof(float));
  11302. assert(src0->nb[0] == sizeof(float));
  11303. for (int i = 0; i < n; i++) {
  11304. fun(nc,
  11305. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11306. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11307. }
  11308. }
  11309. static void ggml_compute_forward_map_unary(
  11310. const struct ggml_compute_params * params,
  11311. const struct ggml_tensor * src0,
  11312. struct ggml_tensor * dst,
  11313. const ggml_unary_op_f32_t fun) {
  11314. switch (src0->type) {
  11315. case GGML_TYPE_F32:
  11316. {
  11317. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11318. } break;
  11319. default:
  11320. {
  11321. GGML_ASSERT(false);
  11322. } break;
  11323. }
  11324. }
  11325. // ggml_compute_forward_map_binary
  11326. static void ggml_compute_forward_map_binary_f32(
  11327. const struct ggml_compute_params * params,
  11328. const struct ggml_tensor * src0,
  11329. const struct ggml_tensor * src1,
  11330. struct ggml_tensor * dst,
  11331. const ggml_binary_op_f32_t fun) {
  11332. assert(params->ith == 0);
  11333. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11335. return;
  11336. }
  11337. const int n = ggml_nrows(src0);
  11338. const int nc = src0->ne[0];
  11339. assert( dst->nb[0] == sizeof(float));
  11340. assert(src0->nb[0] == sizeof(float));
  11341. assert(src1->nb[0] == sizeof(float));
  11342. for (int i = 0; i < n; i++) {
  11343. fun(nc,
  11344. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11345. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11346. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11347. }
  11348. }
  11349. static void ggml_compute_forward_map_binary(
  11350. const struct ggml_compute_params * params,
  11351. const struct ggml_tensor * src0,
  11352. const struct ggml_tensor * src1,
  11353. struct ggml_tensor * dst,
  11354. const ggml_binary_op_f32_t fun) {
  11355. switch (src0->type) {
  11356. case GGML_TYPE_F32:
  11357. {
  11358. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11359. } break;
  11360. default:
  11361. {
  11362. GGML_ASSERT(false);
  11363. } break;
  11364. }
  11365. }
  11366. // ggml_compute_forward_cross_entropy_loss
  11367. static void ggml_compute_forward_cross_entropy_loss_f32(
  11368. const struct ggml_compute_params * params,
  11369. const struct ggml_tensor * src0,
  11370. const struct ggml_tensor * src1,
  11371. struct ggml_tensor * dst) {
  11372. GGML_ASSERT(ggml_is_contiguous(src0));
  11373. GGML_ASSERT(ggml_is_contiguous(src1));
  11374. GGML_ASSERT(ggml_is_scalar(dst));
  11375. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11376. const int ith = params->ith;
  11377. const int nth = params->nth;
  11378. float * sums = (float *) params->wdata;
  11379. // TODO: handle transposed/permuted matrices
  11380. const int nc = src0->ne[0];
  11381. const int nr = ggml_nrows(src0);
  11382. if (params->type == GGML_TASK_INIT) {
  11383. if (ith == 0) {
  11384. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11385. }
  11386. return;
  11387. }
  11388. if (params->type == GGML_TASK_FINALIZE) {
  11389. if (ith == 0) {
  11390. float * dp = (float *) dst->data;
  11391. ggml_vec_sum_f32(nth, dp, sums);
  11392. dp[0] *= -1.0f;
  11393. }
  11394. return;
  11395. }
  11396. const double eps = 1e-9;
  11397. // rows per thread
  11398. const int dr = (nr + nth - 1)/nth;
  11399. // row range for this thread
  11400. const int ir0 = dr*ith;
  11401. const int ir1 = MIN(ir0 + dr, nr);
  11402. for (int i1 = ir0; i1 < ir1; i1++) {
  11403. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11404. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11405. float * st = (float *) params->wdata + nth + ith*nc;
  11406. #ifndef NDEBUG
  11407. for (int i = 0; i < nc; ++i) {
  11408. //printf("p[%d] = %f\n", i, p[i]);
  11409. assert(!isnan(s0[i]));
  11410. assert(!isnan(s1[i]));
  11411. }
  11412. #endif
  11413. // soft_max
  11414. ggml_float sum = 0.0;
  11415. {
  11416. float max = -INFINITY;
  11417. ggml_vec_max_f32(nc, &max, s0);
  11418. uint16_t scvt;
  11419. for (int i = 0; i < nc; i++) {
  11420. if (s0[i] == -INFINITY) {
  11421. st[i] = 0.0f;
  11422. } else {
  11423. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11424. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11425. memcpy(&scvt, &s, sizeof(scvt));
  11426. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11427. sum += (ggml_float)val;
  11428. st[i] = val;
  11429. }
  11430. }
  11431. assert(sum > 0.0);
  11432. // sum = 1.0/sum;
  11433. }
  11434. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11435. sum = (1.0 - eps) / sum;
  11436. ggml_vec_scale_f32(nc, st, sum);
  11437. ggml_vec_add1_f32(nc, st, st, eps);
  11438. ggml_vec_log_f32(nc, st, st);
  11439. ggml_vec_mul_f32(nc, st, st, s1);
  11440. ggml_vec_sum_f32(nc, sums + ith, st);
  11441. #ifndef NDEBUG
  11442. for (int i = 0; i < nc; ++i) {
  11443. assert(!isnan(st[i]));
  11444. assert(!isinf(st[i]));
  11445. }
  11446. #endif
  11447. }
  11448. }
  11449. static void ggml_compute_forward_cross_entropy_loss(
  11450. const struct ggml_compute_params * params,
  11451. const struct ggml_tensor * src0,
  11452. const struct ggml_tensor * src1,
  11453. struct ggml_tensor * dst) {
  11454. switch (src0->type) {
  11455. case GGML_TYPE_F32:
  11456. {
  11457. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11458. } break;
  11459. default:
  11460. {
  11461. GGML_ASSERT(false);
  11462. } break;
  11463. }
  11464. }
  11465. // ggml_compute_forward_cross_entropy_loss_back
  11466. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11467. const struct ggml_compute_params * params,
  11468. const struct ggml_tensor * src0,
  11469. const struct ggml_tensor * src1,
  11470. const struct ggml_tensor * opt0,
  11471. struct ggml_tensor * dst) {
  11472. GGML_ASSERT(ggml_is_contiguous(dst));
  11473. GGML_ASSERT(ggml_is_contiguous(src0));
  11474. GGML_ASSERT(ggml_is_contiguous(src1));
  11475. GGML_ASSERT(ggml_is_contiguous(opt0));
  11476. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11477. const int64_t ith = params->ith;
  11478. const int64_t nth = params->nth;
  11479. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11480. return;
  11481. }
  11482. const float eps = 1e-9f;
  11483. // TODO: handle transposed/permuted matrices
  11484. const int64_t nc = src0->ne[0];
  11485. const int64_t nr = ggml_nrows(src0);
  11486. // rows per thread
  11487. const int64_t dr = (nr + nth - 1)/nth;
  11488. // row range for this thread
  11489. const int64_t ir0 = dr*ith;
  11490. const int64_t ir1 = MIN(ir0 + dr, nr);
  11491. float * d = (float *) opt0->data;
  11492. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11493. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11494. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11495. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11496. float * sm = (float *) params->wdata + ith*nc;
  11497. #ifndef NDEBUG
  11498. for (int i = 0; i < nc; ++i) {
  11499. //printf("p[%d] = %f\n", i, p[i]);
  11500. assert(!isnan(s0[i]));
  11501. assert(!isnan(s1[i]));
  11502. }
  11503. #endif
  11504. // step by step explanation:
  11505. {
  11506. //float * sums = (float *) params->wdata;
  11507. // forward pass with annotated gradients from backward pass
  11508. // (built by going in reverse operation order, adding to gradients of current operation args)
  11509. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11510. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11511. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11512. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11513. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11514. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11515. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11516. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11517. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11518. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11519. // postorder:
  11520. // grad[st1] := softmax(s0)
  11521. // grad[st1] := grad[st1]*(1.0 - eps)
  11522. // grad[st1] := grad[st1] + eps
  11523. // grad[st1] := s1 / grad[st1]
  11524. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11525. // src0 gradients by going through softmax_back
  11526. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11527. // from softmax_back:
  11528. // dxk = yk * (dyk - dot(y, dy))
  11529. // dot_y_dy := dot(y, dy)
  11530. // dx := dy
  11531. // dx := dx - dot_y_dy
  11532. // dx := dx * y
  11533. // postorder:
  11534. // dot_st1_dst1 := dot(st1, grad[st1])
  11535. // grad[s0] := grad[st1]
  11536. // grad[s0] := grad[s0] - dot_st1_dst1
  11537. // grad[s0] := grad[s0] * st1
  11538. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11539. // sm := softmax(s0)
  11540. // grad[s0] := sm*(1.0 - eps)
  11541. // grad[s0] := grad[s0] + eps
  11542. // grad[s0] := s1 / grad[s0]
  11543. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11544. // dot_st1_dst1 := dot(sm, grad[s0])
  11545. // grad[s0] := grad[s0] - dot_st1_dst1
  11546. // grad[s0] := grad[s0] * sm
  11547. }
  11548. // soft_max
  11549. ggml_float sum = 0.0;
  11550. {
  11551. float max = -INFINITY;
  11552. ggml_vec_max_f32(nc, &max, s0);
  11553. uint16_t scvt;
  11554. for (int i = 0; i < nc; i++) {
  11555. if (s0[i] == -INFINITY) {
  11556. sm[i] = 0.0f;
  11557. } else {
  11558. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11559. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11560. memcpy(&scvt, &s, sizeof(scvt));
  11561. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11562. sum += (ggml_float)val;
  11563. sm[i] = val;
  11564. }
  11565. }
  11566. assert(sum > 0.0);
  11567. sum = 1.0/sum;
  11568. }
  11569. float dot_st1_dst1 = 0;
  11570. ggml_vec_scale_f32(nc, sm, sum);
  11571. ggml_vec_cpy_f32 (nc, ds0, sm);
  11572. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11573. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11574. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11575. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11576. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11577. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11578. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11579. #ifndef NDEBUG
  11580. for (int i = 0; i < nc; ++i) {
  11581. assert(!isnan(sm[i]));
  11582. assert(!isinf(sm[i]));
  11583. assert(!isnan(ds0[i]));
  11584. assert(!isinf(ds0[i]));
  11585. }
  11586. #endif
  11587. }
  11588. }
  11589. static void ggml_compute_forward_cross_entropy_loss_back(
  11590. const struct ggml_compute_params * params,
  11591. const struct ggml_tensor * src0,
  11592. const struct ggml_tensor * src1,
  11593. const struct ggml_tensor * opt0,
  11594. struct ggml_tensor * dst) {
  11595. switch (src0->type) {
  11596. case GGML_TYPE_F32:
  11597. {
  11598. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11599. } break;
  11600. default:
  11601. {
  11602. GGML_ASSERT(false);
  11603. } break;
  11604. }
  11605. }
  11606. /////////////////////////////////
  11607. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11608. GGML_ASSERT(params);
  11609. #ifdef GGML_USE_CUBLAS
  11610. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11611. if (skip_cpu) {
  11612. return;
  11613. }
  11614. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  11615. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  11616. #endif // GGML_USE_CUBLAS
  11617. switch (tensor->op) {
  11618. case GGML_OP_DUP:
  11619. {
  11620. ggml_compute_forward_dup(params, tensor->src0, tensor);
  11621. } break;
  11622. case GGML_OP_ADD:
  11623. {
  11624. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  11625. } break;
  11626. case GGML_OP_ADD1:
  11627. {
  11628. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  11629. } break;
  11630. case GGML_OP_ACC:
  11631. {
  11632. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11633. } break;
  11634. case GGML_OP_SUB:
  11635. {
  11636. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  11637. } break;
  11638. case GGML_OP_MUL:
  11639. {
  11640. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  11641. } break;
  11642. case GGML_OP_DIV:
  11643. {
  11644. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  11645. } break;
  11646. case GGML_OP_SQR:
  11647. {
  11648. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  11649. } break;
  11650. case GGML_OP_SQRT:
  11651. {
  11652. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  11653. } break;
  11654. case GGML_OP_LOG:
  11655. {
  11656. ggml_compute_forward_log(params, tensor->src0, tensor);
  11657. } break;
  11658. case GGML_OP_SUM:
  11659. {
  11660. ggml_compute_forward_sum(params, tensor->src0, tensor);
  11661. } break;
  11662. case GGML_OP_SUM_ROWS:
  11663. {
  11664. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  11665. } break;
  11666. case GGML_OP_MEAN:
  11667. {
  11668. ggml_compute_forward_mean(params, tensor->src0, tensor);
  11669. } break;
  11670. case GGML_OP_REPEAT:
  11671. {
  11672. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  11673. } break;
  11674. case GGML_OP_REPEAT_BACK:
  11675. {
  11676. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  11677. } break;
  11678. case GGML_OP_ABS:
  11679. {
  11680. ggml_compute_forward_abs(params, tensor->src0, tensor);
  11681. } break;
  11682. case GGML_OP_SGN:
  11683. {
  11684. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  11685. } break;
  11686. case GGML_OP_NEG:
  11687. {
  11688. ggml_compute_forward_neg(params, tensor->src0, tensor);
  11689. } break;
  11690. case GGML_OP_STEP:
  11691. {
  11692. ggml_compute_forward_step(params, tensor->src0, tensor);
  11693. } break;
  11694. case GGML_OP_RELU:
  11695. {
  11696. ggml_compute_forward_relu(params, tensor->src0, tensor);
  11697. } break;
  11698. case GGML_OP_GELU:
  11699. {
  11700. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  11701. } break;
  11702. case GGML_OP_SILU:
  11703. {
  11704. ggml_compute_forward_silu(params, tensor->src0, tensor);
  11705. } break;
  11706. case GGML_OP_SILU_BACK:
  11707. {
  11708. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  11709. } break;
  11710. case GGML_OP_NORM:
  11711. {
  11712. ggml_compute_forward_norm(params, tensor->src0, tensor);
  11713. } break;
  11714. case GGML_OP_RMS_NORM:
  11715. {
  11716. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  11717. } break;
  11718. case GGML_OP_RMS_NORM_BACK:
  11719. {
  11720. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  11721. } break;
  11722. case GGML_OP_MUL_MAT:
  11723. {
  11724. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  11725. } break;
  11726. case GGML_OP_OUT_PROD:
  11727. {
  11728. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  11729. } break;
  11730. case GGML_OP_SCALE:
  11731. {
  11732. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  11733. } break;
  11734. case GGML_OP_SET:
  11735. {
  11736. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11737. } break;
  11738. case GGML_OP_CPY:
  11739. {
  11740. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  11741. } break;
  11742. case GGML_OP_CONT:
  11743. {
  11744. ggml_compute_forward_cont(params, tensor->src0, tensor);
  11745. } break;
  11746. case GGML_OP_RESHAPE:
  11747. {
  11748. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  11749. } break;
  11750. case GGML_OP_VIEW:
  11751. {
  11752. ggml_compute_forward_view(params, tensor->src0);
  11753. } break;
  11754. case GGML_OP_PERMUTE:
  11755. {
  11756. ggml_compute_forward_permute(params, tensor->src0);
  11757. } break;
  11758. case GGML_OP_TRANSPOSE:
  11759. {
  11760. ggml_compute_forward_transpose(params, tensor->src0);
  11761. } break;
  11762. case GGML_OP_GET_ROWS:
  11763. {
  11764. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  11765. } break;
  11766. case GGML_OP_GET_ROWS_BACK:
  11767. {
  11768. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11769. } break;
  11770. case GGML_OP_DIAG:
  11771. {
  11772. ggml_compute_forward_diag(params, tensor->src0, tensor);
  11773. } break;
  11774. case GGML_OP_DIAG_MASK_INF:
  11775. {
  11776. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  11777. } break;
  11778. case GGML_OP_DIAG_MASK_ZERO:
  11779. {
  11780. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  11781. } break;
  11782. case GGML_OP_SOFT_MAX:
  11783. {
  11784. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  11785. } break;
  11786. case GGML_OP_SOFT_MAX_BACK:
  11787. {
  11788. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  11789. } break;
  11790. case GGML_OP_ROPE:
  11791. {
  11792. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  11793. } break;
  11794. case GGML_OP_ROPE_BACK:
  11795. {
  11796. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  11797. } break;
  11798. case GGML_OP_ALIBI:
  11799. {
  11800. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  11801. } break;
  11802. case GGML_OP_CLAMP:
  11803. {
  11804. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  11805. } break;
  11806. case GGML_OP_CONV_1D_1S:
  11807. {
  11808. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  11809. } break;
  11810. case GGML_OP_CONV_1D_2S:
  11811. {
  11812. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  11813. } break;
  11814. case GGML_OP_FLASH_ATTN:
  11815. {
  11816. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  11817. GGML_ASSERT(t == 0 || t == 1);
  11818. bool masked = t != 0;
  11819. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  11820. } break;
  11821. case GGML_OP_FLASH_FF:
  11822. {
  11823. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  11824. } break;
  11825. case GGML_OP_FLASH_ATTN_BACK:
  11826. {
  11827. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  11828. GGML_ASSERT(t == 0 || t == 1);
  11829. bool masked = t != 0;
  11830. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  11831. } break;
  11832. case GGML_OP_MAP_UNARY:
  11833. {
  11834. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  11835. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  11836. }
  11837. break;
  11838. case GGML_OP_MAP_BINARY:
  11839. {
  11840. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  11841. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  11842. }
  11843. break;
  11844. case GGML_OP_CROSS_ENTROPY_LOSS:
  11845. {
  11846. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  11847. }
  11848. break;
  11849. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11850. {
  11851. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11852. }
  11853. break;
  11854. case GGML_OP_NONE:
  11855. {
  11856. // nop
  11857. } break;
  11858. case GGML_OP_COUNT:
  11859. {
  11860. GGML_ASSERT(false);
  11861. } break;
  11862. }
  11863. }
  11864. ////////////////////////////////////////////////////////////////////////////////
  11865. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  11866. struct ggml_tensor * src0 = tensor->src0;
  11867. struct ggml_tensor * src1 = tensor->src1;
  11868. switch (tensor->op) {
  11869. case GGML_OP_DUP:
  11870. {
  11871. if (src0->grad) {
  11872. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11873. }
  11874. } break;
  11875. case GGML_OP_ADD:
  11876. {
  11877. if (src0->grad) {
  11878. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11879. }
  11880. if (src1->grad) {
  11881. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  11882. }
  11883. } break;
  11884. case GGML_OP_ADD1:
  11885. {
  11886. if (src0->grad) {
  11887. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11888. }
  11889. if (src1->grad) {
  11890. src1->grad = ggml_add_impl(ctx,
  11891. src1->grad,
  11892. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  11893. inplace);
  11894. }
  11895. } break;
  11896. case GGML_OP_ACC:
  11897. {
  11898. if (src0->grad) {
  11899. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11900. }
  11901. if (src1->grad) {
  11902. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11903. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11904. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11905. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11906. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11907. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11908. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  11909. tensor->grad,
  11910. src1->grad->ne[0],
  11911. src1->grad->ne[1],
  11912. src1->grad->ne[2],
  11913. src1->grad->ne[3],
  11914. nb1, nb2, nb3, offset);
  11915. src1->grad =
  11916. ggml_add_impl(ctx,
  11917. src1->grad,
  11918. ggml_reshape(ctx,
  11919. ggml_cont(ctx, tensor_grad_view),
  11920. src1->grad),
  11921. inplace);
  11922. }
  11923. } break;
  11924. case GGML_OP_SUB:
  11925. {
  11926. if (src0->grad) {
  11927. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11928. }
  11929. if (src1->grad) {
  11930. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  11931. }
  11932. } break;
  11933. case GGML_OP_MUL:
  11934. {
  11935. if (src0->grad) {
  11936. src0->grad =
  11937. ggml_add_impl(ctx,
  11938. src0->grad,
  11939. ggml_mul(ctx, src1, tensor->grad),
  11940. inplace);
  11941. }
  11942. if (src1->grad) {
  11943. src1->grad =
  11944. ggml_add_impl(ctx,
  11945. src1->grad,
  11946. ggml_mul(ctx, src0, tensor->grad),
  11947. inplace);
  11948. }
  11949. } break;
  11950. case GGML_OP_DIV:
  11951. {
  11952. if (src0->grad) {
  11953. src0->grad =
  11954. ggml_add_impl(ctx,
  11955. src0->grad,
  11956. ggml_div(ctx, tensor->grad, src1),
  11957. inplace);
  11958. }
  11959. if (src1->grad) {
  11960. src1->grad =
  11961. ggml_sub_impl(ctx,
  11962. src1->grad,
  11963. ggml_mul(ctx,
  11964. tensor->grad,
  11965. ggml_div(ctx, tensor, src1)),
  11966. inplace);
  11967. }
  11968. } break;
  11969. case GGML_OP_SQR:
  11970. {
  11971. if (src0->grad) {
  11972. src0->grad =
  11973. ggml_add_impl(ctx,
  11974. src0->grad,
  11975. ggml_scale(ctx,
  11976. ggml_mul(ctx, src0, tensor->grad),
  11977. ggml_new_f32(ctx, 2.0f)),
  11978. inplace);
  11979. }
  11980. } break;
  11981. case GGML_OP_SQRT:
  11982. {
  11983. if (src0->grad) {
  11984. src0->grad =
  11985. ggml_add_impl(ctx,
  11986. src0->grad,
  11987. ggml_scale(ctx,
  11988. ggml_div(ctx,
  11989. tensor->grad,
  11990. tensor),
  11991. ggml_new_f32(ctx, 0.5f)),
  11992. inplace);
  11993. }
  11994. } break;
  11995. case GGML_OP_LOG:
  11996. {
  11997. if (src0->grad) {
  11998. src0->grad =
  11999. ggml_add_impl(ctx,
  12000. src0->grad,
  12001. ggml_div(ctx,
  12002. tensor->grad,
  12003. src0),
  12004. inplace);
  12005. }
  12006. } break;
  12007. case GGML_OP_SUM:
  12008. {
  12009. if (src0->grad) {
  12010. src0->grad =
  12011. ggml_add1_impl(ctx,
  12012. src0->grad,
  12013. tensor->grad,
  12014. inplace);
  12015. }
  12016. } break;
  12017. case GGML_OP_SUM_ROWS:
  12018. {
  12019. if (src0->grad) {
  12020. src0->grad =
  12021. ggml_add_impl(ctx,
  12022. src0->grad,
  12023. ggml_repeat(ctx,
  12024. tensor->grad,
  12025. src0->grad),
  12026. inplace);
  12027. }
  12028. } break;
  12029. case GGML_OP_MEAN:
  12030. {
  12031. GGML_ASSERT(false); // TODO: implement
  12032. } break;
  12033. case GGML_OP_REPEAT:
  12034. {
  12035. // necessary for llama
  12036. if (src0->grad) {
  12037. src0->grad = ggml_add_impl(ctx,
  12038. src0->grad,
  12039. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12040. inplace);
  12041. }
  12042. } break;
  12043. case GGML_OP_REPEAT_BACK:
  12044. {
  12045. if (src0->grad) {
  12046. // TODO: test this
  12047. src0->grad = ggml_add_impl(ctx,
  12048. src0->grad,
  12049. ggml_repeat(ctx, tensor->grad, src0->grad),
  12050. inplace);
  12051. }
  12052. } break;
  12053. case GGML_OP_ABS:
  12054. {
  12055. if (src0->grad) {
  12056. src0->grad =
  12057. ggml_add_impl(ctx,
  12058. src0->grad,
  12059. ggml_mul(ctx,
  12060. ggml_sgn(ctx, src0),
  12061. tensor->grad),
  12062. inplace);
  12063. }
  12064. } break;
  12065. case GGML_OP_SGN:
  12066. {
  12067. if (src0->grad) {
  12068. // noop
  12069. }
  12070. } break;
  12071. case GGML_OP_NEG:
  12072. {
  12073. if (src0->grad) {
  12074. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12075. }
  12076. } break;
  12077. case GGML_OP_STEP:
  12078. {
  12079. if (src0->grad) {
  12080. // noop
  12081. }
  12082. } break;
  12083. case GGML_OP_RELU:
  12084. {
  12085. if (src0->grad) {
  12086. src0->grad = ggml_sub_impl(ctx,
  12087. src0->grad,
  12088. ggml_mul(ctx,
  12089. ggml_step(ctx, src0),
  12090. tensor->grad),
  12091. inplace);
  12092. }
  12093. } break;
  12094. case GGML_OP_GELU:
  12095. {
  12096. GGML_ASSERT(false); // TODO: not implemented
  12097. } break;
  12098. case GGML_OP_ALIBI:
  12099. {
  12100. GGML_ASSERT(false); // TODO: not implemented
  12101. } break;
  12102. case GGML_OP_CLAMP:
  12103. {
  12104. GGML_ASSERT(false); // TODO: not implemented
  12105. } break;
  12106. case GGML_OP_SILU:
  12107. {
  12108. // necessary for llama
  12109. if (src0->grad) {
  12110. src0->grad = ggml_add_impl(ctx,
  12111. src0->grad,
  12112. ggml_silu_back(ctx, src0, tensor->grad),
  12113. inplace);
  12114. }
  12115. } break;
  12116. case GGML_OP_SILU_BACK:
  12117. {
  12118. GGML_ASSERT(false); // TODO: not implemented
  12119. } break;
  12120. case GGML_OP_NORM:
  12121. {
  12122. GGML_ASSERT(false); // TODO: not implemented
  12123. } break;
  12124. case GGML_OP_RMS_NORM:
  12125. {
  12126. // necessary for llama
  12127. if (src0->grad) {
  12128. src0->grad = ggml_add_impl(ctx,
  12129. src0->grad,
  12130. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12131. inplace);
  12132. }
  12133. } break;
  12134. case GGML_OP_RMS_NORM_BACK:
  12135. {
  12136. GGML_ASSERT(false); // TODO: not implemented
  12137. } break;
  12138. case GGML_OP_MUL_MAT:
  12139. {
  12140. // https://cs231n.github.io/optimization-2/#staged
  12141. // # forward pass
  12142. // s0 = np.random.randn(5, 10)
  12143. // s1 = np.random.randn(10, 3)
  12144. // t = s0.dot(s1)
  12145. // # now suppose we had the gradient on t from above in the circuit
  12146. // dt = np.random.randn(*t.shape) # same shape as t
  12147. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12148. // ds1 = t.T.dot(dt)
  12149. // tensor.shape [m,p]
  12150. // src0.shape [n,m]
  12151. // src1.shape [n,p]
  12152. // necessary for llama
  12153. if (src0->grad) {
  12154. src0->grad =
  12155. ggml_add_impl(ctx,
  12156. src0->grad,
  12157. ggml_out_prod(ctx, // [n,m]
  12158. src1, // [n,p]
  12159. tensor->grad), // [m,p]
  12160. inplace);
  12161. }
  12162. if (src1->grad) {
  12163. src1->grad =
  12164. ggml_add_impl(ctx,
  12165. src1->grad,
  12166. // ggml_mul_mat(ctx, // [n,p]
  12167. // ggml_cont(ctx, // [m,n]
  12168. // ggml_transpose(ctx, src0)), // [m,n]
  12169. // tensor->grad), // [m,p]
  12170. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12171. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12172. // // and then use ggml_out_prod
  12173. ggml_out_prod(ctx, // [n,p]
  12174. src0, // [n,m]
  12175. ggml_transpose(ctx, // [p,m]
  12176. tensor->grad)), // [m,p]
  12177. inplace);
  12178. }
  12179. } break;
  12180. case GGML_OP_OUT_PROD:
  12181. {
  12182. GGML_ASSERT(false); // TODO: not implemented
  12183. } break;
  12184. case GGML_OP_SCALE:
  12185. {
  12186. // necessary for llama
  12187. if (src0->grad) {
  12188. src0->grad =
  12189. ggml_add_impl(ctx,
  12190. src0->grad,
  12191. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12192. inplace);
  12193. }
  12194. if (src1->grad) {
  12195. src1->grad =
  12196. ggml_add_impl(ctx,
  12197. src1->grad,
  12198. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12199. inplace);
  12200. }
  12201. } break;
  12202. case GGML_OP_SET:
  12203. {
  12204. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12205. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12206. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12207. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12208. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12209. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12210. struct ggml_tensor * tensor_grad_view = NULL;
  12211. if (src0->grad || src1->grad) {
  12212. GGML_ASSERT(src0->type == tensor->type);
  12213. GGML_ASSERT(tensor->grad->type == tensor->type);
  12214. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12215. tensor_grad_view = ggml_view_4d(ctx,
  12216. tensor->grad,
  12217. src1->grad->ne[0],
  12218. src1->grad->ne[1],
  12219. src1->grad->ne[2],
  12220. src1->grad->ne[3],
  12221. nb1, nb2, nb3, offset);
  12222. }
  12223. if (src0->grad) {
  12224. src0->grad = ggml_add_impl(ctx,
  12225. src0->grad,
  12226. ggml_acc_impl(ctx,
  12227. tensor->grad,
  12228. ggml_neg(ctx, tensor_grad_view),
  12229. nb1, nb2, nb3, offset, false),
  12230. inplace);
  12231. }
  12232. if (src1->grad) {
  12233. src1->grad =
  12234. ggml_add_impl(ctx,
  12235. src1->grad,
  12236. ggml_reshape(ctx,
  12237. ggml_cont(ctx, tensor_grad_view),
  12238. src1->grad),
  12239. inplace);
  12240. }
  12241. } break;
  12242. case GGML_OP_CPY:
  12243. {
  12244. // necessary for llama
  12245. // cpy overwrites value of src1 by src0 and returns view(src1)
  12246. // the overwriting is mathematically equivalent to:
  12247. // tensor = src0 * 1 + src1 * 0
  12248. if (src0->grad) {
  12249. // dsrc0 = dtensor * 1
  12250. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12251. }
  12252. if (src1->grad) {
  12253. // dsrc1 = dtensor * 0 -> noop
  12254. }
  12255. } break;
  12256. case GGML_OP_CONT:
  12257. {
  12258. // same as cpy
  12259. if (src0->grad) {
  12260. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12261. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12262. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12263. }
  12264. } break;
  12265. case GGML_OP_RESHAPE:
  12266. {
  12267. // necessary for llama
  12268. if (src0->grad) {
  12269. src0->grad =
  12270. ggml_add_impl(ctx, src0->grad,
  12271. ggml_reshape(ctx, tensor->grad, src0->grad),
  12272. inplace);
  12273. }
  12274. } break;
  12275. case GGML_OP_VIEW:
  12276. {
  12277. // necessary for llama
  12278. if (src0->grad) {
  12279. size_t offset;
  12280. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12281. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12282. size_t nb1 = tensor->nb[1];
  12283. size_t nb2 = tensor->nb[2];
  12284. size_t nb3 = tensor->nb[3];
  12285. if (src0->type != src0->grad->type) {
  12286. // gradient is typically F32, but src0 could be other type
  12287. size_t ng = ggml_element_size(src0->grad);
  12288. size_t n0 = ggml_element_size(src0);
  12289. GGML_ASSERT(offset % n0 == 0);
  12290. GGML_ASSERT(nb1 % n0 == 0);
  12291. GGML_ASSERT(nb2 % n0 == 0);
  12292. GGML_ASSERT(nb3 % n0 == 0);
  12293. offset = (offset / n0) * ng;
  12294. nb1 = (nb1 / n0) * ng;
  12295. nb2 = (nb2 / n0) * ng;
  12296. nb3 = (nb3 / n0) * ng;
  12297. }
  12298. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12299. }
  12300. } break;
  12301. case GGML_OP_PERMUTE:
  12302. {
  12303. // necessary for llama
  12304. if (src0->grad) {
  12305. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12306. int axis0 = axes[0] & 0x3;
  12307. int axis1 = axes[1] & 0x3;
  12308. int axis2 = axes[2] & 0x3;
  12309. int axis3 = axes[3] & 0x3;
  12310. int axes_backward[4] = {0,0,0,0};
  12311. axes_backward[axis0] = 0;
  12312. axes_backward[axis1] = 1;
  12313. axes_backward[axis2] = 2;
  12314. axes_backward[axis3] = 3;
  12315. src0->grad =
  12316. ggml_add_impl(ctx, src0->grad,
  12317. ggml_permute(ctx,
  12318. tensor->grad,
  12319. axes_backward[0],
  12320. axes_backward[1],
  12321. axes_backward[2],
  12322. axes_backward[3]),
  12323. inplace);
  12324. }
  12325. } break;
  12326. case GGML_OP_TRANSPOSE:
  12327. {
  12328. // necessary for llama
  12329. if (src0->grad) {
  12330. src0->grad =
  12331. ggml_add_impl(ctx, src0->grad,
  12332. ggml_transpose(ctx, tensor->grad),
  12333. inplace);
  12334. }
  12335. } break;
  12336. case GGML_OP_GET_ROWS:
  12337. {
  12338. // necessary for llama (only for tokenizer)
  12339. if (src0->grad) {
  12340. src0->grad =
  12341. ggml_add_impl(ctx, src0->grad,
  12342. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12343. inplace);
  12344. }
  12345. if (src1->grad) {
  12346. // noop
  12347. }
  12348. } break;
  12349. case GGML_OP_GET_ROWS_BACK:
  12350. {
  12351. GGML_ASSERT(false); // TODO: not implemented
  12352. } break;
  12353. case GGML_OP_DIAG:
  12354. {
  12355. GGML_ASSERT(false); // TODO: not implemented
  12356. } break;
  12357. case GGML_OP_DIAG_MASK_INF:
  12358. {
  12359. // necessary for llama
  12360. if (src0->grad) {
  12361. assert(src1->type == GGML_TYPE_I32);
  12362. assert(ggml_nelements(src1) == 2);
  12363. const int n_past = ((int32_t *) src1->data)[0];
  12364. src0->grad =
  12365. ggml_add_impl(ctx, src0->grad,
  12366. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12367. inplace);
  12368. }
  12369. if (src1->grad) {
  12370. // noop
  12371. }
  12372. } break;
  12373. case GGML_OP_DIAG_MASK_ZERO:
  12374. {
  12375. // necessary for llama
  12376. if (src0->grad) {
  12377. assert(src1->type == GGML_TYPE_I32);
  12378. assert(ggml_nelements(src1) == 2);
  12379. const int n_past = ((int32_t *) src1->data)[0];
  12380. src0->grad =
  12381. ggml_add_impl(ctx, src0->grad,
  12382. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12383. inplace);
  12384. }
  12385. if (src1->grad) {
  12386. // noop
  12387. }
  12388. } break;
  12389. case GGML_OP_SOFT_MAX:
  12390. {
  12391. // necessary for llama
  12392. if (src0->grad) {
  12393. src0->grad =
  12394. ggml_add_impl(ctx, src0->grad,
  12395. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12396. inplace);
  12397. }
  12398. } break;
  12399. case GGML_OP_SOFT_MAX_BACK:
  12400. {
  12401. GGML_ASSERT(false); // TODO: not implemented
  12402. } break;
  12403. case GGML_OP_ROPE:
  12404. {
  12405. // necessary for llama
  12406. if (src0->grad) {
  12407. assert(src1->type == GGML_TYPE_I32);
  12408. assert(ggml_nelements(src1) == 3);
  12409. const int n_past = ((int32_t *) src1->data)[0];
  12410. const int n_dims = ((int32_t *) src1->data)[1];
  12411. const int mode = ((int32_t *) src1->data)[2];
  12412. src0->grad = ggml_add_impl(ctx,
  12413. src0->grad,
  12414. ggml_rope_back(ctx,
  12415. tensor->grad,
  12416. n_past,
  12417. n_dims,
  12418. mode),
  12419. inplace);
  12420. }
  12421. if (src1->grad) {
  12422. // noop
  12423. }
  12424. } break;
  12425. case GGML_OP_ROPE_BACK:
  12426. {
  12427. if (src0->grad) {
  12428. assert(src1->type == GGML_TYPE_I32);
  12429. assert(ggml_nelements(src1) == 3);
  12430. const int n_past = ((int32_t *) src1->data)[0];
  12431. const int n_dims = ((int32_t *) src1->data)[1];
  12432. const int mode = ((int32_t *) src1->data)[2];
  12433. src0->grad = ggml_add_impl(ctx,
  12434. src0->grad,
  12435. ggml_rope(ctx,
  12436. tensor->grad,
  12437. n_past,
  12438. n_dims,
  12439. mode),
  12440. inplace);
  12441. }
  12442. if (src1->grad) {
  12443. // noop
  12444. }
  12445. } break;
  12446. case GGML_OP_CONV_1D_1S:
  12447. {
  12448. GGML_ASSERT(false); // TODO: not implemented
  12449. } break;
  12450. case GGML_OP_CONV_1D_2S:
  12451. {
  12452. GGML_ASSERT(false); // TODO: not implemented
  12453. } break;
  12454. case GGML_OP_FLASH_ATTN:
  12455. {
  12456. struct ggml_tensor * flash_grad = NULL;
  12457. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12458. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12459. GGML_ASSERT(t == 0 || t == 1);
  12460. bool masked = t != 0;
  12461. flash_grad =
  12462. ggml_flash_attn_back(ctx,
  12463. src0,
  12464. src1,
  12465. tensor->opt[0],
  12466. tensor->grad,
  12467. masked);
  12468. }
  12469. if (src0->grad) {
  12470. struct ggml_tensor * grad_q = NULL;
  12471. const size_t nb0 = flash_grad->nb[0];
  12472. const size_t offset = 0;
  12473. switch(src0->n_dims) {
  12474. case 2:
  12475. {
  12476. grad_q = ggml_view_2d(ctx,
  12477. flash_grad,
  12478. src0->ne[0],
  12479. src0->ne[1],
  12480. nb0*src0->ne[0],
  12481. offset);
  12482. } break;
  12483. case 3:
  12484. {
  12485. grad_q = ggml_view_3d(ctx,
  12486. flash_grad,
  12487. src0->ne[0],
  12488. src0->ne[1],
  12489. src0->ne[2],
  12490. nb0*src0->ne[0],
  12491. nb0*src0->ne[0]*src0->ne[1],
  12492. offset);
  12493. } break;
  12494. case 4:
  12495. {
  12496. grad_q = ggml_view_4d(ctx,
  12497. flash_grad,
  12498. src0->ne[0],
  12499. src0->ne[1],
  12500. src0->ne[2],
  12501. src0->ne[3],
  12502. nb0*src0->ne[0],
  12503. nb0*src0->ne[0]*src0->ne[1],
  12504. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12505. offset);
  12506. } break;
  12507. }
  12508. src0->grad = ggml_add_impl(ctx,
  12509. src0->grad,
  12510. grad_q,
  12511. inplace);
  12512. }
  12513. if (src1->grad) {
  12514. struct ggml_tensor * grad_k = NULL;
  12515. const size_t nb0 = flash_grad->nb[0];
  12516. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12517. switch(src1->n_dims) {
  12518. case 2:
  12519. {
  12520. grad_k = ggml_view_2d(ctx,
  12521. flash_grad,
  12522. src1->ne[0],
  12523. src1->ne[1],
  12524. nb0*src1->ne[0],
  12525. offset);
  12526. } break;
  12527. case 3:
  12528. {
  12529. grad_k = ggml_view_3d(ctx,
  12530. flash_grad,
  12531. src1->ne[0],
  12532. src1->ne[1],
  12533. src1->ne[2],
  12534. nb0*src1->ne[0],
  12535. nb0*src1->ne[0]*src1->ne[1],
  12536. offset);
  12537. } break;
  12538. case 4:
  12539. {
  12540. grad_k = ggml_view_4d(ctx,
  12541. flash_grad,
  12542. src1->ne[0],
  12543. src1->ne[1],
  12544. src1->ne[2],
  12545. src1->ne[3],
  12546. nb0*src1->ne[0],
  12547. nb0*src1->ne[0]*src1->ne[1],
  12548. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12549. offset);
  12550. } break;
  12551. }
  12552. src1->grad = ggml_add_impl(ctx,
  12553. src1->grad,
  12554. grad_k,
  12555. inplace);
  12556. }
  12557. struct ggml_tensor * opt0 = tensor->opt[0];
  12558. if (opt0->grad) {
  12559. struct ggml_tensor * grad_v = NULL;
  12560. const size_t nb0 = flash_grad->nb[0];
  12561. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12562. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12563. switch(opt0->n_dims) {
  12564. case 2:
  12565. {
  12566. grad_v = ggml_view_2d(ctx,
  12567. flash_grad,
  12568. opt0->ne[0],
  12569. opt0->ne[1],
  12570. nb0*opt0->ne[0],
  12571. offset);
  12572. } break;
  12573. case 3:
  12574. {
  12575. grad_v = ggml_view_3d(ctx,
  12576. flash_grad,
  12577. opt0->ne[0],
  12578. opt0->ne[1],
  12579. opt0->ne[2],
  12580. nb0*opt0->ne[0],
  12581. nb0*opt0->ne[0]*opt0->ne[1],
  12582. offset);
  12583. } break;
  12584. case 4:
  12585. {
  12586. grad_v = ggml_view_4d(ctx,
  12587. flash_grad,
  12588. opt0->ne[0],
  12589. opt0->ne[1],
  12590. opt0->ne[2],
  12591. opt0->ne[3],
  12592. nb0*opt0->ne[0],
  12593. nb0*opt0->ne[0]*opt0->ne[1],
  12594. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12595. offset);
  12596. } break;
  12597. }
  12598. opt0->grad = ggml_add_impl(ctx,
  12599. opt0->grad,
  12600. grad_v,
  12601. inplace);
  12602. }
  12603. } break;
  12604. case GGML_OP_FLASH_FF:
  12605. {
  12606. GGML_ASSERT(false); // not supported
  12607. } break;
  12608. case GGML_OP_FLASH_ATTN_BACK:
  12609. {
  12610. GGML_ASSERT(false); // not supported
  12611. } break;
  12612. case GGML_OP_MAP_UNARY:
  12613. case GGML_OP_MAP_BINARY:
  12614. {
  12615. GGML_ASSERT(false); // not supported
  12616. } break;
  12617. case GGML_OP_CROSS_ENTROPY_LOSS:
  12618. {
  12619. if (src0->grad) {
  12620. src0->grad = ggml_add_impl(ctx,
  12621. src0->grad,
  12622. ggml_cross_entropy_loss_back(ctx,
  12623. src0,
  12624. src1,
  12625. tensor->grad),
  12626. inplace);
  12627. }
  12628. } break;
  12629. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12630. {
  12631. GGML_ASSERT(false); // not supported
  12632. } break;
  12633. case GGML_OP_NONE:
  12634. {
  12635. // nop
  12636. } break;
  12637. case GGML_OP_COUNT:
  12638. {
  12639. GGML_ASSERT(false);
  12640. } break;
  12641. }
  12642. }
  12643. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12644. if (node->grad == NULL) {
  12645. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12646. // it can also happen during forward pass, if the user performs computations with constants
  12647. if (node->op != GGML_OP_NONE) {
  12648. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12649. }
  12650. }
  12651. // check if already visited
  12652. for (int i = 0; i < cgraph->n_nodes; i++) {
  12653. if (cgraph->nodes[i] == node) {
  12654. return;
  12655. }
  12656. }
  12657. for (int i = 0; i < cgraph->n_leafs; i++) {
  12658. if (cgraph->leafs[i] == node) {
  12659. return;
  12660. }
  12661. }
  12662. if (node->src0) {
  12663. ggml_visit_parents(cgraph, node->src0);
  12664. }
  12665. if (node->src1) {
  12666. ggml_visit_parents(cgraph, node->src1);
  12667. }
  12668. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  12669. if (node->opt[i]) {
  12670. ggml_visit_parents(cgraph, node->opt[i]);
  12671. }
  12672. }
  12673. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12674. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12675. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12676. if (strlen(node->name) == 0) {
  12677. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  12678. }
  12679. cgraph->leafs[cgraph->n_leafs] = node;
  12680. cgraph->n_leafs++;
  12681. } else {
  12682. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12683. if (strlen(node->name) == 0) {
  12684. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  12685. }
  12686. cgraph->nodes[cgraph->n_nodes] = node;
  12687. cgraph->grads[cgraph->n_nodes] = node->grad;
  12688. cgraph->n_nodes++;
  12689. }
  12690. }
  12691. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12692. if (!expand) {
  12693. cgraph->n_nodes = 0;
  12694. cgraph->n_leafs = 0;
  12695. }
  12696. const int n0 = cgraph->n_nodes;
  12697. UNUSED(n0);
  12698. ggml_visit_parents(cgraph, tensor);
  12699. const int n_new = cgraph->n_nodes - n0;
  12700. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12701. if (n_new > 0) {
  12702. // the last added node should always be starting point
  12703. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12704. }
  12705. }
  12706. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12707. ggml_build_forward_impl(cgraph, tensor, true);
  12708. }
  12709. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12710. struct ggml_cgraph result = {
  12711. /*.n_nodes =*/ 0,
  12712. /*.n_leafs =*/ 0,
  12713. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  12714. /*.work_size =*/ 0,
  12715. /*.work =*/ NULL,
  12716. /*.nodes =*/ { NULL },
  12717. /*.grads =*/ { NULL },
  12718. /*.leafs =*/ { NULL },
  12719. /*.perf_runs =*/ 0,
  12720. /*.perf_cycles =*/ 0,
  12721. /*.perf_time_us =*/ 0,
  12722. };
  12723. ggml_build_forward_impl(&result, tensor, false);
  12724. return result;
  12725. }
  12726. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12727. struct ggml_cgraph result = *gf;
  12728. GGML_ASSERT(gf->n_nodes > 0);
  12729. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12730. if (keep) {
  12731. for (int i = 0; i < gf->n_nodes; i++) {
  12732. struct ggml_tensor * node = gf->nodes[i];
  12733. if (node->grad) {
  12734. node->grad = ggml_dup_tensor(ctx, node);
  12735. gf->grads[i] = node->grad;
  12736. }
  12737. }
  12738. }
  12739. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12740. struct ggml_tensor * node = gf->nodes[i];
  12741. // because we detached the grad nodes from the original graph, we can afford inplace operations
  12742. if (node->grad) {
  12743. ggml_compute_backward(ctx, node, keep);
  12744. }
  12745. }
  12746. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12747. struct ggml_tensor * node = gf->nodes[i];
  12748. if (node->is_param) {
  12749. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12750. ggml_build_forward_impl(&result, node->grad, true);
  12751. }
  12752. }
  12753. return result;
  12754. }
  12755. //
  12756. // thread data
  12757. //
  12758. // synchronization is done via busy loops
  12759. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  12760. //
  12761. #ifdef __APPLE__
  12762. //#include <os/lock.h>
  12763. //
  12764. //typedef os_unfair_lock ggml_lock_t;
  12765. //
  12766. //#define ggml_lock_init(x) UNUSED(x)
  12767. //#define ggml_lock_destroy(x) UNUSED(x)
  12768. //#define ggml_lock_lock os_unfair_lock_lock
  12769. //#define ggml_lock_unlock os_unfair_lock_unlock
  12770. //
  12771. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  12772. typedef int ggml_lock_t;
  12773. #define ggml_lock_init(x) UNUSED(x)
  12774. #define ggml_lock_destroy(x) UNUSED(x)
  12775. #define ggml_lock_lock(x) UNUSED(x)
  12776. #define ggml_lock_unlock(x) UNUSED(x)
  12777. #define GGML_LOCK_INITIALIZER 0
  12778. typedef pthread_t ggml_thread_t;
  12779. #define ggml_thread_create pthread_create
  12780. #define ggml_thread_join pthread_join
  12781. #else
  12782. //typedef pthread_spinlock_t ggml_lock_t;
  12783. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  12784. //#define ggml_lock_destroy pthread_spin_destroy
  12785. //#define ggml_lock_lock pthread_spin_lock
  12786. //#define ggml_lock_unlock pthread_spin_unlock
  12787. typedef int ggml_lock_t;
  12788. #define ggml_lock_init(x) UNUSED(x)
  12789. #define ggml_lock_destroy(x) UNUSED(x)
  12790. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  12791. #define ggml_lock_lock(x) _mm_pause()
  12792. #else
  12793. #define ggml_lock_lock(x) UNUSED(x)
  12794. #endif
  12795. #define ggml_lock_unlock(x) UNUSED(x)
  12796. #define GGML_LOCK_INITIALIZER 0
  12797. typedef pthread_t ggml_thread_t;
  12798. #define ggml_thread_create pthread_create
  12799. #define ggml_thread_join pthread_join
  12800. #endif
  12801. struct ggml_compute_state_shared {
  12802. ggml_lock_t spin;
  12803. int n_threads;
  12804. // synchronization primitives
  12805. atomic_int n_ready;
  12806. atomic_bool has_work;
  12807. atomic_bool stop; // stop all threads
  12808. };
  12809. struct ggml_compute_state {
  12810. ggml_thread_t thrd;
  12811. struct ggml_compute_params params;
  12812. struct ggml_tensor * node;
  12813. struct ggml_compute_state_shared * shared;
  12814. };
  12815. static thread_ret_t ggml_graph_compute_thread(void * data) {
  12816. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  12817. const int n_threads = state->shared->n_threads;
  12818. while (true) {
  12819. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  12820. atomic_store(&state->shared->has_work, false);
  12821. } else {
  12822. while (atomic_load(&state->shared->has_work)) {
  12823. if (atomic_load(&state->shared->stop)) {
  12824. return 0;
  12825. }
  12826. ggml_lock_lock (&state->shared->spin);
  12827. ggml_lock_unlock(&state->shared->spin);
  12828. }
  12829. }
  12830. atomic_fetch_sub(&state->shared->n_ready, 1);
  12831. // wait for work
  12832. while (!atomic_load(&state->shared->has_work)) {
  12833. if (atomic_load(&state->shared->stop)) {
  12834. return 0;
  12835. }
  12836. ggml_lock_lock (&state->shared->spin);
  12837. ggml_lock_unlock(&state->shared->spin);
  12838. }
  12839. // check if we should stop
  12840. if (atomic_load(&state->shared->stop)) {
  12841. break;
  12842. }
  12843. if (state->node) {
  12844. if (state->params.ith < state->params.nth) {
  12845. ggml_compute_forward(&state->params, state->node);
  12846. }
  12847. state->node = NULL;
  12848. } else {
  12849. break;
  12850. }
  12851. }
  12852. return 0;
  12853. }
  12854. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  12855. const int n_threads = cgraph->n_threads;
  12856. struct ggml_compute_state_shared state_shared = {
  12857. /*.spin =*/ GGML_LOCK_INITIALIZER,
  12858. /*.n_threads =*/ n_threads,
  12859. /*.n_ready =*/ 0,
  12860. /*.has_work =*/ false,
  12861. /*.stop =*/ false,
  12862. };
  12863. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  12864. // create thread pool
  12865. if (n_threads > 1) {
  12866. ggml_lock_init(&state_shared.spin);
  12867. atomic_store(&state_shared.has_work, true);
  12868. for (int j = 0; j < n_threads - 1; j++) {
  12869. workers[j] = (struct ggml_compute_state) {
  12870. .thrd = 0,
  12871. .params = {
  12872. .type = GGML_TASK_COMPUTE,
  12873. .ith = j + 1,
  12874. .nth = n_threads,
  12875. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  12876. .wdata = cgraph->work ? cgraph->work->data : NULL,
  12877. },
  12878. .node = NULL,
  12879. .shared = &state_shared,
  12880. };
  12881. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  12882. GGML_ASSERT(rc == 0);
  12883. UNUSED(rc);
  12884. }
  12885. }
  12886. // initialize tasks + work buffer
  12887. {
  12888. size_t work_size = 0;
  12889. // thread scheduling for the different operations
  12890. for (int i = 0; i < cgraph->n_nodes; i++) {
  12891. struct ggml_tensor * node = cgraph->nodes[i];
  12892. switch (node->op) {
  12893. case GGML_OP_CPY:
  12894. case GGML_OP_DUP:
  12895. {
  12896. node->n_tasks = n_threads;
  12897. size_t cur = 0;
  12898. if (ggml_is_quantized(node->type)) {
  12899. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  12900. }
  12901. work_size = MAX(work_size, cur);
  12902. } break;
  12903. case GGML_OP_ADD:
  12904. case GGML_OP_ADD1:
  12905. {
  12906. node->n_tasks = n_threads;
  12907. size_t cur = 0;
  12908. if (ggml_is_quantized(node->src0->type)) {
  12909. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  12910. }
  12911. work_size = MAX(work_size, cur);
  12912. } break;
  12913. case GGML_OP_ACC:
  12914. {
  12915. node->n_tasks = n_threads;
  12916. size_t cur = 0;
  12917. if (ggml_is_quantized(node->src0->type)) {
  12918. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  12919. }
  12920. work_size = MAX(work_size, cur);
  12921. } break;
  12922. case GGML_OP_SUB:
  12923. case GGML_OP_DIV:
  12924. case GGML_OP_SQR:
  12925. case GGML_OP_SQRT:
  12926. case GGML_OP_LOG:
  12927. case GGML_OP_SUM:
  12928. case GGML_OP_SUM_ROWS:
  12929. case GGML_OP_MEAN:
  12930. case GGML_OP_REPEAT:
  12931. case GGML_OP_REPEAT_BACK:
  12932. case GGML_OP_ABS:
  12933. case GGML_OP_SGN:
  12934. case GGML_OP_NEG:
  12935. case GGML_OP_STEP:
  12936. case GGML_OP_RELU:
  12937. {
  12938. node->n_tasks = 1;
  12939. } break;
  12940. case GGML_OP_MUL:
  12941. case GGML_OP_GELU:
  12942. case GGML_OP_SILU:
  12943. case GGML_OP_SILU_BACK:
  12944. case GGML_OP_NORM:
  12945. case GGML_OP_RMS_NORM:
  12946. case GGML_OP_RMS_NORM_BACK:
  12947. {
  12948. node->n_tasks = n_threads;
  12949. } break;
  12950. case GGML_OP_MUL_MAT:
  12951. case GGML_OP_OUT_PROD:
  12952. {
  12953. node->n_tasks = n_threads;
  12954. // TODO: use different scheduling for different matrix sizes
  12955. //const int nr0 = ggml_nrows(node->src0);
  12956. //const int nr1 = ggml_nrows(node->src1);
  12957. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  12958. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  12959. size_t cur = 0;
  12960. #if defined(GGML_USE_CUBLAS)
  12961. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  12962. node->n_tasks = 1; // TODO: this actually is doing nothing
  12963. // the threads are still spinning
  12964. }
  12965. else
  12966. #elif defined(GGML_USE_CLBLAST)
  12967. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  12968. node->n_tasks = 1; // TODO: this actually is doing nothing
  12969. // the threads are still spinning
  12970. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  12971. }
  12972. else
  12973. #endif
  12974. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  12975. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12976. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  12977. node->n_tasks = 1; // TODO: this actually is doing nothing
  12978. // the threads are still spinning
  12979. // here we need memory just for single 2D matrix from src0
  12980. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  12981. } else {
  12982. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  12983. }
  12984. #else
  12985. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  12986. #endif
  12987. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  12988. cur = 0;
  12989. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12990. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  12991. node->n_tasks = 1;
  12992. }
  12993. #endif
  12994. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  12995. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  12996. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  12997. node->n_tasks = 1;
  12998. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  12999. } else
  13000. #endif
  13001. {
  13002. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  13003. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  13004. }
  13005. } else {
  13006. GGML_ASSERT(false);
  13007. }
  13008. work_size = MAX(work_size, cur);
  13009. } break;
  13010. case GGML_OP_SCALE:
  13011. {
  13012. node->n_tasks = n_threads;
  13013. } break;
  13014. case GGML_OP_SET:
  13015. case GGML_OP_CONT:
  13016. case GGML_OP_RESHAPE:
  13017. case GGML_OP_VIEW:
  13018. case GGML_OP_PERMUTE:
  13019. case GGML_OP_TRANSPOSE:
  13020. case GGML_OP_GET_ROWS:
  13021. case GGML_OP_GET_ROWS_BACK:
  13022. case GGML_OP_DIAG:
  13023. case GGML_OP_DIAG_MASK_ZERO:
  13024. {
  13025. node->n_tasks = 1;
  13026. } break;
  13027. case GGML_OP_DIAG_MASK_INF:
  13028. case GGML_OP_SOFT_MAX:
  13029. case GGML_OP_SOFT_MAX_BACK:
  13030. case GGML_OP_ROPE:
  13031. case GGML_OP_ROPE_BACK:
  13032. {
  13033. node->n_tasks = n_threads;
  13034. } break;
  13035. case GGML_OP_ALIBI:
  13036. {
  13037. node->n_tasks = 1; //TODO
  13038. } break;
  13039. case GGML_OP_CLAMP:
  13040. {
  13041. node->n_tasks = 1; //TODO
  13042. } break;
  13043. case GGML_OP_CONV_1D_1S:
  13044. case GGML_OP_CONV_1D_2S:
  13045. {
  13046. node->n_tasks = n_threads;
  13047. GGML_ASSERT(node->src0->ne[3] == 1);
  13048. GGML_ASSERT(node->src1->ne[2] == 1);
  13049. GGML_ASSERT(node->src1->ne[3] == 1);
  13050. size_t cur = 0;
  13051. const int nk = node->src0->ne[0];
  13052. if (node->src0->type == GGML_TYPE_F16 &&
  13053. node->src1->type == GGML_TYPE_F32) {
  13054. cur = sizeof(ggml_fp16_t)*(
  13055. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13056. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13057. );
  13058. } else if (node->src0->type == GGML_TYPE_F32 &&
  13059. node->src1->type == GGML_TYPE_F32) {
  13060. cur = sizeof(float)*(
  13061. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13062. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13063. );
  13064. } else {
  13065. GGML_ASSERT(false);
  13066. }
  13067. work_size = MAX(work_size, cur);
  13068. } break;
  13069. case GGML_OP_FLASH_ATTN:
  13070. {
  13071. node->n_tasks = n_threads;
  13072. size_t cur = 0;
  13073. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13074. if (node->src1->type == GGML_TYPE_F32) {
  13075. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13076. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13077. }
  13078. if (node->src1->type == GGML_TYPE_F16) {
  13079. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  13080. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  13081. }
  13082. work_size = MAX(work_size, cur);
  13083. } break;
  13084. case GGML_OP_FLASH_FF:
  13085. {
  13086. node->n_tasks = n_threads;
  13087. size_t cur = 0;
  13088. if (node->src1->type == GGML_TYPE_F32) {
  13089. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13090. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13091. }
  13092. if (node->src1->type == GGML_TYPE_F16) {
  13093. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  13094. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  13095. }
  13096. work_size = MAX(work_size, cur);
  13097. } break;
  13098. case GGML_OP_FLASH_ATTN_BACK:
  13099. {
  13100. node->n_tasks = n_threads;
  13101. size_t cur = 0;
  13102. const int64_t D = node->src0->ne[0];
  13103. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13104. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13105. if (node->src1->type == GGML_TYPE_F32) {
  13106. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13107. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13108. }
  13109. if (node->src1->type == GGML_TYPE_F16) {
  13110. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  13111. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  13112. }
  13113. work_size = MAX(work_size, cur);
  13114. } break;
  13115. case GGML_OP_MAP_UNARY:
  13116. case GGML_OP_MAP_BINARY:
  13117. {
  13118. node->n_tasks = 1;
  13119. } break;
  13120. case GGML_OP_CROSS_ENTROPY_LOSS:
  13121. {
  13122. node->n_tasks = n_threads;
  13123. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  13124. work_size = MAX(work_size, cur);
  13125. } break;
  13126. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13127. {
  13128. node->n_tasks = n_threads;
  13129. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  13130. work_size = MAX(work_size, cur);
  13131. } break;
  13132. case GGML_OP_NONE:
  13133. {
  13134. node->n_tasks = 1;
  13135. } break;
  13136. case GGML_OP_COUNT:
  13137. {
  13138. GGML_ASSERT(false);
  13139. } break;
  13140. }
  13141. }
  13142. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  13143. GGML_ASSERT(false); // TODO: better handling
  13144. }
  13145. if (work_size > 0 && cgraph->work == NULL) {
  13146. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  13147. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  13148. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  13149. }
  13150. }
  13151. const int64_t perf_start_cycles = ggml_perf_cycles();
  13152. const int64_t perf_start_time_us = ggml_perf_time_us();
  13153. for (int i = 0; i < cgraph->n_nodes; i++) {
  13154. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  13155. struct ggml_tensor * node = cgraph->nodes[i];
  13156. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  13157. //if (node->grad == NULL && node->perf_runs > 0) {
  13158. // continue;
  13159. //}
  13160. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  13161. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  13162. // INIT
  13163. struct ggml_compute_params params = {
  13164. /*.type =*/ GGML_TASK_INIT,
  13165. /*.ith =*/ 0,
  13166. /*.nth =*/ node->n_tasks,
  13167. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13168. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13169. };
  13170. ggml_compute_forward(&params, node);
  13171. // COMPUTE
  13172. if (node->n_tasks > 1) {
  13173. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13174. atomic_store(&state_shared.has_work, false);
  13175. }
  13176. while (atomic_load(&state_shared.has_work)) {
  13177. ggml_lock_lock (&state_shared.spin);
  13178. ggml_lock_unlock(&state_shared.spin);
  13179. }
  13180. // launch thread pool
  13181. for (int j = 0; j < n_threads - 1; j++) {
  13182. workers[j].params = (struct ggml_compute_params) {
  13183. .type = GGML_TASK_COMPUTE,
  13184. .ith = j + 1,
  13185. .nth = node->n_tasks,
  13186. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13187. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13188. };
  13189. workers[j].node = node;
  13190. }
  13191. atomic_fetch_sub(&state_shared.n_ready, 1);
  13192. while (atomic_load(&state_shared.n_ready) > 0) {
  13193. ggml_lock_lock (&state_shared.spin);
  13194. ggml_lock_unlock(&state_shared.spin);
  13195. }
  13196. atomic_store(&state_shared.has_work, true);
  13197. }
  13198. params.type = GGML_TASK_COMPUTE;
  13199. ggml_compute_forward(&params, node);
  13200. // wait for thread pool
  13201. if (node->n_tasks > 1) {
  13202. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13203. atomic_store(&state_shared.has_work, false);
  13204. }
  13205. while (atomic_load(&state_shared.has_work)) {
  13206. ggml_lock_lock (&state_shared.spin);
  13207. ggml_lock_unlock(&state_shared.spin);
  13208. }
  13209. atomic_fetch_sub(&state_shared.n_ready, 1);
  13210. while (atomic_load(&state_shared.n_ready) != 0) {
  13211. ggml_lock_lock (&state_shared.spin);
  13212. ggml_lock_unlock(&state_shared.spin);
  13213. }
  13214. }
  13215. // FINALIZE
  13216. if (node->n_tasks > 1) {
  13217. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13218. atomic_store(&state_shared.has_work, false);
  13219. }
  13220. while (atomic_load(&state_shared.has_work)) {
  13221. ggml_lock_lock (&state_shared.spin);
  13222. ggml_lock_unlock(&state_shared.spin);
  13223. }
  13224. // launch thread pool
  13225. for (int j = 0; j < n_threads - 1; j++) {
  13226. workers[j].params = (struct ggml_compute_params) {
  13227. .type = GGML_TASK_FINALIZE,
  13228. .ith = j + 1,
  13229. .nth = node->n_tasks,
  13230. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13231. .wdata = cgraph->work ? cgraph->work->data : NULL,
  13232. };
  13233. workers[j].node = node;
  13234. }
  13235. atomic_fetch_sub(&state_shared.n_ready, 1);
  13236. while (atomic_load(&state_shared.n_ready) > 0) {
  13237. ggml_lock_lock (&state_shared.spin);
  13238. ggml_lock_unlock(&state_shared.spin);
  13239. }
  13240. atomic_store(&state_shared.has_work, true);
  13241. }
  13242. params.type = GGML_TASK_FINALIZE;
  13243. ggml_compute_forward(&params, node);
  13244. // wait for thread pool
  13245. if (node->n_tasks > 1) {
  13246. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  13247. atomic_store(&state_shared.has_work, false);
  13248. }
  13249. while (atomic_load(&state_shared.has_work)) {
  13250. ggml_lock_lock (&state_shared.spin);
  13251. ggml_lock_unlock(&state_shared.spin);
  13252. }
  13253. atomic_fetch_sub(&state_shared.n_ready, 1);
  13254. while (atomic_load(&state_shared.n_ready) != 0) {
  13255. ggml_lock_lock (&state_shared.spin);
  13256. ggml_lock_unlock(&state_shared.spin);
  13257. }
  13258. }
  13259. // performance stats (node)
  13260. {
  13261. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  13262. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  13263. node->perf_runs++;
  13264. node->perf_cycles += perf_cycles_cur;
  13265. node->perf_time_us += perf_time_us_cur;
  13266. }
  13267. }
  13268. // join thread pool
  13269. if (n_threads > 1) {
  13270. atomic_store(&state_shared.stop, true);
  13271. atomic_store(&state_shared.has_work, true);
  13272. for (int j = 0; j < n_threads - 1; j++) {
  13273. int rc = ggml_thread_join(workers[j].thrd, NULL);
  13274. GGML_ASSERT(rc == 0);
  13275. UNUSED(rc);
  13276. }
  13277. ggml_lock_destroy(&state_shared.spin);
  13278. }
  13279. // performance stats (graph)
  13280. {
  13281. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13282. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13283. cgraph->perf_runs++;
  13284. cgraph->perf_cycles += perf_cycles_cur;
  13285. cgraph->perf_time_us += perf_time_us_cur;
  13286. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13287. __func__, cgraph->perf_runs,
  13288. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13289. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13290. (double) perf_time_us_cur / 1000.0,
  13291. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13292. }
  13293. }
  13294. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13295. for (int i = 0; i < cgraph->n_nodes; i++) {
  13296. struct ggml_tensor * grad = cgraph->grads[i];
  13297. if (grad) {
  13298. ggml_set_zero(grad);
  13299. }
  13300. }
  13301. }
  13302. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13303. for (int i = 0; i < cgraph->n_leafs; i++) {
  13304. struct ggml_tensor * leaf = cgraph->leafs[i];
  13305. if (strcmp(leaf->name, name) == 0) {
  13306. return leaf;
  13307. }
  13308. }
  13309. for (int i = 0; i < cgraph->n_nodes; i++) {
  13310. struct ggml_tensor * node = cgraph->nodes[i];
  13311. if (strcmp(node->name, name) == 0) {
  13312. return node;
  13313. }
  13314. }
  13315. return NULL;
  13316. }
  13317. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13318. const int64_t * ne = tensor->ne;
  13319. const size_t * nb = tensor->nb;
  13320. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13321. ggml_type_name(tensor->type),
  13322. ggml_op_name (tensor->op),
  13323. tensor->n_dims,
  13324. ne[0], ne[1], ne[2], ne[3],
  13325. nb[0], nb[1], nb[2], nb[3],
  13326. tensor->data,
  13327. tensor->name);
  13328. }
  13329. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13330. const int64_t * ne = tensor->ne;
  13331. const size_t * nb = tensor->nb;
  13332. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  13333. arg,
  13334. ggml_type_name(tensor->type),
  13335. ggml_op_name (tensor->op),
  13336. tensor->n_dims,
  13337. ne[0], ne[1], ne[2], ne[3],
  13338. nb[0], nb[1], nb[2], nb[3],
  13339. tensor->n_tasks,
  13340. tensor->data,
  13341. tensor->name);
  13342. }
  13343. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13344. //assert(cgraph->work == NULL);
  13345. //assert(cgraph->work_size == 0);
  13346. uint64_t size_eval = 0;
  13347. // compute size of intermediate results
  13348. // TODO: does not take into account scratch buffers !!!!
  13349. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13350. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13351. }
  13352. // print
  13353. {
  13354. FILE * fout = stdout;
  13355. fprintf(fout, "\n");
  13356. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13357. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13358. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13359. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13360. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13361. // header
  13362. fprintf(fout, "\n");
  13363. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13364. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13365. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13366. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13367. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13368. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13369. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13370. }
  13371. // header
  13372. fprintf(fout, "\n");
  13373. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13374. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13375. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13376. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13377. if (cgraph->nodes[i]->src0) {
  13378. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13379. }
  13380. if (cgraph->nodes[i]->src1) {
  13381. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13382. }
  13383. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13384. if (cgraph->nodes[i]->opt[j]) {
  13385. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13386. }
  13387. }
  13388. fprintf(fout, "\n");
  13389. }
  13390. fprintf(fout, "\n");
  13391. }
  13392. // write binary data
  13393. {
  13394. FILE * fout = fopen(fname, "wb");
  13395. if (!fout) {
  13396. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13397. return;
  13398. }
  13399. // header
  13400. {
  13401. const uint32_t magic = GGML_FILE_MAGIC;
  13402. const uint32_t version = GGML_FILE_VERSION;
  13403. const uint32_t n_leafs = cgraph->n_leafs;
  13404. const uint32_t nodes = cgraph->n_nodes;
  13405. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13406. fwrite(&version, sizeof(uint32_t), 1, fout);
  13407. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13408. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13409. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13410. }
  13411. // leafs
  13412. {
  13413. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13414. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13415. const uint32_t type = tensor->type;
  13416. const uint32_t op = tensor->op;
  13417. const uint32_t n_dims = tensor->n_dims;
  13418. fwrite(&type, sizeof(uint32_t), 1, fout);
  13419. fwrite(&op, sizeof(uint32_t), 1, fout);
  13420. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13421. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13422. const uint64_t ne = tensor->ne[j];
  13423. const uint64_t nb = tensor->nb[j];
  13424. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13425. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13426. }
  13427. // store the pointer address
  13428. {
  13429. const uint64_t ptr = (uint64_t) tensor->data;
  13430. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13431. }
  13432. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13433. // dump the data
  13434. // TODO: pad this to 32 byte boundary
  13435. {
  13436. const size_t size = ggml_nbytes(tensor);
  13437. fwrite(tensor->data, sizeof(char), size, fout);
  13438. }
  13439. }
  13440. }
  13441. // nodes
  13442. {
  13443. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13444. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13445. const uint32_t type = tensor->type;
  13446. const uint32_t op = tensor->op;
  13447. const uint32_t n_dims = tensor->n_dims;
  13448. fwrite(&type, sizeof(uint32_t), 1, fout);
  13449. fwrite(&op, sizeof(uint32_t), 1, fout);
  13450. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13451. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13452. const uint64_t ne = tensor->ne[j];
  13453. const uint64_t nb = tensor->nb[j];
  13454. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13455. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13456. }
  13457. // store the pointer address
  13458. {
  13459. const uint64_t ptr = (uint64_t) tensor->data;
  13460. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  13461. }
  13462. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13463. // output the op arguments
  13464. {
  13465. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13466. args[0] = tensor->src0;
  13467. args[1] = tensor->src1;
  13468. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13469. args[2 + j] = tensor->opt[j];
  13470. }
  13471. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13472. if (args[j]) {
  13473. int32_t idx = -1;
  13474. // check if leaf
  13475. {
  13476. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13477. if (args[j] == cgraph->leafs[k]) {
  13478. idx = k;
  13479. break;
  13480. }
  13481. }
  13482. }
  13483. // check if node
  13484. if (idx == -1) {
  13485. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13486. if (args[j] == cgraph->nodes[k]) {
  13487. idx = GGML_MAX_NODES + k;
  13488. break;
  13489. }
  13490. }
  13491. }
  13492. if (idx == -1) {
  13493. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13494. return;
  13495. }
  13496. fwrite(&idx, sizeof(int32_t), 1, fout);
  13497. } else {
  13498. const int32_t nul = -1;
  13499. fwrite(&nul, sizeof(int32_t), 1, fout);
  13500. }
  13501. }
  13502. }
  13503. }
  13504. }
  13505. fclose(fout);
  13506. }
  13507. }
  13508. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13509. assert(*ctx_data == NULL);
  13510. assert(*ctx_eval == NULL);
  13511. struct ggml_cgraph result = { 0 };
  13512. struct ggml_tensor * data = NULL;
  13513. // read file into data
  13514. {
  13515. FILE * fin = fopen(fname, "rb");
  13516. if (!fin) {
  13517. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13518. return result;
  13519. }
  13520. size_t fsize = 0;
  13521. fseek(fin, 0, SEEK_END);
  13522. fsize = ftell(fin);
  13523. fseek(fin, 0, SEEK_SET);
  13524. // create the data context
  13525. {
  13526. const size_t overhead = 1*ggml_tensor_overhead();
  13527. struct ggml_init_params params = {
  13528. .mem_size = fsize + overhead,
  13529. .mem_buffer = NULL,
  13530. .no_alloc = false,
  13531. };
  13532. *ctx_data = ggml_init(params);
  13533. if (!*ctx_data) {
  13534. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13535. return result;
  13536. }
  13537. }
  13538. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13539. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13540. if (ret != fsize) {
  13541. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13542. return result;
  13543. }
  13544. fclose(fin);
  13545. }
  13546. // populate result
  13547. {
  13548. char * ptr = (char *) data->data;
  13549. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13550. if (magic != GGML_FILE_MAGIC) {
  13551. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13552. return result;
  13553. }
  13554. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13555. if (version != GGML_FILE_VERSION) {
  13556. fprintf(stderr, "%s: invalid version number\n", __func__);
  13557. return result;
  13558. }
  13559. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13560. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13561. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13562. result.n_leafs = n_leafs;
  13563. result.n_nodes = n_nodes;
  13564. // create the data context
  13565. {
  13566. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13567. struct ggml_init_params params = {
  13568. .mem_size = size_eval + overhead,
  13569. .mem_buffer = NULL,
  13570. .no_alloc = true,
  13571. };
  13572. *ctx_eval = ggml_init(params);
  13573. if (!*ctx_eval) {
  13574. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13575. return result;
  13576. }
  13577. }
  13578. // leafs
  13579. {
  13580. uint32_t type;
  13581. uint32_t op;
  13582. uint32_t n_dims;
  13583. for (uint32_t i = 0; i < n_leafs; ++i) {
  13584. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13585. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13586. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13587. int64_t ne[GGML_MAX_DIMS];
  13588. size_t nb[GGML_MAX_DIMS];
  13589. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13590. uint64_t ne_cur;
  13591. uint64_t nb_cur;
  13592. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13593. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13594. ne[j] = ne_cur;
  13595. nb[j] = nb_cur;
  13596. }
  13597. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13598. tensor->op = (enum ggml_op) op;
  13599. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  13600. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13601. tensor->data = (void *) ptr;
  13602. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13603. tensor->nb[j] = nb[j];
  13604. }
  13605. result.leafs[i] = tensor;
  13606. ptr += ggml_nbytes(tensor);
  13607. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13608. }
  13609. }
  13610. ggml_set_no_alloc(*ctx_eval, false);
  13611. // nodes
  13612. {
  13613. uint32_t type;
  13614. uint32_t op;
  13615. uint32_t n_dims;
  13616. for (uint32_t i = 0; i < n_nodes; ++i) {
  13617. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13618. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13619. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13620. enum ggml_op eop = (enum ggml_op) op;
  13621. int64_t ne[GGML_MAX_DIMS];
  13622. size_t nb[GGML_MAX_DIMS];
  13623. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13624. uint64_t ne_cur;
  13625. uint64_t nb_cur;
  13626. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13627. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13628. ne[j] = ne_cur;
  13629. nb[j] = nb_cur;
  13630. }
  13631. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  13632. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13633. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  13634. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13635. // parse args
  13636. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13637. const int32_t arg_idx = ptr_arg_idx[j];
  13638. if (arg_idx == -1) {
  13639. continue;
  13640. }
  13641. if (arg_idx < GGML_MAX_NODES) {
  13642. args[j] = result.leafs[arg_idx];
  13643. } else {
  13644. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13645. }
  13646. }
  13647. // create the tensor
  13648. // "view" operations are handled differently
  13649. // TODO: handle inplace ops - currently a copy is always made
  13650. struct ggml_tensor * tensor = NULL;
  13651. switch (eop) {
  13652. // TODO: implement other view ops
  13653. case GGML_OP_RESHAPE:
  13654. {
  13655. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13656. } break;
  13657. case GGML_OP_VIEW:
  13658. {
  13659. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13660. uint64_t offs;
  13661. memcpy(&offs, args[2]->data, sizeof(offs));
  13662. tensor->data = ((char *) tensor->data) + offs;
  13663. } break;
  13664. case GGML_OP_TRANSPOSE:
  13665. {
  13666. tensor = ggml_transpose(*ctx_eval, args[0]);
  13667. } break;
  13668. case GGML_OP_PERMUTE:
  13669. {
  13670. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13671. } break;
  13672. default:
  13673. {
  13674. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13675. tensor->op = eop;
  13676. } break;
  13677. }
  13678. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13679. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13680. tensor->nb[j] = nb[j];
  13681. }
  13682. tensor->src0 = args[0];
  13683. tensor->src1 = args[1];
  13684. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13685. tensor->opt[j] = args[2 + j];
  13686. }
  13687. result.nodes[i] = tensor;
  13688. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13689. }
  13690. }
  13691. }
  13692. return result;
  13693. }
  13694. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13695. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13696. GGML_PRINT("=== GRAPH ===\n");
  13697. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13698. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13699. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13700. for (int i = 0; i < cgraph->n_nodes; i++) {
  13701. struct ggml_tensor * node = cgraph->nodes[i];
  13702. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13703. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13704. i,
  13705. node->ne[0], node->ne[1], node->ne[2],
  13706. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13707. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13708. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13709. (double) node->perf_time_us / 1000.0,
  13710. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13711. }
  13712. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13713. for (int i = 0; i < cgraph->n_leafs; i++) {
  13714. struct ggml_tensor * node = cgraph->leafs[i];
  13715. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13716. i,
  13717. node->ne[0], node->ne[1],
  13718. GGML_OP_NAME[node->op]);
  13719. }
  13720. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13721. if (perf_total_per_op_us[i] == 0) {
  13722. continue;
  13723. }
  13724. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13725. }
  13726. GGML_PRINT("========================================\n");
  13727. }
  13728. // check if node is part of the graph
  13729. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13730. if (cgraph == NULL) {
  13731. return true;
  13732. }
  13733. for (int i = 0; i < cgraph->n_nodes; i++) {
  13734. if (cgraph->nodes[i] == node) {
  13735. return true;
  13736. }
  13737. }
  13738. return false;
  13739. }
  13740. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  13741. for (int i = 0; i < cgraph->n_nodes; i++) {
  13742. struct ggml_tensor * parent = cgraph->nodes[i];
  13743. if (parent->grad == node) {
  13744. return parent;
  13745. }
  13746. }
  13747. return NULL;
  13748. }
  13749. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  13750. char color[16];
  13751. FILE * fp = fopen(filename, "w");
  13752. GGML_ASSERT(fp);
  13753. fprintf(fp, "digraph G {\n");
  13754. fprintf(fp, " newrank = true;\n");
  13755. fprintf(fp, " rankdir = LR;\n");
  13756. for (int i = 0; i < gb->n_nodes; i++) {
  13757. struct ggml_tensor * node = gb->nodes[i];
  13758. if (ggml_graph_get_parent(gb, node) != NULL) {
  13759. continue;
  13760. }
  13761. if (node->is_param) {
  13762. snprintf(color, sizeof(color), "yellow");
  13763. } else if (node->grad) {
  13764. if (ggml_graph_find(gf, node)) {
  13765. snprintf(color, sizeof(color), "green");
  13766. } else {
  13767. snprintf(color, sizeof(color), "lightblue");
  13768. }
  13769. } else {
  13770. snprintf(color, sizeof(color), "white");
  13771. }
  13772. fprintf(fp, " \"%p\" [ "
  13773. "style = filled; fillcolor = %s; shape = record; "
  13774. "label=\"",
  13775. (void *) node, color);
  13776. if (strlen(node->name) > 0) {
  13777. fprintf(fp, "%s |", node->name);
  13778. }
  13779. if (node->n_dims == 2) {
  13780. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  13781. } else {
  13782. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  13783. }
  13784. if (node->grad) {
  13785. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  13786. } else {
  13787. fprintf(fp, "\"; ]\n");
  13788. }
  13789. }
  13790. for (int i = 0; i < gb->n_leafs; i++) {
  13791. struct ggml_tensor * node = gb->leafs[i];
  13792. snprintf(color, sizeof(color), "pink");
  13793. fprintf(fp, " \"%p\" [ "
  13794. "style = filled; fillcolor = %s; shape = record; "
  13795. "label=\"<x>",
  13796. (void *) node, color);
  13797. if (strlen(node->name) > 0) {
  13798. fprintf(fp, "%s | ", node->name);
  13799. }
  13800. if (ggml_nelements(node) == 1) {
  13801. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  13802. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  13803. }
  13804. else {
  13805. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  13806. }
  13807. }
  13808. else {
  13809. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  13810. }
  13811. fprintf(fp, "\"; ]\n");
  13812. }
  13813. for (int i = 0; i < gb->n_nodes; i++) {
  13814. struct ggml_tensor * node = gb->nodes[i];
  13815. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  13816. if (node->src0) {
  13817. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  13818. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  13819. parent0 ? (void *) parent0 : (void *) node->src0,
  13820. parent0 ? "g" : "x",
  13821. parent ? (void *) parent : (void *) node,
  13822. parent ? "g" : "x",
  13823. parent ? "empty" : "vee",
  13824. parent ? "dashed" : "solid");
  13825. }
  13826. if (node->src1) {
  13827. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  13828. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  13829. parent1 ? (void *) parent1 : (void *) node->src1,
  13830. parent1 ? "g" : "x",
  13831. parent ? (void *) parent : (void *) node,
  13832. parent ? "g" : "x",
  13833. parent ? "empty" : "vee",
  13834. parent ? "dashed" : "solid");
  13835. }
  13836. }
  13837. for (int i = 0; i < gb->n_leafs; i++) {
  13838. struct ggml_tensor * node = gb->leafs[i];
  13839. if (node->src0) {
  13840. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  13841. (void *) node->src0, "x",
  13842. (void *) node, "x");
  13843. }
  13844. if (node->src1) {
  13845. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  13846. (void *) node->src1, "x",
  13847. (void *) node, "x");
  13848. }
  13849. }
  13850. fprintf(fp, "}\n");
  13851. fclose(fp);
  13852. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  13853. }
  13854. ////////////////////////////////////////////////////////////////////////////////
  13855. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  13856. int i = 0;
  13857. for (int p = 0; p < np; ++p) {
  13858. const int64_t ne = ggml_nelements(ps[p]) ;
  13859. // TODO: add function to set tensor from array
  13860. for (int64_t j = 0; j < ne; ++j) {
  13861. ggml_set_f32_1d(ps[p], j, x[i++]);
  13862. }
  13863. }
  13864. }
  13865. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  13866. int i = 0;
  13867. for (int p = 0; p < np; ++p) {
  13868. const int64_t ne = ggml_nelements(ps[p]) ;
  13869. // TODO: add function to get all elements at once
  13870. for (int64_t j = 0; j < ne; ++j) {
  13871. x[i++] = ggml_get_f32_1d(ps[p], j);
  13872. }
  13873. }
  13874. }
  13875. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  13876. int i = 0;
  13877. for (int p = 0; p < np; ++p) {
  13878. const int64_t ne = ggml_nelements(ps[p]) ;
  13879. // TODO: add function to get all elements at once
  13880. for (int64_t j = 0; j < ne; ++j) {
  13881. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  13882. }
  13883. }
  13884. }
  13885. //
  13886. // ADAM
  13887. //
  13888. // ref: https://arxiv.org/pdf/1412.6980.pdf
  13889. //
  13890. static enum ggml_opt_result ggml_opt_adam(
  13891. struct ggml_context * ctx,
  13892. struct ggml_opt_context * opt,
  13893. struct ggml_opt_params params,
  13894. struct ggml_tensor * f,
  13895. struct ggml_cgraph * gf,
  13896. struct ggml_cgraph * gb) {
  13897. GGML_ASSERT(ggml_is_scalar(f));
  13898. gf->n_threads = params.n_threads;
  13899. gb->n_threads = params.n_threads;
  13900. // these will store the parameters we want to optimize
  13901. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  13902. int np = 0;
  13903. int nx = 0;
  13904. for (int i = 0; i < gf->n_nodes; ++i) {
  13905. if (gf->nodes[i]->is_param) {
  13906. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  13907. GGML_ASSERT(np < GGML_MAX_PARAMS);
  13908. ps[np++] = gf->nodes[i];
  13909. nx += ggml_nelements(gf->nodes[i]);
  13910. }
  13911. }
  13912. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  13913. int iter = opt->iter;
  13914. ggml_opt_init(opt->ctx, opt, params, nx);
  13915. opt->iter = iter;
  13916. }
  13917. // constants
  13918. const float sched = params.adam.sched;
  13919. const float decay = params.adam.decay * sched;
  13920. const float alpha = params.adam.alpha * sched;
  13921. const float beta1 = params.adam.beta1;
  13922. const float beta2 = params.adam.beta2;
  13923. const float eps = params.adam.eps;
  13924. float * x = opt->adam.x->data; // view of the parameters
  13925. float * g1 = opt->adam.g1->data; // gradient
  13926. float * g2 = opt->adam.g2->data; // gradient squared
  13927. float * m = opt->adam.m->data; // first moment
  13928. float * v = opt->adam.v->data; // second moment
  13929. float * mh = opt->adam.mh->data; // first moment hat
  13930. float * vh = opt->adam.vh->data; // second moment hat
  13931. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  13932. // update view
  13933. ggml_opt_get_params(np, ps, x);
  13934. // compute the function value
  13935. ggml_graph_reset (gf);
  13936. ggml_set_f32 (f->grad, 1.0f);
  13937. ggml_graph_compute(ctx, gb);
  13938. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  13939. opt->adam.fx_best = opt->adam.fx_prev;
  13940. if (pf) {
  13941. pf[opt->iter % params.past] = opt->adam.fx_prev;
  13942. }
  13943. // initialize
  13944. if (opt->just_initialized) {
  13945. opt->adam.n_no_improvement = 0;
  13946. opt->just_initialized = false;
  13947. }
  13948. float * fx_best = &opt->adam.fx_best;
  13949. float * fx_prev = &opt->adam.fx_prev;
  13950. int * n_no_improvement = &opt->adam.n_no_improvement;
  13951. int iter0 = opt->iter;
  13952. // run the optimizer
  13953. for (int t = 0; t < params.adam.n_iter; ++t) {
  13954. opt->iter = iter0 + t + 1;
  13955. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  13956. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  13957. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  13958. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  13959. for (int i = 0; i < np; ++i) {
  13960. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  13961. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  13962. }
  13963. const int64_t t_start_wall = ggml_time_us();
  13964. const int64_t t_start_cpu = ggml_cycles();
  13965. UNUSED(t_start_wall);
  13966. UNUSED(t_start_cpu);
  13967. {
  13968. // update the gradient
  13969. ggml_opt_get_grad(np, ps, g1);
  13970. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  13971. ggml_vec_scale_f32(nx, m, beta1);
  13972. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  13973. // g2 = g1^2
  13974. ggml_vec_sqr_f32 (nx, g2, g1);
  13975. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  13976. ggml_vec_scale_f32(nx, v, beta2);
  13977. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  13978. // m^hat = m_t / (1 - beta1^t)
  13979. // v^hat = v_t / (1 - beta2^t)
  13980. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  13981. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  13982. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  13983. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  13984. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  13985. ggml_vec_cpy_f32 (nx, mh, m);
  13986. ggml_vec_cpy_f32 (nx, vh, v);
  13987. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  13988. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  13989. ggml_vec_sqrt_f32 (nx, vh, vh);
  13990. ggml_vec_acc1_f32 (nx, vh, eps);
  13991. ggml_vec_div_f32 (nx, mh, mh, vh);
  13992. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  13993. ggml_vec_sub_f32 (nx, x, x, mh);
  13994. // update the parameters
  13995. ggml_opt_set_params(np, ps, x);
  13996. }
  13997. ggml_graph_reset (gf);
  13998. ggml_set_f32 (f->grad, 1.0f);
  13999. ggml_graph_compute(ctx, gb);
  14000. const float fx = ggml_get_f32_1d(f, 0);
  14001. // check convergence
  14002. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14003. GGML_PRINT_DEBUG("converged\n");
  14004. return GGML_OPT_OK;
  14005. }
  14006. // delta-based convergence test
  14007. if (pf != NULL) {
  14008. // need at least params.past iterations to start checking for convergence
  14009. if (params.past <= iter0 + t) {
  14010. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14011. if (fabsf(rate) < params.delta) {
  14012. return GGML_OPT_OK;
  14013. }
  14014. }
  14015. pf[(iter0 + t)%params.past] = fx;
  14016. }
  14017. // check for improvement
  14018. if (params.max_no_improvement > 0) {
  14019. if (fx_best[0] > fx) {
  14020. fx_best[0] = fx;
  14021. n_no_improvement[0] = 0;
  14022. } else {
  14023. ++n_no_improvement[0];
  14024. if (n_no_improvement[0] >= params.max_no_improvement) {
  14025. return GGML_OPT_OK;
  14026. }
  14027. }
  14028. }
  14029. fx_prev[0] = fx;
  14030. {
  14031. const int64_t t_end_cpu = ggml_cycles();
  14032. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14033. UNUSED(t_end_cpu);
  14034. const int64_t t_end_wall = ggml_time_us();
  14035. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14036. UNUSED(t_end_wall);
  14037. }
  14038. }
  14039. return GGML_OPT_DID_NOT_CONVERGE;
  14040. }
  14041. //
  14042. // L-BFGS
  14043. //
  14044. // the L-BFGS implementation below is based on the following implementation:
  14045. //
  14046. // https://github.com/chokkan/liblbfgs
  14047. //
  14048. struct ggml_lbfgs_iteration_data {
  14049. float alpha;
  14050. float ys;
  14051. float * s;
  14052. float * y;
  14053. };
  14054. static enum ggml_opt_result linesearch_backtracking(
  14055. struct ggml_context * ctx,
  14056. const struct ggml_opt_params * params,
  14057. int nx,
  14058. float * x,
  14059. float * fx,
  14060. float * g,
  14061. float * d,
  14062. float * step,
  14063. const float * xp,
  14064. struct ggml_tensor * f,
  14065. struct ggml_cgraph * gf,
  14066. struct ggml_cgraph * gb,
  14067. const int np,
  14068. struct ggml_tensor * ps[]) {
  14069. int count = 0;
  14070. float width = 0.0f;
  14071. float dg = 0.0f;
  14072. float finit = 0.0f;
  14073. float dginit = 0.0f;
  14074. float dgtest = 0.0f;
  14075. const float dec = 0.5f;
  14076. const float inc = 2.1f;
  14077. if (*step <= 0.f) {
  14078. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14079. }
  14080. // compute the initial gradient in the search direction
  14081. ggml_vec_dot_f32(nx, &dginit, g, d);
  14082. // make sure that d points to a descent direction
  14083. if (0 < dginit) {
  14084. return GGML_LINESEARCH_FAIL;
  14085. }
  14086. // initialize local variables
  14087. finit = *fx;
  14088. dgtest = params->lbfgs.ftol*dginit;
  14089. while (true) {
  14090. ggml_vec_cpy_f32(nx, x, xp);
  14091. ggml_vec_mad_f32(nx, x, d, *step);
  14092. // evaluate the function and gradient values
  14093. {
  14094. ggml_opt_set_params(np, ps, x);
  14095. ggml_graph_reset (gf);
  14096. ggml_set_f32 (f->grad, 1.0f);
  14097. ggml_graph_compute(ctx, gb);
  14098. ggml_opt_get_grad(np, ps, g);
  14099. *fx = ggml_get_f32_1d(f, 0);
  14100. }
  14101. ++count;
  14102. if (*fx > finit + (*step)*dgtest) {
  14103. width = dec;
  14104. } else {
  14105. // Armijo condition is satisfied
  14106. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14107. return count;
  14108. }
  14109. ggml_vec_dot_f32(nx, &dg, g, d);
  14110. // check the Wolfe condition
  14111. if (dg < params->lbfgs.wolfe * dginit) {
  14112. width = inc;
  14113. } else {
  14114. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14115. // regular Wolfe conditions
  14116. return count;
  14117. }
  14118. if(dg > -params->lbfgs.wolfe*dginit) {
  14119. width = dec;
  14120. } else {
  14121. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14122. return count;
  14123. }
  14124. return count;
  14125. }
  14126. }
  14127. if (*step < params->lbfgs.min_step) {
  14128. return GGML_LINESEARCH_MINIMUM_STEP;
  14129. }
  14130. if (*step > params->lbfgs.max_step) {
  14131. return GGML_LINESEARCH_MAXIMUM_STEP;
  14132. }
  14133. if (params->lbfgs.max_linesearch <= count) {
  14134. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14135. }
  14136. (*step) *= width;
  14137. }
  14138. return GGML_LINESEARCH_FAIL;
  14139. }
  14140. static enum ggml_opt_result ggml_opt_lbfgs(
  14141. struct ggml_context * ctx,
  14142. struct ggml_opt_context * opt,
  14143. struct ggml_opt_params params,
  14144. struct ggml_tensor * f,
  14145. struct ggml_cgraph * gf,
  14146. struct ggml_cgraph * gb) {
  14147. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14148. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14149. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14150. return GGML_OPT_INVALID_WOLFE;
  14151. }
  14152. }
  14153. gf->n_threads = params.n_threads;
  14154. gb->n_threads = params.n_threads;
  14155. const int m = params.lbfgs.m;
  14156. // these will store the parameters we want to optimize
  14157. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14158. int np = 0;
  14159. int nx = 0;
  14160. for (int i = 0; i < gf->n_nodes; ++i) {
  14161. if (gf->nodes[i]->is_param) {
  14162. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14163. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14164. ps[np++] = gf->nodes[i];
  14165. nx += ggml_nelements(gf->nodes[i]);
  14166. }
  14167. }
  14168. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14169. int iter = opt->iter;
  14170. ggml_opt_init(ctx, opt, params, nx);
  14171. opt->iter = iter;
  14172. }
  14173. float * x = opt->lbfgs.x->data; // current parameters
  14174. float * xp = opt->lbfgs.xp->data; // previous parameters
  14175. float * g = opt->lbfgs.g->data; // current gradient
  14176. float * gp = opt->lbfgs.gp->data; // previous gradient
  14177. float * d = opt->lbfgs.d->data; // search direction
  14178. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14179. float fx = 0.0f; // cost function value
  14180. float xnorm = 0.0f; // ||x||
  14181. float gnorm = 0.0f; // ||g||
  14182. // initialize x from the graph nodes
  14183. ggml_opt_get_params(np, ps, x);
  14184. // the L-BFGS memory
  14185. float * lm_alpha = opt->lbfgs.lmal->data;
  14186. float * lm_ys = opt->lbfgs.lmys->data;
  14187. float * lm_s = opt->lbfgs.lms->data;
  14188. float * lm_y = opt->lbfgs.lmy->data;
  14189. // evaluate the function value and its gradient
  14190. {
  14191. ggml_opt_set_params(np, ps, x);
  14192. ggml_graph_reset (gf);
  14193. ggml_set_f32 (f->grad, 1.0f);
  14194. ggml_graph_compute(ctx, gb);
  14195. ggml_opt_get_grad(np, ps, g);
  14196. fx = ggml_get_f32_1d(f, 0);
  14197. }
  14198. // search direction = -gradient
  14199. ggml_vec_neg_f32(nx, d, g);
  14200. // ||x||, ||g||
  14201. ggml_vec_norm_f32(nx, &xnorm, x);
  14202. ggml_vec_norm_f32(nx, &gnorm, g);
  14203. if (xnorm < 1.0f) {
  14204. xnorm = 1.0f;
  14205. }
  14206. // already optimized
  14207. if (gnorm/xnorm <= params.lbfgs.eps) {
  14208. return GGML_OPT_OK;
  14209. }
  14210. if (opt->just_initialized) {
  14211. if (pf) {
  14212. pf[0] = fx;
  14213. }
  14214. opt->lbfgs.fx_best = fx;
  14215. // initial step
  14216. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14217. opt->lbfgs.j = 0;
  14218. opt->lbfgs.k = 1;
  14219. opt->lbfgs.end = 0;
  14220. opt->lbfgs.n_no_improvement = 0;
  14221. opt->just_initialized = false;
  14222. }
  14223. float * fx_best = &opt->lbfgs.fx_best;
  14224. float * step = &opt->lbfgs.step;
  14225. int * j = &opt->lbfgs.j;
  14226. int * k = &opt->lbfgs.k;
  14227. int * end = &opt->lbfgs.end;
  14228. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14229. int ls = 0;
  14230. int bound = 0;
  14231. float ys = 0.0f;
  14232. float yy = 0.0f;
  14233. float beta = 0.0f;
  14234. int it = 0;
  14235. while (true) {
  14236. // store the current position and gradient vectors
  14237. ggml_vec_cpy_f32(nx, xp, x);
  14238. ggml_vec_cpy_f32(nx, gp, g);
  14239. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14240. if (ls < 0) {
  14241. // linesearch failed - go back to the previous point and return
  14242. ggml_vec_cpy_f32(nx, x, xp);
  14243. ggml_vec_cpy_f32(nx, g, gp);
  14244. return ls;
  14245. }
  14246. ggml_vec_norm_f32(nx, &xnorm, x);
  14247. ggml_vec_norm_f32(nx, &gnorm, g);
  14248. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14249. if (xnorm < 1.0f) {
  14250. xnorm = 1.0f;
  14251. }
  14252. if (gnorm/xnorm <= params.lbfgs.eps) {
  14253. // converged
  14254. return GGML_OPT_OK;
  14255. }
  14256. // delta-based convergence test
  14257. if (pf != NULL) {
  14258. // need at least params.past iterations to start checking for convergence
  14259. if (params.past <= k[0]) {
  14260. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14261. if (fabsf(rate) < params.delta) {
  14262. return GGML_OPT_OK;
  14263. }
  14264. }
  14265. pf[k[0]%params.past] = fx;
  14266. }
  14267. // check for improvement
  14268. if (params.max_no_improvement > 0) {
  14269. if (fx < fx_best[0]) {
  14270. fx_best[0] = fx;
  14271. n_no_improvement[0] = 0;
  14272. } else {
  14273. n_no_improvement[0]++;
  14274. if (n_no_improvement[0] >= params.max_no_improvement) {
  14275. return GGML_OPT_OK;
  14276. }
  14277. }
  14278. }
  14279. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14280. // reached the maximum number of iterations
  14281. return GGML_OPT_DID_NOT_CONVERGE;
  14282. }
  14283. // update vectors s and y:
  14284. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14285. // y_{k+1} = g_{k+1} - g_{k}.
  14286. //
  14287. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14288. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14289. // compute scalars ys and yy:
  14290. // ys = y^t \cdot s -> 1 / \rho.
  14291. // yy = y^t \cdot y.
  14292. //
  14293. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14294. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14295. lm_ys[end[0]] = ys;
  14296. // find new search direction
  14297. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14298. bound = (m <= k[0]) ? m : k[0];
  14299. k[0]++;
  14300. it++;
  14301. end[0] = (end[0] + 1)%m;
  14302. // initialize search direction with -g
  14303. ggml_vec_neg_f32(nx, d, g);
  14304. j[0] = end[0];
  14305. for (int i = 0; i < bound; ++i) {
  14306. j[0] = (j[0] + m - 1) % m;
  14307. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14308. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14309. lm_alpha[j[0]] /= lm_ys[j[0]];
  14310. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14311. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14312. }
  14313. ggml_vec_scale_f32(nx, d, ys/yy);
  14314. for (int i = 0; i < bound; ++i) {
  14315. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14316. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14317. beta /= lm_ys[j[0]];
  14318. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14319. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14320. j[0] = (j[0] + 1)%m;
  14321. }
  14322. step[0] = 1.0;
  14323. }
  14324. return GGML_OPT_DID_NOT_CONVERGE;
  14325. }
  14326. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14327. struct ggml_opt_params result;
  14328. switch (type) {
  14329. case GGML_OPT_ADAM:
  14330. {
  14331. result = (struct ggml_opt_params) {
  14332. .type = GGML_OPT_ADAM,
  14333. .n_threads = 1,
  14334. .past = 0,
  14335. .delta = 1e-5f,
  14336. .max_no_improvement = 100,
  14337. .print_forward_graph = true,
  14338. .print_backward_graph = true,
  14339. .adam = {
  14340. .n_iter = 10000,
  14341. .sched = 1.000f,
  14342. .decay = 0.001f,
  14343. .alpha = 0.001f,
  14344. .beta1 = 0.9f,
  14345. .beta2 = 0.999f,
  14346. .eps = 1e-8f,
  14347. .eps_f = 1e-5f,
  14348. .eps_g = 1e-3f,
  14349. },
  14350. };
  14351. } break;
  14352. case GGML_OPT_LBFGS:
  14353. {
  14354. result = (struct ggml_opt_params) {
  14355. .type = GGML_OPT_LBFGS,
  14356. .n_threads = 1,
  14357. .past = 0,
  14358. .delta = 1e-5f,
  14359. .max_no_improvement = 0,
  14360. .print_forward_graph = true,
  14361. .print_backward_graph = true,
  14362. .lbfgs = {
  14363. .m = 6,
  14364. .n_iter = 100,
  14365. .max_linesearch = 20,
  14366. .eps = 1e-5f,
  14367. .ftol = 1e-4f,
  14368. .wolfe = 0.9f,
  14369. .min_step = 1e-20f,
  14370. .max_step = 1e+20f,
  14371. .linesearch = GGML_LINESEARCH_DEFAULT,
  14372. },
  14373. };
  14374. } break;
  14375. }
  14376. return result;
  14377. }
  14378. GGML_API void ggml_opt_init(
  14379. struct ggml_context * ctx,
  14380. struct ggml_opt_context * opt,
  14381. struct ggml_opt_params params,
  14382. int64_t nx) {
  14383. opt->ctx = ctx;
  14384. opt->params = params;
  14385. opt->iter = 0;
  14386. opt->nx = nx;
  14387. opt->just_initialized = true;
  14388. switch (opt->params.type) {
  14389. case GGML_OPT_ADAM:
  14390. {
  14391. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14392. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14393. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14394. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14395. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14396. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14397. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14398. opt->adam.pf = params.past > 0
  14399. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14400. : NULL;
  14401. ggml_set_zero(opt->adam.x);
  14402. ggml_set_zero(opt->adam.g1);
  14403. ggml_set_zero(opt->adam.g2);
  14404. ggml_set_zero(opt->adam.m);
  14405. ggml_set_zero(opt->adam.v);
  14406. ggml_set_zero(opt->adam.mh);
  14407. ggml_set_zero(opt->adam.vh);
  14408. if (opt->adam.pf) {
  14409. ggml_set_zero(opt->adam.pf);
  14410. }
  14411. } break;
  14412. case GGML_OPT_LBFGS:
  14413. {
  14414. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14415. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14416. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14417. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14418. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14419. opt->lbfgs.pf = params.past > 0
  14420. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14421. : NULL;
  14422. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14423. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14424. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14425. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14426. ggml_set_zero(opt->lbfgs.x);
  14427. ggml_set_zero(opt->lbfgs.xp);
  14428. ggml_set_zero(opt->lbfgs.g);
  14429. ggml_set_zero(opt->lbfgs.gp);
  14430. ggml_set_zero(opt->lbfgs.d);
  14431. ggml_set_zero(opt->lbfgs.pf);
  14432. if (opt->lbfgs.pf) {
  14433. ggml_set_zero(opt->lbfgs.pf);
  14434. }
  14435. ggml_set_zero(opt->lbfgs.lmal);
  14436. ggml_set_zero(opt->lbfgs.lmys);
  14437. ggml_set_zero(opt->lbfgs.lms);
  14438. ggml_set_zero(opt->lbfgs.lmy);
  14439. } break;
  14440. }
  14441. }
  14442. enum ggml_opt_result ggml_opt(
  14443. struct ggml_context * ctx,
  14444. struct ggml_opt_params params,
  14445. struct ggml_tensor * f) {
  14446. bool free_ctx = false;
  14447. if (ctx == NULL) {
  14448. struct ggml_init_params params_ctx = {
  14449. .mem_size = 16*1024*1024,
  14450. .mem_buffer = NULL,
  14451. .no_alloc = false,
  14452. };
  14453. ctx = ggml_init(params_ctx);
  14454. if (ctx == NULL) {
  14455. return GGML_OPT_NO_CONTEXT;
  14456. }
  14457. free_ctx = true;
  14458. }
  14459. enum ggml_opt_result result = GGML_OPT_OK;
  14460. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14461. ggml_opt_init(ctx, opt, params, 0);
  14462. result = ggml_opt_resume(ctx, opt, f);
  14463. if (free_ctx) {
  14464. ggml_free(ctx);
  14465. }
  14466. return result;
  14467. }
  14468. enum ggml_opt_result ggml_opt_resume(
  14469. struct ggml_context * ctx,
  14470. struct ggml_opt_context * opt,
  14471. struct ggml_tensor * f) {
  14472. // build forward + backward compute graphs
  14473. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14474. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14475. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14476. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14477. *gf = ggml_build_forward (f);
  14478. *gb = ggml_build_backward(ctx, gf, true);
  14479. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14480. }
  14481. enum ggml_opt_result ggml_opt_resume_g(
  14482. struct ggml_context * ctx,
  14483. struct ggml_opt_context * opt,
  14484. struct ggml_tensor * f,
  14485. struct ggml_cgraph * gf,
  14486. struct ggml_cgraph * gb) {
  14487. // build forward + backward compute graphs
  14488. enum ggml_opt_result result = GGML_OPT_OK;
  14489. switch (opt->params.type) {
  14490. case GGML_OPT_ADAM:
  14491. {
  14492. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14493. } break;
  14494. case GGML_OPT_LBFGS:
  14495. {
  14496. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14497. } break;
  14498. }
  14499. if (opt->params.print_forward_graph) {
  14500. ggml_graph_print (gf);
  14501. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14502. }
  14503. if (opt->params.print_backward_graph) {
  14504. ggml_graph_print (gb);
  14505. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14506. }
  14507. return result;
  14508. }
  14509. ////////////////////////////////////////////////////////////////////////////////
  14510. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14511. assert(k % QK4_0 == 0);
  14512. const int nb = k / QK4_0;
  14513. for (int b = 0; b < n; b += k) {
  14514. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14515. quantize_row_q4_0_reference(src + b, y, k);
  14516. for (int i = 0; i < nb; i++) {
  14517. for (int j = 0; j < QK4_0; j += 2) {
  14518. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14519. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14520. hist[vi0]++;
  14521. hist[vi1]++;
  14522. }
  14523. }
  14524. }
  14525. return (n/QK4_0*sizeof(block_q4_0));
  14526. }
  14527. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14528. assert(k % QK4_1 == 0);
  14529. const int nb = k / QK4_1;
  14530. for (int b = 0; b < n; b += k) {
  14531. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14532. quantize_row_q4_1_reference(src + b, y, k);
  14533. for (int i = 0; i < nb; i++) {
  14534. for (int j = 0; j < QK4_1; j += 2) {
  14535. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14536. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14537. hist[vi0]++;
  14538. hist[vi1]++;
  14539. }
  14540. }
  14541. }
  14542. return (n/QK4_1*sizeof(block_q4_1));
  14543. }
  14544. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14545. assert(k % QK5_0 == 0);
  14546. const int nb = k / QK5_0;
  14547. for (int b = 0; b < n; b += k) {
  14548. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14549. quantize_row_q5_0_reference(src + b, y, k);
  14550. for (int i = 0; i < nb; i++) {
  14551. uint32_t qh;
  14552. memcpy(&qh, &y[i].qh, sizeof(qh));
  14553. for (int j = 0; j < QK5_0; j += 2) {
  14554. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14555. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14556. // cast to 16 bins
  14557. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14558. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14559. hist[vi0]++;
  14560. hist[vi1]++;
  14561. }
  14562. }
  14563. }
  14564. return (n/QK5_0*sizeof(block_q5_0));
  14565. }
  14566. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14567. assert(k % QK5_1 == 0);
  14568. const int nb = k / QK5_1;
  14569. for (int b = 0; b < n; b += k) {
  14570. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14571. quantize_row_q5_1_reference(src + b, y, k);
  14572. for (int i = 0; i < nb; i++) {
  14573. uint32_t qh;
  14574. memcpy(&qh, &y[i].qh, sizeof(qh));
  14575. for (int j = 0; j < QK5_1; j += 2) {
  14576. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14577. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14578. // cast to 16 bins
  14579. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14580. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14581. hist[vi0]++;
  14582. hist[vi1]++;
  14583. }
  14584. }
  14585. }
  14586. return (n/QK5_1*sizeof(block_q5_1));
  14587. }
  14588. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14589. assert(k % QK8_0 == 0);
  14590. const int nb = k / QK8_0;
  14591. for (int b = 0; b < n; b += k) {
  14592. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14593. quantize_row_q8_0_reference(src + b, y, k);
  14594. for (int i = 0; i < nb; i++) {
  14595. for (int j = 0; j < QK8_0; ++j) {
  14596. const int8_t vi = y[i].qs[j];
  14597. hist[vi/16 + 8]++;
  14598. }
  14599. }
  14600. }
  14601. return (n/QK8_0*sizeof(block_q8_0));
  14602. }
  14603. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14604. size_t result = 0;
  14605. switch (type) {
  14606. case GGML_TYPE_Q4_0:
  14607. {
  14608. GGML_ASSERT(start % QK4_0 == 0);
  14609. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14610. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14611. } break;
  14612. case GGML_TYPE_Q4_1:
  14613. {
  14614. GGML_ASSERT(start % QK4_1 == 0);
  14615. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14616. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14617. } break;
  14618. case GGML_TYPE_Q5_0:
  14619. {
  14620. GGML_ASSERT(start % QK5_0 == 0);
  14621. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14622. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14623. } break;
  14624. case GGML_TYPE_Q5_1:
  14625. {
  14626. GGML_ASSERT(start % QK5_1 == 0);
  14627. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14628. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14629. } break;
  14630. case GGML_TYPE_Q8_0:
  14631. {
  14632. GGML_ASSERT(start % QK8_0 == 0);
  14633. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14634. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14635. } break;
  14636. #ifdef GGML_USE_K_QUANTS
  14637. case GGML_TYPE_Q2_K:
  14638. {
  14639. GGML_ASSERT(start % QK_K == 0);
  14640. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14641. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14642. } break;
  14643. case GGML_TYPE_Q3_K:
  14644. {
  14645. GGML_ASSERT(start % QK_K == 0);
  14646. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14647. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14648. } break;
  14649. case GGML_TYPE_Q4_K:
  14650. {
  14651. GGML_ASSERT(start % QK_K == 0);
  14652. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14653. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14654. } break;
  14655. case GGML_TYPE_Q5_K:
  14656. {
  14657. GGML_ASSERT(start % QK_K == 0);
  14658. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14659. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14660. } break;
  14661. case GGML_TYPE_Q6_K:
  14662. {
  14663. GGML_ASSERT(start % QK_K == 0);
  14664. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14665. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14666. } break;
  14667. #endif
  14668. case GGML_TYPE_F16:
  14669. {
  14670. int elemsize = sizeof(ggml_fp16_t);
  14671. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14672. result = n * elemsize;
  14673. } break;
  14674. case GGML_TYPE_F32:
  14675. {
  14676. int elemsize = sizeof(float);
  14677. result = n * elemsize;
  14678. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14679. } break;
  14680. default:
  14681. assert(false);
  14682. }
  14683. return result;
  14684. }
  14685. ////////////////////////////////////////////////////////////////////////////////
  14686. int ggml_cpu_has_avx(void) {
  14687. #if defined(__AVX__)
  14688. return 1;
  14689. #else
  14690. return 0;
  14691. #endif
  14692. }
  14693. int ggml_cpu_has_avx2(void) {
  14694. #if defined(__AVX2__)
  14695. return 1;
  14696. #else
  14697. return 0;
  14698. #endif
  14699. }
  14700. int ggml_cpu_has_avx512(void) {
  14701. #if defined(__AVX512F__)
  14702. return 1;
  14703. #else
  14704. return 0;
  14705. #endif
  14706. }
  14707. int ggml_cpu_has_avx512_vbmi(void) {
  14708. #if defined(__AVX512VBMI__)
  14709. return 1;
  14710. #else
  14711. return 0;
  14712. #endif
  14713. }
  14714. int ggml_cpu_has_avx512_vnni(void) {
  14715. #if defined(__AVX512VNNI__)
  14716. return 1;
  14717. #else
  14718. return 0;
  14719. #endif
  14720. }
  14721. int ggml_cpu_has_fma(void) {
  14722. #if defined(__FMA__)
  14723. return 1;
  14724. #else
  14725. return 0;
  14726. #endif
  14727. }
  14728. int ggml_cpu_has_neon(void) {
  14729. #if defined(__ARM_NEON)
  14730. return 1;
  14731. #else
  14732. return 0;
  14733. #endif
  14734. }
  14735. int ggml_cpu_has_arm_fma(void) {
  14736. #if defined(__ARM_FEATURE_FMA)
  14737. return 1;
  14738. #else
  14739. return 0;
  14740. #endif
  14741. }
  14742. int ggml_cpu_has_f16c(void) {
  14743. #if defined(__F16C__)
  14744. return 1;
  14745. #else
  14746. return 0;
  14747. #endif
  14748. }
  14749. int ggml_cpu_has_fp16_va(void) {
  14750. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  14751. return 1;
  14752. #else
  14753. return 0;
  14754. #endif
  14755. }
  14756. int ggml_cpu_has_wasm_simd(void) {
  14757. #if defined(__wasm_simd128__)
  14758. return 1;
  14759. #else
  14760. return 0;
  14761. #endif
  14762. }
  14763. int ggml_cpu_has_blas(void) {
  14764. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  14765. return 1;
  14766. #else
  14767. return 0;
  14768. #endif
  14769. }
  14770. int ggml_cpu_has_cublas(void) {
  14771. #if defined(GGML_USE_CUBLAS)
  14772. return 1;
  14773. #else
  14774. return 0;
  14775. #endif
  14776. }
  14777. int ggml_cpu_has_clblast(void) {
  14778. #if defined(GGML_USE_CLBLAST)
  14779. return 1;
  14780. #else
  14781. return 0;
  14782. #endif
  14783. }
  14784. int ggml_cpu_has_gpublas(void) {
  14785. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  14786. }
  14787. int ggml_cpu_has_sse3(void) {
  14788. #if defined(__SSE3__)
  14789. return 1;
  14790. #else
  14791. return 0;
  14792. #endif
  14793. }
  14794. int ggml_cpu_has_vsx(void) {
  14795. #if defined(__POWER9_VECTOR__)
  14796. return 1;
  14797. #else
  14798. return 0;
  14799. #endif
  14800. }
  14801. ////////////////////////////////////////////////////////////////////////////////