| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083 |
- #include "ggml.h"
- #include "cmpnct_gpt2bpe.hpp"
- #include <cassert>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <cinttypes>
- #include <fstream>
- #include <map>
- #include <string>
- #include <vector>
- #include <thread>
- #include <random>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- // default hparams
- struct gpt_neox_hparams {
- size_t n_merges = 0;
- size_t n_vocab = 0;
- uint32_t n_ctx = 0;
- uint32_t n_embd = 0;
- uint32_t n_head = 0;
- uint32_t n_block = 0;
- uint32_t n_rot = 0; // rotary_pct * (n_embd / n_head)
- bool par_res = true;
- float norm_eps = 1e-5;
- };
- struct gpt_neox_block {
- // pre normalization
- struct ggml_tensor * ln_1_g;
- struct ggml_tensor * ln_1_b;
- // attention
- struct ggml_tensor * c_attn_attn_w;
- struct ggml_tensor * c_attn_attn_b;
- struct ggml_tensor * c_attn_proj_w;
- struct ggml_tensor * c_attn_proj_b;
- // post normalization
- struct ggml_tensor * ln_2_g;
- struct ggml_tensor * ln_2_b;
- // ff
- struct ggml_tensor * c_mlp_fc_w;
- struct ggml_tensor * c_mlp_fc_b;
- struct ggml_tensor * c_mlp_proj_w;
- struct ggml_tensor * c_mlp_proj_b;
- };
- struct gpt_neox_model {
- gpt_neox_hparams hparams;
- // normalization
- struct ggml_tensor * ln_f_g;
- struct ggml_tensor * ln_f_b;
- struct ggml_tensor * wte; // position embedding
- struct ggml_tensor * lmh_g; // language model head
- std::vector<gpt_neox_block> blocks;
- // key + value memory
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
- //
- struct gguf_context * ggufctx;
- struct ggml_context * ctx;
- struct ggml_context * kvctx;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- struct gpt_params {
- int32_t seed = -1; // RNG seed
- int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
- uint32_t n_predict = 200; // new tokens to predict
- uint32_t n_batch = 512; // batch size for prompt processing
- // sampling parameters
- int32_t top_k = 40;
- float top_p = 1.0f;
- float temp = 0.8f;
- int32_t repeat_last_n = 64;
- float repeat_penalty = 1.02f;
- std::string model = ""; // model path
- std::string prompt = "";
- std::string token_test = "";
- bool interactive = false;
- int32_t interactive_port = -1;
- int32_t n_gpu_layers = 0;
- };
- void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
- fprintf(stderr, "usage: %s [options]\n", argv[0]);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
- fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
- fprintf(stderr, " prompt to start generation with (default: random)\n");
- fprintf(stderr, " -f FNAME, --file FNAME\n");
- fprintf(stderr, " load prompt from a file\n");
- fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
- fprintf(stderr, " test tokenization\n");
- fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
- fprintf(stderr, " --top_k N top-k sampling, 0 = n_vocab (default: %d)\n", params.top_k);
- fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
- fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
- fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
- fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
- fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, "\n");
- }
- // Function to check if the next argument exists
- std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
- if (i + 1 < argc && argv[i + 1][0] != '-') {
- return argv[++i];
- } else {
- fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
- gpt_print_usage(argc, argv, params);
- exit(0);
- }
- }
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
- for (int i = 1; i < argc; i++) {
- std::string arg = argv[i];
- if (arg == "-s" || arg == "--seed") {
- params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-t" || arg == "--threads") {
- params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
- params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-p" || arg == "--prompt") {
- params.prompt = get_next_arg(i, argc, argv, arg, params);
- } else if (arg == "-n" || arg == "--n_predict") {
- params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--top_k") {
- params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--top_p") {
- params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--temp") {
- params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--repeat-last-n") {
- params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "--repeat-penalty") {
- params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-b" || arg == "--batch_size") {
- params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-m" || arg == "--model") {
- params.model = get_next_arg(i, argc, argv, arg, params);
- } else if (arg == "-i" || arg == "--interactive") {
- params.interactive = true;
- } else if (arg == "-ip" || arg == "--interactive-port") {
- params.interactive = true;
- params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
- } else if (arg == "-h" || arg == "--help") {
- gpt_print_usage(argc, argv, params);
- exit(0);
- } else if (arg == "-f" || arg == "--file") {
- get_next_arg(i, argc, argv, arg, params);
- std::ifstream file(argv[i]);
- if (!file) {
- fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
- break;
- }
- std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
- if (params.prompt.back() == '\n') {
- params.prompt.pop_back();
- }
- } else if (arg == "-tt" || arg == "--token_test") {
- params.token_test = get_next_arg(i, argc, argv, arg, params);
- }
- else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- gpt_print_usage(argc, argv, params);
- exit(0);
- }
- }
- return true;
- }
- gpt2bpe_vocab::id sample_top_k_top_p_repeat(
- const gpt2bpe_vocab & vocab,
- const float * logits,
- const int32_t * last_n_tokens_data,
- size_t last_n_tokens_data_size,
- int top_k,
- double top_p,
- double temp,
- int repeat_last_n,
- float repeat_penalty,
- std::mt19937 & rng) {
- int n_logits = vocab.id_to_token.size();
- const auto * plogits = logits;
- const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
- if (temp <= 0) {
- // select the token with the highest logit directly
- float max_logit = plogits[0];
- gpt2bpe_vocab::id max_id = 0;
- for (int i = 1; i < n_logits; ++i) {
- if (plogits[i] > max_logit) {
- max_logit = plogits[i];
- max_id = i;
- }
- }
- return max_id;
- }
- std::vector<std::pair<double, gpt2bpe_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
- {
- const float scale = 1.0f/temp;
- for (int i = 0; i < n_logits; ++i) {
- // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
- // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
- if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
- // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0f) {
- logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
- }
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale, i));
- }
- }
- }
- // find the top K tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<double, gpt2bpe_vocab::id> & a, const std::pair<double, gpt2bpe_vocab::id> & b) {
- return a.first > b.first;
- });
- logits_id.resize(top_k);
- double maxl = -INFINITY;
- for (const auto & kv : logits_id) {
- maxl = std::max(maxl, kv.first);
- }
- // compute probs for the top K tokens
- std::vector<double> probs;
- probs.reserve(logits_id.size());
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- double p = exp(kv.first - maxl);
- probs.push_back(p);
- sum += p;
- }
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
- }
- if (top_p < 1.0f) {
- double cumsum = 0.0f;
- for (int i = 0; i < top_k; i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- top_k = i + 1;
- probs.resize(top_k);
- logits_id.resize(top_k);
- break;
- }
- }
- cumsum = 1.0/cumsum;
- for (int i = 0; i < (int) probs.size(); i++) {
- probs[i] *= cumsum;
- }
- }
- // printf("\n");
- // for (int i = 0; i < (int) probs.size(); i++) {
- // for (int i = 0; i < 10; i++) {
- // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
- // }
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- return logits_id[idx].second;
- }
- struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){
- struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
- if( cur == NULL ) {
- fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str());
- } else {
- // fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name);
- }
- return cur;
- }
- // load the model's weights from a file
- bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2bpe_vocab & vocab) {
- printf("%s: loading model from '%s'..\n", __func__, fname.c_str());
- model.ctx = NULL;
- struct gguf_init_params ggufparams = {
- /*.no_alloc = */ false,
- /*.ctx = */ &model.ctx,
- };
- auto & ggufctx = model.ggufctx;
- ggufctx = gguf_init_from_file(fname.c_str(), ggufparams);
- if (!ggufctx) {
- fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
- return false;
- }
- fprintf(stdout, "%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
- fprintf(stdout, "%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
- fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
- // print all kv
- #if 0
- {
- const int n_kv = gguf_get_n_kv(ggufctx);
- fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
- for (int i = 0; i < n_kv; ++i) {
- const char * key = gguf_get_key(ggufctx, i);
- fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
- }
- }
- #endif
- // print some standard metadata
- {
- int keyidx;
- keyidx = gguf_find_key(ggufctx, "general.name");
- if (keyidx != -1) { fprintf(stdout, "%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "general.description");
- if (keyidx != -1) { fprintf(stdout, "%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "general.author");
- if (keyidx != -1) { fprintf(stdout, "%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "general.license");
- if (keyidx != -1) { fprintf(stdout, "%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "general.architecture");
- if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "general.file_type");
- if (keyidx != -1) { fprintf(stdout, "%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
- if (keyidx != -1) { fprintf(stdout, "%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository");
- if (keyidx != -1) { fprintf(stdout, "%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
- }
- // check required metadata
- {
- int keyidx;
- // check model architecture kv
- keyidx = gguf_find_key(ggufctx, "general.architecture");
- if (keyidx != -1) {
- if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gptneox") != 0) {
- fprintf(stdout, "%s: model architecture not supported!\n", __func__);
- return false;
- }
- } else {
- fprintf(stdout, "%s: gguf model architecture not found!\n", __func__);
- return false;
- }
- }
- // load hparams
- {
- auto & hparams = model.hparams;
- bool ok = true;
- int keyidx;
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.context_length");
- if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.embedding_length");
- if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.head_count");
- if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.block_count");
- if (keyidx != -1) { hparams.n_block = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count");
- if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.use_parallel_residual");
- if (keyidx != -1) { hparams.par_res = gguf_get_val_bool(ggufctx, keyidx); } else { ok = false; } }
- if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.attention.layer_norm_epsilon");
- if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; } }
- if (!ok) {
- fprintf(stderr, "%s: required hparam missing!\n", __func__);
- return false;
- }
- printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
- printf("%s: n_head = %d\n", __func__, hparams.n_head);
- printf("%s: n_block = %d\n", __func__, hparams.n_block);
- printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
- printf("%s: par_res = %d\n", __func__, hparams.par_res);
- printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps);
- }
- // load vocab
- {
- auto & hparams = model.hparams;
- int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
- if (keyidx != -1) {
- if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
- fprintf(stdout, "%s: tokenizer model not supported!\n", __func__);
- return false;
- }
- } else {
- fprintf(stdout, "%s: tokenizer model not found!\n", __func__);
- return false;
- }
- int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
- if (tokens_keyidx == -1) {
- fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__);
- return false;
- }
- int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges");
- if (merges_keyidx == -1) {
- fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__);
- return false;
- }
- hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx);
- hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx);
- fprintf(stdout, "%s: gpt2 tokenizer vocab = %zu\n", __func__, hparams.n_vocab);
- fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges);
- for (size_t i = 0; i < hparams.n_vocab; i++) {
- std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
- // printf("token %d = '%s'\n",i,word.c_str() );
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
- if( vocab.id_to_token[i] == "\n" ) {
- vocab.linefeed_id = i;
- }
- }
- std::vector<std::pair<std::string, std::string>> bpe_merges;
- for (size_t i = 0; i < hparams.n_merges; i++) {
- std::string word = gguf_get_arr_str(ggufctx, merges_keyidx, i);
- // Split the merges
- std::string first, second;
- size_t pos = word.find(' ', 1); // Start the search from the second character
- if (pos != std::string::npos) {
- first = word.substr(0, pos);
- second = word.substr(pos + 1);
- }
- bpe_merges.push_back(std::make_pair(first, second));
- }
- vocab.populate_bpe_ranks(bpe_merges);
- keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.bos_token_id"); if( keyidx != -1 ) { vocab.special_bos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
- keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.eos_token_id"); if( keyidx != -1 ) { vocab.special_eos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
- keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.unknown_token_id"); if( keyidx != -1 ) { vocab.special_unk_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
- keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.separator_token_id"); if( keyidx != -1 ) { vocab.special_sep_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
- keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.padding_token_id"); if( keyidx != -1 ) { vocab.special_pad_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
- if( vocab.special_bos_id != -1 ) { fprintf(stdout, "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].c_str() ); }
- if( vocab.special_eos_id != -1 ) { fprintf(stdout, "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].c_str() ); }
- if( vocab.special_unk_id != -1 ) { fprintf(stdout, "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].c_str() ); }
- if( vocab.special_sep_id != -1 ) { fprintf(stdout, "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].c_str() ); }
- if( vocab.special_pad_id != -1 ) { fprintf(stdout, "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].c_str() ); }
- if( vocab.linefeed_id != -1 ) { fprintf(stdout, "%s: LF token = %d\n", __func__, vocab.linefeed_id ); }
- }
- auto & ctx = model.ctx;
- size_t ctx_size = ggml_get_mem_size(ctx);
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- // print tensor info
- #if 0
- {
- const int n_tensors = gguf_get_n_tensors(ggufctx);
- fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name (ggufctx, i);
- const size_t offset = gguf_get_tensor_offset(ggufctx, i);
- fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
- }
- }
- #endif
- // prepare memory for the weights
- {
- const int n_block = model.hparams.n_block;
- model.blocks.resize(n_block);
- model.wte = ggml_get_tensor(ctx, "token_embd.weight");
- model.ln_f_g = ggml_get_tensor(ctx, "output_norm.weight");
- model.ln_f_b = ggml_get_tensor(ctx, "output_norm.bias");
- model.lmh_g = ggml_get_tensor(ctx, "output.weight");
- // map by name
- model.tensors["token_embd.weight"] = model.wte;
- model.tensors["output_norm.weight"] = model.ln_f_g;
- model.tensors["output_norm.bias"] = model.ln_f_b;
- model.tensors["output.weight"] = model.lmh_g;
- for (int i = 0; i < n_block; ++i) {
- auto & block = model.blocks[i];
- std::string blocknamestart = "blk." + std::to_string(i) + ".";
- block.ln_1_g = get_tensor_ex(ctx, blocknamestart + "attn_norm.weight" );
- block.ln_1_b = get_tensor_ex(ctx, blocknamestart + "attn_norm.bias" );
- block.c_attn_attn_w = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" );
- block.c_attn_attn_b = get_tensor_ex(ctx ,blocknamestart + "attn_qkv.bias" );
- block.c_attn_proj_w = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" );
- block.c_attn_proj_b = get_tensor_ex(ctx, blocknamestart + "attn_output.bias" );
- block.ln_2_g = get_tensor_ex(ctx, blocknamestart + "ffn_norm.weight" );
- block.ln_2_b = get_tensor_ex(ctx, blocknamestart + "ffn_norm.bias");
- block.c_mlp_fc_w = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" );
- block.c_mlp_fc_b = get_tensor_ex(ctx, blocknamestart + "ffn_up.bias" );
- block.c_mlp_proj_w = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" );
- block.c_mlp_proj_b = get_tensor_ex(ctx, blocknamestart + "ffn_down.bias" );
- // map by name
- model.tensors[blocknamestart + "attn_norm.weight"] = block.ln_1_g;
- model.tensors[blocknamestart + "attn_norm.bias"] = block.ln_1_b;
- model.tensors[blocknamestart + "attn_qkv.weight"] = block.c_attn_attn_w;
- model.tensors[blocknamestart + "attn_qkv.bias"] = block.c_attn_attn_b;
- model.tensors[blocknamestart + "attn_output.weight"] = block.c_attn_proj_w;
- model.tensors[blocknamestart + "attn_output.bias"] = block.c_attn_proj_b;
- model.tensors[blocknamestart + "ffn_norm.weight"] = block.ln_2_g;
- model.tensors[blocknamestart + "ffn_norm.bias"] = block.ln_2_b;
- model.tensors[blocknamestart + "ffn_up.weight"] = block.c_mlp_fc_w;
- model.tensors[blocknamestart + "ffn_up.bias"] = block.c_mlp_fc_b;
- model.tensors[blocknamestart + "ffn_down.weight"] = block.c_mlp_proj_w;
- model.tensors[blocknamestart + "ffn_down.bias"] = block.c_mlp_proj_b;
- }
- }
- // key + value memory
- {
- const auto & kvctx = model.kvctx;
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_block = hparams.n_block;
- const int n_ctx = hparams.n_ctx;
- const int64_t n_mem = n_block*n_ctx;
- const int64_t n_elements = n_embd*n_mem;
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ size_t(n_elements*4+ggml_tensor_overhead()*2),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ false,
- };
- model.kvctx = ggml_init(params);
- if (!model.kvctx) {
- fprintf(stderr, "%s: kv ggml_init() failed\n", __func__);
- return false;
- }
- }
- model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
- model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
- const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
- printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
- }
- return true;
- }
- // feed-forward network
- ggml_tensor * gpt_neox_ff(
- const gpt_neox_block &block,
- ggml_context * ctx0,
- ggml_tensor * inp,
- const gpt_neox_hparams &hparams) {
- ggml_tensor * cur = ggml_norm(ctx0, inp, hparams.norm_eps);
- cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, block.ln_2_g, cur), cur), ggml_repeat(ctx0, block.ln_2_b, cur));
- cur = ggml_mul_mat(ctx0, block.c_mlp_fc_w, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, block.c_mlp_fc_b, cur), cur);
- // GELU activation
- cur = ggml_gelu(ctx0, cur);
- // projection
- // cur = proj_w*cur + proj_b
- cur = ggml_mul_mat(ctx0, block.c_mlp_proj_w, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, block.c_mlp_proj_b, cur), cur);
- return cur;
- }
- // evaluate the transformer
- //
- // - model: the model
- // - n_threads: number of threads to use
- // - n_past: the context size so far
- // - embd_inp: the embeddings of the tokens in the context
- // - embd_w: the predicted logits for the next token
- //
- bool gpt_neox_eval(
- const gpt_neox_model & model,
- const int n_threads,
- const int n_past,
- const std::vector<gpt2bpe_vocab::id> & embd_inp,
- std::vector<float> & embd_w,
- size_t & mem_per_token) {
- const int N = embd_inp.size();
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_block = hparams.n_block;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_rot;
- static size_t buf_size = 256u*1024*1024;
- static void * buf = malloc(buf_size);
- // use 2 scratch buffers
- // TODO: very hacky solution - reimplement in a more elegant way
- static size_t scr0_size = 256u*1024*1024;
- static void * scr0 = malloc(scr0_size);
- static size_t scr1_size = 256u*1024*1024;
- static void * scr1 = malloc(scr1_size);
- if (mem_per_token > 0 && mem_per_token*N > buf_size) {
- const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
- //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
- // reallocate
- buf_size = buf_size_new;
- buf = realloc(buf, buf_size);
- if (buf == nullptr) {
- fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
- return false;
- }
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_cgraph gf = {};
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
- // wte
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
- for (int il = 0; il < n_block; ++il) {
- struct ggml_tensor * cur;
- ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
- // self-attention
- {
- {
- cur = ggml_norm(ctx0, inpL, hparams.norm_eps);
- cur = ggml_add(ctx0,
- ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].ln_1_g, cur), cur),
- ggml_repeat(ctx0, model.blocks[il].ln_1_b, cur));
- }
- // compute QKV
- {
- cur = ggml_mul_mat(ctx0, model.blocks[il].c_attn_attn_w, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, model.blocks[il].c_attn_attn_b, cur), cur);
- }
- struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
- struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 1*sizeof(float)*n_embd/n_head));
- struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 2*sizeof(float)*n_embd/n_head));
- // using mode = 2 for GPT-NeoX mode
- Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, n_rot, 2, 0);
- Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, n_rot, 2, 0);
- // store key and value to memory
- {
- Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd, N));
- struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_2d(ctx0, model.memory_v, N, n_embd,
- ( n_ctx)*ggml_element_size(model.memory_v),
- (il*n_ctx)*ggml_element_size(model.memory_v)*n_embd + n_past*ggml_element_size(model.memory_v));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
- struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale_inplace(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
- );
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, model.memory_v,
- n_past + N, n_embd/n_head, n_head,
- n_ctx*ggml_element_size(model.memory_v),
- n_ctx*ggml_element_size(model.memory_v)*n_embd/n_head,
- il*n_ctx*ggml_element_size(model.memory_v)*n_embd);
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection
- {
- cur = ggml_mul_mat(ctx0, model.blocks[il].c_attn_proj_w, cur);
- cur = ggml_add(ctx0, ggml_repeat(ctx0, model.blocks[il].c_attn_proj_b, cur), cur);
- }
- }
- ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
- if (hparams.par_res == 0) {
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
- cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF, hparams);
- // input for next layer
- inpL = ggml_add(ctx0, cur, inpFF);
- } else {
- struct ggml_tensor * inpFF = cur;
- // this is independent of the self-attention result, so it could be done in parallel to the self-attention
- // note here we pass inpL instead of cur
- cur = gpt_neox_ff(model.blocks[il], ctx0, inpL, hparams);
- // layer input + FF
- cur = ggml_add(ctx0, cur, inpFF);
- // input for next layer
- inpL = ggml_add(ctx0, cur, inpL);
- }
- }
- ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
- // norm
- {
- inpL = ggml_norm(ctx0, inpL, hparams.norm_eps);
- // inpL = ln_f_g*inpL + ln_f_b
- inpL = ggml_add(ctx0,
- ggml_mul(ctx0,
- ggml_repeat(ctx0, model.ln_f_g, inpL),
- inpL),
- ggml_repeat(ctx0, model.ln_f_b, inpL));
- }
- ggml_set_scratch(ctx0, { 0, 0, nullptr, });
- // lm_head
- {
- inpL = ggml_mul_mat(ctx0, model.lmh_g, inpL);
- //inpL = ggml_add(ctx0,
- // ggml_repeat(ctx0, model.lmh_b, inpL),
- // inpL);
- }
- // logits -> probs
- //inpL = ggml_soft_max_inplace(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
- //if (n_past%100 == 0) {
- // ggml_graph_print (&gf);
- // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
- //}
- //embd_w.resize(n_vocab*N);
- //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- // return result for just the last token
- embd_w.resize(n_vocab);
- memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
- ggml_free(ctx0);
- return true;
- }
- int main(int argc, char ** argv) {
- ggml_time_init();
- const int64_t t_main_start_us = ggml_time_us();
- gpt_params params;
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- int64_t t_load_us = 0;
- gpt2bpe_vocab vocab;
- gpt_neox_model model;
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
- if (!gpt_neox_model_load(params.model, model, vocab)) {
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- t_load_us = ggml_time_us() - t_start_us;
- }
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- if (params.top_k == 0) {
- params.top_k = model.hparams.n_vocab;
- }
- printf("%s: seed = %d\n", __func__, params.seed);
- printf("%s: temp = %.3f\n", __func__, params.temp);
- printf("%s: top_k = %d\n", __func__, params.top_k);
- printf("%s: top_p = %.3f\n", __func__, params.top_p);
- printf("%s: repeat_last_n = %d\n", __func__, params.repeat_last_n);
- printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
- std::mt19937 rng(params.seed);
- if (params.prompt.empty()) {
- params.prompt = "Once upon";
- }
- std::vector<int32_t> last_n_tokens(model.hparams.n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- int n_past = 0;
- int64_t t_sample_us = 0;
- int64_t t_predict_us = 0;
- std::vector<float> logits;
- // tokenize the prompt
- std::vector<gpt2bpe_vocab::id> embd_inp = gpt2bpe_tokenize(vocab, params.prompt,false, false);
- params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
- printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- // for (size_t i = 0; i < embd_inp.size(); i++) {
- // printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token[embd_inp[i]].c_str());
- // }
- if( model.hparams.n_ctx < params.n_predict+embd_inp.size() ) {
- params.n_predict = model.hparams.n_ctx-embd_inp.size();
- }
- printf("%s: n_predict = %d\n", __func__, params.n_predict);
- printf("\n");
- std::vector<gpt2bpe_vocab::id> embd;
- // determine the required inference memory per token:
- size_t mem_per_token = 0;
- gpt_neox_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
- for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
- // predict
- if (embd.size() > 0) {
- const int64_t t_start_us = ggml_time_us();
- if (!gpt_neox_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
- printf("Failed to predict\n");
- return 1;
- }
- t_predict_us += ggml_time_us() - t_start_us;
- }
- n_past += embd.size();
- embd.clear();
- if (i >= embd_inp.size()) {
- // sample next token
- const int top_k = params.top_k;
- const float top_p = params.top_p;
- const float temp = params.temp;
- const int repeat_last_n = params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const int n_vocab = model.hparams.n_vocab;
- gpt2bpe_vocab::id id = 0;
- {
- const int64_t t_start_sample_us = ggml_time_us();
- id = sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_last_n, repeat_penalty, rng);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(id);
- t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // add it to the context
- embd.push_back(id);
- } else {
- // if here, it means we are still processing the input prompt
- for (size_t k = i; k < embd_inp.size(); k++) {
- embd.push_back(embd_inp[k]);
- if (embd.size() > params.n_batch) {
- break;
- }
- }
- i += embd.size() - 1;
- }
- // display text
- for (auto id : embd) {
- printf("%s", vocab.id_to_token[id].c_str() );
- }
- fflush(stdout);
- // end of text token
- if (vocab.special_eos_id != -1 && embd.back() == vocab.special_eos_id) {
- break;
- }
- }
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
- printf("\n\n");
- printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
- printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
- printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
- printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
- }
- ggml_free(model.ctx);
- return 0;
- }
|