convert-llama2c-to-ggml.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. #include "ggml.h"
  2. #include "llama.h"
  3. #include <unordered_map>
  4. #include <vector>
  5. #include <cassert>
  6. #include <climits>
  7. #include <cstring>
  8. #include <cstdarg>
  9. #include <ctime>
  10. #include <random>
  11. #include <stdexcept>
  12. #include <sstream>
  13. #include <algorithm>
  14. #include <string>
  15. // GGUF keys & tensor names.
  16. #define KV_GENERAL_ARCHITECTURE "general.architecture"
  17. #define KV_GENERAL_NAME "general.name"
  18. #define KV_TOKENIZER_MODEL "tokenizer.ggml.model"
  19. #define KV_TOKENIZER_LIST "tokenizer.ggml.tokens"
  20. #define KV_TOKENIZER_TOKEN_TYPE "tokenizer.ggml.token_type"
  21. #define KV_TOKENIZER_SCORES "tokenizer.ggml.scores"
  22. #define KV_TOKENIZER_BOS_ID "tokenizer.ggml.bos_token_id"
  23. #define KV_TOKENIZER_EOS_ID "tokenizer.ggml.eos_token_id"
  24. #define KV_TOKENIZER_UNK_ID "tokenizer.ggml.unknown_token_id"
  25. #define KV_TOKENIZER_SEP_ID "tokenizer.ggml.seperator_token_id"
  26. #define KV_TOKENIZER_PAD_ID "tokenizer.ggml.padding_token_id"
  27. #define KV_TOKENIZER_HF_JSON "tokenizer.huggingface.json"
  28. #define KV_CONTEXT_LENGTH "llama.context_length"
  29. #define KV_EMBEDDING_LENGTH "llama.embedding_length"
  30. #define KV_BLOCK_COUNT "llama.block_count"
  31. #define KV_FEED_FORWARD_LENGTH "llama.feed_forward_length"
  32. #define KV_ATTENTION_HEAD_COUNT "llama.attention.head_count"
  33. #define KV_ATTENTION_HEAD_COUNT_KV "llama.attention.head_count_kv"
  34. #define KV_ATTENTION_LAYERNORM_RMS_EPS "llama.attention.layer_norm_rms_epsilon"
  35. #define KV_ROPE_DIMENSION_COUNT "llama.rope.dimension_count"
  36. #define TN_TOKEN_EMBD "token_embd.weight"
  37. #define TN_OUTPUT_NORM "output_norm.weight"
  38. #define TN_OUTPUT "output.weight"
  39. #define TN_ATTN_NORM "blk.%d.attn_norm.weight"
  40. #define TN_ATTN_Q "blk.%d.attn_q.weight"
  41. #define TN_ATTN_K "blk.%d.attn_k.weight"
  42. #define TN_ATTN_V "blk.%d.attn_v.weight"
  43. #define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
  44. #define TN_FFN_NORM "blk.%d.ffn_norm.weight"
  45. #define TN_FFN_GATE "blk.%d.ffn_gate.weight"
  46. #define TN_FFN_DOWN "blk.%d.ffn_down.weight"
  47. #define TN_FFN_UP "blk.%d.ffn_up.weight"
  48. #if defined(_MSC_VER)
  49. #pragma warning(disable: 4244 4267) // possible loss of data
  50. #endif
  51. #define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
  52. #define LLAMA_FILE_VERSION_GGJT_V3 3
  53. #define TOKENIZER_NAME "llama"
  54. #define UNKNOWN_TOKEN_ID 0
  55. #define BOS_TOKEN_ID 1
  56. #define EOS_TOKEN_ID 2
  57. //////////////////////////////////////// llama2.c model structs and functions to load models, alloc memory etc.
  58. typedef struct {
  59. int dim; // transformer dimension
  60. int hidden_dim; // for ffn layers
  61. int n_layers; // number of layers
  62. int n_heads; // number of query heads
  63. int n_kv_heads; // number of key/value heads (can be < query heads because of multiquery)
  64. int vocab_size; // vocabulary size, usually 256 (byte-level)
  65. int seq_len; // max sequence length
  66. } Config;
  67. struct TransformerWeights {
  68. // token embedding table
  69. float* token_embedding_table; // (vocab_size, dim)
  70. // weights for rmsnorms
  71. float* rms_att_weight; // (layer, dim) rmsnorm weights
  72. float* rms_ffn_weight; // (layer, dim)
  73. // weights for matmuls
  74. float* wq; // (layer, dim, dim)
  75. float* wk; // (layer, dim, dim)
  76. float* wv; // (layer, dim, dim)
  77. float* wo; // (layer, dim, dim)
  78. // weights for ffn
  79. float* w1; // (layer, hidden_dim, dim)
  80. float* w2; // (layer, dim, hidden_dim)
  81. float* w3; // (layer, hidden_dim, dim)
  82. // final rmsnorm
  83. float* rms_final_weight; // (dim,)
  84. // freq_cis for RoPE relatively positional embeddings
  85. // float* freq_cis_real; // (seq_len, dim/2)
  86. // float* freq_cis_imag; // (seq_len, dim/2)
  87. // (optional) classifier weights for the logits, on the last layer
  88. float* wcls;
  89. ~TransformerWeights() {
  90. delete[] token_embedding_table;
  91. delete[] rms_att_weight;
  92. delete[] rms_ffn_weight;
  93. delete[] wq;
  94. delete[] wk;
  95. delete[] wv;
  96. delete[] wo;
  97. delete[] w1;
  98. delete[] w2;
  99. delete[] w3;
  100. delete[] rms_final_weight;
  101. delete[] wcls;
  102. }
  103. };
  104. void malloc_weights(TransformerWeights* w, Config* p, bool shared_weights) {
  105. // we calloc instead of malloc to keep valgrind happy
  106. w->token_embedding_table = new float[p->vocab_size * p->dim]();
  107. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->token_embedding_table\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
  108. w->rms_att_weight = new float[p->n_layers * p->dim]();
  109. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_att_weight\n",__func__,p->n_layers, p->dim, p->n_layers * p->dim);
  110. w->rms_ffn_weight = new float[p->n_layers * p->dim]();
  111. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->rms_ffn_weight\n",__func__,p->n_layers , p->dim, p->n_layers * p->dim);
  112. w->wq = new float[p->n_layers * p->dim * p->dim]();
  113. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wq\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  114. w->wk = new float[p->n_layers * p->dim * p->dim]();
  115. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wk\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  116. w->wv = new float[p->n_layers * p->dim * p->dim]();
  117. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wv\n",__func__, p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  118. w->wo = new float[p->n_layers * p->dim * p->dim]();
  119. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->wo\n",__func__,p->n_layers, p->dim, p->dim, p->n_layers * p->dim * p->dim);
  120. w->w1 = new float[p->n_layers * p->hidden_dim * p->dim]();
  121. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w1\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
  122. w->w2 = new float[p->n_layers * p->hidden_dim * p->dim]();
  123. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w2\n",__func__,p->n_layers, p->dim, p->hidden_dim, p->n_layers * p->hidden_dim * p->dim);
  124. w->w3 = new float[p->n_layers * p->hidden_dim * p->dim]();
  125. printf("[%s:AK] Allocating [%d] x [%d] x [%d] = [%d] float space for w->w3\n",__func__,p->n_layers, p->hidden_dim, p->dim, p->n_layers * p->hidden_dim * p->dim);
  126. w->rms_final_weight = new float[p->dim]();
  127. printf("[%s:AK] Allocating [%d] float space for w->rms_final_weight\n",__func__,p->dim);
  128. if (shared_weights) {
  129. w->wcls = NULL;
  130. } else {
  131. w->wcls = new float[p->vocab_size * p->dim]();
  132. printf("[%s:AK] Allocating [%d] x [%d] = [%d] float space for w->wcls\n",__func__,p->vocab_size , p->dim, p->vocab_size * p->dim);
  133. }
  134. }
  135. int checkpoint_init_weights(TransformerWeights *w, Config* p, FILE* f, bool shared_weights) {
  136. if (fread(w->token_embedding_table, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
  137. if (fread(w->rms_att_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
  138. if (fread(w->wq, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  139. if (fread(w->wk, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  140. if (fread(w->wv, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  141. if (fread(w->wo, sizeof(float), p->n_layers * p->dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->dim)) return 1;
  142. if (fread(w->rms_ffn_weight, sizeof(float), p->n_layers * p->dim, f) != static_cast<size_t>(p->n_layers * p->dim)) return 1;
  143. if (fread(w->w1, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
  144. if (fread(w->w2, sizeof(float), p->n_layers * p->hidden_dim * p->dim, f) != static_cast<size_t>(p->n_layers * p->hidden_dim * p->dim)) return 1;
  145. if (fread(w->w3, sizeof(float), p->n_layers * p->dim * p->hidden_dim, f) != static_cast<size_t>(p->n_layers * p->dim * p->hidden_dim)) return 1;
  146. if (fread(w->rms_final_weight, sizeof(float), p->dim, f) != static_cast<size_t>(p->dim)) return 1;
  147. // Skip freq_cis_real & freq_cis_imag
  148. int head_size = p->dim / p->n_heads;
  149. fseek(f, p->seq_len * head_size * sizeof(float), SEEK_CUR);
  150. if (!shared_weights && fread(w->wcls, sizeof(float), p->vocab_size * p->dim, f) != static_cast<size_t>(p->vocab_size * p->dim)) return 1;
  151. // Check we didn't forget to read anything
  152. auto curr = ftell(f);
  153. fseek(f, 0, SEEK_END);
  154. auto end = ftell(f);
  155. if (curr != end) {
  156. printf("Error: failed to read the checkpoint file to the end (curr = %ld, end = %ld)\n", curr, end);
  157. return 1;
  158. }
  159. return 0;
  160. }
  161. void print_sample_weights(TransformerWeights *w){
  162. printf("----- Quick print of first of the weight vales of all the variables\n");
  163. printf("%f\n", w->token_embedding_table[0]);
  164. printf("%f\n", w->rms_att_weight[0]);
  165. printf("%f\n", w->rms_ffn_weight[0]);
  166. printf("%f\n", w->wq[0]);
  167. printf("%f\n", w->wk[0]);
  168. printf("%f\n", w->wv[0]);
  169. printf("%f\n", w->wo[0]);
  170. printf("%f\n", w->w1[0]);
  171. printf("%f\n", w->w2[0]);
  172. printf("%f\n", w->w3[0]);
  173. printf("%f\n", w->rms_att_weight[0]);
  174. if (w->wcls) printf("%f\n", w->wcls[0]);
  175. }
  176. ////////////////////////////////////////////////////////////////////////////////////////////////////////////
  177. //////////////////////////////////////// ggml structs and functions required to load models, configs and save the model.
  178. struct llama_vocab {
  179. using id = int32_t;
  180. using token = std::string;
  181. using ttype = llama_token_type;
  182. struct token_data {
  183. token text;
  184. float score;
  185. ttype type;
  186. };
  187. std::unordered_map<token, id> token_to_id;
  188. std::vector<token_data> id_to_token;
  189. };
  190. struct my_llama_hparams {
  191. uint32_t n_vocab = 32000;
  192. uint32_t n_ctx = 512; // this is provided as user input?
  193. uint32_t n_embd = 4096;
  194. uint32_t n_ff = 11008;
  195. uint32_t n_mult = 4;
  196. uint32_t n_head = 32;
  197. uint32_t n_layer = 32;
  198. uint32_t n_rot = 64;
  199. bool operator!=(const my_llama_hparams& other) const {
  200. return memcmp(this, &other, sizeof(my_llama_hparams));
  201. }
  202. };
  203. struct my_llama_layer {
  204. // normalization
  205. struct ggml_tensor * attention_norm;
  206. // attention
  207. struct ggml_tensor * wq;
  208. struct ggml_tensor * wk;
  209. struct ggml_tensor * wv;
  210. struct ggml_tensor * wo;
  211. // normalization
  212. struct ggml_tensor * ffn_norm;
  213. // ff
  214. struct ggml_tensor * w1;
  215. struct ggml_tensor * w2;
  216. struct ggml_tensor * w3;
  217. };
  218. struct my_llama_model {
  219. struct ggml_context * ctx = NULL;
  220. std::string name;
  221. my_llama_hparams hparams;
  222. struct ggml_tensor * tok_embeddings;
  223. struct ggml_tensor * norm;
  224. struct ggml_tensor * output;
  225. std::vector<my_llama_layer> layers;
  226. uint32_t train_its = 0;
  227. uint32_t train_samples = 0;
  228. uint32_t train_tokens = 0;
  229. };
  230. struct train_params {
  231. const char * fn_vocab_model;
  232. const char * fn_llama2c_model;
  233. const char * fn_llama2c_output_model;
  234. const char * fn_train_data;
  235. const char * fn_checkpoint_in;
  236. const char * fn_checkpoint_out;
  237. const char * fn_model_out;
  238. uint32_t seed;
  239. int n_ctx;
  240. int n_embd;
  241. int n_mult;
  242. int n_head;
  243. int n_layer;
  244. int n_rotmax;
  245. int n_threads;
  246. int n_batch;
  247. int n_examples;
  248. int n_predict;
  249. int print_info_interval;
  250. int print_details_interval;
  251. bool samples_start_after_nl;
  252. bool use_adam;
  253. bool use_flash;
  254. bool use_scratch;
  255. // only adam
  256. int warmup;
  257. int cos_decay_steps;
  258. float cos_decay_restart;
  259. float cos_decay_alpha;
  260. int lbfgs_n_iter;
  261. int adam_n_iter;
  262. float adam_alpha;
  263. float adam_decay;
  264. int mem_model_gb;
  265. int mem_compute_gb;
  266. int mem_compute0_gb;
  267. int mem_compute1_gb;
  268. };
  269. void print_params(struct my_llama_hparams * params) {
  270. printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
  271. printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
  272. printf("%s: n_embd: %d\n", __func__, params->n_embd);
  273. printf("%s: n_mult: %d\n", __func__, params->n_mult);
  274. printf("%s: n_head: %d\n", __func__, params->n_head);
  275. printf("%s: n_ff: %d\n", __func__, params->n_ff);
  276. printf("%s: n_layer: %d\n", __func__, params->n_layer);
  277. printf("%s: n_rot: %d\n", __func__, params->n_rot);
  278. }
  279. void init_model(struct my_llama_model * model) {
  280. const auto & hparams = model->hparams;
  281. const uint32_t n_embd = hparams.n_embd;
  282. const uint32_t n_layer = hparams.n_layer;
  283. const uint32_t n_vocab = hparams.n_vocab;
  284. const uint32_t n_ff = hparams.n_ff;
  285. struct ggml_context * ctx = model->ctx;
  286. model->train_its = 0;
  287. model->train_samples = 0;
  288. model->train_tokens = 0;
  289. model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  290. printf("[%s:GG] Allocating [%d] x [%d] = [%d] float space for model->tok_embeddings\n",__func__,n_embd , n_vocab, n_embd * n_vocab);
  291. model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  292. printf("[%s:GG] Allocating [%d] float space for model->norm\n",__func__,n_embd);
  293. model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
  294. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for model->output\n",__func__,n_embd, n_vocab, n_embd * n_vocab);
  295. // printing the per-layer allocations here so we dont print in the for loop.
  296. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wq for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  297. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wk for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  298. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wv for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  299. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.wo for [%d] layers\n",__func__, n_embd, n_embd, n_embd * n_embd, n_layer);
  300. printf("[%s:GG] Allocating [%d] float space for layer.ffn_norm for [%d] layers\n",__func__,n_embd, n_layer);
  301. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w1 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
  302. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w2 for [%d] layers\n",__func__, n_embd, n_ff, n_ff * n_embd, n_layer);
  303. printf("[%s:GG] Allocating [%d] x[%d] = [%d] float space for layer.w3 for [%d] layers\n",__func__, n_ff, n_embd, n_embd * n_ff, n_layer);
  304. ggml_set_name(model->tok_embeddings, "tok_embeddings.weight");
  305. ggml_set_name(model->norm, "norm.weight");
  306. ggml_set_name(model->output, "output.weight");
  307. model->layers.resize(n_layer);
  308. for (uint32_t i = 0; i < n_layer; ++i) {
  309. auto & layer = model->layers[i];
  310. std::string layers_i = "layers." + std::to_string(i);
  311. layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  312. layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  313. layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  314. layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  315. layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
  316. layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  317. layer.w1 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  318. layer.w2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
  319. layer.w3 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
  320. ggml_set_name(layer.attention_norm, (layers_i + ".attention_norm.weight").c_str());
  321. ggml_set_name(layer.wq, (layers_i + ".attention.wq.weight").c_str());
  322. ggml_set_name(layer.wk, (layers_i + ".attention.wk.weight").c_str());
  323. ggml_set_name(layer.wv, (layers_i + ".attention.wv.weight").c_str());
  324. ggml_set_name(layer.wo, (layers_i + ".attention.wo.weight").c_str());
  325. ggml_set_name(layer.ffn_norm, (layers_i + ".ffn_norm.weight").c_str());
  326. ggml_format_name(layer.w1, "%s.feed_forward.w1.weight", layers_i.c_str());
  327. ggml_format_name(layer.w2, "%s.feed_forward.w2.weight", layers_i.c_str());
  328. ggml_format_name(layer.w3, "%s.feed_forward.w3.weight", layers_i.c_str());
  329. }
  330. }
  331. float get_f32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
  332. float * ptr = (float *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
  333. return *ptr;
  334. }
  335. int32_t get_i32_2d(struct ggml_tensor * tensor, int64_t i0, int64_t i1) {
  336. int32_t * ptr = (int32_t *) ((char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1]);
  337. return *ptr;
  338. }
  339. void print_row(struct ggml_tensor * probs, int i) {
  340. for (int k = 0; k < probs->ne[0]; ++k) {
  341. float p = get_f32_2d(probs, k, i);
  342. printf(" %f", p);
  343. }
  344. printf("\n");
  345. }
  346. void print_matrix(struct ggml_tensor * probs) {
  347. assert(probs->n_dims == 2);
  348. for (int i = 0; i < probs->ne[1]; ++i) {
  349. for (int k = 0; k < probs->ne[0]; ++k) {
  350. float p = get_f32_2d(probs, k, i);
  351. printf(" %.2f", p);
  352. }
  353. printf("\n");
  354. }
  355. }
  356. #ifdef __GNUC__
  357. #ifdef __MINGW32__
  358. __attribute__((format(gnu_printf, 1, 2)))
  359. #else
  360. __attribute__((format(printf, 1, 2)))
  361. #endif
  362. #endif
  363. static std::string format(const char * fmt, ...) {
  364. va_list ap, ap2;
  365. va_start(ap, fmt);
  366. va_copy(ap2, ap);
  367. int size = vsnprintf(NULL, 0, fmt, ap);
  368. GGML_ASSERT(size >= 0 && size < INT_MAX);
  369. std::vector<char> buf(size + 1);
  370. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  371. GGML_ASSERT(size2 == size);
  372. va_end(ap2);
  373. va_end(ap);
  374. return std::string(buf.data(), size);
  375. }
  376. struct llama_file {
  377. // use FILE * so we don't have to re-open the file to mmap
  378. FILE * fp;
  379. size_t size;
  380. llama_file(const char * fname, const char * mode) {
  381. fp = std::fopen(fname, mode);
  382. if (fp == NULL) {
  383. size = 0;
  384. } else {
  385. seek(0, SEEK_END);
  386. size = tell();
  387. seek(0, SEEK_SET);
  388. }
  389. }
  390. size_t tell() const {
  391. #ifdef _WIN32
  392. __int64 ret = _ftelli64(fp);
  393. #else
  394. long ret = std::ftell(fp);
  395. #endif
  396. GGML_ASSERT(ret != -1); // this really shouldn't fail
  397. return (size_t) ret;
  398. }
  399. void seek(size_t offset, int whence) {
  400. #ifdef _WIN32
  401. int ret = _fseeki64(fp, (__int64) offset, whence);
  402. #else
  403. int ret = std::fseek(fp, (long) offset, whence);
  404. #endif
  405. GGML_ASSERT(ret == 0); // same
  406. }
  407. void read_raw(void * ptr, size_t size) {
  408. if (size == 0) {
  409. return;
  410. }
  411. errno = 0;
  412. std::size_t ret = std::fread(ptr, size, 1, fp);
  413. if (ferror(fp)) {
  414. throw std::runtime_error(format("read error: %s", strerror(errno)));
  415. }
  416. if (ret != 1) {
  417. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  418. }
  419. }
  420. std::uint32_t read_u32() {
  421. std::uint32_t ret;
  422. read_raw(&ret, sizeof(ret));
  423. return ret;
  424. }
  425. std::float_t read_f32() {
  426. std::float_t ret;
  427. read_raw(&ret, sizeof(ret));
  428. return ret;
  429. }
  430. std::string read_string(std::uint32_t len) {
  431. std::vector<char> chars(len);
  432. read_raw(chars.data(), len);
  433. return std::string(chars.data(), len);
  434. }
  435. ~llama_file() {
  436. if (fp) {
  437. std::fclose(fp);
  438. }
  439. }
  440. };
  441. bool is_ggml_file(const char *filename) {
  442. llama_file file(filename, "rb");
  443. if (file.size < 4) {
  444. return false;
  445. }
  446. uint32_t magic = file.read_u32();
  447. return magic == GGUF_MAGIC;
  448. }
  449. static std::string llama_escape_whitespaces(const std::string& text) {
  450. std::ostringstream out;
  451. for (char c : text) {
  452. if (c == ' ') out << "\xe2\x96\x81";
  453. else out << c;
  454. }
  455. return out.str();
  456. }
  457. void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab) {
  458. if (is_ggml_file(filename)) {
  459. struct ggml_context * ctx_data = NULL;
  460. struct gguf_init_params params = {
  461. /*.no_alloc = */ false,
  462. /*.ctx = */ &ctx_data,
  463. };
  464. struct gguf_context * ctx = gguf_init_from_file(filename, params);
  465. GGML_ASSERT(ctx != NULL);
  466. const int model_idx = gguf_find_key(ctx, KV_TOKENIZER_MODEL);
  467. GGML_ASSERT(model_idx >= 0);
  468. std::string tokenizer_name = gguf_get_val_str(ctx, model_idx);
  469. GGML_ASSERT(tokenizer_name == TOKENIZER_NAME);
  470. const int token_idx = gguf_find_key(ctx, KV_TOKENIZER_LIST);
  471. GGML_ASSERT(token_idx >= 0);
  472. const int score_idx = gguf_find_key(ctx, KV_TOKENIZER_SCORES);
  473. GGML_ASSERT(score_idx >= 0);
  474. const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  475. const int toktype_idx = gguf_find_key(ctx, KV_TOKENIZER_TOKEN_TYPE);
  476. GGML_ASSERT(toktype_idx >= 0);
  477. const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  478. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  479. vocab->id_to_token.resize(n_vocab);
  480. for (uint32_t i = 0; i < n_vocab; i++) {
  481. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  482. vocab->token_to_id[word] = i;
  483. auto & token_data = vocab->id_to_token[i];
  484. token_data.text = std::move(word);
  485. token_data.score = scores[i];
  486. token_data.type = (llama_token_type) toktypes[i];
  487. }
  488. ggml_free(ctx_data);
  489. gguf_free(ctx);
  490. } else {
  491. // assume llama2.c vocabulary
  492. printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
  493. llama_file file(filename, "rb");
  494. if (!file.fp) {
  495. fprintf(stderr, "error: %s: %s\n", strerror(errno), filename);
  496. exit(1);
  497. }
  498. const int n_vocab = config->vocab_size;
  499. /* uint32_t max_token_length = */ file.read_u32(); // unused
  500. vocab->id_to_token.resize(n_vocab);
  501. for (llama_vocab::id id=0; id<n_vocab; ++id) {
  502. float_t score = file.read_f32();
  503. uint32_t len = file.read_u32();
  504. std::string text = file.read_string(len);
  505. unsigned char byte_val;
  506. llama_vocab::ttype type = LLAMA_TOKEN_TYPE_NORMAL;
  507. if (id == UNKNOWN_TOKEN_ID) {
  508. text = "<unk>";
  509. type = LLAMA_TOKEN_TYPE_UNKNOWN;
  510. } else if (id == BOS_TOKEN_ID) {
  511. text = "<s>";
  512. type = LLAMA_TOKEN_TYPE_CONTROL;
  513. } else if (id == EOS_TOKEN_ID) {
  514. text = "</s>";
  515. type = LLAMA_TOKEN_TYPE_CONTROL;
  516. } else if (text.empty()) {
  517. type = LLAMA_TOKEN_TYPE_CONTROL;
  518. } else if (sscanf(text.c_str(), "<0x%02hhX>", &byte_val) == 1) {
  519. // Text of byte tokens is already in the expected format.
  520. type = LLAMA_TOKEN_TYPE_BYTE;
  521. } else {
  522. type = LLAMA_TOKEN_TYPE_NORMAL;
  523. }
  524. text = llama_escape_whitespaces(text);
  525. vocab->id_to_token[id].text = text;
  526. vocab->id_to_token[id].score = score;
  527. vocab->id_to_token[id].type = type;
  528. vocab->token_to_id.emplace(text, id);
  529. }
  530. }
  531. }
  532. void convert_weights_ak_to_gg(struct ggml_tensor * gg_weights, const float * karpathy_weights) {
  533. int ct;
  534. switch (gg_weights->n_dims){
  535. case 1:
  536. ct = 0;
  537. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++){
  538. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0]);
  539. *ptr = karpathy_weights[ct];
  540. ct++;
  541. }
  542. break;
  543. case 2:
  544. ct = 0;
  545. for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
  546. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
  547. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1]);
  548. *ptr = karpathy_weights[ct];
  549. ct++;
  550. }
  551. }
  552. break;
  553. case 3:
  554. ct = 0;
  555. for (int i2 = 0; i2 < gg_weights->ne[2]; i2++) {
  556. for (int i1 = 0; i1 < gg_weights->ne[1]; i1++) {
  557. for (int i0 = 0; i0 < gg_weights->ne[0]; i0++) {
  558. float * ptr = (float *) ((char *) gg_weights->data + i0*gg_weights->nb[0] + i1*gg_weights->nb[1] + i2*gg_weights->nb[2]);
  559. *ptr = karpathy_weights[ct];
  560. ct++;
  561. }
  562. }
  563. }
  564. break;
  565. }
  566. }
  567. void save_as_llama_model(struct llama_vocab * vocab, struct my_llama_model * model, TransformerWeights* w, const char * filename) {
  568. // convert AK weights into GG weights one by one.
  569. // w->token_embedding_table -> model->tok_embeddings
  570. // float* -> struct ggml_tensor
  571. convert_weights_ak_to_gg(model->tok_embeddings, w->token_embedding_table);
  572. convert_weights_ak_to_gg(model->output, w->wcls ? w->wcls : w->token_embedding_table);
  573. convert_weights_ak_to_gg(model->norm, w->rms_final_weight);
  574. //print_row(model->norm, 0);
  575. // for rms-att-weight
  576. int row_length = model->hparams.n_embd;
  577. int n_ff = model->hparams.n_ff;
  578. for (uint32_t i = 0; i < model->hparams.n_layer; ++i){
  579. auto & layer = model->layers[i];
  580. // 1d
  581. convert_weights_ak_to_gg(layer.attention_norm, &w->rms_att_weight[i*row_length]);
  582. convert_weights_ak_to_gg(layer.ffn_norm , &w->rms_ffn_weight[i*row_length]);
  583. // from 3d matrix layer x dim x dim to 2d matrix dim x dim
  584. convert_weights_ak_to_gg(layer.wq , &w->wq[i*row_length*row_length]);
  585. convert_weights_ak_to_gg(layer.wk , &w->wk[i*row_length*row_length]);
  586. convert_weights_ak_to_gg(layer.wv , &w->wv[i*row_length*row_length]);
  587. convert_weights_ak_to_gg(layer.wo , &w->wo[i*row_length*row_length]);
  588. convert_weights_ak_to_gg(layer.w1 , &w->w1[i*row_length*n_ff]);
  589. convert_weights_ak_to_gg(layer.w2 , &w->w2[i*n_ff*row_length]);
  590. convert_weights_ak_to_gg(layer.w3 , &w->w3[i*row_length*n_ff]);
  591. }
  592. struct gguf_context * ctx = gguf_init_empty();
  593. std::vector<const char*> tokens;
  594. std::vector<float> scores;
  595. std::vector<llama_token_type> token_types;
  596. for (const llama_vocab::token_data & token_data : vocab->id_to_token) {
  597. tokens.push_back(token_data.text.c_str());
  598. scores.push_back(token_data.score);
  599. token_types.push_back(token_data.type);
  600. }
  601. gguf_set_arr_str(ctx, KV_TOKENIZER_LIST, tokens.data(), tokens.size());
  602. gguf_set_arr_data(ctx, KV_TOKENIZER_SCORES, GGUF_TYPE_FLOAT32, scores.data(), scores.size());
  603. gguf_set_arr_data(ctx, KV_TOKENIZER_TOKEN_TYPE, GGUF_TYPE_INT32, token_types.data(), token_types.size());
  604. gguf_set_val_str(ctx, KV_TOKENIZER_MODEL, TOKENIZER_NAME);
  605. gguf_set_val_str(ctx, KV_GENERAL_ARCHITECTURE, "llama");
  606. gguf_set_val_str(ctx, KV_GENERAL_NAME, "llama");
  607. // special tokens
  608. gguf_set_val_u32(ctx, KV_TOKENIZER_UNK_ID, UNKNOWN_TOKEN_ID);
  609. gguf_set_val_u32(ctx, KV_TOKENIZER_BOS_ID, BOS_TOKEN_ID);
  610. gguf_set_val_u32(ctx, KV_TOKENIZER_EOS_ID, EOS_TOKEN_ID);
  611. gguf_set_val_u32(ctx, KV_TOKENIZER_SEP_ID, -1);
  612. gguf_set_val_u32(ctx, KV_TOKENIZER_PAD_ID, -1);
  613. gguf_set_val_u32(ctx, KV_CONTEXT_LENGTH, model->hparams.n_ctx);
  614. gguf_set_val_u32(ctx, KV_EMBEDDING_LENGTH, model->hparams.n_embd);
  615. gguf_set_val_u32(ctx, KV_FEED_FORWARD_LENGTH, model->hparams.n_ff);
  616. gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT, model->hparams.n_head);
  617. // n_head_kv is optional, default to n_head
  618. // gguf_set_val_u32(ctx, KV_ATTENTION_HEAD_COUNT_KV, ...);
  619. gguf_set_val_u32(ctx, KV_BLOCK_COUNT, model->hparams.n_layer);
  620. gguf_set_val_u32(ctx, KV_ROPE_DIMENSION_COUNT, model->hparams.n_rot);
  621. gguf_set_val_f32(ctx, KV_ATTENTION_LAYERNORM_RMS_EPS, 1e-5f);
  622. // write tensors
  623. ggml_set_name(model->tok_embeddings, TN_TOKEN_EMBD);
  624. gguf_add_tensor(ctx, model->tok_embeddings);
  625. ggml_set_name(model->norm, TN_OUTPUT_NORM);
  626. gguf_add_tensor(ctx, model->norm);
  627. ggml_set_name(model->output, TN_OUTPUT);
  628. gguf_add_tensor(ctx, model->output);
  629. for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
  630. auto & layer = model->layers[i];
  631. ggml_format_name(layer.wq, TN_ATTN_Q, i);
  632. gguf_add_tensor(ctx, layer.wq);
  633. ggml_format_name(layer.wk, TN_ATTN_K, i);
  634. gguf_add_tensor(ctx, layer.wk);
  635. ggml_format_name(layer.wv, TN_ATTN_V, i);
  636. gguf_add_tensor(ctx, layer.wv);
  637. ggml_format_name(layer.wo, TN_ATTN_OUTPUT, i);
  638. gguf_add_tensor(ctx, layer.wo);
  639. ggml_format_name(layer.attention_norm, TN_ATTN_NORM, i);
  640. gguf_add_tensor(ctx, layer.attention_norm);
  641. ggml_format_name(layer.w1, TN_FFN_GATE, i);
  642. gguf_add_tensor(ctx, layer.w1);
  643. ggml_format_name(layer.w2, TN_FFN_DOWN, i);
  644. gguf_add_tensor(ctx, layer.w2);
  645. ggml_format_name(layer.w3, TN_FFN_UP, i);
  646. gguf_add_tensor(ctx, layer.w3);
  647. ggml_format_name(layer.ffn_norm, TN_FFN_NORM, i);
  648. gguf_add_tensor(ctx, layer.ffn_norm);
  649. }
  650. gguf_write_to_file(ctx, filename, false);
  651. gguf_free(ctx);
  652. }
  653. struct train_params get_default_train_params() {
  654. struct train_params params;
  655. params.fn_vocab_model = "models/7B/ggml-model-f16.gguf";
  656. params.fn_llama2c_output_model = "ak_llama_model.bin";
  657. params.fn_train_data = "shakespeare.txt";
  658. params.fn_checkpoint_in = "checkpoint.bin";
  659. params.fn_checkpoint_out = "checkpoint.bin";
  660. params.fn_model_out = "ggml-checkpoint-f32.bin";
  661. params.seed = -1;
  662. params.n_ctx = 128;
  663. params.n_embd = 256;
  664. params.n_mult = 256;
  665. params.n_head = 8;
  666. params.n_layer = 16;
  667. params.n_rotmax = 64;
  668. params.n_threads = 6;
  669. params.n_batch = 8;
  670. params.n_examples = 8;
  671. params.n_predict = 1024;
  672. params.print_info_interval = 1;
  673. params.print_details_interval = 2;
  674. params.samples_start_after_nl = false;
  675. params.use_adam = true;
  676. params.use_flash = true;
  677. params.use_scratch = true;
  678. // only adam
  679. params.warmup = 100;
  680. params.cos_decay_steps = 1000;
  681. params.cos_decay_restart = 1.1f;
  682. params.cos_decay_alpha = 0.0f;
  683. params.lbfgs_n_iter = 16;
  684. params.adam_n_iter = 16;
  685. params.adam_alpha = 1e-3f;
  686. params.adam_decay = 1e-3f;
  687. params.mem_model_gb = 2;
  688. params.mem_compute_gb = 24;
  689. params.mem_compute0_gb = 8;
  690. params.mem_compute1_gb = 2;
  691. return params;
  692. }
  693. void print_usage(int /*argc*/, char ** argv, const struct train_params * params) {
  694. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  695. fprintf(stderr, "\n");
  696. fprintf(stderr, "options:\n");
  697. fprintf(stderr, " -h, --help show this help message and exit\n");
  698. fprintf(stderr, " --copy-vocab-from-model FNAME path of gguf llama model or llama2.c vocabulary from which to copy vocab (default '%s')\n", params->fn_vocab_model);
  699. fprintf(stderr, " --llama2c-model FNAME [REQUIRED] model path from which to load Karpathy's llama2.c model\n");
  700. fprintf(stderr, " --llama2c-output-model FNAME model path to save the converted llama2.c model (default %s')\n", params->fn_llama2c_output_model);
  701. fprintf(stderr, "\n");
  702. }
  703. bool params_parse(int argc, char ** argv, struct train_params * params) {
  704. bool invalid_param = false;
  705. bool reqd_param_found = false;
  706. std::string arg;
  707. struct train_params default_params = get_default_train_params();
  708. const std::string arg_prefix = "--";
  709. for (int i = 1; i < argc; i++) {
  710. arg = argv[i];
  711. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  712. std::replace(arg.begin(), arg.end(), '_', '-');
  713. }
  714. if (arg == "--copy-vocab-from-model") {
  715. if (++i >= argc) {
  716. invalid_param = true;
  717. break;
  718. }
  719. params->fn_vocab_model = argv[i];
  720. } else if (arg == "--llama2c-model") {
  721. if (++i >= argc) {
  722. invalid_param = true;
  723. break;
  724. }
  725. reqd_param_found = true;
  726. params->fn_llama2c_model = argv[i];
  727. } else if (arg == "--llama2c-output-model") {
  728. if (++i >= argc) {
  729. invalid_param = true;
  730. break;
  731. }
  732. params->fn_llama2c_output_model = argv[i];
  733. } else if (arg == "-h" || arg == "--help") {
  734. print_usage(argc, argv, &default_params);
  735. exit(0);
  736. } else {
  737. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  738. print_usage(argc, argv, &default_params);
  739. exit(1);
  740. }
  741. }
  742. if (invalid_param) {
  743. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  744. print_usage(argc, argv, &default_params);
  745. exit(1);
  746. }
  747. if (!reqd_param_found){
  748. fprintf(stderr, "error: please specify a llama2.c .bin file to be converted with argument --llama2c-model\n");
  749. print_usage(argc, argv, &default_params);
  750. exit(1);
  751. }
  752. return true;
  753. }
  754. std::string basename(const std::string &path) {
  755. size_t pos = path.find_last_of("/\\");
  756. if (pos == std::string::npos) {
  757. return path;
  758. }
  759. return path.substr(pos + 1);
  760. }
  761. int main(int argc, char ** argv) {
  762. struct train_params params = get_default_train_params();
  763. if (!params_parse(argc, argv, &params)) {
  764. return 1;
  765. }
  766. Config config;
  767. TransformerWeights weights = {};
  768. {
  769. FILE *file = fopen(params.fn_llama2c_model, "rb");
  770. if (!file) { printf("Unable to open the checkpoint file %s!\n", params.fn_llama2c_model); return 1; }
  771. // read in the config header
  772. if(fread(&config, sizeof(Config), 1, file) != 1) { return 1; }
  773. auto shared_weights = config.vocab_size > 0;
  774. config.vocab_size = abs(config.vocab_size);
  775. // read in the Transformer weights
  776. malloc_weights(&weights, &config, shared_weights);
  777. if(checkpoint_init_weights(&weights, &config, file, shared_weights)) { return 1; }
  778. fclose(file);
  779. }
  780. struct llama_vocab vocab;
  781. load_vocab(params.fn_vocab_model, &config, &vocab);
  782. struct my_llama_model model;
  783. model.hparams.n_vocab = config.vocab_size; //llama_n_vocab(lctx);
  784. model.hparams.n_ctx = params.n_ctx;
  785. model.hparams.n_embd = config.dim; //params.n_embd;
  786. model.hparams.n_ff = config.hidden_dim;
  787. model.hparams.n_mult = 32;//params.n_mult;
  788. model.hparams.n_head = config.n_heads; //params.n_head;
  789. model.hparams.n_layer = config.n_layers; //params.n_layer;
  790. model.hparams.n_rot = std::min((uint32_t)params.n_rotmax, model.hparams.n_embd / model.hparams.n_head);
  791. print_params(&model.hparams);
  792. struct ggml_init_params lcparams;
  793. lcparams.mem_size = 1024ll*1024ll*1024ll*((size_t) params.mem_model_gb);
  794. lcparams.mem_buffer = NULL;
  795. lcparams.no_alloc = false;
  796. model.ctx = ggml_init(lcparams);
  797. init_model(&model);
  798. model.name = basename(params.fn_llama2c_model);
  799. save_as_llama_model(&vocab, &model, &weights, params.fn_llama2c_output_model);
  800. printf("Saving llama.c model file %s in ggml format at %s\n", params.fn_llama2c_model, params.fn_llama2c_output_model);
  801. ggml_free(model.ctx);
  802. return 0;
  803. }