convert-train-checkpoint-to-gguf.py 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. #!/usr/bin/env python3
  2. # train-text-from-scratch checkpoint --> gguf conversion
  3. import argparse
  4. import os
  5. import struct
  6. import sys
  7. import numpy as np
  8. from pathlib import Path
  9. if 'NO_LOCAL_GGUF' not in os.environ:
  10. sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py' / 'gguf'))
  11. import gguf
  12. # gguf constants
  13. LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
  14. LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
  15. LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
  16. LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
  17. LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
  18. LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
  19. LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
  20. LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
  21. LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
  22. LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
  23. LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
  24. LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
  25. LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
  26. LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
  27. LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
  28. LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
  29. LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
  30. LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
  31. LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
  32. LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
  33. LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
  34. LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
  35. LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
  36. LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
  37. LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
  38. LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
  39. LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
  40. LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
  41. LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
  42. LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
  43. LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
  44. LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
  45. LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
  46. LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
  47. LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
  48. class Tensor:
  49. def __init__(self, dtype='f', ne=None):
  50. if ne is None:
  51. ne = []
  52. self.dtype = dtype
  53. self.ne = ne
  54. self.nbytes = 0
  55. if self.dtype == 'f':
  56. if len(self.ne) == 0:
  57. self.nbytes = 0
  58. else:
  59. self.nbytes = int(np.product(self.ne)) * 4
  60. else:
  61. raise ValueError(f"Unhandled data type '{self.dtype}'")
  62. def load(self, data, offset):
  63. nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  64. namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  65. dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  66. assert(nd == len(self.ne))
  67. ne = []
  68. for d in range(nd):
  69. n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  70. ne.append(n)
  71. assert(tuple(ne) == tuple(self.ne))
  72. if self.dtype == 'f':
  73. assert(dtype == 0)
  74. else:
  75. raise ValueError(f"Unhandled data type '{self.dtype}'")
  76. self.name = bytes(data[offset:offset+namelen]); offset += namelen
  77. # 32-byte alignment
  78. offset += (0 - offset) & 31
  79. self.data = data[offset:offset+self.nbytes]
  80. offset += self.nbytes
  81. return offset
  82. def max_storage_size(self):
  83. result = 0
  84. result += 4 # nd
  85. result += 4 # namelen
  86. result += 4 # dtype
  87. result += len(self.ne)*8 # ne
  88. result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
  89. result += 31 # 32-byte alignment
  90. result += self.nbytes
  91. return result
  92. def save_gguf(self, gguf_writer, name):
  93. gguf_writer.add_tensor(
  94. name=name,
  95. tensor=self.data,
  96. raw_shape=np.array(list(reversed(self.ne))),
  97. raw_dtype=gguf.GGMLQuantizationType.F32)
  98. class OptimizationParamsV0:
  99. def __init__(self):
  100. pass
  101. def load(self, data, offset):
  102. self.type = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  103. self.n_threads = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  104. self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  105. self.delta = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  106. self.print_forward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
  107. self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
  108. self.adam_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  109. self.adam_sched = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  110. self.adam_decay = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  111. self.adam_alpha = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  112. self.adam_beta1 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  113. self.adam_beta2 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  114. self.adam_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  115. self.adam_eps_f = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  116. self.adam_eps_g = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  117. self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  118. self.lbfgs_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  119. self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  120. self.lbfgs_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  121. self.lbfgs_ftol = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  122. self.lbfgs_wolfe = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  123. self.lbfgs_min_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  124. self.lbfgs_max_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  125. self.lbfgs_linesearch = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  126. return offset
  127. class OptimizationContext:
  128. def __init__(self):
  129. pass
  130. def load(self, data, offset):
  131. self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
  132. offset += 4
  133. if self.version == 0:
  134. params = OptimizationParamsV0()
  135. offset = params.load(data, offset)
  136. self.past = params.past
  137. self.lbfgs_m = params.lbfgs_m
  138. self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
  139. self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  140. self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
  141. self.type = params.type
  142. self.adam_m = Tensor('f', [self.nx])
  143. self.adam_v = Tensor('f', [self.nx])
  144. self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
  145. self.lbfgs_x = Tensor('f', [self.nx])
  146. self.lbfgs_xp = Tensor('f', [self.nx])
  147. self.lbfgs_g = Tensor('f', [self.nx])
  148. self.lbfgs_gp = Tensor('f', [self.nx])
  149. self.lbfgs_d = Tensor('f', [self.nx])
  150. self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
  151. self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
  152. self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
  153. self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
  154. self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
  155. if self.type == 0:
  156. # these tensors are stored, but we don't need their data
  157. x = Tensor('f', [self.nx])
  158. g = Tensor('f', [self.nx])
  159. g2 = Tensor('f', [self.nx])
  160. mh = Tensor('f', [self.nx])
  161. vh = Tensor('f', [self.nx])
  162. offset = x.load(data, offset)
  163. offset = g.load(data, offset)
  164. offset = g2.load(data, offset)
  165. offset = self.adam_m.load(data, offset)
  166. offset = self.adam_v.load(data, offset)
  167. offset = mh.load(data, offset)
  168. offset = vh.load(data, offset)
  169. offset = self.adam_pf.load(data, offset)
  170. self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  171. self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  172. self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  173. elif self.type == 1:
  174. offset = self.lbfgs_x.load(data, offset)
  175. offset = self.lbfgs_xp.load(data, offset)
  176. offset = self.lbfgs_g.load(data, offset)
  177. offset = self.lbfgs_gp.load(data, offset)
  178. offset = self.lbfgs_d.load(data, offset)
  179. offset = self.lbfgs_pf.load(data, offset)
  180. offset = self.lbfgs_lmal.load(data, offset)
  181. offset = self.lbfgs_lmys.load(data, offset)
  182. offset = self.lbfgs_lms.load(data, offset)
  183. offset = self.lbfgs_lmy.load(data, offset)
  184. self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  185. self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  186. self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  187. self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  188. self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  189. self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  190. else:
  191. raise ValueError('Unknown optimizer type')
  192. elif self.version == 1:
  193. self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  194. self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  195. self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
  196. self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  197. self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
  198. self.adam_m = Tensor('f', [self.nx])
  199. self.adam_v = Tensor('f', [self.nx])
  200. self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
  201. self.lbfgs_x = Tensor('f', [self.nx])
  202. self.lbfgs_xp = Tensor('f', [self.nx])
  203. self.lbfgs_g = Tensor('f', [self.nx])
  204. self.lbfgs_gp = Tensor('f', [self.nx])
  205. self.lbfgs_d = Tensor('f', [self.nx])
  206. self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
  207. self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
  208. self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
  209. self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
  210. self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
  211. # forgot to save type in version 1:
  212. # guess self.type from number of remaining bytes
  213. size_type_0 = 12 + sum([t.max_storage_size() for t in
  214. [self.adam_m, self.adam_v]
  215. +([self.adam_pf] if (self.past > 0) else [])])
  216. size_type_1 = 24 + sum([t.max_storage_size() for t in
  217. [self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
  218. self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
  219. self.lbfgs_lmal, self.lbfgs_lmys,
  220. self.lbfgs_lms, self.lbfgs_lmy]
  221. +([self.lbfgs_pf] if (self.past > 0) else [])])
  222. # due to alignment padding the size might not by exact
  223. # but the difference in size for both types is significant,
  224. # so we can just use whichever is closest
  225. remaining = len(data) - offset
  226. if abs(remaining - size_type_0) < abs(remaining - size_type_1):
  227. self.type = 0
  228. else:
  229. self.type = 1
  230. if self.type == 0:
  231. offset = self.adam_m.load(data, offset)
  232. offset = self.adam_v.load(data, offset)
  233. offset = self.adam_pf.load(data,offset)
  234. self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  235. self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  236. self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  237. elif self.type == 1:
  238. offset = self.lbfgs_x.load(data, offset)
  239. offset = self.lbfgs_xp.load(data, offset)
  240. offset = self.lbfgs_g.load(data, offset)
  241. offset = self.lbfgs_gp.load(data, offset)
  242. offset = self.lbfgs_d.load(data, offset)
  243. offset = self.lbfgs_pf.load(data, offset)
  244. offset = self.lbfgs_lmal.load(data, offset)
  245. offset = self.lbfgs_lmys.load(data, offset)
  246. offset = self.lbfgs_lms.load(data, offset)
  247. offset = self.lbfgs_lmy.load(data, offset)
  248. self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  249. self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
  250. self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  251. self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  252. self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  253. self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
  254. else:
  255. raise ValueError('Invalid version of checkpoint file')
  256. return offset
  257. def save_gguf(self, gguf_writer):
  258. gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
  259. gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
  260. gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
  261. gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
  262. gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
  263. if self.type == 0:
  264. gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
  265. gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
  266. gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
  267. gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
  268. self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
  269. self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
  270. if self.past > 0:
  271. self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
  272. elif self.type == 1:
  273. gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
  274. gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
  275. gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
  276. gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
  277. gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
  278. gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
  279. gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
  280. gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
  281. self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
  282. self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
  283. self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
  284. self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
  285. self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
  286. if self.past > 0:
  287. self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
  288. self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
  289. self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
  290. self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
  291. self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
  292. else:
  293. raise ValueError('Unknown optimizer type')
  294. class ModelParams:
  295. def __init__(self):
  296. pass
  297. def load(self, data, offset):
  298. self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  299. self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  300. self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  301. self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  302. self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  303. self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  304. return offset
  305. def get_n_ff(self):
  306. # struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
  307. return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
  308. def save_gguf(self, gguf_writer):
  309. # self.n_vocab not saved
  310. gguf_writer.add_embedding_length(self.n_embd)
  311. gguf_writer.add_head_count(self.n_head)
  312. gguf_writer.add_block_count(self.n_layer)
  313. gguf_writer.add_rope_dimension_count(self.n_rot)
  314. gguf_writer.add_feed_forward_length(self.get_n_ff())
  315. def tensor_name(key, bid=None):
  316. return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + ".weight"
  317. class Layer:
  318. def __init__(self, params, bid):
  319. self.bid = bid
  320. self.att_norm = Tensor('f', [params.n_embd])
  321. self.wq = Tensor('f', [params.n_embd, params.n_embd])
  322. self.wk = Tensor('f', [params.n_embd, params.n_embd])
  323. self.wv = Tensor('f', [params.n_embd, params.n_embd])
  324. self.wo = Tensor('f', [params.n_embd, params.n_embd])
  325. self.ffn_norm = Tensor('f', [params.n_embd])
  326. self.w1 = Tensor('f', [params.n_embd, params.get_n_ff()])
  327. self.w2 = Tensor('f', [params.get_n_ff(), params.n_embd])
  328. self.w3 = Tensor('f', [params.n_embd, params.get_n_ff()])
  329. def load(self, data, offset):
  330. offset = self.att_norm.load(data, offset)
  331. offset = self.wq.load(data, offset)
  332. offset = self.wk.load(data, offset)
  333. offset = self.wv.load(data, offset)
  334. offset = self.wo.load(data, offset)
  335. offset = self.ffn_norm.load(data, offset)
  336. offset = self.w1.load(data, offset)
  337. offset = self.w2.load(data, offset)
  338. offset = self.w3.load(data, offset)
  339. return offset
  340. def save_gguf(self, gguf_writer):
  341. self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
  342. self.wq.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid))
  343. self.wk.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid))
  344. self.wv.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid))
  345. self.wo.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid))
  346. self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid))
  347. self.w1.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid))
  348. self.w2.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid))
  349. self.w3.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid))
  350. class Model:
  351. def __init__(self):
  352. self.params = ModelParams()
  353. self.layers = []
  354. def load(self, data, offset):
  355. offset = self.params.load(data, offset)
  356. self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
  357. self.norm = Tensor('f', [self.params.n_embd])
  358. self.output = Tensor('f', [self.params.n_embd, self.params.n_vocab])
  359. offset = self.tok_embd.load(data, offset)
  360. offset = self.norm.load(data, offset)
  361. offset = self.output.load(data, offset)
  362. self.layers.clear()
  363. for bid in range(self.params.n_layer):
  364. layer = Layer(self.params, bid)
  365. offset = layer.load(data, offset)
  366. self.layers.append(layer)
  367. return offset
  368. def save_gguf(self, gguf_writer):
  369. self.params.save_gguf(gguf_writer)
  370. self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
  371. self.norm.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
  372. self.output.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
  373. for layer in self.layers:
  374. layer.save_gguf(gguf_writer)
  375. class Checkpoint:
  376. def __init__(self):
  377. self.model = Model()
  378. self.opt_ctx = OptimizationContext()
  379. def load(self, data, offset):
  380. magic = bytes(reversed(data[offset:offset + 4])); offset += 4
  381. if magic != b'ggcp':
  382. raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
  383. self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  384. if self.version != 0:
  385. raise ValueError('Invalid version of checkpoint file')
  386. self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  387. self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  388. self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
  389. offset = self.model.load(data, offset)
  390. offset = self.opt_ctx.load(data, offset)
  391. return offset
  392. def save_gguf(self, gguf_writer):
  393. gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
  394. gguf_writer.add_layer_norm_rms_eps(1e-5)
  395. gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
  396. gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
  397. gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
  398. gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
  399. self.model.save_gguf(gguf_writer)
  400. self.opt_ctx.save_gguf(gguf_writer)
  401. def handle_args():
  402. parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
  403. parser.add_argument('--input', '-i', type = Path, help = 'Input train checkpoint filename', required=True)
  404. parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
  405. return parser.parse_args()
  406. def main():
  407. cfg = handle_args()
  408. data = np.memmap(cfg.input, mode = 'r')
  409. chk = Checkpoint()
  410. offset = 0
  411. offset = chk.load(data, offset)
  412. # we should have read all available data
  413. assert(offset == len(data))
  414. gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
  415. chk.save_gguf(gguf_writer)
  416. print(" gguf: write header")
  417. gguf_writer.write_header_to_file()
  418. print(" gguf: write metadata")
  419. gguf_writer.write_kv_data_to_file()
  420. print(" gguf: write tensors")
  421. gguf_writer.write_tensors_to_file()
  422. gguf_writer.close()
  423. if __name__ == '__main__':
  424. main()