| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961 |
- #include "ggml.h"
- #include "llama.h"
- #include <unordered_map>
- #include <vector>
- #include <cassert>
- #include <climits>
- #include <cstring>
- #include <cstdarg>
- #include <ctime>
- #include <random>
- #include <stdexcept>
- #include <sstream>
- #include <algorithm>
- #include <string>
- // GGUF keys & tensor names.
- #define KV_GENERAL_ARCHITECTURE "general.architecture"
- #define KV_GENERAL_NAME "general.name"
- #define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
- #define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
- #define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
- #define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
- #define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
- #define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
- #define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
- #define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
- #define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
- #define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
- #define KV_CONTEXT_LENGTH "llama.context_length"
- #define KV_EMBEDDING_LENGTH "llama.embedding_length"
- #define KV_BLOCK_COUNT "llama.block_count"
- #define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
- #define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
- #define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
- #define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
- #define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
- #define TN_TOKEN_EMBD "token_embd.weight"
- #define TN_OUTPUT_NORM "output_norm.weight"
- #define TN_OUTPUT "output.weight"
- #define TN_ATTN_NORM "blk.%d.attn_norm.weight"
- #define TN_ATTN_Q "blk.%d.attn_q.weight"
- #define TN_ATTN_K "blk.%d.attn_k.weight"
- #define TN_ATTN_V "blk.%d.attn_v.weight"
- #define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
- #define TN_FFN_NORM "blk.%d.ffn_norm.weight"
- #define TN_FFN_GATE "blk.%d.ffn_gate.weight"
- #define TN_FFN_DOWN "blk.%d.ffn_down.weight"
- #define TN_FFN_UP "blk.%d.ffn_up.weight"
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
- #define LLAMA_FILE_VERSION_GGJT_V3 3
- #define TOKENIZER_NAME "llama"
- #define UNKNOWN_TOKEN_ID 0
- #define BOS_TOKEN_ID 1
- #define EOS_TOKEN_ID 2
- //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
- typedef struct {
- int dim; // transformer dimension
- int hidden_dim; // for ffn layers
- int n_layers; // number of layers
- int n_heads; // number of query heads
- int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
- int vocab_size; // vocabulary size, usually 256 (byte-level)
- int seq_len; // max sequence length
- } Config;
- struct TransformerWeights {
- // token embedding table
- float* token_embedding_table; // (vocab_size, dim)
- // weights for rmsnorms
- float* rms_att_weight; // (layer, dim) rmsnorm weights
- float* rms_ffn_weight; // (layer, dim)
- // weights for matmuls
- float* wq; // (layer, dim, dim)
- float* wk; // (layer, dim, dim)
- float* wv; // (layer, dim, dim)
- float* wo; // (layer, dim, dim)
- // weights for ffn
- float* w1; // (layer, hidden_dim, dim)
- float* w2; // (layer, dim, hidden_dim)
- float* w3; // (layer, hidden_dim, dim)
- // final rmsnorm
- float* rms_final_weight; // (dim,)
- // freq_cis for RoPE relatively positional embeddings
- // float* freq_cis_real; // (seq_len, dim/2)
- // float* freq_cis_imag; // (seq_len, dim/2)
- // (optional) classifier weights for the logits, on the last layer
- float* wcls;
- ~TransformerWeights() {
- delete[] token_embedding_table;
- delete[] rms_att_weight;
- delete[] rms_ffn_weight;
- delete[] wq;
- delete[] wk;
- delete[] wv;
- delete[] wo;
- delete[] w1;
- delete[] w2;
- delete[] w3;
- delete[] rms_final_weight;
- delete[] wcls;
- }
- };
- void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
- // we calloc instead of malloc to keep valgrind happy
- w->token_embedding_table = new float[p->vocab_size * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
- w->rms_att_weight = new float[p->n_layers * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
- w->rms_ffn_weight = new float[p->n_layers * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
- w->wq = new float[p->n_layers * p->dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
- w->wk = new float[p->n_layers * p->dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
- w->wv = new float[p->n_layers * p->dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
- w->wo = new float[p->n_layers * p->dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
- w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
- w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
- w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
- w->rms_final_weight = new float[p->dim]();
- printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
- if (shared_weights) {
- w->wcls = NULL;
- } else {
- w->wcls = new float[p->vocab_size * p->dim]();
- printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
- }
- }
- int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
- if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
- if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
- if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
- if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
- if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
- if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
- if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
- if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
- if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
- if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
- if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
- // Skip freq_cis_real & freq_cis_imag
- int head_size = p->dim / p->n_heads;
- fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
- if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
- // Check we didn't forget to read anything
- auto curr = ftell(f);
- fseek(f, 0, SEEK_END);
- auto end = ftell(f);
- if (curr != end) {
- printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
- return 1;
- }
- return 0;
- }
- void print_sample_weights(TransformerWeights *w){
- printf("----- Quick print of first of the weight vales of all the variables\n");
- printf("%f\n", w->token_embedding_table[0]);
- printf("%f\n", w->rms_att_weight[0]);
- printf("%f\n", w->rms_ffn_weight[0]);
- printf("%f\n", w->wq[0]);
- printf("%f\n", w->wk[0]);
- printf("%f\n", w->wv[0]);
- printf("%f\n", w->wo[0]);
- printf("%f\n", w->w1[0]);
- printf("%f\n", w->w2[0]);
- printf("%f\n", w->w3[0]);
- printf("%f\n", w->rms_att_weight[0]);
- if (w->wcls) printf("%f\n", w->wcls[0]);
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////////////
- //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- using ttype = llama_token_type;
- struct token_data {
- token text;
- float score;
- ttype type;
- };
- std::unordered_map<token, id> token_to_id;
- std::vector<token_data> id_to_token;
- };
- struct my_llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512; // this is provided as user input?
- uint32_t n_embd = 4096;
- uint32_t n_ff = 11008;
- uint32_t n_mult = 4;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- bool operator!=(const my_llama_hparams& other) const {
- return memcmp(this, &other, sizeof(my_llama_hparams));
- }
- };
- struct my_llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct my_llama_model {
- struct ggml_context * ctx = NULL;
- std::string name;
- my_llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<my_llama_layer> layers;
- uint32_t train_its = 0;
- uint32_t train_samples = 0;
- uint32_t train_tokens = 0;
- };
- struct train_params {
- const char * fn_vocab_model;
- const char * fn_llama2c_model;
- const char * fn_llama2c_output_model;
- const char * fn_train_data;
- const char * fn_checkpoint_in;
- const char * fn_checkpoint_out;
- const char * fn_model_out;
- uint32_t seed;
- int n_ctx;
- int n_embd;
- int n_mult;
- int n_head;
- int n_layer;
- int n_rotmax;
- int n_threads;
- int n_batch;
- int n_examples;
- int n_predict;
- int print_info_interval;
- int print_details_interval;
- bool samples_start_after_nl;
- bool use_adam;
- bool use_flash;
- bool use_scratch;
- // only adam
- int warmup;
- int cos_decay_steps;
- float cos_decay_restart;
- float cos_decay_alpha;
- int lbfgs_n_iter;
- int adam_n_iter;
- float adam_alpha;
- float adam_decay;
- int mem_model_gb;
- int mem_compute_gb;
- int mem_compute0_gb;
- int mem_compute1_gb;
- };
- void print_params(struct my_llama_hparams * params) {
- printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
- printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
- printf("%s: n_embd: %d\n", __func__, params->n_embd);
- printf("%s: n_mult: %d\n", __func__, params->n_mult);
- printf("%s: n_head: %d\n", __func__, params->n_head);
- printf("%s: n_ff: %d\n", __func__, params->n_ff);
- printf("%s: n_layer: %d\n", __func__, params->n_layer);
- printf("%s: n_rot: %d\n", __func__, params->n_rot);
- }
- void init_model(struct my_llama_model * model) {
- const auto & hparams = model->hparams;
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- const uint32_t n_ff = hparams.n_ff;
- struct ggml_context * ctx = model->ctx;
- model->train_its = 0;
- model->train_samples = 0;
- model->train_tokens = 0;
- model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
- model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
- model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
- // printing the per-layer allocations here so we dont print in the for loop.
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
- printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
- printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
- ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
- ggml_set_name(model->norm, "norm.weight");
- ggml_set_name(model->output, "output.weight");
- model->layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model->layers[i];
- std::string layers_i = "layers." + std::to_string(i);
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
- ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
- ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
- ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
- ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
- ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
- ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
- ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
- ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
- ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
- }
- }
- float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
- float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- return *ptr;
- }
- int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
- int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
- return *ptr;
- }
- void print_row(struct ggml_tensor * probs, int i) {
- for (int k = 0; k < probs->ne[0]; ++k) {
- float p = get_f32_2d(probs, k, i);
- printf(" %f", p);
- }
- printf("\n");
- }
- void print_matrix(struct ggml_tensor * probs) {
- assert(probs->n_dims == 2);
- for (int i = 0; i < probs->ne[1]; ++i) {
- for (int k = 0; k < probs->ne[0]; ++k) {
- float p = get_f32_2d(probs, k, i);
- printf(" %.2f", p);
- }
- printf("\n");
- }
- }
- #ifdef __GNUC__
- #ifdef __MINGW32__
- __attribute__((format(gnu_printf, 1, 2)))
- #else
- __attribute__((format(printf, 1, 2)))
- #endif
- #endif
- static std::string format(const char * fmt, ...) {
- va_list ap, ap2;
- va_start(ap, fmt);
- va_copy(ap2, ap);
- int size = vsnprintf(NULL, 0, fmt, ap);
- GGML_ASSERT(size >= 0 && size < INT_MAX);
- std::vector<char> buf(size + 1);
- int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
- GGML_ASSERT(size2 == size);
- va_end(ap2);
- va_end(ap);
- return std::string(buf.data(), size);
- }
- struct llama_file {
- // use FILE * so we don't have to re-open the file to mmap
- FILE * fp;
- size_t size;
- llama_file(const char * fname, const char * mode) {
- fp = std::fopen(fname, mode);
- if (fp == NULL) {
- size = 0;
- } else {
- seek(0, SEEK_END);
- size = tell();
- seek(0, SEEK_SET);
- }
- }
- size_t tell() const {
- #ifdef _WIN32
- __int64 ret = _ftelli64(fp);
- #else
- long ret = std::ftell(fp);
- #endif
- GGML_ASSERT(ret != -1); // this really shouldn't fail
- return (size_t) ret;
- }
- void seek(size_t offset, int whence) {
- #ifdef _WIN32
- int ret = _fseeki64(fp, (__int64) offset, whence);
- #else
- int ret = std::fseek(fp, (long) offset, whence);
- #endif
- GGML_ASSERT(ret == 0); // same
- }
- void read_raw(void * ptr, size_t size) {
- if (size == 0) {
- return;
- }
- errno = 0;
- std::size_t ret = std::fread(ptr, size, 1, fp);
- if (ferror(fp)) {
- throw std::runtime_error(format("read error: %s", strerror(errno)));
- }
- if (ret != 1) {
- throw std::runtime_error(std::string("unexpectedly reached end of file"));
- }
- }
- std::uint32_t read_u32() {
- std::uint32_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- std::float_t read_f32() {
- std::float_t ret;
- read_raw(&ret, sizeof(ret));
- return ret;
- }
- std::string read_string(std::uint32_t len) {
- std::vector<char> chars(len);
- read_raw(chars.data(), len);
- return std::string(chars.data(), len);
- }
- ~llama_file() {
- if (fp) {
- std::fclose(fp);
- }
- }
- };
- bool is_ggml_file(const char *filename) {
- llama_file file(filename, "rb");
- if (file.size < 4) {
- return false;
- }
- uint32_t magic = file.read_u32();
- return magic == GGUF_MAGIC;
- }
- static std::string llama_escape_whitespaces(const std::string& text) {
- std::ostringstream out;
- for (char c : text) {
- if (c == ' ') out << "\xe2\x96\x81";
- else out << c;
- }
- return out.str();
- }
- void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
- if (is_ggml_file(filename)) {
- struct ggml_context * ctx_data = NULL;
- struct gguf_init_params params = {
- /*.no_alloc = */ false,
- /*.ctx = */ &ctx_data,
- };
- struct gguf_context * ctx = gguf_init_from_file(filename, params);
- GGML_ASSERT(ctx != NULL);
- const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
- GGML_ASSERT(model_idx >= 0);
- std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
- GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
- const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
- GGML_ASSERT(token_idx >= 0);
- const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
- GGML_ASSERT(score_idx >= 0);
- const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
- const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
- GGML_ASSERT(toktype_idx >= 0);
- const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
- const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
- vocab->id_to_token.resize(n_vocab);
- for (uint32_t i = 0; i < n_vocab; i++) {
- std::string word = gguf_get_arr_str(ctx, token_idx, i);
- vocab->token_to_id[word] = i;
- auto & token_data = vocab->id_to_token[i];
- token_data.text = std::move(word);
- token_data.score = scores[i];
- token_data.type = (llama_token_type) toktypes[i];
- }
- ggml_free(ctx_data);
- gguf_free(ctx);
- } else {
- // assume llama2.c vocabulary
- printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
- llama_file file(filename, "rb");
- if (!file.fp) {
- fprintf(stderr, "error: %s: %s\n", strerror(errno), filename);
- exit(1);
- }
- const int n_vocab = config->vocab_size;
- /* uint32_t max_token_length = */ file.read_u32(); // unused
- vocab->id_to_token.resize(n_vocab);
- for (llama_vocab::id id=0; id<n_vocab; ++id) {
- float_t score = file.read_f32();
- uint32_t len = file.read_u32();
- std::string text = file.read_string(len);
- unsigned char byte_val;
- llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
- if (id == UNKNOWN_TOKEN_ID) {
- text = "<unk>";
- type = LLAMA_TOKEN_TYPE_UNKNOWN;
- } else if (id == BOS_TOKEN_ID) {
- text = "<s>";
- type = LLAMA_TOKEN_TYPE_CONTROL;
- } else if (id == EOS_TOKEN_ID) {
- text = "</s>";
- type = LLAMA_TOKEN_TYPE_CONTROL;
- } else if (text.empty()) {
- type = LLAMA_TOKEN_TYPE_CONTROL;
- } else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
- // Text of byte tokens is already in the expected format.
- type = LLAMA_TOKEN_TYPE_BYTE;
- } else {
- type = LLAMA_TOKEN_TYPE_NORMAL;
- }
- text = llama_escape_whitespaces(text);
- vocab->id_to_token[id].text = text;
- vocab->id_to_token[id].score = score;
- vocab->id_to_token[id].type = type;
- vocab->token_to_id.emplace(text, id);
- }
- }
- }
- void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
- int ct;
- switch (gg_weights->n_dims){
- case 1:
- ct = 0;
- for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
- float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
- *ptr = karpathy_weights[ct];
- ct++;
- }
- break;
- case 2:
- ct = 0;
- for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
- for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
- float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
- *ptr = karpathy_weights[ct];
- ct++;
- }
- }
- break;
- case 3:
- ct = 0;
- for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
- for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
- for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
- float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
- *ptr = karpathy_weights[ct];
- ct++;
- }
- }
- }
- break;
- }
- }
- void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
- // convert AK weights into GG weights one by one.
- // w->token_embedding_table -> model->tok_embeddings
- // float* -> struct ggml_tensor
- convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
- convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
- convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
- //print_row(model->norm, 0);
- // for rms-att-weight
- int row_length = model->hparams.n_embd;
- int n_ff = model->hparams.n_ff;
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
- auto & layer = model->layers[i];
- // 1d
- convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
- convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
- // from 3d matrix layer x dim x dim to 2d matrix dim x dim
- convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
- convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
- convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
- convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
- convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
- convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
- convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
- }
- struct gguf_context * ctx = gguf_init_empty();
- std::vector<const char*> tokens;
- std::vector<float> scores;
- std::vector<llama_token_type> token_types;
- for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
- tokens.push_back(token_data.text.c_str());
- scores.push_back(token_data.score);
- token_types.push_back(token_data.type);
- }
- gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
- gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
- gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
- gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
- gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
- gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
- // special tokens
- gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
- gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
- gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
- gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
- gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
- gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
- gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
- gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
- gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
- // n_head_kv is optional, default to n_head
- // gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
- gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
- gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
- gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
- // write tensors
- ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
- gguf_add_tensor(ctx, model->tok_embeddings);
- ggml_set_name(model->norm, TN_OUTPUT_NORM);
- gguf_add_tensor(ctx, model->norm);
- ggml_set_name(model->output, TN_OUTPUT);
- gguf_add_tensor(ctx, model->output);
- for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
- auto & layer = model->layers[i];
- ggml_format_name(layer.wq, TN_ATTN_Q, i);
- gguf_add_tensor(ctx, layer.wq);
- ggml_format_name(layer.wk, TN_ATTN_K, i);
- gguf_add_tensor(ctx, layer.wk);
- ggml_format_name(layer.wv, TN_ATTN_V, i);
- gguf_add_tensor(ctx, layer.wv);
- ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
- gguf_add_tensor(ctx, layer.wo);
- ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
- gguf_add_tensor(ctx, layer.attention_norm);
- ggml_format_name(layer.w1, TN_FFN_GATE, i);
- gguf_add_tensor(ctx, layer.w1);
- ggml_format_name(layer.w2, TN_FFN_DOWN, i);
- gguf_add_tensor(ctx, layer.w2);
- ggml_format_name(layer.w3, TN_FFN_UP, i);
- gguf_add_tensor(ctx, layer.w3);
- ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
- gguf_add_tensor(ctx, layer.ffn_norm);
- }
- gguf_write_to_file(ctx, filename, false);
- gguf_free(ctx);
- }
- struct train_params get_default_train_params() {
- struct train_params params;
- params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
- params.fn_llama2c_output_model = "ak_llama_model.bin";
- params.fn_train_data = "shakespeare.txt";
- params.fn_checkpoint_in = "checkpoint.bin";
- params.fn_checkpoint_out = "checkpoint.bin";
- params.fn_model_out = "ggml-checkpoint-f32.bin";
- params.seed = -1;
- params.n_ctx = 128;
- params.n_embd = 256;
- params.n_mult = 256;
- params.n_head = 8;
- params.n_layer = 16;
- params.n_rotmax = 64;
- params.n_threads = 6;
- params.n_batch = 8;
- params.n_examples = 8;
- params.n_predict = 1024;
- params.print_info_interval = 1;
- params.print_details_interval = 2;
- params.samples_start_after_nl = false;
- params.use_adam = true;
- params.use_flash = true;
- params.use_scratch = true;
- // only adam
- params.warmup = 100;
- params.cos_decay_steps = 1000;
- params.cos_decay_restart = 1.1f;
- params.cos_decay_alpha = 0.0f;
- params.lbfgs_n_iter = 16;
- params.adam_n_iter = 16;
- params.adam_alpha = 1e-3f;
- params.adam_decay = 1e-3f;
- params.mem_model_gb = 2;
- params.mem_compute_gb = 24;
- params.mem_compute0_gb = 8;
- params.mem_compute1_gb = 2;
- return params;
- }
- void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
- fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
- fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
- fprintf(stderr, "\n");
- }
- bool params_parse(int argc, char ** argv, struct train_params * params) {
- bool invalid_param = false;
- bool reqd_param_found = false;
- std::string arg;
- struct train_params default_params = get_default_train_params();
- const std::string arg_prefix = "--";
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
- std::replace(arg.begin(), arg.end(), '_', '-');
- }
- if (arg == "--copy-vocab-from-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_vocab_model = argv[i];
- } else if (arg == "--llama2c-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- reqd_param_found = true;
- params->fn_llama2c_model = argv[i];
- } else if (arg == "--llama2c-output-model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params->fn_llama2c_output_model = argv[i];
- } else if (arg == "-h" || arg == "--help") {
- print_usage(argc, argv, &default_params);
- exit(0);
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- print_usage(argc, argv, &default_params);
- exit(1);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- print_usage(argc, argv, &default_params);
- exit(1);
- }
- if (!reqd_param_found){
- fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
- print_usage(argc, argv, &default_params);
- exit(1);
- }
- return true;
- }
- std::string basename(const std::string &path) {
- size_t pos = path.find_last_of("/\\");
- if (pos == std::string::npos) {
- return path;
- }
- return path.substr(pos + 1);
- }
- int main(int argc, char ** argv) {
- struct train_params params = get_default_train_params();
- if (!params_parse(argc, argv, ¶ms)) {
- return 1;
- }
- Config config;
- TransformerWeights weights = {};
- {
- FILE *file = fopen(params.fn_llama2c_model, "rb");
- if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
- // read in the config header
- if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
- auto shared_weights = config.vocab_size > 0;
- config.vocab_size = abs(config.vocab_size);
- // read in the Transformer weights
- malloc_weights(&weights, &config, shared_weights);
- if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
- fclose(file);
- }
- struct llama_vocab vocab;
- load_vocab(params.fn_vocab_model, &config, &vocab);
- struct my_llama_model model;
- model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
- model.hparams.n_ctx = params.n_ctx;
- model.hparams.n_embd = config.dim; //params.n_embd;
- model.hparams.n_ff = config.hidden_dim;
- model.hparams.n_mult = 32;//params.n_mult;
- model.hparams.n_head = config.n_heads; //params.n_head;
- model.hparams.n_layer = config.n_layers; //params.n_layer;
- model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
- print_params(&model.hparams);
- struct ggml_init_params lcparams;
- lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
- lcparams.mem_buffer = NULL;
- lcparams.no_alloc = false;
- model.ctx = ggml_init(lcparams);
- init_model(&model);
- model.name = basename(params.fn_llama2c_model);
- save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
- printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
- ggml_free(model.ctx);
- return 0;
- }
|