| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include <vector>
- #include <cstdio>
- #include <chrono>
- int main(int argc, char ** argv) {
- gpt_params params;
- params.seed = 42;
- params.n_threads = 4;
- params.repeat_last_n = 64;
- params.prompt = "The quick brown fox";
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
- if (params.n_predict < 0) {
- params.n_predict = 16;
- }
- auto lparams = llama_context_default_params();
- lparams.n_ctx = params.n_ctx;
- lparams.seed = params.seed;
- lparams.f16_kv = params.memory_f16;
- lparams.use_mmap = params.use_mmap;
- lparams.use_mlock = params.use_mlock;
- auto n_past = 0;
- auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
- // init
- auto model = llama_load_model_from_file(params.model.c_str(), lparams);
- if (model == nullptr) {
- return 1;
- }
- auto ctx = llama_new_context_with_model(model, lparams);
- if (ctx == nullptr) {
- llama_free_model(model);
- return 1;
- }
- auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
- auto n_prompt_tokens = tokens.size();
- if (n_prompt_tokens < 1) {
- fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);
- llama_free(ctx);
- llama_free_model(model);
- return 1;
- }
- // evaluate prompt
- llama_eval(ctx, tokens.data(), n_prompt_tokens, n_past, params.n_threads);
- last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
- n_past += n_prompt_tokens;
- const size_t state_size = llama_get_state_size(ctx);
- uint8_t * state_mem = new uint8_t[state_size];
- // Save state (rng, logits, embedding and kv_cache) to file
- {
- FILE *fp_write = fopen("dump_state.bin", "wb");
- llama_copy_state_data(ctx, state_mem); // could also copy directly to memory mapped file
- fwrite(state_mem, 1, state_size, fp_write);
- fclose(fp_write);
- }
- // save state (last tokens)
- const auto last_n_tokens_data_saved = std::vector<llama_token>(last_n_tokens_data);
- const auto n_past_saved = n_past;
- // first run
- printf("\n%s", params.prompt.c_str());
- for (auto i = 0; i < params.n_predict; i++) {
- auto logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- auto next_token = llama_sample_token(ctx, &candidates_p);
- auto next_token_str = llama_token_to_piece(ctx, next_token);
- last_n_tokens_data.push_back(next_token);
- printf("%s", next_token_str.c_str());
- if (llama_eval(ctx, &next_token, 1, n_past, params.n_threads)) {
- fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
- llama_free(ctx);
- llama_free_model(model);
- return 1;
- }
- n_past += 1;
- }
- printf("\n\n");
- // free old context
- llama_free(ctx);
- // make new context
- auto ctx2 = llama_new_context_with_model(model, lparams);
- // Load state (rng, logits, embedding and kv_cache) from file
- {
- FILE *fp_read = fopen("dump_state.bin", "rb");
- if (state_size != llama_get_state_size(ctx2)) {
- fprintf(stderr, "\n%s : failed to validate state size\n", __func__);
- llama_free(ctx2);
- llama_free_model(model);
- return 1;
- }
- const size_t ret = fread(state_mem, 1, state_size, fp_read);
- if (ret != state_size) {
- fprintf(stderr, "\n%s : failed to read state\n", __func__);
- llama_free(ctx2);
- llama_free_model(model);
- return 1;
- }
- llama_set_state_data(ctx2, state_mem); // could also read directly from memory mapped file
- fclose(fp_read);
- }
- delete[] state_mem;
- // restore state (last tokens)
- last_n_tokens_data = last_n_tokens_data_saved;
- n_past = n_past_saved;
- // second run
- for (auto i = 0; i < params.n_predict; i++) {
- auto logits = llama_get_logits(ctx2);
- auto n_vocab = llama_n_vocab(ctx2);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- auto next_token = llama_sample_token(ctx2, &candidates_p);
- auto next_token_str = llama_token_to_piece(ctx2, next_token);
- last_n_tokens_data.push_back(next_token);
- printf("%s", next_token_str.c_str());
- if (llama_eval(ctx2, &next_token, 1, n_past, params.n_threads)) {
- fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
- llama_free(ctx2);
- llama_free_model(model);
- return 1;
- }
- n_past += 1;
- }
- printf("\n\n");
- llama_free(ctx2);
- llama_free_model(model);
- return 0;
- }
|