ggml-quants.c 472 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559
  1. #include "ggml-quants.h"
  2. #include "ggml-impl.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #include <float.h>
  7. #include <stdlib.h> // for qsort
  8. #include <stdio.h> // for GGML_ASSERT
  9. #ifdef __ARM_NEON
  10. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  11. //
  12. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  13. //
  14. #include <arm_neon.h>
  15. #else
  16. #ifdef __wasm_simd128__
  17. #include <wasm_simd128.h>
  18. #else
  19. #if defined(__POWER9_VECTOR__) || defined(__powerpc64__)
  20. #include <altivec.h>
  21. #undef bool
  22. #define bool _Bool
  23. #else
  24. #if defined(_MSC_VER) || defined(__MINGW32__)
  25. #include <intrin.h>
  26. #else
  27. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  28. #if !defined(__riscv)
  29. #include <immintrin.h>
  30. #endif
  31. #endif
  32. #endif
  33. #endif
  34. #endif
  35. #endif
  36. #ifdef __riscv_v_intrinsic
  37. #include <riscv_vector.h>
  38. #endif
  39. #undef MIN
  40. #undef MAX
  41. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  42. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  43. #define UNUSED GGML_UNUSED
  44. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  45. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  46. // multiply int8_t, add results pairwise twice
  47. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  48. // Get absolute values of x vectors
  49. const __m128i ax = _mm_sign_epi8(x, x);
  50. // Sign the values of the y vectors
  51. const __m128i sy = _mm_sign_epi8(y, x);
  52. // Perform multiplication and create 16-bit values
  53. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  54. const __m128i ones = _mm_set1_epi16(1);
  55. return _mm_madd_epi16(ones, dot);
  56. }
  57. #if __AVX__ || __AVX2__ || __AVX512F__
  58. // horizontally add 8 floats
  59. static inline float hsum_float_8(const __m256 x) {
  60. __m128 res = _mm256_extractf128_ps(x, 1);
  61. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  62. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  63. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  64. return _mm_cvtss_f32(res);
  65. }
  66. // horizontally add 8 int32_t
  67. static inline int hsum_i32_8(const __m256i a) {
  68. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  69. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  70. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  71. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  72. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  73. }
  74. // horizontally add 4 int32_t
  75. static inline int hsum_i32_4(const __m128i a) {
  76. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  77. const __m128i sum64 = _mm_add_epi32(hi64, a);
  78. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  79. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  80. }
  81. #if defined(__AVX2__) || defined(__AVX512F__)
  82. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  83. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  84. uint32_t x32;
  85. memcpy(&x32, x, sizeof(uint32_t));
  86. const __m256i shuf_mask = _mm256_set_epi64x(
  87. 0x0303030303030303, 0x0202020202020202,
  88. 0x0101010101010101, 0x0000000000000000);
  89. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  90. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  91. bytes = _mm256_or_si256(bytes, bit_mask);
  92. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  93. }
  94. // Unpack 32 4-bit fields into 32 bytes
  95. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  96. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  97. {
  98. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  99. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  100. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  101. return _mm256_and_si256(lowMask, bytes);
  102. }
  103. // add int16_t pairwise and return as float vector
  104. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  105. const __m256i ones = _mm256_set1_epi16(1);
  106. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  107. return _mm256_cvtepi32_ps(summed_pairs);
  108. }
  109. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  110. #if __AVXVNNI__
  111. const __m256i zero = _mm256_setzero_si256();
  112. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  113. return _mm256_cvtepi32_ps(summed_pairs);
  114. #else
  115. // Perform multiplication and create 16-bit values
  116. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  117. return sum_i16_pairs_float(dot);
  118. #endif
  119. }
  120. // multiply int8_t, add results pairwise twice and return as float vector
  121. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  122. #if __AVXVNNIINT8__
  123. const __m256i zero = _mm256_setzero_si256();
  124. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  125. return _mm256_cvtepi32_ps(summed_pairs);
  126. #else
  127. // Get absolute values of x vectors
  128. const __m256i ax = _mm256_sign_epi8(x, x);
  129. // Sign the values of the y vectors
  130. const __m256i sy = _mm256_sign_epi8(y, x);
  131. return mul_sum_us8_pairs_float(ax, sy);
  132. #endif
  133. }
  134. static inline __m128i packNibbles( __m256i bytes )
  135. {
  136. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  137. #if __AVX512F__
  138. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  139. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  140. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  141. #else
  142. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  143. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  144. __m256i low = _mm256_and_si256( lowByte, bytes );
  145. high = _mm256_srli_epi16( high, 4 );
  146. bytes = _mm256_or_si256( low, high );
  147. // Compress uint16_t lanes into bytes
  148. __m128i r0 = _mm256_castsi256_si128( bytes );
  149. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  150. return _mm_packus_epi16( r0, r1 );
  151. #endif
  152. }
  153. #elif defined(__AVX__)
  154. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  155. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  156. uint32_t x32;
  157. memcpy(&x32, x, sizeof(uint32_t));
  158. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  159. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  160. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  161. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  162. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  163. bytesl = _mm_or_si128(bytesl, bit_mask);
  164. bytesh = _mm_or_si128(bytesh, bit_mask);
  165. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  166. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  167. return MM256_SET_M128I(bytesh, bytesl);
  168. }
  169. // Unpack 32 4-bit fields into 32 bytes
  170. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  171. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  172. {
  173. // Load 16 bytes from memory
  174. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  175. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  176. const __m128i lowMask = _mm_set1_epi8(0xF);
  177. tmpl = _mm_and_si128(lowMask, tmpl);
  178. tmph = _mm_and_si128(lowMask, tmph);
  179. return MM256_SET_M128I(tmph, tmpl);
  180. }
  181. // add int16_t pairwise and return as float vector
  182. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  183. const __m128i ones = _mm_set1_epi16(1);
  184. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  185. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  186. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  187. return _mm256_cvtepi32_ps(summed_pairs);
  188. }
  189. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  190. const __m128i axl = _mm256_castsi256_si128(ax);
  191. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  192. const __m128i syl = _mm256_castsi256_si128(sy);
  193. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  194. // Perform multiplication and create 16-bit values
  195. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  196. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  197. return sum_i16_pairs_float(doth, dotl);
  198. }
  199. // multiply int8_t, add results pairwise twice and return as float vector
  200. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  201. const __m128i xl = _mm256_castsi256_si128(x);
  202. const __m128i xh = _mm256_extractf128_si256(x, 1);
  203. const __m128i yl = _mm256_castsi256_si128(y);
  204. const __m128i yh = _mm256_extractf128_si256(y, 1);
  205. // Get absolute values of x vectors
  206. const __m128i axl = _mm_sign_epi8(xl, xl);
  207. const __m128i axh = _mm_sign_epi8(xh, xh);
  208. // Sign the values of the y vectors
  209. const __m128i syl = _mm_sign_epi8(yl, xl);
  210. const __m128i syh = _mm_sign_epi8(yh, xh);
  211. // Perform multiplication and create 16-bit values
  212. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  213. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  214. return sum_i16_pairs_float(doth, dotl);
  215. }
  216. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  217. {
  218. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  219. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  220. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  221. __m128i low = _mm_and_si128( lowByte, bytes1 );
  222. high = _mm_srli_epi16( high, 4 );
  223. bytes1 = _mm_or_si128( low, high );
  224. high = _mm_andnot_si128( lowByte, bytes2 );
  225. low = _mm_and_si128( lowByte, bytes2 );
  226. high = _mm_srli_epi16( high, 4 );
  227. bytes2 = _mm_or_si128( low, high );
  228. return _mm_packus_epi16( bytes1, bytes2);
  229. }
  230. #endif
  231. #elif defined(__SSSE3__)
  232. // horizontally add 4x4 floats
  233. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  234. __m128 res_0 =_mm_hadd_ps(a, b);
  235. __m128 res_1 =_mm_hadd_ps(c, d);
  236. __m128 res =_mm_hadd_ps(res_0, res_1);
  237. res =_mm_hadd_ps(res, res);
  238. res =_mm_hadd_ps(res, res);
  239. return _mm_cvtss_f32(res);
  240. }
  241. #endif // __AVX__ || __AVX2__ || __AVX512F__
  242. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  243. #if defined(__ARM_NEON)
  244. #ifdef _MSC_VER
  245. #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
  246. #else
  247. #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
  248. #endif
  249. #if !defined(__aarch64__)
  250. // 64-bit compatibility
  251. // vaddvq_s16
  252. // vpaddq_s16
  253. // vpaddq_s32
  254. // vaddvq_s32
  255. // vaddvq_f32
  256. // vmaxvq_f32
  257. // vcvtnq_s32_f32
  258. // vzip1_u8
  259. // vzip2_u8
  260. inline static int32_t vaddvq_s16(int16x8_t v) {
  261. return
  262. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  263. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  264. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  265. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  266. }
  267. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  268. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  269. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  270. return vcombine_s16(a0, b0);
  271. }
  272. inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  273. int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  274. int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  275. return vcombine_s32(a0, b0);
  276. }
  277. inline static int32_t vaddvq_s32(int32x4_t v) {
  278. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  279. }
  280. inline static float vaddvq_f32(float32x4_t v) {
  281. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  282. }
  283. inline static float vmaxvq_f32(float32x4_t v) {
  284. return
  285. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  286. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  287. }
  288. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  289. int32x4_t res;
  290. res[0] = roundf(vgetq_lane_f32(v, 0));
  291. res[1] = roundf(vgetq_lane_f32(v, 1));
  292. res[2] = roundf(vgetq_lane_f32(v, 2));
  293. res[3] = roundf(vgetq_lane_f32(v, 3));
  294. return res;
  295. }
  296. inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  297. uint8x8_t res;
  298. res[0] = a[0]; res[1] = b[0];
  299. res[2] = a[1]; res[3] = b[1];
  300. res[4] = a[2]; res[5] = b[2];
  301. res[6] = a[3]; res[7] = b[3];
  302. return res;
  303. }
  304. inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  305. uint8x8_t res;
  306. res[0] = a[4]; res[1] = b[4];
  307. res[2] = a[5]; res[3] = b[5];
  308. res[4] = a[6]; res[5] = b[6];
  309. res[6] = a[7]; res[7] = b[7];
  310. return res;
  311. }
  312. // vld1q_s16_x2
  313. // vld1q_u8_x2
  314. // vld1q_u8_x4
  315. // vld1q_s8_x2
  316. // vld1q_s8_x4
  317. // TODO: double-check these work correctly
  318. typedef struct ggml_int16x8x2_t {
  319. int16x8_t val[2];
  320. } ggml_int16x8x2_t;
  321. inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
  322. ggml_int16x8x2_t res;
  323. res.val[0] = vld1q_s16(ptr + 0);
  324. res.val[1] = vld1q_s16(ptr + 8);
  325. return res;
  326. }
  327. typedef struct ggml_uint8x16x2_t {
  328. uint8x16_t val[2];
  329. } ggml_uint8x16x2_t;
  330. inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
  331. ggml_uint8x16x2_t res;
  332. res.val[0] = vld1q_u8(ptr + 0);
  333. res.val[1] = vld1q_u8(ptr + 16);
  334. return res;
  335. }
  336. typedef struct ggml_uint8x16x4_t {
  337. uint8x16_t val[4];
  338. } ggml_uint8x16x4_t;
  339. inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
  340. ggml_uint8x16x4_t res;
  341. res.val[0] = vld1q_u8(ptr + 0);
  342. res.val[1] = vld1q_u8(ptr + 16);
  343. res.val[2] = vld1q_u8(ptr + 32);
  344. res.val[3] = vld1q_u8(ptr + 48);
  345. return res;
  346. }
  347. typedef struct ggml_int8x16x2_t {
  348. int8x16_t val[2];
  349. } ggml_int8x16x2_t;
  350. inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
  351. ggml_int8x16x2_t res;
  352. res.val[0] = vld1q_s8(ptr + 0);
  353. res.val[1] = vld1q_s8(ptr + 16);
  354. return res;
  355. }
  356. typedef struct ggml_int8x16x4_t {
  357. int8x16_t val[4];
  358. } ggml_int8x16x4_t;
  359. inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
  360. ggml_int8x16x4_t res;
  361. res.val[0] = vld1q_s8(ptr + 0);
  362. res.val[1] = vld1q_s8(ptr + 16);
  363. res.val[2] = vld1q_s8(ptr + 32);
  364. res.val[3] = vld1q_s8(ptr + 48);
  365. return res;
  366. }
  367. // NOTE: not tested
  368. inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
  369. int8x16_t res;
  370. res[ 0] = a[b[ 0]];
  371. res[ 1] = a[b[ 1]];
  372. res[ 2] = a[b[ 2]];
  373. res[ 3] = a[b[ 3]];
  374. res[ 4] = a[b[ 4]];
  375. res[ 5] = a[b[ 5]];
  376. res[ 6] = a[b[ 6]];
  377. res[ 7] = a[b[ 7]];
  378. res[ 8] = a[b[ 8]];
  379. res[ 9] = a[b[ 9]];
  380. res[10] = a[b[10]];
  381. res[11] = a[b[11]];
  382. res[12] = a[b[12]];
  383. res[13] = a[b[13]];
  384. res[14] = a[b[14]];
  385. res[15] = a[b[15]];
  386. return res;
  387. }
  388. // NOTE: not tested
  389. inline static int8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
  390. int8x16_t res;
  391. res[ 0] = a[b[ 0]];
  392. res[ 1] = a[b[ 1]];
  393. res[ 2] = a[b[ 2]];
  394. res[ 3] = a[b[ 3]];
  395. res[ 4] = a[b[ 4]];
  396. res[ 5] = a[b[ 5]];
  397. res[ 6] = a[b[ 6]];
  398. res[ 7] = a[b[ 7]];
  399. res[ 8] = a[b[ 8]];
  400. res[ 9] = a[b[ 9]];
  401. res[10] = a[b[10]];
  402. res[11] = a[b[11]];
  403. res[12] = a[b[12]];
  404. res[13] = a[b[13]];
  405. res[14] = a[b[14]];
  406. res[15] = a[b[15]];
  407. return res;
  408. }
  409. #else
  410. #define ggml_int16x8x2_t int16x8x2_t
  411. #define ggml_uint8x16x2_t uint8x16x2_t
  412. #define ggml_uint8x16x4_t uint8x16x4_t
  413. #define ggml_int8x16x2_t int8x16x2_t
  414. #define ggml_int8x16x4_t int8x16x4_t
  415. #define ggml_vld1q_s16_x2 vld1q_s16_x2
  416. #define ggml_vld1q_u8_x2 vld1q_u8_x2
  417. #define ggml_vld1q_u8_x4 vld1q_u8_x4
  418. #define ggml_vld1q_s8_x2 vld1q_s8_x2
  419. #define ggml_vld1q_s8_x4 vld1q_s8_x4
  420. #define ggml_vqtbl1q_s8 vqtbl1q_s8
  421. #define ggml_vqtbl1q_u8 vqtbl1q_u8
  422. #endif
  423. #if !defined(__ARM_FEATURE_DOTPROD)
  424. inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
  425. const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
  426. const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
  427. return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
  428. }
  429. #else
  430. #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
  431. #endif
  432. #endif
  433. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  434. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  435. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  436. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  437. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  438. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  439. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  440. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  441. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  442. // precomputed tables for expanding 8bits to 8 bytes:
  443. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  444. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  445. #endif
  446. // reference implementation for deterministic creation of model files
  447. void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  448. static const int qk = QK4_0;
  449. assert(k % qk == 0);
  450. const int nb = k / qk;
  451. for (int i = 0; i < nb; i++) {
  452. float amax = 0.0f; // absolute max
  453. float max = 0.0f;
  454. for (int j = 0; j < qk; j++) {
  455. const float v = x[i*qk + j];
  456. if (amax < fabsf(v)) {
  457. amax = fabsf(v);
  458. max = v;
  459. }
  460. }
  461. const float d = max / -8;
  462. const float id = d ? 1.0f/d : 0.0f;
  463. y[i].d = GGML_FP32_TO_FP16(d);
  464. for (int j = 0; j < qk/2; ++j) {
  465. const float x0 = x[i*qk + 0 + j]*id;
  466. const float x1 = x[i*qk + qk/2 + j]*id;
  467. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  468. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  469. y[i].qs[j] = xi0;
  470. y[i].qs[j] |= xi1 << 4;
  471. }
  472. }
  473. }
  474. void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  475. quantize_row_q4_0_reference(x, y, k);
  476. }
  477. void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  478. const int qk = QK4_1;
  479. assert(k % qk == 0);
  480. const int nb = k / qk;
  481. for (int i = 0; i < nb; i++) {
  482. float min = FLT_MAX;
  483. float max = -FLT_MAX;
  484. for (int j = 0; j < qk; j++) {
  485. const float v = x[i*qk + j];
  486. if (v < min) min = v;
  487. if (v > max) max = v;
  488. }
  489. const float d = (max - min) / ((1 << 4) - 1);
  490. const float id = d ? 1.0f/d : 0.0f;
  491. y[i].d = GGML_FP32_TO_FP16(d);
  492. y[i].m = GGML_FP32_TO_FP16(min);
  493. for (int j = 0; j < qk/2; ++j) {
  494. const float x0 = (x[i*qk + 0 + j] - min)*id;
  495. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  496. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  497. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  498. y[i].qs[j] = xi0;
  499. y[i].qs[j] |= xi1 << 4;
  500. }
  501. }
  502. }
  503. void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  504. quantize_row_q4_1_reference(x, y, k);
  505. }
  506. void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  507. static const int qk = QK5_0;
  508. assert(k % qk == 0);
  509. const int nb = k / qk;
  510. for (int i = 0; i < nb; i++) {
  511. float amax = 0.0f; // absolute max
  512. float max = 0.0f;
  513. for (int j = 0; j < qk; j++) {
  514. const float v = x[i*qk + j];
  515. if (amax < fabsf(v)) {
  516. amax = fabsf(v);
  517. max = v;
  518. }
  519. }
  520. const float d = max / -16;
  521. const float id = d ? 1.0f/d : 0.0f;
  522. y[i].d = GGML_FP32_TO_FP16(d);
  523. uint32_t qh = 0;
  524. for (int j = 0; j < qk/2; ++j) {
  525. const float x0 = x[i*qk + 0 + j]*id;
  526. const float x1 = x[i*qk + qk/2 + j]*id;
  527. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  528. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  529. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  530. // get the 5-th bit and store it in qh at the right position
  531. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  532. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  533. }
  534. memcpy(&y[i].qh, &qh, sizeof(qh));
  535. }
  536. }
  537. void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  538. quantize_row_q5_0_reference(x, y, k);
  539. }
  540. void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  541. const int qk = QK5_1;
  542. assert(k % qk == 0);
  543. const int nb = k / qk;
  544. for (int i = 0; i < nb; i++) {
  545. float min = FLT_MAX;
  546. float max = -FLT_MAX;
  547. for (int j = 0; j < qk; j++) {
  548. const float v = x[i*qk + j];
  549. if (v < min) min = v;
  550. if (v > max) max = v;
  551. }
  552. const float d = (max - min) / ((1 << 5) - 1);
  553. const float id = d ? 1.0f/d : 0.0f;
  554. y[i].d = GGML_FP32_TO_FP16(d);
  555. y[i].m = GGML_FP32_TO_FP16(min);
  556. uint32_t qh = 0;
  557. for (int j = 0; j < qk/2; ++j) {
  558. const float x0 = (x[i*qk + 0 + j] - min)*id;
  559. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  560. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  561. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  562. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  563. // get the 5-th bit and store it in qh at the right position
  564. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  565. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  566. }
  567. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  568. }
  569. }
  570. void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  571. quantize_row_q5_1_reference(x, y, k);
  572. }
  573. // reference implementation for deterministic creation of model files
  574. void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  575. assert(k % QK8_0 == 0);
  576. const int nb = k / QK8_0;
  577. for (int i = 0; i < nb; i++) {
  578. float amax = 0.0f; // absolute max
  579. for (int j = 0; j < QK8_0; j++) {
  580. const float v = x[i*QK8_0 + j];
  581. amax = MAX(amax, fabsf(v));
  582. }
  583. const float d = amax / ((1 << 7) - 1);
  584. const float id = d ? 1.0f/d : 0.0f;
  585. y[i].d = GGML_FP32_TO_FP16(d);
  586. for (int j = 0; j < QK8_0; ++j) {
  587. const float x0 = x[i*QK8_0 + j]*id;
  588. y[i].qs[j] = roundf(x0);
  589. }
  590. }
  591. }
  592. void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  593. assert(QK8_0 == 32);
  594. assert(k % QK8_0 == 0);
  595. const int nb = k / QK8_0;
  596. block_q8_0 * restrict y = vy;
  597. #if defined(__ARM_NEON)
  598. for (int i = 0; i < nb; i++) {
  599. float32x4_t srcv [8];
  600. float32x4_t asrcv[8];
  601. float32x4_t amaxv[8];
  602. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  603. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  604. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  605. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  606. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  607. const float amax = vmaxvq_f32(amaxv[0]);
  608. const float d = amax / ((1 << 7) - 1);
  609. const float id = d ? 1.0f/d : 0.0f;
  610. y[i].d = GGML_FP32_TO_FP16(d);
  611. for (int j = 0; j < 8; j++) {
  612. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  613. const int32x4_t vi = vcvtnq_s32_f32(v);
  614. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  615. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  616. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  617. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  618. }
  619. }
  620. #elif defined(__wasm_simd128__)
  621. for (int i = 0; i < nb; i++) {
  622. v128_t srcv [8];
  623. v128_t asrcv[8];
  624. v128_t amaxv[8];
  625. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  626. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  627. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  628. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  629. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  630. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  631. wasm_f32x4_extract_lane(amaxv[0], 1)),
  632. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  633. wasm_f32x4_extract_lane(amaxv[0], 3)));
  634. const float d = amax / ((1 << 7) - 1);
  635. const float id = d ? 1.0f/d : 0.0f;
  636. y[i].d = GGML_FP32_TO_FP16(d);
  637. for (int j = 0; j < 8; j++) {
  638. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  639. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  640. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  641. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  642. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  643. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  644. }
  645. }
  646. #elif defined(__AVX2__) || defined(__AVX__)
  647. for (int i = 0; i < nb; i++) {
  648. // Load elements into 4 AVX vectors
  649. __m256 v0 = _mm256_loadu_ps( x );
  650. __m256 v1 = _mm256_loadu_ps( x + 8 );
  651. __m256 v2 = _mm256_loadu_ps( x + 16 );
  652. __m256 v3 = _mm256_loadu_ps( x + 24 );
  653. x += 32;
  654. // Compute max(abs(e)) for the block
  655. const __m256 signBit = _mm256_set1_ps( -0.0f );
  656. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  657. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  658. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  659. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  660. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  661. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  662. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  663. const float maxScalar = _mm_cvtss_f32( max4 );
  664. // Quantize these floats
  665. const float d = maxScalar / 127.f;
  666. y[i].d = GGML_FP32_TO_FP16(d);
  667. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  668. const __m256 mul = _mm256_set1_ps( id );
  669. // Apply the multiplier
  670. v0 = _mm256_mul_ps( v0, mul );
  671. v1 = _mm256_mul_ps( v1, mul );
  672. v2 = _mm256_mul_ps( v2, mul );
  673. v3 = _mm256_mul_ps( v3, mul );
  674. // Round to nearest integer
  675. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  676. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  677. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  678. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  679. // Convert floats to integers
  680. __m256i i0 = _mm256_cvtps_epi32( v0 );
  681. __m256i i1 = _mm256_cvtps_epi32( v1 );
  682. __m256i i2 = _mm256_cvtps_epi32( v2 );
  683. __m256i i3 = _mm256_cvtps_epi32( v3 );
  684. #if defined(__AVX2__)
  685. // Convert int32 to int16
  686. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  687. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  688. // Convert int16 to int8
  689. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  690. // We got our precious signed bytes, but the order is now wrong
  691. // These AVX2 pack instructions process 16-byte pieces independently
  692. // The following instruction is fixing the order
  693. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  694. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  695. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  696. #else
  697. // Since we don't have in AVX some necessary functions,
  698. // we split the registers in half and call AVX2 analogs from SSE
  699. __m128i ni0 = _mm256_castsi256_si128( i0 );
  700. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  701. __m128i ni2 = _mm256_castsi256_si128( i1 );
  702. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  703. __m128i ni4 = _mm256_castsi256_si128( i2 );
  704. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  705. __m128i ni6 = _mm256_castsi256_si128( i3 );
  706. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  707. // Convert int32 to int16
  708. ni0 = _mm_packs_epi32( ni0, ni1 );
  709. ni2 = _mm_packs_epi32( ni2, ni3 );
  710. ni4 = _mm_packs_epi32( ni4, ni5 );
  711. ni6 = _mm_packs_epi32( ni6, ni7 );
  712. // Convert int16 to int8
  713. ni0 = _mm_packs_epi16( ni0, ni2 );
  714. ni4 = _mm_packs_epi16( ni4, ni6 );
  715. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  716. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  717. #endif
  718. }
  719. #elif defined(__riscv_v_intrinsic)
  720. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  721. for (int i = 0; i < nb; i++) {
  722. // load elements
  723. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  724. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  725. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  726. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  727. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  728. const float d = amax / ((1 << 7) - 1);
  729. const float id = d ? 1.0f/d : 0.0f;
  730. y[i].d = GGML_FP32_TO_FP16(d);
  731. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  732. // convert to integer
  733. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  734. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  735. // store result
  736. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  737. }
  738. #else
  739. GGML_UNUSED(nb);
  740. // scalar
  741. quantize_row_q8_0_reference(x, y, k);
  742. #endif
  743. }
  744. // reference implementation for deterministic creation of model files
  745. void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  746. assert(QK8_1 == 32);
  747. assert(k % QK8_1 == 0);
  748. const int nb = k / QK8_1;
  749. for (int i = 0; i < nb; i++) {
  750. float amax = 0.0f; // absolute max
  751. for (int j = 0; j < QK8_1; j++) {
  752. const float v = x[i*QK8_1 + j];
  753. amax = MAX(amax, fabsf(v));
  754. }
  755. const float d = amax / ((1 << 7) - 1);
  756. const float id = d ? 1.0f/d : 0.0f;
  757. y[i].d = d;
  758. int sum = 0;
  759. for (int j = 0; j < QK8_1/2; ++j) {
  760. const float v0 = x[i*QK8_1 + j]*id;
  761. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  762. y[i].qs[ j] = roundf(v0);
  763. y[i].qs[QK8_1/2 + j] = roundf(v1);
  764. sum += y[i].qs[ j];
  765. sum += y[i].qs[QK8_1/2 + j];
  766. }
  767. y[i].s = sum*d;
  768. }
  769. }
  770. void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  771. assert(k % QK8_1 == 0);
  772. const int nb = k / QK8_1;
  773. block_q8_1 * restrict y = vy;
  774. #if defined(__ARM_NEON)
  775. for (int i = 0; i < nb; i++) {
  776. float32x4_t srcv [8];
  777. float32x4_t asrcv[8];
  778. float32x4_t amaxv[8];
  779. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  780. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  781. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  782. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  783. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  784. const float amax = vmaxvq_f32(amaxv[0]);
  785. const float d = amax / ((1 << 7) - 1);
  786. const float id = d ? 1.0f/d : 0.0f;
  787. y[i].d = d;
  788. int32x4_t accv = vdupq_n_s32(0);
  789. for (int j = 0; j < 8; j++) {
  790. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  791. const int32x4_t vi = vcvtnq_s32_f32(v);
  792. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  793. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  794. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  795. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  796. accv = vaddq_s32(accv, vi);
  797. }
  798. y[i].s = d * vaddvq_s32(accv);
  799. }
  800. #elif defined(__wasm_simd128__)
  801. for (int i = 0; i < nb; i++) {
  802. v128_t srcv [8];
  803. v128_t asrcv[8];
  804. v128_t amaxv[8];
  805. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  806. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  807. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  808. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  809. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  810. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  811. wasm_f32x4_extract_lane(amaxv[0], 1)),
  812. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  813. wasm_f32x4_extract_lane(amaxv[0], 3)));
  814. const float d = amax / ((1 << 7) - 1);
  815. const float id = d ? 1.0f/d : 0.0f;
  816. y[i].d = d;
  817. v128_t accv = wasm_i32x4_splat(0);
  818. for (int j = 0; j < 8; j++) {
  819. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  820. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  821. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  822. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  823. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  824. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  825. accv = wasm_i32x4_add(accv, vi);
  826. }
  827. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  828. wasm_i32x4_extract_lane(accv, 1) +
  829. wasm_i32x4_extract_lane(accv, 2) +
  830. wasm_i32x4_extract_lane(accv, 3));
  831. }
  832. #elif defined(__AVX2__) || defined(__AVX__)
  833. for (int i = 0; i < nb; i++) {
  834. // Load elements into 4 AVX vectors
  835. __m256 v0 = _mm256_loadu_ps( x );
  836. __m256 v1 = _mm256_loadu_ps( x + 8 );
  837. __m256 v2 = _mm256_loadu_ps( x + 16 );
  838. __m256 v3 = _mm256_loadu_ps( x + 24 );
  839. x += 32;
  840. // Compute max(abs(e)) for the block
  841. const __m256 signBit = _mm256_set1_ps( -0.0f );
  842. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  843. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  844. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  845. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  846. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  847. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  848. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  849. const float maxScalar = _mm_cvtss_f32( max4 );
  850. // Quantize these floats
  851. const float d = maxScalar / 127.f;
  852. y[i].d = d;
  853. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  854. const __m256 mul = _mm256_set1_ps( id );
  855. // Apply the multiplier
  856. v0 = _mm256_mul_ps( v0, mul );
  857. v1 = _mm256_mul_ps( v1, mul );
  858. v2 = _mm256_mul_ps( v2, mul );
  859. v3 = _mm256_mul_ps( v3, mul );
  860. // Round to nearest integer
  861. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  862. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  863. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  864. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  865. // Convert floats to integers
  866. __m256i i0 = _mm256_cvtps_epi32( v0 );
  867. __m256i i1 = _mm256_cvtps_epi32( v1 );
  868. __m256i i2 = _mm256_cvtps_epi32( v2 );
  869. __m256i i3 = _mm256_cvtps_epi32( v3 );
  870. #if defined(__AVX2__)
  871. // Compute the sum of the quants and set y[i].s
  872. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  873. // Convert int32 to int16
  874. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  875. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  876. // Convert int16 to int8
  877. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  878. // We got our precious signed bytes, but the order is now wrong
  879. // These AVX2 pack instructions process 16-byte pieces independently
  880. // The following instruction is fixing the order
  881. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  882. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  883. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  884. #else
  885. // Since we don't have in AVX some necessary functions,
  886. // we split the registers in half and call AVX2 analogs from SSE
  887. __m128i ni0 = _mm256_castsi256_si128( i0 );
  888. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  889. __m128i ni2 = _mm256_castsi256_si128( i1 );
  890. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  891. __m128i ni4 = _mm256_castsi256_si128( i2 );
  892. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  893. __m128i ni6 = _mm256_castsi256_si128( i3 );
  894. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  895. // Compute the sum of the quants and set y[i].s
  896. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  897. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  898. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  899. // Convert int32 to int16
  900. ni0 = _mm_packs_epi32( ni0, ni1 );
  901. ni2 = _mm_packs_epi32( ni2, ni3 );
  902. ni4 = _mm_packs_epi32( ni4, ni5 );
  903. ni6 = _mm_packs_epi32( ni6, ni7 );
  904. // Convert int16 to int8
  905. ni0 = _mm_packs_epi16( ni0, ni2 );
  906. ni4 = _mm_packs_epi16( ni4, ni6 );
  907. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  908. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  909. #endif
  910. }
  911. #elif defined(__riscv_v_intrinsic)
  912. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  913. for (int i = 0; i < nb; i++) {
  914. // load elements
  915. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  916. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  917. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  918. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  919. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  920. const float d = amax / ((1 << 7) - 1);
  921. const float id = d ? 1.0f/d : 0.0f;
  922. y[i].d = d;
  923. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  924. // convert to integer
  925. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  926. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  927. // store result
  928. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  929. // compute sum for y[i].s
  930. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  931. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  932. // set y[i].s
  933. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  934. y[i].s = sum*d;
  935. }
  936. #else
  937. GGML_UNUSED(nb);
  938. // scalar
  939. quantize_row_q8_1_reference(x, y, k);
  940. #endif
  941. }
  942. void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  943. static const int qk = QK4_0;
  944. assert(k % qk == 0);
  945. const int nb = k / qk;
  946. for (int i = 0; i < nb; i++) {
  947. const float d = GGML_FP16_TO_FP32(x[i].d);
  948. for (int j = 0; j < qk/2; ++j) {
  949. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  950. const int x1 = (x[i].qs[j] >> 4) - 8;
  951. y[i*qk + j + 0 ] = x0*d;
  952. y[i*qk + j + qk/2] = x1*d;
  953. }
  954. }
  955. }
  956. void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  957. static const int qk = QK4_1;
  958. assert(k % qk == 0);
  959. const int nb = k / qk;
  960. for (int i = 0; i < nb; i++) {
  961. const float d = GGML_FP16_TO_FP32(x[i].d);
  962. const float m = GGML_FP16_TO_FP32(x[i].m);
  963. for (int j = 0; j < qk/2; ++j) {
  964. const int x0 = (x[i].qs[j] & 0x0F);
  965. const int x1 = (x[i].qs[j] >> 4);
  966. y[i*qk + j + 0 ] = x0*d + m;
  967. y[i*qk + j + qk/2] = x1*d + m;
  968. }
  969. }
  970. }
  971. void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  972. static const int qk = QK5_0;
  973. assert(k % qk == 0);
  974. const int nb = k / qk;
  975. for (int i = 0; i < nb; i++) {
  976. const float d = GGML_FP16_TO_FP32(x[i].d);
  977. uint32_t qh;
  978. memcpy(&qh, x[i].qh, sizeof(qh));
  979. for (int j = 0; j < qk/2; ++j) {
  980. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  981. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  982. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  983. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  984. y[i*qk + j + 0 ] = x0*d;
  985. y[i*qk + j + qk/2] = x1*d;
  986. }
  987. }
  988. }
  989. void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  990. static const int qk = QK5_1;
  991. assert(k % qk == 0);
  992. const int nb = k / qk;
  993. for (int i = 0; i < nb; i++) {
  994. const float d = GGML_FP16_TO_FP32(x[i].d);
  995. const float m = GGML_FP16_TO_FP32(x[i].m);
  996. uint32_t qh;
  997. memcpy(&qh, x[i].qh, sizeof(qh));
  998. for (int j = 0; j < qk/2; ++j) {
  999. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1000. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1001. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1002. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1003. y[i*qk + j + 0 ] = x0*d + m;
  1004. y[i*qk + j + qk/2] = x1*d + m;
  1005. }
  1006. }
  1007. }
  1008. void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) {
  1009. static const int qk = QK8_0;
  1010. assert(k % qk == 0);
  1011. const int nb = k / qk;
  1012. for (int i = 0; i < nb; i++) {
  1013. const float d = GGML_FP16_TO_FP32(x[i].d);
  1014. for (int j = 0; j < qk; ++j) {
  1015. y[i*qk + j] = x[i].qs[j]*d;
  1016. }
  1017. }
  1018. }
  1019. //
  1020. // 2-6 bit quantization in super-blocks
  1021. //
  1022. //
  1023. // ===================== Helper functions
  1024. //
  1025. static inline int nearest_int(float fval) {
  1026. assert(fval <= 4194303.f);
  1027. float val = fval + 12582912.f;
  1028. int i; memcpy(&i, &val, sizeof(int));
  1029. return (i & 0x007fffff) - 0x00400000;
  1030. }
  1031. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type,
  1032. const float * restrict qw) {
  1033. float max = 0;
  1034. float amax = 0;
  1035. for (int i = 0; i < n; ++i) {
  1036. float ax = fabsf(x[i]);
  1037. if (ax > amax) { amax = ax; max = x[i]; }
  1038. }
  1039. if (amax < 1e-30f) { // all zero
  1040. for (int i = 0; i < n; ++i) {
  1041. L[i] = 0;
  1042. }
  1043. return 0.f;
  1044. }
  1045. float iscale = -nmax / max;
  1046. if (rmse_type == 0) {
  1047. for (int i = 0; i < n; ++i) {
  1048. int l = nearest_int(iscale * x[i]);
  1049. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1050. }
  1051. return 1/iscale;
  1052. }
  1053. bool return_early = false;
  1054. if (rmse_type < 0) {
  1055. rmse_type = -rmse_type;
  1056. return_early = true;
  1057. }
  1058. float sumlx = 0;
  1059. float suml2 = 0;
  1060. #ifdef HAVE_BUGGY_APPLE_LINKER
  1061. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1062. for (volatile int i = 0; i < n; ++i) {
  1063. #else
  1064. for (int i = 0; i < n; ++i) {
  1065. #endif
  1066. int l = nearest_int(iscale * x[i]);
  1067. l = MAX(-nmax, MIN(nmax-1, l));
  1068. L[i] = l + nmax;
  1069. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1070. sumlx += w*x[i]*l;
  1071. suml2 += w*l*l;
  1072. }
  1073. float scale = sumlx/suml2;
  1074. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  1075. float best = scale * sumlx;
  1076. for (int is = -9; is <= 9; ++is) {
  1077. if (is == 0) {
  1078. continue;
  1079. }
  1080. iscale = -(nmax + 0.1f*is) / max;
  1081. sumlx = suml2 = 0;
  1082. for (int i = 0; i < n; ++i) {
  1083. int l = nearest_int(iscale * x[i]);
  1084. l = MAX(-nmax, MIN(nmax-1, l));
  1085. float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i]));
  1086. sumlx += w*x[i]*l;
  1087. suml2 += w*l*l;
  1088. }
  1089. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  1090. for (int i = 0; i < n; ++i) {
  1091. int l = nearest_int(iscale * x[i]);
  1092. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  1093. }
  1094. scale = sumlx/suml2; best = scale*sumlx;
  1095. }
  1096. }
  1097. return scale;
  1098. }
  1099. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  1100. float max = 0;
  1101. float amax = 0;
  1102. for (int i = 0; i < n; ++i) {
  1103. float ax = fabsf(x[i]);
  1104. if (ax > amax) { amax = ax; max = x[i]; }
  1105. }
  1106. if (!amax) { // all zero
  1107. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1108. return 0.f;
  1109. }
  1110. float iscale = -nmax / max;
  1111. if (do_rmse) {
  1112. float sumlx = 0;
  1113. float suml2 = 0;
  1114. for (int i = 0; i < n; ++i) {
  1115. int l = nearest_int(iscale * x[i]);
  1116. l = MAX(-nmax, MIN(nmax-1, l));
  1117. L[i] = l;
  1118. float w = x[i]*x[i];
  1119. sumlx += w*x[i]*l;
  1120. suml2 += w*l*l;
  1121. }
  1122. for (int itry = 0; itry < 5; ++itry) {
  1123. int n_changed = 0;
  1124. for (int i = 0; i < n; ++i) {
  1125. float w = x[i]*x[i];
  1126. float slx = sumlx - w*x[i]*L[i];
  1127. if (slx > 0) {
  1128. float sl2 = suml2 - w*L[i]*L[i];
  1129. int new_l = nearest_int(x[i] * sl2 / slx);
  1130. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  1131. if (new_l != L[i]) {
  1132. slx += w*x[i]*new_l;
  1133. sl2 += w*new_l*new_l;
  1134. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  1135. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1136. ++n_changed;
  1137. }
  1138. }
  1139. }
  1140. }
  1141. if (!n_changed) {
  1142. break;
  1143. }
  1144. }
  1145. for (int i = 0; i < n; ++i) {
  1146. L[i] += nmax;
  1147. }
  1148. return sumlx / suml2;
  1149. }
  1150. for (int i = 0; i < n; ++i) {
  1151. int l = nearest_int(iscale * x[i]);
  1152. l = MAX(-nmax, MIN(nmax-1, l));
  1153. L[i] = l + nmax;
  1154. }
  1155. return 1/iscale;
  1156. }
  1157. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  1158. int ntry, float alpha) {
  1159. float min = x[0];
  1160. float max = x[0];
  1161. for (int i = 1; i < n; ++i) {
  1162. if (x[i] < min) min = x[i];
  1163. if (x[i] > max) max = x[i];
  1164. }
  1165. if (max == min) {
  1166. for (int i = 0; i < n; ++i) L[i] = 0;
  1167. *the_min = 0;
  1168. return 0.f;
  1169. }
  1170. if (min > 0) min = 0;
  1171. float iscale = nmax/(max - min);
  1172. float scale = 1/iscale;
  1173. for (int itry = 0; itry < ntry; ++itry) {
  1174. float sumlx = 0; int suml2 = 0;
  1175. bool did_change = false;
  1176. for (int i = 0; i < n; ++i) {
  1177. int l = nearest_int(iscale*(x[i] - min));
  1178. l = MAX(0, MIN(nmax, l));
  1179. if (l != L[i]) {
  1180. L[i] = l;
  1181. did_change = true;
  1182. }
  1183. sumlx += (x[i] - min)*l;
  1184. suml2 += l*l;
  1185. }
  1186. scale = sumlx/suml2;
  1187. float sum = 0;
  1188. for (int i = 0; i < n; ++i) {
  1189. sum += x[i] - scale*L[i];
  1190. }
  1191. min = alpha*min + (1 - alpha)*sum/n;
  1192. if (min > 0) min = 0;
  1193. iscale = 1/scale;
  1194. if (!did_change) break;
  1195. }
  1196. *the_min = -min;
  1197. return scale;
  1198. }
  1199. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1200. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1201. float rmin, float rdelta, int nstep, bool use_mad) {
  1202. float min = x[0];
  1203. float max = x[0];
  1204. float sum_w = weights[0];
  1205. float sum_x = sum_w * x[0];
  1206. #ifdef HAVE_BUGGY_APPLE_LINKER
  1207. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1208. for (volatile int i = 1; i < n; ++i) {
  1209. #else
  1210. for (int i = 1; i < n; ++i) {
  1211. #endif
  1212. if (x[i] < min) min = x[i];
  1213. if (x[i] > max) max = x[i];
  1214. float w = weights[i];
  1215. sum_w += w;
  1216. sum_x += w * x[i];
  1217. }
  1218. if (min > 0) min = 0;
  1219. if (max == min) {
  1220. for (int i = 0; i < n; ++i) L[i] = 0;
  1221. *the_min = -min;
  1222. return 0.f;
  1223. }
  1224. float iscale = nmax/(max - min);
  1225. float scale = 1/iscale;
  1226. float best_mad = 0;
  1227. for (int i = 0; i < n; ++i) {
  1228. int l = nearest_int(iscale*(x[i] - min));
  1229. L[i] = MAX(0, MIN(nmax, l));
  1230. float diff = scale * L[i] + min - x[i];
  1231. diff = use_mad ? fabsf(diff) : diff * diff;
  1232. float w = weights[i];
  1233. best_mad += w * diff;
  1234. }
  1235. if (nstep < 1) {
  1236. *the_min = -min;
  1237. return scale;
  1238. }
  1239. for (int is = 0; is <= nstep; ++is) {
  1240. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1241. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1242. for (int i = 0; i < n; ++i) {
  1243. int l = nearest_int(iscale*(x[i] - min));
  1244. l = MAX(0, MIN(nmax, l));
  1245. Laux[i] = l;
  1246. float w = weights[i];
  1247. sum_l += w*l;
  1248. sum_l2 += w*l*l;
  1249. sum_xl += w*l*x[i];
  1250. }
  1251. float D = sum_w * sum_l2 - sum_l * sum_l;
  1252. if (D > 0) {
  1253. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1254. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1255. if (this_min > 0) {
  1256. this_min = 0;
  1257. this_scale = sum_xl / sum_l2;
  1258. }
  1259. float mad = 0;
  1260. for (int i = 0; i < n; ++i) {
  1261. float diff = this_scale * Laux[i] + this_min - x[i];
  1262. diff = use_mad ? fabsf(diff) : diff * diff;
  1263. float w = weights[i];
  1264. mad += w * diff;
  1265. }
  1266. if (mad < best_mad) {
  1267. for (int i = 0; i < n; ++i) {
  1268. L[i] = Laux[i];
  1269. }
  1270. best_mad = mad;
  1271. scale = this_scale;
  1272. min = this_min;
  1273. }
  1274. }
  1275. }
  1276. *the_min = -min;
  1277. return scale;
  1278. }
  1279. #if QK_K == 256
  1280. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  1281. if (j < 4) {
  1282. *d = q[j] & 63; *m = q[j + 4] & 63;
  1283. } else {
  1284. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  1285. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  1286. }
  1287. }
  1288. #endif
  1289. //========================- 2-bit (de)-quantization
  1290. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  1291. assert(k % QK_K == 0);
  1292. const int nb = k / QK_K;
  1293. uint8_t L[QK_K];
  1294. uint8_t Laux[16];
  1295. float weights[16];
  1296. float mins[QK_K/16];
  1297. float scales[QK_K/16];
  1298. const float q4scale = 15.f;
  1299. for (int i = 0; i < nb; i++) {
  1300. float max_scale = 0; // as we are deducting the min, scales are always positive
  1301. float max_min = 0;
  1302. for (int j = 0; j < QK_K/16; ++j) {
  1303. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  1304. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  1305. float scale = scales[j];
  1306. if (scale > max_scale) {
  1307. max_scale = scale;
  1308. }
  1309. float min = mins[j];
  1310. if (min > max_min) {
  1311. max_min = min;
  1312. }
  1313. }
  1314. if (max_scale > 0) {
  1315. float iscale = q4scale/max_scale;
  1316. for (int j = 0; j < QK_K/16; ++j) {
  1317. int l = nearest_int(iscale*scales[j]);
  1318. y[i].scales[j] = l;
  1319. }
  1320. y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale);
  1321. } else {
  1322. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  1323. y[i].d = GGML_FP32_TO_FP16(0.f);
  1324. }
  1325. if (max_min > 0) {
  1326. float iscale = q4scale/max_min;
  1327. for (int j = 0; j < QK_K/16; ++j) {
  1328. int l = nearest_int(iscale*mins[j]);
  1329. y[i].scales[j] |= (l << 4);
  1330. }
  1331. y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale);
  1332. } else {
  1333. y[i].dmin = GGML_FP32_TO_FP16(0.f);
  1334. }
  1335. for (int j = 0; j < QK_K/16; ++j) {
  1336. const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF);
  1337. if (!d) continue;
  1338. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4);
  1339. for (int ii = 0; ii < 16; ++ii) {
  1340. int l = nearest_int((x[16*j + ii] + dm)/d);
  1341. l = MAX(0, MIN(3, l));
  1342. L[16*j + ii] = l;
  1343. }
  1344. }
  1345. #if QK_K == 256
  1346. for (int j = 0; j < QK_K; j += 128) {
  1347. for (int l = 0; l < 32; ++l) {
  1348. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1349. }
  1350. }
  1351. #else
  1352. for (int l = 0; l < 16; ++l) {
  1353. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1354. }
  1355. #endif
  1356. x += QK_K;
  1357. }
  1358. }
  1359. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  1360. assert(k % QK_K == 0);
  1361. const int nb = k / QK_K;
  1362. for (int i = 0; i < nb; i++) {
  1363. const float d = GGML_FP16_TO_FP32(x[i].d);
  1364. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  1365. const uint8_t * q = x[i].qs;
  1366. #if QK_K == 256
  1367. int is = 0;
  1368. float dl, ml;
  1369. for (int n = 0; n < QK_K; n += 128) {
  1370. int shift = 0;
  1371. for (int j = 0; j < 4; ++j) {
  1372. uint8_t sc = x[i].scales[is++];
  1373. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1374. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  1375. sc = x[i].scales[is++];
  1376. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  1377. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  1378. shift += 2;
  1379. }
  1380. q += 32;
  1381. }
  1382. #else
  1383. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  1384. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  1385. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  1386. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  1387. for (int l = 0; l < 16; ++l) {
  1388. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  1389. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  1390. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  1391. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  1392. }
  1393. y += QK_K;
  1394. #endif
  1395. }
  1396. }
  1397. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  1398. quantize_row_q2_K_reference(x, vy, k);
  1399. }
  1400. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1401. (void)hist; // TODO: collect histograms
  1402. for (int j = 0; j < n; j += k) {
  1403. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  1404. quantize_row_q2_K_reference(src + j, y, k);
  1405. }
  1406. return (n/QK_K*sizeof(block_q2_K));
  1407. }
  1408. static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  1409. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  1410. float rmin, float rdelta, int nstep, bool use_mad) {
  1411. float min = x[0];
  1412. float max = x[0];
  1413. float sum_w = weights ? weights[0] : x[0]*x[0];
  1414. float sum_x = sum_w * x[0];
  1415. #ifdef HAVE_BUGGY_APPLE_LINKER
  1416. // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7
  1417. for (volatile int i = 1; i < n; ++i) {
  1418. #else
  1419. for (int i = 1; i < n; ++i) {
  1420. #endif
  1421. if (x[i] < min) min = x[i];
  1422. if (x[i] > max) max = x[i];
  1423. float w = weights ? weights[i] : x[i]*x[i];
  1424. sum_w += w;
  1425. sum_x += w * x[i];
  1426. }
  1427. if (min > 0) {
  1428. min = 0;
  1429. }
  1430. if (max <= min) {
  1431. memset(L, 0, n);
  1432. *the_min = -min;
  1433. return 0.f;
  1434. }
  1435. float iscale = nmax/(max - min);
  1436. float scale = 1/iscale;
  1437. float best_mad = 0;
  1438. for (int i = 0; i < n; ++i) {
  1439. int l = nearest_int(iscale*(x[i] - min));
  1440. L[i] = MAX(0, MIN(nmax, l));
  1441. float diff = scale * L[i] + min - x[i];
  1442. diff = use_mad ? fabsf(diff) : diff*diff;
  1443. float w = weights ? weights[i] : x[i]*x[i];
  1444. best_mad += w * diff;
  1445. }
  1446. if (nstep < 1) {
  1447. *the_min = -min;
  1448. return scale;
  1449. }
  1450. for (int is = 0; is <= nstep; ++is) {
  1451. iscale = (rmin + rdelta*is + nmax)/(max - min);
  1452. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  1453. for (int i = 0; i < n; ++i) {
  1454. int l = nearest_int(iscale*(x[i] - min));
  1455. l = MAX(0, MIN(nmax, l));
  1456. Laux[i] = l;
  1457. float w = weights ? weights[i] : x[i]*x[i];
  1458. sum_l += w*l;
  1459. sum_l2 += w*l*l;
  1460. sum_xl += w*l*x[i];
  1461. }
  1462. float D = sum_w * sum_l2 - sum_l * sum_l;
  1463. if (D > 0) {
  1464. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  1465. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  1466. if (this_min > 0) {
  1467. this_min = 0;
  1468. this_scale = sum_xl / sum_l2;
  1469. }
  1470. float mad = 0;
  1471. for (int i = 0; i < n; ++i) {
  1472. float diff = this_scale * Laux[i] + this_min - x[i];
  1473. diff = use_mad ? fabsf(diff) : diff*diff;
  1474. float w = weights ? weights[i] : x[i]*x[i];
  1475. mad += w * diff;
  1476. }
  1477. if (mad < best_mad) {
  1478. for (int i = 0; i < n; ++i) {
  1479. L[i] = Laux[i];
  1480. }
  1481. best_mad = mad;
  1482. scale = this_scale;
  1483. min = this_min;
  1484. }
  1485. }
  1486. }
  1487. *the_min = -min;
  1488. return scale;
  1489. }
  1490. static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) {
  1491. float max = 0;
  1492. for (int i = 0; i < n; ++i) {
  1493. max = MAX(max, x[i]);
  1494. }
  1495. if (!max) { // all zero
  1496. for (int i = 0; i < n; ++i) { L[i] = 0; }
  1497. return 0.f;
  1498. }
  1499. float iscale = nmax / max;
  1500. for (int i = 0; i < n; ++i) {
  1501. L[i] = nearest_int(iscale * x[i]);
  1502. }
  1503. float scale = 1/iscale;
  1504. float best_mse = 0;
  1505. for (int i = 0; i < n; ++i) {
  1506. float diff = x[i] - scale*L[i];
  1507. float w = quant_weights[i];
  1508. best_mse += w*diff*diff;
  1509. }
  1510. for (int is = -4; is <= 4; ++is) {
  1511. if (is == 0) continue;
  1512. float iscale_is = (0.1f*is + nmax)/max;
  1513. float scale_is = 1/iscale_is;
  1514. float mse = 0;
  1515. for (int i = 0; i < n; ++i) {
  1516. int l = nearest_int(iscale_is*x[i]);
  1517. l = MIN(nmax, l);
  1518. float diff = x[i] - scale_is*l;
  1519. float w = quant_weights[i];
  1520. mse += w*diff*diff;
  1521. }
  1522. if (mse < best_mse) {
  1523. best_mse = mse;
  1524. iscale = iscale_is;
  1525. }
  1526. }
  1527. float sumlx = 0;
  1528. float suml2 = 0;
  1529. for (int i = 0; i < n; ++i) {
  1530. int l = nearest_int(iscale * x[i]);
  1531. l = MIN(nmax, l);
  1532. L[i] = l;
  1533. float w = quant_weights[i];
  1534. sumlx += w*x[i]*l;
  1535. suml2 += w*l*l;
  1536. }
  1537. for (int itry = 0; itry < 5; ++itry) {
  1538. int n_changed = 0;
  1539. for (int i = 0; i < n; ++i) {
  1540. float w = quant_weights[i];
  1541. float slx = sumlx - w*x[i]*L[i];
  1542. float sl2 = suml2 - w*L[i]*L[i];
  1543. if (slx > 0 && sl2 > 0) {
  1544. int new_l = nearest_int(x[i] * sl2 / slx);
  1545. new_l = MIN(nmax, new_l);
  1546. if (new_l != L[i]) {
  1547. slx += w*x[i]*new_l;
  1548. sl2 += w*new_l*new_l;
  1549. if (slx*slx*suml2 > sumlx*sumlx*sl2) {
  1550. L[i] = new_l; sumlx = slx; suml2 = sl2;
  1551. ++n_changed;
  1552. }
  1553. }
  1554. }
  1555. }
  1556. if (!n_changed) {
  1557. break;
  1558. }
  1559. }
  1560. return sumlx / suml2;
  1561. }
  1562. static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) {
  1563. GGML_ASSERT(quant_weights);
  1564. assert(k % QK_K == 0);
  1565. const int nb = k / QK_K;
  1566. const bool requantize = true;
  1567. uint8_t L[QK_K];
  1568. uint8_t Laux[16];
  1569. float mins[QK_K/16];
  1570. float scales[QK_K/16];
  1571. float sw[QK_K/16];
  1572. float weight[QK_K/16];
  1573. uint8_t Ls[QK_K/16], Lm[QK_K/16];
  1574. for (int i = 0; i < nb; i++) {
  1575. memset(sw, 0, QK_K/16*sizeof(float));
  1576. float sumx2 = 0;
  1577. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1578. float sigma2 = sumx2/QK_K;
  1579. for (int j = 0; j < QK_K/16; ++j) {
  1580. const float * restrict qw = quant_weights + QK_K * i + 16*j;
  1581. for (int l = 0; l < QK_K/16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]);
  1582. for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l];
  1583. scales[j] = make_qkx3_quants(QK_K/16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  1584. }
  1585. float dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw);
  1586. float mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw);
  1587. y[i].d = GGML_FP32_TO_FP16(dm);
  1588. y[i].dmin = GGML_FP32_TO_FP16(mm);
  1589. dm = GGML_FP16_TO_FP32(y[i].d);
  1590. mm = GGML_FP16_TO_FP32(y[i].dmin);
  1591. for (int j = 0; j < QK_K/16; ++j) {
  1592. y[i].scales[j] = Ls[j] | (Lm[j] << 4);
  1593. }
  1594. if (requantize) {
  1595. for (int j = 0; j < QK_K/16; ++j) {
  1596. const float d = dm * (y[i].scales[j] & 0xF);
  1597. if (!d) continue;
  1598. const float m = mm * (y[i].scales[j] >> 4);
  1599. for (int ii = 0; ii < 16; ++ii) {
  1600. int l = nearest_int((x[16*j + ii] + m)/d);
  1601. l = MAX(0, MIN(3, l));
  1602. L[16*j + ii] = l;
  1603. }
  1604. }
  1605. }
  1606. #if QK_K == 256
  1607. for (int j = 0; j < QK_K; j += 128) {
  1608. for (int l = 0; l < 32; ++l) {
  1609. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1610. }
  1611. }
  1612. #else
  1613. for (int l = 0; l < 16; ++l) {
  1614. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1615. }
  1616. #endif
  1617. x += QK_K;
  1618. }
  1619. }
  1620. size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1621. (void)hist;
  1622. size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
  1623. if (!quant_weights) {
  1624. quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
  1625. }
  1626. else {
  1627. char * qrow = (char *)dst;
  1628. for (int row = 0; row < nrow; ++row) {
  1629. quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights);
  1630. src += n_per_row;
  1631. qrow += row_size;
  1632. }
  1633. }
  1634. return nrow * row_size;
  1635. }
  1636. //========================= 3-bit (de)-quantization
  1637. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  1638. assert(k % QK_K == 0);
  1639. const int nb = k / QK_K;
  1640. int8_t L[QK_K];
  1641. float scales[QK_K / 16];
  1642. for (int i = 0; i < nb; i++) {
  1643. float max_scale = 0;
  1644. float amax = 0;
  1645. for (int j = 0; j < QK_K/16; ++j) {
  1646. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  1647. float scale = fabsf(scales[j]);
  1648. if (scale > amax) {
  1649. amax = scale; max_scale = scales[j];
  1650. }
  1651. }
  1652. #if QK_K == 256
  1653. memset(y[i].scales, 0, 12);
  1654. if (max_scale) {
  1655. float iscale = -32.f/max_scale;
  1656. for (int j = 0; j < QK_K/16; ++j) {
  1657. int8_t l = nearest_int(iscale*scales[j]);
  1658. l = MAX(-32, MIN(31, l)) + 32;
  1659. if (j < 8) {
  1660. y[i].scales[j] = l & 0xF;
  1661. } else {
  1662. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1663. }
  1664. l >>= 4;
  1665. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1666. }
  1667. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1668. } else {
  1669. y[i].d = GGML_FP32_TO_FP16(0.f);
  1670. }
  1671. int8_t sc;
  1672. for (int j = 0; j < QK_K/16; ++j) {
  1673. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1674. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1675. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1676. if (!d) {
  1677. continue;
  1678. }
  1679. for (int ii = 0; ii < 16; ++ii) {
  1680. int l = nearest_int(x[16*j + ii]/d);
  1681. l = MAX(-4, MIN(3, l));
  1682. L[16*j + ii] = l + 4;
  1683. }
  1684. }
  1685. #else
  1686. if (max_scale) {
  1687. float iscale = -8.f/max_scale;
  1688. for (int j = 0; j < QK_K/16; j+=2) {
  1689. int l1 = nearest_int(iscale*scales[j]);
  1690. l1 = 8 + MAX(-8, MIN(7, l1));
  1691. int l2 = nearest_int(iscale*scales[j+1]);
  1692. l2 = 8 + MAX(-8, MIN(7, l2));
  1693. y[i].scales[j/2] = l1 | (l2 << 4);
  1694. }
  1695. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  1696. } else {
  1697. for (int j = 0; j < QK_K/16; j+=2) {
  1698. y[i].scales[j/2] = 0;
  1699. }
  1700. y[i].d = GGML_FP32_TO_FP16(0.f);
  1701. }
  1702. for (int j = 0; j < QK_K/16; ++j) {
  1703. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  1704. float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8);
  1705. if (!d) {
  1706. continue;
  1707. }
  1708. for (int ii = 0; ii < 16; ++ii) {
  1709. int l = nearest_int(x[16*j + ii]/d);
  1710. l = MAX(-4, MIN(3, l));
  1711. L[16*j + ii] = l + 4;
  1712. }
  1713. }
  1714. #endif
  1715. memset(y[i].hmask, 0, QK_K/8);
  1716. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1717. int m = 0;
  1718. uint8_t hm = 1;
  1719. for (int j = 0; j < QK_K; ++j) {
  1720. if (L[j] > 3) {
  1721. y[i].hmask[m] |= hm;
  1722. L[j] -= 4;
  1723. }
  1724. if (++m == QK_K/8) {
  1725. m = 0; hm <<= 1;
  1726. }
  1727. }
  1728. #if QK_K == 256
  1729. for (int j = 0; j < QK_K; j += 128) {
  1730. for (int l = 0; l < 32; ++l) {
  1731. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1732. }
  1733. }
  1734. #else
  1735. for (int l = 0; l < 16; ++l) {
  1736. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  1737. }
  1738. #endif
  1739. x += QK_K;
  1740. }
  1741. }
  1742. #if QK_K == 256
  1743. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1744. assert(k % QK_K == 0);
  1745. const int nb = k / QK_K;
  1746. const uint32_t kmask1 = 0x03030303;
  1747. const uint32_t kmask2 = 0x0f0f0f0f;
  1748. uint32_t aux[4];
  1749. const int8_t * scales = (const int8_t*)aux;
  1750. for (int i = 0; i < nb; i++) {
  1751. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1752. const uint8_t * restrict q = x[i].qs;
  1753. const uint8_t * restrict hm = x[i].hmask;
  1754. uint8_t m = 1;
  1755. memcpy(aux, x[i].scales, 12);
  1756. uint32_t tmp = aux[2];
  1757. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1758. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1759. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1760. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1761. int is = 0;
  1762. float dl;
  1763. for (int n = 0; n < QK_K; n += 128) {
  1764. int shift = 0;
  1765. for (int j = 0; j < 4; ++j) {
  1766. dl = d_all * (scales[is++] - 32);
  1767. for (int l = 0; l < 16; ++l) {
  1768. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  1769. }
  1770. dl = d_all * (scales[is++] - 32);
  1771. for (int l = 0; l < 16; ++l) {
  1772. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  1773. }
  1774. shift += 2;
  1775. m <<= 1;
  1776. }
  1777. q += 32;
  1778. }
  1779. }
  1780. }
  1781. #else
  1782. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  1783. assert(k % QK_K == 0);
  1784. assert(QK_K == 64);
  1785. const int nb = k / QK_K;
  1786. for (int i = 0; i < nb; i++) {
  1787. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  1788. const uint8_t * restrict q = x[i].qs;
  1789. const uint8_t * restrict hm = x[i].hmask;
  1790. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  1791. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  1792. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  1793. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  1794. for (int l=0; l<8; ++l) {
  1795. uint8_t h = hm[l];
  1796. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  1797. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  1798. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  1799. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  1800. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  1801. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  1802. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  1803. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  1804. }
  1805. y += QK_K;
  1806. }
  1807. }
  1808. #endif
  1809. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  1810. quantize_row_q3_K_reference(x, vy, k);
  1811. }
  1812. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  1813. (void)hist; // TODO: collect histograms
  1814. for (int j = 0; j < n; j += k) {
  1815. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  1816. quantize_row_q3_K_reference(src + j, y, k);
  1817. }
  1818. return (n/QK_K*sizeof(block_q3_K));
  1819. }
  1820. static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
  1821. #if QK_K != 256
  1822. (void)quant_weights;
  1823. quantize_row_q3_K_reference(x, y, n_per_row);
  1824. #else
  1825. assert(n_per_row % QK_K == 0);
  1826. const int nb = n_per_row / QK_K;
  1827. int8_t L[QK_K];
  1828. float scales[QK_K / 16];
  1829. float weight[16];
  1830. float sw[QK_K / 16];
  1831. int8_t Ls[QK_K / 16];
  1832. for (int i = 0; i < nb; i++) {
  1833. float sumx2 = 0;
  1834. for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j];
  1835. float sigma2 = 2*sumx2/QK_K;
  1836. for (int j = 0; j < QK_K/16; ++j) {
  1837. if (quant_weights) {
  1838. const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL;
  1839. for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]);
  1840. } else {
  1841. for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l];
  1842. }
  1843. float sumw = 0;
  1844. for (int l = 0; l < 16; ++l) sumw += weight[l];
  1845. sw[j] = sumw;
  1846. scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight);
  1847. }
  1848. memset(y[i].scales, 0, 12);
  1849. float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw);
  1850. for (int j = 0; j < QK_K/16; ++j) {
  1851. int l = Ls[j];
  1852. if (j < 8) {
  1853. y[i].scales[j] = l & 0xF;
  1854. } else {
  1855. y[i].scales[j-8] |= ((l & 0xF) << 4);
  1856. }
  1857. l >>= 4;
  1858. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  1859. }
  1860. y[i].d = GGML_FP32_TO_FP16(d_block);
  1861. int8_t sc;
  1862. for (int j = 0; j < QK_K/16; ++j) {
  1863. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  1864. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  1865. float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1866. if (!d) {
  1867. continue;
  1868. }
  1869. for (int ii = 0; ii < 16; ++ii) {
  1870. int l = nearest_int(x[16*j + ii]/d);
  1871. l = MAX(-4, MIN(3, l));
  1872. L[16*j + ii] = l + 4;
  1873. }
  1874. }
  1875. memset(y[i].hmask, 0, QK_K/8);
  1876. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  1877. int m = 0;
  1878. uint8_t hm = 1;
  1879. for (int j = 0; j < QK_K; ++j) {
  1880. if (L[j] > 3) {
  1881. y[i].hmask[m] |= hm;
  1882. L[j] -= 4;
  1883. }
  1884. if (++m == QK_K/8) {
  1885. m = 0; hm <<= 1;
  1886. }
  1887. }
  1888. for (int j = 0; j < QK_K; j += 128) {
  1889. for (int l = 0; l < 32; ++l) {
  1890. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  1891. }
  1892. }
  1893. x += QK_K;
  1894. }
  1895. #endif
  1896. }
  1897. size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  1898. (void)hist;
  1899. size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
  1900. if (!quant_weights) {
  1901. quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
  1902. }
  1903. else {
  1904. char * qrow = (char *)dst;
  1905. for (int row = 0; row < nrow; ++row) {
  1906. quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights);
  1907. src += n_per_row;
  1908. qrow += row_size;
  1909. }
  1910. }
  1911. return nrow * row_size;
  1912. }
  1913. // ====================== 4-bit (de)-quantization
  1914. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  1915. assert(k % QK_K == 0);
  1916. const int nb = k / QK_K;
  1917. uint8_t L[QK_K];
  1918. uint8_t Laux[32];
  1919. float weights[32];
  1920. float mins[QK_K/32];
  1921. float scales[QK_K/32];
  1922. for (int i = 0; i < nb; i++) {
  1923. float max_scale = 0; // as we are deducting the min, scales are always positive
  1924. float max_min = 0;
  1925. for (int j = 0; j < QK_K/32; ++j) {
  1926. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  1927. float sum_x2 = 0;
  1928. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  1929. float av_x = sqrtf(sum_x2/32);
  1930. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  1931. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  1932. float scale = scales[j];
  1933. if (scale > max_scale) {
  1934. max_scale = scale;
  1935. }
  1936. float min = mins[j];
  1937. if (min > max_min) {
  1938. max_min = min;
  1939. }
  1940. }
  1941. #if QK_K == 256
  1942. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  1943. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  1944. for (int j = 0; j < QK_K/32; ++j) {
  1945. uint8_t ls = nearest_int(inv_scale*scales[j]);
  1946. uint8_t lm = nearest_int(inv_min*mins[j]);
  1947. ls = MIN(63, ls);
  1948. lm = MIN(63, lm);
  1949. if (j < 4) {
  1950. y[i].scales[j] = ls;
  1951. y[i].scales[j+4] = lm;
  1952. } else {
  1953. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  1954. y[i].scales[j-4] |= ((ls >> 4) << 6);
  1955. y[i].scales[j-0] |= ((lm >> 4) << 6);
  1956. }
  1957. }
  1958. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  1959. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  1960. uint8_t sc, m;
  1961. for (int j = 0; j < QK_K/32; ++j) {
  1962. get_scale_min_k4(j, y[i].scales, &sc, &m);
  1963. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  1964. if (!d) continue;
  1965. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  1966. for (int ii = 0; ii < 32; ++ii) {
  1967. int l = nearest_int((x[32*j + ii] + dm)/d);
  1968. l = MAX(0, MIN(15, l));
  1969. L[32*j + ii] = l;
  1970. }
  1971. }
  1972. #else
  1973. const float s_factor = 15.f;
  1974. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  1975. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  1976. int d1 = nearest_int(inv_scale*scales[0]);
  1977. int m1 = nearest_int(inv_min*mins[0]);
  1978. int d2 = nearest_int(inv_scale*scales[1]);
  1979. int m2 = nearest_int(inv_min*mins[1]);
  1980. y[i].scales[0] = d1 | (m1 << 4);
  1981. y[i].scales[1] = d2 | (m2 << 4);
  1982. y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor);
  1983. y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor);
  1984. float sumlx = 0;
  1985. int suml2 = 0;
  1986. for (int j = 0; j < QK_K/32; ++j) {
  1987. const uint8_t sd = y[i].scales[j] & 0xF;
  1988. const uint8_t sm = y[i].scales[j] >> 4;
  1989. const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd;
  1990. if (!d) continue;
  1991. const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm;
  1992. for (int ii = 0; ii < 32; ++ii) {
  1993. int l = nearest_int((x[32*j + ii] + m)/d);
  1994. l = MAX(0, MIN(15, l));
  1995. L[32*j + ii] = l;
  1996. sumlx += (x[32*j + ii] + m)*l*sd;
  1997. suml2 += l*l*sd*sd;
  1998. }
  1999. }
  2000. if (suml2) {
  2001. y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2);
  2002. }
  2003. #endif
  2004. uint8_t * q = y[i].qs;
  2005. for (int j = 0; j < QK_K; j += 64) {
  2006. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2007. q += 32;
  2008. }
  2009. x += QK_K;
  2010. }
  2011. }
  2012. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  2013. assert(k % QK_K == 0);
  2014. const int nb = k / QK_K;
  2015. for (int i = 0; i < nb; i++) {
  2016. const uint8_t * q = x[i].qs;
  2017. #if QK_K == 256
  2018. const float d = GGML_FP16_TO_FP32(x[i].d);
  2019. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2020. int is = 0;
  2021. uint8_t sc, m;
  2022. for (int j = 0; j < QK_K; j += 64) {
  2023. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2024. const float d1 = d * sc; const float m1 = min * m;
  2025. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2026. const float d2 = d * sc; const float m2 = min * m;
  2027. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  2028. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  2029. q += 32; is += 2;
  2030. }
  2031. #else
  2032. const float dall = GGML_FP16_TO_FP32(x[i].d[0]);
  2033. const float mall = GGML_FP16_TO_FP32(x[i].d[1]);
  2034. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  2035. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  2036. for (int l = 0; l < 32; ++l) {
  2037. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  2038. y[l+32] = d2 * (q[l] >> 4) - m2;
  2039. }
  2040. y += QK_K;
  2041. #endif
  2042. }
  2043. }
  2044. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  2045. assert(k % QK_K == 0);
  2046. block_q4_K * restrict y = vy;
  2047. quantize_row_q4_K_reference(x, y, k);
  2048. }
  2049. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2050. assert(k % QK_K == 0);
  2051. (void)hist; // TODO: collect histograms
  2052. for (int j = 0; j < n; j += k) {
  2053. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  2054. quantize_row_q4_K_reference(src + j, y, k);
  2055. }
  2056. return (n/QK_K*sizeof(block_q4_K));
  2057. }
  2058. static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
  2059. #if QK_K != 256
  2060. (void)quant_weights;
  2061. quantize_row_q4_K_reference(x, y, n_per_row);
  2062. #else
  2063. assert(n_per_row % QK_K == 0);
  2064. const int nb = n_per_row / QK_K;
  2065. uint8_t L[QK_K];
  2066. uint8_t Laux[32];
  2067. uint8_t Ls[QK_K/32];
  2068. uint8_t Lm[QK_K/32];
  2069. float weights[32];
  2070. float sw[QK_K/32];
  2071. float mins[QK_K/32];
  2072. float scales[QK_K/32];
  2073. for (int i = 0; i < nb; i++) {
  2074. float sum_x2 = 0;
  2075. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2076. float sigma2 = 2*sum_x2/QK_K;
  2077. float av_x = sqrtf(sigma2);
  2078. for (int j = 0; j < QK_K/32; ++j) {
  2079. if (quant_weights) {
  2080. const float * qw = quant_weights + QK_K*i + 32*j;
  2081. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2082. } else {
  2083. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2084. }
  2085. float sumw = 0;
  2086. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2087. sw[j] = sumw;
  2088. scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2089. }
  2090. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2091. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2092. for (int j = 0; j < QK_K/32; ++j) {
  2093. uint8_t ls = Ls[j];
  2094. uint8_t lm = Lm[j];
  2095. if (j < 4) {
  2096. y[i].scales[j] = ls;
  2097. y[i].scales[j+4] = lm;
  2098. } else {
  2099. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2100. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2101. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2102. }
  2103. }
  2104. y[i].d = GGML_FP32_TO_FP16(d_block);
  2105. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2106. uint8_t sc, m;
  2107. for (int j = 0; j < QK_K/32; ++j) {
  2108. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2109. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2110. if (!d) continue;
  2111. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2112. for (int ii = 0; ii < 32; ++ii) {
  2113. int l = nearest_int((x[32*j + ii] + dm)/d);
  2114. l = MAX(0, MIN(15, l));
  2115. L[32*j + ii] = l;
  2116. }
  2117. }
  2118. uint8_t * q = y[i].qs;
  2119. for (int j = 0; j < QK_K; j += 64) {
  2120. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  2121. q += 32;
  2122. }
  2123. x += QK_K;
  2124. }
  2125. #endif
  2126. }
  2127. size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2128. (void)hist;
  2129. size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
  2130. if (!quant_weights) {
  2131. quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
  2132. }
  2133. else {
  2134. char * qrow = (char *)dst;
  2135. for (int row = 0; row < nrow; ++row) {
  2136. quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights);
  2137. src += n_per_row;
  2138. qrow += row_size;
  2139. }
  2140. }
  2141. return nrow * row_size;
  2142. }
  2143. // ====================== 5-bit (de)-quantization
  2144. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  2145. assert(k % QK_K == 0);
  2146. const int nb = k / QK_K;
  2147. #if QK_K == 256
  2148. uint8_t L[QK_K];
  2149. float mins[QK_K/32];
  2150. float scales[QK_K/32];
  2151. float weights[32];
  2152. uint8_t Laux[32];
  2153. #else
  2154. int8_t L[QK_K];
  2155. float scales[QK_K/16];
  2156. #endif
  2157. for (int i = 0; i < nb; i++) {
  2158. #if QK_K == 256
  2159. float max_scale = 0; // as we are deducting the min, scales are always positive
  2160. float max_min = 0;
  2161. for (int j = 0; j < QK_K/32; ++j) {
  2162. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  2163. float sum_x2 = 0;
  2164. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  2165. float av_x = sqrtf(sum_x2/32);
  2166. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2167. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  2168. float scale = scales[j];
  2169. if (scale > max_scale) {
  2170. max_scale = scale;
  2171. }
  2172. float min = mins[j];
  2173. if (min > max_min) {
  2174. max_min = min;
  2175. }
  2176. }
  2177. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  2178. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  2179. for (int j = 0; j < QK_K/32; ++j) {
  2180. uint8_t ls = nearest_int(inv_scale*scales[j]);
  2181. uint8_t lm = nearest_int(inv_min*mins[j]);
  2182. ls = MIN(63, ls);
  2183. lm = MIN(63, lm);
  2184. if (j < 4) {
  2185. y[i].scales[j] = ls;
  2186. y[i].scales[j+4] = lm;
  2187. } else {
  2188. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2189. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2190. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2191. }
  2192. }
  2193. y[i].d = GGML_FP32_TO_FP16(max_scale/63.f);
  2194. y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f);
  2195. uint8_t sc, m;
  2196. for (int j = 0; j < QK_K/32; ++j) {
  2197. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2198. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2199. if (!d) continue;
  2200. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2201. for (int ii = 0; ii < 32; ++ii) {
  2202. int l = nearest_int((x[32*j + ii] + dm)/d);
  2203. l = MAX(0, MIN(31, l));
  2204. L[32*j + ii] = l;
  2205. }
  2206. }
  2207. uint8_t * restrict qh = y[i].qh;
  2208. uint8_t * restrict ql = y[i].qs;
  2209. memset(qh, 0, QK_K/8);
  2210. uint8_t m1 = 1, m2 = 2;
  2211. for (int n = 0; n < QK_K; n += 64) {
  2212. for (int j = 0; j < 32; ++j) {
  2213. int l1 = L[n + j];
  2214. if (l1 > 15) {
  2215. l1 -= 16; qh[j] |= m1;
  2216. }
  2217. int l2 = L[n + j + 32];
  2218. if (l2 > 15) {
  2219. l2 -= 16; qh[j] |= m2;
  2220. }
  2221. ql[j] = l1 | (l2 << 4);
  2222. }
  2223. m1 <<= 2; m2 <<= 2;
  2224. ql += 32;
  2225. }
  2226. #else
  2227. float max_scale = 0, amax = 0;
  2228. for (int j = 0; j < QK_K/16; ++j) {
  2229. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL);
  2230. float abs_scale = fabsf(scales[j]);
  2231. if (abs_scale > amax) {
  2232. amax = abs_scale;
  2233. max_scale = scales[j];
  2234. }
  2235. }
  2236. float iscale = -128.f/max_scale;
  2237. for (int j = 0; j < QK_K/16; ++j) {
  2238. int l = nearest_int(iscale*scales[j]);
  2239. y[i].scales[j] = MAX(-128, MIN(127, l));
  2240. }
  2241. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2242. for (int j = 0; j < QK_K/16; ++j) {
  2243. const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2244. if (!d) continue;
  2245. for (int ii = 0; ii < 16; ++ii) {
  2246. int l = nearest_int(x[16*j + ii]/d);
  2247. l = MAX(-16, MIN(15, l));
  2248. L[16*j + ii] = l + 16;
  2249. }
  2250. }
  2251. uint8_t * restrict qh = y[i].qh;
  2252. uint8_t * restrict ql = y[i].qs;
  2253. memset(qh, 0, QK_K/8);
  2254. for (int j = 0; j < 32; ++j) {
  2255. int jm = j%8;
  2256. int is = j/8;
  2257. int l1 = L[j];
  2258. if (l1 > 15) {
  2259. l1 -= 16; qh[jm] |= (1 << is);
  2260. }
  2261. int l2 = L[j + 32];
  2262. if (l2 > 15) {
  2263. l2 -= 16; qh[jm] |= (1 << (4 + is));
  2264. }
  2265. ql[j] = l1 | (l2 << 4);
  2266. }
  2267. #endif
  2268. x += QK_K;
  2269. }
  2270. }
  2271. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  2272. assert(k % QK_K == 0);
  2273. const int nb = k / QK_K;
  2274. for (int i = 0; i < nb; i++) {
  2275. const uint8_t * ql = x[i].qs;
  2276. const uint8_t * qh = x[i].qh;
  2277. #if QK_K == 256
  2278. const float d = GGML_FP16_TO_FP32(x[i].d);
  2279. const float min = GGML_FP16_TO_FP32(x[i].dmin);
  2280. int is = 0;
  2281. uint8_t sc, m;
  2282. uint8_t u1 = 1, u2 = 2;
  2283. for (int j = 0; j < QK_K; j += 64) {
  2284. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  2285. const float d1 = d * sc; const float m1 = min * m;
  2286. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  2287. const float d2 = d * sc; const float m2 = min * m;
  2288. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  2289. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  2290. ql += 32; is += 2;
  2291. u1 <<= 2; u2 <<= 2;
  2292. }
  2293. #else
  2294. float d = GGML_FP16_TO_FP32(x[i].d);
  2295. const int8_t * restrict s = x[i].scales;
  2296. for (int l = 0; l < 8; ++l) {
  2297. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  2298. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  2299. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  2300. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  2301. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  2302. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  2303. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  2304. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  2305. }
  2306. y += QK_K;
  2307. #endif
  2308. }
  2309. }
  2310. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  2311. assert(k % QK_K == 0);
  2312. block_q5_K * restrict y = vy;
  2313. quantize_row_q5_K_reference(x, y, k);
  2314. }
  2315. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  2316. assert(k % QK_K == 0);
  2317. (void)hist; // TODO: collect histograms
  2318. for (int j = 0; j < n; j += k) {
  2319. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  2320. quantize_row_q5_K_reference(src + j, y, k);
  2321. }
  2322. return (n/QK_K*sizeof(block_q5_K));
  2323. }
  2324. static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
  2325. #if QK_K != 256
  2326. (void)quant_weights;
  2327. quantize_row_q5_K_reference(x, y, n_per_row);
  2328. #else
  2329. assert(n_per_row % QK_K == 0);
  2330. const int nb = n_per_row / QK_K;
  2331. uint8_t L[QK_K];
  2332. uint8_t Laux[32];
  2333. uint8_t Ls[QK_K/32];
  2334. uint8_t Lm[QK_K/32];
  2335. float mins[QK_K/32];
  2336. float scales[QK_K/32];
  2337. float sw[QK_K/32];
  2338. float weights[32];
  2339. for (int i = 0; i < nb; i++) {
  2340. float sum_x2 = 0;
  2341. for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l];
  2342. float sigma2 = 2*sum_x2/QK_K;
  2343. float av_x = sqrtf(sigma2);
  2344. for (int j = 0; j < QK_K/32; ++j) {
  2345. if (quant_weights) {
  2346. const float * qw = quant_weights + QK_K*i + 32*j;
  2347. for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]);
  2348. } else {
  2349. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  2350. }
  2351. float sumw = 0;
  2352. for (int l = 0; l < 32; ++l) sumw += weights[l];
  2353. sw[j] = sumw;
  2354. scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false);
  2355. }
  2356. float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw);
  2357. float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw);
  2358. for (int j = 0; j < QK_K/32; ++j) {
  2359. uint8_t ls = Ls[j];
  2360. uint8_t lm = Lm[j];
  2361. ls = MIN(63, ls);
  2362. lm = MIN(63, lm);
  2363. if (j < 4) {
  2364. y[i].scales[j] = ls;
  2365. y[i].scales[j+4] = lm;
  2366. } else {
  2367. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  2368. y[i].scales[j-4] |= ((ls >> 4) << 6);
  2369. y[i].scales[j-0] |= ((lm >> 4) << 6);
  2370. }
  2371. }
  2372. y[i].d = GGML_FP32_TO_FP16(d_block);
  2373. y[i].dmin = GGML_FP32_TO_FP16(m_block);
  2374. uint8_t sc, m;
  2375. for (int j = 0; j < QK_K/32; ++j) {
  2376. get_scale_min_k4(j, y[i].scales, &sc, &m);
  2377. const float d = GGML_FP16_TO_FP32(y[i].d) * sc;
  2378. if (!d) continue;
  2379. const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m;
  2380. for (int ii = 0; ii < 32; ++ii) {
  2381. int l = nearest_int((x[32*j + ii] + dm)/d);
  2382. l = MAX(0, MIN(31, l));
  2383. L[32*j + ii] = l;
  2384. }
  2385. }
  2386. uint8_t * restrict qh = y[i].qh;
  2387. uint8_t * restrict ql = y[i].qs;
  2388. memset(qh, 0, QK_K/8);
  2389. uint8_t m1 = 1, m2 = 2;
  2390. for (int n = 0; n < QK_K; n += 64) {
  2391. for (int j = 0; j < 32; ++j) {
  2392. int l1 = L[n + j];
  2393. if (l1 > 15) {
  2394. l1 -= 16; qh[j] |= m1;
  2395. }
  2396. int l2 = L[n + j + 32];
  2397. if (l2 > 15) {
  2398. l2 -= 16; qh[j] |= m2;
  2399. }
  2400. ql[j] = l1 | (l2 << 4);
  2401. }
  2402. m1 <<= 2; m2 <<= 2;
  2403. ql += 32;
  2404. }
  2405. x += QK_K;
  2406. }
  2407. #endif
  2408. }
  2409. size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2410. (void)hist;
  2411. size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
  2412. if (!quant_weights) {
  2413. quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
  2414. }
  2415. else {
  2416. char * qrow = (char *)dst;
  2417. for (int row = 0; row < nrow; ++row) {
  2418. quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights);
  2419. src += n_per_row;
  2420. qrow += row_size;
  2421. }
  2422. }
  2423. return nrow * row_size;
  2424. }
  2425. // ====================== 6-bit (de)-quantization
  2426. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  2427. assert(k % QK_K == 0);
  2428. const int nb = k / QK_K;
  2429. int8_t L[QK_K];
  2430. float scales[QK_K/16];
  2431. for (int i = 0; i < nb; i++) {
  2432. float max_scale = 0;
  2433. float max_abs_scale = 0;
  2434. for (int ib = 0; ib < QK_K/16; ++ib) {
  2435. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2436. scales[ib] = scale;
  2437. const float abs_scale = fabsf(scale);
  2438. if (abs_scale > max_abs_scale) {
  2439. max_abs_scale = abs_scale;
  2440. max_scale = scale;
  2441. }
  2442. }
  2443. if (!max_abs_scale) {
  2444. memset(&y[i], 0, sizeof(block_q6_K));
  2445. y[i].d = GGML_FP32_TO_FP16(0.f);
  2446. x += QK_K;
  2447. continue;
  2448. }
  2449. float iscale = -128.f/max_scale;
  2450. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2451. for (int ib = 0; ib < QK_K/16; ++ib) {
  2452. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2453. }
  2454. for (int j = 0; j < QK_K/16; ++j) {
  2455. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2456. if (!d) {
  2457. continue;
  2458. }
  2459. for (int ii = 0; ii < 16; ++ii) {
  2460. int l = nearest_int(x[16*j + ii]/d);
  2461. l = MAX(-32, MIN(31, l));
  2462. L[16*j + ii] = l + 32;
  2463. }
  2464. }
  2465. uint8_t * restrict ql = y[i].ql;
  2466. uint8_t * restrict qh = y[i].qh;
  2467. #if QK_K == 256
  2468. for (int j = 0; j < QK_K; j += 128) {
  2469. for (int l = 0; l < 32; ++l) {
  2470. const uint8_t q1 = L[j + l + 0] & 0xF;
  2471. const uint8_t q2 = L[j + l + 32] & 0xF;
  2472. const uint8_t q3 = L[j + l + 64] & 0xF;
  2473. const uint8_t q4 = L[j + l + 96] & 0xF;
  2474. ql[l+ 0] = q1 | (q3 << 4);
  2475. ql[l+32] = q2 | (q4 << 4);
  2476. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2477. }
  2478. ql += 64;
  2479. qh += 32;
  2480. }
  2481. #else
  2482. for (int l = 0; l < 32; ++l) {
  2483. const uint8_t q1 = L[l + 0] & 0xF;
  2484. const uint8_t q2 = L[l + 32] & 0xF;
  2485. ql[l] = q1 | (q2 << 4);
  2486. }
  2487. for (int l = 0; l < 16; ++l) {
  2488. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  2489. }
  2490. #endif
  2491. x += QK_K;
  2492. }
  2493. }
  2494. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  2495. assert(k % QK_K == 0);
  2496. const int nb = k / QK_K;
  2497. for (int i = 0; i < nb; i++) {
  2498. const float d = GGML_FP16_TO_FP32(x[i].d);
  2499. const uint8_t * restrict ql = x[i].ql;
  2500. const uint8_t * restrict qh = x[i].qh;
  2501. const int8_t * restrict sc = x[i].scales;
  2502. #if QK_K == 256
  2503. for (int n = 0; n < QK_K; n += 128) {
  2504. for (int l = 0; l < 32; ++l) {
  2505. int is = l/16;
  2506. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2507. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2508. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2509. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2510. y[l + 0] = d * sc[is + 0] * q1;
  2511. y[l + 32] = d * sc[is + 2] * q2;
  2512. y[l + 64] = d * sc[is + 4] * q3;
  2513. y[l + 96] = d * sc[is + 6] * q4;
  2514. }
  2515. y += 128;
  2516. ql += 64;
  2517. qh += 32;
  2518. sc += 8;
  2519. }
  2520. #else
  2521. for (int l = 0; l < 16; ++l) {
  2522. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  2523. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  2524. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  2525. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  2526. y[l+ 0] = d * sc[0] * q1;
  2527. y[l+16] = d * sc[1] * q2;
  2528. y[l+32] = d * sc[2] * q3;
  2529. y[l+48] = d * sc[3] * q4;
  2530. }
  2531. y += 64;
  2532. #endif
  2533. }
  2534. }
  2535. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  2536. assert(k % QK_K == 0);
  2537. block_q6_K * restrict y = vy;
  2538. quantize_row_q6_K_reference(x, y, k);
  2539. }
  2540. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  2541. assert(k % QK_K == 0);
  2542. (void)hist; // TODO: collect histograms
  2543. for (int j = 0; j < n; j += k) {
  2544. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  2545. quantize_row_q6_K_reference(src + j, y, k);
  2546. }
  2547. return (n/QK_K*sizeof(block_q6_K));
  2548. }
  2549. static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
  2550. #if QK_K != 256
  2551. (void)quant_weights;
  2552. quantize_row_q6_K_reference(x, y, n_per_row);
  2553. #else
  2554. assert(n_per_row % QK_K == 0);
  2555. const int nb = n_per_row / QK_K;
  2556. int8_t L[QK_K];
  2557. float scales[QK_K/16];
  2558. //float weights[16];
  2559. for (int i = 0; i < nb; i++) {
  2560. //float sum_x2 = 0;
  2561. //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j];
  2562. //float sigma2 = sum_x2/QK_K;
  2563. float max_scale = 0;
  2564. float max_abs_scale = 0;
  2565. for (int ib = 0; ib < QK_K/16; ++ib) {
  2566. float scale;
  2567. if (quant_weights) {
  2568. const float * qw = quant_weights + QK_K*i + 16*ib;
  2569. //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]);
  2570. //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights);
  2571. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw);
  2572. } else {
  2573. scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL);
  2574. }
  2575. scales[ib] = scale;
  2576. const float abs_scale = fabsf(scale);
  2577. if (abs_scale > max_abs_scale) {
  2578. max_abs_scale = abs_scale;
  2579. max_scale = scale;
  2580. }
  2581. }
  2582. if (!max_abs_scale) {
  2583. memset(&y[i], 0, sizeof(block_q6_K));
  2584. y[i].d = GGML_FP32_TO_FP16(0.f);
  2585. x += QK_K;
  2586. continue;
  2587. }
  2588. float iscale = -128.f/max_scale;
  2589. y[i].d = GGML_FP32_TO_FP16(1/iscale);
  2590. for (int ib = 0; ib < QK_K/16; ++ib) {
  2591. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  2592. }
  2593. for (int j = 0; j < QK_K/16; ++j) {
  2594. float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j];
  2595. if (!d) {
  2596. continue;
  2597. }
  2598. for (int ii = 0; ii < 16; ++ii) {
  2599. int l = nearest_int(x[16*j + ii]/d);
  2600. l = MAX(-32, MIN(31, l));
  2601. L[16*j + ii] = l + 32;
  2602. }
  2603. }
  2604. uint8_t * restrict ql = y[i].ql;
  2605. uint8_t * restrict qh = y[i].qh;
  2606. for (int j = 0; j < QK_K; j += 128) {
  2607. for (int l = 0; l < 32; ++l) {
  2608. const uint8_t q1 = L[j + l + 0] & 0xF;
  2609. const uint8_t q2 = L[j + l + 32] & 0xF;
  2610. const uint8_t q3 = L[j + l + 64] & 0xF;
  2611. const uint8_t q4 = L[j + l + 96] & 0xF;
  2612. ql[l+ 0] = q1 | (q3 << 4);
  2613. ql[l+32] = q2 | (q4 << 4);
  2614. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  2615. }
  2616. ql += 64;
  2617. qh += 32;
  2618. }
  2619. x += QK_K;
  2620. }
  2621. #endif
  2622. }
  2623. size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2624. (void)hist;
  2625. size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
  2626. if (!quant_weights) {
  2627. quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
  2628. }
  2629. else {
  2630. char * qrow = (char *)dst;
  2631. for (int row = 0; row < nrow; ++row) {
  2632. quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights);
  2633. src += n_per_row;
  2634. qrow += row_size;
  2635. }
  2636. }
  2637. return nrow * row_size;
  2638. }
  2639. static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int n_per_row, const float * quant_weights) {
  2640. static_assert(QK4_0 == 32, "QK4_0 must be 32");
  2641. if (!quant_weights) {
  2642. quantize_row_q4_0_reference(x, y, n_per_row);
  2643. return;
  2644. }
  2645. float weight[QK4_0];
  2646. int8_t L[QK4_0];
  2647. float sum_x2 = 0;
  2648. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2649. float sigma2 = sum_x2/n_per_row;
  2650. const int nb = n_per_row/QK4_0;
  2651. for (int ib = 0; ib < nb; ++ib) {
  2652. const float * xb = x + QK4_0 * ib;
  2653. const float * qw = quant_weights + QK4_0 * ib;
  2654. for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2655. float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight);
  2656. y[ib].d = GGML_FP32_TO_FP16(d);
  2657. for (int j = 0; j < 16; ++j) {
  2658. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2659. }
  2660. }
  2661. }
  2662. size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2663. if (!quant_weights) {
  2664. return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2665. }
  2666. size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
  2667. char * qrow = (char *)dst;
  2668. for (int row = 0; row < nrow; ++row) {
  2669. quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights);
  2670. src += n_per_row;
  2671. qrow += row_size;
  2672. }
  2673. return nrow * row_size;
  2674. }
  2675. static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int n_per_row, const float * quant_weights) {
  2676. static_assert(QK4_1 == 32, "QK4_1 must be 32");
  2677. if (!quant_weights) {
  2678. quantize_row_q4_1_reference(x, y, n_per_row);
  2679. return;
  2680. }
  2681. float weight[QK4_1];
  2682. uint8_t L[QK4_1], Laux[QK4_1];
  2683. float sum_x2 = 0;
  2684. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2685. float sigma2 = sum_x2/n_per_row;
  2686. const int nb = n_per_row/QK4_1;
  2687. for (int ib = 0; ib < nb; ++ib) {
  2688. const float * xb = x + QK4_1 * ib;
  2689. const float * qw = quant_weights + QK4_1 * ib;
  2690. for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2691. float min;
  2692. float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2693. y[ib].d = GGML_FP32_TO_FP16(d);
  2694. y[ib].m = GGML_FP32_TO_FP16(-min);
  2695. for (int j = 0; j < 16; ++j) {
  2696. y[ib].qs[j] = L[j] | (L[j+16] << 4);
  2697. }
  2698. }
  2699. }
  2700. size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2701. if (!quant_weights) {
  2702. return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2703. }
  2704. size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
  2705. char * qrow = (char *)dst;
  2706. for (int row = 0; row < nrow; ++row) {
  2707. quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights);
  2708. src += n_per_row;
  2709. qrow += row_size;
  2710. }
  2711. return nrow * row_size;
  2712. }
  2713. static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int n_per_row, const float * quant_weights) {
  2714. static_assert(QK5_0 == 32, "QK5_0 must be 32");
  2715. if (!quant_weights) {
  2716. quantize_row_q5_0_reference(x, y, n_per_row);
  2717. return;
  2718. }
  2719. float weight[QK5_0];
  2720. int8_t L[QK5_0];
  2721. float sum_x2 = 0;
  2722. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2723. float sigma2 = sum_x2/n_per_row;
  2724. const int nb = n_per_row/QK5_0;
  2725. for (int ib = 0; ib < nb; ++ib) {
  2726. const float * xb = x + QK5_0 * ib;
  2727. const float * qw = quant_weights + QK5_0 * ib;
  2728. for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2729. float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight);
  2730. y[ib].d = GGML_FP32_TO_FP16(d);
  2731. uint32_t qh = 0;
  2732. for (int j = 0; j < 16; ++j) {
  2733. const uint8_t xi0 = L[j];
  2734. const uint8_t xi1 = L[j+16];
  2735. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2736. // get the 5-th bit and store it in qh at the right position
  2737. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2738. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2739. }
  2740. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2741. }
  2742. }
  2743. size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2744. if (!quant_weights) {
  2745. return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
  2746. }
  2747. size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
  2748. char * qrow = (char *)dst;
  2749. for (int row = 0; row < nrow; ++row) {
  2750. quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights);
  2751. src += n_per_row;
  2752. qrow += row_size;
  2753. }
  2754. return nrow * row_size;
  2755. }
  2756. static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int n_per_row, const float * quant_weights) {
  2757. static_assert(QK5_1 == 32, "QK5_1 must be 32");
  2758. if (!quant_weights) {
  2759. quantize_row_q5_1_reference(x, y, n_per_row);
  2760. return;
  2761. }
  2762. float weight[QK5_1];
  2763. uint8_t L[QK5_1], Laux[QK5_1];
  2764. float sum_x2 = 0;
  2765. for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j];
  2766. float sigma2 = sum_x2/n_per_row;
  2767. const int nb = n_per_row/QK5_1;
  2768. for (int ib = 0; ib < nb; ++ib) {
  2769. const float * xb = x + QK5_1 * ib;
  2770. const float * qw = quant_weights + QK5_1 * ib;
  2771. for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  2772. float min;
  2773. float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false);
  2774. y[ib].d = GGML_FP32_TO_FP16(d);
  2775. y[ib].m = GGML_FP32_TO_FP16(-min);
  2776. uint32_t qh = 0;
  2777. for (int j = 0; j < 16; ++j) {
  2778. const uint8_t xi0 = L[j];
  2779. const uint8_t xi1 = L[j+16];
  2780. y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  2781. // get the 5-th bit and store it in qh at the right position
  2782. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  2783. qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
  2784. }
  2785. memcpy(&y[ib].qh, &qh, sizeof(qh));
  2786. }
  2787. }
  2788. size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  2789. if (!quant_weights) {
  2790. return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
  2791. }
  2792. size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
  2793. char * qrow = (char *)dst;
  2794. for (int row = 0; row < nrow; ++row) {
  2795. quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights);
  2796. src += n_per_row;
  2797. qrow += row_size;
  2798. }
  2799. return nrow * row_size;
  2800. }
  2801. // ====================== "True" 2-bit (de)-quantization
  2802. static const uint64_t iq2xxs_grid[256] = {
  2803. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2804. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
  2805. 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
  2806. 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
  2807. 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
  2808. 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
  2809. 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
  2810. 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
  2811. 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
  2812. 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
  2813. 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
  2814. 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
  2815. 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
  2816. 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
  2817. 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
  2818. 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
  2819. 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
  2820. 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
  2821. 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
  2822. 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
  2823. 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
  2824. 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
  2825. 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
  2826. 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
  2827. 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
  2828. 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
  2829. 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
  2830. 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
  2831. 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
  2832. 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
  2833. 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
  2834. 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
  2835. 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
  2836. 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
  2837. 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
  2838. 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
  2839. 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
  2840. 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
  2841. 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
  2842. 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
  2843. 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
  2844. 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
  2845. 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
  2846. 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
  2847. 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
  2848. 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
  2849. 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
  2850. 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
  2851. 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
  2852. 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
  2853. 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
  2854. 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
  2855. 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
  2856. 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
  2857. 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
  2858. 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
  2859. 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
  2860. 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
  2861. 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
  2862. 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
  2863. 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
  2864. 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
  2865. 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
  2866. 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
  2867. };
  2868. static const uint64_t iq2xs_grid[512] = {
  2869. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2870. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b,
  2871. 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919,
  2872. 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b,
  2873. 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919,
  2874. 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808,
  2875. 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819,
  2876. 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819,
  2877. 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808,
  2878. 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b,
  2879. 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b,
  2880. 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908,
  2881. 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908,
  2882. 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919,
  2883. 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808,
  2884. 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919,
  2885. 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908,
  2886. 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b,
  2887. 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908,
  2888. 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08,
  2889. 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808,
  2890. 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808,
  2891. 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819,
  2892. 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908,
  2893. 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819,
  2894. 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808,
  2895. 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b,
  2896. 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819,
  2897. 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819,
  2898. 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808,
  2899. 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908,
  2900. 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19,
  2901. 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b,
  2902. 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b,
  2903. 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919,
  2904. 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808,
  2905. 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819,
  2906. 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819,
  2907. 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b,
  2908. 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908,
  2909. 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808,
  2910. 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819,
  2911. 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808,
  2912. 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919,
  2913. 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808,
  2914. 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808,
  2915. 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908,
  2916. 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908,
  2917. 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808,
  2918. 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b,
  2919. 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819,
  2920. 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919,
  2921. 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908,
  2922. 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808,
  2923. 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908,
  2924. 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919,
  2925. 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08,
  2926. 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19,
  2927. 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b,
  2928. 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b,
  2929. 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808,
  2930. 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08,
  2931. 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b,
  2932. 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908,
  2933. 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b,
  2934. 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908,
  2935. 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08,
  2936. 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808,
  2937. 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808,
  2938. 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08,
  2939. 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819,
  2940. 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919,
  2941. 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808,
  2942. 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808,
  2943. 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819,
  2944. 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819,
  2945. 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908,
  2946. 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908,
  2947. 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b,
  2948. 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908,
  2949. 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908,
  2950. 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908,
  2951. 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808,
  2952. 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819,
  2953. 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819,
  2954. 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819,
  2955. 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808,
  2956. 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b,
  2957. 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819,
  2958. 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819,
  2959. 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08,
  2960. 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808,
  2961. 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19,
  2962. 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919,
  2963. 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808,
  2964. 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19,
  2965. 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b,
  2966. 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808,
  2967. 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b,
  2968. 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b,
  2969. 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08,
  2970. 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b,
  2971. 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808,
  2972. 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819,
  2973. 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808,
  2974. 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808,
  2975. 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08,
  2976. 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b,
  2977. 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19,
  2978. 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08,
  2979. 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919,
  2980. 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08,
  2981. 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08,
  2982. 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908,
  2983. 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908,
  2984. 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b,
  2985. 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908,
  2986. 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808,
  2987. 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b,
  2988. 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808,
  2989. 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808,
  2990. 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19,
  2991. 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08,
  2992. 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808,
  2993. 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b,
  2994. 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808,
  2995. 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b,
  2996. 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
  2997. };
  2998. static const uint32_t iq3xxs_grid[256] = {
  2999. 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
  3000. 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
  3001. 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
  3002. 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
  3003. 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
  3004. 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
  3005. 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
  3006. 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
  3007. 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
  3008. 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
  3009. 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
  3010. 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
  3011. 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
  3012. 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
  3013. 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
  3014. 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
  3015. 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
  3016. 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
  3017. 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
  3018. 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
  3019. 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
  3020. 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
  3021. 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
  3022. 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
  3023. 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
  3024. 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
  3025. 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
  3026. 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
  3027. 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
  3028. 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
  3029. 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
  3030. 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
  3031. };
  3032. static const uint32_t iq3xs_grid[512] = {
  3033. 0x04040404, 0x0404040c, 0x04040414, 0x0404042c, 0x0404043e, 0x04040c04, 0x04040c0c, 0x04040c14,
  3034. 0x04040c24, 0x04040c34, 0x04041404, 0x0404140c, 0x0404142c, 0x04041c1c, 0x04042404, 0x04042414,
  3035. 0x0404242c, 0x0404243e, 0x04042c0c, 0x04042c1c, 0x04043404, 0x04043414, 0x04043e0c, 0x04043e24,
  3036. 0x04043e3e, 0x040c0404, 0x040c040c, 0x040c0414, 0x040c0424, 0x040c0c04, 0x040c0c0c, 0x040c0c2c,
  3037. 0x040c1404, 0x040c141c, 0x040c143e, 0x040c1c0c, 0x040c1c2c, 0x040c2424, 0x040c340c, 0x040c342c,
  3038. 0x040c3e14, 0x04140404, 0x0414040c, 0x0414042c, 0x0414043e, 0x04140c04, 0x04140c1c, 0x04140c34,
  3039. 0x0414140c, 0x0414142c, 0x04141c04, 0x04141c24, 0x04142414, 0x0414242c, 0x0414243e, 0x04142c0c,
  3040. 0x04142c1c, 0x04143e04, 0x04143e1c, 0x041c041c, 0x041c0c0c, 0x041c0c2c, 0x041c1404, 0x041c1414,
  3041. 0x041c1c0c, 0x041c1c1c, 0x041c1c34, 0x041c2424, 0x041c2c04, 0x041c2c14, 0x041c343e, 0x041c3e0c,
  3042. 0x041c3e2c, 0x04240404, 0x04240c1c, 0x04240c3e, 0x0424140c, 0x04241424, 0x04241c14, 0x04242404,
  3043. 0x0424241c, 0x04242c0c, 0x04243e04, 0x042c0414, 0x042c0424, 0x042c1404, 0x042c1414, 0x042c1434,
  3044. 0x042c1c1c, 0x042c240c, 0x042c242c, 0x042c243e, 0x042c3434, 0x042c3e1c, 0x04340434, 0x04340c0c,
  3045. 0x04340c1c, 0x04341c0c, 0x04342c14, 0x04343e0c, 0x043e0404, 0x043e0414, 0x043e0424, 0x043e1404,
  3046. 0x043e1414, 0x043e1434, 0x043e1c1c, 0x043e2c04, 0x043e2c24, 0x0c040404, 0x0c04040c, 0x0c040414,
  3047. 0x0c040424, 0x0c040c04, 0x0c040c0c, 0x0c040c1c, 0x0c040c2c, 0x0c040c3e, 0x0c041404, 0x0c041414,
  3048. 0x0c041c0c, 0x0c041c24, 0x0c041c34, 0x0c042c24, 0x0c042c34, 0x0c04340c, 0x0c043e14, 0x0c0c0404,
  3049. 0x0c0c040c, 0x0c0c041c, 0x0c0c0434, 0x0c0c0c04, 0x0c0c0c24, 0x0c0c140c, 0x0c0c1c04, 0x0c0c1c1c,
  3050. 0x0c0c240c, 0x0c0c2c04, 0x0c0c2c14, 0x0c0c3e04, 0x0c0c3e34, 0x0c140404, 0x0c140c14, 0x0c140c2c,
  3051. 0x0c140c3e, 0x0c141404, 0x0c141424, 0x0c141c14, 0x0c142404, 0x0c14241c, 0x0c142c2c, 0x0c143404,
  3052. 0x0c143e14, 0x0c1c040c, 0x0c1c0424, 0x0c1c043e, 0x0c1c0c04, 0x0c1c0c1c, 0x0c1c140c, 0x0c1c143e,
  3053. 0x0c1c1c04, 0x0c1c1c24, 0x0c1c240c, 0x0c1c3414, 0x0c1c3e04, 0x0c24041c, 0x0c24042c, 0x0c240c14,
  3054. 0x0c240c24, 0x0c241c0c, 0x0c241c1c, 0x0c242414, 0x0c242434, 0x0c242c04, 0x0c242c24, 0x0c2c040c,
  3055. 0x0c2c0c04, 0x0c2c0c1c, 0x0c2c140c, 0x0c2c1c04, 0x0c2c1c14, 0x0c2c2c0c, 0x0c341404, 0x0c341424,
  3056. 0x0c34143e, 0x0c342424, 0x0c342434, 0x0c3e040c, 0x0c3e041c, 0x0c3e0c04, 0x0c3e0c14, 0x0c3e140c,
  3057. 0x0c3e1c2c, 0x0c3e240c, 0x0c3e3414, 0x0c3e3e04, 0x14040404, 0x1404040c, 0x1404041c, 0x1404042c,
  3058. 0x1404043e, 0x14040c04, 0x14040c14, 0x14040c24, 0x14040c34, 0x1404140c, 0x1404141c, 0x1404143e,
  3059. 0x14041c04, 0x14041c14, 0x1404240c, 0x1404241c, 0x1404242c, 0x14042c04, 0x14042c14, 0x1404343e,
  3060. 0x14043e04, 0x14043e1c, 0x14043e2c, 0x140c0404, 0x140c0414, 0x140c0c04, 0x140c0c1c, 0x140c0c3e,
  3061. 0x140c1414, 0x140c142c, 0x140c1c0c, 0x140c1c24, 0x140c2414, 0x140c2c0c, 0x1414040c, 0x14140424,
  3062. 0x1414043e, 0x1414140c, 0x1414141c, 0x14141c04, 0x14141c3e, 0x1414240c, 0x14142c1c, 0x14142c3e,
  3063. 0x14143e0c, 0x14143e24, 0x141c0404, 0x141c0414, 0x141c042c, 0x141c0c0c, 0x141c1414, 0x141c1424,
  3064. 0x141c1c0c, 0x141c1c1c, 0x141c2414, 0x141c2c04, 0x141c3434, 0x1424040c, 0x1424043e, 0x14241404,
  3065. 0x1424141c, 0x14241c14, 0x14241c2c, 0x1424240c, 0x14243e14, 0x14243e2c, 0x142c0424, 0x142c0c0c,
  3066. 0x142c1414, 0x142c1c3e, 0x142c2404, 0x142c2c1c, 0x142c3e04, 0x14340404, 0x14340414, 0x1434043e,
  3067. 0x1434140c, 0x14342c2c, 0x1434340c, 0x143e042c, 0x143e0c0c, 0x143e1434, 0x143e1c04, 0x143e241c,
  3068. 0x143e2c04, 0x1c040414, 0x1c040c0c, 0x1c040c1c, 0x1c040c2c, 0x1c040c3e, 0x1c041414, 0x1c041c0c,
  3069. 0x1c041c1c, 0x1c041c2c, 0x1c042414, 0x1c042424, 0x1c04243e, 0x1c042c0c, 0x1c04341c, 0x1c043e0c,
  3070. 0x1c0c040c, 0x1c0c041c, 0x1c0c042c, 0x1c0c0c24, 0x1c0c140c, 0x1c0c141c, 0x1c0c2404, 0x1c0c3404,
  3071. 0x1c0c3e14, 0x1c0c3e34, 0x1c140404, 0x1c140c14, 0x1c141404, 0x1c141c14, 0x1c141c24, 0x1c142c04,
  3072. 0x1c1c040c, 0x1c1c0c04, 0x1c1c0c24, 0x1c1c140c, 0x1c1c141c, 0x1c1c143e, 0x1c1c1c04, 0x1c1c240c,
  3073. 0x1c1c241c, 0x1c1c243e, 0x1c1c2c2c, 0x1c1c3e1c, 0x1c24041c, 0x1c240c0c, 0x1c240c34, 0x1c241414,
  3074. 0x1c241c0c, 0x1c242c14, 0x1c243404, 0x1c243424, 0x1c2c040c, 0x1c2c0c04, 0x1c2c0c14, 0x1c2c142c,
  3075. 0x1c2c1c14, 0x1c2c2424, 0x1c2c2c34, 0x1c2c3e1c, 0x1c340c34, 0x1c34240c, 0x1c3e040c, 0x1c3e041c,
  3076. 0x1c3e1404, 0x1c3e1414, 0x1c3e1c2c, 0x24040404, 0x24040424, 0x24040c14, 0x24041404, 0x24041424,
  3077. 0x2404143e, 0x24041c14, 0x2404240c, 0x24042c04, 0x24043e04, 0x240c0414, 0x240c043e, 0x240c0c0c,
  3078. 0x240c0c1c, 0x240c1414, 0x240c1c04, 0x240c1c2c, 0x240c241c, 0x240c2c0c, 0x240c2c2c, 0x2414040c,
  3079. 0x2414041c, 0x24140c04, 0x24140c2c, 0x2414140c, 0x24141c1c, 0x24142404, 0x24142c3e, 0x24143414,
  3080. 0x24143e04, 0x241c0424, 0x241c0c0c, 0x241c0c1c, 0x241c1404, 0x241c1414, 0x241c1c0c, 0x241c1c2c,
  3081. 0x24240404, 0x24240414, 0x24241424, 0x24241c3e, 0x24242404, 0x24243e0c, 0x242c042c, 0x242c043e,
  3082. 0x242c140c, 0x242c3414, 0x24340c1c, 0x24341c24, 0x24343404, 0x243e0c04, 0x243e0c2c, 0x243e1c04,
  3083. 0x243e241c, 0x243e2c0c, 0x2c040414, 0x2c040c04, 0x2c040c24, 0x2c041414, 0x2c042404, 0x2c042424,
  3084. 0x2c04243e, 0x2c042c14, 0x2c043434, 0x2c043e24, 0x2c0c040c, 0x2c0c041c, 0x2c0c042c, 0x2c0c0c14,
  3085. 0x2c0c140c, 0x2c0c1c14, 0x2c0c3e14, 0x2c140404, 0x2c140c0c, 0x2c14141c, 0x2c141c04, 0x2c141c34,
  3086. 0x2c142c1c, 0x2c1c0414, 0x2c1c043e, 0x2c1c0c04, 0x2c1c143e, 0x2c1c2424, 0x2c1c2c0c, 0x2c1c342c,
  3087. 0x2c1c3e1c, 0x2c24040c, 0x2c240424, 0x2c241404, 0x2c241c14, 0x2c242434, 0x2c2c0c14, 0x2c2c1434,
  3088. 0x2c2c2c0c, 0x2c2c2c1c, 0x2c342414, 0x2c3e0414, 0x2c3e0424, 0x2c3e1414, 0x34040c0c, 0x34040c1c,
  3089. 0x34040c2c, 0x34041c0c, 0x34041c1c, 0x34043404, 0x340c0404, 0x340c1404, 0x340c143e, 0x340c3424,
  3090. 0x34140c14, 0x34141c24, 0x34142414, 0x34142c2c, 0x34143414, 0x34143e04, 0x341c0404, 0x341c0c24,
  3091. 0x341c140c, 0x341c2404, 0x3424142c, 0x3424241c, 0x34243414, 0x342c0404, 0x342c041c, 0x342c1c24,
  3092. 0x342c3404, 0x3434042c, 0x34342404, 0x343e0c0c, 0x343e0c1c, 0x3e040404, 0x3e040424, 0x3e04043e,
  3093. 0x3e041404, 0x3e041414, 0x3e041c34, 0x3e042404, 0x3e042c24, 0x3e043414, 0x3e0c0414, 0x3e0c0c0c,
  3094. 0x3e0c1424, 0x3e0c241c, 0x3e0c242c, 0x3e14040c, 0x3e140424, 0x3e140c04, 0x3e140c34, 0x3e14140c,
  3095. 0x3e141c04, 0x3e142c0c, 0x3e1c0414, 0x3e1c1c14, 0x3e1c1c2c, 0x3e1c2c1c, 0x3e24040c, 0x3e24042c,
  3096. 0x3e240c1c, 0x3e241404, 0x3e242c04, 0x3e2c1414, 0x3e2c2414, 0x3e340414, 0x3e341c0c, 0x3e3e0404,
  3097. };
  3098. #define NGRID_IQ2XXS 512
  3099. static const uint64_t iq1s_grid[NGRID_IQ2XXS] = {
  3100. 0xffffffffffff0101, 0xffffffffff01ff00, 0xffffffffff010100, 0xffffffff00000000,
  3101. 0xffffffff01ff00ff, 0xffffffff01ff0001, 0xffffffff0101ffff, 0xffffffff0101ff01,
  3102. 0xffffff00ff000000, 0xffffff000000ff00, 0xffffff00000000ff, 0xffffff0000000100,
  3103. 0xffffff0000010000, 0xffffff0001000000, 0xffffff01ffff00ff, 0xffffff01ff01ff00,
  3104. 0xffffff01ff010100, 0xffffff0100000001, 0xffffff0101ffff00, 0xffffff0101ff0101,
  3105. 0xffffff0101010100, 0xffff00ffff00ff01, 0xffff00ffff0000ff, 0xffff00ff00ff0100,
  3106. 0xffff00ff0100ff00, 0xffff00ff010001ff, 0xffff0000ff0101ff, 0xffff000000ffff00,
  3107. 0xffff000000000000, 0xffff00000001ff01, 0xffff000001000101, 0xffff0000010100ff,
  3108. 0xffff0001ffff0100, 0xffff00010000ff00, 0xffff000100010101, 0xffff000101000000,
  3109. 0xffff01ffffff0000, 0xffff01ffff01ffff, 0xffff01ffff010100, 0xffff01ff00000000,
  3110. 0xffff01ff01ffffff, 0xffff01ff01ff0001, 0xffff01ff0101ffff, 0xffff01ff01010001,
  3111. 0xffff0100ffffff01, 0xffff01000000ffff, 0xffff010000000100, 0xffff010001ff01ff,
  3112. 0xffff010001000000, 0xffff0101ff000000, 0xffff0101000101ff, 0xffff010101ffff01,
  3113. 0xffff01010101ff00, 0xff00ffffff000000, 0xff00ffff00ffff00, 0xff00ffff00000001,
  3114. 0xff00ffff000001ff, 0xff00ffff01010000, 0xff00ff00ffff0000, 0xff00ff00ff00ff00,
  3115. 0xff00ff00ff0000ff, 0xff00ff00ff000100, 0xff00ff00ff010001, 0xff00ff0000ff0001,
  3116. 0xff00ff000000ffff, 0xff00ff0000000000, 0xff00ff000001ff00, 0xff00ff0000010100,
  3117. 0xff00ff0001ff0000, 0xff00ff000100ff00, 0xff00ff0001000100, 0xff00ff01ff000000,
  3118. 0xff00ff0100ff0000, 0xff00ff01000001ff, 0xff00ff0101010001, 0xff0000ff00000000,
  3119. 0xff0000ff0001ff00, 0xff0000ff00010100, 0xff000000ffff0101, 0xff000000ff000000,
  3120. 0xff000000ff01ff00, 0xff00000000ff0000, 0xff0000000000ff00, 0xff000000000000ff,
  3121. 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, 0xff0000000001ffff,
  3122. 0xff00000000010000, 0xff00000001000000, 0xff00000001010100, 0xff000001ff00ff01,
  3123. 0xff000001ff0100ff, 0xff00000100000000, 0xff0000010001ff00, 0xff00000101ff0100,
  3124. 0xff0000010100ff00, 0xff0001ff00ff00ff, 0xff0001ff00000101, 0xff0001ff000100ff,
  3125. 0xff0001ff01000000, 0xff000100ff0001ff, 0xff0001000000ff01, 0xff00010000000000,
  3126. 0xff00010000010001, 0xff00010000010100, 0xff00010001ffff00, 0xff00010001ff0101,
  3127. 0xff00010001010000, 0xff000101ffffffff, 0xff000101ff000101, 0xff00010101ff00ff,
  3128. 0xff00010101000001, 0xff000101010100ff, 0xff01ffffff000101, 0xff01ffffff01ffff,
  3129. 0xff01ffffff01ff01, 0xff01ffffff0101ff, 0xff01ffff00000000, 0xff01ffff01ff0001,
  3130. 0xff01ffff0101ff01, 0xff01ff00ff000000, 0xff01ff0000ff0100, 0xff01ff000000ff01,
  3131. 0xff01ff0000010000, 0xff01ff00010000ff, 0xff01ff01ff01ff00, 0xff01ff0100000101,
  3132. 0xff0100ffffff0000, 0xff0100ffff010000, 0xff0100ff01ff00ff, 0xff0100ff01000100,
  3133. 0xff0100ff010100ff, 0xff010000ffffff01, 0xff01000000000000, 0xff0100000101ff00,
  3134. 0xff010001ffff00ff, 0xff010001ff000100, 0xff01000100ffff00, 0xff01000100010001,
  3135. 0xff01000101ff0001, 0xff010001010001ff, 0xff0101ffffffffff, 0xff0101ffff01ffff,
  3136. 0xff0101ffff010101, 0xff0101ff0000ff00, 0xff0101ff01010001, 0xff010100ff000000,
  3137. 0xff010100ff01ff01, 0xff01010000ff0001, 0xff01010000000100, 0xff01010001000000,
  3138. 0xff0101010100ffff, 0x00ffffff0000ff01, 0x00ffffff000000ff, 0x00ffffff00000100,
  3139. 0x00ffffff00010000, 0x00ffff00ffff0001, 0x00ffff00ff0000ff, 0x00ffff00ff000100,
  3140. 0x00ffff0000000000, 0x00ffff0001000100, 0x00ffff0001010001, 0x00ffff01ff00ff01,
  3141. 0x00ffff0100ff0100, 0x00ffff010000ff00, 0x00ffff01000100ff, 0x00ffff0101ff00ff,
  3142. 0x00ffff010101ff00, 0x00ff00ffffffffff, 0x00ff00ffffff01ff, 0x00ff00ffff000101,
  3143. 0x00ff00ff00000000, 0x00ff00ff000101ff, 0x00ff00ff01010101, 0x00ff0000ff000000,
  3144. 0x00ff0000ff01ffff, 0x00ff000000ff0000, 0x00ff00000000ff00, 0x00ff0000000000ff,
  3145. 0x00ff000000000000, 0x00ff000000000001, 0x00ff000000000100, 0x00ff000000010000,
  3146. 0x00ff000001ffff01, 0x00ff000001000000, 0x00ff0001ff000101, 0x00ff000100ffffff,
  3147. 0x00ff000100000000, 0x00ff0001010001ff, 0x00ff01ffff000000, 0x00ff01ff0001ff00,
  3148. 0x00ff01ff01ff0100, 0x00ff0100ff01ff01, 0x00ff010000ff00ff, 0x00ff010000ff0101,
  3149. 0x00ff010000000000, 0x00ff010000010101, 0x00ff01000100ff00, 0x00ff010001010000,
  3150. 0x00ff0101ffffff00, 0x00ff01010000ff01, 0x00ff010100000100, 0x00ff010101ff0000,
  3151. 0x0000ffffffff0100, 0x0000ffffff00ff00, 0x0000ffffff0000ff, 0x0000ffffff010000,
  3152. 0x0000ffff00000000, 0x0000ffff00010101, 0x0000ffff01ffff01, 0x0000ffff01000100,
  3153. 0x0000ff00ff000000, 0x0000ff00ff01ff00, 0x0000ff00ff0101ff, 0x0000ff0000ff0000,
  3154. 0x0000ff000000ff00, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001,
  3155. 0x0000ff0000000100, 0x0000ff0000010000, 0x0000ff0001ffffff, 0x0000ff0001ff01ff,
  3156. 0x0000ff0001000000, 0x0000ff000101ffff, 0x0000ff01ffff0101, 0x0000ff01ff010000,
  3157. 0x0000ff0100000000, 0x0000ff0101000101, 0x000000ffffff0001, 0x000000ffff000000,
  3158. 0x000000ff00ff0000, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000,
  3159. 0x000000ff00000001, 0x000000ff00000100, 0x000000ff00010000, 0x000000ff01000000,
  3160. 0x000000ff0101ff00, 0x00000000ffff0000, 0x00000000ff00ff00, 0x00000000ff0000ff,
  3161. 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff010000,
  3162. 0x0000000000ffff00, 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001,
  3163. 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01,
  3164. 0x00000000000000ff, 0x0000000000000001, 0x00000000000001ff, 0x0000000000000100,
  3165. 0x0000000000000101, 0x000000000001ff00, 0x00000000000100ff, 0x0000000000010000,
  3166. 0x0000000000010001, 0x0000000000010100, 0x0000000001ff0000, 0x000000000100ff00,
  3167. 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, 0x0000000001000100,
  3168. 0x0000000001010000, 0x00000001ffff01ff, 0x00000001ff000000, 0x0000000100ff0000,
  3169. 0x000000010000ff00, 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001,
  3170. 0x0000000100000100, 0x0000000100010000, 0x0000000101000000, 0x000001ffff00ff00,
  3171. 0x000001ffff010001, 0x000001ffff0101ff, 0x000001ff00ffff01, 0x000001ff0000ffff,
  3172. 0x000001ff00000000, 0x000001ff010000ff, 0x000001ff01010100, 0x00000100ffff0100,
  3173. 0x00000100ff000000, 0x0000010000ff0000, 0x000001000000ff00, 0x00000100000000ff,
  3174. 0x0000010000000000, 0x0000010000000001, 0x0000010000000100, 0x0000010000010000,
  3175. 0x0000010001000000, 0x000001000101ff01, 0x00000101ffff0001, 0x00000101ff01ffff,
  3176. 0x0000010100000000, 0x0000010101010100, 0x0001ffffff000000, 0x0001ffff00ffffff,
  3177. 0x0001ffff00000100, 0x0001ffff0001ff00, 0x0001ffff01000000, 0x0001ff00ffffff00,
  3178. 0x0001ff00ffff01ff, 0x0001ff00ff010000, 0x0001ff0000000000, 0x0001ff0000010001,
  3179. 0x0001ff0001ff0000, 0x0001ff0001010100, 0x0001ff01ff0000ff, 0x0001ff01ff000001,
  3180. 0x0001ff0100ffffff, 0x0001ff010001ffff, 0x0001ff01000101ff, 0x0001ff010100ff01,
  3181. 0x000100ffff00ffff, 0x000100ffff00ff01, 0x000100ffff000100, 0x000100ff00000000,
  3182. 0x000100ff000101ff, 0x000100ff01ff0101, 0x000100ff0100ffff, 0x000100ff01010101,
  3183. 0x00010000ff000000, 0x00010000ff010100, 0x0001000000ff0000, 0x000100000000ff00,
  3184. 0x00010000000000ff, 0x0001000000000000, 0x0001000000000001, 0x0001000000000100,
  3185. 0x0001000000010000, 0x0001000001ffff01, 0x0001000001000000, 0x0001000100ff0101,
  3186. 0x0001000100000000, 0x00010001010100ff, 0x000101ffffff01ff, 0x000101ffffff0101,
  3187. 0x000101ff00010000, 0x000101ff01ff0000, 0x000101ff0100ff01, 0x00010100ffff0000,
  3188. 0x0001010000000000, 0x000101000001ffff, 0x0001010000010101, 0x00010100010001ff,
  3189. 0x00010101ff00ff00, 0x00010101ff010001, 0x0001010100ffffff, 0x0001010100ff01ff,
  3190. 0x00010101000101ff, 0x0001010101ff0000, 0x000101010100ff01, 0x0001010101000101,
  3191. 0x01ffffffffff0101, 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff,
  3192. 0x01ffffffff010101, 0x01ffffff00000000, 0x01ffffff01ff01ff, 0x01ffffff01000101,
  3193. 0x01ffffff0101ff01, 0x01ffffff010100ff, 0x01ffff000000ff00, 0x01ffff0000000001,
  3194. 0x01ffff00000001ff, 0x01ffff0000010000, 0x01ffff0001ff0000, 0x01ffff01ffffffff,
  3195. 0x01ffff01ffff01ff, 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff0101ff,
  3196. 0x01ffff010100ffff, 0x01ff00ffffff0000, 0x01ff00ffff010000, 0x01ff00ff00ffff01,
  3197. 0x01ff0000ff0000ff, 0x01ff000000000000, 0x01ff00000001ff01, 0x01ff000001ffffff,
  3198. 0x01ff000001010100, 0x01ff0001ffffff01, 0x01ff0001ff010001, 0x01ff000101ff0100,
  3199. 0x01ff000101000001, 0x01ff0001010100ff, 0x01ff01ffff00ffff, 0x01ff01ff00010001,
  3200. 0x01ff01ff01000000, 0x01ff01ff010101ff, 0x01ff0100ff000001, 0x01ff010000ffff00,
  3201. 0x01ff010000000100, 0x01ff010001ff01ff, 0x01ff01000101ffff, 0x01ff0101ffff00ff,
  3202. 0x01ff0101ffff0101, 0x01ff0101ff0101ff, 0x01ff010100010000, 0x0100ffff00ff00ff,
  3203. 0x0100ffff00ff0001, 0x0100ffff00000100, 0x0100ffff0100ff00, 0x0100ff00ffff0000,
  3204. 0x0100ff00ff00ffff, 0x0100ff00ff00ff01, 0x0100ff00ff000100, 0x0100ff00ff010000,
  3205. 0x0100ff0000000000, 0x0100ff00000100ff, 0x0100ff0001ff0101, 0x0100ff0001010101,
  3206. 0x0100ff0100ff00ff, 0x0100ff0100ff0001, 0x0100ff0100000100, 0x0100ff0100010001,
  3207. 0x0100ff0101000000, 0x010000ffff00ff00, 0x010000ff0000ffff, 0x010000ff00000000,
  3208. 0x010000ff010001ff, 0x010000ff01010001, 0x01000000ffffff00, 0x01000000ffff0101,
  3209. 0x01000000ff000000, 0x01000000ff0100ff, 0x01000000ff010101, 0x0100000000ff0000,
  3210. 0x010000000000ff00, 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001,
  3211. 0x0100000000000100, 0x0100000000010000, 0x0100000001000000, 0x0100000100000000,
  3212. 0x01000001000101ff, 0x0100000101ffff01, 0x010001ffff000101, 0x010001ff00ff0100,
  3213. 0x010001ff0000ff00, 0x010001ff000100ff, 0x010001ff01ffffff, 0x01000100ffff0000,
  3214. 0x01000100ff0001ff, 0x0100010000000000, 0x010001000001ff00, 0x0100010001ff0000,
  3215. 0x01000100010000ff, 0x0100010001000101, 0x01000101ff00ff01, 0x0100010100ff0100,
  3216. 0x010001010000ffff, 0x0100010101010001, 0x0101ffffffff0101, 0x0101ffffff0001ff,
  3217. 0x0101ffffff01ffff, 0x0101ffffff010101, 0x0101ffff00000000, 0x0101ffff0101ffff,
  3218. 0x0101ffff010101ff, 0x0101ff00ff000000, 0x0101ff0000ff0100, 0x0101ff000000ff00,
  3219. 0x0101ff0000010000, 0x0101ff00010000ff, 0x0101ff0001000001, 0x0101ff01ff010101,
  3220. 0x0101ff0100000000, 0x0101ff010101ff00, 0x010100ffffff0000, 0x010100ffff010000,
  3221. 0x010100ff00ff01ff, 0x010100ff000000ff, 0x010100ff00000101, 0x010100ff01ffff00,
  3222. 0x01010000ffffff01, 0x01010000ff000100, 0x01010000ff01ff01, 0x0101000000000000,
  3223. 0x01010000000100ff, 0x010100000101ff01, 0x01010001ffff0000, 0x01010001ff00ffff,
  3224. 0x01010001ff010000, 0x0101000101ffffff, 0x0101000101ff01ff, 0x0101000101010101,
  3225. 0x010101ffff01ffff, 0x010101ff00000000, 0x010101ff0001ff01, 0x010101ff0101ffff,
  3226. 0x010101ff010101ff, 0x01010100ffffffff, 0x01010100ff000001, 0x010101000000ff00,
  3227. 0x0101010001010000, 0x0101010100ff0001, 0x010101010001ff01, 0x010101010101ffff,
  3228. };
  3229. static const uint8_t ksigns_iq2xs[128] = {
  3230. 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
  3231. 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
  3232. 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
  3233. 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
  3234. 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
  3235. 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
  3236. 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
  3237. 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
  3238. };
  3239. static const uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
  3240. void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
  3241. assert(k % QK_K == 0);
  3242. const int nb = k / QK_K;
  3243. uint32_t aux32[2];
  3244. const uint8_t * aux8 = (const uint8_t *)aux32;
  3245. for (int i = 0; i < nb; i++) {
  3246. const float d = GGML_FP16_TO_FP32(x[i].d);
  3247. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3248. memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t));
  3249. const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f;
  3250. for (int l = 0; l < 4; ++l) {
  3251. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  3252. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  3253. for (int j = 0; j < 8; ++j) {
  3254. y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3255. }
  3256. y += 8;
  3257. }
  3258. }
  3259. }
  3260. }
  3261. // ====================== 2.3125 bpw (de)-quantization
  3262. void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int k) {
  3263. assert(k % QK_K == 0);
  3264. const int nb = k / QK_K;
  3265. float db[2];
  3266. for (int i = 0; i < nb; i++) {
  3267. const float d = GGML_FP16_TO_FP32(x[i].d);
  3268. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3269. db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f;
  3270. db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f;
  3271. for (int l = 0; l < 4; ++l) {
  3272. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511));
  3273. const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9];
  3274. for (int j = 0; j < 8; ++j) {
  3275. y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3276. }
  3277. y += 8;
  3278. }
  3279. }
  3280. }
  3281. }
  3282. // ====================== 3.0625 bpw (de)-quantization
  3283. void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
  3284. assert(k % QK_K == 0);
  3285. const int nb = k / QK_K;
  3286. uint32_t aux32;
  3287. for (int i = 0; i < nb; i++) {
  3288. const float d = GGML_FP16_TO_FP32(x[i].d);
  3289. const uint8_t * qs = x[i].qs;
  3290. const uint8_t * scales_and_signs = qs + QK_K/4;
  3291. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  3292. memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
  3293. const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
  3294. for (int l = 0; l < 4; ++l) {
  3295. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  3296. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
  3297. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
  3298. for (int j = 0; j < 4; ++j) {
  3299. y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3300. y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3301. }
  3302. y += 8;
  3303. }
  3304. qs += 8;
  3305. }
  3306. }
  3307. }
  3308. // ====================== 3.3125 bpw (de)-quantization
  3309. void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int k) {
  3310. assert(k % QK_K == 0);
  3311. const int nb = k / QK_K;
  3312. for (int i = 0; i < nb; i++) {
  3313. const float d = GGML_FP16_TO_FP32(x[i].d);
  3314. const uint8_t * qs = x[i].qs;
  3315. const uint8_t * qh = x[i].qh;
  3316. const uint8_t * signs = x[i].signs;
  3317. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  3318. const float db1 = d * (0.5f + (x[i].scales[ib32/2] & 0xf)) * 0.5f;
  3319. const float db2 = d * (0.5f + (x[i].scales[ib32/2] >> 4)) * 0.5f;
  3320. for (int l = 0; l < 4; ++l) {
  3321. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256)));
  3322. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256)));
  3323. for (int j = 0; j < 4; ++j) {
  3324. y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3325. y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3326. }
  3327. y += 8;
  3328. }
  3329. qs += 8;
  3330. signs += 4;
  3331. for (int l = 0; l < 4; ++l) {
  3332. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256)));
  3333. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256)));
  3334. for (int j = 0; j < 4; ++j) {
  3335. y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f);
  3336. y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f);
  3337. }
  3338. y += 8;
  3339. }
  3340. qh += 2;
  3341. qs += 8;
  3342. signs += 4;
  3343. }
  3344. }
  3345. }
  3346. // ====================== 1.5625 bpw (de)-quantization
  3347. void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int k) {
  3348. assert(k % QK_K == 0);
  3349. const int nb = k / QK_K;
  3350. float db[4];
  3351. uint16_t idx[4];
  3352. //const int8_t * grid[4];
  3353. for (int i = 0; i < nb; i++) {
  3354. const float d = GGML_FP16_TO_FP32(x[i].d);
  3355. const uint8_t * sc = x[i].scales;
  3356. const uint8_t * qs = x[i].qs;
  3357. for (int i8 = 0; i8 < QK_K/8; i8 += 4) {
  3358. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  3359. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  3360. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  3361. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  3362. //grid[0] = (const int8_t *)(iq1s_grid + (qs[0] | ((sc[0] & 0x08) << 5)));
  3363. //grid[1] = (const int8_t *)(iq1s_grid + (qs[1] | ((sc[0] & 0x80) << 1)));
  3364. //grid[2] = (const int8_t *)(iq1s_grid + (qs[2] | ((sc[1] & 0x08) << 5)));
  3365. //grid[3] = (const int8_t *)(iq1s_grid + (qs[3] | ((sc[1] & 0x80) << 1)));
  3366. db[0] = d * (2*(sc[0] & 7) + 1);
  3367. db[1] = d * (2*((sc[0] >> 4) & 7) + 1);
  3368. db[2] = d * (2*(sc[1] & 7) + 1);
  3369. db[3] = d * (2*((sc[1] >> 4) & 7) + 1);
  3370. for (int l = 0; l < 4; ++l) {
  3371. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  3372. for (int j = 0; j < 8; ++j) {
  3373. //y[j] = db[l] * grid[l][j];
  3374. y[j] = db[l] * grid[j];
  3375. }
  3376. y += 8;
  3377. }
  3378. qs += 4;
  3379. sc += 2;
  3380. }
  3381. }
  3382. }
  3383. static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  3384. void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int k) {
  3385. assert(k % QK4_NL == 0);
  3386. const int nb = k / QK4_NL;
  3387. for (int i = 0; i < nb; i++) {
  3388. const uint8_t * qs = x[i].qs;
  3389. const float d = GGML_FP16_TO_FP32(x[i].d);
  3390. for (int j = 0; j < QK4_NL/2; ++j) {
  3391. y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf];
  3392. y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4];
  3393. }
  3394. y += QK4_NL;
  3395. qs += QK4_NL/2;
  3396. }
  3397. }
  3398. //===================================== Q8_K ==============================================
  3399. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  3400. assert(k % QK_K == 0);
  3401. const int nb = k / QK_K;
  3402. for (int i = 0; i < nb; i++) {
  3403. float max = 0;
  3404. float amax = 0;
  3405. for (int j = 0; j < QK_K; ++j) {
  3406. float ax = fabsf(x[j]);
  3407. if (ax > amax) {
  3408. amax = ax; max = x[j];
  3409. }
  3410. }
  3411. if (!amax) {
  3412. y[i].d = 0;
  3413. memset(y[i].qs, 0, QK_K);
  3414. x += QK_K;
  3415. continue;
  3416. }
  3417. //const float iscale = -128.f/max;
  3418. // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward
  3419. const float iscale = -127.f/max;
  3420. for (int j = 0; j < QK_K; ++j) {
  3421. int v = nearest_int(iscale*x[j]);
  3422. y[i].qs[j] = MIN(127, v);
  3423. }
  3424. for (int j = 0; j < QK_K/16; ++j) {
  3425. int sum = 0;
  3426. for (int ii = 0; ii < 16; ++ii) {
  3427. sum += y[i].qs[j*16 + ii];
  3428. }
  3429. y[i].bsums[j] = sum;
  3430. }
  3431. y[i].d = 1/iscale;
  3432. x += QK_K;
  3433. }
  3434. }
  3435. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  3436. assert(k % QK_K == 0);
  3437. const int nb = k / QK_K;
  3438. for (int i = 0; i < nb; i++) {
  3439. for (int j = 0; j < QK_K; ++j) {
  3440. *y++ = x[i].d * x[i].qs[j];
  3441. }
  3442. }
  3443. }
  3444. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  3445. quantize_row_q8_K_reference(x, y, k);
  3446. }
  3447. //===================================== Dot ptoducts =================================
  3448. //
  3449. // Helper functions
  3450. //
  3451. #if __AVX__ || __AVX2__ || __AVX512F__
  3452. // shuffles to pick the required scales in dot products
  3453. static inline __m256i get_scale_shuffle_q3k(int i) {
  3454. static const uint8_t k_shuffle[128] = {
  3455. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3456. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3457. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3458. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  3459. };
  3460. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3461. }
  3462. static inline __m256i get_scale_shuffle_k4(int i) {
  3463. static const uint8_t k_shuffle[256] = {
  3464. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  3465. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  3466. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  3467. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  3468. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  3469. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  3470. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  3471. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  3472. };
  3473. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  3474. }
  3475. static inline __m128i get_scale_shuffle(int i) {
  3476. static const uint8_t k_shuffle[128] = {
  3477. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  3478. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  3479. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  3480. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  3481. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  3482. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  3483. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  3484. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  3485. };
  3486. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  3487. }
  3488. #endif
  3489. void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3490. const int qk = QK8_0;
  3491. const int nb = n / qk;
  3492. assert(n % qk == 0);
  3493. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3494. assert((nrc == 2) || (nrc == 1));
  3495. #else
  3496. assert(nrc == 1);
  3497. #endif
  3498. UNUSED(nrc);
  3499. UNUSED(bx);
  3500. UNUSED(by);
  3501. UNUSED(bs);
  3502. const block_q4_0 * restrict x = vx;
  3503. const block_q8_0 * restrict y = vy;
  3504. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3505. if (nrc == 2) {
  3506. const block_q4_0 * restrict vx0 = vx;
  3507. const block_q4_0 * restrict vx1 = vx + bx;
  3508. const block_q8_0 * restrict vy0 = vy;
  3509. const block_q8_0 * restrict vy1 = vy + by;
  3510. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3511. for (int i = 0; i < nb; i++) {
  3512. const block_q4_0 * restrict b_x0 = &vx0[i];
  3513. const block_q4_0 * restrict b_x1 = &vx1[i];
  3514. const block_q8_0 * restrict b_y0 = &vy0[i];
  3515. const block_q8_0 * restrict b_y1 = &vy1[i];
  3516. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3517. const int8x16_t s8b = vdupq_n_s8(0x8);
  3518. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3519. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3520. // 4-bit -> 8-bit
  3521. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3522. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3523. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3524. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3525. // sub 8
  3526. const int8x16_t x0_l = vsubq_s8(v0_0l, s8b);
  3527. const int8x16_t x0_h = vsubq_s8(v0_0h, s8b);
  3528. const int8x16_t x1_l = vsubq_s8(v0_1l, s8b);
  3529. const int8x16_t x1_h = vsubq_s8(v0_1h, s8b);
  3530. // load y
  3531. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3532. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3533. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3534. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3535. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3536. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3537. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3538. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3539. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3540. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3541. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3542. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3543. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3544. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3545. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3546. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3547. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3548. l1, r1)), l2, r2)), l3, r3))), scale);
  3549. }
  3550. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3551. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3552. vst1_f32(s, vget_low_f32(sumv2));
  3553. vst1_f32(s + bs, vget_high_f32(sumv2));
  3554. return;
  3555. }
  3556. #endif
  3557. #if defined(__ARM_NEON)
  3558. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3559. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3560. assert(nb % 2 == 0); // TODO: handle odd nb
  3561. for (int i = 0; i < nb; i += 2) {
  3562. const block_q4_0 * restrict x0 = &x[i + 0];
  3563. const block_q4_0 * restrict x1 = &x[i + 1];
  3564. const block_q8_0 * restrict y0 = &y[i + 0];
  3565. const block_q8_0 * restrict y1 = &y[i + 1];
  3566. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3567. const int8x16_t s8b = vdupq_n_s8(0x8);
  3568. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3569. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3570. // 4-bit -> 8-bit
  3571. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3572. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3573. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3574. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3575. // sub 8
  3576. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  3577. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  3578. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  3579. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  3580. // load y
  3581. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3582. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3583. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3584. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3585. // dot product into int32x4_t
  3586. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  3587. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  3588. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3589. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3590. }
  3591. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3592. #elif defined(__AVX2__)
  3593. // Initialize accumulator with zeros
  3594. __m256 acc = _mm256_setzero_ps();
  3595. // Main loop
  3596. for (int i = 0; i < nb; ++i) {
  3597. /* Compute combined scale for the block */
  3598. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3599. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3600. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  3601. const __m256i off = _mm256_set1_epi8( 8 );
  3602. qx = _mm256_sub_epi8( qx, off );
  3603. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  3604. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  3605. /* Multiply q with scale and accumulate */
  3606. acc = _mm256_fmadd_ps( d, q, acc );
  3607. }
  3608. *s = hsum_float_8(acc);
  3609. #elif defined(__AVX__)
  3610. // Initialize accumulator with zeros
  3611. __m256 acc = _mm256_setzero_ps();
  3612. // Main loop
  3613. for (int i = 0; i < nb; ++i) {
  3614. // Compute combined scale for the block
  3615. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3616. const __m128i lowMask = _mm_set1_epi8(0xF);
  3617. const __m128i off = _mm_set1_epi8(8);
  3618. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  3619. __m128i bx_0 = _mm_and_si128(lowMask, tmp);
  3620. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3621. bx_0 = _mm_sub_epi8(bx_0, off);
  3622. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3623. bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  3624. by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3625. bx_0 = _mm_sub_epi8(bx_0, off);
  3626. const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0);
  3627. // Convert int32_t to float
  3628. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  3629. // Apply the scale, and accumulate
  3630. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  3631. }
  3632. *s = hsum_float_8(acc);
  3633. #elif defined(__SSSE3__)
  3634. // set constants
  3635. const __m128i lowMask = _mm_set1_epi8(0xF);
  3636. const __m128i off = _mm_set1_epi8(8);
  3637. // Initialize accumulator with zeros
  3638. __m128 acc_0 = _mm_setzero_ps();
  3639. __m128 acc_1 = _mm_setzero_ps();
  3640. __m128 acc_2 = _mm_setzero_ps();
  3641. __m128 acc_3 = _mm_setzero_ps();
  3642. // First round without accumulation
  3643. {
  3644. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  3645. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  3646. // Compute combined scale for the block 0 and 1
  3647. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  3648. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  3649. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3650. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  3651. bx_0 = _mm_sub_epi8(bx_0, off);
  3652. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3653. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3654. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  3655. bx_1 = _mm_sub_epi8(bx_1, off);
  3656. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3657. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  3658. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  3659. // Compute combined scale for the block 2 and 3
  3660. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  3661. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  3662. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3663. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  3664. bx_2 = _mm_sub_epi8(bx_2, off);
  3665. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3666. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3667. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  3668. bx_3 = _mm_sub_epi8(bx_3, off);
  3669. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3670. // Convert int32_t to float
  3671. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3672. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3673. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3674. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3675. // Apply the scale
  3676. acc_0 = _mm_mul_ps( d_0_1, p0 );
  3677. acc_1 = _mm_mul_ps( d_0_1, p1 );
  3678. acc_2 = _mm_mul_ps( d_2_3, p2 );
  3679. acc_3 = _mm_mul_ps( d_2_3, p3 );
  3680. }
  3681. assert(nb % 2 == 0); // TODO: handle odd nb
  3682. // Main loop
  3683. for (int i = 2; i < nb; i+=2) {
  3684. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  3685. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  3686. // Compute combined scale for the block 0 and 1
  3687. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  3688. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  3689. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  3690. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  3691. bx_0 = _mm_sub_epi8(bx_0, off);
  3692. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  3693. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  3694. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  3695. bx_1 = _mm_sub_epi8(bx_1, off);
  3696. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  3697. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  3698. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  3699. // Compute combined scale for the block 2 and 3
  3700. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  3701. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  3702. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  3703. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  3704. bx_2 = _mm_sub_epi8(bx_2, off);
  3705. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  3706. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  3707. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  3708. bx_3 = _mm_sub_epi8(bx_3, off);
  3709. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  3710. // Convert int32_t to float
  3711. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  3712. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  3713. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  3714. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  3715. // Apply the scale
  3716. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  3717. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  3718. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  3719. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  3720. // Acummulate
  3721. acc_0 = _mm_add_ps(p0_d, acc_0);
  3722. acc_1 = _mm_add_ps(p1_d, acc_1);
  3723. acc_2 = _mm_add_ps(p2_d, acc_2);
  3724. acc_3 = _mm_add_ps(p3_d, acc_3);
  3725. }
  3726. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  3727. #elif defined(__riscv_v_intrinsic)
  3728. float sumf = 0.0;
  3729. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3730. for (int i = 0; i < nb; i++) {
  3731. // load elements
  3732. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3733. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3734. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3735. // mask and store lower part of x, and then upper part
  3736. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3737. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3738. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3739. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3740. // subtract offset
  3741. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  3742. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  3743. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3744. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3745. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3746. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3747. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3748. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3749. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3750. }
  3751. *s = sumf;
  3752. #else
  3753. // scalar
  3754. float sumf = 0.0;
  3755. for (int i = 0; i < nb; i++) {
  3756. int sumi = 0;
  3757. for (int j = 0; j < qk/2; ++j) {
  3758. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  3759. const int v1 = (x[i].qs[j] >> 4) - 8;
  3760. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3761. }
  3762. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  3763. }
  3764. *s = sumf;
  3765. #endif
  3766. }
  3767. void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3768. const int qk = QK8_1;
  3769. const int nb = n / qk;
  3770. assert(n % qk == 0);
  3771. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3772. assert((nrc == 2) || (nrc == 1));
  3773. #else
  3774. assert(nrc == 1);
  3775. #endif
  3776. UNUSED(nrc);
  3777. UNUSED(bx);
  3778. UNUSED(by);
  3779. UNUSED(bs);
  3780. const block_q4_1 * restrict x = vx;
  3781. const block_q8_1 * restrict y = vy;
  3782. #if defined(__ARM_FEATURE_MATMUL_INT8)
  3783. if (nrc == 2) {
  3784. const block_q4_1 * restrict vx0 = vx;
  3785. const block_q4_1 * restrict vx1 = vx + bx;
  3786. const block_q8_1 * restrict vy0 = vy;
  3787. const block_q8_1 * restrict vy1 = vy + by;
  3788. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3789. float32x4_t summs0 = vdupq_n_f32(0.0f);
  3790. for (int i = 0; i < nb; i++) {
  3791. const block_q4_1 * restrict b_x0 = &vx0[i];
  3792. const block_q4_1 * restrict b_x1 = &vx1[i];
  3793. const block_q8_1 * restrict b_y0 = &vy0[i];
  3794. const block_q8_1 * restrict b_y1 = &vy1[i];
  3795. float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * b_y0->s,
  3796. GGML_FP16_TO_FP32(b_x1->m) * b_y0->s,
  3797. GGML_FP16_TO_FP32(b_x0->m) * b_y1->s,
  3798. GGML_FP16_TO_FP32(b_x1->m) * b_y1->s};
  3799. summs0 += summs_t;
  3800. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3801. const uint8x16_t v0_0 = vld1q_u8(b_x0->qs);
  3802. const uint8x16_t v0_1 = vld1q_u8(b_x1->qs);
  3803. // 4-bit -> 8-bit
  3804. const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3805. const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3806. const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3807. const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3808. // load y
  3809. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  3810. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  3811. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  3812. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  3813. // mmla into int32x4_t
  3814. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  3815. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  3816. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  3817. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  3818. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3819. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  3820. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3821. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  3822. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3823. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  3824. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3825. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  3826. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  3827. l1, r1)), l2, r2)), l3, r3))), scale);
  3828. }
  3829. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  3830. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  3831. sumv2 = sumv2 + summs0;
  3832. vst1_f32(s, vget_low_f32(sumv2));
  3833. vst1_f32(s + bs, vget_high_f32(sumv2));
  3834. return;
  3835. }
  3836. #endif
  3837. // TODO: add WASM SIMD
  3838. #if defined(__ARM_NEON)
  3839. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3840. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3841. float summs = 0;
  3842. assert(nb % 2 == 0); // TODO: handle odd nb
  3843. for (int i = 0; i < nb; i += 2) {
  3844. const block_q4_1 * restrict x0 = &x[i + 0];
  3845. const block_q4_1 * restrict x1 = &x[i + 1];
  3846. const block_q8_1 * restrict y0 = &y[i + 0];
  3847. const block_q8_1 * restrict y1 = &y[i + 1];
  3848. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  3849. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3850. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3851. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3852. // 4-bit -> 8-bit
  3853. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3854. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3855. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3856. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3857. // load y
  3858. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3859. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3860. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3861. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3862. // dot product into int32x4_t
  3863. const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  3864. const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  3865. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  3866. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  3867. }
  3868. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  3869. #elif defined(__AVX2__) || defined(__AVX__)
  3870. // Initialize accumulator with zeros
  3871. __m256 acc = _mm256_setzero_ps();
  3872. float summs = 0;
  3873. // Main loop
  3874. for (int i = 0; i < nb; ++i) {
  3875. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  3876. const float d1 = y[i].d;
  3877. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  3878. const __m256 d0v = _mm256_set1_ps( d0 );
  3879. const __m256 d1v = _mm256_set1_ps( d1 );
  3880. // Compute combined scales
  3881. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  3882. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  3883. const __m256i qx = bytes_from_nibbles_32(x[i].qs);
  3884. const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  3885. const __m256 xy = mul_sum_us8_pairs_float(qx, qy);
  3886. // Accumulate d0*d1*x*y
  3887. #if defined(__AVX2__)
  3888. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  3889. #else
  3890. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  3891. #endif
  3892. }
  3893. *s = hsum_float_8(acc) + summs;
  3894. #elif defined(__riscv_v_intrinsic)
  3895. float sumf = 0.0;
  3896. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  3897. for (int i = 0; i < nb; i++) {
  3898. // load elements
  3899. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  3900. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  3901. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  3902. // mask and store lower part of x, and then upper part
  3903. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  3904. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  3905. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  3906. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  3907. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  3908. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  3909. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  3910. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  3911. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  3912. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  3913. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3914. }
  3915. *s = sumf;
  3916. #else
  3917. // scalar
  3918. float sumf = 0.0;
  3919. for (int i = 0; i < nb; i++) {
  3920. int sumi = 0;
  3921. for (int j = 0; j < qk/2; ++j) {
  3922. const int v0 = (x[i].qs[j] & 0x0F);
  3923. const int v1 = (x[i].qs[j] >> 4);
  3924. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  3925. }
  3926. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  3927. }
  3928. *s = sumf;
  3929. #endif
  3930. }
  3931. void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  3932. const int qk = QK8_0;
  3933. const int nb = n / qk;
  3934. assert(n % qk == 0);
  3935. assert(qk == QK5_0);
  3936. assert(nrc == 1);
  3937. UNUSED(nrc);
  3938. UNUSED(bx);
  3939. UNUSED(by);
  3940. UNUSED(bs);
  3941. const block_q5_0 * restrict x = vx;
  3942. const block_q8_0 * restrict y = vy;
  3943. #if defined(__ARM_NEON)
  3944. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  3945. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  3946. uint32_t qh0;
  3947. uint32_t qh1;
  3948. uint64_t tmp0[4];
  3949. uint64_t tmp1[4];
  3950. assert(nb % 2 == 0); // TODO: handle odd nb
  3951. for (int i = 0; i < nb; i += 2) {
  3952. const block_q5_0 * restrict x0 = &x[i];
  3953. const block_q5_0 * restrict x1 = &x[i + 1];
  3954. const block_q8_0 * restrict y0 = &y[i];
  3955. const block_q8_0 * restrict y1 = &y[i + 1];
  3956. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  3957. // extract the 5th bit via lookup table ((!b) << 4)
  3958. memcpy(&qh0, x0->qh, sizeof(qh0));
  3959. memcpy(&qh1, x1->qh, sizeof(qh1));
  3960. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  3961. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  3962. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  3963. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  3964. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  3965. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  3966. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  3967. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  3968. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  3969. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  3970. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  3971. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  3972. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  3973. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  3974. // 4-bit -> 8-bit
  3975. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  3976. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  3977. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  3978. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  3979. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  3980. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  3981. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  3982. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  3983. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  3984. // load y
  3985. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  3986. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  3987. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  3988. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  3989. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  3990. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  3991. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  3992. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  3993. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  3994. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  3995. }
  3996. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  3997. #elif defined(__wasm_simd128__)
  3998. v128_t sumv = wasm_f32x4_splat(0.0f);
  3999. uint32_t qh;
  4000. uint64_t tmp[4];
  4001. // TODO: check if unrolling this is better
  4002. for (int i = 0; i < nb; ++i) {
  4003. const block_q5_0 * restrict x0 = &x[i];
  4004. const block_q8_0 * restrict y0 = &y[i];
  4005. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4006. // extract the 5th bit
  4007. memcpy(&qh, x0->qh, sizeof(qh));
  4008. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  4009. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  4010. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  4011. tmp[3] = table_b2b_1[(qh >> 24) ];
  4012. const v128_t qhl = wasm_v128_load(tmp + 0);
  4013. const v128_t qhh = wasm_v128_load(tmp + 2);
  4014. const v128_t v0 = wasm_v128_load(x0->qs);
  4015. // 4-bit -> 8-bit
  4016. const v128_t v0l = wasm_v128_and (v0, m4b);
  4017. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4018. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  4019. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  4020. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  4021. // load y
  4022. const v128_t v1l = wasm_v128_load(y0->qs);
  4023. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4024. // int8x16 -> int16x8
  4025. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4026. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4027. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4028. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4029. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4030. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4031. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4032. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4033. // dot product
  4034. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  4035. wasm_i32x4_add(
  4036. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4037. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4038. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4039. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4040. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  4041. }
  4042. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4043. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  4044. #elif defined(__AVX2__)
  4045. // Initialize accumulator with zeros
  4046. __m256 acc = _mm256_setzero_ps();
  4047. // Main loop
  4048. for (int i = 0; i < nb; i++) {
  4049. /* Compute combined scale for the block */
  4050. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4051. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4052. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4053. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  4054. qx = _mm256_or_si256(qx, bxhi);
  4055. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4056. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4057. /* Multiply q with scale and accumulate */
  4058. acc = _mm256_fmadd_ps(d, q, acc);
  4059. }
  4060. *s = hsum_float_8(acc);
  4061. #elif defined(__AVX__)
  4062. // Initialize accumulator with zeros
  4063. __m256 acc = _mm256_setzero_ps();
  4064. __m128i mask = _mm_set1_epi8((char)0xF0);
  4065. // Main loop
  4066. for (int i = 0; i < nb; i++) {
  4067. /* Compute combined scale for the block */
  4068. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4069. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4070. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4071. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4072. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4073. bxhil = _mm_andnot_si128(bxhil, mask);
  4074. bxhih = _mm_andnot_si128(bxhih, mask);
  4075. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4076. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4077. bxl = _mm_or_si128(bxl, bxhil);
  4078. bxh = _mm_or_si128(bxh, bxhih);
  4079. bx_0 = MM256_SET_M128I(bxh, bxl);
  4080. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4081. const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0);
  4082. /* Multiply q with scale and accumulate */
  4083. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  4084. }
  4085. *s = hsum_float_8(acc);
  4086. #elif defined(__riscv_v_intrinsic)
  4087. float sumf = 0.0;
  4088. uint32_t qh;
  4089. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4090. // These temporary registers are for masking and shift operations
  4091. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4092. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  4093. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  4094. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4095. for (int i = 0; i < nb; i++) {
  4096. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4097. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4098. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  4099. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  4100. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4101. // ((qh & (1u << (j + 16))) >> (j + 12));
  4102. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  4103. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  4104. // narrowing
  4105. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  4106. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4107. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  4108. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4109. // load
  4110. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4111. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4112. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4113. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4114. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4115. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4116. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4117. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4118. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4119. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  4120. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  4121. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4122. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4123. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4124. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4125. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4126. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4127. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4128. }
  4129. *s = sumf;
  4130. #else
  4131. // scalar
  4132. float sumf = 0.0;
  4133. for (int i = 0; i < nb; i++) {
  4134. uint32_t qh;
  4135. memcpy(&qh, x[i].qh, sizeof(qh));
  4136. int sumi = 0;
  4137. for (int j = 0; j < qk/2; ++j) {
  4138. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  4139. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  4140. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  4141. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  4142. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4143. }
  4144. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  4145. }
  4146. *s = sumf;
  4147. #endif
  4148. }
  4149. void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4150. const int qk = QK8_1;
  4151. const int nb = n / qk;
  4152. assert(n % qk == 0);
  4153. assert(qk == QK5_1);
  4154. assert(nrc == 1);
  4155. UNUSED(nrc);
  4156. UNUSED(bx);
  4157. UNUSED(by);
  4158. UNUSED(bs);
  4159. const block_q5_1 * restrict x = vx;
  4160. const block_q8_1 * restrict y = vy;
  4161. #if defined(__ARM_NEON)
  4162. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4163. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4164. float summs0 = 0.0f;
  4165. float summs1 = 0.0f;
  4166. uint32_t qh0;
  4167. uint32_t qh1;
  4168. uint64_t tmp0[4];
  4169. uint64_t tmp1[4];
  4170. assert(nb % 2 == 0); // TODO: handle odd nb
  4171. for (int i = 0; i < nb; i += 2) {
  4172. const block_q5_1 * restrict x0 = &x[i];
  4173. const block_q5_1 * restrict x1 = &x[i + 1];
  4174. const block_q8_1 * restrict y0 = &y[i];
  4175. const block_q8_1 * restrict y1 = &y[i + 1];
  4176. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  4177. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4178. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  4179. // extract the 5th bit via lookup table ((b) << 4)
  4180. memcpy(&qh0, x0->qh, sizeof(qh0));
  4181. memcpy(&qh1, x1->qh, sizeof(qh1));
  4182. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  4183. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  4184. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  4185. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  4186. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  4187. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  4188. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  4189. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  4190. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  4191. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  4192. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  4193. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  4194. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  4195. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  4196. // 4-bit -> 8-bit
  4197. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  4198. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  4199. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  4200. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  4201. // add high bit
  4202. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  4203. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  4204. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  4205. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  4206. // load y
  4207. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  4208. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  4209. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  4210. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  4211. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4212. ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  4213. ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  4214. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4215. ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  4216. ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  4217. }
  4218. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  4219. #elif defined(__wasm_simd128__)
  4220. v128_t sumv = wasm_f32x4_splat(0.0f);
  4221. float summs = 0.0f;
  4222. uint32_t qh;
  4223. uint64_t tmp[4];
  4224. // TODO: check if unrolling this is better
  4225. for (int i = 0; i < nb; ++i) {
  4226. const block_q5_1 * restrict x0 = &x[i];
  4227. const block_q8_1 * restrict y0 = &y[i];
  4228. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  4229. const v128_t m4b = wasm_i8x16_splat(0x0F);
  4230. // extract the 5th bit
  4231. memcpy(&qh, x0->qh, sizeof(qh));
  4232. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  4233. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  4234. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  4235. tmp[3] = table_b2b_0[(qh >> 24) ];
  4236. const v128_t qhl = wasm_v128_load(tmp + 0);
  4237. const v128_t qhh = wasm_v128_load(tmp + 2);
  4238. const v128_t v0 = wasm_v128_load(x0->qs);
  4239. // 4-bit -> 8-bit
  4240. const v128_t v0l = wasm_v128_and (v0, m4b);
  4241. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  4242. // add high bit
  4243. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  4244. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  4245. // load y
  4246. const v128_t v1l = wasm_v128_load(y0->qs);
  4247. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  4248. // int8x16 -> int16x8
  4249. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  4250. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  4251. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  4252. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  4253. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  4254. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  4255. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  4256. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  4257. // dot product
  4258. sumv = wasm_f32x4_add(sumv,
  4259. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  4260. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  4261. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  4262. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  4263. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  4264. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  4265. }
  4266. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  4267. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  4268. #elif defined(__AVX2__)
  4269. // Initialize accumulator with zeros
  4270. __m256 acc = _mm256_setzero_ps();
  4271. float summs = 0.0f;
  4272. // Main loop
  4273. for (int i = 0; i < nb; i++) {
  4274. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4275. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4276. __m256i qx = bytes_from_nibbles_32(x[i].qs);
  4277. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4278. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  4279. qx = _mm256_or_si256(qx, bxhi);
  4280. const __m256 dy = _mm256_set1_ps(y[i].d);
  4281. const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4282. const __m256 q = mul_sum_us8_pairs_float(qx, qy);
  4283. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  4284. }
  4285. *s = hsum_float_8(acc) + summs;
  4286. #elif defined(__AVX__)
  4287. // Initialize accumulator with zeros
  4288. __m256 acc = _mm256_setzero_ps();
  4289. __m128i mask = _mm_set1_epi8(0x10);
  4290. float summs = 0.0f;
  4291. // Main loop
  4292. for (int i = 0; i < nb; i++) {
  4293. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  4294. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  4295. __m256i bx_0 = bytes_from_nibbles_32(x[i].qs);
  4296. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  4297. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  4298. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  4299. bxhil = _mm_and_si128(bxhil, mask);
  4300. bxhih = _mm_and_si128(bxhih, mask);
  4301. __m128i bxl = _mm256_castsi256_si128(bx_0);
  4302. __m128i bxh = _mm256_extractf128_si256(bx_0, 1);
  4303. bxl = _mm_or_si128(bxl, bxhil);
  4304. bxh = _mm_or_si128(bxh, bxhih);
  4305. bx_0 = MM256_SET_M128I(bxh, bxl);
  4306. const __m256 dy = _mm256_set1_ps(y[i].d);
  4307. const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4308. const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0);
  4309. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  4310. }
  4311. *s = hsum_float_8(acc) + summs;
  4312. #elif defined(__riscv_v_intrinsic)
  4313. float sumf = 0.0;
  4314. uint32_t qh;
  4315. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  4316. // temporary registers for shift operations
  4317. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  4318. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  4319. for (int i = 0; i < nb; i++) {
  4320. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  4321. // load qh
  4322. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  4323. // ((qh >> (j + 0)) << 4) & 0x10;
  4324. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  4325. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  4326. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  4327. // ((qh >> (j + 12)) ) & 0x10;
  4328. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  4329. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  4330. // narrowing
  4331. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  4332. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  4333. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  4334. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  4335. // load
  4336. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  4337. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  4338. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  4339. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  4340. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  4341. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  4342. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  4343. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  4344. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  4345. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  4346. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  4347. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4348. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  4349. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  4350. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  4351. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4352. }
  4353. *s = sumf;
  4354. #else
  4355. // scalar
  4356. float sumf = 0.0;
  4357. for (int i = 0; i < nb; i++) {
  4358. uint32_t qh;
  4359. memcpy(&qh, x[i].qh, sizeof(qh));
  4360. int sumi = 0;
  4361. for (int j = 0; j < qk/2; ++j) {
  4362. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  4363. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  4364. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  4365. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  4366. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  4367. }
  4368. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  4369. }
  4370. *s = sumf;
  4371. #endif
  4372. }
  4373. void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4374. const int qk = QK8_0;
  4375. const int nb = n / qk;
  4376. assert(n % qk == 0);
  4377. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4378. assert((nrc == 2) || (nrc == 1));
  4379. #else
  4380. assert(nrc == 1);
  4381. #endif
  4382. UNUSED(nrc);
  4383. UNUSED(bx);
  4384. UNUSED(by);
  4385. UNUSED(bs);
  4386. const block_q8_0 * restrict x = vx;
  4387. const block_q8_0 * restrict y = vy;
  4388. #if defined(__ARM_FEATURE_MATMUL_INT8)
  4389. if (nrc == 2) {
  4390. const block_q8_0 * restrict vx0 = vx;
  4391. const block_q8_0 * restrict vx1 = vx + bx;
  4392. const block_q8_0 * restrict vy0 = vy;
  4393. const block_q8_0 * restrict vy1 = vy + by;
  4394. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4395. for (int i = 0; i < nb; i++) {
  4396. const block_q8_0 * restrict b_x0 = &vx0[i];
  4397. const block_q8_0 * restrict b_y0 = &vy0[i];
  4398. const block_q8_0 * restrict b_x1 = &vx1[i];
  4399. const block_q8_0 * restrict b_y1 = &vy1[i];
  4400. const int8x16_t x0_l = vld1q_s8(b_x0->qs);
  4401. const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16);
  4402. const int8x16_t x1_l = vld1q_s8(b_x1->qs);
  4403. const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16);
  4404. // load y
  4405. const int8x16_t y0_l = vld1q_s8(b_y0->qs);
  4406. const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16);
  4407. const int8x16_t y1_l = vld1q_s8(b_y1->qs);
  4408. const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16);
  4409. float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d),
  4410. GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d),
  4411. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d),
  4412. GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)};
  4413. int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4414. int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l)));
  4415. int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4416. int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h)));
  4417. int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4418. int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l)));
  4419. int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4420. int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h)));
  4421. sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)),
  4422. l1, r1)), l2, r2)), l3, r3))), scale);
  4423. }
  4424. float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2);
  4425. float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1);
  4426. vst1_f32(s, vget_low_f32(sumv2));
  4427. vst1_f32(s + bs, vget_high_f32(sumv2));
  4428. return;
  4429. }
  4430. #endif
  4431. #if defined(__ARM_NEON)
  4432. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  4433. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  4434. assert(nb % 2 == 0); // TODO: handle odd nb
  4435. for (int i = 0; i < nb; i += 2) {
  4436. const block_q8_0 * restrict x0 = &x[i + 0];
  4437. const block_q8_0 * restrict x1 = &x[i + 1];
  4438. const block_q8_0 * restrict y0 = &y[i + 0];
  4439. const block_q8_0 * restrict y1 = &y[i + 1];
  4440. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  4441. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  4442. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  4443. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  4444. // load y
  4445. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  4446. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  4447. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  4448. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  4449. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  4450. ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  4451. ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  4452. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  4453. ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  4454. ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  4455. }
  4456. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  4457. #elif defined(__AVX2__) || defined(__AVX__)
  4458. // Initialize accumulator with zeros
  4459. __m256 acc = _mm256_setzero_ps();
  4460. // Main loop
  4461. for (int i = 0; i < nb; ++i) {
  4462. // Compute combined scale for the block
  4463. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  4464. __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  4465. __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs);
  4466. const __m256 q = mul_sum_i8_pairs_float(qx, qy);
  4467. // Multiply q with scale and accumulate
  4468. #if defined(__AVX2__)
  4469. acc = _mm256_fmadd_ps( d, q, acc );
  4470. #else
  4471. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  4472. #endif
  4473. }
  4474. *s = hsum_float_8(acc);
  4475. #elif defined(__riscv_v_intrinsic)
  4476. float sumf = 0.0;
  4477. size_t vl = __riscv_vsetvl_e8m1(qk);
  4478. for (int i = 0; i < nb; i++) {
  4479. // load elements
  4480. vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl);
  4481. vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  4482. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl);
  4483. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  4484. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  4485. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  4486. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4487. }
  4488. *s = sumf;
  4489. #else
  4490. // scalar
  4491. float sumf = 0.0;
  4492. for (int i = 0; i < nb; i++) {
  4493. int sumi = 0;
  4494. for (int j = 0; j < qk; j++) {
  4495. sumi += x[i].qs[j]*y[i].qs[j];
  4496. }
  4497. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  4498. }
  4499. *s = sumf;
  4500. #endif
  4501. }
  4502. #if QK_K == 256
  4503. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4504. assert(nrc == 1);
  4505. UNUSED(nrc);
  4506. UNUSED(bx);
  4507. UNUSED(by);
  4508. UNUSED(bs);
  4509. const block_q2_K * restrict x = vx;
  4510. const block_q8_K * restrict y = vy;
  4511. const int nb = n / QK_K;
  4512. #ifdef __ARM_NEON
  4513. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4514. const uint8x16_t m4 = vdupq_n_u8(0xF);
  4515. const int32x4_t vzero = vdupq_n_s32(0);
  4516. ggml_int8x16x2_t q2bytes;
  4517. uint8_t aux[16];
  4518. float sum = 0;
  4519. for (int i = 0; i < nb; ++i) {
  4520. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4521. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4522. const uint8_t * restrict q2 = x[i].qs;
  4523. const int8_t * restrict q8 = y[i].qs;
  4524. const uint8_t * restrict sc = x[i].scales;
  4525. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  4526. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  4527. vst1q_u8(aux, scales);
  4528. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  4529. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  4530. const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}};
  4531. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  4532. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  4533. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  4534. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  4535. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  4536. int isum = 0;
  4537. int is = 0;
  4538. // We use this macro instead of a function call because for some reason
  4539. // the code runs 2-3% slower, even if the function is declared inline
  4540. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  4541. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  4542. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  4543. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  4544. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
  4545. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  4546. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  4547. MULTIPLY_ACCUM_WITH_SCALE((index));
  4548. for (int j = 0; j < QK_K/128; ++j) {
  4549. const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
  4550. ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  4551. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  4552. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  4553. MULTIPLY_ACCUM_WITH_SCALE(0);
  4554. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  4555. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  4556. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  4557. is += 8;
  4558. }
  4559. sum += d * isum;
  4560. }
  4561. *s = sum;
  4562. #elif defined __AVX2__
  4563. const __m256i m3 = _mm256_set1_epi8(3);
  4564. const __m128i m4 = _mm_set1_epi8(0xF);
  4565. __m256 acc = _mm256_setzero_ps();
  4566. for (int i = 0; i < nb; ++i) {
  4567. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4568. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4569. const uint8_t * restrict q2 = x[i].qs;
  4570. const int8_t * restrict q8 = y[i].qs;
  4571. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4572. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  4573. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4574. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  4575. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  4576. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  4577. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  4578. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  4579. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  4580. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  4581. __m256i sumi = _mm256_setzero_si256();
  4582. for (int j = 0; j < QK_K/128; ++j) {
  4583. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  4584. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4585. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4586. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4587. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  4588. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  4589. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  4590. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  4591. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  4592. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4593. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4594. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  4595. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  4596. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  4597. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  4598. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  4599. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  4600. p0 = _mm256_add_epi32(p0, p1);
  4601. p2 = _mm256_add_epi32(p2, p3);
  4602. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  4603. }
  4604. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  4605. }
  4606. *s = hsum_float_8(acc);
  4607. #elif defined __AVX__
  4608. const __m128i m3 = _mm_set1_epi8(0x3);
  4609. const __m128i m4 = _mm_set1_epi8(0xF);
  4610. const __m128i m2 = _mm_set1_epi8(0x2);
  4611. __m256 acc = _mm256_setzero_ps();
  4612. for (int i = 0; i < nb; ++i) {
  4613. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4614. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4615. const uint8_t * restrict q2 = x[i].qs;
  4616. const int8_t * restrict q8 = y[i].qs;
  4617. // load mins and scales from block_q2_K.scales[QK_K/16]
  4618. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  4619. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  4620. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  4621. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  4622. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  4623. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  4624. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  4625. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  4626. // sumf += -dmin * summs in 32bits*8
  4627. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  4628. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  4629. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  4630. const __m128i scales[2] = { scales_0, scales_1 };
  4631. __m128i sumi_0 = _mm_setzero_si128();
  4632. __m128i sumi_1 = _mm_setzero_si128();
  4633. for (int j = 0; j < QK_K/128; ++j) {
  4634. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  4635. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4636. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4637. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4638. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4639. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4640. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4641. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4642. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  4643. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  4644. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4645. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4646. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4647. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4648. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4649. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  4650. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  4651. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4652. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4653. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4654. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  4655. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  4656. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  4657. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  4658. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  4659. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  4660. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  4661. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  4662. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  4663. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  4664. __m128i shuffle = _mm_set1_epi16(0x0100);
  4665. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  4666. shuffle = _mm_add_epi16(shuffle, m2);
  4667. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  4668. shuffle = _mm_add_epi16(shuffle, m2);
  4669. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  4670. shuffle = _mm_add_epi16(shuffle, m2);
  4671. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  4672. shuffle = _mm_add_epi16(shuffle, m2);
  4673. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  4674. shuffle = _mm_add_epi16(shuffle, m2);
  4675. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  4676. shuffle = _mm_add_epi16(shuffle, m2);
  4677. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  4678. shuffle = _mm_add_epi16(shuffle, m2);
  4679. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  4680. p0 = _mm_add_epi32(p0, p1);
  4681. p2 = _mm_add_epi32(p2, p3);
  4682. p4 = _mm_add_epi32(p4, p5);
  4683. p6 = _mm_add_epi32(p6, p7);
  4684. // isum in 32bits*4*2
  4685. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  4686. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  4687. }
  4688. // sumf += dall * isum - dmin * summs in 32bits
  4689. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  4690. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  4691. }
  4692. *s = hsum_float_8(acc);
  4693. #elif defined __riscv_v_intrinsic
  4694. float sumf = 0;
  4695. uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  4696. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
  4697. for (int i = 0; i < nb; ++i) {
  4698. const uint8_t * q2 = x[i].qs;
  4699. const int8_t * q8 = y[i].qs;
  4700. const uint8_t * sc = x[i].scales;
  4701. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4702. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4703. size_t vl = 16;
  4704. vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl);
  4705. vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl);
  4706. vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl);
  4707. vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl);
  4708. vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl);
  4709. vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl));
  4710. vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl);
  4711. vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  4712. sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums);
  4713. vl = 32;
  4714. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  4715. vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl);
  4716. uint8_t is=0;
  4717. int isum=0;
  4718. for (int j = 0; j < QK_K/128; ++j) {
  4719. // load Q2
  4720. vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl);
  4721. vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl);
  4722. vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl);
  4723. vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl);
  4724. vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl);
  4725. // duplicate scale elements for product
  4726. vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl);
  4727. vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl);
  4728. vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl);
  4729. vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl);
  4730. vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl));
  4731. vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl));
  4732. vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl));
  4733. vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl));
  4734. // load Q8
  4735. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  4736. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  4737. vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl);
  4738. vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl);
  4739. vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl);
  4740. vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl);
  4741. vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl);
  4742. vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl);
  4743. vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl);
  4744. vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl);
  4745. isum += __riscv_vmv_x_s_i32m1_i32(isum1);
  4746. q2+=32; q8+=128; is=8;
  4747. }
  4748. sumf += dall * isum;
  4749. }
  4750. *s = sumf;
  4751. #else
  4752. float sumf = 0;
  4753. for (int i = 0; i < nb; ++i) {
  4754. const uint8_t * q2 = x[i].qs;
  4755. const int8_t * q8 = y[i].qs;
  4756. const uint8_t * sc = x[i].scales;
  4757. int summs = 0;
  4758. for (int j = 0; j < 16; ++j) {
  4759. summs += y[i].bsums[j] * (sc[j] >> 4);
  4760. }
  4761. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4762. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4763. int isum = 0;
  4764. int is = 0;
  4765. int d;
  4766. for (int k = 0; k < QK_K/128; ++k) {
  4767. int shift = 0;
  4768. for (int j = 0; j < 4; ++j) {
  4769. d = sc[is++] & 0xF;
  4770. int isuml = 0;
  4771. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4772. isum += d * isuml;
  4773. d = sc[is++] & 0xF;
  4774. isuml = 0;
  4775. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  4776. isum += d * isuml;
  4777. shift += 2;
  4778. q8 += 32;
  4779. }
  4780. q2 += 32;
  4781. }
  4782. sumf += dall * isum - dmin * summs;
  4783. }
  4784. *s = sumf;
  4785. #endif
  4786. }
  4787. #else
  4788. void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4789. assert(nrc == 1);
  4790. UNUSED(nrc);
  4791. UNUSED(bx);
  4792. UNUSED(by);
  4793. UNUSED(bs);
  4794. const block_q2_K * restrict x = vx;
  4795. const block_q8_K * restrict y = vy;
  4796. const int nb = n / QK_K;
  4797. #ifdef __ARM_NEON
  4798. const uint8x16_t m3 = vdupq_n_u8(0x3);
  4799. const int32x4_t vzero = vdupq_n_s32(0);
  4800. ggml_int8x16x4_t q2bytes;
  4801. uint32_t aux32[2];
  4802. const uint8_t * scales = (const uint8_t *)aux32;
  4803. float sum = 0;
  4804. for (int i = 0; i < nb; ++i) {
  4805. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4806. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4807. const uint8_t * restrict q2 = x[i].qs;
  4808. const int8_t * restrict q8 = y[i].qs;
  4809. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4810. aux32[0] = sc[0] & 0x0f0f0f0f;
  4811. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4812. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4813. int isum1 = 0, isum2 = 0;
  4814. const uint8x16_t q2bits = vld1q_u8(q2);
  4815. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  4816. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  4817. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  4818. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  4819. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  4820. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  4821. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  4822. isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  4823. isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  4824. sum += d * (isum1 + isum2);
  4825. }
  4826. *s = sum;
  4827. #elif defined __AVX2__
  4828. const __m256i m3 = _mm256_set1_epi8(3);
  4829. __m256 acc = _mm256_setzero_ps();
  4830. uint32_t ud, um;
  4831. const uint8_t * restrict db = (const uint8_t *)&ud;
  4832. const uint8_t * restrict mb = (const uint8_t *)&um;
  4833. float summs = 0;
  4834. // TODO: optimize this
  4835. for (int i = 0; i < nb; ++i) {
  4836. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4837. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4838. const uint8_t * restrict q2 = x[i].qs;
  4839. const int8_t * restrict q8 = y[i].qs;
  4840. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4841. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4842. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4843. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4844. summs += dmin * smin;
  4845. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4846. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  4847. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  4848. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4849. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4850. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  4851. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  4852. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  4853. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  4854. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  4855. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  4856. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  4857. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  4858. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  4859. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  4860. }
  4861. *s = hsum_float_8(acc) + summs;
  4862. #elif defined __AVX__
  4863. const __m128i m3 = _mm_set1_epi8(3);
  4864. __m256 acc = _mm256_setzero_ps();
  4865. uint32_t ud, um;
  4866. const uint8_t * restrict db = (const uint8_t *)&ud;
  4867. const uint8_t * restrict mb = (const uint8_t *)&um;
  4868. float summs = 0;
  4869. // TODO: optimize this
  4870. for (int i = 0; i < nb; ++i) {
  4871. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4872. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4873. const uint8_t * restrict q2 = x[i].qs;
  4874. const int8_t * restrict q8 = y[i].qs;
  4875. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4876. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  4877. um = (sc[0] >> 4) & 0x0f0f0f0f;
  4878. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  4879. summs += dmin * smin;
  4880. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  4881. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  4882. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  4883. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  4884. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  4885. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  4886. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  4887. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  4888. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  4889. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  4890. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  4891. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  4892. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  4893. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  4894. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  4895. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  4896. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  4897. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  4898. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  4899. }
  4900. *s = hsum_float_8(acc) + summs;
  4901. #elif defined __riscv_v_intrinsic
  4902. uint32_t aux32[2];
  4903. const uint8_t * scales = (const uint8_t *)aux32;
  4904. float sumf = 0;
  4905. for (int i = 0; i < nb; ++i) {
  4906. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4907. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4908. const uint8_t * restrict q2 = x[i].qs;
  4909. const int8_t * restrict q8 = y[i].qs;
  4910. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  4911. aux32[0] = sc[0] & 0x0f0f0f0f;
  4912. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  4913. sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  4914. int isum1 = 0;
  4915. int isum2 = 0;
  4916. size_t vl = 16;
  4917. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  4918. // load Q2
  4919. vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl);
  4920. vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl));
  4921. vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl));
  4922. vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl));
  4923. vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl));
  4924. // load Q8, and take product with Q2
  4925. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  4926. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  4927. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  4928. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  4929. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl);
  4930. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl);
  4931. vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl);
  4932. vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl);
  4933. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0];
  4934. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1];
  4935. isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2];
  4936. isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3];
  4937. sumf += d * (isum1 + isum2);
  4938. }
  4939. *s = sumf;
  4940. #else
  4941. float sumf = 0;
  4942. int isum[4];
  4943. for (int i = 0; i < nb; ++i) {
  4944. const uint8_t * q2 = x[i].qs;
  4945. const int8_t * q8 = y[i].qs;
  4946. const uint8_t * sc = x[i].scales;
  4947. int summs = 0;
  4948. for (int j = 0; j < QK_K/16; ++j) {
  4949. summs += y[i].bsums[j] * (sc[j] >> 4);
  4950. }
  4951. const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4952. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  4953. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  4954. for (int l = 0; l < 16; ++l) {
  4955. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  4956. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  4957. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  4958. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  4959. }
  4960. for (int l = 0; l < 4; ++l) {
  4961. isum[l] *= (sc[l] & 0xF);
  4962. }
  4963. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  4964. }
  4965. *s = sumf;
  4966. #endif
  4967. }
  4968. #endif
  4969. #if QK_K == 256
  4970. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  4971. assert(n % QK_K == 0);
  4972. assert(nrc == 1);
  4973. UNUSED(nrc);
  4974. UNUSED(bx);
  4975. UNUSED(by);
  4976. UNUSED(bs);
  4977. const uint32_t kmask1 = 0x03030303;
  4978. const uint32_t kmask2 = 0x0f0f0f0f;
  4979. const block_q3_K * restrict x = vx;
  4980. const block_q8_K * restrict y = vy;
  4981. const int nb = n / QK_K;
  4982. #ifdef __ARM_NEON
  4983. uint32_t aux[3];
  4984. uint32_t utmp[4];
  4985. const uint8x16_t m3b = vdupq_n_u8(0x3);
  4986. const int32x4_t vzero = vdupq_n_s32(0);
  4987. const uint8x16_t m0 = vdupq_n_u8(1);
  4988. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  4989. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  4990. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  4991. const int8_t m32 = 32;
  4992. ggml_int8x16x4_t q3bytes;
  4993. float sum = 0;
  4994. for (int i = 0; i < nb; ++i) {
  4995. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  4996. const uint8_t * restrict q3 = x[i].qs;
  4997. const uint8_t * restrict qh = x[i].hmask;
  4998. const int8_t * restrict q8 = y[i].qs;
  4999. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  5000. ggml_uint8x16x4_t q3h;
  5001. int32_t isum = 0;
  5002. // Set up scales
  5003. memcpy(aux, x[i].scales, 12);
  5004. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5005. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5006. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5007. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5008. int8_t * scale = (int8_t *)utmp;
  5009. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  5010. for (int j = 0; j < QK_K/128; ++j) {
  5011. const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32;
  5012. const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5013. const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64;
  5014. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  5015. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  5016. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  5017. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  5018. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5019. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5020. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5021. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5022. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  5023. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  5024. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  5025. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  5026. scale += 4;
  5027. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  5028. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  5029. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  5030. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  5031. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  5032. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  5033. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  5034. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  5035. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  5036. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  5037. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  5038. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  5039. scale += 4;
  5040. if (j == 0) {
  5041. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  5042. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  5043. }
  5044. }
  5045. sum += d * isum;
  5046. }
  5047. *s = sum;
  5048. #elif defined __AVX2__
  5049. const __m256i m3 = _mm256_set1_epi8(3);
  5050. const __m256i mone = _mm256_set1_epi8(1);
  5051. const __m128i m32 = _mm_set1_epi8(32);
  5052. __m256 acc = _mm256_setzero_ps();
  5053. uint32_t aux[3];
  5054. for (int i = 0; i < nb; ++i) {
  5055. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5056. const uint8_t * restrict q3 = x[i].qs;
  5057. const int8_t * restrict q8 = y[i].qs;
  5058. // Set up scales
  5059. memcpy(aux, x[i].scales, 12);
  5060. __m128i scales128 = _mm_set_epi32(
  5061. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5062. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5063. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5064. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5065. scales128 = _mm_sub_epi8(scales128, m32);
  5066. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  5067. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  5068. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  5069. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  5070. // high bit
  5071. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  5072. // integer accumulator
  5073. __m256i sumi = _mm256_setzero_si256();
  5074. int bit = 0;
  5075. int is = 0;
  5076. for (int j = 0; j < QK_K/128; ++j) {
  5077. // load low 2 bits
  5078. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  5079. // prepare low and high bits
  5080. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  5081. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5082. ++bit;
  5083. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  5084. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5085. ++bit;
  5086. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  5087. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5088. ++bit;
  5089. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  5090. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  5091. ++bit;
  5092. // load Q8 quants
  5093. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5094. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5095. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5096. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5097. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5098. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5099. // and 2 if the high bit was set)
  5100. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5101. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5102. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  5103. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  5104. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5105. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5106. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  5107. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  5108. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5109. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5110. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  5111. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  5112. // multiply with scales
  5113. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  5114. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  5115. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  5116. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  5117. // accumulate
  5118. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5119. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  5120. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  5121. }
  5122. // multiply with block scale and accumulate
  5123. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  5124. }
  5125. *s = hsum_float_8(acc);
  5126. #elif defined __AVX__
  5127. const __m128i m3 = _mm_set1_epi8(3);
  5128. const __m128i mone = _mm_set1_epi8(1);
  5129. const __m128i m32 = _mm_set1_epi8(32);
  5130. const __m128i m2 = _mm_set1_epi8(2);
  5131. __m256 acc = _mm256_setzero_ps();
  5132. const uint32_t *aux;
  5133. for (int i = 0; i < nb; ++i) {
  5134. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5135. const uint8_t * restrict q3 = x[i].qs;
  5136. const int8_t * restrict q8 = y[i].qs;
  5137. // Set up scales
  5138. aux = (const uint32_t *)x[i].scales;
  5139. __m128i scales128 = _mm_set_epi32(
  5140. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  5141. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  5142. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  5143. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  5144. scales128 = _mm_sub_epi8(scales128, m32);
  5145. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  5146. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  5147. const __m128i scales[2] = { scales_0, scales_1 };
  5148. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  5149. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  5150. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  5151. // integer accumulator
  5152. __m128i sumi_0 = _mm_setzero_si128();
  5153. __m128i sumi_1 = _mm_setzero_si128();
  5154. for (int j = 0; j < QK_K/128; ++j) {
  5155. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  5156. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5157. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  5158. // prepare low and high bits
  5159. const int bit = j << 2;
  5160. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  5161. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  5162. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  5163. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  5164. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  5165. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  5166. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5167. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  5168. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  5169. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  5170. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5171. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  5172. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  5173. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  5174. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5175. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  5176. // load Q8 quants from block_q8_K.qs[QK_K]
  5177. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5178. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5179. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5180. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5181. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5182. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5183. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5184. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5185. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5186. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5187. // and 2 if the high bit was set)
  5188. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  5189. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  5190. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  5191. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  5192. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  5193. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  5194. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  5195. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  5196. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  5197. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  5198. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  5199. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  5200. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  5201. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  5202. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  5203. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  5204. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5205. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5206. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5207. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5208. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  5209. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  5210. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  5211. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  5212. // multiply with scales
  5213. __m128i shuffle = _mm_set1_epi16(0x0100);
  5214. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  5215. shuffle = _mm_add_epi16(shuffle, m2);
  5216. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  5217. shuffle = _mm_add_epi16(shuffle, m2);
  5218. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  5219. shuffle = _mm_add_epi16(shuffle, m2);
  5220. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  5221. shuffle = _mm_add_epi16(shuffle, m2);
  5222. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  5223. shuffle = _mm_add_epi16(shuffle, m2);
  5224. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  5225. shuffle = _mm_add_epi16(shuffle, m2);
  5226. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  5227. shuffle = _mm_add_epi16(shuffle, m2);
  5228. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  5229. // accumulate
  5230. p16_0 = _mm_add_epi32(p16_0, p16_1);
  5231. p16_2 = _mm_add_epi32(p16_2, p16_3);
  5232. p16_4 = _mm_add_epi32(p16_4, p16_5);
  5233. p16_6 = _mm_add_epi32(p16_6, p16_7);
  5234. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  5235. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  5236. }
  5237. // multiply with block scale and accumulate
  5238. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5239. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  5240. }
  5241. *s = hsum_float_8(acc);
  5242. #elif defined __riscv_v_intrinsic
  5243. uint32_t aux[3];
  5244. uint32_t utmp[4];
  5245. float sumf = 0;
  5246. for (int i = 0; i < nb; ++i) {
  5247. const uint8_t * restrict q3 = x[i].qs;
  5248. const uint8_t * restrict qh = x[i].hmask;
  5249. const int8_t * restrict q8 = y[i].qs;
  5250. memcpy(aux, x[i].scales, 12);
  5251. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  5252. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  5253. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  5254. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  5255. int8_t * scale = (int8_t *)utmp;
  5256. for (int j = 0; j < 16; ++j) scale[j] -= 32;
  5257. size_t vl = 32;
  5258. uint8_t m = 1;
  5259. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5260. vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl);
  5261. int sum_t = 0;
  5262. for (int j = 0; j < QK_K; j += 128) {
  5263. vl = 32;
  5264. // load Q3
  5265. vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl);
  5266. vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl));
  5267. vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl));
  5268. vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl));
  5269. vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl));
  5270. // compute mask for subtraction
  5271. vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5272. vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl);
  5273. vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl);
  5274. m <<= 1;
  5275. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5276. vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl);
  5277. vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl);
  5278. m <<= 1;
  5279. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5280. vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl);
  5281. vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl);
  5282. m <<= 1;
  5283. vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl);
  5284. vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl);
  5285. vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl);
  5286. m <<= 1;
  5287. // load Q8 and take product with Q3
  5288. vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl);
  5289. vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  5290. vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  5291. vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  5292. vl = 16;
  5293. // retrieve lane to multiply with scale
  5294. vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl);
  5295. vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl);
  5296. vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl);
  5297. vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl);
  5298. vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl);
  5299. vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl);
  5300. vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl);
  5301. vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl);
  5302. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl);
  5303. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl);
  5304. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl);
  5305. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl);
  5306. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  5307. q3 += 32; q8 += 128; scale += 8;
  5308. }
  5309. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5310. sumf += d*sum_t;
  5311. }
  5312. *s = sumf;
  5313. #else
  5314. // scalar version
  5315. // This function is written like this so the compiler can manage to vectorize most of it
  5316. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  5317. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  5318. // The ideal situation would be if we could just write the code once, and the compiler would
  5319. // automatically produce the best possible set of machine instructions, instead of us having to manually
  5320. // write vectorized versions for AVX, ARM_NEON, etc.
  5321. int8_t aux8[QK_K];
  5322. int16_t aux16[8];
  5323. float sums [8];
  5324. int32_t aux32[8];
  5325. memset(sums, 0, 8*sizeof(float));
  5326. uint32_t auxs[4];
  5327. const int8_t * scales = (const int8_t*)auxs;
  5328. float sumf = 0;
  5329. for (int i = 0; i < nb; ++i) {
  5330. const uint8_t * restrict q3 = x[i].qs;
  5331. const uint8_t * restrict hm = x[i].hmask;
  5332. const int8_t * restrict q8 = y[i].qs;
  5333. memset(aux32, 0, 8*sizeof(int32_t));
  5334. int8_t * restrict a = aux8;
  5335. uint8_t m = 1;
  5336. for (int j = 0; j < QK_K; j += 128) {
  5337. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  5338. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5339. a += 32; m <<= 1;
  5340. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  5341. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5342. a += 32; m <<= 1;
  5343. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  5344. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5345. a += 32; m <<= 1;
  5346. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  5347. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  5348. a += 32; m <<= 1;
  5349. q3 += 32;
  5350. }
  5351. a = aux8;
  5352. memcpy(auxs, x[i].scales, 12);
  5353. uint32_t tmp = auxs[2];
  5354. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  5355. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  5356. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  5357. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  5358. for (int j = 0; j < QK_K/16; ++j) {
  5359. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5360. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5361. q8 += 8; a += 8;
  5362. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5363. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  5364. q8 += 8; a += 8;
  5365. }
  5366. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5367. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5368. }
  5369. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5370. *s = sumf;
  5371. #endif
  5372. }
  5373. #else
  5374. void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5375. assert(n % QK_K == 0);
  5376. assert(nrc == 1);
  5377. UNUSED(nrc);
  5378. UNUSED(bx);
  5379. UNUSED(by);
  5380. UNUSED(bs);
  5381. const block_q3_K * restrict x = vx;
  5382. const block_q8_K * restrict y = vy;
  5383. const int nb = n / QK_K;
  5384. #ifdef __ARM_NEON
  5385. const int32x4_t vzero = vdupq_n_s32(0);
  5386. const uint8x16_t m3b = vdupq_n_u8(0x3);
  5387. const uint8x16_t mh = vdupq_n_u8(4);
  5388. ggml_int8x16x4_t q3bytes;
  5389. uint16_t aux16[2];
  5390. int8_t * scales = (int8_t *)aux16;
  5391. float sum = 0;
  5392. for (int i = 0; i < nb; ++i) {
  5393. ggml_uint8x16x4_t q3h;
  5394. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  5395. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  5396. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs);
  5397. const uint16_t a = *(const uint16_t *)x[i].scales;
  5398. aux16[0] = a & 0x0f0f;
  5399. aux16[1] = (a >> 4) & 0x0f0f;
  5400. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5401. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5402. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5403. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  5404. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  5405. q3h.val[1] = vandq_u8(mh, htmp);
  5406. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  5407. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  5408. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  5409. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  5410. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  5411. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  5412. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  5413. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  5414. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  5415. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  5416. sum += d * isum;
  5417. }
  5418. *s = sum;
  5419. #elif defined __AVX2__
  5420. const __m256i m3 = _mm256_set1_epi8(3);
  5421. const __m256i m1 = _mm256_set1_epi8(1);
  5422. __m256 acc = _mm256_setzero_ps();
  5423. uint64_t aux64;
  5424. uint16_t aux16[2];
  5425. const int8_t * aux8 = (const int8_t *)aux16;
  5426. for (int i = 0; i < nb; ++i) {
  5427. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5428. const uint8_t * restrict q3 = x[i].qs;
  5429. const int8_t * restrict q8 = y[i].qs;
  5430. const uint16_t a = *(const uint16_t *)x[i].scales;
  5431. aux16[0] = a & 0x0f0f;
  5432. aux16[1] = (a >> 4) & 0x0f0f;
  5433. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  5434. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  5435. memcpy(&aux64, x[i].hmask, 8);
  5436. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5437. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  5438. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  5439. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  5440. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  5441. // load low 2 bits
  5442. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5443. // prepare low and high bits
  5444. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  5445. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  5446. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  5447. // load Q8 quants
  5448. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5449. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5450. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  5451. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5452. // and 2 if the high bit was set)
  5453. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  5454. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  5455. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  5456. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  5457. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  5458. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  5459. // multiply with scales
  5460. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  5461. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  5462. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  5463. // multiply with block scale and accumulate
  5464. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  5465. }
  5466. *s = hsum_float_8(acc);
  5467. #elif defined __AVX__
  5468. const __m128i m3 = _mm_set1_epi8(3);
  5469. const __m128i m1 = _mm_set1_epi8(1);
  5470. __m256 acc = _mm256_setzero_ps();
  5471. uint64_t aux64;
  5472. uint16_t aux16[2];
  5473. const int8_t * aux8 = (const int8_t *)aux16;
  5474. for (int i = 0; i < nb; ++i) {
  5475. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5476. const uint8_t * restrict q3 = x[i].qs;
  5477. const int8_t * restrict q8 = y[i].qs;
  5478. const uint16_t a = *(const uint16_t *)x[i].scales;
  5479. aux16[0] = a & 0x0f0f;
  5480. aux16[1] = (a >> 4) & 0x0f0f;
  5481. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  5482. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  5483. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  5484. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  5485. memcpy(&aux64, x[i].hmask, 8);
  5486. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  5487. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  5488. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  5489. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  5490. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  5491. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  5492. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  5493. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  5494. // load low 2 bits
  5495. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  5496. // prepare low and high bits
  5497. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  5498. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  5499. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  5500. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  5501. // load Q8 quants
  5502. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5503. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5504. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  5505. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  5506. // and 2 if the high bit was set)
  5507. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  5508. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  5509. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  5510. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  5511. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  5512. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  5513. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  5514. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  5515. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  5516. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  5517. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  5518. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  5519. // multiply with scales
  5520. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  5521. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  5522. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  5523. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  5524. p16_0 = _mm_add_epi32(p16_0, p16_2);
  5525. p16_1 = _mm_add_epi32(p16_1, p16_3);
  5526. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  5527. // multiply with block scale and accumulate
  5528. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  5529. }
  5530. *s = hsum_float_8(acc);
  5531. #elif defined __riscv_v_intrinsic
  5532. uint16_t aux16[2];
  5533. int8_t * scales = (int8_t *)aux16;
  5534. float sumf = 0;
  5535. for (int i = 0; i < nb; ++i) {
  5536. const uint8_t * restrict q3 = x[i].qs;
  5537. const int8_t * restrict q8 = y[i].qs;
  5538. const uint16_t a = *(const uint16_t *)x[i].scales;
  5539. aux16[0] = a & 0x0f0f;
  5540. aux16[1] = (a >> 4) & 0x0f0f;
  5541. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  5542. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  5543. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5544. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  5545. // load qh
  5546. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8);
  5547. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  5548. size_t vl = 16;
  5549. // extend and combine both qh_x1 and qh_x2
  5550. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  5551. vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5552. vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl);
  5553. vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl);
  5554. vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl);
  5555. // load Q3
  5556. vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl);
  5557. vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl);
  5558. vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl);
  5559. vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl);
  5560. vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl);
  5561. vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0);
  5562. vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1);
  5563. vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2);
  5564. vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3);
  5565. // load Q8 and take product with Q3
  5566. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  5567. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  5568. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  5569. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  5570. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  5571. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  5572. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  5573. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  5574. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0];
  5575. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2];
  5576. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1];
  5577. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3];
  5578. sumf += d * isum;
  5579. }
  5580. *s = sumf;
  5581. #else
  5582. int8_t aux8[QK_K];
  5583. int16_t aux16[8];
  5584. float sums [8];
  5585. int32_t aux32[8];
  5586. int32_t scales[4];
  5587. memset(sums, 0, 8*sizeof(float));
  5588. float sumf = 0;
  5589. for (int i = 0; i < nb; ++i) {
  5590. const uint8_t * restrict q3 = x[i].qs;
  5591. const uint8_t * restrict hm = x[i].hmask;
  5592. const int8_t * restrict q8 = y[i].qs;
  5593. int8_t * restrict a = aux8;
  5594. for (int l = 0; l < 8; ++l) {
  5595. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  5596. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  5597. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  5598. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  5599. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  5600. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  5601. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  5602. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  5603. }
  5604. scales[0] = (x[i].scales[0] & 0xF) - 8;
  5605. scales[1] = (x[i].scales[0] >> 4) - 8;
  5606. scales[2] = (x[i].scales[1] & 0xF) - 8;
  5607. scales[3] = (x[i].scales[1] >> 4) - 8;
  5608. memset(aux32, 0, 8*sizeof(int32_t));
  5609. for (int j = 0; j < QK_K/16; ++j) {
  5610. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5611. q8 += 8; a += 8;
  5612. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  5613. q8 += 8; a += 8;
  5614. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  5615. }
  5616. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5617. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5618. }
  5619. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5620. *s = sumf;
  5621. #endif
  5622. }
  5623. #endif
  5624. #if QK_K == 256
  5625. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5626. assert(n % QK_K == 0);
  5627. assert(nrc == 1);
  5628. UNUSED(nrc);
  5629. UNUSED(bx);
  5630. UNUSED(by);
  5631. UNUSED(bs);
  5632. const block_q4_K * restrict x = vx;
  5633. const block_q8_K * restrict y = vy;
  5634. const int nb = n / QK_K;
  5635. static const uint32_t kmask1 = 0x3f3f3f3f;
  5636. static const uint32_t kmask2 = 0x0f0f0f0f;
  5637. static const uint32_t kmask3 = 0x03030303;
  5638. uint32_t utmp[4];
  5639. #ifdef __ARM_NEON
  5640. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5641. const int32x4_t mzero = vdupq_n_s32(0);
  5642. ggml_int8x16x2_t q4bytes;
  5643. ggml_int8x16x2_t q8bytes;
  5644. float sumf = 0;
  5645. for (int i = 0; i < nb; ++i) {
  5646. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5647. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5648. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  5649. memcpy(utmp, x[i].scales, 12);
  5650. uint32x2_t mins8 = { 0 };
  5651. mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
  5652. mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
  5653. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5654. utmp[0] &= kmask1;
  5655. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  5656. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  5657. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  5658. sumf -= dmin * vaddvq_s32(prod);
  5659. const uint8_t * scales = (const uint8_t *)utmp;
  5660. const uint8_t * restrict q4 = x[i].qs;
  5661. const int8_t * restrict q8 = y[i].qs;
  5662. int32_t sumi1 = 0;
  5663. int32_t sumi2 = 0;
  5664. for (int j = 0; j < QK_K/64; ++j) {
  5665. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
  5666. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5667. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5668. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5669. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5670. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  5671. q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
  5672. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5673. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5674. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5675. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  5676. }
  5677. sumf += d * (sumi1 + sumi2);
  5678. }
  5679. *s = sumf;
  5680. #elif defined __AVX2__
  5681. const __m256i m4 = _mm256_set1_epi8(0xF);
  5682. __m256 acc = _mm256_setzero_ps();
  5683. __m128 acc_m = _mm_setzero_ps();
  5684. for (int i = 0; i < nb; ++i) {
  5685. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5686. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5687. memcpy(utmp, x[i].scales, 12);
  5688. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5689. const uint32_t uaux = utmp[1] & kmask1;
  5690. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5691. utmp[2] = uaux;
  5692. utmp[0] &= kmask1;
  5693. const uint8_t * restrict q4 = x[i].qs;
  5694. const int8_t * restrict q8 = y[i].qs;
  5695. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  5696. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  5697. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  5698. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  5699. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  5700. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  5701. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  5702. __m256i sumi = _mm256_setzero_si256();
  5703. for (int j = 0; j < QK_K/64; ++j) {
  5704. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  5705. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  5706. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  5707. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5708. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5709. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5710. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5711. p16l = _mm256_madd_epi16(scale_l, p16l);
  5712. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  5713. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5714. p16h = _mm256_madd_epi16(scale_h, p16h);
  5715. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  5716. sumi = _mm256_add_epi32(sumi, sumj);
  5717. }
  5718. __m256 vd = _mm256_set1_ps(d);
  5719. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  5720. }
  5721. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5722. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5723. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5724. #elif defined __AVX__
  5725. const __m128i m4 = _mm_set1_epi8(0xF);
  5726. const __m128i m2 = _mm_set1_epi8(0x2);
  5727. __m256 acc = _mm256_setzero_ps();
  5728. __m128 acc_m = _mm_setzero_ps();
  5729. for (int i = 0; i < nb; ++i) {
  5730. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5731. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5732. const uint8_t * restrict q4 = x[i].qs;
  5733. const int8_t * restrict q8 = y[i].qs;
  5734. memcpy(utmp, x[i].scales, 12);
  5735. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5736. const uint32_t uaux = utmp[1] & kmask1;
  5737. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5738. utmp[2] = uaux;
  5739. utmp[0] &= kmask1;
  5740. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  5741. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  5742. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  5743. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  5744. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  5745. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  5746. const __m128i prod = _mm_madd_epi16(mins, q8s);
  5747. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  5748. __m128i sumi_0 = _mm_setzero_si128();
  5749. __m128i sumi_1 = _mm_setzero_si128();
  5750. __m128i shuffle = _mm_set1_epi16(0x0100);
  5751. for (int j = 0; j < QK_K/64; ++j) {
  5752. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  5753. shuffle = _mm_add_epi16(shuffle, m2);
  5754. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  5755. shuffle = _mm_add_epi16(shuffle, m2);
  5756. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5757. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  5758. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5759. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  5760. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  5761. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  5762. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5763. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  5764. p16l = _mm_madd_epi16(scale_l, p16l);
  5765. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  5766. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5767. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  5768. p16l = _mm_madd_epi16(scale_l, p16l);
  5769. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  5770. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5771. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  5772. p16h = _mm_madd_epi16(scale_h, p16h);
  5773. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  5774. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  5775. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  5776. p16h = _mm_madd_epi16(scale_h, p16h);
  5777. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  5778. }
  5779. __m256 vd = _mm256_set1_ps(d);
  5780. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  5781. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  5782. }
  5783. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  5784. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  5785. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  5786. #elif defined __riscv_v_intrinsic
  5787. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5788. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5789. float sumf = 0;
  5790. for (int i = 0; i < nb; ++i) {
  5791. size_t vl = 8;
  5792. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  5793. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  5794. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  5795. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  5796. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  5797. memcpy(utmp, x[i].scales, 12);
  5798. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5799. const uint32_t uaux = utmp[1] & kmask1;
  5800. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5801. utmp[2] = uaux;
  5802. utmp[0] &= kmask1;
  5803. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  5804. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  5805. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  5806. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  5807. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  5808. const uint8_t * restrict q4 = x[i].qs;
  5809. const int8_t * restrict q8 = y[i].qs;
  5810. vl = 32;
  5811. int32_t sum_1 = 0;
  5812. int32_t sum_2 = 0;
  5813. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  5814. for (int j = 0; j < QK_K/64; ++j) {
  5815. // load Q4
  5816. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  5817. // load Q8 and multiply it with lower Q4 nibble
  5818. vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl);
  5819. vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  5820. vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl);
  5821. vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl);
  5822. sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0];
  5823. // load Q8 and multiply it with upper Q4 nibble
  5824. vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl);
  5825. vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  5826. vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl);
  5827. vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl);
  5828. sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1];
  5829. q4 += 32; q8 += 64;
  5830. }
  5831. sumf += d*(sum_1 + sum_2);
  5832. }
  5833. *s = sumf;
  5834. #else
  5835. const uint8_t * scales = (const uint8_t*)&utmp[0];
  5836. const uint8_t * mins = (const uint8_t*)&utmp[2];
  5837. int8_t aux8[QK_K];
  5838. int16_t aux16[8];
  5839. float sums [8];
  5840. int32_t aux32[8];
  5841. memset(sums, 0, 8*sizeof(float));
  5842. float sumf = 0;
  5843. for (int i = 0; i < nb; ++i) {
  5844. const uint8_t * restrict q4 = x[i].qs;
  5845. const int8_t * restrict q8 = y[i].qs;
  5846. memset(aux32, 0, 8*sizeof(int32_t));
  5847. int8_t * restrict a = aux8;
  5848. for (int j = 0; j < QK_K/64; ++j) {
  5849. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  5850. a += 32;
  5851. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  5852. a += 32; q4 += 32;
  5853. }
  5854. memcpy(utmp, x[i].scales, 12);
  5855. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  5856. const uint32_t uaux = utmp[1] & kmask1;
  5857. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  5858. utmp[2] = uaux;
  5859. utmp[0] &= kmask1;
  5860. int sumi = 0;
  5861. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  5862. a = aux8;
  5863. int is = 0;
  5864. for (int j = 0; j < QK_K/32; ++j) {
  5865. int32_t scale = scales[is++];
  5866. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5867. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5868. q8 += 8; a += 8;
  5869. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5870. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5871. q8 += 8; a += 8;
  5872. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5873. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5874. q8 += 8; a += 8;
  5875. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  5876. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  5877. q8 += 8; a += 8;
  5878. }
  5879. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  5880. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  5881. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  5882. sumf -= dmin * sumi;
  5883. }
  5884. for (int l = 0; l < 8; ++l) sumf += sums[l];
  5885. *s = sumf;
  5886. #endif
  5887. }
  5888. #else
  5889. void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  5890. assert(n % QK_K == 0);
  5891. assert(nrc == 1);
  5892. UNUSED(nrc);
  5893. UNUSED(bx);
  5894. UNUSED(by);
  5895. UNUSED(bs);
  5896. const block_q4_K * restrict x = vx;
  5897. const block_q8_K * restrict y = vy;
  5898. const int nb = n / QK_K;
  5899. #ifdef __ARM_NEON
  5900. const uint8x16_t m4b = vdupq_n_u8(0xf);
  5901. const int32x4_t mzero = vdupq_n_s32(0);
  5902. float sumf = 0;
  5903. ggml_int8x16x2_t q4bytes;
  5904. ggml_int8x16x4_t q8bytes;
  5905. float sum_mins = 0.f;
  5906. uint16_t aux16[2];
  5907. const uint8_t * restrict scales = (const uint8_t *)aux16;
  5908. for (int i = 0; i < nb; ++i) {
  5909. const uint8_t * restrict q4 = x[i].qs;
  5910. const int8_t * restrict q8 = y[i].qs;
  5911. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  5912. aux16[0] = a[0] & 0x0f0f;
  5913. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5914. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  5915. sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi;
  5916. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  5917. const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
  5918. q8bytes = ggml_vld1q_s8_x4(q8);
  5919. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  5920. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  5921. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  5922. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  5923. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  5924. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  5925. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  5926. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  5927. sumf += d * (sumi1 + sumi2);
  5928. }
  5929. *s = sumf - sum_mins;
  5930. #elif defined __AVX2__
  5931. const __m256i m4 = _mm256_set1_epi8(0xF);
  5932. __m256 acc = _mm256_setzero_ps();
  5933. float summs = 0;
  5934. uint16_t aux16[2];
  5935. const uint8_t * scales = (const uint8_t *)aux16;
  5936. for (int i = 0; i < nb; ++i) {
  5937. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5938. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5939. const __m256 vd = _mm256_set1_ps(d);
  5940. const uint16_t * a = (const uint16_t *)x[i].scales;
  5941. aux16[0] = a[0] & 0x0f0f;
  5942. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5943. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5944. const uint8_t * restrict q4 = x[i].qs;
  5945. const int8_t * restrict q8 = y[i].qs;
  5946. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5947. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  5948. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  5949. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5950. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  5951. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  5952. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  5953. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  5954. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  5955. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  5956. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  5957. }
  5958. *s = hsum_float_8(acc) - summs;
  5959. #elif defined __AVX__
  5960. const __m128i m4 = _mm_set1_epi8(0xF);
  5961. __m256 acc = _mm256_setzero_ps();
  5962. float summs = 0;
  5963. uint16_t aux16[2];
  5964. const uint8_t * scales = (const uint8_t *)aux16;
  5965. for (int i = 0; i < nb; ++i) {
  5966. const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d;
  5967. const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d;
  5968. const __m256 vd = _mm256_set1_ps(d);
  5969. const uint16_t * a = (const uint16_t *)x[i].scales;
  5970. aux16[0] = a[0] & 0x0f0f;
  5971. aux16[1] = (a[0] >> 4) & 0x0f0f;
  5972. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  5973. const uint8_t * restrict q4 = x[i].qs;
  5974. const int8_t * restrict q8 = y[i].qs;
  5975. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  5976. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  5977. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  5978. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  5979. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  5980. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  5981. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  5982. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  5983. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  5984. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  5985. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  5986. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  5987. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  5988. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  5989. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  5990. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  5991. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  5992. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  5993. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  5994. }
  5995. *s = hsum_float_8(acc) - summs;
  5996. #elif defined __riscv_v_intrinsic
  5997. uint16_t s16[2];
  5998. const uint8_t * restrict scales = (const uint8_t *)s16;
  5999. float sumf = 0;
  6000. for (int i = 0; i < nb; ++i) {
  6001. const uint8_t * restrict q4 = x[i].qs;
  6002. const int8_t * restrict q8 = y[i].qs;
  6003. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6004. s16[0] = b[0] & 0x0f0f;
  6005. s16[1] = (b[0] >> 4) & 0x0f0f;
  6006. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6007. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6008. size_t vl = 32;
  6009. vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1);
  6010. // load Q4
  6011. vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl);
  6012. // load Q8 and multiply it with lower Q4 nibble
  6013. vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl));
  6014. vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl);
  6015. vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl);
  6016. sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1);
  6017. // load Q8 and multiply it with upper Q4 nibble
  6018. vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl));
  6019. vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6020. vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl);
  6021. sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2);
  6022. }
  6023. *s = sumf;
  6024. #else
  6025. uint8_t aux8[QK_K];
  6026. int16_t aux16[16];
  6027. float sums [8];
  6028. memset(sums, 0, 8*sizeof(float));
  6029. uint16_t s16[2];
  6030. const uint8_t * restrict scales = (const uint8_t *)s16;
  6031. float sumf = 0;
  6032. for (int i = 0; i < nb; ++i) {
  6033. const uint8_t * restrict q4 = x[i].qs;
  6034. const int8_t * restrict q8 = y[i].qs;
  6035. uint8_t * restrict a = aux8;
  6036. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  6037. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  6038. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  6039. s16[0] = b[0] & 0x0f0f;
  6040. s16[1] = (b[0] >> 4) & 0x0f0f;
  6041. sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  6042. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]);
  6043. for (int j = 0; j < QK_K/32; ++j) {
  6044. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6045. q8 += 16; a += 16;
  6046. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  6047. q8 += 16; a += 16;
  6048. const float dl = d * scales[j];
  6049. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  6050. }
  6051. }
  6052. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6053. *s = sumf;
  6054. #endif
  6055. }
  6056. #endif
  6057. #if QK_K == 256
  6058. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6059. assert(n % QK_K == 0);
  6060. assert(nrc == 1);
  6061. UNUSED(nrc);
  6062. UNUSED(bx);
  6063. UNUSED(by);
  6064. UNUSED(bs);
  6065. const block_q5_K * restrict x = vx;
  6066. const block_q8_K * restrict y = vy;
  6067. const int nb = n / QK_K;
  6068. static const uint32_t kmask1 = 0x3f3f3f3f;
  6069. static const uint32_t kmask2 = 0x0f0f0f0f;
  6070. static const uint32_t kmask3 = 0x03030303;
  6071. uint32_t utmp[4];
  6072. #ifdef __ARM_NEON
  6073. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6074. const uint8x16_t mone = vdupq_n_u8(1);
  6075. const uint8x16_t mtwo = vdupq_n_u8(2);
  6076. const int32x4_t mzero = vdupq_n_s32(0);
  6077. ggml_int8x16x4_t q5bytes;
  6078. float sumf = 0;
  6079. for (int i = 0; i < nb; ++i) {
  6080. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6081. const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6082. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  6083. memcpy(utmp, x[i].scales, 12);
  6084. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6085. const uint32_t uaux = utmp[1] & kmask1;
  6086. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6087. utmp[2] = uaux;
  6088. utmp[0] &= kmask1;
  6089. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  6090. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  6091. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  6092. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  6093. int32_t sumi_mins = vaddvq_s32(prod);
  6094. const uint8_t * scales = (const uint8_t *)utmp;
  6095. const uint8_t * restrict q5 = x[i].qs;
  6096. const uint8_t * restrict qh = x[i].qh;
  6097. const int8_t * restrict q8 = y[i].qs;
  6098. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh);
  6099. ggml_uint8x16x4_t q5h;
  6100. int32_t sumi = 0;
  6101. for (int j = 0; j < QK_K/64; ++j) {
  6102. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32;
  6103. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6104. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6105. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6106. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  6107. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  6108. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  6109. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  6110. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  6111. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  6112. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  6113. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  6114. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  6115. sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  6116. }
  6117. sumf += d * sumi - dmin * sumi_mins;
  6118. }
  6119. *s = sumf;
  6120. #elif defined __AVX2__
  6121. const __m256i m4 = _mm256_set1_epi8(0xF);
  6122. const __m128i mzero = _mm_setzero_si128();
  6123. const __m256i mone = _mm256_set1_epi8(1);
  6124. __m256 acc = _mm256_setzero_ps();
  6125. float summs = 0.f;
  6126. for (int i = 0; i < nb; ++i) {
  6127. const uint8_t * restrict q5 = x[i].qs;
  6128. const int8_t * restrict q8 = y[i].qs;
  6129. #if QK_K == 256
  6130. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6131. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6132. memcpy(utmp, x[i].scales, 12);
  6133. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6134. const uint32_t uaux = utmp[1] & kmask1;
  6135. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6136. utmp[2] = uaux;
  6137. utmp[0] &= kmask1;
  6138. #else
  6139. // TODO
  6140. const float d = 0, dmin = 0;
  6141. #endif
  6142. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  6143. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  6144. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  6145. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  6146. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6147. summs += dmin * _mm_extract_epi32(hsum, 0);
  6148. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  6149. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  6150. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  6151. __m256i hmask = mone;
  6152. __m256i sumi = _mm256_setzero_si256();
  6153. int bit = 0;
  6154. for (int j = 0; j < QK_K/64; ++j) {
  6155. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  6156. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  6157. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  6158. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6159. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6160. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  6161. hmask = _mm256_slli_epi16(hmask, 1);
  6162. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6163. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  6164. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  6165. hmask = _mm256_slli_epi16(hmask, 1);
  6166. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6167. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6168. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  6169. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  6170. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  6171. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  6172. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6173. }
  6174. __m256 vd = _mm256_set1_ps(d);
  6175. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  6176. }
  6177. *s = hsum_float_8(acc) + summs;
  6178. #elif defined __AVX__
  6179. const __m128i m4 = _mm_set1_epi8(0xF);
  6180. const __m128i mzero = _mm_setzero_si128();
  6181. const __m128i mone = _mm_set1_epi8(1);
  6182. const __m128i m2 = _mm_set1_epi8(2);
  6183. __m256 acc = _mm256_setzero_ps();
  6184. float summs = 0.f;
  6185. for (int i = 0; i < nb; ++i) {
  6186. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6187. const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
  6188. const uint8_t * restrict q5 = x[i].qs;
  6189. const int8_t * restrict q8 = y[i].qs;
  6190. memcpy(utmp, x[i].scales, 12);
  6191. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6192. const uint32_t uaux = utmp[1] & kmask1;
  6193. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6194. utmp[2] = uaux;
  6195. utmp[0] &= kmask1;
  6196. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  6197. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  6198. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  6199. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  6200. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  6201. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  6202. const __m128i prod = _mm_madd_epi16(mins, q8s);
  6203. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  6204. summs += dmin * _mm_extract_epi32(hsum, 0);
  6205. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  6206. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  6207. __m128i hmask = mone;
  6208. __m128i sumi_0 = _mm_setzero_si128();
  6209. __m128i sumi_1 = _mm_setzero_si128();
  6210. int bit = 0;
  6211. __m128i shuffle = _mm_set1_epi16(0x0100);
  6212. for (int j = 0; j < QK_K/64; ++j) {
  6213. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6214. shuffle = _mm_add_epi16(shuffle, m2);
  6215. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6216. shuffle = _mm_add_epi16(shuffle, m2);
  6217. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6218. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  6219. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  6220. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  6221. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6222. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6223. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6224. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6225. hmask = _mm_slli_epi16(hmask, 1);
  6226. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6227. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6228. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  6229. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  6230. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  6231. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  6232. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  6233. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  6234. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  6235. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  6236. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  6237. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  6238. hmask = _mm_slli_epi16(hmask, 1);
  6239. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6240. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6241. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  6242. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  6243. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  6244. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  6245. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6246. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6247. }
  6248. __m256 vd = _mm256_set1_ps(d);
  6249. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6250. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  6251. }
  6252. *s = hsum_float_8(acc) + summs;
  6253. #elif defined __riscv_v_intrinsic
  6254. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6255. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6256. float sumf = 0;
  6257. float sums = 0.0;
  6258. size_t vl;
  6259. for (int i = 0; i < nb; ++i) {
  6260. vl = 8;
  6261. const uint8_t * restrict q5 = x[i].qs;
  6262. const uint8_t * restrict hm = x[i].qh;
  6263. const int8_t * restrict q8 = y[i].qs;
  6264. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6265. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6266. vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl);
  6267. vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl);
  6268. vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl);
  6269. memcpy(utmp, x[i].scales, 12);
  6270. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6271. const uint32_t uaux = utmp[1] & kmask1;
  6272. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6273. utmp[2] = uaux;
  6274. utmp[0] &= kmask1;
  6275. vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl);
  6276. vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl));
  6277. vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl);
  6278. vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl);
  6279. sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi);
  6280. vl = 32;
  6281. int32_t aux32 = 0;
  6282. int is = 0;
  6283. uint8_t m = 1;
  6284. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6285. vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl);
  6286. for (int j = 0; j < QK_K/64; ++j) {
  6287. // load Q5 and Q8
  6288. vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl);
  6289. vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl);
  6290. vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl);
  6291. // compute mask for addition
  6292. vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl));
  6293. vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6294. vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl);
  6295. vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl);
  6296. m <<= 1;
  6297. vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl));
  6298. vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl);
  6299. vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl);
  6300. vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl);
  6301. m <<= 1;
  6302. vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl);
  6303. vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl);
  6304. vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl);
  6305. vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl);
  6306. vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl);
  6307. vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl);
  6308. aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2);
  6309. q5 += 32; q8 += 64;
  6310. }
  6311. vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1);
  6312. sums += __riscv_vfmv_f_s_f32m1_f32(vaux);
  6313. }
  6314. *s = sumf+sums;
  6315. #else
  6316. const uint8_t * scales = (const uint8_t*)&utmp[0];
  6317. const uint8_t * mins = (const uint8_t*)&utmp[2];
  6318. int8_t aux8[QK_K];
  6319. int16_t aux16[8];
  6320. float sums [8];
  6321. int32_t aux32[8];
  6322. memset(sums, 0, 8*sizeof(float));
  6323. float sumf = 0;
  6324. for (int i = 0; i < nb; ++i) {
  6325. const uint8_t * restrict q4 = x[i].qs;
  6326. const uint8_t * restrict hm = x[i].qh;
  6327. const int8_t * restrict q8 = y[i].qs;
  6328. memset(aux32, 0, 8*sizeof(int32_t));
  6329. int8_t * restrict a = aux8;
  6330. uint8_t m = 1;
  6331. for (int j = 0; j < QK_K/64; ++j) {
  6332. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  6333. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6334. a += 32; m <<= 1;
  6335. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  6336. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  6337. a += 32; m <<= 1;
  6338. q4 += 32;
  6339. }
  6340. memcpy(utmp, x[i].scales, 12);
  6341. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  6342. const uint32_t uaux = utmp[1] & kmask1;
  6343. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  6344. utmp[2] = uaux;
  6345. utmp[0] &= kmask1;
  6346. int sumi = 0;
  6347. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  6348. a = aux8;
  6349. int is = 0;
  6350. for (int j = 0; j < QK_K/32; ++j) {
  6351. int32_t scale = scales[is++];
  6352. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6353. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6354. q8 += 8; a += 8;
  6355. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6356. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6357. q8 += 8; a += 8;
  6358. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6359. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6360. q8 += 8; a += 8;
  6361. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6362. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6363. q8 += 8; a += 8;
  6364. }
  6365. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6366. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6367. const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d;
  6368. sumf -= dmin * sumi;
  6369. }
  6370. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6371. *s = sumf;
  6372. #endif
  6373. }
  6374. #else
  6375. void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6376. assert(n % QK_K == 0);
  6377. assert(nrc == 1);
  6378. UNUSED(nrc);
  6379. UNUSED(bx);
  6380. UNUSED(by);
  6381. UNUSED(bs);
  6382. const block_q5_K * restrict x = vx;
  6383. const block_q8_K * restrict y = vy;
  6384. const int nb = n / QK_K;
  6385. #ifdef __ARM_NEON
  6386. const uint8x16_t m4b = vdupq_n_u8(0xf);
  6387. const uint8x16_t mh = vdupq_n_u8(16);
  6388. const int32x4_t mzero = vdupq_n_s32(0);
  6389. ggml_int8x16x4_t q5bytes;
  6390. ggml_uint8x16x4_t q5h;
  6391. float sumf = 0;
  6392. for (int i = 0; i < nb; ++i) {
  6393. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6394. const int8_t * sc = x[i].scales;
  6395. const uint8_t * restrict q5 = x[i].qs;
  6396. const uint8_t * restrict qh = x[i].qh;
  6397. const int8_t * restrict q8 = y[i].qs;
  6398. const uint8x8_t qhbits = vld1_u8(qh);
  6399. const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5);
  6400. const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6401. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  6402. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  6403. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  6404. q5h.val[2] = vbicq_u8(mh, htmp);
  6405. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  6406. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  6407. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  6408. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  6409. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  6410. int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  6411. int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  6412. int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  6413. int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  6414. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6415. }
  6416. *s = sumf;
  6417. #elif defined __AVX2__
  6418. const __m256i m4 = _mm256_set1_epi8(0xF);
  6419. const __m256i mone = _mm256_set1_epi8(1);
  6420. __m256 acc = _mm256_setzero_ps();
  6421. for (int i = 0; i < nb; ++i) {
  6422. const uint8_t * restrict q5 = x[i].qs;
  6423. const int8_t * restrict q8 = y[i].qs;
  6424. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6425. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6426. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  6427. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  6428. int64_t aux64;
  6429. memcpy(&aux64, x[i].qh, 8);
  6430. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  6431. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  6432. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  6433. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  6434. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  6435. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  6436. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6437. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6438. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  6439. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  6440. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  6441. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  6442. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  6443. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  6444. }
  6445. *s = hsum_float_8(acc);
  6446. #elif defined __AVX__
  6447. const __m128i m4 = _mm_set1_epi8(0xF);
  6448. const __m128i mone = _mm_set1_epi8(1);
  6449. __m256 acc = _mm256_setzero_ps();
  6450. for (int i = 0; i < nb; ++i) {
  6451. const uint8_t * restrict q5 = x[i].qs;
  6452. const int8_t * restrict q8 = y[i].qs;
  6453. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6454. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  6455. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  6456. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  6457. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  6458. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  6459. int64_t aux64;
  6460. memcpy(&aux64, x[i].qh, 8);
  6461. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  6462. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  6463. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  6464. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  6465. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  6466. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  6467. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  6468. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  6469. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  6470. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  6471. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6472. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6473. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  6474. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  6475. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  6476. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  6477. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  6478. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  6479. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  6480. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  6481. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  6482. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  6483. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  6484. }
  6485. *s = hsum_float_8(acc);
  6486. #elif defined __riscv_v_intrinsic
  6487. float sumf = 0;
  6488. for (int i = 0; i < nb; ++i) {
  6489. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6490. const int8_t * sc = x[i].scales;
  6491. const uint8_t * restrict q5 = x[i].qs;
  6492. const uint8_t * restrict qh = x[i].qh;
  6493. const int8_t * restrict q8 = y[i].qs;
  6494. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6495. // load qh
  6496. vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8);
  6497. vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8));
  6498. size_t vl = 16;
  6499. // combine both qh_1 and qh_2
  6500. vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl);
  6501. vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6502. vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl);
  6503. vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl);
  6504. vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl);
  6505. vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0);
  6506. vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1);
  6507. vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2);
  6508. vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3);
  6509. // load q5
  6510. vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl);
  6511. vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl);
  6512. vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl));
  6513. vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl));
  6514. vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl));
  6515. vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl));
  6516. vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl);
  6517. vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl);
  6518. vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl);
  6519. vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl);
  6520. // load Q8 and multiply it with Q5
  6521. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  6522. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  6523. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  6524. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  6525. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  6526. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  6527. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  6528. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  6529. int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0);
  6530. int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1);
  6531. int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2);
  6532. int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3);
  6533. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  6534. }
  6535. *s = sumf;
  6536. #else
  6537. int8_t aux8[QK_K];
  6538. int16_t aux16[16];
  6539. float sums [8];
  6540. memset(sums, 0, 8*sizeof(float));
  6541. float sumf = 0;
  6542. for (int i = 0; i < nb; ++i) {
  6543. const uint8_t * restrict q4 = x[i].qs;
  6544. const uint8_t * restrict hm = x[i].qh;
  6545. const int8_t * restrict q8 = y[i].qs;
  6546. int8_t * restrict a = aux8;
  6547. for (int l = 0; l < 32; ++l) {
  6548. a[l+ 0] = q4[l] & 0xF;
  6549. a[l+32] = q4[l] >> 4;
  6550. }
  6551. for (int is = 0; is < 8; ++is) {
  6552. uint8_t m = 1 << is;
  6553. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  6554. }
  6555. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6556. const int8_t * restrict sc = x[i].scales;
  6557. for (int j = 0; j < QK_K/16; ++j) {
  6558. const float dl = d * sc[j];
  6559. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  6560. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  6561. q8 += 16; a += 16;
  6562. }
  6563. }
  6564. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6565. *s = sumf;
  6566. #endif
  6567. }
  6568. #endif
  6569. #if QK_K == 256
  6570. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6571. assert(n % QK_K == 0);
  6572. assert(nrc == 1);
  6573. UNUSED(nrc);
  6574. UNUSED(bx);
  6575. UNUSED(by);
  6576. UNUSED(bs);
  6577. const block_q6_K * restrict x = vx;
  6578. const block_q8_K * restrict y = vy;
  6579. const int nb = n / QK_K;
  6580. #ifdef __ARM_NEON
  6581. float sum = 0;
  6582. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6583. const int32x4_t vzero = vdupq_n_s32(0);
  6584. //const int8x16_t m32s = vdupq_n_s8(32);
  6585. const uint8x16_t mone = vdupq_n_u8(3);
  6586. ggml_int8x16x4_t q6bytes;
  6587. ggml_uint8x16x4_t q6h;
  6588. for (int i = 0; i < nb; ++i) {
  6589. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6590. const uint8_t * restrict q6 = x[i].ql;
  6591. const uint8_t * restrict qh = x[i].qh;
  6592. const int8_t * restrict q8 = y[i].qs;
  6593. const int8_t * restrict scale = x[i].scales;
  6594. const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums);
  6595. const int8x16_t scales = vld1q_s8(scale);
  6596. const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}};
  6597. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  6598. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  6599. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  6600. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  6601. int32_t isum_mins = vaddvq_s32(prod);
  6602. int32_t isum = 0;
  6603. for (int j = 0; j < QK_K/128; ++j) {
  6604. ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32;
  6605. ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64;
  6606. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6607. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  6608. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  6609. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  6610. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6611. shifted = vshrq_n_u8(qhbits.val[1], 2);
  6612. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6613. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6614. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6615. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  6616. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  6617. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  6618. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  6619. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  6620. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  6621. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6622. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6623. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6624. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6625. scale += 4;
  6626. q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
  6627. shifted = vshrq_n_u8(qhbits.val[0], 4);
  6628. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6629. shifted = vshrq_n_u8(qhbits.val[1], 4);
  6630. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6631. shifted = vshrq_n_u8(qhbits.val[0], 6);
  6632. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6633. shifted = vshrq_n_u8(qhbits.val[1], 6);
  6634. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6635. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  6636. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  6637. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  6638. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  6639. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  6640. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  6641. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  6642. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  6643. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6644. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6645. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6646. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6647. scale += 4;
  6648. }
  6649. //sum += isum * d_all * y[i].d;
  6650. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  6651. }
  6652. *s = sum;
  6653. #elif defined __AVX2__
  6654. const __m256i m4 = _mm256_set1_epi8(0xF);
  6655. const __m256i m2 = _mm256_set1_epi8(3);
  6656. const __m256i m32s = _mm256_set1_epi8(32);
  6657. __m256 acc = _mm256_setzero_ps();
  6658. for (int i = 0; i < nb; ++i) {
  6659. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6660. const uint8_t * restrict q4 = x[i].ql;
  6661. const uint8_t * restrict qh = x[i].qh;
  6662. const int8_t * restrict q8 = y[i].qs;
  6663. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6664. __m256i sumi = _mm256_setzero_si256();
  6665. int is = 0;
  6666. for (int j = 0; j < QK_K/128; ++j) {
  6667. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  6668. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  6669. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  6670. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  6671. is += 4;
  6672. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6673. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  6674. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  6675. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  6676. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  6677. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  6678. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  6679. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6680. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  6681. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  6682. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  6683. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6684. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6685. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6686. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  6687. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6688. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6689. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  6690. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  6691. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6692. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6693. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  6694. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  6695. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6696. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6697. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  6698. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  6699. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6700. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6701. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  6702. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  6703. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6704. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  6705. }
  6706. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6707. }
  6708. *s = hsum_float_8(acc);
  6709. #elif defined __AVX__
  6710. const __m128i m4 = _mm_set1_epi8(0xF);
  6711. const __m128i m3 = _mm_set1_epi8(3);
  6712. const __m128i m32s = _mm_set1_epi8(32);
  6713. const __m128i m2 = _mm_set1_epi8(2);
  6714. __m256 acc = _mm256_setzero_ps();
  6715. for (int i = 0; i < nb; ++i) {
  6716. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6717. const uint8_t * restrict q4 = x[i].ql;
  6718. const uint8_t * restrict qh = x[i].qh;
  6719. const int8_t * restrict q8 = y[i].qs;
  6720. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  6721. __m128i sumi_0 = _mm_setzero_si128();
  6722. __m128i sumi_1 = _mm_setzero_si128();
  6723. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  6724. for (int j = 0; j < QK_K/128; ++j) {
  6725. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6726. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  6727. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  6728. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  6729. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  6730. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  6731. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  6732. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  6733. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  6734. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  6735. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6736. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6737. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6738. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  6739. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  6740. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  6741. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  6742. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  6743. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  6744. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  6745. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  6746. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  6747. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6748. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6749. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6750. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6751. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6752. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6753. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6754. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  6755. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  6756. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  6757. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  6758. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  6759. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  6760. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  6761. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  6762. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  6763. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  6764. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  6765. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  6766. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  6767. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  6768. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  6769. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  6770. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  6771. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  6772. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  6773. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  6774. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  6775. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  6776. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  6777. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  6778. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  6779. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  6780. shuffle = _mm_add_epi8(shuffle, m2);
  6781. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  6782. shuffle = _mm_add_epi8(shuffle, m2);
  6783. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  6784. shuffle = _mm_add_epi8(shuffle, m2);
  6785. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  6786. shuffle = _mm_add_epi8(shuffle, m2);
  6787. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  6788. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  6789. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  6790. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  6791. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  6792. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  6793. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  6794. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  6795. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  6796. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  6797. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  6798. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  6799. }
  6800. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  6801. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  6802. }
  6803. *s = hsum_float_8(acc);
  6804. #elif defined __riscv_v_intrinsic
  6805. float sumf = 0;
  6806. for (int i = 0; i < nb; ++i) {
  6807. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6808. const uint8_t * restrict q6 = x[i].ql;
  6809. const uint8_t * restrict qh = x[i].qh;
  6810. const int8_t * restrict q8 = y[i].qs;
  6811. const int8_t * restrict scale = x[i].scales;
  6812. size_t vl;
  6813. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  6814. int sum_t = 0;
  6815. int is = 0;
  6816. for (int j = 0; j < QK_K/128; ++j) {
  6817. vl = 32;
  6818. // load qh
  6819. vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl);
  6820. // load Q6
  6821. vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl);
  6822. vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl);
  6823. vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl);
  6824. vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl);
  6825. vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl);
  6826. vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl);
  6827. vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl);
  6828. vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl);
  6829. vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl);
  6830. vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl);
  6831. vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl);
  6832. vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl);
  6833. vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl);
  6834. vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl);
  6835. vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl);
  6836. vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl);
  6837. vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl);
  6838. vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl);
  6839. // load Q8 and take product
  6840. vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl);
  6841. vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl);
  6842. vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl);
  6843. vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl);
  6844. vl = 16;
  6845. vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl);
  6846. vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl);
  6847. vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl);
  6848. vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl);
  6849. vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl);
  6850. vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl);
  6851. vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl);
  6852. vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl);
  6853. vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl);
  6854. vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl);
  6855. vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl);
  6856. vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl);
  6857. sum_t += __riscv_vmv_x_s_i32m1_i32(isum3);
  6858. q6 += 64; qh += 32; q8 += 128; is=8;
  6859. }
  6860. sumf += d * sum_t;
  6861. }
  6862. *s = sumf;
  6863. #else
  6864. int8_t aux8[QK_K];
  6865. int16_t aux16[8];
  6866. float sums [8];
  6867. int32_t aux32[8];
  6868. memset(sums, 0, 8*sizeof(float));
  6869. float sumf = 0;
  6870. for (int i = 0; i < nb; ++i) {
  6871. const uint8_t * restrict q4 = x[i].ql;
  6872. const uint8_t * restrict qh = x[i].qh;
  6873. const int8_t * restrict q8 = y[i].qs;
  6874. memset(aux32, 0, 8*sizeof(int32_t));
  6875. int8_t * restrict a = aux8;
  6876. for (int j = 0; j < QK_K; j += 128) {
  6877. for (int l = 0; l < 32; ++l) {
  6878. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  6879. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  6880. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  6881. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  6882. }
  6883. a += 128;
  6884. q4 += 64;
  6885. qh += 32;
  6886. }
  6887. a = aux8;
  6888. int is = 0;
  6889. for (int j = 0; j < QK_K/16; ++j) {
  6890. int scale = x[i].scales[is++];
  6891. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6892. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6893. q8 += 8; a += 8;
  6894. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  6895. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  6896. q8 += 8; a += 8;
  6897. }
  6898. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  6899. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  6900. }
  6901. for (int l = 0; l < 8; ++l) sumf += sums[l];
  6902. *s = sumf;
  6903. #endif
  6904. }
  6905. #else
  6906. void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  6907. assert(n % QK_K == 0);
  6908. assert(nrc == 1);
  6909. UNUSED(nrc);
  6910. UNUSED(bx);
  6911. UNUSED(by);
  6912. UNUSED(bs);
  6913. const block_q6_K * restrict x = vx;
  6914. const block_q8_K * restrict y = vy;
  6915. const int nb = n / QK_K;
  6916. #ifdef __ARM_NEON
  6917. float sum = 0;
  6918. const uint8x16_t m4b = vdupq_n_u8(0xF);
  6919. const int8x16_t m32s = vdupq_n_s8(32);
  6920. const int32x4_t vzero = vdupq_n_s32(0);
  6921. const uint8x16_t mone = vdupq_n_u8(3);
  6922. ggml_int8x16x4_t q6bytes;
  6923. ggml_uint8x16x4_t q6h;
  6924. for (int i = 0; i < nb; ++i) {
  6925. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  6926. const uint8_t * restrict q6 = x[i].ql;
  6927. const uint8_t * restrict qh = x[i].qh;
  6928. const int8_t * restrict q8 = y[i].qs;
  6929. const int8_t * restrict scale = x[i].scales;
  6930. int32_t isum = 0;
  6931. uint8x16_t qhbits = vld1q_u8(qh);
  6932. ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6);
  6933. ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8);
  6934. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  6935. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  6936. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6937. shifted = vshrq_n_u8(qhbits, 4);
  6938. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6939. shifted = vshrq_n_u8(qhbits, 6);
  6940. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  6941. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  6942. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  6943. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  6944. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  6945. isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  6946. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  6947. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  6948. vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  6949. sum += isum * d_all * y[i].d;
  6950. }
  6951. *s = sum;
  6952. #elif defined __AVX2__
  6953. const __m256i m4 = _mm256_set1_epi8(0xF);
  6954. const __m256i m2 = _mm256_set1_epi8(3);
  6955. const __m256i m32s = _mm256_set1_epi8(32);
  6956. __m256 acc = _mm256_setzero_ps();
  6957. for (int i = 0; i < nb; ++i) {
  6958. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6959. const uint8_t * restrict q4 = x[i].ql;
  6960. const uint8_t * restrict qh = x[i].qh;
  6961. const int8_t * restrict q8 = y[i].qs;
  6962. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  6963. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  6964. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  6965. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  6966. __m256i sumi = _mm256_setzero_si256();
  6967. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  6968. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  6969. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  6970. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  6971. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  6972. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  6973. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  6974. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  6975. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  6976. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  6977. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  6978. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  6979. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  6980. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  6981. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  6982. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  6983. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  6984. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  6985. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  6986. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  6987. }
  6988. *s = hsum_float_8(acc);
  6989. #elif defined __AVX__
  6990. const __m128i m4 = _mm_set1_epi8(0xF);
  6991. const __m128i m2 = _mm_set1_epi8(3);
  6992. const __m128i m32s = _mm_set1_epi8(32);
  6993. __m256 acc = _mm256_setzero_ps();
  6994. for (int i = 0; i < nb; ++i) {
  6995. const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
  6996. const uint8_t * restrict q4 = x[i].ql;
  6997. const uint8_t * restrict qh = x[i].qh;
  6998. const int8_t * restrict q8 = y[i].qs;
  6999. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  7000. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  7001. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  7002. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  7003. __m128i sumi_0 = _mm_setzero_si128();
  7004. __m128i sumi_1 = _mm_setzero_si128();
  7005. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  7006. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  7007. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  7008. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  7009. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  7010. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  7011. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  7012. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  7013. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  7014. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  7015. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  7016. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  7017. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  7018. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  7019. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  7020. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  7021. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  7022. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  7023. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  7024. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  7025. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  7026. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  7027. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  7028. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  7029. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  7030. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  7031. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  7032. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  7033. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  7034. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  7035. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  7036. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  7037. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  7038. }
  7039. *s = hsum_float_8(acc);
  7040. #elif defined __riscv_v_intrinsic
  7041. float sumf = 0;
  7042. for (int i = 0; i < nb; ++i) {
  7043. const float d_all = GGML_FP16_TO_FP32(x[i].d);
  7044. const uint8_t * restrict q6 = x[i].ql;
  7045. const uint8_t * restrict qh = x[i].qh;
  7046. const int8_t * restrict q8 = y[i].qs;
  7047. const int8_t * restrict scale = x[i].scales;
  7048. int32_t isum = 0;
  7049. size_t vl = 16;
  7050. vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1);
  7051. // load Q6
  7052. vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl);
  7053. vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl);
  7054. // load qh
  7055. vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl);
  7056. vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7057. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7058. vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7059. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7060. vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7061. qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl);
  7062. vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl);
  7063. vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl);
  7064. vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl);
  7065. vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl);
  7066. vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl);
  7067. vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl);
  7068. vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl);
  7069. vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl);
  7070. vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl);
  7071. // load Q8 and take product
  7072. vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl);
  7073. vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl);
  7074. vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl);
  7075. vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl);
  7076. vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl);
  7077. vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl);
  7078. vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl);
  7079. vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl);
  7080. isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0];
  7081. isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1];
  7082. isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2];
  7083. isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3];
  7084. sumf += isum * d_all * y[i].d;
  7085. }
  7086. *s = sumf;
  7087. #else
  7088. int8_t aux8[QK_K];
  7089. int16_t aux16[8];
  7090. float sums [8];
  7091. int32_t aux32[8];
  7092. memset(sums, 0, 8*sizeof(float));
  7093. float sumf = 0;
  7094. for (int i = 0; i < nb; ++i) {
  7095. const uint8_t * restrict q4 = x[i].ql;
  7096. const uint8_t * restrict qh = x[i].qh;
  7097. const int8_t * restrict q8 = y[i].qs;
  7098. memset(aux32, 0, 8*sizeof(int32_t));
  7099. int8_t * restrict a = aux8;
  7100. for (int l = 0; l < 16; ++l) {
  7101. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  7102. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  7103. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  7104. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  7105. }
  7106. int is = 0;
  7107. for (int j = 0; j < QK_K/16; ++j) {
  7108. int scale = x[i].scales[is++];
  7109. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7110. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7111. q8 += 8; a += 8;
  7112. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  7113. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  7114. q8 += 8; a += 8;
  7115. }
  7116. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7117. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  7118. }
  7119. for (int l = 0; l < 8; ++l) sumf += sums[l];
  7120. *s = sumf;
  7121. #endif
  7122. }
  7123. #endif
  7124. #if defined (__AVX2__) || defined (__ARM_NEON)
  7125. static const int8_t keven_signs_q2xs[1024] = {
  7126. 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1,
  7127. 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1,
  7128. 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1,
  7129. 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1,
  7130. 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1,
  7131. 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1,
  7132. 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1,
  7133. 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1,
  7134. 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1,
  7135. 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1,
  7136. 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1,
  7137. 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1,
  7138. 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1,
  7139. 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1,
  7140. 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1,
  7141. 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1,
  7142. 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1,
  7143. 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1,
  7144. 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1,
  7145. 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1,
  7146. 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1,
  7147. 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1,
  7148. 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1,
  7149. 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1,
  7150. 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1,
  7151. 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1,
  7152. 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1,
  7153. 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1,
  7154. 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1,
  7155. 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1,
  7156. 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1,
  7157. 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
  7158. };
  7159. #endif
  7160. void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7161. assert(n % QK_K == 0);
  7162. assert(nrc == 1);
  7163. UNUSED(nrc);
  7164. UNUSED(bx);
  7165. UNUSED(by);
  7166. UNUSED(bs);
  7167. const block_iq2_xxs * restrict x = vx;
  7168. const block_q8_K * restrict y = vy;
  7169. const int nb = n / QK_K;
  7170. #if defined(__ARM_NEON)
  7171. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7172. uint32_t aux32[4];
  7173. const uint8_t * aux8 = (const uint8_t *)aux32;
  7174. ggml_int8x16x4_t q2u;
  7175. ggml_int8x16x4_t q2s;
  7176. ggml_int8x16x4_t q8b;
  7177. float sumf = 0;
  7178. for (int i = 0; i < nb; ++i) {
  7179. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7180. const uint16_t * restrict q2 = x[i].qs;
  7181. const int8_t * restrict q8 = y[i].qs;
  7182. float sumf1 = 0, sumf2 = 0;
  7183. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7184. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7185. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7186. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1])));
  7187. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3])));
  7188. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9])));
  7189. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11])));
  7190. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7191. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7192. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127))));
  7193. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127))));
  7194. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7195. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7196. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7197. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7198. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]);
  7199. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]);
  7200. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28));
  7201. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28));
  7202. }
  7203. sumf += d*(sumf1 + sumf2);
  7204. }
  7205. *s = 0.25f * sumf;
  7206. #elif defined(__AVX2__)
  7207. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7208. uint32_t aux32[4];
  7209. const uint8_t * aux8 = (const uint8_t *)aux32;
  7210. __m256 accumf = _mm256_setzero_ps();
  7211. for (int i = 0; i < nb; ++i) {
  7212. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7213. const uint16_t * restrict q2 = x[i].qs;
  7214. const int8_t * restrict q8 = y[i].qs;
  7215. __m256i sumi1 = _mm256_setzero_si256();
  7216. __m256i sumi2 = _mm256_setzero_si256();
  7217. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7218. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7219. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7220. memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8;
  7221. const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]);
  7222. const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]);
  7223. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7224. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7225. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127],
  7226. signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]);
  7227. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7228. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7229. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7230. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7231. const uint16_t ls1 = aux32[1] >> 28;
  7232. const uint16_t ls2 = aux32[3] >> 28;
  7233. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7234. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7235. sumi1 = _mm256_add_epi32(sumi1, p1);
  7236. sumi2 = _mm256_add_epi32(sumi2, p2);
  7237. }
  7238. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7239. }
  7240. *s = 0.125f * hsum_float_8(accumf);
  7241. #else
  7242. uint32_t aux32[2];
  7243. const uint8_t * aux8 = (const uint8_t *)aux32;
  7244. float sumf = 0.f;
  7245. for (int i = 0; i < nb; ++i) {
  7246. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7247. const uint16_t * restrict q2 = x[i].qs;
  7248. const int8_t * restrict q8 = y[i].qs;
  7249. int32_t bsum = 0;
  7250. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7251. memcpy(aux32, q2, 2*sizeof(uint32_t));
  7252. q2 += 4;
  7253. const uint32_t ls = 2*(aux32[1] >> 28) + 1;
  7254. int32_t sumi = 0;
  7255. for (int l = 0; l < 4; ++l) {
  7256. const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]);
  7257. const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127];
  7258. for (int j = 0; j < 8; ++j) {
  7259. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7260. }
  7261. q8 += 8;
  7262. }
  7263. bsum += sumi * ls;
  7264. }
  7265. sumf += d * bsum;
  7266. }
  7267. *s = 0.125f * sumf;
  7268. #endif
  7269. }
  7270. void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7271. assert(n % QK_K == 0);
  7272. assert(nrc == 1);
  7273. UNUSED(nrc);
  7274. UNUSED(bx);
  7275. UNUSED(by);
  7276. UNUSED(bs);
  7277. const block_iq2_xs * restrict x = vx;
  7278. const block_q8_K * restrict y = vy;
  7279. const int nb = n / QK_K;
  7280. #if defined(__ARM_NEON)
  7281. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7282. ggml_int8x16x4_t q2u;
  7283. ggml_int8x16x4_t q2s;
  7284. ggml_int8x16x4_t q8b;
  7285. int32x4x4_t scales32;
  7286. float sumf = 0;
  7287. for (int i = 0; i < nb; ++i) {
  7288. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7289. const uint16_t * restrict q2 = x[i].qs;
  7290. const int8_t * restrict q8 = y[i].qs;
  7291. const uint8x8_t scales8 = vld1_u8(x[i].scales);
  7292. const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf));
  7293. const uint8x8_t scales_h = vshr_n_u8(scales8, 4);
  7294. uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h));
  7295. scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1));
  7296. const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales));
  7297. const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales));
  7298. scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1)));
  7299. scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1)));
  7300. scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2)));
  7301. scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2)));
  7302. int32x4_t sumi = vdupq_n_s32(0);
  7303. for (int ib64 = 0; ib64 < QK_K/64; ++ib64) {
  7304. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7305. q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511))));
  7306. q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511))));
  7307. q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511))));
  7308. q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511))));
  7309. q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9))));
  7310. q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9))));
  7311. q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9))));
  7312. q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9))));
  7313. q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]);
  7314. q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]);
  7315. q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]);
  7316. q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]);
  7317. const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]);
  7318. const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]);
  7319. const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]);
  7320. const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]);
  7321. const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4));
  7322. sumi = vmlaq_s32(sumi, p, scales32.val[ib64]);
  7323. q2 += 8;
  7324. }
  7325. sumf += d*vaddvq_s32(sumi);
  7326. }
  7327. *s = 0.125f * sumf;
  7328. #elif defined(__AVX2__)
  7329. const __m128i m4 = _mm_set1_epi8(0xf);
  7330. const __m128i m1 = _mm_set1_epi8(1);
  7331. const __m256i m511 = _mm256_set1_epi16(511);
  7332. const __m256i mone = _mm256_set1_epi8(1);
  7333. static const uint8_t k_bit_helper[32] = {
  7334. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7335. 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
  7336. };
  7337. static const char block_sign_shuffle_mask_1[32] = {
  7338. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
  7339. 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
  7340. };
  7341. static const char block_sign_shuffle_mask_2[32] = {
  7342. 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
  7343. 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
  7344. };
  7345. static const uint8_t bit_selector_mask_bytes[32] = {
  7346. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7347. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7348. };
  7349. const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
  7350. const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
  7351. const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
  7352. const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
  7353. uint64_t aux64;
  7354. // somewhat hacky, but gives a significant boost in performance
  7355. __m256i aux_gindex;
  7356. const uint16_t * gindex = (const uint16_t *)&aux_gindex;
  7357. __m256 accumf = _mm256_setzero_ps();
  7358. for (int i = 0; i < nb; ++i) {
  7359. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7360. const uint16_t * restrict q2 = x[i].qs;
  7361. const int8_t * restrict q8 = y[i].qs;
  7362. memcpy(&aux64, x[i].scales, 8);
  7363. __m128i stmp = _mm_set1_epi64x(aux64);
  7364. stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4));
  7365. const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1);
  7366. __m256i sumi1 = _mm256_setzero_si256();
  7367. __m256i sumi2 = _mm256_setzero_si256();
  7368. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
  7369. const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
  7370. aux_gindex = _mm256_and_si256(q2_data, m511);
  7371. const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
  7372. const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
  7373. const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
  7374. const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
  7375. const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
  7376. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7377. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7378. const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7379. const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7380. const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
  7381. iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
  7382. const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
  7383. iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
  7384. const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
  7385. iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
  7386. const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
  7387. iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
  7388. const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
  7389. const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
  7390. const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
  7391. const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
  7392. __m256i signs;
  7393. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
  7394. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7395. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
  7396. signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
  7397. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7398. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
  7399. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
  7400. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7401. const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
  7402. signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
  7403. signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
  7404. const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
  7405. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7406. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7407. const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
  7408. const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
  7409. const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
  7410. const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
  7411. const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
  7412. const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
  7413. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
  7414. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
  7415. sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
  7416. sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
  7417. }
  7418. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7419. }
  7420. *s = 0.125f * hsum_float_8(accumf);
  7421. #else
  7422. float sumf = 0.f;
  7423. for (int i = 0; i < nb; ++i) {
  7424. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7425. const uint16_t * restrict q2 = x[i].qs;
  7426. const uint8_t * restrict sc = x[i].scales;
  7427. const int8_t * restrict q8 = y[i].qs;
  7428. int32_t bsum = 0;
  7429. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7430. const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1;
  7431. const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1;
  7432. int32_t sumi = 0;
  7433. for (int l = 0; l < 2; ++l) {
  7434. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7435. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7436. for (int j = 0; j < 8; ++j) {
  7437. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7438. }
  7439. q8 += 8;
  7440. }
  7441. bsum += sumi * ls1;
  7442. sumi = 0;
  7443. for (int l = 2; l < 4; ++l) {
  7444. const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
  7445. const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
  7446. for (int j = 0; j < 8; ++j) {
  7447. sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
  7448. }
  7449. q8 += 8;
  7450. }
  7451. bsum += sumi * ls2;
  7452. q2 += 4;
  7453. }
  7454. sumf += d * bsum;
  7455. }
  7456. *s = 0.125f * sumf;
  7457. #endif
  7458. }
  7459. void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7460. assert(n % QK_K == 0);
  7461. assert(nrc == 1);
  7462. UNUSED(nrc);
  7463. UNUSED(bx);
  7464. UNUSED(by);
  7465. UNUSED(bs);
  7466. const block_iq3_xxs * restrict x = vx;
  7467. const block_q8_K * restrict y = vy;
  7468. const int nb = n / QK_K;
  7469. #if defined(__ARM_NEON)
  7470. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7471. uint32_t aux32[2];
  7472. ggml_int8x16x4_t q3s;
  7473. ggml_int8x16x4_t q8b;
  7474. float sumf = 0;
  7475. for (int i = 0; i < nb; ++i) {
  7476. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7477. const uint8_t * restrict q3 = x[i].qs;
  7478. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7479. const int8_t * restrict q8 = y[i].qs;
  7480. float sumf1 = 0, sumf2 = 0;
  7481. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7482. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7483. memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
  7484. const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]);
  7485. const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]);
  7486. const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]);
  7487. const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]);
  7488. q3 += 16;
  7489. q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
  7490. q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
  7491. q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
  7492. q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
  7493. q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
  7494. q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
  7495. q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
  7496. q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
  7497. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7498. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7499. sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
  7500. sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
  7501. }
  7502. sumf += d*(sumf1 + sumf2);
  7503. }
  7504. *s = 0.5f * sumf;
  7505. #elif defined(__AVX2__)
  7506. const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
  7507. uint32_t aux32[2];
  7508. __m256 accumf = _mm256_setzero_ps();
  7509. for (int i = 0; i < nb; ++i) {
  7510. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7511. const uint8_t * restrict q3 = x[i].qs;
  7512. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7513. const int8_t * restrict q8 = y[i].qs;
  7514. __m256i sumi1 = _mm256_setzero_si256();
  7515. __m256i sumi2 = _mm256_setzero_si256();
  7516. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7517. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7518. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7519. const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7520. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7521. q3 += 8;
  7522. const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
  7523. iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
  7524. q3 += 8;
  7525. memcpy(aux32, gas, 8); gas += 8;
  7526. const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
  7527. signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
  7528. const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
  7529. signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
  7530. const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
  7531. const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
  7532. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7533. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7534. const uint16_t ls1 = aux32[0] >> 28;
  7535. const uint16_t ls2 = aux32[1] >> 28;
  7536. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7537. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7538. sumi1 = _mm256_add_epi32(sumi1, p1);
  7539. sumi2 = _mm256_add_epi32(sumi2, p2);
  7540. }
  7541. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7542. }
  7543. *s = 0.25f * hsum_float_8(accumf);
  7544. #else
  7545. uint32_t aux32;
  7546. float sumf = 0.f;
  7547. for (int i = 0; i < nb; ++i) {
  7548. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7549. const uint8_t * restrict q3 = x[i].qs;
  7550. const uint8_t * restrict gas = x[i].qs + QK_K/4;
  7551. const int8_t * restrict q8 = y[i].qs;
  7552. int32_t bsum = 0;
  7553. for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
  7554. memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
  7555. const uint32_t ls = 2*(aux32 >> 28) + 1;
  7556. int32_t sumi = 0;
  7557. for (int l = 0; l < 4; ++l) {
  7558. const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
  7559. const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
  7560. const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
  7561. for (int j = 0; j < 4; ++j) {
  7562. sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
  7563. sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
  7564. }
  7565. q8 += 8;
  7566. }
  7567. q3 += 8;
  7568. bsum += sumi * ls;
  7569. }
  7570. sumf += d * bsum;
  7571. }
  7572. *s = 0.25f * sumf;
  7573. #endif
  7574. }
  7575. void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  7576. assert(n % QK_K == 0);
  7577. assert(nrc == 1);
  7578. UNUSED(nrc);
  7579. UNUSED(bx);
  7580. UNUSED(by);
  7581. UNUSED(bs);
  7582. const block_iq3_s * restrict x = vx;
  7583. const block_q8_K * restrict y = vy;
  7584. const int nb = n / QK_K;
  7585. #if defined(__ARM_NEON)
  7586. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7587. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7588. };
  7589. static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,};
  7590. const uint8x16x2_t mask1 = vld1q_u8_x2(k_mask1);
  7591. const uint8x16_t mask2 = vld1q_u8(k_mask2);
  7592. uint8x16x2_t vs;
  7593. ggml_int8x16x4_t q3s;
  7594. ggml_int8x16x4_t q8b;
  7595. float sumf = 0;
  7596. for (int i = 0; i < nb; ++i) {
  7597. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7598. const uint8_t * restrict qs = x[i].qs;
  7599. const uint8_t * restrict qh = x[i].qh;
  7600. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7601. const int8_t * restrict q8 = y[i].qs;
  7602. int sumi1 = 0, sumi2 = 0;
  7603. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7604. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7605. const uint32x4_t aux32x4_0 = {iq3xs_grid[qs[ 0] | ((qh[ib32+0] << 8) & 256)], iq3xs_grid[qs[ 1] | ((qh[ib32+0] << 7) & 256)],
  7606. iq3xs_grid[qs[ 2] | ((qh[ib32+0] << 6) & 256)], iq3xs_grid[qs[ 3] | ((qh[ib32+0] << 5) & 256)]};
  7607. const uint32x4_t aux32x4_1 = {iq3xs_grid[qs[ 4] | ((qh[ib32+0] << 4) & 256)], iq3xs_grid[qs[ 5] | ((qh[ib32+0] << 3) & 256)],
  7608. iq3xs_grid[qs[ 6] | ((qh[ib32+0] << 2) & 256)], iq3xs_grid[qs[ 7] | ((qh[ib32+0] << 1) & 256)]};
  7609. const uint32x4_t aux32x4_2 = {iq3xs_grid[qs[ 8] | ((qh[ib32+1] << 8) & 256)], iq3xs_grid[qs[ 9] | ((qh[ib32+1] << 7) & 256)],
  7610. iq3xs_grid[qs[10] | ((qh[ib32+1] << 6) & 256)], iq3xs_grid[qs[11] | ((qh[ib32+1] << 5) & 256)]};
  7611. const uint32x4_t aux32x4_3 = {iq3xs_grid[qs[12] | ((qh[ib32+1] << 4) & 256)], iq3xs_grid[qs[13] | ((qh[ib32+1] << 3) & 256)],
  7612. iq3xs_grid[qs[14] | ((qh[ib32+1] << 2) & 256)], iq3xs_grid[qs[15] | ((qh[ib32+1] << 1) & 256)]};
  7613. qs += 16;
  7614. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | (signs[1] << 16)));
  7615. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7616. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7617. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7618. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7619. q3s.val[0] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_0))), vreinterpretq_s8_u8(vs.val[0]));
  7620. q3s.val[1] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_1))), vreinterpretq_s8_u8(vs.val[1]));
  7621. vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | (signs[3] << 16)));
  7622. vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2);
  7623. vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2);
  7624. vs.val[0] = vceqq_u8(vs.val[0], mask2);
  7625. vs.val[1] = vceqq_u8(vs.val[1], mask2);
  7626. signs += 4;
  7627. q3s.val[2] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[0], vreinterpretq_u8_u32(aux32x4_2))), vreinterpretq_s8_u8(vs.val[0]));
  7628. q3s.val[3] = vsubq_s8(vreinterpretq_s8_u8(veorq_u8(vs.val[1], vreinterpretq_u8_u32(aux32x4_3))), vreinterpretq_s8_u8(vs.val[1]));
  7629. const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
  7630. const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
  7631. sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf));
  7632. sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4));
  7633. }
  7634. sumf += d*(sumi1 + sumi2);
  7635. }
  7636. *s = 0.25f * sumf;
  7637. #elif defined(__AVX2__)
  7638. static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
  7639. 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03
  7640. };
  7641. static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7642. 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
  7643. };
  7644. const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1);
  7645. const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2);
  7646. __m256 accumf = _mm256_setzero_ps();
  7647. for (int i = 0; i < nb; ++i) {
  7648. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7649. const uint8_t * restrict qs = x[i].qs;
  7650. const uint8_t * restrict qh = x[i].qh;
  7651. const uint16_t * restrict signs = (const uint16_t *)x[i].signs;
  7652. const int8_t * restrict q8 = y[i].qs;
  7653. __m256i sumi1 = _mm256_setzero_si256();
  7654. __m256i sumi2 = _mm256_setzero_si256();
  7655. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7656. const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7657. const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
  7658. const __m256i q2_1 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+0] << 1) & 256)],
  7659. iq3xs_grid[qs[6] | ((qh[ib32+0] << 2) & 256)],
  7660. iq3xs_grid[qs[5] | ((qh[ib32+0] << 3) & 256)],
  7661. iq3xs_grid[qs[4] | ((qh[ib32+0] << 4) & 256)],
  7662. iq3xs_grid[qs[3] | ((qh[ib32+0] << 5) & 256)],
  7663. iq3xs_grid[qs[2] | ((qh[ib32+0] << 6) & 256)],
  7664. iq3xs_grid[qs[1] | ((qh[ib32+0] << 7) & 256)],
  7665. iq3xs_grid[qs[0] | ((qh[ib32+0] << 8) & 256)]);
  7666. qs += 8;
  7667. const __m256i q2_2 = _mm256_set_epi32(iq3xs_grid[qs[7] | ((qh[ib32+1] << 1) & 256)],
  7668. iq3xs_grid[qs[6] | ((qh[ib32+1] << 2) & 256)],
  7669. iq3xs_grid[qs[5] | ((qh[ib32+1] << 3) & 256)],
  7670. iq3xs_grid[qs[4] | ((qh[ib32+1] << 4) & 256)],
  7671. iq3xs_grid[qs[3] | ((qh[ib32+1] << 5) & 256)],
  7672. iq3xs_grid[qs[2] | ((qh[ib32+1] << 6) & 256)],
  7673. iq3xs_grid[qs[1] | ((qh[ib32+1] << 7) & 256)],
  7674. iq3xs_grid[qs[0] | ((qh[ib32+1] << 8) & 256)]);
  7675. qs += 8;
  7676. __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16));
  7677. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7678. const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2);
  7679. const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1);
  7680. aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16));
  7681. aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2);
  7682. const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2);
  7683. const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2);
  7684. signs += 4;
  7685. const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
  7686. const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
  7687. const uint16_t ls1 = x[i].scales[ib32/2] & 0xf;
  7688. const uint16_t ls2 = x[i].scales[ib32/2] >> 4;
  7689. const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
  7690. const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
  7691. sumi1 = _mm256_add_epi32(sumi1, p1);
  7692. sumi2 = _mm256_add_epi32(sumi2, p2);
  7693. }
  7694. accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
  7695. }
  7696. *s = 0.25f * hsum_float_8(accumf);
  7697. #else
  7698. float sumf = 0.f;
  7699. for (int i = 0; i < nb; ++i) {
  7700. const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
  7701. const uint8_t * restrict qs = x[i].qs;
  7702. const uint8_t * restrict qh = x[i].qh;
  7703. const uint8_t * restrict signs = x[i].signs;
  7704. const int8_t * restrict q8 = y[i].qs;
  7705. int32_t bsum = 0;
  7706. for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
  7707. const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1;
  7708. const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1;
  7709. int32_t sumi = 0;
  7710. for (int l = 0; l < 4; ++l) {
  7711. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256)));
  7712. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256)));
  7713. for (int j = 0; j < 4; ++j) {
  7714. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7715. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7716. }
  7717. q8 += 8;
  7718. }
  7719. qs += 8;
  7720. signs += 4;
  7721. bsum += sumi * ls1;
  7722. sumi = 0;
  7723. for (int l = 0; l < 4; ++l) {
  7724. const uint8_t * grid1 = (const uint8_t *)(iq3xs_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256)));
  7725. const uint8_t * grid2 = (const uint8_t *)(iq3xs_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256)));
  7726. for (int j = 0; j < 4; ++j) {
  7727. sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1);
  7728. sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1);
  7729. }
  7730. q8 += 8;
  7731. }
  7732. qs += 8;
  7733. signs += 4;
  7734. bsum += sumi * ls2;
  7735. }
  7736. sumf += d * bsum;
  7737. }
  7738. *s = 0.25f * sumf;
  7739. #endif
  7740. }
  7741. #ifdef __AVX2__
  7742. static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
  7743. const __m256i ax = _mm256_sign_epi8(x, x);
  7744. const __m256i sy = _mm256_sign_epi8(y, x);
  7745. return _mm256_maddubs_epi16(ax, sy);
  7746. }
  7747. #endif
  7748. void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
  7749. assert(n % QK_K == 0);
  7750. assert(nrc == 1);
  7751. UNUSED(nrc);
  7752. UNUSED(bx);
  7753. UNUSED(by);
  7754. UNUSED(bs);
  7755. const block_iq1_s * restrict x = vx;
  7756. const block_q8_K * restrict y = vy;
  7757. const int nb = n / QK_K;
  7758. #if defined __ARM_NEON
  7759. const uint8x16_t m8 = vdupq_n_u8(0x08);
  7760. const uint8x16_t m7 = vdupq_n_u8(0x07);
  7761. const uint8x16_t m1 = vdupq_n_u8(0x01);
  7762. const int32x4_t vzero = vdupq_n_s32(0);
  7763. uint16_t gindex[8];
  7764. uint16x8x2_t vindex;
  7765. int8x16x4_t q1b;
  7766. ggml_int8x16x4_t q8b;
  7767. uint16x8x4_t scales;
  7768. int32x4x2_t sumi;
  7769. int32x4x2_t dotq;
  7770. float sumf = 0;
  7771. for (int i = 0; i < nb; ++i) {
  7772. const int8_t * q8 = y[i].qs;
  7773. const uint8_t * qs = x[i].qs;
  7774. const uint8_t * sc = x[i].scales;
  7775. sumi.val[0] = sumi.val[1] = vzero;
  7776. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7777. const uint8x16_t ql = vld1q_u8(qs); qs += 16;
  7778. const uint8x8_t tm1 = vld1_u8 (sc); sc += 8;
  7779. const uint8x8_t tm2 = vshr_n_u8(tm1, 4);
  7780. const uint8x16_t qh = vcombine_u8(vzip1_u8(tm1, tm2), vzip2_u8(tm1, tm2));
  7781. const uint8x16_t hbit = vandq_u8(qh, m8);
  7782. vindex.val[0] = vorrq_u16(vmovl_u8(vget_low_u8 (ql)), vshlq_n_u16(vmovl_u8(vget_low_u8 (hbit)), 5));
  7783. vindex.val[1] = vorrq_u16(vmovl_u8(vget_high_u8(ql)), vshlq_n_u16(vmovl_u8(vget_high_u8(hbit)), 5));
  7784. const uint8x16_t scales8 = vorrq_u8(vshlq_n_u8(vandq_u8(qh, m7), 1), m1);
  7785. scales.val[0] = vmovl_u8(vget_low_u8 (scales8));
  7786. scales.val[1] = vmovl_u8(vget_high_u8 (scales8));
  7787. for (int l = 0; l < 2; ++l) {
  7788. vst1q_u16(gindex+0, vindex.val[l]);
  7789. q1b.val[0] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[0])), vld1_s8((const void *)(iq1s_grid+gindex[1])));
  7790. q1b.val[1] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[2])), vld1_s8((const void *)(iq1s_grid+gindex[3])));
  7791. q1b.val[2] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[4])), vld1_s8((const void *)(iq1s_grid+gindex[5])));
  7792. q1b.val[3] = vcombine_s8(vld1_s8((const void *)(iq1s_grid+gindex[6])), vld1_s8((const void *)(iq1s_grid+gindex[7])));
  7793. q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
  7794. dotq.val[0] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(vzero, q1b.val[1], q8b.val[1]));
  7795. dotq.val[1] = vpaddq_s32(ggml_vdotq_s32(vzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(vzero, q1b.val[3], q8b.val[3]));
  7796. sumi.val[0] = vmlaq_s32(sumi.val[0], dotq.val[0], vreinterpretq_s32_u32(vmovl_u16(vget_low_u16 (scales.val[l]))));
  7797. sumi.val[1] = vmlaq_s32(sumi.val[1], dotq.val[1], vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales.val[l]))));
  7798. }
  7799. }
  7800. sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * vaddvq_s32(vaddq_s32(sumi.val[0], sumi.val[1]));
  7801. }
  7802. *s = sumf;
  7803. #elif defined __AVX2__
  7804. const __m128i m8 = _mm_set1_epi8(0x08);
  7805. const __m128i m7 = _mm_set1_epi8(0x07);
  7806. const __m128i m1 = _mm_set1_epi8(0x01);
  7807. const __m128i shuffle_h = _mm_set_epi8(15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0);
  7808. const __m128i shuffle_s[4] = {
  7809. _mm_set_epi32(0x03030303, 0x02020202, 0x01010101, 0x00000000),
  7810. _mm_set_epi32(0x07070707, 0x06060606, 0x05050505, 0x04040404),
  7811. _mm_set_epi32(0x0b0b0b0b, 0x0a0a0a0a, 0x09090909, 0x08080808),
  7812. _mm_set_epi32(0x0f0f0f0f, 0x0e0e0e0e, 0x0d0d0d0d, 0x0c0c0c0c)
  7813. };
  7814. uint64_t aux64;
  7815. __m256i v_gindex;
  7816. const uint16_t * gindex = (const uint16_t *)&v_gindex;
  7817. __m256 accum = _mm256_setzero_ps();
  7818. for (int i = 0; i < nb; ++i) {
  7819. const int8_t * q8 = y[i].qs;
  7820. const uint8_t * qs = x[i].qs;
  7821. const uint8_t * sc = x[i].scales;
  7822. __m256i sumi = _mm256_setzero_si256();
  7823. for (int i128 = 0; i128 < QK_K/128; ++i128) {
  7824. const __m128i ql = _mm_loadu_si128((const __m128i*)qs); qs += 16;
  7825. memcpy(&aux64, sc, 8); sc += 8;
  7826. const __m128i qh = _mm_shuffle_epi8(_mm_set_epi64x(aux64 >> 4, aux64), shuffle_h);
  7827. const __m256i hbit = _mm256_cvtepu8_epi16(_mm_and_si128(qh, m8));
  7828. v_gindex = _mm256_or_si256(_mm256_cvtepu8_epi16(ql), _mm256_slli_epi16(hbit, 5));
  7829. const __m128i scales = _mm_or_si128(_mm_slli_epi16(_mm_and_si128(qh, m7), 1), m1);
  7830. for (int i32 = 0; i32 < 4; ++i32) {
  7831. const __m256i q8b = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  7832. const __m256i q1b = _mm256_set_epi64x(iq1s_grid[gindex[4*i32+3]], iq1s_grid[gindex[4*i32+2]],
  7833. iq1s_grid[gindex[4*i32+1]], iq1s_grid[gindex[4*i32+0]]);
  7834. const __m256i dot = mul_add_epi8(q1b, q8b);
  7835. const __m256i s16 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, shuffle_s[i32]));
  7836. const __m256i p = _mm256_madd_epi16(s16, dot);
  7837. sumi = _mm256_add_epi32(sumi, p);
  7838. }
  7839. }
  7840. accum = _mm256_fmadd_ps(_mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)), _mm256_cvtepi32_ps(sumi), accum);
  7841. }
  7842. *s = hsum_float_8(accum);
  7843. #else
  7844. int db[4];
  7845. uint16_t idx[4];
  7846. float sumf = 0;
  7847. for (int i = 0; i < nb; ++i) {
  7848. const int8_t * q8 = y[i].qs;
  7849. const uint8_t * qs = x[i].qs;
  7850. const uint8_t * sc = x[i].scales;
  7851. int sumi = 0;
  7852. for (int i32 = 0; i32 < QK_K/32; ++i32) {
  7853. idx[0] = qs[0] | ((sc[0] & 0x08) << 5);
  7854. idx[1] = qs[1] | ((sc[0] & 0x80) << 1);
  7855. idx[2] = qs[2] | ((sc[1] & 0x08) << 5);
  7856. idx[3] = qs[3] | ((sc[1] & 0x80) << 1);
  7857. db[0] = (2*(sc[0] & 7) + 1);
  7858. db[1] = (2*((sc[0] >> 4) & 7) + 1);
  7859. db[2] = (2*(sc[1] & 7) + 1);
  7860. db[3] = (2*((sc[1] >> 4) & 7) + 1);
  7861. for (int l = 0; l < 4; ++l) {
  7862. const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]);
  7863. int suml = 0;
  7864. for (int j = 0; j < 8; ++j) suml += q8[j] * grid[j];
  7865. sumi += db[l] * suml;
  7866. q8 += 8;
  7867. }
  7868. qs += 4;
  7869. sc += 2;
  7870. }
  7871. sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * sumi;
  7872. }
  7873. *s = sumf;
  7874. #endif
  7875. }
  7876. void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
  7877. assert(nrc == 1);
  7878. UNUSED(nrc);
  7879. UNUSED(bx);
  7880. UNUSED(by);
  7881. UNUSED(bs);
  7882. assert(n % QK4_NL == 0);
  7883. static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same");
  7884. const block_iq4_nl * restrict x = vx;
  7885. const block_q8_0 * restrict y = vy;
  7886. const int nb = n / QK4_NL;
  7887. #if defined __ARM_NEON
  7888. const int8x16_t values = vld1q_s8(kvalues_iq4nl);
  7889. const uint8x16_t m4b = vdupq_n_u8(0x0f);
  7890. uint8x16x2_t q4bits;
  7891. int8x16x4_t q4b;
  7892. int8x16x4_t q8b;
  7893. int32x4_t prod_1, prod_2;
  7894. float sumf = 0;
  7895. for (int ib = 0; ib < nb; ib += 2) {
  7896. q4bits.val[0] = vld1q_u8(x[ib+0].qs);
  7897. q4bits.val[1] = vld1q_u8(x[ib+1].qs);
  7898. q8b.val[0] = vld1q_s8(y[ib+0].qs);
  7899. q8b.val[1] = vld1q_s8(y[ib+0].qs + 16);
  7900. q8b.val[2] = vld1q_s8(y[ib+1].qs);
  7901. q8b.val[3] = vld1q_s8(y[ib+1].qs + 16);
  7902. q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b));
  7903. q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4));
  7904. q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b));
  7905. q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4));
  7906. prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]);
  7907. prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]);
  7908. sumf +=
  7909. GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) +
  7910. GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2);
  7911. }
  7912. *s = sumf;
  7913. #elif defined __AVX2__
  7914. const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl);
  7915. const __m128i m4b = _mm_set1_epi8(0x0f);
  7916. const __m256i mone = _mm256_set1_epi16(1);
  7917. __m256 accum1 = _mm256_setzero_ps();
  7918. __m256 accum2 = _mm256_setzero_ps();
  7919. for (int ib = 0; ib < nb; ib += 2) {
  7920. const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs);
  7921. const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs);
  7922. const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs);
  7923. const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs);
  7924. const __m256i q4b_1 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)),
  7925. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b)));
  7926. const __m256i q4b_2 = _mm256_set_m128i(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)),
  7927. _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b)));
  7928. const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1);
  7929. const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2);
  7930. const __m256i p_1 = _mm256_madd_epi16(p16_1, mone);
  7931. const __m256i p_2 = _mm256_madd_epi16(p16_2, mone);
  7932. accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)),
  7933. _mm256_cvtepi32_ps(p_1), accum1);
  7934. accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)),
  7935. _mm256_cvtepi32_ps(p_2), accum2);
  7936. y += 2;
  7937. x += 2;
  7938. }
  7939. *s = hsum_float_8(_mm256_add_ps(accum1, accum2));
  7940. #else
  7941. float sumf = 0;
  7942. for (int ib = 0; ib < nb; ++ib) {
  7943. const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d);
  7944. int sumi1 = 0, sumi2 = 0;
  7945. for (int j = 0; j < QK4_NL/2; ++j) {
  7946. sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf];
  7947. sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4];
  7948. }
  7949. sumf += d * (sumi1 + sumi2);
  7950. }
  7951. *s = sumf;
  7952. #endif
  7953. }
  7954. // ================================ IQ2 quantization =============================================
  7955. typedef struct {
  7956. uint64_t * grid;
  7957. int * map;
  7958. uint16_t * neighbours;
  7959. } iq2_entry_t;
  7960. static iq2_entry_t iq2_data[3] = {
  7961. {NULL, NULL, NULL},
  7962. {NULL, NULL, NULL},
  7963. {NULL, NULL, NULL},
  7964. };
  7965. static inline int iq2_data_index(enum ggml_type type) {
  7966. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7967. return type == GGML_TYPE_IQ2_XXS ? 0 :
  7968. type == GGML_TYPE_IQ2_XS ? 1 : 2;
  7969. }
  7970. static inline int iq2_grid_size(enum ggml_type type) {
  7971. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  7972. return type == GGML_TYPE_IQ2_XXS ? 256 :
  7973. type == GGML_TYPE_IQ2_XS ? 512 : 512;
  7974. }
  7975. static int iq2_compare_func(const void * left, const void * right) {
  7976. const int * l = (const int *)left;
  7977. const int * r = (const int *)right;
  7978. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  7979. }
  7980. void iq2xs_init_impl(enum ggml_type type) {
  7981. const int gindex = iq2_data_index(type);
  7982. const int grid_size = iq2_grid_size(type);
  7983. if (iq2_data[gindex].grid) {
  7984. return;
  7985. }
  7986. static const uint16_t kgrid_2bit_256[256] = {
  7987. 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97,
  7988. 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642,
  7989. 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288,
  7990. 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113,
  7991. 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240,
  7992. 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400,
  7993. 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260,
  7994. 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872,
  7995. 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516,
  7996. 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561,
  7997. 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488,
  7998. 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545,
  7999. 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874,
  8000. 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856,
  8001. 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142,
  8002. 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268,
  8003. };
  8004. static const uint16_t kgrid_2bit_512[512] = {
  8005. 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70,
  8006. 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257,
  8007. 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340,
  8008. 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597,
  8009. 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096,
  8010. 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348,
  8011. 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065,
  8012. 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441,
  8013. 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160,
  8014. 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372,
  8015. 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125,
  8016. 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652,
  8017. 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197,
  8018. 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549,
  8019. 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894,
  8020. 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388,
  8021. 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480,
  8022. 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773,
  8023. 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473,
  8024. 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436,
  8025. 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497,
  8026. 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162,
  8027. 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528,
  8028. 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745,
  8029. 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234,
  8030. 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025,
  8031. 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810,
  8032. 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984,
  8033. 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462,
  8034. 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960,
  8035. 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048,
  8036. 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690,
  8037. };
  8038. static const uint16_t kgrid_1bit_512[512] = {
  8039. 10, 33, 41, 85, 132, 134, 160, 162, 277, 337, 340, 345, 357, 405, 516, 545,
  8040. 553, 598, 641, 650, 681, 1042, 1044, 1097, 1169, 1176, 1320, 1345, 1365, 1378, 1434, 1444,
  8041. 1545, 1617, 1642, 1685, 2053, 2080, 2089, 2133, 2176, 2182, 2208, 2214, 2306, 2384, 2393, 2440,
  8042. 2453, 2581, 2664, 2690, 2721, 4117, 4161, 4182, 4184, 4261, 4357, 4369, 4372, 4377, 4390, 4422,
  8043. 4432, 4437, 4449, 4457, 4485, 4497, 4505, 4629, 4677, 4696, 4774, 5205, 5217, 5225, 5386, 5397,
  8044. 5409, 5445, 5457, 5460, 5461, 5462, 5465, 5472, 5477, 5525, 5545, 5650, 5668, 5717, 5729, 5769,
  8045. 5777, 6212, 6234, 6244, 6293, 6424, 6482, 6485, 6502, 6505, 6529, 6538, 6565, 6656, 6682, 6788,
  8046. 6806, 6820, 8218, 8224, 8226, 8232, 8277, 8326, 8354, 8469, 8521, 8530, 8549, 8596, 8737, 8794,
  8047. 9221, 9253, 9348, 9369, 9380, 9474, 9557, 9633, 9732, 9753, 9793, 9830, 9862, 9880, 10240, 10272,
  8048. 10282, 10321, 10406, 10517, 10530, 10566, 10585, 10645, 10896, 16466, 16468, 16473, 16485, 16646, 16660, 16665,
  8049. 16725, 16793, 16806, 16914, 16969, 16977, 16996, 17028, 17057, 17408, 17416, 17434, 17493, 17512, 17578, 17685,
  8050. 17696, 17733, 17745, 17748, 17749, 17750, 17753, 17765, 17794, 17813, 17946, 17984, 18005, 18072, 18453, 18529,
  8051. 18569, 18722, 18756, 18762, 18773, 18794, 18833, 18853, 18945, 19026, 19033, 19077, 20489, 20497, 20500, 20517,
  8052. 20565, 20586, 20610, 20633, 20757, 20769, 20776, 20805, 20817, 20820, 20821, 20822, 20825, 20837, 20864, 20872,
  8053. 20885, 20896, 21002, 21029, 21077, 21146, 21510, 21525, 21573, 21585, 21588, 21589, 21590, 21593, 21605, 21653,
  8054. 21665, 21765, 21777, 21780, 21781, 21782, 21785, 21797, 21825, 21828, 21829, 21830, 21833, 21840, 21841, 21842,
  8055. 21844, 21846, 21848, 21849, 21850, 21857, 21860, 21861, 21862, 21865, 21893, 21905, 21908, 21909, 21910, 21913,
  8056. 21925, 22024, 22037, 22085, 22097, 22100, 22101, 22102, 22105, 22117, 22165, 22545, 22566, 22568, 22594, 22608,
  8057. 22613, 22676, 22697, 22793, 22805, 22853, 22865, 22868, 22869, 22870, 22873, 22885, 22933, 22946, 23046, 23072,
  8058. 23125, 23209, 24597, 24640, 24665, 24673, 24725, 24833, 24840, 24869, 24917, 24934, 24965, 25001, 25108, 25110,
  8059. 25152, 25184, 25192, 25234, 25616, 25618, 25625, 25685, 25704, 25738, 25744, 25770, 25877, 25897, 25925, 25937,
  8060. 25940, 25941, 25942, 25945, 25957, 25986, 26005, 26186, 26197, 26276, 26632, 26634, 26725, 26757, 26770, 26885,
  8061. 26965, 26976, 26986, 27032, 27153, 27174, 27200, 27208, 27240, 27269, 27282, 27290, 32778, 32800, 32802, 32808,
  8062. 32810, 32853, 32904, 32922, 32930, 32932, 33105, 33110, 33112, 33125, 33157, 33280, 33288, 33301, 33312, 33320,
  8063. 33424, 33797, 33829, 33858, 34068, 34133, 34146, 34176, 34217, 34306, 34342, 34441, 34454, 34468, 34832, 34918,
  8064. 34965, 34984, 35094, 35137, 35161, 35208, 35232, 35332, 35338, 35368, 35429, 36932, 36934, 36953, 37009, 37125,
  8065. 37136, 37138, 37145, 37157, 37205, 37220, 37258, 37290, 37444, 37446, 37465, 37478, 37525, 37905, 37968, 37973,
  8066. 38040, 38054, 38145, 38154, 38165, 38180, 38186, 38213, 38225, 38228, 38229, 38230, 38233, 38245, 38293, 38485,
  8067. 38504, 38530, 38938, 38985, 38993, 39012, 39040, 39173, 39192, 39253, 39265, 39301, 39316, 39322, 39442, 39497,
  8068. 39504, 39590, 40970, 40984, 40992, 41002, 41045, 41120, 41128, 41237, 41289, 41297, 41317, 41364, 41366, 41514,
  8069. 41557, 41633, 41989, 42021, 42056, 42068, 42074, 42113, 42242, 42265, 42274, 42325, 42340, 42402, 42501, 42512,
  8070. 42533, 42624, 42632, 42666, 43040, 43093, 43106, 43168, 43176, 43264, 43286, 43345, 43429, 43590, 43618, 43680,
  8071. };
  8072. const int kmap_size = 43692;
  8073. const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2;
  8074. const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 :
  8075. type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : kgrid_1bit_512;
  8076. uint64_t * kgrid_q2xs;
  8077. int * kmap_q2xs;
  8078. uint16_t * kneighbors_q2xs;
  8079. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8080. uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
  8081. for (int k = 0; k < grid_size; ++k) {
  8082. int8_t * pos = (int8_t *)(the_grid + k);
  8083. for (int i = 0; i < 8; ++i) {
  8084. int l = (kgrid[k] >> 2*i) & 0x3;
  8085. pos[i] = 2*l + 1;
  8086. }
  8087. }
  8088. kgrid_q2xs = the_grid;
  8089. iq2_data[gindex].grid = the_grid;
  8090. kmap_q2xs = (int *)malloc(kmap_size*sizeof(int));
  8091. iq2_data[gindex].map = kmap_q2xs;
  8092. for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1;
  8093. uint64_t aux64;
  8094. uint8_t * aux8 = (uint8_t *)&aux64;
  8095. for (int i = 0; i < grid_size; ++i) {
  8096. aux64 = kgrid_q2xs[i];
  8097. uint16_t index = 0;
  8098. for (int k=0; k<8; ++k) {
  8099. uint16_t q = (aux8[k] - 1)/2;
  8100. index |= (q << 2*k);
  8101. }
  8102. kmap_q2xs[index] = i;
  8103. }
  8104. int8_t pos[8];
  8105. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8106. int num_neighbors = 0, num_not_in_map = 0;
  8107. for (int i = 0; i < kmap_size; ++i) {
  8108. if (kmap_q2xs[i] >= 0) continue;
  8109. ++num_not_in_map;
  8110. for (int k = 0; k < 8; ++k) {
  8111. int l = (i >> 2*k) & 0x3;
  8112. pos[k] = 2*l + 1;
  8113. }
  8114. for (int j = 0; j < grid_size; ++j) {
  8115. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8116. int d2 = 0;
  8117. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8118. dist2[2*j+0] = d2;
  8119. dist2[2*j+1] = j;
  8120. }
  8121. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8122. int n = 0; int d2 = dist2[0];
  8123. int nhave = 1;
  8124. for (int j = 0; j < grid_size; ++j) {
  8125. if (dist2[2*j] > d2) {
  8126. if (nhave == nwant) break;
  8127. d2 = dist2[2*j];
  8128. ++nhave;
  8129. }
  8130. ++n;
  8131. }
  8132. num_neighbors += n;
  8133. }
  8134. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8135. kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8136. iq2_data[gindex].neighbours = kneighbors_q2xs;
  8137. int counter = 0;
  8138. for (int i = 0; i < kmap_size; ++i) {
  8139. if (kmap_q2xs[i] >= 0) continue;
  8140. for (int k = 0; k < 8; ++k) {
  8141. int l = (i >> 2*k) & 0x3;
  8142. pos[k] = 2*l + 1;
  8143. }
  8144. for (int j = 0; j < grid_size; ++j) {
  8145. const int8_t * pg = (const int8_t *)(kgrid_q2xs + j);
  8146. int d2 = 0;
  8147. for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8148. dist2[2*j+0] = d2;
  8149. dist2[2*j+1] = j;
  8150. }
  8151. qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func);
  8152. kmap_q2xs[i] = -(counter + 1);
  8153. int d2 = dist2[0];
  8154. uint16_t * start = &kneighbors_q2xs[counter++];
  8155. int n = 0, nhave = 1;
  8156. for (int j = 0; j < grid_size; ++j) {
  8157. if (dist2[2*j] > d2) {
  8158. if (nhave == nwant) break;
  8159. d2 = dist2[2*j];
  8160. ++nhave;
  8161. }
  8162. kneighbors_q2xs[counter++] = dist2[2*j+1];
  8163. ++n;
  8164. }
  8165. *start = n;
  8166. }
  8167. free(dist2);
  8168. }
  8169. void iq2xs_free_impl(enum ggml_type type) {
  8170. GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S);
  8171. const int gindex = iq2_data_index(type);
  8172. if (iq2_data[gindex].grid) {
  8173. free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL;
  8174. free(iq2_data[gindex].map); iq2_data[gindex].map = NULL;
  8175. free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL;
  8176. }
  8177. }
  8178. static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  8179. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8180. int num_neighbors = neighbours[0];
  8181. GGML_ASSERT(num_neighbors > 0);
  8182. float best_d2 = FLT_MAX;
  8183. int grid_index = -1;
  8184. for (int j = 1; j <= num_neighbors; ++j) {
  8185. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8186. float d2 = 0;
  8187. for (int i = 0; i < 8; ++i) {
  8188. float q = pg[i];
  8189. float diff = scale*q - xval[i];
  8190. d2 += weight[i]*diff*diff;
  8191. }
  8192. if (d2 < best_d2) {
  8193. best_d2 = d2; grid_index = neighbours[j];
  8194. }
  8195. }
  8196. GGML_ASSERT(grid_index >= 0);
  8197. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8198. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  8199. return grid_index;
  8200. }
  8201. static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8202. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS);
  8203. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8204. const int * kmap_q2xs = iq2_data[gindex].map;
  8205. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8206. GGML_ASSERT(quant_weights && "missing quantization weights");
  8207. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8208. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8209. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8210. GGML_ASSERT(n%QK_K == 0);
  8211. const int kMaxQ = 3;
  8212. const int nbl = n/256;
  8213. block_iq2_xxs * y = vy;
  8214. float scales[QK_K/32];
  8215. float weight[32];
  8216. float xval[32];
  8217. int8_t L[32];
  8218. int8_t Laux[32];
  8219. float waux[32];
  8220. uint8_t block_signs[4];
  8221. uint32_t q2[2*(QK_K/32)];
  8222. for (int ibl = 0; ibl < nbl; ++ibl) {
  8223. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8224. memset(q2, 0, QK_K/4);
  8225. float max_scale = 0;
  8226. const float * xbl = x + QK_K*ibl;
  8227. float sumx2 = 0;
  8228. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8229. float sigma2 = sumx2/QK_K;
  8230. for (int ib = 0; ib < QK_K/32; ++ib) {
  8231. const float * xb = xbl + 32*ib;
  8232. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8233. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8234. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8235. for (int k = 0; k < 4; ++k) {
  8236. int nflip = 0;
  8237. uint8_t s = 0;
  8238. for (int i = 0; i < 8; ++i) {
  8239. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8240. else {
  8241. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8242. }
  8243. }
  8244. if (nflip%2) {
  8245. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8246. for (int i = 1; i < 8; ++i) {
  8247. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8248. if (ax < min) {
  8249. min = ax; imin = i;
  8250. }
  8251. }
  8252. xval[8*k+imin] = -xval[8*k+imin];
  8253. s ^= (1 << imin);
  8254. }
  8255. block_signs[k] = s & 127;
  8256. }
  8257. float max = xval[0];
  8258. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8259. if (!max) {
  8260. scales[ib] = 0;
  8261. memset(L, 0, 32);
  8262. continue;
  8263. }
  8264. float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight);
  8265. float eff_max = scale*kMaxQ;
  8266. float best = 0;
  8267. for (int is = -6; is <= 6; ++is) {
  8268. float id = (2*kMaxQ-1+is*0.1f)/eff_max;
  8269. float this_scale = 1/id;
  8270. for (int k = 0; k < 4; ++k) {
  8271. for (int i = 0; i < 8; ++i) {
  8272. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8273. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8274. }
  8275. uint16_t u = 0;
  8276. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8277. int grid_index = kmap_q2xs[u];
  8278. if (grid_index < 0) {
  8279. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8280. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8281. }
  8282. }
  8283. float sumqx = 0, sumq2 = 0;
  8284. for (int i = 0; i < 32; ++i) {
  8285. float w = weight[i];
  8286. float q = 2*Laux[i] + 1;
  8287. sumqx += w*xval[i]*q;
  8288. sumq2 += w*q*q;
  8289. }
  8290. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8291. scale = sumqx/sumq2; best = scale*sumqx;
  8292. memcpy(L, Laux, 32);
  8293. }
  8294. }
  8295. if (scale > 0) {
  8296. float id = 1/scale;
  8297. for (int k = 0; k < 4; ++k) {
  8298. uint16_t u = 0;
  8299. for (int i = 0; i < 8; ++i) {
  8300. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8301. l = MAX(0, MIN(kMaxQ-1, l));
  8302. u |= (l << 2*i);
  8303. }
  8304. int grid_index = kmap_q2xs[u];
  8305. if (grid_index < 0) {
  8306. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8307. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8308. }
  8309. const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index);
  8310. for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2;
  8311. }
  8312. float sumqx = 0, sumq2 = 0;
  8313. for (int i = 0; i < 32; ++i) {
  8314. float w = weight[i];
  8315. float q = 2*L[i] + 1;
  8316. sumqx += w*xval[i]*q;
  8317. sumq2 += w*q*q;
  8318. }
  8319. if (sumq2 > 0) scale = sumqx/sumq2;
  8320. }
  8321. if (scale < 0) {
  8322. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8323. // and correspondingly flip quant signs.
  8324. scale = -scale;
  8325. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8326. }
  8327. for (int k = 0; k < 4; ++k) {
  8328. uint16_t u = 0;
  8329. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8330. int grid_index = kmap_q2xs[u];
  8331. if (grid_index < 0) {
  8332. printf("Oops: found point %u not on grid:", u);
  8333. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8334. printf("\n");
  8335. GGML_ASSERT(false);
  8336. }
  8337. q2[2*ib+0] |= (grid_index << 8*k);
  8338. q2[2*ib+1] |= (block_signs[k] << 7*k);
  8339. }
  8340. GGML_ASSERT(scale >= 0);
  8341. scales[ib] = scale;
  8342. max_scale = MAX(max_scale, scale);
  8343. }
  8344. if (!max_scale) {
  8345. memset(y[ibl].qs, 0, QK_K/4);
  8346. continue;
  8347. }
  8348. float d = max_scale/31;
  8349. y[ibl].d = GGML_FP32_TO_FP16(d);
  8350. float id = 1/d;
  8351. for (int ib = 0; ib < QK_K/32; ++ib) {
  8352. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8353. l = MAX(0, MIN(15, l));
  8354. q2[2*ib+1] |= ((uint32_t)l << 28);
  8355. }
  8356. memcpy(y[ibl].qs, q2, QK_K/4);
  8357. }
  8358. }
  8359. static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  8360. const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS);
  8361. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  8362. const int * kmap_q2xs = iq2_data[gindex].map;
  8363. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  8364. GGML_ASSERT(quant_weights && "missing quantization weights");
  8365. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  8366. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  8367. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  8368. GGML_ASSERT(n%QK_K == 0);
  8369. const int kMaxQ = 3;
  8370. const int nbl = n/256;
  8371. block_iq2_xs * y = vy;
  8372. float scales[QK_K/16];
  8373. float weight[16];
  8374. float xval[16];
  8375. int8_t L[16];
  8376. int8_t Laux[16];
  8377. float waux[16];
  8378. bool is_on_grid[2];
  8379. bool is_on_grid_aux[2];
  8380. uint8_t block_signs[2];
  8381. uint16_t q2[2*(QK_K/16)];
  8382. for (int ibl = 0; ibl < nbl; ++ibl) {
  8383. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8384. memset(q2, 0, QK_K/4);
  8385. memset(y[ibl].scales, 0, QK_K/32);
  8386. float max_scale = 0;
  8387. const float * xbl = x + QK_K*ibl;
  8388. float sumx2 = 0;
  8389. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8390. float sigma2 = sumx2/QK_K;
  8391. for (int ib = 0; ib < QK_K/16; ++ib) {
  8392. const float * xb = xbl + 16*ib;
  8393. const float * qw = quant_weights + QK_K*ibl + 16*ib;
  8394. for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8395. for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]);
  8396. for (int k = 0; k < 2; ++k) {
  8397. int nflip = 0;
  8398. uint8_t s = 0;
  8399. for (int i = 0; i < 8; ++i) {
  8400. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8401. else {
  8402. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8403. }
  8404. }
  8405. if (nflip%2) {
  8406. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8407. for (int i = 1; i < 8; ++i) {
  8408. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8409. if (ax < min) {
  8410. min = ax; imin = i;
  8411. }
  8412. }
  8413. xval[8*k+imin] = -xval[8*k+imin];
  8414. s ^= (1 << imin);
  8415. }
  8416. block_signs[k] = s & 127;
  8417. }
  8418. float max = xval[0];
  8419. for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]);
  8420. if (!max) {
  8421. scales[ib] = 0;
  8422. memset(L, 0, 16);
  8423. continue;
  8424. }
  8425. float best = 0;
  8426. float scale = max/(2*kMaxQ-1);
  8427. is_on_grid[0] = is_on_grid[1] = true;
  8428. for (int is = -9; is <= 9; ++is) {
  8429. float id = (2*kMaxQ-1+is*0.1f)/max;
  8430. float this_scale = 1/id;
  8431. for (int k = 0; k < 2; ++k) {
  8432. for (int i = 0; i < 8; ++i) {
  8433. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8434. Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8435. }
  8436. uint16_t u = 0;
  8437. for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i);
  8438. int grid_index = kmap_q2xs[u];
  8439. is_on_grid_aux[k] = true;
  8440. if (grid_index < 0) {
  8441. is_on_grid_aux[k] = false;
  8442. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8443. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k);
  8444. }
  8445. }
  8446. float sumqx = 0, sumq2 = 0;
  8447. for (int i = 0; i < 16; ++i) {
  8448. float w = weight[i];
  8449. float q = 2*Laux[i] + 1;
  8450. sumqx += w*xval[i]*q;
  8451. sumq2 += w*q*q;
  8452. }
  8453. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8454. scale = sumqx/sumq2; best = scale*sumqx;
  8455. for (int i = 0; i < 16; ++i) L[i] = Laux[i];
  8456. for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8457. }
  8458. }
  8459. int n_not_ongrid = 0;
  8460. for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8461. if (n_not_ongrid > 0 && scale > 0) {
  8462. float id = 1/scale;
  8463. for (int k = 0; k < 2; ++k) {
  8464. if (is_on_grid[k]) continue;
  8465. uint16_t u = 0;
  8466. for (int i = 0; i < 8; ++i) {
  8467. int l = nearest_int(0.5f*(id*xval[8*k+i]-1));
  8468. l = MAX(0, MIN(kMaxQ-1, l));
  8469. u |= (l << 2*i);
  8470. L[8*k + i] = l;
  8471. }
  8472. int grid_index = kmap_q2xs[u];
  8473. if (grid_index < 0) {
  8474. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  8475. grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k);
  8476. }
  8477. }
  8478. float sumqx = 0, sumq2 = 0;
  8479. for (int i = 0; i < 16; ++i) {
  8480. float w = weight[i];
  8481. float q = 2*L[i] + 1;
  8482. sumqx += w*xval[i]*q;
  8483. sumq2 += w*q*q;
  8484. }
  8485. if (sumq2 > 0) scale = sumqx/sumq2;
  8486. }
  8487. if (scale < 0) {
  8488. scale = -scale;
  8489. for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8490. }
  8491. for (int k = 0; k < 2; ++k) {
  8492. uint16_t u = 0;
  8493. for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i);
  8494. int grid_index = kmap_q2xs[u];
  8495. if (grid_index < 0) {
  8496. printf("Oops: found point %u not on grid:", u);
  8497. for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]);
  8498. printf("\n");
  8499. GGML_ASSERT(false);
  8500. }
  8501. q2[2*ib+k] = grid_index | (block_signs[k] << 9);
  8502. }
  8503. GGML_ASSERT(scale >= 0);
  8504. scales[ib] = scale;
  8505. max_scale = MAX(max_scale, scale);
  8506. }
  8507. if (!max_scale) {
  8508. memset(y[ibl].qs, 0, QK_K/4);
  8509. continue;
  8510. }
  8511. float d = max_scale/31;
  8512. y[ibl].d = GGML_FP32_TO_FP16(d);
  8513. float id = 1/d;
  8514. for (int ib = 0; ib < QK_K/16; ++ib) {
  8515. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8516. l = MAX(0, MIN(15, l));
  8517. if (ib%2 == 0) y[ibl].scales[ib/2] = l;
  8518. else y[ibl].scales[ib/2] |= (l << 4);
  8519. }
  8520. memcpy(y[ibl].qs, q2, QK_K/4);
  8521. }
  8522. }
  8523. size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8524. (void)hist;
  8525. GGML_ASSERT(n_per_row%QK_K == 0);
  8526. int nblock = n_per_row/QK_K;
  8527. char * qrow = (char *)dst;
  8528. for (int row = 0; row < nrow; ++row) {
  8529. quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights);
  8530. src += n_per_row;
  8531. qrow += nblock*sizeof(block_iq2_xxs);
  8532. }
  8533. return nrow * nblock * sizeof(block_iq2_xxs);
  8534. }
  8535. size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8536. (void)hist;
  8537. GGML_ASSERT(n_per_row%QK_K == 0);
  8538. int nblock = n_per_row/QK_K;
  8539. char * qrow = (char *)dst;
  8540. for (int row = 0; row < nrow; ++row) {
  8541. quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights);
  8542. src += n_per_row;
  8543. qrow += nblock*sizeof(block_iq2_xs);
  8544. }
  8545. return nrow * nblock * sizeof(block_iq2_xs);
  8546. }
  8547. //
  8548. // ============================================= 3-bit using D4 lattice
  8549. //
  8550. typedef struct {
  8551. uint32_t * grid;
  8552. int * map;
  8553. uint16_t * neighbours;
  8554. } iq3_entry_t;
  8555. static iq3_entry_t iq3_data[2] = {
  8556. {NULL, NULL, NULL},
  8557. {NULL, NULL, NULL},
  8558. };
  8559. static inline int iq3_data_index(int grid_size) {
  8560. (void)grid_size;
  8561. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  8562. return grid_size == 256 ? 0 : 1;
  8563. }
  8564. static int iq3_compare_func(const void * left, const void * right) {
  8565. const int * l = (const int *)left;
  8566. const int * r = (const int *)right;
  8567. return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
  8568. }
  8569. void iq3xs_init_impl(int grid_size) {
  8570. const int gindex = iq3_data_index(grid_size);
  8571. if (iq3_data[gindex].grid) {
  8572. return;
  8573. }
  8574. static const uint16_t kgrid_256[256] = {
  8575. 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
  8576. 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
  8577. 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
  8578. 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
  8579. 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
  8580. 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
  8581. 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
  8582. 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
  8583. 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
  8584. 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
  8585. 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
  8586. 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
  8587. 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
  8588. 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
  8589. 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
  8590. 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
  8591. };
  8592. static const uint16_t kgrid_512[512] = {
  8593. 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34,
  8594. 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77,
  8595. 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142,
  8596. 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210,
  8597. 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288,
  8598. 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393,
  8599. 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514,
  8600. 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576,
  8601. 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653,
  8602. 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727,
  8603. 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833,
  8604. 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977,
  8605. 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047,
  8606. 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103,
  8607. 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199,
  8608. 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296,
  8609. 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415,
  8610. 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561,
  8611. 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648,
  8612. 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761,
  8613. 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877,
  8614. 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068,
  8615. 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177,
  8616. 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269,
  8617. 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520,
  8618. 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634,
  8619. 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805,
  8620. 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083,
  8621. 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276,
  8622. 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591,
  8623. 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729,
  8624. 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032,
  8625. };
  8626. const int kmap_size = 4096;
  8627. const int nwant = grid_size == 256 ? 2 : 3;
  8628. const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512;
  8629. uint32_t * kgrid_q3xs;
  8630. int * kmap_q3xs;
  8631. uint16_t * kneighbors_q3xs;
  8632. printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
  8633. uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
  8634. for (int k = 0; k < grid_size; ++k) {
  8635. int8_t * pos = (int8_t *)(the_grid + k);
  8636. for (int i = 0; i < 4; ++i) {
  8637. int l = (kgrid[k] >> 3*i) & 0x7;
  8638. pos[i] = 2*l + 1;
  8639. }
  8640. }
  8641. kgrid_q3xs = the_grid;
  8642. iq3_data[gindex].grid = the_grid;
  8643. kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
  8644. iq3_data[gindex].map = kmap_q3xs;
  8645. for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
  8646. uint32_t aux32;
  8647. uint8_t * aux8 = (uint8_t *)&aux32;
  8648. for (int i = 0; i < grid_size; ++i) {
  8649. aux32 = kgrid_q3xs[i];
  8650. uint16_t index = 0;
  8651. for (int k=0; k<4; ++k) {
  8652. uint16_t q = (aux8[k] - 1)/2;
  8653. index |= (q << 3*k);
  8654. }
  8655. kmap_q3xs[index] = i;
  8656. }
  8657. int8_t pos[4];
  8658. int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
  8659. int num_neighbors = 0, num_not_in_map = 0;
  8660. for (int i = 0; i < kmap_size; ++i) {
  8661. if (kmap_q3xs[i] >= 0) continue;
  8662. ++num_not_in_map;
  8663. for (int k = 0; k < 4; ++k) {
  8664. int l = (i >> 3*k) & 0x7;
  8665. pos[k] = 2*l + 1;
  8666. }
  8667. for (int j = 0; j < grid_size; ++j) {
  8668. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8669. int d2 = 0;
  8670. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8671. dist2[2*j+0] = d2;
  8672. dist2[2*j+1] = j;
  8673. }
  8674. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8675. int n = 0; int d2 = dist2[0];
  8676. int nhave = 1;
  8677. for (int j = 0; j < grid_size; ++j) {
  8678. if (dist2[2*j] > d2) {
  8679. if (nhave == nwant) break;
  8680. d2 = dist2[2*j];
  8681. ++nhave;
  8682. }
  8683. ++n;
  8684. }
  8685. num_neighbors += n;
  8686. }
  8687. printf("%s: %d neighbours in total\n", __func__, num_neighbors);
  8688. kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
  8689. iq3_data[gindex].neighbours = kneighbors_q3xs;
  8690. int counter = 0;
  8691. for (int i = 0; i < kmap_size; ++i) {
  8692. if (kmap_q3xs[i] >= 0) continue;
  8693. for (int k = 0; k < 4; ++k) {
  8694. int l = (i >> 3*k) & 0x7;
  8695. pos[k] = 2*l + 1;
  8696. }
  8697. for (int j = 0; j < grid_size; ++j) {
  8698. const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
  8699. int d2 = 0;
  8700. for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
  8701. dist2[2*j+0] = d2;
  8702. dist2[2*j+1] = j;
  8703. }
  8704. qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
  8705. kmap_q3xs[i] = -(counter + 1);
  8706. int d2 = dist2[0];
  8707. uint16_t * start = &kneighbors_q3xs[counter++];
  8708. int n = 0, nhave = 1;
  8709. for (int j = 0; j < grid_size; ++j) {
  8710. if (dist2[2*j] > d2) {
  8711. if (nhave == nwant) break;
  8712. d2 = dist2[2*j];
  8713. ++nhave;
  8714. }
  8715. kneighbors_q3xs[counter++] = dist2[2*j+1];
  8716. ++n;
  8717. }
  8718. *start = n;
  8719. }
  8720. free(dist2);
  8721. }
  8722. void iq3xs_free_impl(int grid_size) {
  8723. GGML_ASSERT(grid_size == 256 || grid_size == 512);
  8724. const int gindex = iq3_data_index(grid_size);
  8725. if (iq3_data[gindex].grid) {
  8726. free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
  8727. free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
  8728. free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
  8729. }
  8730. }
  8731. static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
  8732. const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
  8733. int num_neighbors = neighbours[0];
  8734. GGML_ASSERT(num_neighbors > 0);
  8735. float best_d2 = FLT_MAX;
  8736. int grid_index = -1;
  8737. for (int j = 1; j <= num_neighbors; ++j) {
  8738. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  8739. float d2 = 0;
  8740. for (int i = 0; i < 4; ++i) {
  8741. float q = pg[i];
  8742. float diff = scale*q - xval[i];
  8743. d2 += weight[i]*diff*diff;
  8744. }
  8745. if (d2 < best_d2) {
  8746. best_d2 = d2; grid_index = neighbours[j];
  8747. }
  8748. }
  8749. GGML_ASSERT(grid_index >= 0);
  8750. const int8_t * pg = (const int8_t *)(grid + grid_index);
  8751. for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
  8752. return grid_index;
  8753. }
  8754. static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int n,
  8755. const float * restrict quant_weights) {
  8756. const int gindex = iq3_data_index(grid_size);
  8757. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  8758. const int * kmap_q3xs = iq3_data[gindex].map;
  8759. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  8760. //GGML_ASSERT(quant_weights && "missing quantization weights");
  8761. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  8762. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  8763. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  8764. GGML_ASSERT(n%QK_K == 0);
  8765. const int kMaxQ = 8;
  8766. const int nbl = n/QK_K;
  8767. ggml_fp16_t * dh;
  8768. uint8_t * qs;
  8769. int block_size;
  8770. if (grid_size == 256) {
  8771. block_iq3_xxs * y = vy;
  8772. dh = &y->d;
  8773. qs = y->qs;
  8774. block_size = sizeof(block_iq3_xxs);
  8775. } else {
  8776. block_iq3_s * y = vy;
  8777. dh = &y->d;
  8778. qs = y->qs;
  8779. block_size = sizeof(block_iq3_s);
  8780. }
  8781. int quant_size = block_size - sizeof(ggml_fp16_t);
  8782. float scales[QK_K/32];
  8783. float weight[32];
  8784. float xval[32];
  8785. int8_t L[32];
  8786. int8_t Laux[32];
  8787. float waux[32];
  8788. bool is_on_grid[8];
  8789. bool is_on_grid_aux[8];
  8790. uint8_t block_signs[8];
  8791. uint8_t q3[3*(QK_K/8)+QK_K/32];
  8792. uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
  8793. uint8_t * qh = q3 + 3*(QK_K/8);
  8794. for (int ibl = 0; ibl < nbl; ++ibl) {
  8795. dh[0] = GGML_FP32_TO_FP16(0.f);
  8796. memset(q3, 0, 3*QK_K/8+QK_K/32);
  8797. float max_scale = 0;
  8798. const float * xbl = x + QK_K*ibl;
  8799. float sumx2 = 0;
  8800. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  8801. float sigma2 = 2*sumx2/QK_K;
  8802. for (int ib = 0; ib < QK_K/32; ++ib) {
  8803. const float * xb = xbl + 32*ib;
  8804. if (quant_weights) {
  8805. const float * qw = quant_weights + QK_K*ibl + 32*ib;
  8806. for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  8807. } else {
  8808. for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
  8809. }
  8810. for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
  8811. for (int k = 0; k < 4; ++k) {
  8812. int nflip = 0;
  8813. uint8_t s = 0;
  8814. for (int i = 0; i < 8; ++i) {
  8815. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  8816. else {
  8817. xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
  8818. }
  8819. }
  8820. if (nflip%2) {
  8821. int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
  8822. for (int i = 1; i < 8; ++i) {
  8823. float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
  8824. if (ax < min) {
  8825. min = ax; imin = i;
  8826. }
  8827. }
  8828. xval[8*k+imin] = -xval[8*k+imin];
  8829. s ^= (1 << imin);
  8830. }
  8831. block_signs[k] = s & 127;
  8832. }
  8833. float max = xval[0];
  8834. for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
  8835. if (!max) {
  8836. scales[ib] = 0;
  8837. memset(L, 0, 32);
  8838. continue;
  8839. }
  8840. float best = 0;
  8841. float scale = max/(2*kMaxQ-1);
  8842. for (int is = -15; is <= 15; ++is) {
  8843. float id = (2*kMaxQ-1+is*0.2f)/max;
  8844. float this_scale = 1/id;
  8845. for (int k = 0; k < 8; ++k) {
  8846. for (int i = 0; i < 4; ++i) {
  8847. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8848. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  8849. }
  8850. uint16_t u = 0;
  8851. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  8852. int grid_index = kmap_q3xs[u];
  8853. is_on_grid_aux[k] = true;
  8854. if (grid_index < 0) {
  8855. is_on_grid_aux[k] = false;
  8856. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8857. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  8858. }
  8859. }
  8860. float sumqx = 0, sumq2 = 0;
  8861. for (int i = 0; i < 32; ++i) {
  8862. float w = weight[i];
  8863. float q = 2*Laux[i] + 1;
  8864. sumqx += w*xval[i]*q;
  8865. sumq2 += w*q*q;
  8866. }
  8867. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  8868. scale = sumqx/sumq2; best = scale*sumqx;
  8869. for (int i = 0; i < 32; ++i) L[i] = Laux[i];
  8870. for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
  8871. }
  8872. }
  8873. int n_not_ongrid = 0;
  8874. for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  8875. if (n_not_ongrid > 0 && scale > 0) {
  8876. float id = 1/scale;
  8877. for (int k = 0; k < 8; ++k) {
  8878. if (is_on_grid[k]) continue;
  8879. uint16_t u = 0;
  8880. for (int i = 0; i < 4; ++i) {
  8881. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  8882. l = MAX(0, MIN(kMaxQ-1, l));
  8883. u |= (l << 3*i);
  8884. }
  8885. int grid_index = kmap_q3xs[u];
  8886. if (grid_index < 0) {
  8887. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  8888. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  8889. }
  8890. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  8891. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  8892. }
  8893. float sumqx = 0, sumq2 = 0;
  8894. for (int i = 0; i < 32; ++i) {
  8895. float w = weight[i];
  8896. float q = 2*L[i] + 1;
  8897. sumqx += w*xval[i]*q;
  8898. sumq2 += w*q*q;
  8899. }
  8900. if (sumq2 > 0) scale = sumqx/sumq2;
  8901. }
  8902. if (scale < 0) {
  8903. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  8904. // and correspondingly flip quant signs.
  8905. scale = -scale;
  8906. for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
  8907. }
  8908. for (int k = 0; k < 8; ++k) {
  8909. uint16_t u = 0;
  8910. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  8911. int grid_index = kmap_q3xs[u];
  8912. if (grid_index < 0) {
  8913. printf("Oops: found point %u not on grid:", u);
  8914. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  8915. printf("\n");
  8916. GGML_ASSERT(false);
  8917. }
  8918. if (grid_size == 256) {
  8919. q3[8*ib+k] = grid_index;
  8920. } else {
  8921. q3[8*ib+k] = grid_index & 255;
  8922. qh[ib] |= ((grid_index >> 8) << k);
  8923. }
  8924. }
  8925. scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
  8926. GGML_ASSERT(scale >= 0);
  8927. scales[ib] = scale;
  8928. max_scale = MAX(max_scale, scale);
  8929. }
  8930. if (!max_scale) {
  8931. memset(qs, 0, quant_size);
  8932. dh += block_size/sizeof(ggml_fp16_t);
  8933. qs += block_size;
  8934. continue;
  8935. }
  8936. float d = max_scale/31;
  8937. dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor
  8938. float id = 1/d;
  8939. for (int ib = 0; ib < QK_K/32; ++ib) {
  8940. int l = nearest_int(0.5f*(id*scales[ib]-1));
  8941. l = MAX(0, MIN(15, l));
  8942. scales_and_signs[ib] |= ((uint32_t)l << 28);
  8943. }
  8944. memcpy(qs, q3, quant_size);
  8945. dh += block_size/sizeof(ggml_fp16_t);
  8946. qs += block_size;
  8947. }
  8948. }
  8949. size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  8950. (void)hist;
  8951. GGML_ASSERT(n_per_row%QK_K == 0);
  8952. int nblock = n_per_row/QK_K;
  8953. char * qrow = (char *)dst;
  8954. for (int row = 0; row < nrow; ++row) {
  8955. quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights);
  8956. src += n_per_row;
  8957. qrow += nblock*sizeof(block_iq3_xxs);
  8958. }
  8959. return nrow * nblock * sizeof(block_iq3_xxs);
  8960. }
  8961. void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
  8962. assert(k % QK_K == 0);
  8963. block_iq3_xxs * restrict y = vy;
  8964. quantize_row_iq3_xxs_reference(x, y, k);
  8965. }
  8966. void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
  8967. assert(k % QK_K == 0);
  8968. quantize_row_iq3_xxs_impl(256, x, y, k, NULL);
  8969. }
  8970. static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n,
  8971. const float * restrict quant_weights,
  8972. float * scales,
  8973. float * weight,
  8974. float * xval,
  8975. int8_t * L,
  8976. int8_t * Laux,
  8977. float * waux,
  8978. bool * is_on_grid,
  8979. bool * is_on_grid_aux,
  8980. uint8_t * block_signs) {
  8981. const int gindex = iq3_data_index(512);
  8982. const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
  8983. const int * kmap_q3xs = iq3_data[gindex].map;
  8984. const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
  8985. //GGML_ASSERT(quant_weights && "missing quantization weights");
  8986. GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
  8987. GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
  8988. GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
  8989. GGML_ASSERT(n%QK_K == 0);
  8990. const int kMaxQ = 8;
  8991. const int nbl = n/QK_K;
  8992. block_iq3_s * y = vy;
  8993. const int bs4 = block_size/4;
  8994. const int bs8 = block_size/8;
  8995. for (int ibl = 0; ibl < nbl; ++ibl) {
  8996. memset(&y[ibl], 0, sizeof(block_iq3_s));
  8997. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  8998. uint8_t * qs = y[ibl].qs;
  8999. uint8_t * qh = y[ibl].qh;
  9000. uint8_t * signs = y[ibl].signs;
  9001. float max_scale = 0;
  9002. const float * xbl = x + QK_K*ibl;
  9003. float sumx2 = 0;
  9004. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9005. float sigma2 = 2*sumx2/QK_K;
  9006. for (int ib = 0; ib < QK_K/block_size; ++ib) {
  9007. const float * xb = xbl + block_size*ib;
  9008. if (quant_weights) {
  9009. const float * qw = quant_weights + QK_K*ibl + block_size*ib;
  9010. for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9011. } else {
  9012. for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i];
  9013. }
  9014. for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]);
  9015. for (int k = 0; k < bs8; ++k) {
  9016. uint8_t s = 0;
  9017. for (int i = 0; i < 8; ++i) {
  9018. if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
  9019. else {
  9020. xval[8*k + i] = -xb[8*k + i]; s |= (1 << i);
  9021. }
  9022. }
  9023. block_signs[k] = s;
  9024. }
  9025. float max = xval[0];
  9026. for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]);
  9027. if (!max) {
  9028. scales[ib] = 0;
  9029. continue;
  9030. }
  9031. float best = 0;
  9032. float scale = max/(2*kMaxQ-1);
  9033. for (int is = -15; is <= 15; ++is) {
  9034. float id = (2*kMaxQ-1+is*0.2f)/max;
  9035. float this_scale = 1/id;
  9036. for (int k = 0; k < bs4; ++k) {
  9037. for (int i = 0; i < 4; ++i) {
  9038. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9039. Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
  9040. }
  9041. uint16_t u = 0;
  9042. for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
  9043. int grid_index = kmap_q3xs[u];
  9044. is_on_grid_aux[k] = true;
  9045. if (grid_index < 0) {
  9046. is_on_grid_aux[k] = false;
  9047. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9048. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
  9049. }
  9050. }
  9051. float sumqx = 0, sumq2 = 0;
  9052. for (int i = 0; i < block_size; ++i) {
  9053. float w = weight[i];
  9054. float q = 2*Laux[i] + 1;
  9055. sumqx += w*xval[i]*q;
  9056. sumq2 += w*q*q;
  9057. }
  9058. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9059. scale = sumqx/sumq2; best = scale*sumqx;
  9060. for (int i = 0; i < block_size; ++i) L[i] = Laux[i];
  9061. for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k];
  9062. }
  9063. }
  9064. int n_not_ongrid = 0;
  9065. for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
  9066. if (n_not_ongrid > 0 && scale > 0) {
  9067. float id = 1/scale;
  9068. for (int k = 0; k < bs4; ++k) {
  9069. if (is_on_grid[k]) continue;
  9070. uint16_t u = 0;
  9071. for (int i = 0; i < 4; ++i) {
  9072. int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
  9073. l = MAX(0, MIN(kMaxQ-1, l));
  9074. u |= (l << 3*i);
  9075. }
  9076. int grid_index = kmap_q3xs[u];
  9077. if (grid_index < 0) {
  9078. const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
  9079. grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
  9080. }
  9081. const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
  9082. for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
  9083. }
  9084. float sumqx = 0, sumq2 = 0;
  9085. for (int i = 0; i < block_size; ++i) {
  9086. float w = weight[i];
  9087. float q = 2*L[i] + 1;
  9088. sumqx += w*xval[i]*q;
  9089. sumq2 += w*q*q;
  9090. }
  9091. if (sumq2 > 0) scale = sumqx/sumq2;
  9092. }
  9093. if (scale < 0) {
  9094. // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
  9095. // and correspondingly flip quant signs.
  9096. scale = -scale;
  9097. for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k];
  9098. }
  9099. for (int k = 0; k < bs4; ++k) {
  9100. uint16_t u = 0;
  9101. for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
  9102. int grid_index = kmap_q3xs[u];
  9103. if (grid_index < 0) {
  9104. printf("Oops: found point %u not on grid:", u);
  9105. for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
  9106. printf("\n");
  9107. GGML_ASSERT(false);
  9108. }
  9109. qs[k] = grid_index & 255;
  9110. qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8));
  9111. }
  9112. qs += bs4;
  9113. for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k];
  9114. signs += bs8;
  9115. GGML_ASSERT(scale >= 0);
  9116. scales[ib] = scale;
  9117. max_scale = MAX(max_scale, scale);
  9118. }
  9119. if (!max_scale) {
  9120. continue;
  9121. }
  9122. float d = max_scale/31;
  9123. y[ibl].d = GGML_FP32_TO_FP16(d);
  9124. float id = 1/d;
  9125. for (int ib = 0; ib < QK_K/block_size; ib += 2) {
  9126. int l1 = nearest_int(0.5f*(id*scales[ib+0]-1));
  9127. l1 = MAX(0, MIN(15, l1));
  9128. int l2 = nearest_int(0.5f*(id*scales[ib+1]-1));
  9129. l2 = MAX(0, MIN(15, l2));
  9130. y[ibl].scales[ib/2] = l1 | (l2 << 4);
  9131. }
  9132. }
  9133. }
  9134. #define IQ3S_BLOCK_SIZE 32
  9135. size_t quantize_iq3_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9136. (void)hist;
  9137. GGML_ASSERT(n_per_row%QK_K == 0);
  9138. int nblock = n_per_row/QK_K;
  9139. float scales[QK_K/IQ3S_BLOCK_SIZE];
  9140. float weight[IQ3S_BLOCK_SIZE];
  9141. float xval[IQ3S_BLOCK_SIZE];
  9142. int8_t L[IQ3S_BLOCK_SIZE];
  9143. int8_t Laux[IQ3S_BLOCK_SIZE];
  9144. float waux[IQ3S_BLOCK_SIZE];
  9145. bool is_on_grid[IQ3S_BLOCK_SIZE/4];
  9146. bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4];
  9147. uint8_t block_signs[IQ3S_BLOCK_SIZE/8];
  9148. char * qrow = (char *)dst;
  9149. for (int row = 0; row < nrow; ++row) {
  9150. quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights,
  9151. scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs);
  9152. src += n_per_row;
  9153. qrow += nblock*sizeof(block_iq3_s);
  9154. }
  9155. return nrow * nblock * sizeof(block_iq3_s);
  9156. }
  9157. void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
  9158. assert(k % QK_K == 0);
  9159. block_iq3_s * restrict y = vy;
  9160. quantize_row_iq3_s_reference(x, y, k);
  9161. }
  9162. void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
  9163. assert(k % QK_K == 0);
  9164. quantize_iq3_s(x, y, 1, k, NULL, NULL);
  9165. }
  9166. // =================================== 1.5 bpw ===================================================
  9167. static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid,
  9168. const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) {
  9169. int num_neighbors = neighbours[0];
  9170. GGML_ASSERT(num_neighbors > 0);
  9171. float best_score = 0;
  9172. int grid_index = -1;
  9173. for (int j = 1; j <= num_neighbors; ++j) {
  9174. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9175. float sumqx = 0, sumq2 = 0;
  9176. for (int i = 0; i < 8; ++i) {
  9177. float q = (pg[i] - 3)/2;
  9178. float w = weight[i];
  9179. sumqx += w*q*xval[i];
  9180. sumq2 += w*q*q;
  9181. }
  9182. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9183. *scale = sumqx/sumq2; best_score = *scale * sumqx;
  9184. grid_index = neighbours[j];
  9185. }
  9186. }
  9187. if (grid_index < 0) {
  9188. for (int i = 0; i < ngrid; ++i) {
  9189. const int8_t * grid_i = (const int8_t *)(grid + i);
  9190. float sumqx = 0, sumq2 = 0;
  9191. for (int j = 0; j < 8; ++j) {
  9192. float w = weight[j];
  9193. float q = (grid_i[j] - 3)/2;
  9194. sumqx += w*q*xval[j];
  9195. sumq2 += w*q*q;
  9196. }
  9197. if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9198. *scale = sumqx/sumq2; best_score = *scale*sumqx;
  9199. grid_index = i;
  9200. }
  9201. }
  9202. }
  9203. if (grid_index < 0) {
  9204. printf("Oops, did not find grid point\n");
  9205. printf("Have %d neighbours\n", num_neighbors);
  9206. for (int j = 1; j <= num_neighbors; ++j) {
  9207. const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
  9208. float sumqx = 0, sumq2 = 0;
  9209. for (int i = 0; i < 8; ++i) {
  9210. float q = (pg[i] - 3)/2;
  9211. float w = weight[i];
  9212. sumqx += w*q*xval[i];
  9213. sumq2 += w*q*q;
  9214. }
  9215. printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2);
  9216. }
  9217. }
  9218. GGML_ASSERT(grid_index >= 0);
  9219. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9220. *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result.
  9221. //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  9222. const int8_t * pg = (const int8_t *)(grid + grid_index);
  9223. for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2;
  9224. return grid_index;
  9225. }
  9226. static int iq1_sort_helper(const void * left, const void * right) {
  9227. const float * l = left;
  9228. const float * r = right;
  9229. return *l < *r ? -1 : *l > *r ? 1 : 0;
  9230. }
  9231. static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
  9232. const int gindex = iq2_data_index(GGML_TYPE_IQ1_S);
  9233. const uint64_t * kgrid_q2xs = iq2_data[gindex].grid;
  9234. const int * kmap_q2xs = iq2_data[gindex].map;
  9235. const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours;
  9236. GGML_ASSERT(quant_weights && "missing quantization weights");
  9237. GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?");
  9238. GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?");
  9239. GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?");
  9240. GGML_ASSERT(n%QK_K == 0);
  9241. const int nbl = n/256;
  9242. block_iq1_s * y = vy;
  9243. float scales[QK_K/8];
  9244. float weight[8];
  9245. int8_t L[8];
  9246. float sumx[9];
  9247. float sumw[9];
  9248. float pairs[16];
  9249. int * idx = (int *)(pairs + 1);
  9250. uint8_t hbit[QK_K/8];
  9251. for (int ibl = 0; ibl < nbl; ++ibl) {
  9252. y[ibl].d = GGML_FP32_TO_FP16(0.f);
  9253. memset(y[ibl].qs, 0, QK_K/8);
  9254. memset(y[ibl].scales, 0, QK_K/16);
  9255. float max_scale = 0;
  9256. const float * xbl = x + QK_K*ibl;
  9257. float sumx2 = 0;
  9258. for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
  9259. float sigma2 = sumx2/QK_K;
  9260. for (int ib = 0; ib < QK_K/8; ++ib) {
  9261. const float * xb = xbl + 8*ib;
  9262. const float * qw = quant_weights + QK_K*ibl + 8*ib;
  9263. for (int i = 0; i < 8; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
  9264. float max = fabsf(xb[0]);
  9265. for (int i = 1; i < 8; ++i) max = MAX(max, fabsf(xb[i]));
  9266. if (!max) {
  9267. scales[ib] = 0;
  9268. memset(L, 1, 8);
  9269. continue;
  9270. }
  9271. // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem.
  9272. // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two
  9273. // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights
  9274. // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and
  9275. // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale
  9276. // for each possible and score for each split.
  9277. for (int j = 0; j < 8; ++j) {
  9278. pairs[2*j] = xb[j];
  9279. idx[2*j] = j;
  9280. }
  9281. qsort(pairs, 8, 2*sizeof(float), iq1_sort_helper);
  9282. {
  9283. sumx[0] = sumw[0] = 0;
  9284. for (int j = 0; j < 8; ++j) {
  9285. int i = idx[2*j];
  9286. sumx[j+1] = sumx[j] + weight[i]*xb[i];
  9287. sumw[j+1] = sumw[j] + weight[i];
  9288. }
  9289. }
  9290. float best_score = 0, scale = max;
  9291. int besti1 = 0, besti2 = 0;
  9292. for (int i1 = 0; i1 <= 8; ++i1) {
  9293. for (int i2 = i1; i2 <= 8; ++i2) {
  9294. float sumqx = -(sumx[i1] - sumx[0]) + (sumx[8] - sumx[i2]);
  9295. float sumq2 = (sumw[i1] - sumw[0]) + (sumw[8] - sumw[i2]);
  9296. if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) {
  9297. scale = sumqx/sumq2; best_score = scale*sumqx;
  9298. besti1 = i1; besti2 = i2;
  9299. }
  9300. }
  9301. }
  9302. for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0;
  9303. for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1;
  9304. for (int j = besti2; j < 8; ++j) L[idx[2*j]] = 2;
  9305. if (scale < 0) {
  9306. for (int j = 0; j < 8; ++j) L[j] = 2 - L[j];
  9307. scale = -scale;
  9308. }
  9309. // Now we check if the solution found above corresponds to a grid point and, if not, use a neighbouring
  9310. // grid point that minimizes SSD.
  9311. uint16_t u = 0;
  9312. for (int j = 0; j < 8; ++j) u |= (L[j] << 2*j);
  9313. int grid_index = kmap_q2xs[u];
  9314. if (grid_index < 0) {
  9315. const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1;
  9316. grid_index = iq1_find_best_neighbour(neighbours, kgrid_q2xs, xb, weight, &scale, L, NGRID_IQ2XXS);
  9317. GGML_ASSERT(grid_index >= 0);
  9318. }
  9319. y[ibl].qs[ib] = grid_index & 255;
  9320. hbit[ib] = grid_index >> 8;
  9321. GGML_ASSERT(scale >= 0);
  9322. scales[ib] = scale;
  9323. max_scale = MAX(max_scale, scale);
  9324. }
  9325. if (!max_scale) {
  9326. memset(y[ibl].qs, 0, QK_K/8);
  9327. continue;
  9328. }
  9329. float d = max_scale/15;
  9330. y[ibl].d = GGML_FP32_TO_FP16(d*1.085f); // 1.085f is another fudge factor. Don't ask me why it is needed.
  9331. float id = 1/d;
  9332. for (int ib = 0; ib < QK_K/8; ++ib) {
  9333. int l = nearest_int(0.5f*(id*scales[ib]-1));
  9334. l = MAX(0, MIN(7, l));
  9335. if (hbit[ib]) l |= 8;
  9336. y[ibl].scales[ib/2] |= (l << 4*(ib%2));
  9337. }
  9338. }
  9339. }
  9340. size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9341. (void)hist;
  9342. GGML_ASSERT(n_per_row%QK_K == 0);
  9343. int nblock = n_per_row/QK_K;
  9344. char * qrow = (char *)dst;
  9345. for (int row = 0; row < nrow; ++row) {
  9346. quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights);
  9347. src += n_per_row;
  9348. qrow += nblock*sizeof(block_iq1_s);
  9349. }
  9350. return nrow * nblock * sizeof(block_iq1_s);
  9351. }
  9352. // ============================ 4-bit non-linear quants
  9353. static inline int best_index_int8(int n, const int8_t * val, float x) {
  9354. if (x <= val[0]) return 0;
  9355. if (x >= val[n-1]) return n-1;
  9356. int ml = 0, mu = n-1;
  9357. while (mu-ml > 1) {
  9358. int mav = (ml+mu)/2;
  9359. if (x < val[mav]) mu = mav; else ml = mav;
  9360. }
  9361. return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
  9362. }
  9363. static void quantize_row_iq4_nl_impl(const int block_size, const float * GGML_RESTRICT x,
  9364. ggml_fp16_t * dh, uint8_t * q4,
  9365. float * weight, uint8_t * L,
  9366. const int8_t * values,
  9367. const float * quant_weights) {
  9368. const int ntry = 7;
  9369. float sigma2 = 0;
  9370. for (int j = 0; j < QK4_NL; ++j) sigma2 += x[j]*x[j];
  9371. sigma2 *= 2.f/QK4_NL;
  9372. const int nb = QK4_NL/block_size;
  9373. memset(q4, 0, QK4_NL/2);
  9374. for (int ib = 0; ib < nb; ++ib) {
  9375. dh[ib] = GGML_FP32_TO_FP16(0.f);
  9376. const float * xb = x + ib*block_size;
  9377. if (quant_weights) {
  9378. const float * qw = quant_weights + ib*block_size;
  9379. for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]);
  9380. } else {
  9381. for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j];
  9382. }
  9383. float amax = 0, max = 0;
  9384. for (int j = 0; j < block_size; ++j) {
  9385. float ax = fabsf(xb[j]);
  9386. if (ax > amax) {
  9387. amax = ax; max = xb[j];
  9388. }
  9389. }
  9390. if (!amax) {
  9391. continue;
  9392. }
  9393. float d = -max/values[0];
  9394. float id = 1/d;
  9395. float sumqx = 0, sumq2 = 0;
  9396. for (int j = 0; j < block_size; ++j) {
  9397. float al = id*xb[j];
  9398. int l = best_index_int8(16, values, al);
  9399. float q = values[l];
  9400. float w = weight[j];
  9401. sumqx += w*q*xb[j];
  9402. sumq2 += w*q*q;
  9403. }
  9404. float best_id = id;
  9405. d = sumqx/sumq2;
  9406. float best = d*sumqx;
  9407. for (int itry = -ntry; itry <= ntry; ++itry) {
  9408. id = (itry + values[0])/max;
  9409. sumqx = sumq2 = 0;
  9410. for (int j = 0; j < block_size; ++j) {
  9411. float al = id*xb[j];
  9412. int l = best_index_int8(16, values, al);
  9413. float q = values[l];
  9414. float w = weight[j];
  9415. sumqx += w*q*xb[j];
  9416. sumq2 += w*q*q;
  9417. }
  9418. if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
  9419. d = sumqx/sumq2; best = d * sumqx;
  9420. best_id = id;
  9421. }
  9422. }
  9423. dh[ib] = GGML_FP32_TO_FP16(d);
  9424. for (int j = 0; j < block_size; ++j) {
  9425. L[ib*block_size + j] = best_index_int8(16, values, best_id*xb[j]);
  9426. }
  9427. }
  9428. for (int i = 0; i < QK4_NL/32; ++i) {
  9429. for (int j = 0; j < 16; ++j) {
  9430. q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4);
  9431. }
  9432. }
  9433. }
  9434. size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
  9435. (void)hist;
  9436. GGML_ASSERT(n_per_row%QK4_NL == 0);
  9437. int nblock = n_per_row/QK4_NL;
  9438. char * qrow = (char *)dst;
  9439. uint8_t L[QK4_NL];
  9440. float weight[32];
  9441. for (int row = 0; row < nrow; ++row) {
  9442. block_iq4_nl * iq4 = (block_iq4_nl *)qrow;
  9443. for (int ibl = 0; ibl < nblock; ++ibl) {
  9444. const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL;
  9445. quantize_row_iq4_nl_impl(32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, weight, L, kvalues_iq4nl, qw);
  9446. }
  9447. src += n_per_row;
  9448. qrow += nblock*sizeof(block_iq4_nl);
  9449. }
  9450. return nrow * nblock * sizeof(block_iq4_nl);
  9451. }
  9452. void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
  9453. assert(k % QK4_NL == 0);
  9454. block_iq4_nl * restrict y = vy;
  9455. quantize_row_iq4_nl_reference(x, y, k);
  9456. }
  9457. void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
  9458. assert(k % QK4_NL == 0);
  9459. quantize_iq4_nl(x, y, 1, k, NULL, NULL);
  9460. }