| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import argparse
- import math
- import struct
- import sys
- from pathlib import Path
- import numpy as np
- import os
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
- import gguf
- # Note: Does not support GGML_QKK_64
- QK_K = 256
- # Items here are (block size, type size)
- GGML_QUANT_SIZES = {
- gguf.GGMLQuantizationType.F32 : (1, 4),
- gguf.GGMLQuantizationType.F16 : (1, 2),
- gguf.GGMLQuantizationType.Q4_0 : (32, 2 + 16),
- gguf.GGMLQuantizationType.Q4_1 : (32, 2 + 2 + 16),
- gguf.GGMLQuantizationType.Q5_0 : (32, 2 + 4 + 16),
- gguf.GGMLQuantizationType.Q5_1 : (32, 2 + 2 + 4 + 16),
- gguf.GGMLQuantizationType.Q8_0 : (32, 2 + 32),
- gguf.GGMLQuantizationType.Q8_1 : (32, 4 + 4 + 32),
- gguf.GGMLQuantizationType.Q2_K : (256, 2 + 2 + QK_K // 16 + QK_K // 4),
- gguf.GGMLQuantizationType.Q3_K : (256, 2 + QK_K // 4 + QK_K // 8 + 12),
- gguf.GGMLQuantizationType.Q4_K : (256, 2 + 2 + QK_K // 2 + 12),
- gguf.GGMLQuantizationType.Q5_K : (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
- gguf.GGMLQuantizationType.Q6_K : (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
- gguf.GGMLQuantizationType.Q8_K : (256, 4 + QK_K + QK_K // 8),
- }
- class Hyperparameters:
- def __init__(self):
- self.n_vocab = self.n_embd = self.n_mult = self.n_head = self.n_layer = self.n_rot = self.ftype = 0
- self.n_ff = 0
- def set_n_ff(self, model):
- ff_tensor_idx = model.tensor_map.get(b'layers.0.feed_forward.w1.weight')
- assert ff_tensor_idx is not None, 'Missing layer 0 FF tensor'
- ff_tensor = model.tensors[ff_tensor_idx]
- self.n_ff = ff_tensor.dims[1]
- def load(self, data, offset):
- (
- self.n_vocab,
- self.n_embd,
- self.n_mult,
- self.n_head,
- self.n_layer,
- self.n_rot,
- self.ftype,
- ) = struct.unpack('<7I', data[offset:offset + (4 * 7)])
- return 4 * 7
- def __str__(self):
- return f'<Hyperparameters: n_vocab={self.n_vocab}, n_embd={self.n_embd}, n_mult={self.n_mult}, n_head={self.n_head}, n_layer={self.n_layer}, n_rot={self.n_rot}, n_ff={self.n_ff}, ftype={self.ftype}>'
- class Vocab:
- def __init__(self):
- self.items = []
- def load(self, data, offset, n_vocab):
- orig_offset = offset
- for _ in range(n_vocab):
- itemlen = struct.unpack('<I', data[offset:offset + 4])[0]
- assert itemlen < 4096, 'Absurd vocab item length'
- offset += 4
- vocab = bytes(data[offset:offset + itemlen])
- offset += itemlen
- score = struct.unpack('<f', data[offset:offset + 4])[0]
- offset += 4
- self.items.append((vocab, score))
- return offset - orig_offset
- class Tensor:
- def __init__(self):
- self.name = None
- self.dims: tuple[int, ...] = ()
- self.dtype = None
- self.start_offset = 0
- self.len_bytes = np.int64(0)
- def load(self, data, offset):
- orig_offset = offset
- (n_dims, name_len, dtype) = struct.unpack('<3I', data[offset:offset + 12])
- assert n_dims >= 0 and n_dims <= 4, f'Invalid tensor dimensions {n_dims}'
- assert name_len < 4096, 'Absurd tensor name length'
- quant = GGML_QUANT_SIZES.get(dtype)
- assert quant is not None, 'Unknown tensor type'
- (blksize, tysize) = quant
- offset += 12
- self.dtype= dtype
- self.dims = struct.unpack(f'<{n_dims}I', data[offset:offset + (4 * n_dims)])
- offset += 4 * n_dims
- self.name = bytes(data[offset:offset + name_len])
- offset += name_len
- pad = ((offset + 31) & ~31) - offset
- offset += pad
- n_elems = np.prod(self.dims)
- n_bytes = np.int64(np.int64(n_elems) * np.int64(tysize)) // np.int64(blksize)
- self.start_offset = offset
- self.len_bytes = n_bytes
- offset += n_bytes
- # print(n_dims, name_len, dtype, self.dims, self.name, pad)
- return offset - orig_offset
- class GGMLV3Model:
- def __init__(self):
- self.hyperparameters = None
- self.vocab = None
- self.tensor_map = {}
- self.tensors = []
- def validate_header(self, data, offset):
- if bytes(data[offset:offset + 4]) != b'tjgg' or struct.unpack('<I', data[offset + 4:offset + 8])[0] != 3:
- raise ValueError('Only GGJTv3 supported')
- return 8
- def load(self, data, offset):
- offset += self.validate_header(data, offset)
- hp = Hyperparameters()
- offset += hp.load(data, offset)
- vocab = Vocab()
- offset += vocab.load(data, offset, hp.n_vocab)
- tensors: list[Tensor] = []
- tensor_map = {}
- while offset < len(data):
- tensor = Tensor()
- offset += tensor.load(data, offset)
- tensor_map[tensor.name] = len(tensors)
- tensors.append(tensor)
- self.hyperparameters = hp
- self.vocab = vocab
- self.tensors = tensors
- self.tensor_map = tensor_map
- hp.set_n_ff(self)
- return offset
- class GGMLToGGUF:
- def __init__(self, ggml_model, data, cfg, params_override = None, vocab_override = None, special_vocab = None):
- hp = ggml_model.hyperparameters
- self.model = ggml_model
- self.data = data
- self.cfg = cfg
- self.params_override = params_override
- self.vocab_override = vocab_override
- self.special_vocab = special_vocab
- if params_override is not None:
- n_kv_head = params_override.n_head_kv
- else:
- if cfg.gqa == 1:
- n_kv_head = hp.n_head
- else:
- gqa = float(cfg.gqa)
- n_kv_head = None
- for x in range(1, 256):
- if float(hp.n_head) / float(x) == gqa:
- n_kv_head = x
- assert n_kv_head is not None, "Couldn't determine n_kv_head from GQA param"
- print(f'- Guessed n_kv_head = {n_kv_head} based on GQA {cfg.gqa}')
- self.n_kv_head = n_kv_head
- self.name_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.LLAMA, ggml_model.hyperparameters.n_layer)
- def save(self):
- print('* Preparing to save GGUF file')
- gguf_writer = gguf.GGUFWriter(self.cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
- self.add_params(gguf_writer)
- self.add_vocab(gguf_writer)
- if self.special_vocab is not None:
- self.special_vocab.add_to_gguf(gguf_writer)
- self.add_tensors(gguf_writer)
- print(" gguf: write header")
- gguf_writer.write_header_to_file()
- print(" gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- print(" gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- def add_params(self, gguf_writer):
- hp = self.model.hyperparameters
- cfg = self.cfg
- desc = cfg.desc if cfg.desc is not None else 'converted from legacy GGJTv3 format'
- try:
- # Filenames aren't necessarily valid UTF8.
- name = cfg.name if cfg.name is not None else cfg.input.name
- except UnicodeDecodeError:
- name = None
- print('* Adding model parameters and KV items')
- if name is not None:
- gguf_writer.add_name(name)
- gguf_writer.add_description(desc)
- if self.params_override is not None:
- po = self.params_override
- assert po.n_embd == hp.n_embd, 'Model hyperparams mismatch'
- assert po.n_layer == hp.n_layer, 'Model hyperparams mismatch'
- assert po.n_head == hp.n_head, 'Model hyperparams mismatch'
- gguf_writer.add_context_length (po.n_ctx)
- gguf_writer.add_embedding_length (po.n_embd)
- gguf_writer.add_block_count (po.n_layer)
- gguf_writer.add_feed_forward_length (po.n_ff)
- gguf_writer.add_rope_dimension_count(po.n_embd // po.n_head)
- gguf_writer.add_head_count (po.n_head)
- gguf_writer.add_head_count_kv (po.n_head_kv)
- gguf_writer.add_layer_norm_rms_eps (po.f_norm_eps)
- return
- gguf_writer.add_context_length(cfg.context_length)
- gguf_writer.add_embedding_length(hp.n_embd)
- gguf_writer.add_block_count(hp.n_layer)
- gguf_writer.add_feed_forward_length(hp.n_ff)
- gguf_writer.add_rope_dimension_count(hp.n_embd // hp.n_head)
- gguf_writer.add_head_count(hp.n_head)
- gguf_writer.add_head_count_kv(self.n_kv_head)
- gguf_writer.add_layer_norm_rms_eps(float(cfg.eps))
- def add_vocab(self, gguf_writer):
- hp = self.model.hyperparameters
- gguf_writer.add_tokenizer_model('llama')
- tokens = []
- scores = []
- toktypes = []
- if self.vocab_override is not None:
- vo = self.vocab_override
- print('* Adding vocab item(s)')
- for (idx, (vbytes, score, ttype)) in enumerate(vo.all_tokens()):
- tokens.append(vbytes)
- scores.append(score)
- toktypes.append(ttype)
- assert len(tokens) == hp.n_vocab, f'Override vocab has a different number of items than hyperparameters - override = {len(tokens)} but n_vocab={hp.n_vocab}'
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- if len(toktypes) > 0:
- gguf_writer.add_token_types(toktypes)
- return
- print(f'* Adding {hp.n_vocab} vocab item(s)')
- assert len(self.model.vocab.items) >= 3, 'Cannot handle unexpectedly short model vocab'
- for (tokid, (vbytes, vscore)) in enumerate(self.model.vocab.items):
- tt = 1 # Normal
- # Special handling for UNK, BOS, EOS tokens.
- if tokid <= 2:
- if tokid == 0:
- vbytes = b'<unk>'
- tt = 2
- elif tokid == 1:
- vbytes = b'<s>'
- tt = 3
- else:
- vbytes = b'</s>'
- tt = 3
- elif len(vbytes) == 0:
- tt = 3 # Control
- elif tokid >= 3 and tokid <= 258 and len(vbytes) == 1:
- vbytes = bytes(f'<0x{vbytes[0]:02X}>', encoding = 'UTF-8')
- tt = 6 # Byte
- else:
- vbytes = vbytes.replace(b' ', b'\xe2\x96\x81')
- toktypes.append(tt)
- tokens.append(vbytes)
- scores.append(vscore)
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- gguf_writer.add_unk_token_id(0)
- gguf_writer.add_bos_token_id(1)
- gguf_writer.add_eos_token_id(2)
- def add_tensors(self, gguf_writer):
- tensor_map = self.name_map
- data = self.data
- print(f'* Adding {len(self.model.tensors)} tensor(s)')
- for tensor in self.model.tensors:
- name = str(tensor.name, 'UTF-8')
- mapped_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- assert mapped_name is not None, f'Bad name {name}'
- tempdims = list(tensor.dims[:])
- if len(tempdims) > 1:
- temp = tempdims[1]
- tempdims[1] = tempdims[0]
- tempdims[0] = temp
- # print(f'+ {tensor.name} | {mapped_name} {tensor.dims} :: {tempdims}')
- gguf_writer.add_tensor(mapped_name, data[tensor.start_offset:tensor.start_offset + tensor.len_bytes], raw_shape = tempdims, raw_dtype = tensor.dtype)
- def handle_metadata(cfg, hp):
- import convert
- assert cfg.model_metadata_dir.is_dir(), 'Metadata dir is not a directory'
- hf_config_path = cfg.model_metadata_dir / "config.json"
- orig_config_path = cfg.model_metadata_dir / "params.json"
- # We pass a fake model here. "original" mode will check the shapes of some
- # tensors if information is missing in the .json file: other than that, the
- # model data isn't used so this should be safe (at least for now).
- fakemodel = {
- 'tok_embeddings.weight': convert.LazyTensor.__new__(convert.LazyTensor),
- 'layers.0.feed_forward.w1.weight': convert.LazyTensor.__new__(convert.LazyTensor),
- }
- fakemodel['tok_embeddings.weight'].shape = [hp.n_vocab]
- fakemodel['layers.0.feed_forward.w1.weight'].shape = [hp.n_ff]
- if hf_config_path.exists():
- params = convert.Params.loadHFTransformerJson(fakemodel, hf_config_path)
- elif orig_config_path.exists():
- params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path)
- else:
- raise ValueError('Unable to load metadata')
- vocab = convert.load_vocab(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, cfg.vocabtype)
- # FIXME: Respect cfg.vocab_dir?
- svocab = gguf.SpecialVocab(cfg.model_metadata_dir)
- convert.check_vocab_size(params, vocab)
- return (params, vocab, svocab)
- def handle_args():
- parser = argparse.ArgumentParser(description = 'Convert GGMLv3 models to GGUF')
- parser.add_argument('--input', '-i', type = Path, required = True, help = 'Input GGMLv3 filename')
- parser.add_argument('--output', '-o', type = Path, required = True, help ='Output GGUF filename')
- parser.add_argument('--name', help = 'Set model name')
- parser.add_argument('--desc', help = 'Set model description')
- parser.add_argument('--gqa', type = int, default = 1, help = 'grouped-query attention factor (use 8 for LLaMA2 70B)')
- parser.add_argument('--eps', default = '5.0e-06', help = 'RMS norm eps: Use 1e-6 for LLaMA1 and OpenLLaMA, use 1e-5 for LLaMA2')
- parser.add_argument('--context-length', '-c', type=int, default = 2048, help = 'Default max context length: LLaMA1 is typically 2048, LLaMA2 is typically 4096')
- parser.add_argument('--model-metadata-dir', '-m', type = Path, help ='Load HuggingFace/.pth vocab and metadata from the specified directory')
- parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file - only meaningful with --model-metadata-dir")
- parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format - only meaningful with --model-metadata-dir and/or --vocab-dir (default: spm)", default="spm")
- return parser.parse_args()
- def main():
- cfg = handle_args()
- print(f'* Using config: {cfg}')
- print('\n=== WARNING === Be aware that this conversion script is best-effort. Use a native GGUF model if possible. === WARNING ===\n')
- data = np.memmap(cfg.input, mode = 'r')
- model = GGMLV3Model()
- print('* Scanning GGML input file')
- offset = model.load(data, 0)
- print(f'* GGML model hyperparameters: {model.hyperparameters}')
- vocab_override = None
- params_override = None
- special_vocab = None
- if cfg.model_metadata_dir is not None:
- (params_override, vocab_override, special_vocab) = handle_metadata(cfg, model.hyperparameters)
- print('!! Note: When overriding params the --gqa, --eps and --context-length options are ignored.')
- print(f'* Overriding params: {params_override}')
- print(f'* Overriding vocab: {vocab_override}')
- print(f'* Special vocab: {special_vocab}')
- else:
- print('\n=== WARNING === Special tokens may not be converted correctly. Use --model-metadata-dir if possible === WARNING ===\n')
- converter = GGMLToGGUF(model, data, cfg, params_override = params_override, vocab_override = vocab_override, special_vocab = special_vocab)
- converter.save()
- print(f'* Successful completion. Output saved to: {cfg.output}')
- if __name__ == '__main__':
- main()
|