passkey.cpp 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <string>
  6. #include <vector>
  7. static void print_usage(int argc, char ** argv, const gpt_params & params) {
  8. gpt_params_print_usage(argc, argv, params);
  9. LOG_TEE("\nexample usage:\n");
  10. LOG_TEE("\n %s -m model.gguf --junk 250 --pos 90 --keep 32 --grp-attn-n 2 [--seed 1234]\n", argv[0]);
  11. LOG_TEE("\n");
  12. }
  13. int main(int argc, char ** argv) {
  14. gpt_params params;
  15. params.n_junk = 250;
  16. params.n_keep = 32;
  17. params.i_pos = -1;
  18. if (!gpt_params_parse(argc, argv, params)) {
  19. print_usage(argc, argv, params);
  20. return 1;
  21. }
  22. int n_junk = params.n_junk;
  23. int n_keep = params.n_keep;
  24. int n_grp = params.grp_attn_n;
  25. int i_pos = params.i_pos;
  26. if (i_pos == -1) {
  27. i_pos = rand() % n_junk;
  28. }
  29. const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
  30. const std::string prompt_suffix = " What is the pass key? The pass key is";
  31. // generate junk text
  32. params.prompt = prompt_prefix;
  33. const int passkey = rand() % 50000 + 1;
  34. for (int i = 0; i < n_junk; i++) {
  35. if (i % n_junk == i_pos) {
  36. params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
  37. }
  38. params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
  39. }
  40. params.prompt += prompt_suffix;
  41. // init LLM
  42. llama_backend_init();
  43. llama_numa_init(params.numa);
  44. // initialize the model
  45. llama_model_params model_params = llama_model_params_from_gpt_params(params);
  46. llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
  47. if (model == NULL) {
  48. fprintf(stderr , "%s: error: unable to load model\n" , __func__);
  49. return 1;
  50. }
  51. // initialize the context
  52. llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
  53. ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
  54. GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
  55. llama_context * ctx = llama_new_context_with_model(model, ctx_params);
  56. if (ctx == NULL) {
  57. fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
  58. return 1;
  59. }
  60. auto sparams = llama_sampler_chain_default_params();
  61. llama_sampler * smpl = llama_sampler_chain_init(sparams);
  62. llama_sampler_chain_add(smpl, llama_sampler_init_greedy());
  63. // tokenize the prompt
  64. std::vector<llama_token> tokens_list;
  65. tokens_list = ::llama_tokenize(ctx, params.prompt, true);
  66. // tokenize the prefix and use it as a sink
  67. const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
  68. const int n_tokens_all = tokens_list.size();
  69. // we leave a margin of 16 tokens for the generated text - it should contain just the passkey
  70. const int n_predict = 16;
  71. // total length of the sequences including the prompt
  72. const int n_len = n_tokens_all + n_predict;
  73. const int n_ctx = llama_n_ctx(ctx) - n_keep;
  74. const int n_kv_req = llama_n_ctx(ctx);
  75. const int n_batch = ctx_params.n_batch;
  76. const int n_batch_grp = ctx_params.n_batch/n_grp;
  77. LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d, n_junk = %d, i_pos = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch, n_junk, i_pos);
  78. // print the prompt token-by-token
  79. LOG_TEE("\n");
  80. LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
  81. LOG_TEE("prompt tokens: %d\n", n_tokens_all);
  82. //LOG_TEE("prompt: %s\n", params.prompt.c_str());
  83. llama_batch batch = llama_batch_init(params.n_batch, 0, 1);
  84. int n_past = 0;
  85. // fill the KV cache
  86. for (int i = 0; i < n_ctx; i += n_batch) {
  87. if (i > 0 && n_grp > 1) {
  88. // if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
  89. const int ib = i/n_batch - 1;
  90. const int bd = n_batch_grp*(n_grp - 1);
  91. llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
  92. llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
  93. llama_kv_cache_update (ctx);
  94. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  95. }
  96. llama_batch_clear(batch);
  97. for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
  98. llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
  99. }
  100. if (i + n_batch >= n_tokens_all) {
  101. batch.logits[batch.n_tokens - 1] = true;
  102. }
  103. if (llama_decode(ctx, batch) != 0) {
  104. LOG_TEE("%s: llama_decode() failed\n", __func__);
  105. return 1;
  106. }
  107. LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
  108. if (i + n_batch >= n_tokens_all) {
  109. break;
  110. }
  111. }
  112. for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
  113. const int n_discard = n_batch;
  114. LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
  115. llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
  116. llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
  117. //llama_kv_cache_defrag (ctx);
  118. llama_kv_cache_update (ctx);
  119. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  120. llama_batch_clear(batch);
  121. for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
  122. llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
  123. }
  124. if (i + n_batch >= n_tokens_all) {
  125. batch.logits[batch.n_tokens - 1] = true;
  126. }
  127. if (llama_decode(ctx, batch) != 0) {
  128. LOG_TEE("%s: llama_decode() failed\n", __func__);
  129. return 1;
  130. }
  131. LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
  132. }
  133. {
  134. const int n_discard = n_past - n_ctx + n_predict;
  135. if (n_discard > 0) {
  136. LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
  137. llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
  138. llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
  139. //llama_kv_cache_defrag (ctx);
  140. llama_kv_cache_update (ctx);
  141. n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
  142. }
  143. }
  144. LOG_TEE("\n");
  145. LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
  146. LOG_TEE("\n");
  147. // main loop
  148. int n_cur = n_tokens_all;
  149. int n_decode = 0;
  150. LOG_TEE("%s", prompt_suffix.c_str());
  151. fflush(stdout);
  152. const auto t_main_start = ggml_time_us();
  153. while (n_cur <= n_len) {
  154. // sample the next token
  155. {
  156. const llama_token new_token_id = llama_sampler_sample(smpl, ctx, batch.n_tokens - 1);
  157. llama_sampler_accept(smpl, new_token_id);
  158. // is it an end of generation?
  159. if (llama_token_is_eog(model, new_token_id) || n_cur == n_len) {
  160. LOG_TEE("\n");
  161. break;
  162. }
  163. LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
  164. fflush(stdout);
  165. n_decode += 1;
  166. // prepare the next batch
  167. llama_batch_clear(batch);
  168. // push this new token for next evaluation
  169. llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
  170. }
  171. n_cur += 1;
  172. // evaluate the current batch with the transformer model
  173. if (llama_decode(ctx, batch)) {
  174. fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
  175. return 1;
  176. }
  177. }
  178. LOG_TEE("\n");
  179. const auto t_main_end = ggml_time_us();
  180. LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
  181. __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
  182. LOG_TEE("\n");
  183. llama_perf_print(ctx, LLAMA_PERF_TYPE_CONTEXT);
  184. fprintf(stderr, "\n");
  185. llama_sampler_free(smpl);
  186. llama_batch_free(batch);
  187. llama_free(ctx);
  188. llama_free_model(model);
  189. llama_backend_free();
  190. return 0;
  191. }