ggml.c 668 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. // #define GGML_CROSS_ENTROPY_EXP_FP16
  106. // #define GGML_FLASH_ATTN_EXP_FP16
  107. #define GGML_SOFT_MAX_UNROLL 4
  108. #define GGML_VEC_DOT_UNROLL 2
  109. //
  110. // logging
  111. //
  112. #if (GGML_DEBUG >= 1)
  113. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  114. #else
  115. #define GGML_PRINT_DEBUG(...)
  116. #endif
  117. #if (GGML_DEBUG >= 5)
  118. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG_5(...)
  121. #endif
  122. #if (GGML_DEBUG >= 10)
  123. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  124. #else
  125. #define GGML_PRINT_DEBUG_10(...)
  126. #endif
  127. #define GGML_PRINT(...) printf(__VA_ARGS__)
  128. #ifdef GGML_USE_ACCELERATE
  129. // uncomment to use vDSP for soft max computation
  130. // note: not sure if it is actually faster
  131. //#define GGML_SOFT_MAX_ACCELERATE
  132. #endif
  133. //
  134. // logging
  135. //
  136. #if (GGML_DEBUG >= 1)
  137. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG(...)
  140. #endif
  141. #if (GGML_DEBUG >= 5)
  142. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_5(...)
  145. #endif
  146. #if (GGML_DEBUG >= 10)
  147. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_10(...)
  150. #endif
  151. #define GGML_PRINT(...) printf(__VA_ARGS__)
  152. //
  153. // end of logging block
  154. //
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. void * aligned_memory = NULL;
  161. #ifdef GGML_USE_METAL
  162. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  163. #else
  164. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  165. #endif
  166. if (result != 0) {
  167. // Handle allocation failure
  168. const char *error_desc = "unknown allocation error";
  169. switch (result) {
  170. case EINVAL:
  171. error_desc = "invalid alignment value";
  172. break;
  173. case ENOMEM:
  174. error_desc = "insufficient memory";
  175. break;
  176. }
  177. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #if defined(GGML_BLAS_USE_MKL)
  209. #include <mkl.h>
  210. #else
  211. #include <cblas.h>
  212. #endif
  213. #elif defined(GGML_USE_CUBLAS)
  214. #include "ggml-cuda.h"
  215. #elif defined(GGML_USE_CLBLAST)
  216. #include "ggml-opencl.h"
  217. #endif
  218. #undef MIN
  219. #undef MAX
  220. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  221. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  222. // floating point type used to accumulate sums
  223. typedef double ggml_float;
  224. // 16-bit float
  225. // on Arm, we use __fp16
  226. // on x86, we use uint16_t
  227. #ifdef __ARM_NEON
  228. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  229. //
  230. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  231. //
  232. #include <arm_neon.h>
  233. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  234. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  235. #define GGML_FP16_TO_FP32(x) ((float) (x))
  236. #define GGML_FP32_TO_FP16(x) (x)
  237. #else
  238. #ifdef __wasm_simd128__
  239. #include <wasm_simd128.h>
  240. #else
  241. #ifdef __POWER9_VECTOR__
  242. #include <altivec.h>
  243. #undef bool
  244. #define bool _Bool
  245. #else
  246. #if defined(_MSC_VER) || defined(__MINGW32__)
  247. #include <intrin.h>
  248. #else
  249. #if !defined(__riscv)
  250. #include <immintrin.h>
  251. #endif
  252. #endif
  253. #endif
  254. #endif
  255. #ifdef __riscv_v_intrinsic
  256. #include <riscv_vector.h>
  257. #endif
  258. #ifdef __F16C__
  259. #ifdef _MSC_VER
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  262. #else
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  265. #endif
  266. #elif defined(__POWER9_VECTOR__)
  267. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  268. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  269. /* the inline asm below is about 12% faster than the lookup method */
  270. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  273. register float f;
  274. register double d;
  275. __asm__(
  276. "mtfprd %0,%2\n"
  277. "xscvhpdp %0,%0\n"
  278. "frsp %1,%0\n" :
  279. /* temp */ "=d"(d),
  280. /* out */ "=f"(f):
  281. /* in */ "r"(h));
  282. return f;
  283. }
  284. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  285. register double d;
  286. register ggml_fp16_t r;
  287. __asm__( /* xscvdphp can work on double or single precision */
  288. "xscvdphp %0,%2\n"
  289. "mffprd %1,%0\n" :
  290. /* temp */ "=d"(d),
  291. /* out */ "=r"(r):
  292. /* in */ "f"(f));
  293. return r;
  294. }
  295. #else
  296. // FP16 <-> FP32
  297. // ref: https://github.com/Maratyszcza/FP16
  298. static inline float fp32_from_bits(uint32_t w) {
  299. union {
  300. uint32_t as_bits;
  301. float as_value;
  302. } fp32;
  303. fp32.as_bits = w;
  304. return fp32.as_value;
  305. }
  306. static inline uint32_t fp32_to_bits(float f) {
  307. union {
  308. float as_value;
  309. uint32_t as_bits;
  310. } fp32;
  311. fp32.as_value = f;
  312. return fp32.as_bits;
  313. }
  314. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  315. const uint32_t w = (uint32_t) h << 16;
  316. const uint32_t sign = w & UINT32_C(0x80000000);
  317. const uint32_t two_w = w + w;
  318. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  319. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  320. const float exp_scale = 0x1.0p-112f;
  321. #else
  322. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  323. #endif
  324. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  325. const uint32_t magic_mask = UINT32_C(126) << 23;
  326. const float magic_bias = 0.5f;
  327. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  328. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  329. const uint32_t result = sign |
  330. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  331. return fp32_from_bits(result);
  332. }
  333. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  334. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  335. const float scale_to_inf = 0x1.0p+112f;
  336. const float scale_to_zero = 0x1.0p-110f;
  337. #else
  338. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  339. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  340. #endif
  341. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  342. const uint32_t w = fp32_to_bits(f);
  343. const uint32_t shl1_w = w + w;
  344. const uint32_t sign = w & UINT32_C(0x80000000);
  345. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  346. if (bias < UINT32_C(0x71000000)) {
  347. bias = UINT32_C(0x71000000);
  348. }
  349. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  350. const uint32_t bits = fp32_to_bits(base);
  351. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  352. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  353. const uint32_t nonsign = exp_bits + mantissa_bits;
  354. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  355. }
  356. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  357. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  358. #endif // __F16C__
  359. #endif // __ARM_NEON
  360. //
  361. // global data
  362. //
  363. // precomputed gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_f16[1 << 16];
  365. // precomputed quick gelu table for f16 (128 KB)
  366. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  367. // precomputed silu table for f16 (128 KB)
  368. static ggml_fp16_t table_silu_f16[1 << 16];
  369. // precomputed exp table for f16 (128 KB)
  370. static ggml_fp16_t table_exp_f16[1 << 16];
  371. // precomputed f32 table for f16 (256 KB)
  372. static float table_f32_f16[1 << 16];
  373. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  374. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  375. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  376. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  377. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  378. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  379. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  380. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  381. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  382. // precomputed tables for expanding 8bits to 8 bytes:
  383. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  384. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  385. #endif
  386. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  387. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  388. // This is also true for POWER9.
  389. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  390. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  391. uint16_t s;
  392. memcpy(&s, &f, sizeof(uint16_t));
  393. return table_f32_f16[s];
  394. }
  395. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  396. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  397. #endif
  398. // note: do not use these inside ggml.c
  399. // these are meant to be used via the ggml.h API
  400. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  401. return (float) GGML_FP16_TO_FP32(x);
  402. }
  403. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  404. return GGML_FP32_TO_FP16(x);
  405. }
  406. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  407. for (int i = 0; i < n; i++) {
  408. y[i] = GGML_FP16_TO_FP32(x[i]);
  409. }
  410. }
  411. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  412. int i = 0;
  413. #if defined(__F16C__)
  414. for (; i + 7 < n; i += 8) {
  415. __m256 x_vec = _mm256_loadu_ps(x + i);
  416. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  417. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  418. }
  419. for(; i + 3 < n; i += 4) {
  420. __m128 x_vec = _mm_loadu_ps(x + i);
  421. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  422. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  423. }
  424. #endif
  425. for (; i < n; i++) {
  426. y[i] = GGML_FP32_TO_FP16(x[i]);
  427. }
  428. }
  429. //
  430. // timing
  431. //
  432. #if defined(_MSC_VER) || defined(__MINGW32__)
  433. static int64_t timer_freq, timer_start;
  434. void ggml_time_init(void) {
  435. LARGE_INTEGER t;
  436. QueryPerformanceFrequency(&t);
  437. timer_freq = t.QuadPart;
  438. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  439. // and the uptime is high enough.
  440. // We subtract the program start time to reduce the likelihood of that happening.
  441. QueryPerformanceCounter(&t);
  442. timer_start = t.QuadPart;
  443. }
  444. int64_t ggml_time_ms(void) {
  445. LARGE_INTEGER t;
  446. QueryPerformanceCounter(&t);
  447. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  448. }
  449. int64_t ggml_time_us(void) {
  450. LARGE_INTEGER t;
  451. QueryPerformanceCounter(&t);
  452. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  453. }
  454. #else
  455. void ggml_time_init(void) {}
  456. int64_t ggml_time_ms(void) {
  457. struct timespec ts;
  458. clock_gettime(CLOCK_MONOTONIC, &ts);
  459. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  460. }
  461. int64_t ggml_time_us(void) {
  462. struct timespec ts;
  463. clock_gettime(CLOCK_MONOTONIC, &ts);
  464. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  465. }
  466. #endif
  467. int64_t ggml_cycles(void) {
  468. return clock();
  469. }
  470. int64_t ggml_cycles_per_ms(void) {
  471. return CLOCKS_PER_SEC/1000;
  472. }
  473. #ifdef GGML_PERF
  474. #define ggml_perf_time_ms() ggml_time_ms()
  475. #define ggml_perf_time_us() ggml_time_us()
  476. #define ggml_perf_cycles() ggml_cycles()
  477. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  478. #else
  479. #define ggml_perf_time_ms() 0
  480. #define ggml_perf_time_us() 0
  481. #define ggml_perf_cycles() 0
  482. #define ggml_perf_cycles_per_ms() 0
  483. #endif
  484. //
  485. // cache line
  486. //
  487. #if defined(__cpp_lib_hardware_interference_size)
  488. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  489. #else
  490. #if defined(__POWER9_VECTOR__)
  491. #define CACHE_LINE_SIZE 128
  492. #else
  493. #define CACHE_LINE_SIZE 64
  494. #endif
  495. #endif
  496. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  497. //
  498. // quantization
  499. //
  500. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  501. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  502. // multiply int8_t, add results pairwise twice
  503. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  504. // Get absolute values of x vectors
  505. const __m128i ax = _mm_sign_epi8(x, x);
  506. // Sign the values of the y vectors
  507. const __m128i sy = _mm_sign_epi8(y, x);
  508. // Perform multiplication and create 16-bit values
  509. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  510. const __m128i ones = _mm_set1_epi16(1);
  511. return _mm_madd_epi16(ones, dot);
  512. }
  513. #if __AVX__ || __AVX2__ || __AVX512F__
  514. // horizontally add 8 floats
  515. static inline float hsum_float_8(const __m256 x) {
  516. __m128 res = _mm256_extractf128_ps(x, 1);
  517. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  518. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  519. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  520. return _mm_cvtss_f32(res);
  521. }
  522. // horizontally add 8 int32_t
  523. static inline int hsum_i32_8(const __m256i a) {
  524. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  525. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  526. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. // horizontally add 4 int32_t
  531. static inline int hsum_i32_4(const __m128i a) {
  532. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  533. const __m128i sum64 = _mm_add_epi32(hi64, a);
  534. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  535. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  536. }
  537. #if defined(__AVX2__) || defined(__AVX512F__)
  538. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  539. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  540. uint32_t x32;
  541. memcpy(&x32, x, sizeof(uint32_t));
  542. const __m256i shuf_mask = _mm256_set_epi64x(
  543. 0x0303030303030303, 0x0202020202020202,
  544. 0x0101010101010101, 0x0000000000000000);
  545. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  546. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  547. bytes = _mm256_or_si256(bytes, bit_mask);
  548. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  549. }
  550. // Unpack 32 4-bit fields into 32 bytes
  551. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  552. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  553. {
  554. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  555. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  556. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  557. return _mm256_and_si256(lowMask, bytes);
  558. }
  559. // add int16_t pairwise and return as float vector
  560. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  561. const __m256i ones = _mm256_set1_epi16(1);
  562. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  563. return _mm256_cvtepi32_ps(summed_pairs);
  564. }
  565. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  566. #if __AVXVNNI__
  567. const __m256i zero = _mm256_setzero_si256();
  568. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  569. return _mm256_cvtepi32_ps(summed_pairs);
  570. #else
  571. // Perform multiplication and create 16-bit values
  572. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  573. return sum_i16_pairs_float(dot);
  574. #endif
  575. }
  576. // multiply int8_t, add results pairwise twice and return as float vector
  577. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  578. #if __AVXVNNIINT8__
  579. const __m256i zero = _mm256_setzero_si256();
  580. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. #else
  583. // Get absolute values of x vectors
  584. const __m256i ax = _mm256_sign_epi8(x, x);
  585. // Sign the values of the y vectors
  586. const __m256i sy = _mm256_sign_epi8(y, x);
  587. return mul_sum_us8_pairs_float(ax, sy);
  588. #endif
  589. }
  590. static inline __m128i packNibbles( __m256i bytes )
  591. {
  592. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  593. #if __AVX512F__
  594. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  595. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  596. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  597. #else
  598. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  599. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  600. __m256i low = _mm256_and_si256( lowByte, bytes );
  601. high = _mm256_srli_epi16( high, 4 );
  602. bytes = _mm256_or_si256( low, high );
  603. // Compress uint16_t lanes into bytes
  604. __m128i r0 = _mm256_castsi256_si128( bytes );
  605. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  606. return _mm_packus_epi16( r0, r1 );
  607. #endif
  608. }
  609. #elif defined(__AVX__)
  610. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  611. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  612. uint32_t x32;
  613. memcpy(&x32, x, sizeof(uint32_t));
  614. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  615. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  616. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  617. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  618. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  619. bytesl = _mm_or_si128(bytesl, bit_mask);
  620. bytesh = _mm_or_si128(bytesh, bit_mask);
  621. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  622. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  623. return MM256_SET_M128I(bytesh, bytesl);
  624. }
  625. // Unpack 32 4-bit fields into 32 bytes
  626. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  627. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  628. {
  629. // Load 16 bytes from memory
  630. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  631. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  632. const __m128i lowMask = _mm_set1_epi8(0xF);
  633. tmpl = _mm_and_si128(lowMask, tmpl);
  634. tmph = _mm_and_si128(lowMask, tmph);
  635. return MM256_SET_M128I(tmph, tmpl);
  636. }
  637. // add int16_t pairwise and return as float vector
  638. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  639. const __m128i ones = _mm_set1_epi16(1);
  640. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  641. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  642. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  643. return _mm256_cvtepi32_ps(summed_pairs);
  644. }
  645. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  646. const __m128i axl = _mm256_castsi256_si128(ax);
  647. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  648. const __m128i syl = _mm256_castsi256_si128(sy);
  649. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  650. // Perform multiplication and create 16-bit values
  651. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  652. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  653. return sum_i16_pairs_float(doth, dotl);
  654. }
  655. // multiply int8_t, add results pairwise twice and return as float vector
  656. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  657. const __m128i xl = _mm256_castsi256_si128(x);
  658. const __m128i xh = _mm256_extractf128_si256(x, 1);
  659. const __m128i yl = _mm256_castsi256_si128(y);
  660. const __m128i yh = _mm256_extractf128_si256(y, 1);
  661. // Get absolute values of x vectors
  662. const __m128i axl = _mm_sign_epi8(xl, xl);
  663. const __m128i axh = _mm_sign_epi8(xh, xh);
  664. // Sign the values of the y vectors
  665. const __m128i syl = _mm_sign_epi8(yl, xl);
  666. const __m128i syh = _mm_sign_epi8(yh, xh);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  673. {
  674. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  675. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  676. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  677. __m128i low = _mm_and_si128( lowByte, bytes1 );
  678. high = _mm_srli_epi16( high, 4 );
  679. bytes1 = _mm_or_si128( low, high );
  680. high = _mm_andnot_si128( lowByte, bytes2 );
  681. low = _mm_and_si128( lowByte, bytes2 );
  682. high = _mm_srli_epi16( high, 4 );
  683. bytes2 = _mm_or_si128( low, high );
  684. return _mm_packus_epi16( bytes1, bytes2);
  685. }
  686. #endif
  687. #elif defined(__SSSE3__)
  688. // horizontally add 4x4 floats
  689. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  690. __m128 res_0 =_mm_hadd_ps(a, b);
  691. __m128 res_1 =_mm_hadd_ps(c, d);
  692. __m128 res =_mm_hadd_ps(res_0, res_1);
  693. res =_mm_hadd_ps(res, res);
  694. res =_mm_hadd_ps(res, res);
  695. return _mm_cvtss_f32(res);
  696. }
  697. #endif // __AVX__ || __AVX2__ || __AVX512F__
  698. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  699. #if defined(__ARM_NEON)
  700. #if !defined(__aarch64__)
  701. inline static int32_t vaddvq_s32(int32x4_t v) {
  702. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  703. }
  704. inline static float vaddvq_f32(float32x4_t v) {
  705. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  706. }
  707. inline static float vmaxvq_f32(float32x4_t v) {
  708. return
  709. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  710. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  711. }
  712. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  713. int32x4_t res;
  714. res[0] = roundf(vgetq_lane_f32(v, 0));
  715. res[1] = roundf(vgetq_lane_f32(v, 1));
  716. res[2] = roundf(vgetq_lane_f32(v, 2));
  717. res[3] = roundf(vgetq_lane_f32(v, 3));
  718. return res;
  719. }
  720. #endif
  721. #endif
  722. #define QK4_0 32
  723. typedef struct {
  724. ggml_fp16_t d; // delta
  725. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  726. } block_q4_0;
  727. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  728. #define QK4_1 32
  729. typedef struct {
  730. ggml_fp16_t d; // delta
  731. ggml_fp16_t m; // min
  732. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  733. } block_q4_1;
  734. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  735. #define QK5_0 32
  736. typedef struct {
  737. ggml_fp16_t d; // delta
  738. uint8_t qh[4]; // 5-th bit of quants
  739. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  740. } block_q5_0;
  741. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  742. #define QK5_1 32
  743. typedef struct {
  744. ggml_fp16_t d; // delta
  745. ggml_fp16_t m; // min
  746. uint8_t qh[4]; // 5-th bit of quants
  747. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  748. } block_q5_1;
  749. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  750. #define QK8_0 32
  751. typedef struct {
  752. ggml_fp16_t d; // delta
  753. int8_t qs[QK8_0]; // quants
  754. } block_q8_0;
  755. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  756. #define QK8_1 32
  757. typedef struct {
  758. float d; // delta
  759. float s; // d * sum(qs[i])
  760. int8_t qs[QK8_1]; // quants
  761. } block_q8_1;
  762. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  763. // reference implementation for deterministic creation of model files
  764. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  765. static const int qk = QK4_0;
  766. assert(k % qk == 0);
  767. const int nb = k / qk;
  768. for (int i = 0; i < nb; i++) {
  769. float amax = 0.0f; // absolute max
  770. float max = 0.0f;
  771. for (int j = 0; j < qk; j++) {
  772. const float v = x[i*qk + j];
  773. if (amax < fabsf(v)) {
  774. amax = fabsf(v);
  775. max = v;
  776. }
  777. }
  778. const float d = max / -8;
  779. const float id = d ? 1.0f/d : 0.0f;
  780. y[i].d = GGML_FP32_TO_FP16(d);
  781. for (int j = 0; j < qk/2; ++j) {
  782. const float x0 = x[i*qk + 0 + j]*id;
  783. const float x1 = x[i*qk + qk/2 + j]*id;
  784. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  785. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  786. y[i].qs[j] = xi0;
  787. y[i].qs[j] |= xi1 << 4;
  788. }
  789. }
  790. }
  791. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q4_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  795. const int qk = QK4_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 4) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. for (int j = 0; j < qk/2; ++j) {
  811. const float x0 = (x[i*qk + 0 + j] - min)*id;
  812. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  813. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  814. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  815. y[i].qs[j] = xi0;
  816. y[i].qs[j] |= xi1 << 4;
  817. }
  818. }
  819. }
  820. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  821. quantize_row_q4_1_reference(x, y, k);
  822. }
  823. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  824. static const int qk = QK5_0;
  825. assert(k % qk == 0);
  826. const int nb = k / qk;
  827. for (int i = 0; i < nb; i++) {
  828. float amax = 0.0f; // absolute max
  829. float max = 0.0f;
  830. for (int j = 0; j < qk; j++) {
  831. const float v = x[i*qk + j];
  832. if (amax < fabsf(v)) {
  833. amax = fabsf(v);
  834. max = v;
  835. }
  836. }
  837. const float d = max / -16;
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = GGML_FP32_TO_FP16(d);
  840. uint32_t qh = 0;
  841. for (int j = 0; j < qk/2; ++j) {
  842. const float x0 = x[i*qk + 0 + j]*id;
  843. const float x1 = x[i*qk + qk/2 + j]*id;
  844. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  845. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  846. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  847. // get the 5-th bit and store it in qh at the right position
  848. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  849. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  850. }
  851. memcpy(&y[i].qh, &qh, sizeof(qh));
  852. }
  853. }
  854. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  855. quantize_row_q5_0_reference(x, y, k);
  856. }
  857. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  858. const int qk = QK5_1;
  859. assert(k % qk == 0);
  860. const int nb = k / qk;
  861. for (int i = 0; i < nb; i++) {
  862. float min = FLT_MAX;
  863. float max = -FLT_MAX;
  864. for (int j = 0; j < qk; j++) {
  865. const float v = x[i*qk + j];
  866. if (v < min) min = v;
  867. if (v > max) max = v;
  868. }
  869. const float d = (max - min) / ((1 << 5) - 1);
  870. const float id = d ? 1.0f/d : 0.0f;
  871. y[i].d = GGML_FP32_TO_FP16(d);
  872. y[i].m = GGML_FP32_TO_FP16(min);
  873. uint32_t qh = 0;
  874. for (int j = 0; j < qk/2; ++j) {
  875. const float x0 = (x[i*qk + 0 + j] - min)*id;
  876. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  877. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  878. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  879. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  880. // get the 5-th bit and store it in qh at the right position
  881. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  882. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  883. }
  884. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  885. }
  886. }
  887. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  888. quantize_row_q5_1_reference(x, y, k);
  889. }
  890. // reference implementation for deterministic creation of model files
  891. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  892. assert(k % QK8_0 == 0);
  893. const int nb = k / QK8_0;
  894. for (int i = 0; i < nb; i++) {
  895. float amax = 0.0f; // absolute max
  896. for (int j = 0; j < QK8_0; j++) {
  897. const float v = x[i*QK8_0 + j];
  898. amax = MAX(amax, fabsf(v));
  899. }
  900. const float d = amax / ((1 << 7) - 1);
  901. const float id = d ? 1.0f/d : 0.0f;
  902. y[i].d = GGML_FP32_TO_FP16(d);
  903. for (int j = 0; j < QK8_0; ++j) {
  904. const float x0 = x[i*QK8_0 + j]*id;
  905. y[i].qs[j] = roundf(x0);
  906. }
  907. }
  908. }
  909. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  910. assert(QK8_0 == 32);
  911. assert(k % QK8_0 == 0);
  912. const int nb = k / QK8_0;
  913. block_q8_0 * restrict y = vy;
  914. #if defined(__ARM_NEON)
  915. for (int i = 0; i < nb; i++) {
  916. float32x4_t srcv [8];
  917. float32x4_t asrcv[8];
  918. float32x4_t amaxv[8];
  919. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  920. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  921. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  922. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  923. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  924. const float amax = vmaxvq_f32(amaxv[0]);
  925. const float d = amax / ((1 << 7) - 1);
  926. const float id = d ? 1.0f/d : 0.0f;
  927. y[i].d = GGML_FP32_TO_FP16(d);
  928. for (int j = 0; j < 8; j++) {
  929. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  930. const int32x4_t vi = vcvtnq_s32_f32(v);
  931. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  932. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  933. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  934. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  935. }
  936. }
  937. #elif defined(__wasm_simd128__)
  938. for (int i = 0; i < nb; i++) {
  939. v128_t srcv [8];
  940. v128_t asrcv[8];
  941. v128_t amaxv[8];
  942. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  943. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  944. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  945. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  946. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  947. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  948. wasm_f32x4_extract_lane(amaxv[0], 1)),
  949. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  950. wasm_f32x4_extract_lane(amaxv[0], 3)));
  951. const float d = amax / ((1 << 7) - 1);
  952. const float id = d ? 1.0f/d : 0.0f;
  953. y[i].d = GGML_FP32_TO_FP16(d);
  954. for (int j = 0; j < 8; j++) {
  955. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  956. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  957. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  958. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  959. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  960. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  961. }
  962. }
  963. #elif defined(__AVX2__) || defined(__AVX__)
  964. for (int i = 0; i < nb; i++) {
  965. // Load elements into 4 AVX vectors
  966. __m256 v0 = _mm256_loadu_ps( x );
  967. __m256 v1 = _mm256_loadu_ps( x + 8 );
  968. __m256 v2 = _mm256_loadu_ps( x + 16 );
  969. __m256 v3 = _mm256_loadu_ps( x + 24 );
  970. x += 32;
  971. // Compute max(abs(e)) for the block
  972. const __m256 signBit = _mm256_set1_ps( -0.0f );
  973. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  974. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  975. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  976. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  977. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  978. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  979. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  980. const float maxScalar = _mm_cvtss_f32( max4 );
  981. // Quantize these floats
  982. const float d = maxScalar / 127.f;
  983. y[i].d = GGML_FP32_TO_FP16(d);
  984. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  985. const __m256 mul = _mm256_set1_ps( id );
  986. // Apply the multiplier
  987. v0 = _mm256_mul_ps( v0, mul );
  988. v1 = _mm256_mul_ps( v1, mul );
  989. v2 = _mm256_mul_ps( v2, mul );
  990. v3 = _mm256_mul_ps( v3, mul );
  991. // Round to nearest integer
  992. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  993. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  994. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  995. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  996. // Convert floats to integers
  997. __m256i i0 = _mm256_cvtps_epi32( v0 );
  998. __m256i i1 = _mm256_cvtps_epi32( v1 );
  999. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1000. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1001. #if defined(__AVX2__)
  1002. // Convert int32 to int16
  1003. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1004. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1005. // Convert int16 to int8
  1006. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1007. // We got our precious signed bytes, but the order is now wrong
  1008. // These AVX2 pack instructions process 16-byte pieces independently
  1009. // The following instruction is fixing the order
  1010. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1011. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1012. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1013. #else
  1014. // Since we don't have in AVX some necessary functions,
  1015. // we split the registers in half and call AVX2 analogs from SSE
  1016. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1017. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1018. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1019. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1020. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1021. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1022. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1023. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1024. // Convert int32 to int16
  1025. ni0 = _mm_packs_epi32( ni0, ni1 );
  1026. ni2 = _mm_packs_epi32( ni2, ni3 );
  1027. ni4 = _mm_packs_epi32( ni4, ni5 );
  1028. ni6 = _mm_packs_epi32( ni6, ni7 );
  1029. // Convert int16 to int8
  1030. ni0 = _mm_packs_epi16( ni0, ni2 );
  1031. ni4 = _mm_packs_epi16( ni4, ni6 );
  1032. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1033. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1034. #endif
  1035. }
  1036. #else
  1037. // scalar
  1038. quantize_row_q8_0_reference(x, y, k);
  1039. #endif
  1040. }
  1041. // reference implementation for deterministic creation of model files
  1042. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1043. assert(QK8_1 == 32);
  1044. assert(k % QK8_1 == 0);
  1045. const int nb = k / QK8_1;
  1046. for (int i = 0; i < nb; i++) {
  1047. float amax = 0.0f; // absolute max
  1048. for (int j = 0; j < QK8_1; j++) {
  1049. const float v = x[i*QK8_1 + j];
  1050. amax = MAX(amax, fabsf(v));
  1051. }
  1052. const float d = amax / ((1 << 7) - 1);
  1053. const float id = d ? 1.0f/d : 0.0f;
  1054. y[i].d = d;
  1055. int sum = 0;
  1056. for (int j = 0; j < QK8_1/2; ++j) {
  1057. const float v0 = x[i*QK8_1 + j]*id;
  1058. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1059. y[i].qs[ j] = roundf(v0);
  1060. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1061. sum += y[i].qs[ j];
  1062. sum += y[i].qs[QK8_1/2 + j];
  1063. }
  1064. y[i].s = sum*d;
  1065. }
  1066. }
  1067. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1068. assert(k % QK8_1 == 0);
  1069. const int nb = k / QK8_1;
  1070. block_q8_1 * restrict y = vy;
  1071. #if defined(__ARM_NEON)
  1072. for (int i = 0; i < nb; i++) {
  1073. float32x4_t srcv [8];
  1074. float32x4_t asrcv[8];
  1075. float32x4_t amaxv[8];
  1076. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1077. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1078. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1079. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1080. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1081. const float amax = vmaxvq_f32(amaxv[0]);
  1082. const float d = amax / ((1 << 7) - 1);
  1083. const float id = d ? 1.0f/d : 0.0f;
  1084. y[i].d = d;
  1085. int32x4_t accv = vdupq_n_s32(0);
  1086. for (int j = 0; j < 8; j++) {
  1087. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1088. const int32x4_t vi = vcvtnq_s32_f32(v);
  1089. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1090. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1091. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1092. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1093. accv = vaddq_s32(accv, vi);
  1094. }
  1095. y[i].s = d * vaddvq_s32(accv);
  1096. }
  1097. #elif defined(__wasm_simd128__)
  1098. for (int i = 0; i < nb; i++) {
  1099. v128_t srcv [8];
  1100. v128_t asrcv[8];
  1101. v128_t amaxv[8];
  1102. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1103. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1104. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1105. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1106. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1107. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1108. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1109. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1110. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1111. const float d = amax / ((1 << 7) - 1);
  1112. const float id = d ? 1.0f/d : 0.0f;
  1113. y[i].d = d;
  1114. v128_t accv = wasm_i32x4_splat(0);
  1115. for (int j = 0; j < 8; j++) {
  1116. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1117. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1118. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1119. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1120. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1121. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1122. accv = wasm_i32x4_add(accv, vi);
  1123. }
  1124. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1125. wasm_i32x4_extract_lane(accv, 1) +
  1126. wasm_i32x4_extract_lane(accv, 2) +
  1127. wasm_i32x4_extract_lane(accv, 3));
  1128. }
  1129. #elif defined(__AVX2__) || defined(__AVX__)
  1130. for (int i = 0; i < nb; i++) {
  1131. // Load elements into 4 AVX vectors
  1132. __m256 v0 = _mm256_loadu_ps( x );
  1133. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1134. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1135. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1136. x += 32;
  1137. // Compute max(abs(e)) for the block
  1138. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1139. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1140. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1141. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1142. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1143. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1144. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1145. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1146. const float maxScalar = _mm_cvtss_f32( max4 );
  1147. // Quantize these floats
  1148. const float d = maxScalar / 127.f;
  1149. y[i].d = d;
  1150. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1151. const __m256 mul = _mm256_set1_ps( id );
  1152. // Apply the multiplier
  1153. v0 = _mm256_mul_ps( v0, mul );
  1154. v1 = _mm256_mul_ps( v1, mul );
  1155. v2 = _mm256_mul_ps( v2, mul );
  1156. v3 = _mm256_mul_ps( v3, mul );
  1157. // Round to nearest integer
  1158. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1159. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1160. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1161. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1162. // Convert floats to integers
  1163. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1164. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1165. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1166. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1167. #if defined(__AVX2__)
  1168. // Compute the sum of the quants and set y[i].s
  1169. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1170. // Convert int32 to int16
  1171. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1172. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1173. // Convert int16 to int8
  1174. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1175. // We got our precious signed bytes, but the order is now wrong
  1176. // These AVX2 pack instructions process 16-byte pieces independently
  1177. // The following instruction is fixing the order
  1178. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1179. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1180. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1181. #else
  1182. // Since we don't have in AVX some necessary functions,
  1183. // we split the registers in half and call AVX2 analogs from SSE
  1184. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1185. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1186. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1187. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1188. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1189. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1190. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1191. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1192. // Compute the sum of the quants and set y[i].s
  1193. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1194. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1195. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1196. // Convert int32 to int16
  1197. ni0 = _mm_packs_epi32( ni0, ni1 );
  1198. ni2 = _mm_packs_epi32( ni2, ni3 );
  1199. ni4 = _mm_packs_epi32( ni4, ni5 );
  1200. ni6 = _mm_packs_epi32( ni6, ni7 );
  1201. // Convert int16 to int8
  1202. ni0 = _mm_packs_epi16( ni0, ni2 );
  1203. ni4 = _mm_packs_epi16( ni4, ni6 );
  1204. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1205. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1206. #endif
  1207. }
  1208. #else
  1209. // scalar
  1210. quantize_row_q8_1_reference(x, y, k);
  1211. #endif
  1212. }
  1213. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1214. static const int qk = QK4_0;
  1215. assert(k % qk == 0);
  1216. const int nb = k / qk;
  1217. for (int i = 0; i < nb; i++) {
  1218. const float d = GGML_FP16_TO_FP32(x[i].d);
  1219. for (int j = 0; j < qk/2; ++j) {
  1220. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1221. const int x1 = (x[i].qs[j] >> 4) - 8;
  1222. y[i*qk + j + 0 ] = x0*d;
  1223. y[i*qk + j + qk/2] = x1*d;
  1224. }
  1225. }
  1226. }
  1227. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1228. static const int qk = QK4_1;
  1229. assert(k % qk == 0);
  1230. const int nb = k / qk;
  1231. for (int i = 0; i < nb; i++) {
  1232. const float d = GGML_FP16_TO_FP32(x[i].d);
  1233. const float m = GGML_FP16_TO_FP32(x[i].m);
  1234. for (int j = 0; j < qk/2; ++j) {
  1235. const int x0 = (x[i].qs[j] & 0x0F);
  1236. const int x1 = (x[i].qs[j] >> 4);
  1237. y[i*qk + j + 0 ] = x0*d + m;
  1238. y[i*qk + j + qk/2] = x1*d + m;
  1239. }
  1240. }
  1241. }
  1242. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1243. static const int qk = QK5_0;
  1244. assert(k % qk == 0);
  1245. const int nb = k / qk;
  1246. for (int i = 0; i < nb; i++) {
  1247. const float d = GGML_FP16_TO_FP32(x[i].d);
  1248. uint32_t qh;
  1249. memcpy(&qh, x[i].qh, sizeof(qh));
  1250. for (int j = 0; j < qk/2; ++j) {
  1251. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1252. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1253. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1254. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1255. y[i*qk + j + 0 ] = x0*d;
  1256. y[i*qk + j + qk/2] = x1*d;
  1257. }
  1258. }
  1259. }
  1260. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1261. static const int qk = QK5_1;
  1262. assert(k % qk == 0);
  1263. const int nb = k / qk;
  1264. for (int i = 0; i < nb; i++) {
  1265. const float d = GGML_FP16_TO_FP32(x[i].d);
  1266. const float m = GGML_FP16_TO_FP32(x[i].m);
  1267. uint32_t qh;
  1268. memcpy(&qh, x[i].qh, sizeof(qh));
  1269. for (int j = 0; j < qk/2; ++j) {
  1270. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1271. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1272. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1273. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1274. y[i*qk + j + 0 ] = x0*d + m;
  1275. y[i*qk + j + qk/2] = x1*d + m;
  1276. }
  1277. }
  1278. }
  1279. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1280. static const int qk = QK8_0;
  1281. assert(k % qk == 0);
  1282. const int nb = k / qk;
  1283. const block_q8_0 * restrict x = vx;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. for (int j = 0; j < qk; ++j) {
  1287. y[i*qk + j] = x[i].qs[j]*d;
  1288. }
  1289. }
  1290. }
  1291. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1292. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1293. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1294. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1295. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1296. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1297. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1298. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1299. [GGML_TYPE_I8] = {
  1300. .type_name = "i8",
  1301. .blck_size = 1,
  1302. .type_size = sizeof(int8_t),
  1303. .is_quantized = false,
  1304. },
  1305. [GGML_TYPE_I16] = {
  1306. .type_name = "i16",
  1307. .blck_size = 1,
  1308. .type_size = sizeof(int16_t),
  1309. .is_quantized = false,
  1310. },
  1311. [GGML_TYPE_I32] = {
  1312. .type_name = "i32",
  1313. .blck_size = 1,
  1314. .type_size = sizeof(int32_t),
  1315. .is_quantized = false,
  1316. },
  1317. [GGML_TYPE_F32] = {
  1318. .type_name = "f32",
  1319. .blck_size = 1,
  1320. .type_size = sizeof(float),
  1321. .is_quantized = false,
  1322. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1323. .vec_dot_type = GGML_TYPE_F32,
  1324. },
  1325. [GGML_TYPE_F16] = {
  1326. .type_name = "f16",
  1327. .blck_size = 1,
  1328. .type_size = sizeof(ggml_fp16_t),
  1329. .is_quantized = false,
  1330. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1331. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1332. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1333. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1334. .vec_dot_type = GGML_TYPE_F16,
  1335. },
  1336. [GGML_TYPE_Q4_0] = {
  1337. .type_name = "q4_0",
  1338. .blck_size = QK4_0,
  1339. .type_size = sizeof(block_q4_0),
  1340. .is_quantized = true,
  1341. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1342. .from_float = quantize_row_q4_0,
  1343. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1344. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1345. .vec_dot_type = GGML_TYPE_Q8_0,
  1346. },
  1347. [GGML_TYPE_Q4_1] = {
  1348. .type_name = "q4_1",
  1349. .blck_size = QK4_1,
  1350. .type_size = sizeof(block_q4_1),
  1351. .is_quantized = true,
  1352. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1353. .from_float = quantize_row_q4_1,
  1354. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1355. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1356. .vec_dot_type = GGML_TYPE_Q8_1,
  1357. },
  1358. [GGML_TYPE_Q5_0] = {
  1359. .type_name = "q5_0",
  1360. .blck_size = QK5_0,
  1361. .type_size = sizeof(block_q5_0),
  1362. .is_quantized = true,
  1363. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1364. .from_float = quantize_row_q5_0,
  1365. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1366. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1367. .vec_dot_type = GGML_TYPE_Q8_0,
  1368. },
  1369. [GGML_TYPE_Q5_1] = {
  1370. .type_name = "q5_1",
  1371. .blck_size = QK5_1,
  1372. .type_size = sizeof(block_q5_1),
  1373. .is_quantized = true,
  1374. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1375. .from_float = quantize_row_q5_1,
  1376. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1377. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1378. .vec_dot_type = GGML_TYPE_Q8_1,
  1379. },
  1380. [GGML_TYPE_Q8_0] = {
  1381. .type_name = "q8_0",
  1382. .blck_size = QK8_0,
  1383. .type_size = sizeof(block_q8_0),
  1384. .is_quantized = true,
  1385. .to_float = dequantize_row_q8_0,
  1386. .from_float = quantize_row_q8_0,
  1387. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1388. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1389. .vec_dot_type = GGML_TYPE_Q8_0,
  1390. },
  1391. [GGML_TYPE_Q8_1] = {
  1392. .type_name = "q8_1",
  1393. .blck_size = QK8_1,
  1394. .type_size = sizeof(block_q8_1),
  1395. .is_quantized = true,
  1396. .from_float = quantize_row_q8_1,
  1397. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1398. .vec_dot_type = GGML_TYPE_Q8_1,
  1399. },
  1400. #ifdef GGML_USE_K_QUANTS
  1401. [GGML_TYPE_Q2_K] = {
  1402. .type_name = "q2_K",
  1403. .blck_size = QK_K,
  1404. .type_size = sizeof(block_q2_K),
  1405. .is_quantized = true,
  1406. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1407. .from_float = quantize_row_q2_K,
  1408. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1409. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1410. .vec_dot_type = GGML_TYPE_Q8_K,
  1411. },
  1412. [GGML_TYPE_Q3_K] = {
  1413. .type_name = "q3_K",
  1414. .blck_size = QK_K,
  1415. .type_size = sizeof(block_q3_K),
  1416. .is_quantized = true,
  1417. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1418. .from_float = quantize_row_q3_K,
  1419. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1420. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1421. .vec_dot_type = GGML_TYPE_Q8_K,
  1422. },
  1423. [GGML_TYPE_Q4_K] = {
  1424. .type_name = "q4_K",
  1425. .blck_size = QK_K,
  1426. .type_size = sizeof(block_q4_K),
  1427. .is_quantized = true,
  1428. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1429. .from_float = quantize_row_q4_K,
  1430. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1431. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1432. .vec_dot_type = GGML_TYPE_Q8_K,
  1433. },
  1434. [GGML_TYPE_Q5_K] = {
  1435. .type_name = "q5_K",
  1436. .blck_size = QK_K,
  1437. .type_size = sizeof(block_q5_K),
  1438. .is_quantized = true,
  1439. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1440. .from_float = quantize_row_q5_K,
  1441. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1442. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1443. .vec_dot_type = GGML_TYPE_Q8_K,
  1444. },
  1445. [GGML_TYPE_Q6_K] = {
  1446. .type_name = "q6_K",
  1447. .blck_size = QK_K,
  1448. .type_size = sizeof(block_q6_K),
  1449. .is_quantized = true,
  1450. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1451. .from_float = quantize_row_q6_K,
  1452. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1453. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1454. .vec_dot_type = GGML_TYPE_Q8_K,
  1455. },
  1456. [GGML_TYPE_Q8_K] = {
  1457. .type_name = "q8_K",
  1458. .blck_size = QK_K,
  1459. .type_size = sizeof(block_q8_K),
  1460. .is_quantized = true,
  1461. .from_float = quantize_row_q8_K,
  1462. }
  1463. #endif
  1464. };
  1465. // For internal test use
  1466. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1467. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1468. return type_traits[type];
  1469. }
  1470. //
  1471. // simd mappings
  1472. //
  1473. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1474. // we then implement the fundamental computation operations below using only these macros
  1475. // adding support for new architectures requires to define the corresponding SIMD macros
  1476. //
  1477. // GGML_F32_STEP / GGML_F16_STEP
  1478. // number of elements to process in a single step
  1479. //
  1480. // GGML_F32_EPR / GGML_F16_EPR
  1481. // number of elements to fit in a single register
  1482. //
  1483. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1484. #define GGML_SIMD
  1485. // F32 NEON
  1486. #define GGML_F32_STEP 16
  1487. #define GGML_F32_EPR 4
  1488. #define GGML_F32x4 float32x4_t
  1489. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1490. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1491. #define GGML_F32x4_LOAD vld1q_f32
  1492. #define GGML_F32x4_STORE vst1q_f32
  1493. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1494. #define GGML_F32x4_ADD vaddq_f32
  1495. #define GGML_F32x4_MUL vmulq_f32
  1496. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1497. #define GGML_F32x4_REDUCE(res, x) \
  1498. { \
  1499. int offset = GGML_F32_ARR >> 1; \
  1500. for (int i = 0; i < offset; ++i) { \
  1501. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1502. } \
  1503. offset >>= 1; \
  1504. for (int i = 0; i < offset; ++i) { \
  1505. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1506. } \
  1507. offset >>= 1; \
  1508. for (int i = 0; i < offset; ++i) { \
  1509. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1510. } \
  1511. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1512. }
  1513. #define GGML_F32_VEC GGML_F32x4
  1514. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1515. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1516. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1517. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1518. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1519. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1520. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1521. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1522. // F16 NEON
  1523. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1524. #define GGML_F16_STEP 32
  1525. #define GGML_F16_EPR 8
  1526. #define GGML_F16x8 float16x8_t
  1527. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1528. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1529. #define GGML_F16x8_LOAD vld1q_f16
  1530. #define GGML_F16x8_STORE vst1q_f16
  1531. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1532. #define GGML_F16x8_ADD vaddq_f16
  1533. #define GGML_F16x8_MUL vmulq_f16
  1534. #define GGML_F16x8_REDUCE(res, x) \
  1535. { \
  1536. int offset = GGML_F16_ARR >> 1; \
  1537. for (int i = 0; i < offset; ++i) { \
  1538. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1539. } \
  1540. offset >>= 1; \
  1541. for (int i = 0; i < offset; ++i) { \
  1542. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1543. } \
  1544. offset >>= 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1547. } \
  1548. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1549. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1550. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1551. }
  1552. #define GGML_F16_VEC GGML_F16x8
  1553. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1554. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1555. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1556. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1557. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1558. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1559. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1560. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1561. #else
  1562. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1563. // and take advantage of the vcvt_ functions to convert to/from FP16
  1564. #define GGML_F16_STEP 16
  1565. #define GGML_F16_EPR 4
  1566. #define GGML_F32Cx4 float32x4_t
  1567. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1568. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1569. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1570. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1571. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1572. #define GGML_F32Cx4_ADD vaddq_f32
  1573. #define GGML_F32Cx4_MUL vmulq_f32
  1574. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1575. #define GGML_F16_VEC GGML_F32Cx4
  1576. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1577. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1578. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1579. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1580. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1581. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1582. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1583. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1584. #endif
  1585. #elif defined(__AVX__)
  1586. #define GGML_SIMD
  1587. // F32 AVX
  1588. #define GGML_F32_STEP 32
  1589. #define GGML_F32_EPR 8
  1590. #define GGML_F32x8 __m256
  1591. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1592. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1593. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1594. #define GGML_F32x8_STORE _mm256_storeu_ps
  1595. #if defined(__FMA__)
  1596. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1597. #else
  1598. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1599. #endif
  1600. #define GGML_F32x8_ADD _mm256_add_ps
  1601. #define GGML_F32x8_MUL _mm256_mul_ps
  1602. #define GGML_F32x8_REDUCE(res, x) \
  1603. { \
  1604. int offset = GGML_F32_ARR >> 1; \
  1605. for (int i = 0; i < offset; ++i) { \
  1606. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1607. } \
  1608. offset >>= 1; \
  1609. for (int i = 0; i < offset; ++i) { \
  1610. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1611. } \
  1612. offset >>= 1; \
  1613. for (int i = 0; i < offset; ++i) { \
  1614. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1615. } \
  1616. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1617. _mm256_extractf128_ps(x[0], 1)); \
  1618. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1619. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1620. }
  1621. // TODO: is this optimal ?
  1622. #define GGML_F32_VEC GGML_F32x8
  1623. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1624. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1625. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1626. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1627. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1628. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1629. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1630. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1631. // F16 AVX
  1632. #define GGML_F16_STEP 32
  1633. #define GGML_F16_EPR 8
  1634. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1635. #define GGML_F32Cx8 __m256
  1636. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1637. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1638. #if defined(__F16C__)
  1639. // the _mm256_cvt intrinsics require F16C
  1640. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1641. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1642. #else
  1643. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1644. float tmp[8];
  1645. for (int i = 0; i < 8; i++) {
  1646. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1647. }
  1648. return _mm256_loadu_ps(tmp);
  1649. }
  1650. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1651. float arr[8];
  1652. _mm256_storeu_ps(arr, y);
  1653. for (int i = 0; i < 8; i++)
  1654. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1655. }
  1656. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1657. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1658. #endif
  1659. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1660. #define GGML_F32Cx8_ADD _mm256_add_ps
  1661. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1662. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1663. #define GGML_F16_VEC GGML_F32Cx8
  1664. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1665. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1666. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1667. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1668. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1669. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1670. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1671. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1672. #elif defined(__POWER9_VECTOR__)
  1673. #define GGML_SIMD
  1674. // F32 POWER9
  1675. #define GGML_F32_STEP 32
  1676. #define GGML_F32_EPR 4
  1677. #define GGML_F32x4 vector float
  1678. #define GGML_F32x4_ZERO 0.0f
  1679. #define GGML_F32x4_SET1 vec_splats
  1680. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1681. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1682. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1683. #define GGML_F32x4_ADD vec_add
  1684. #define GGML_F32x4_MUL vec_mul
  1685. #define GGML_F32x4_REDUCE(res, x) \
  1686. { \
  1687. int offset = GGML_F32_ARR >> 1; \
  1688. for (int i = 0; i < offset; ++i) { \
  1689. x[i] = vec_add(x[i], x[offset+i]); \
  1690. } \
  1691. offset >>= 1; \
  1692. for (int i = 0; i < offset; ++i) { \
  1693. x[i] = vec_add(x[i], x[offset+i]); \
  1694. } \
  1695. offset >>= 1; \
  1696. for (int i = 0; i < offset; ++i) { \
  1697. x[i] = vec_add(x[i], x[offset+i]); \
  1698. } \
  1699. res = vec_extract(x[0], 0) + \
  1700. vec_extract(x[0], 1) + \
  1701. vec_extract(x[0], 2) + \
  1702. vec_extract(x[0], 3); \
  1703. }
  1704. #define GGML_F32_VEC GGML_F32x4
  1705. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1706. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1707. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1708. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1709. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1710. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1711. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1712. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1713. // F16 POWER9
  1714. #define GGML_F16_STEP GGML_F32_STEP
  1715. #define GGML_F16_EPR GGML_F32_EPR
  1716. #define GGML_F16_VEC GGML_F32x4
  1717. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1718. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1719. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1720. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1721. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1722. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1723. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1724. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1725. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1726. #define GGML_F16_VEC_STORE(p, r, i) \
  1727. if (i & 0x1) \
  1728. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1729. r[i - GGML_ENDIAN_BYTE(0)]), \
  1730. 0, p - GGML_F16_EPR)
  1731. #elif defined(__wasm_simd128__)
  1732. #define GGML_SIMD
  1733. // F32 WASM
  1734. #define GGML_F32_STEP 16
  1735. #define GGML_F32_EPR 4
  1736. #define GGML_F32x4 v128_t
  1737. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1738. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1739. #define GGML_F32x4_LOAD wasm_v128_load
  1740. #define GGML_F32x4_STORE wasm_v128_store
  1741. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1742. #define GGML_F32x4_ADD wasm_f32x4_add
  1743. #define GGML_F32x4_MUL wasm_f32x4_mul
  1744. #define GGML_F32x4_REDUCE(res, x) \
  1745. { \
  1746. int offset = GGML_F32_ARR >> 1; \
  1747. for (int i = 0; i < offset; ++i) { \
  1748. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1749. } \
  1750. offset >>= 1; \
  1751. for (int i = 0; i < offset; ++i) { \
  1752. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1753. } \
  1754. offset >>= 1; \
  1755. for (int i = 0; i < offset; ++i) { \
  1756. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1757. } \
  1758. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1759. wasm_f32x4_extract_lane(x[0], 1) + \
  1760. wasm_f32x4_extract_lane(x[0], 2) + \
  1761. wasm_f32x4_extract_lane(x[0], 3); \
  1762. }
  1763. #define GGML_F32_VEC GGML_F32x4
  1764. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1765. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1766. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1767. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1768. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1769. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1770. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1771. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1772. // F16 WASM
  1773. #define GGML_F16_STEP 16
  1774. #define GGML_F16_EPR 4
  1775. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1776. float tmp[4];
  1777. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1778. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1779. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1780. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1781. return wasm_v128_load(tmp);
  1782. }
  1783. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1784. float tmp[4];
  1785. wasm_v128_store(tmp, x);
  1786. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1787. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1788. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1789. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1790. }
  1791. #define GGML_F16x4 v128_t
  1792. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1793. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1794. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1795. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1796. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1797. #define GGML_F16x4_ADD wasm_f32x4_add
  1798. #define GGML_F16x4_MUL wasm_f32x4_mul
  1799. #define GGML_F16x4_REDUCE(res, x) \
  1800. { \
  1801. int offset = GGML_F16_ARR >> 1; \
  1802. for (int i = 0; i < offset; ++i) { \
  1803. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1804. } \
  1805. offset >>= 1; \
  1806. for (int i = 0; i < offset; ++i) { \
  1807. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1808. } \
  1809. offset >>= 1; \
  1810. for (int i = 0; i < offset; ++i) { \
  1811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1812. } \
  1813. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1814. wasm_f32x4_extract_lane(x[0], 1) + \
  1815. wasm_f32x4_extract_lane(x[0], 2) + \
  1816. wasm_f32x4_extract_lane(x[0], 3); \
  1817. }
  1818. #define GGML_F16_VEC GGML_F16x4
  1819. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1820. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1821. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1822. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1823. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1824. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1825. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1826. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1827. #elif defined(__SSE3__)
  1828. #define GGML_SIMD
  1829. // F32 SSE
  1830. #define GGML_F32_STEP 32
  1831. #define GGML_F32_EPR 4
  1832. #define GGML_F32x4 __m128
  1833. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1834. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1835. #define GGML_F32x4_LOAD _mm_loadu_ps
  1836. #define GGML_F32x4_STORE _mm_storeu_ps
  1837. #if defined(__FMA__)
  1838. // TODO: Does this work?
  1839. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1840. #else
  1841. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1842. #endif
  1843. #define GGML_F32x4_ADD _mm_add_ps
  1844. #define GGML_F32x4_MUL _mm_mul_ps
  1845. #define GGML_F32x4_REDUCE(res, x) \
  1846. { \
  1847. int offset = GGML_F32_ARR >> 1; \
  1848. for (int i = 0; i < offset; ++i) { \
  1849. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1850. } \
  1851. offset >>= 1; \
  1852. for (int i = 0; i < offset; ++i) { \
  1853. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1854. } \
  1855. offset >>= 1; \
  1856. for (int i = 0; i < offset; ++i) { \
  1857. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1858. } \
  1859. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1860. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1861. }
  1862. // TODO: is this optimal ?
  1863. #define GGML_F32_VEC GGML_F32x4
  1864. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1865. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1866. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1867. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1868. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1869. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1870. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1871. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1872. // F16 SSE
  1873. #define GGML_F16_STEP 32
  1874. #define GGML_F16_EPR 4
  1875. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1876. float tmp[4];
  1877. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1878. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1879. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1880. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1881. return _mm_loadu_ps(tmp);
  1882. }
  1883. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1884. float arr[4];
  1885. _mm_storeu_ps(arr, y);
  1886. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1887. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1888. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1889. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1890. }
  1891. #define GGML_F32Cx4 __m128
  1892. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1893. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1894. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1895. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1896. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1897. #define GGML_F32Cx4_ADD _mm_add_ps
  1898. #define GGML_F32Cx4_MUL _mm_mul_ps
  1899. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1900. #define GGML_F16_VEC GGML_F32Cx4
  1901. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1902. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1903. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1904. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1905. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1906. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1907. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1908. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1909. #endif
  1910. // GGML_F32_ARR / GGML_F16_ARR
  1911. // number of registers to use per step
  1912. #ifdef GGML_SIMD
  1913. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1914. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1915. #endif
  1916. //
  1917. // fundamental operations
  1918. //
  1919. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1920. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1921. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1922. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1923. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1924. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1925. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1926. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1927. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1928. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1929. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1930. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1931. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1932. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1933. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1934. #ifdef GGML_SIMD
  1935. float sumf = 0.0f;
  1936. const int np = (n & ~(GGML_F32_STEP - 1));
  1937. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1938. GGML_F32_VEC ax[GGML_F32_ARR];
  1939. GGML_F32_VEC ay[GGML_F32_ARR];
  1940. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1941. for (int j = 0; j < GGML_F32_ARR; j++) {
  1942. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1943. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1944. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1945. }
  1946. }
  1947. // reduce sum0..sum3 to sum0
  1948. GGML_F32_VEC_REDUCE(sumf, sum);
  1949. // leftovers
  1950. for (int i = np; i < n; ++i) {
  1951. sumf += x[i]*y[i];
  1952. }
  1953. #else
  1954. // scalar
  1955. ggml_float sumf = 0.0;
  1956. for (int i = 0; i < n; ++i) {
  1957. sumf += (ggml_float)(x[i]*y[i]);
  1958. }
  1959. #endif
  1960. *s = sumf;
  1961. }
  1962. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1963. ggml_float sumf = 0.0;
  1964. #if defined(GGML_SIMD)
  1965. const int np = (n & ~(GGML_F16_STEP - 1));
  1966. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1967. GGML_F16_VEC ax[GGML_F16_ARR];
  1968. GGML_F16_VEC ay[GGML_F16_ARR];
  1969. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1970. for (int j = 0; j < GGML_F16_ARR; j++) {
  1971. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1972. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1973. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1974. }
  1975. }
  1976. // reduce sum0..sum3 to sum0
  1977. GGML_F16_VEC_REDUCE(sumf, sum);
  1978. // leftovers
  1979. for (int i = np; i < n; ++i) {
  1980. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1981. }
  1982. #else
  1983. for (int i = 0; i < n; ++i) {
  1984. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1985. }
  1986. #endif
  1987. *s = sumf;
  1988. }
  1989. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1990. const int qk = QK8_0;
  1991. const int nb = n / qk;
  1992. assert(n % qk == 0);
  1993. const block_q4_0 * restrict x = vx;
  1994. const block_q8_0 * restrict y = vy;
  1995. #if defined(__ARM_NEON)
  1996. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1997. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1998. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  1999. for (int i = 0; i < nb; i += 2) {
  2000. const block_q4_0 * restrict x0 = &x[i + 0];
  2001. const block_q4_0 * restrict x1 = &x[i + 1];
  2002. const block_q8_0 * restrict y0 = &y[i + 0];
  2003. const block_q8_0 * restrict y1 = &y[i + 1];
  2004. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2005. const int8x16_t s8b = vdupq_n_s8(0x8);
  2006. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2007. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2008. // 4-bit -> 8-bit
  2009. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2010. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2011. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2012. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2013. // sub 8
  2014. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2015. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2016. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2017. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2018. // load y
  2019. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2020. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2021. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2022. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2023. #if defined(__ARM_FEATURE_DOTPROD)
  2024. // dot product into int32x4_t
  2025. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2026. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2027. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2028. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2029. #else
  2030. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2031. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2032. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2033. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2034. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2035. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2036. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2037. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2038. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2039. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2040. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2041. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2042. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2043. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2044. #endif
  2045. }
  2046. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2047. #elif defined(__AVX2__)
  2048. // Initialize accumulator with zeros
  2049. __m256 acc = _mm256_setzero_ps();
  2050. // Main loop
  2051. for (int i = 0; i < nb; ++i) {
  2052. /* Compute combined scale for the block */
  2053. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2054. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2055. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2056. const __m256i off = _mm256_set1_epi8( 8 );
  2057. bx = _mm256_sub_epi8( bx, off );
  2058. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2059. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2060. /* Multiply q with scale and accumulate */
  2061. acc = _mm256_fmadd_ps( d, q, acc );
  2062. }
  2063. *s = hsum_float_8(acc);
  2064. #elif defined(__AVX__)
  2065. // Initialize accumulator with zeros
  2066. __m256 acc = _mm256_setzero_ps();
  2067. // Main loop
  2068. for (int i = 0; i < nb; ++i) {
  2069. // Compute combined scale for the block
  2070. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2071. const __m128i lowMask = _mm_set1_epi8(0xF);
  2072. const __m128i off = _mm_set1_epi8(8);
  2073. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2074. __m128i bx = _mm_and_si128(lowMask, tmp);
  2075. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2076. bx = _mm_sub_epi8(bx, off);
  2077. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2078. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2079. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2080. bx = _mm_sub_epi8(bx, off);
  2081. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2082. // Convert int32_t to float
  2083. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2084. // Apply the scale, and accumulate
  2085. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2086. }
  2087. *s = hsum_float_8(acc);
  2088. #elif defined(__SSSE3__)
  2089. // set constants
  2090. const __m128i lowMask = _mm_set1_epi8(0xF);
  2091. const __m128i off = _mm_set1_epi8(8);
  2092. // Initialize accumulator with zeros
  2093. __m128 acc_0 = _mm_setzero_ps();
  2094. __m128 acc_1 = _mm_setzero_ps();
  2095. __m128 acc_2 = _mm_setzero_ps();
  2096. __m128 acc_3 = _mm_setzero_ps();
  2097. // First round without accumulation
  2098. {
  2099. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2100. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2101. // Compute combined scale for the block 0 and 1
  2102. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2103. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2104. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2105. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2106. bx_0 = _mm_sub_epi8(bx_0, off);
  2107. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2108. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2109. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2110. bx_1 = _mm_sub_epi8(bx_1, off);
  2111. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2112. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2113. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2114. // Compute combined scale for the block 2 and 3
  2115. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2116. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2117. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2118. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2119. bx_2 = _mm_sub_epi8(bx_2, off);
  2120. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2121. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2122. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2123. bx_3 = _mm_sub_epi8(bx_3, off);
  2124. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2125. // Convert int32_t to float
  2126. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2127. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2128. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2129. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2130. // Apply the scale
  2131. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2132. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2133. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2134. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2135. }
  2136. // Main loop
  2137. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2138. for (int i = 2; i < nb; i+=2) {
  2139. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2140. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2141. // Compute combined scale for the block 0 and 1
  2142. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2143. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2144. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2145. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2146. bx_0 = _mm_sub_epi8(bx_0, off);
  2147. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2148. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2149. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2150. bx_1 = _mm_sub_epi8(bx_1, off);
  2151. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2152. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2153. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2154. // Compute combined scale for the block 2 and 3
  2155. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2156. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2157. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2158. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2159. bx_2 = _mm_sub_epi8(bx_2, off);
  2160. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2161. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2162. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2163. bx_3 = _mm_sub_epi8(bx_3, off);
  2164. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2165. // Convert int32_t to float
  2166. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2167. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2168. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2169. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2170. // Apply the scale
  2171. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2172. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2173. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2174. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2175. // Acummulate
  2176. acc_0 = _mm_add_ps(p0_d, acc_0);
  2177. acc_1 = _mm_add_ps(p1_d, acc_1);
  2178. acc_2 = _mm_add_ps(p2_d, acc_2);
  2179. acc_3 = _mm_add_ps(p3_d, acc_3);
  2180. }
  2181. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2182. #elif defined(__riscv_v_intrinsic)
  2183. float sumf = 0.0;
  2184. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2185. for (int i = 0; i < nb; i++) {
  2186. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2187. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2188. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2189. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2190. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2191. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2192. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2193. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2194. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2195. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2196. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2197. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2198. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2199. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2200. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2201. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2202. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2203. }
  2204. *s = sumf;
  2205. #else
  2206. // scalar
  2207. float sumf = 0.0;
  2208. for (int i = 0; i < nb; i++) {
  2209. int sumi = 0;
  2210. for (int j = 0; j < qk/2; ++j) {
  2211. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2212. const int v1 = (x[i].qs[j] >> 4) - 8;
  2213. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2214. }
  2215. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2216. }
  2217. *s = sumf;
  2218. #endif
  2219. }
  2220. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2221. const int qk = QK8_1;
  2222. const int nb = n / qk;
  2223. assert(n % qk == 0);
  2224. const block_q4_1 * restrict x = vx;
  2225. const block_q8_1 * restrict y = vy;
  2226. // TODO: add WASM SIMD
  2227. #if defined(__ARM_NEON)
  2228. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2229. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2230. float summs = 0;
  2231. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2232. for (int i = 0; i < nb; i += 2) {
  2233. const block_q4_1 * restrict x0 = &x[i + 0];
  2234. const block_q4_1 * restrict x1 = &x[i + 1];
  2235. const block_q8_1 * restrict y0 = &y[i + 0];
  2236. const block_q8_1 * restrict y1 = &y[i + 1];
  2237. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2238. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2239. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2240. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2241. // 4-bit -> 8-bit
  2242. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2243. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2244. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2245. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2246. // load y
  2247. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2248. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2249. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2250. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2251. #if defined(__ARM_FEATURE_DOTPROD)
  2252. // dot product into int32x4_t
  2253. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2254. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2255. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2256. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2257. #else
  2258. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2259. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2260. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2261. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2262. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2263. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2264. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2265. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2266. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2267. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2268. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2269. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2270. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2271. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2272. #endif
  2273. }
  2274. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2275. #elif defined(__AVX2__) || defined(__AVX__)
  2276. // Initialize accumulator with zeros
  2277. __m256 acc = _mm256_setzero_ps();
  2278. float summs = 0;
  2279. // Main loop
  2280. for (int i = 0; i < nb; ++i) {
  2281. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2282. const float d1 = y[i].d;
  2283. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2284. const __m256 d0v = _mm256_set1_ps( d0 );
  2285. const __m256 d1v = _mm256_set1_ps( d1 );
  2286. // Compute combined scales
  2287. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2288. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2289. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2290. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2291. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2292. // Accumulate d0*d1*x*y
  2293. #if defined(__AVX2__)
  2294. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2295. #else
  2296. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2297. #endif
  2298. }
  2299. *s = hsum_float_8(acc) + summs;
  2300. #elif defined(__riscv_v_intrinsic)
  2301. float sumf = 0.0;
  2302. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2303. for (int i = 0; i < nb; i++) {
  2304. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2305. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2306. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2307. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2308. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2309. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2310. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2311. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2312. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2313. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2314. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2315. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2316. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2317. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2318. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2319. }
  2320. *s = sumf;
  2321. #else
  2322. // scalar
  2323. float sumf = 0.0;
  2324. for (int i = 0; i < nb; i++) {
  2325. int sumi = 0;
  2326. for (int j = 0; j < qk/2; ++j) {
  2327. const int v0 = (x[i].qs[j] & 0x0F);
  2328. const int v1 = (x[i].qs[j] >> 4);
  2329. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2330. }
  2331. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2332. }
  2333. *s = sumf;
  2334. #endif
  2335. }
  2336. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2337. const int qk = QK8_0;
  2338. const int nb = n / qk;
  2339. assert(n % qk == 0);
  2340. assert(qk == QK5_0);
  2341. const block_q5_0 * restrict x = vx;
  2342. const block_q8_0 * restrict y = vy;
  2343. #if defined(__ARM_NEON)
  2344. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2345. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2346. uint32_t qh0;
  2347. uint32_t qh1;
  2348. uint64_t tmp0[4];
  2349. uint64_t tmp1[4];
  2350. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2351. for (int i = 0; i < nb; i += 2) {
  2352. const block_q5_0 * restrict x0 = &x[i];
  2353. const block_q5_0 * restrict x1 = &x[i + 1];
  2354. const block_q8_0 * restrict y0 = &y[i];
  2355. const block_q8_0 * restrict y1 = &y[i + 1];
  2356. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2357. // extract the 5th bit via lookup table ((!b) << 4)
  2358. memcpy(&qh0, x0->qh, sizeof(qh0));
  2359. memcpy(&qh1, x1->qh, sizeof(qh1));
  2360. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2361. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2362. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2363. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2364. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2365. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2366. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2367. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2368. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2369. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2370. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2371. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2372. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2373. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2374. // 4-bit -> 8-bit
  2375. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2376. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2377. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2378. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2379. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2380. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2381. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2382. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2383. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2384. // load y
  2385. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2386. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2387. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2388. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2389. #if defined(__ARM_FEATURE_DOTPROD)
  2390. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2391. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2392. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2393. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2394. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2395. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2396. #else
  2397. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2398. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2399. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2400. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2401. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2402. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2403. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2404. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2405. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2406. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2407. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2408. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2409. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2410. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2411. #endif
  2412. }
  2413. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2414. #elif defined(__wasm_simd128__)
  2415. v128_t sumv = wasm_f32x4_splat(0.0f);
  2416. uint32_t qh;
  2417. uint64_t tmp[4];
  2418. // TODO: check if unrolling this is better
  2419. for (int i = 0; i < nb; ++i) {
  2420. const block_q5_0 * restrict x0 = &x[i];
  2421. const block_q8_0 * restrict y0 = &y[i];
  2422. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2423. // extract the 5th bit
  2424. memcpy(&qh, x0->qh, sizeof(qh));
  2425. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2426. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2427. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2428. tmp[3] = table_b2b_1[(qh >> 24) ];
  2429. const v128_t qhl = wasm_v128_load(tmp + 0);
  2430. const v128_t qhh = wasm_v128_load(tmp + 2);
  2431. const v128_t v0 = wasm_v128_load(x0->qs);
  2432. // 4-bit -> 8-bit
  2433. const v128_t v0l = wasm_v128_and (v0, m4b);
  2434. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2435. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2436. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2437. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2438. // load y
  2439. const v128_t v1l = wasm_v128_load(y0->qs);
  2440. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2441. // int8x16 -> int16x8
  2442. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2443. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2444. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2445. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2446. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2447. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2448. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2449. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2450. // dot product
  2451. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2452. wasm_i32x4_add(
  2453. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2454. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2455. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2456. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2457. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2458. }
  2459. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2460. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2461. #elif defined(__AVX2__)
  2462. // Initialize accumulator with zeros
  2463. __m256 acc = _mm256_setzero_ps();
  2464. // Main loop
  2465. for (int i = 0; i < nb; i++) {
  2466. /* Compute combined scale for the block */
  2467. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2468. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2469. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2470. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2471. bx = _mm256_or_si256(bx, bxhi);
  2472. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2473. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2474. /* Multiply q with scale and accumulate */
  2475. acc = _mm256_fmadd_ps(d, q, acc);
  2476. }
  2477. *s = hsum_float_8(acc);
  2478. #elif defined(__AVX__)
  2479. // Initialize accumulator with zeros
  2480. __m256 acc = _mm256_setzero_ps();
  2481. __m128i mask = _mm_set1_epi8((char)0xF0);
  2482. // Main loop
  2483. for (int i = 0; i < nb; i++) {
  2484. /* Compute combined scale for the block */
  2485. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2486. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2487. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2488. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2489. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2490. bxhil = _mm_andnot_si128(bxhil, mask);
  2491. bxhih = _mm_andnot_si128(bxhih, mask);
  2492. __m128i bxl = _mm256_castsi256_si128(bx);
  2493. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2494. bxl = _mm_or_si128(bxl, bxhil);
  2495. bxh = _mm_or_si128(bxh, bxhih);
  2496. bx = MM256_SET_M128I(bxh, bxl);
  2497. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2498. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2499. /* Multiply q with scale and accumulate */
  2500. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2501. }
  2502. *s = hsum_float_8(acc);
  2503. #elif defined(__riscv_v_intrinsic)
  2504. float sumf = 0.0;
  2505. uint32_t qh;
  2506. // These temp values are for masking and shift operations
  2507. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2508. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2509. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2510. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2511. for (int i = 0; i < nb; i++) {
  2512. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2513. // temporary registers
  2514. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2515. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2516. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2517. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2518. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2519. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2520. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2521. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2522. // ((qh & (1u << (j + 16))) >> (j + 12));
  2523. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2524. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2525. // narrowing
  2526. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2527. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2528. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2529. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2530. // load
  2531. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2532. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2533. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2534. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2535. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2536. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2537. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2538. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2539. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2540. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2541. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2542. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2543. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2544. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2545. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2546. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2547. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2548. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2549. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2550. }
  2551. *s = sumf;
  2552. #else
  2553. // scalar
  2554. float sumf = 0.0;
  2555. for (int i = 0; i < nb; i++) {
  2556. uint32_t qh;
  2557. memcpy(&qh, x[i].qh, sizeof(qh));
  2558. int sumi = 0;
  2559. for (int j = 0; j < qk/2; ++j) {
  2560. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2561. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2562. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2563. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2564. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2565. }
  2566. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2567. }
  2568. *s = sumf;
  2569. #endif
  2570. }
  2571. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2572. const int qk = QK8_1;
  2573. const int nb = n / qk;
  2574. assert(n % qk == 0);
  2575. assert(qk == QK5_1);
  2576. const block_q5_1 * restrict x = vx;
  2577. const block_q8_1 * restrict y = vy;
  2578. #if defined(__ARM_NEON)
  2579. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2580. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2581. float summs0 = 0.0f;
  2582. float summs1 = 0.0f;
  2583. uint32_t qh0;
  2584. uint32_t qh1;
  2585. uint64_t tmp0[4];
  2586. uint64_t tmp1[4];
  2587. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2588. for (int i = 0; i < nb; i += 2) {
  2589. const block_q5_1 * restrict x0 = &x[i];
  2590. const block_q5_1 * restrict x1 = &x[i + 1];
  2591. const block_q8_1 * restrict y0 = &y[i];
  2592. const block_q8_1 * restrict y1 = &y[i + 1];
  2593. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2594. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2595. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2596. // extract the 5th bit via lookup table ((b) << 4)
  2597. memcpy(&qh0, x0->qh, sizeof(qh0));
  2598. memcpy(&qh1, x1->qh, sizeof(qh1));
  2599. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2600. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2601. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2602. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2603. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2604. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2605. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2606. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2607. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2608. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2609. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2610. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2611. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2612. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2613. // 4-bit -> 8-bit
  2614. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2615. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2616. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2617. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2618. // add high bit
  2619. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2620. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2621. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2622. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2623. // load y
  2624. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2625. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2626. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2627. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2628. #if defined(__ARM_FEATURE_DOTPROD)
  2629. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2630. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2631. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2632. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2633. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2634. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2635. #else
  2636. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2637. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2638. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2639. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2640. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2641. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2642. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2643. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2644. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2645. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2646. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2647. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2648. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2649. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2650. #endif
  2651. }
  2652. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2653. #elif defined(__wasm_simd128__)
  2654. v128_t sumv = wasm_f32x4_splat(0.0f);
  2655. float summs = 0.0f;
  2656. uint32_t qh;
  2657. uint64_t tmp[4];
  2658. // TODO: check if unrolling this is better
  2659. for (int i = 0; i < nb; ++i) {
  2660. const block_q5_1 * restrict x0 = &x[i];
  2661. const block_q8_1 * restrict y0 = &y[i];
  2662. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2663. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2664. // extract the 5th bit
  2665. memcpy(&qh, x0->qh, sizeof(qh));
  2666. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2667. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2668. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2669. tmp[3] = table_b2b_0[(qh >> 24) ];
  2670. const v128_t qhl = wasm_v128_load(tmp + 0);
  2671. const v128_t qhh = wasm_v128_load(tmp + 2);
  2672. const v128_t v0 = wasm_v128_load(x0->qs);
  2673. // 4-bit -> 8-bit
  2674. const v128_t v0l = wasm_v128_and (v0, m4b);
  2675. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2676. // add high bit
  2677. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2678. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2679. // load y
  2680. const v128_t v1l = wasm_v128_load(y0->qs);
  2681. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2682. // int8x16 -> int16x8
  2683. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2684. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2685. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2686. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2687. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2688. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2689. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2690. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2691. // dot product
  2692. sumv = wasm_f32x4_add(sumv,
  2693. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2694. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2695. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2696. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2697. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2698. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2699. }
  2700. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2701. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2702. #elif defined(__AVX2__)
  2703. // Initialize accumulator with zeros
  2704. __m256 acc = _mm256_setzero_ps();
  2705. float summs = 0.0f;
  2706. // Main loop
  2707. for (int i = 0; i < nb; i++) {
  2708. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2709. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2710. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2711. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2712. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2713. bx = _mm256_or_si256(bx, bxhi);
  2714. const __m256 dy = _mm256_set1_ps(y[i].d);
  2715. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2716. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2717. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2718. }
  2719. *s = hsum_float_8(acc) + summs;
  2720. #elif defined(__AVX__)
  2721. // Initialize accumulator with zeros
  2722. __m256 acc = _mm256_setzero_ps();
  2723. __m128i mask = _mm_set1_epi8(0x10);
  2724. float summs = 0.0f;
  2725. // Main loop
  2726. for (int i = 0; i < nb; i++) {
  2727. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2728. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2729. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2730. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2731. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2732. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2733. bxhil = _mm_and_si128(bxhil, mask);
  2734. bxhih = _mm_and_si128(bxhih, mask);
  2735. __m128i bxl = _mm256_castsi256_si128(bx);
  2736. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2737. bxl = _mm_or_si128(bxl, bxhil);
  2738. bxh = _mm_or_si128(bxh, bxhih);
  2739. bx = MM256_SET_M128I(bxh, bxl);
  2740. const __m256 dy = _mm256_set1_ps(y[i].d);
  2741. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2742. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2743. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2744. }
  2745. *s = hsum_float_8(acc) + summs;
  2746. #elif defined(__riscv_v_intrinsic)
  2747. float sumf = 0.0;
  2748. uint32_t qh;
  2749. // These temp values are for shift operations
  2750. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2751. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2752. for (int i = 0; i < nb; i++) {
  2753. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2754. // temporary registers
  2755. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2756. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2757. // load qh
  2758. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2759. // ((qh >> (j + 0)) << 4) & 0x10;
  2760. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2761. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2762. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2763. // ((qh >> (j + 12)) ) & 0x10;
  2764. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2765. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2766. // narrowing
  2767. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2768. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2769. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2770. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2771. // load
  2772. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2773. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2774. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2775. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2776. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2777. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2778. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2779. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2780. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2781. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2782. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2783. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2784. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2785. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2786. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2787. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2788. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2789. }
  2790. *s = sumf;
  2791. #else
  2792. // scalar
  2793. float sumf = 0.0;
  2794. for (int i = 0; i < nb; i++) {
  2795. uint32_t qh;
  2796. memcpy(&qh, x[i].qh, sizeof(qh));
  2797. int sumi = 0;
  2798. for (int j = 0; j < qk/2; ++j) {
  2799. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2800. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2801. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2802. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2803. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2804. }
  2805. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2806. }
  2807. *s = sumf;
  2808. #endif
  2809. }
  2810. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2811. const int qk = QK8_0;
  2812. const int nb = n / qk;
  2813. assert(n % qk == 0);
  2814. const block_q8_0 * restrict x = vx;
  2815. const block_q8_0 * restrict y = vy;
  2816. #if defined(__ARM_NEON)
  2817. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2818. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2819. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2820. for (int i = 0; i < nb; i += 2) {
  2821. const block_q8_0 * restrict x0 = &x[i + 0];
  2822. const block_q8_0 * restrict x1 = &x[i + 1];
  2823. const block_q8_0 * restrict y0 = &y[i + 0];
  2824. const block_q8_0 * restrict y1 = &y[i + 1];
  2825. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2826. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2827. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2828. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2829. // load y
  2830. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2831. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2832. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2833. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2834. #if defined(__ARM_FEATURE_DOTPROD)
  2835. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2836. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2837. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2838. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2839. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2840. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2841. #else
  2842. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2843. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2844. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2845. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2846. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2847. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2848. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2849. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2850. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2851. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2852. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2853. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2854. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2855. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2856. #endif
  2857. }
  2858. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2859. #elif defined(__AVX2__) || defined(__AVX__)
  2860. // Initialize accumulator with zeros
  2861. __m256 acc = _mm256_setzero_ps();
  2862. // Main loop
  2863. for (int i = 0; i < nb; ++i) {
  2864. // Compute combined scale for the block
  2865. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2866. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2867. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2868. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2869. // Multiply q with scale and accumulate
  2870. #if defined(__AVX2__)
  2871. acc = _mm256_fmadd_ps( d, q, acc );
  2872. #else
  2873. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2874. #endif
  2875. }
  2876. *s = hsum_float_8(acc);
  2877. #elif defined(__riscv_v_intrinsic)
  2878. float sumf = 0.0;
  2879. size_t vl = __riscv_vsetvl_e8m1(qk);
  2880. for (int i = 0; i < nb; i++) {
  2881. // load elements
  2882. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2883. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2884. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2885. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2886. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2887. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2888. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2889. }
  2890. *s = sumf;
  2891. #else
  2892. // scalar
  2893. float sumf = 0.0;
  2894. for (int i = 0; i < nb; i++) {
  2895. int sumi = 0;
  2896. for (int j = 0; j < qk; j++) {
  2897. sumi += x[i].qs[j]*y[i].qs[j];
  2898. }
  2899. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2900. }
  2901. *s = sumf;
  2902. #endif
  2903. }
  2904. // compute GGML_VEC_DOT_UNROLL dot products at once
  2905. // xs - x row stride in bytes
  2906. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2907. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2908. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2909. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2910. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2911. }
  2912. #if defined(GGML_SIMD)
  2913. const int np = (n & ~(GGML_F16_STEP - 1));
  2914. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2915. GGML_F16_VEC ax[GGML_F16_ARR];
  2916. GGML_F16_VEC ay[GGML_F16_ARR];
  2917. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2918. for (int j = 0; j < GGML_F16_ARR; j++) {
  2919. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2920. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2921. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2922. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2923. }
  2924. }
  2925. }
  2926. // reduce sum0..sum3 to sum0
  2927. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2928. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2929. }
  2930. // leftovers
  2931. for (int i = np; i < n; ++i) {
  2932. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2933. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2934. }
  2935. }
  2936. #else
  2937. for (int i = 0; i < n; ++i) {
  2938. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2939. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2940. }
  2941. }
  2942. #endif
  2943. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2944. s[i] = sumf[i];
  2945. }
  2946. }
  2947. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2948. #if defined(GGML_SIMD)
  2949. const int np = (n & ~(GGML_F32_STEP - 1));
  2950. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2951. GGML_F32_VEC ax[GGML_F32_ARR];
  2952. GGML_F32_VEC ay[GGML_F32_ARR];
  2953. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2954. for (int j = 0; j < GGML_F32_ARR; j++) {
  2955. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2956. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2957. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2958. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2959. }
  2960. }
  2961. // leftovers
  2962. for (int i = np; i < n; ++i) {
  2963. y[i] += x[i]*v;
  2964. }
  2965. #else
  2966. // scalar
  2967. for (int i = 0; i < n; ++i) {
  2968. y[i] += x[i]*v;
  2969. }
  2970. #endif
  2971. }
  2972. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2973. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2974. #if defined(GGML_USE_ACCELERATE)
  2975. vDSP_vsmul(y, 1, &v, y, 1, n);
  2976. #elif defined(GGML_SIMD)
  2977. const int np = (n & ~(GGML_F32_STEP - 1));
  2978. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2979. GGML_F32_VEC ay[GGML_F32_ARR];
  2980. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2981. for (int j = 0; j < GGML_F32_ARR; j++) {
  2982. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2983. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2984. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2985. }
  2986. }
  2987. // leftovers
  2988. for (int i = np; i < n; ++i) {
  2989. y[i] *= v;
  2990. }
  2991. #else
  2992. // scalar
  2993. for (int i = 0; i < n; ++i) {
  2994. y[i] *= v;
  2995. }
  2996. #endif
  2997. }
  2998. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2999. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3000. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3001. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3002. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3003. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3004. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3005. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3006. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3007. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3008. static const float GELU_COEF_A = 0.044715f;
  3009. static const float GELU_QUICK_COEF = -1.702f;
  3010. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3011. inline static float ggml_gelu_f32(float x) {
  3012. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3013. }
  3014. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3015. const uint16_t * i16 = (const uint16_t *) x;
  3016. for (int i = 0; i < n; ++i) {
  3017. y[i] = table_gelu_f16[i16[i]];
  3018. }
  3019. }
  3020. #ifdef GGML_GELU_FP16
  3021. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3022. uint16_t t;
  3023. for (int i = 0; i < n; ++i) {
  3024. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3025. memcpy(&t, &fp16, sizeof(uint16_t));
  3026. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3027. }
  3028. }
  3029. #else
  3030. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3031. for (int i = 0; i < n; ++i) {
  3032. y[i] = ggml_gelu_f32(x[i]);
  3033. }
  3034. }
  3035. #endif
  3036. inline static float ggml_gelu_quick_f32(float x) {
  3037. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3038. }
  3039. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3040. // const uint16_t * i16 = (const uint16_t *) x;
  3041. // for (int i = 0; i < n; ++i) {
  3042. // y[i] = table_gelu_quick_f16[i16[i]];
  3043. // }
  3044. //}
  3045. #ifdef GGML_GELU_QUICK_FP16
  3046. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3047. uint16_t t;
  3048. for (int i = 0; i < n; ++i) {
  3049. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3050. memcpy(&t, &fp16, sizeof(uint16_t));
  3051. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3052. }
  3053. }
  3054. #else
  3055. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3056. for (int i = 0; i < n; ++i) {
  3057. y[i] = ggml_gelu_quick_f32(x[i]);
  3058. }
  3059. }
  3060. #endif
  3061. // Sigmoid Linear Unit (SiLU) function
  3062. inline static float ggml_silu_f32(float x) {
  3063. return x/(1.0f + expf(-x));
  3064. }
  3065. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3066. // const uint16_t * i16 = (const uint16_t *) x;
  3067. // for (int i = 0; i < n; ++i) {
  3068. // y[i] = table_silu_f16[i16[i]];
  3069. // }
  3070. //}
  3071. #ifdef GGML_SILU_FP16
  3072. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3073. uint16_t t;
  3074. for (int i = 0; i < n; ++i) {
  3075. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3076. memcpy(&t, &fp16, sizeof(uint16_t));
  3077. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3078. }
  3079. }
  3080. #else
  3081. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3082. for (int i = 0; i < n; ++i) {
  3083. y[i] = ggml_silu_f32(x[i]);
  3084. }
  3085. }
  3086. #endif
  3087. inline static float ggml_silu_backward_f32(float x, float dy) {
  3088. const float s = 1.0f/(1.0f + expf(-x));
  3089. return dy*s*(1.0f + x*(1.0f - s));
  3090. }
  3091. #ifdef GGML_SILU_FP16
  3092. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3093. for (int i = 0; i < n; ++i) {
  3094. // we did not use x[i] to compute forward silu but its f16 equivalent
  3095. // take derivative at f16 of x[i]:
  3096. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3097. float usedx = GGML_FP16_TO_FP32(fp16);
  3098. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3099. }
  3100. }
  3101. #else
  3102. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3103. for (int i = 0; i < n; ++i) {
  3104. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3105. }
  3106. }
  3107. #endif
  3108. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3109. #ifndef GGML_USE_ACCELERATE
  3110. ggml_float sum = 0.0;
  3111. for (int i = 0; i < n; ++i) {
  3112. sum += (ggml_float)x[i];
  3113. }
  3114. *s = sum;
  3115. #else
  3116. vDSP_sve(x, 1, s, n);
  3117. #endif
  3118. }
  3119. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3120. ggml_float sum = 0.0;
  3121. for (int i = 0; i < n; ++i) {
  3122. sum += (ggml_float)x[i];
  3123. }
  3124. *s = sum;
  3125. }
  3126. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3127. float sum = 0.0f;
  3128. for (int i = 0; i < n; ++i) {
  3129. sum += GGML_FP16_TO_FP32(x[i]);
  3130. }
  3131. *s = sum;
  3132. }
  3133. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3134. #ifndef GGML_USE_ACCELERATE
  3135. float max = -INFINITY;
  3136. for (int i = 0; i < n; ++i) {
  3137. max = MAX(max, x[i]);
  3138. }
  3139. *s = max;
  3140. #else
  3141. vDSP_maxv(x, 1, s, n);
  3142. #endif
  3143. }
  3144. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3145. ggml_vec_norm_f32(n, s, x);
  3146. *s = 1.f/(*s);
  3147. }
  3148. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3149. float max = -INFINITY;
  3150. int idx = 0;
  3151. for (int i = 0; i < n; ++i) {
  3152. max = MAX(max, x[i]);
  3153. if (max == x[i]) { idx = i; }
  3154. }
  3155. *s = idx;
  3156. }
  3157. //
  3158. // data types
  3159. //
  3160. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3161. "NONE",
  3162. "DUP",
  3163. "ADD",
  3164. "ADD1",
  3165. "ACC",
  3166. "SUB",
  3167. "MUL",
  3168. "DIV",
  3169. "SQR",
  3170. "SQRT",
  3171. "LOG",
  3172. "SUM",
  3173. "SUM_ROWS",
  3174. "MEAN",
  3175. "ARGMAX",
  3176. "REPEAT",
  3177. "REPEAT_BACK",
  3178. "CONCAT",
  3179. "SILU_BACK",
  3180. "NORM",
  3181. "RMS_NORM",
  3182. "RMS_NORM_BACK",
  3183. "GROUP_NORM",
  3184. "MUL_MAT",
  3185. "OUT_PROD",
  3186. "SCALE",
  3187. "SET",
  3188. "CPY",
  3189. "CONT",
  3190. "RESHAPE",
  3191. "VIEW",
  3192. "PERMUTE",
  3193. "TRANSPOSE",
  3194. "GET_ROWS",
  3195. "GET_ROWS_BACK",
  3196. "DIAG",
  3197. "DIAG_MASK_INF",
  3198. "DIAG_MASK_ZERO",
  3199. "SOFT_MAX",
  3200. "SOFT_MAX_BACK",
  3201. "ROPE",
  3202. "ROPE_BACK",
  3203. "ALIBI",
  3204. "CLAMP",
  3205. "CONV_1D",
  3206. "CONV_2D",
  3207. "CONV_TRANSPOSE_2D",
  3208. "POOL_1D",
  3209. "POOL_2D",
  3210. "UPSCALE",
  3211. "FLASH_ATTN",
  3212. "FLASH_FF",
  3213. "FLASH_ATTN_BACK",
  3214. "WIN_PART",
  3215. "WIN_UNPART",
  3216. "GET_REL_POS",
  3217. "ADD_REL_POS",
  3218. "UNARY",
  3219. "MAP_UNARY",
  3220. "MAP_BINARY",
  3221. "MAP_CUSTOM1_F32",
  3222. "MAP_CUSTOM2_F32",
  3223. "MAP_CUSTOM3_F32",
  3224. "MAP_CUSTOM1",
  3225. "MAP_CUSTOM2",
  3226. "MAP_CUSTOM3",
  3227. "CROSS_ENTROPY_LOSS",
  3228. "CROSS_ENTROPY_LOSS_BACK",
  3229. };
  3230. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3231. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3232. "none",
  3233. "x",
  3234. "x+y",
  3235. "x+y",
  3236. "view(x,nb,offset)+=y->x",
  3237. "x-y",
  3238. "x*y",
  3239. "x/y",
  3240. "x^2",
  3241. "√x",
  3242. "log(x)",
  3243. "Σx",
  3244. "Σx_k",
  3245. "Σx/n",
  3246. "argmax(x)",
  3247. "repeat(x)",
  3248. "repeat_back(x)",
  3249. "concat(x, y)",
  3250. "silu_back(x)",
  3251. "norm(x)",
  3252. "rms_norm(x)",
  3253. "rms_norm_back(x)",
  3254. "group_norm(x)",
  3255. "X*Y",
  3256. "X*Y",
  3257. "x*v",
  3258. "y-\\>view(x)",
  3259. "x-\\>y",
  3260. "cont(x)",
  3261. "reshape(x)",
  3262. "view(x)",
  3263. "permute(x)",
  3264. "transpose(x)",
  3265. "get_rows(x)",
  3266. "get_rows_back(x)",
  3267. "diag(x)",
  3268. "diag_mask_inf(x)",
  3269. "diag_mask_zero(x)",
  3270. "soft_max(x)",
  3271. "soft_max_back(x)",
  3272. "rope(x)",
  3273. "rope_back(x)",
  3274. "alibi(x)",
  3275. "clamp(x)",
  3276. "conv_1d(x)",
  3277. "conv_2d(x)",
  3278. "conv_transpose_2d(x)",
  3279. "pool_1d(x)",
  3280. "pool_2d(x)",
  3281. "upscale(x)",
  3282. "flash_attn(x)",
  3283. "flash_ff(x)",
  3284. "flash_attn_back(x)",
  3285. "win_part(x)",
  3286. "win_unpart(x)",
  3287. "get_rel_pos(x)",
  3288. "add_rel_pos(x)",
  3289. "unary(x)",
  3290. "f(x)",
  3291. "f(x,y)",
  3292. "custom_f32(x)",
  3293. "custom_f32(x,y)",
  3294. "custom_f32(x,y,z)",
  3295. "custom(x)",
  3296. "custom(x,y)",
  3297. "custom(x,y,z)",
  3298. "cross_entropy_loss(x,y)",
  3299. "cross_entropy_loss_back(x,y)",
  3300. };
  3301. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3302. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3303. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3304. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3305. // WARN:
  3306. // Mis-confguration can lead to problem that's hard to reason about:
  3307. // * At best it crash or talks nosense.
  3308. // * At worst it talks slightly difference but hard to perceive.
  3309. //
  3310. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3311. // Take care about compile options (e.g., GGML_USE_xxx).
  3312. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3313. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3314. static void ggml_setup_op_has_task_pass(void) {
  3315. { // INIT
  3316. bool * p = GGML_OP_HAS_INIT;
  3317. p[GGML_OP_ACC ] = true;
  3318. p[GGML_OP_MUL_MAT ] = true;
  3319. p[GGML_OP_OUT_PROD ] = true;
  3320. p[GGML_OP_SET ] = true;
  3321. p[GGML_OP_GET_ROWS_BACK ] = true;
  3322. p[GGML_OP_DIAG_MASK_INF ] = true;
  3323. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3324. p[GGML_OP_CONV_1D ] = true;
  3325. p[GGML_OP_CONV_2D ] = true;
  3326. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3327. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3328. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3329. p[GGML_OP_ADD_REL_POS ] = true;
  3330. }
  3331. { // FINALIZE
  3332. bool * p = GGML_OP_HAS_FINALIZE;
  3333. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3334. }
  3335. }
  3336. //
  3337. // ggml context
  3338. //
  3339. struct ggml_context {
  3340. size_t mem_size;
  3341. void * mem_buffer;
  3342. bool mem_buffer_owned;
  3343. bool no_alloc;
  3344. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3345. int n_objects;
  3346. struct ggml_object * objects_begin;
  3347. struct ggml_object * objects_end;
  3348. struct ggml_scratch scratch;
  3349. struct ggml_scratch scratch_save;
  3350. };
  3351. struct ggml_context_container {
  3352. bool used;
  3353. struct ggml_context context;
  3354. };
  3355. //
  3356. // NUMA support
  3357. //
  3358. #define GGML_NUMA_MAX_NODES 8
  3359. #define GGML_NUMA_MAX_CPUS 512
  3360. struct ggml_numa_node {
  3361. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3362. uint32_t n_cpus;
  3363. };
  3364. struct ggml_numa_nodes {
  3365. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3366. uint32_t n_nodes;
  3367. uint32_t total_cpus; // hardware threads on system
  3368. };
  3369. //
  3370. // ggml state
  3371. //
  3372. struct ggml_state {
  3373. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3374. struct ggml_numa_nodes numa;
  3375. };
  3376. // global state
  3377. static struct ggml_state g_state;
  3378. static atomic_int g_state_barrier = 0;
  3379. // barrier via spin lock
  3380. inline static void ggml_critical_section_start(void) {
  3381. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3382. while (processing > 0) {
  3383. // wait for other threads to finish
  3384. atomic_fetch_sub(&g_state_barrier, 1);
  3385. sched_yield(); // TODO: reconsider this
  3386. processing = atomic_fetch_add(&g_state_barrier, 1);
  3387. }
  3388. }
  3389. // TODO: make this somehow automatically executed
  3390. // some sort of "sentry" mechanism
  3391. inline static void ggml_critical_section_end(void) {
  3392. atomic_fetch_sub(&g_state_barrier, 1);
  3393. }
  3394. void ggml_numa_init(void) {
  3395. if (g_state.numa.n_nodes > 0) {
  3396. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3397. return;
  3398. }
  3399. #ifdef __linux__
  3400. struct stat st;
  3401. char path[256];
  3402. int rv;
  3403. // enumerate nodes
  3404. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3405. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3406. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3407. if (stat(path, &st) != 0) { break; }
  3408. ++g_state.numa.n_nodes;
  3409. }
  3410. // enumerate CPUs
  3411. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3412. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3413. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3414. if (stat(path, &st) != 0) { break; }
  3415. ++g_state.numa.total_cpus;
  3416. }
  3417. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3418. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3419. g_state.numa.n_nodes = 0;
  3420. return;
  3421. }
  3422. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3423. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3424. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3425. node->n_cpus = 0;
  3426. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3427. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3428. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3429. if (stat(path, &st) == 0) {
  3430. node->cpus[node->n_cpus++] = c;
  3431. GGML_PRINT_DEBUG(" %u", c);
  3432. }
  3433. }
  3434. GGML_PRINT_DEBUG("\n");
  3435. }
  3436. if (ggml_is_numa()) {
  3437. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3438. if (fptr != NULL) {
  3439. char buf[42];
  3440. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3441. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3442. }
  3443. fclose(fptr);
  3444. }
  3445. }
  3446. #else
  3447. // TODO
  3448. #endif
  3449. }
  3450. bool ggml_is_numa(void) {
  3451. return g_state.numa.n_nodes > 1;
  3452. }
  3453. ////////////////////////////////////////////////////////////////////////////////
  3454. void ggml_print_object(const struct ggml_object * obj) {
  3455. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3456. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3457. }
  3458. void ggml_print_objects(const struct ggml_context * ctx) {
  3459. struct ggml_object * obj = ctx->objects_begin;
  3460. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3461. while (obj != NULL) {
  3462. ggml_print_object(obj);
  3463. obj = obj->next;
  3464. }
  3465. GGML_PRINT("%s: --- end ---\n", __func__);
  3466. }
  3467. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3468. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3469. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3470. }
  3471. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3472. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3473. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3474. }
  3475. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3476. size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
  3477. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3478. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3479. }
  3480. return nbytes;
  3481. }
  3482. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3483. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3484. }
  3485. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3486. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3487. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3488. }
  3489. int ggml_blck_size(enum ggml_type type) {
  3490. return type_traits[type].blck_size;
  3491. }
  3492. size_t ggml_type_size(enum ggml_type type) {
  3493. return type_traits[type].type_size;
  3494. }
  3495. float ggml_type_sizef(enum ggml_type type) {
  3496. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3497. }
  3498. const char * ggml_type_name(enum ggml_type type) {
  3499. return type_traits[type].type_name;
  3500. }
  3501. bool ggml_is_quantized(enum ggml_type type) {
  3502. return type_traits[type].is_quantized;
  3503. }
  3504. const char * ggml_op_name(enum ggml_op op) {
  3505. return GGML_OP_NAME[op];
  3506. }
  3507. const char * ggml_op_symbol(enum ggml_op op) {
  3508. return GGML_OP_SYMBOL[op];
  3509. }
  3510. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3511. return ggml_type_size(tensor->type);
  3512. }
  3513. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3514. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3515. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3516. }
  3517. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3518. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3519. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3520. }
  3521. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3522. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3523. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3524. }
  3525. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3526. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3527. return (t0->ne[0] == t1->ne[0]) &&
  3528. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3529. (t1->ne[3]%t0->ne[3] == 0);
  3530. }
  3531. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3532. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3533. return
  3534. (t0->ne[1] == t1->ne[1]) &&
  3535. (t0->ne[2] == t1->ne[2]) &&
  3536. (t0->ne[3] == t1->ne[3]);
  3537. }
  3538. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3539. enum ggml_type wtype = GGML_TYPE_COUNT;
  3540. switch (ftype) {
  3541. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3542. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3543. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3544. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3545. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3546. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3547. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3548. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3549. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3550. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3551. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3552. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3553. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3554. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3555. }
  3556. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3557. return wtype;
  3558. }
  3559. size_t ggml_tensor_overhead(void) {
  3560. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3561. }
  3562. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3563. return tensor->nb[0] > tensor->nb[1];
  3564. }
  3565. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3566. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3567. return
  3568. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3569. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3570. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3571. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3572. }
  3573. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3574. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3575. return
  3576. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3577. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3578. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3579. }
  3580. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3581. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3582. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3583. }
  3584. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3585. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3586. return
  3587. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3588. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3589. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3590. }
  3591. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3592. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3593. return
  3594. (t0->ne[0] == t1->ne[0] ) &&
  3595. (t0->ne[1] == t1->ne[1] ) &&
  3596. (t0->ne[2] == t1->ne[2] ) &&
  3597. (t0->ne[3] == t1->ne[3] );
  3598. }
  3599. // check if t1 can be represented as a repeatition of t0
  3600. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3601. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3602. return
  3603. (t1->ne[0]%t0->ne[0] == 0) &&
  3604. (t1->ne[1]%t0->ne[1] == 0) &&
  3605. (t1->ne[2]%t0->ne[2] == 0) &&
  3606. (t1->ne[3]%t0->ne[3] == 0);
  3607. }
  3608. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3609. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3610. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3611. }
  3612. static inline int ggml_up32(int n) {
  3613. return (n + 31) & ~31;
  3614. }
  3615. //static inline int ggml_up64(int n) {
  3616. // return (n + 63) & ~63;
  3617. //}
  3618. static inline int ggml_up(int n, int m) {
  3619. // assert m is a power of 2
  3620. GGML_ASSERT((m & (m - 1)) == 0);
  3621. return (n + m - 1) & ~(m - 1);
  3622. }
  3623. // assert that pointer is aligned to GGML_MEM_ALIGN
  3624. #define ggml_assert_aligned(ptr) \
  3625. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3626. ////////////////////////////////////////////////////////////////////////////////
  3627. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3628. // make this function thread safe
  3629. ggml_critical_section_start();
  3630. static bool is_first_call = true;
  3631. if (is_first_call) {
  3632. // initialize time system (required on Windows)
  3633. ggml_time_init();
  3634. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3635. {
  3636. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3637. ggml_fp16_t ii;
  3638. for (int i = 0; i < (1 << 16); ++i) {
  3639. uint16_t ui = i;
  3640. memcpy(&ii, &ui, sizeof(ii));
  3641. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3642. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3643. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3644. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3645. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3646. }
  3647. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3648. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3649. }
  3650. // initialize g_state
  3651. {
  3652. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3653. g_state = (struct ggml_state) {
  3654. /*.contexts =*/ { { 0 } },
  3655. /*.numa =*/ {
  3656. .n_nodes = 0,
  3657. .total_cpus = 0,
  3658. },
  3659. };
  3660. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3661. g_state.contexts[i].used = false;
  3662. }
  3663. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3664. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3665. }
  3666. #if defined(GGML_USE_CUBLAS)
  3667. ggml_init_cublas();
  3668. #elif defined(GGML_USE_CLBLAST)
  3669. ggml_cl_init();
  3670. #endif
  3671. ggml_setup_op_has_task_pass();
  3672. is_first_call = false;
  3673. }
  3674. // find non-used context in g_state
  3675. struct ggml_context * ctx = NULL;
  3676. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3677. if (!g_state.contexts[i].used) {
  3678. g_state.contexts[i].used = true;
  3679. ctx = &g_state.contexts[i].context;
  3680. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3681. break;
  3682. }
  3683. }
  3684. if (ctx == NULL) {
  3685. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3686. ggml_critical_section_end();
  3687. return NULL;
  3688. }
  3689. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3690. *ctx = (struct ggml_context) {
  3691. /*.mem_size =*/ mem_size,
  3692. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3693. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3694. /*.no_alloc =*/ params.no_alloc,
  3695. /*.no_alloc_save =*/ params.no_alloc,
  3696. /*.n_objects =*/ 0,
  3697. /*.objects_begin =*/ NULL,
  3698. /*.objects_end =*/ NULL,
  3699. /*.scratch =*/ { 0, 0, NULL, },
  3700. /*.scratch_save =*/ { 0, 0, NULL, },
  3701. };
  3702. GGML_ASSERT(ctx->mem_buffer != NULL);
  3703. ggml_assert_aligned(ctx->mem_buffer);
  3704. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3705. ggml_critical_section_end();
  3706. return ctx;
  3707. }
  3708. void ggml_free(struct ggml_context * ctx) {
  3709. // make this function thread safe
  3710. ggml_critical_section_start();
  3711. bool found = false;
  3712. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3713. if (&g_state.contexts[i].context == ctx) {
  3714. g_state.contexts[i].used = false;
  3715. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3716. __func__, i, ggml_used_mem(ctx));
  3717. if (ctx->mem_buffer_owned) {
  3718. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3719. }
  3720. found = true;
  3721. break;
  3722. }
  3723. }
  3724. if (!found) {
  3725. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3726. }
  3727. ggml_critical_section_end();
  3728. }
  3729. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3730. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3731. }
  3732. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3733. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3734. ctx->scratch = scratch;
  3735. return result;
  3736. }
  3737. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3738. return ctx->no_alloc;
  3739. }
  3740. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3741. ctx->no_alloc = no_alloc;
  3742. }
  3743. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3744. return ctx->mem_buffer;
  3745. }
  3746. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3747. return ctx->mem_size;
  3748. }
  3749. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3750. size_t max_size = 0;
  3751. struct ggml_object * obj = ctx->objects_begin;
  3752. while (obj != NULL) {
  3753. if (obj->type == GGML_OBJECT_TENSOR) {
  3754. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3755. const size_t size = ggml_nbytes(tensor);
  3756. if (max_size < size) {
  3757. max_size = size;
  3758. }
  3759. }
  3760. obj = obj->next;
  3761. }
  3762. return max_size;
  3763. }
  3764. // IMPORTANT:
  3765. // when creating "opt" tensors, always save and load the scratch buffer
  3766. // this is an error prone process, but it is necessary to support inplace
  3767. // operators when using scratch buffers
  3768. // TODO: implement a better way
  3769. static void ggml_scratch_save(struct ggml_context * ctx) {
  3770. // this is needed to allow opt tensors to store their data
  3771. // TODO: again, need to find a better way
  3772. ctx->no_alloc_save = ctx->no_alloc;
  3773. ctx->no_alloc = false;
  3774. ctx->scratch_save = ctx->scratch;
  3775. ctx->scratch.data = NULL;
  3776. }
  3777. static void ggml_scratch_load(struct ggml_context * ctx) {
  3778. ctx->no_alloc = ctx->no_alloc_save;
  3779. ctx->scratch = ctx->scratch_save;
  3780. }
  3781. ////////////////////////////////////////////////////////////////////////////////
  3782. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3783. // always insert objects at the end of the context's memory pool
  3784. struct ggml_object * obj_cur = ctx->objects_end;
  3785. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3786. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3787. const size_t cur_end = cur_offs + cur_size;
  3788. // align to GGML_MEM_ALIGN
  3789. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3790. char * const mem_buffer = ctx->mem_buffer;
  3791. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3792. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3793. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3794. __func__, cur_end + size_needed, ctx->mem_size);
  3795. assert(false);
  3796. return NULL;
  3797. }
  3798. *obj_new = (struct ggml_object) {
  3799. .offs = cur_end + GGML_OBJECT_SIZE,
  3800. .size = size_needed,
  3801. .next = NULL,
  3802. .type = type,
  3803. };
  3804. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3805. if (obj_cur != NULL) {
  3806. obj_cur->next = obj_new;
  3807. } else {
  3808. // this is the first object in this context
  3809. ctx->objects_begin = obj_new;
  3810. }
  3811. ctx->objects_end = obj_new;
  3812. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3813. return obj_new;
  3814. }
  3815. static struct ggml_tensor * ggml_new_tensor_impl(
  3816. struct ggml_context * ctx,
  3817. enum ggml_type type,
  3818. int n_dims,
  3819. const int64_t * ne,
  3820. struct ggml_tensor * view_src,
  3821. size_t view_offs) {
  3822. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3823. // find the base tensor and absolute offset
  3824. if (view_src != NULL && view_src->view_src != NULL) {
  3825. view_offs += view_src->view_offs;
  3826. view_src = view_src->view_src;
  3827. }
  3828. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3829. for (int i = 1; i < n_dims; i++) {
  3830. data_size *= ne[i];
  3831. }
  3832. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3833. void * data = view_src != NULL ? view_src->data : NULL;
  3834. if (data != NULL) {
  3835. data = (char *) data + view_offs;
  3836. }
  3837. size_t obj_alloc_size = 0;
  3838. if (view_src == NULL && ctx->no_alloc == false) {
  3839. if (ctx->scratch.data != NULL) {
  3840. // allocate tensor data in the scratch buffer
  3841. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3842. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3843. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3844. assert(false);
  3845. return NULL;
  3846. }
  3847. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3848. ctx->scratch.offs += data_size;
  3849. } else {
  3850. // allocate tensor data in the context's memory pool
  3851. obj_alloc_size = data_size;
  3852. }
  3853. }
  3854. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3855. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3856. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3857. *result = (struct ggml_tensor) {
  3858. /*.type =*/ type,
  3859. /*.backend =*/ GGML_BACKEND_CPU,
  3860. /*.n_dims =*/ n_dims,
  3861. /*.ne =*/ { 1, 1, 1, 1 },
  3862. /*.nb =*/ { 0, 0, 0, 0 },
  3863. /*.op =*/ GGML_OP_NONE,
  3864. /*.op_params =*/ { 0 },
  3865. /*.is_param =*/ false,
  3866. /*.grad =*/ NULL,
  3867. /*.src =*/ { NULL },
  3868. /*.perf_runs =*/ 0,
  3869. /*.perf_cycles =*/ 0,
  3870. /*.perf_time_us =*/ 0,
  3871. /*.view_src =*/ view_src,
  3872. /*.view_offs =*/ view_offs,
  3873. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3874. /*.name =*/ { 0 },
  3875. /*.extra =*/ NULL,
  3876. /*.padding =*/ { 0 },
  3877. };
  3878. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3879. //ggml_assert_aligned(result->data);
  3880. for (int i = 0; i < n_dims; i++) {
  3881. result->ne[i] = ne[i];
  3882. }
  3883. result->nb[0] = ggml_type_size(type);
  3884. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3885. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3886. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3887. }
  3888. ctx->n_objects++;
  3889. return result;
  3890. }
  3891. struct ggml_tensor * ggml_new_tensor(
  3892. struct ggml_context * ctx,
  3893. enum ggml_type type,
  3894. int n_dims,
  3895. const int64_t * ne) {
  3896. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3897. }
  3898. struct ggml_tensor * ggml_new_tensor_1d(
  3899. struct ggml_context * ctx,
  3900. enum ggml_type type,
  3901. int64_t ne0) {
  3902. return ggml_new_tensor(ctx, type, 1, &ne0);
  3903. }
  3904. struct ggml_tensor * ggml_new_tensor_2d(
  3905. struct ggml_context * ctx,
  3906. enum ggml_type type,
  3907. int64_t ne0,
  3908. int64_t ne1) {
  3909. const int64_t ne[2] = { ne0, ne1 };
  3910. return ggml_new_tensor(ctx, type, 2, ne);
  3911. }
  3912. struct ggml_tensor * ggml_new_tensor_3d(
  3913. struct ggml_context * ctx,
  3914. enum ggml_type type,
  3915. int64_t ne0,
  3916. int64_t ne1,
  3917. int64_t ne2) {
  3918. const int64_t ne[3] = { ne0, ne1, ne2 };
  3919. return ggml_new_tensor(ctx, type, 3, ne);
  3920. }
  3921. struct ggml_tensor * ggml_new_tensor_4d(
  3922. struct ggml_context * ctx,
  3923. enum ggml_type type,
  3924. int64_t ne0,
  3925. int64_t ne1,
  3926. int64_t ne2,
  3927. int64_t ne3) {
  3928. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3929. return ggml_new_tensor(ctx, type, 4, ne);
  3930. }
  3931. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3932. ggml_scratch_save(ctx);
  3933. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3934. ggml_scratch_load(ctx);
  3935. ggml_set_i32(result, value);
  3936. return result;
  3937. }
  3938. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3939. ggml_scratch_save(ctx);
  3940. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3941. ggml_scratch_load(ctx);
  3942. ggml_set_f32(result, value);
  3943. return result;
  3944. }
  3945. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3946. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3947. }
  3948. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3949. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3950. assert(params_size <= GGML_MAX_OP_PARAMS);
  3951. memcpy(tensor->op_params, params, params_size);
  3952. }
  3953. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3954. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3955. return ((const int32_t *)(tensor->op_params))[i];
  3956. }
  3957. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3958. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3959. ((int32_t *)(tensor->op_params))[i] = value;
  3960. }
  3961. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3962. memset(tensor->data, 0, ggml_nbytes(tensor));
  3963. return tensor;
  3964. }
  3965. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3966. const int n = ggml_nrows(tensor);
  3967. const int nc = tensor->ne[0];
  3968. const size_t n1 = tensor->nb[1];
  3969. char * const data = tensor->data;
  3970. switch (tensor->type) {
  3971. case GGML_TYPE_I8:
  3972. {
  3973. assert(tensor->nb[0] == sizeof(int8_t));
  3974. for (int i = 0; i < n; i++) {
  3975. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3976. }
  3977. } break;
  3978. case GGML_TYPE_I16:
  3979. {
  3980. assert(tensor->nb[0] == sizeof(int16_t));
  3981. for (int i = 0; i < n; i++) {
  3982. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3983. }
  3984. } break;
  3985. case GGML_TYPE_I32:
  3986. {
  3987. assert(tensor->nb[0] == sizeof(int32_t));
  3988. for (int i = 0; i < n; i++) {
  3989. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3990. }
  3991. } break;
  3992. case GGML_TYPE_F16:
  3993. {
  3994. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3995. for (int i = 0; i < n; i++) {
  3996. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3997. }
  3998. } break;
  3999. case GGML_TYPE_F32:
  4000. {
  4001. assert(tensor->nb[0] == sizeof(float));
  4002. for (int i = 0; i < n; i++) {
  4003. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4004. }
  4005. } break;
  4006. default:
  4007. {
  4008. GGML_ASSERT(false);
  4009. } break;
  4010. }
  4011. return tensor;
  4012. }
  4013. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4014. const int n = ggml_nrows(tensor);
  4015. const int nc = tensor->ne[0];
  4016. const size_t n1 = tensor->nb[1];
  4017. char * const data = tensor->data;
  4018. switch (tensor->type) {
  4019. case GGML_TYPE_I8:
  4020. {
  4021. assert(tensor->nb[0] == sizeof(int8_t));
  4022. for (int i = 0; i < n; i++) {
  4023. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4024. }
  4025. } break;
  4026. case GGML_TYPE_I16:
  4027. {
  4028. assert(tensor->nb[0] == sizeof(int16_t));
  4029. for (int i = 0; i < n; i++) {
  4030. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4031. }
  4032. } break;
  4033. case GGML_TYPE_I32:
  4034. {
  4035. assert(tensor->nb[0] == sizeof(int32_t));
  4036. for (int i = 0; i < n; i++) {
  4037. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4038. }
  4039. } break;
  4040. case GGML_TYPE_F16:
  4041. {
  4042. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4043. for (int i = 0; i < n; i++) {
  4044. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4045. }
  4046. } break;
  4047. case GGML_TYPE_F32:
  4048. {
  4049. assert(tensor->nb[0] == sizeof(float));
  4050. for (int i = 0; i < n; i++) {
  4051. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4052. }
  4053. } break;
  4054. default:
  4055. {
  4056. GGML_ASSERT(false);
  4057. } break;
  4058. }
  4059. return tensor;
  4060. }
  4061. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4062. switch (tensor->type) {
  4063. case GGML_TYPE_I8:
  4064. {
  4065. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4066. return ((int8_t *)(tensor->data))[i];
  4067. } break;
  4068. case GGML_TYPE_I16:
  4069. {
  4070. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4071. return ((int16_t *)(tensor->data))[i];
  4072. } break;
  4073. case GGML_TYPE_I32:
  4074. {
  4075. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4076. return ((int32_t *)(tensor->data))[i];
  4077. } break;
  4078. case GGML_TYPE_F16:
  4079. {
  4080. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4081. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4082. } break;
  4083. case GGML_TYPE_F32:
  4084. {
  4085. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4086. return ((float *)(tensor->data))[i];
  4087. } break;
  4088. default:
  4089. {
  4090. GGML_ASSERT(false);
  4091. } break;
  4092. }
  4093. return 0.0f;
  4094. }
  4095. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4096. switch (tensor->type) {
  4097. case GGML_TYPE_I8:
  4098. {
  4099. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4100. ((int8_t *)(tensor->data))[i] = value;
  4101. } break;
  4102. case GGML_TYPE_I16:
  4103. {
  4104. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4105. ((int16_t *)(tensor->data))[i] = value;
  4106. } break;
  4107. case GGML_TYPE_I32:
  4108. {
  4109. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4110. ((int32_t *)(tensor->data))[i] = value;
  4111. } break;
  4112. case GGML_TYPE_F16:
  4113. {
  4114. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4115. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4116. } break;
  4117. case GGML_TYPE_F32:
  4118. {
  4119. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4120. ((float *)(tensor->data))[i] = value;
  4121. } break;
  4122. default:
  4123. {
  4124. GGML_ASSERT(false);
  4125. } break;
  4126. }
  4127. }
  4128. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4129. switch (tensor->type) {
  4130. case GGML_TYPE_I8:
  4131. {
  4132. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4133. return ((int8_t *)(tensor->data))[i];
  4134. } break;
  4135. case GGML_TYPE_I16:
  4136. {
  4137. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4138. return ((int16_t *)(tensor->data))[i];
  4139. } break;
  4140. case GGML_TYPE_I32:
  4141. {
  4142. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4143. return ((int32_t *)(tensor->data))[i];
  4144. } break;
  4145. case GGML_TYPE_F16:
  4146. {
  4147. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4148. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4149. } break;
  4150. case GGML_TYPE_F32:
  4151. {
  4152. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4153. return ((float *)(tensor->data))[i];
  4154. } break;
  4155. default:
  4156. {
  4157. GGML_ASSERT(false);
  4158. } break;
  4159. }
  4160. return 0.0f;
  4161. }
  4162. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4163. switch (tensor->type) {
  4164. case GGML_TYPE_I8:
  4165. {
  4166. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4167. ((int8_t *)(tensor->data))[i] = value;
  4168. } break;
  4169. case GGML_TYPE_I16:
  4170. {
  4171. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4172. ((int16_t *)(tensor->data))[i] = value;
  4173. } break;
  4174. case GGML_TYPE_I32:
  4175. {
  4176. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4177. ((int32_t *)(tensor->data))[i] = value;
  4178. } break;
  4179. case GGML_TYPE_F16:
  4180. {
  4181. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4182. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4183. } break;
  4184. case GGML_TYPE_F32:
  4185. {
  4186. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4187. ((float *)(tensor->data))[i] = value;
  4188. } break;
  4189. default:
  4190. {
  4191. GGML_ASSERT(false);
  4192. } break;
  4193. }
  4194. }
  4195. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4196. return tensor->data;
  4197. }
  4198. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4199. assert(tensor->type == GGML_TYPE_F32);
  4200. return (float *)(tensor->data);
  4201. }
  4202. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4203. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4204. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4205. }
  4206. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4207. return tensor->name;
  4208. }
  4209. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4210. strncpy(tensor->name, name, sizeof(tensor->name));
  4211. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4212. return tensor;
  4213. }
  4214. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4215. va_list args;
  4216. va_start(args, fmt);
  4217. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4218. va_end(args);
  4219. return tensor;
  4220. }
  4221. struct ggml_tensor * ggml_view_tensor(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * src) {
  4224. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4225. ggml_format_name(result, "%s (view)", src->name);
  4226. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4227. result->nb[i] = src->nb[i];
  4228. }
  4229. return result;
  4230. }
  4231. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4232. struct ggml_object * obj = ctx->objects_begin;
  4233. char * const mem_buffer = ctx->mem_buffer;
  4234. while (obj != NULL) {
  4235. if (obj->type == GGML_OBJECT_TENSOR) {
  4236. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4237. if (strcmp(cur->name, name) == 0) {
  4238. return cur;
  4239. }
  4240. }
  4241. obj = obj->next;
  4242. }
  4243. return NULL;
  4244. }
  4245. ////////////////////////////////////////////////////////////////////////////////
  4246. // ggml_dup
  4247. static struct ggml_tensor * ggml_dup_impl(
  4248. struct ggml_context * ctx,
  4249. struct ggml_tensor * a,
  4250. bool inplace) {
  4251. bool is_node = false;
  4252. if (!inplace && (a->grad)) {
  4253. is_node = true;
  4254. }
  4255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4256. result->op = GGML_OP_DUP;
  4257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4258. result->src[0] = a;
  4259. return result;
  4260. }
  4261. struct ggml_tensor * ggml_dup(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a) {
  4264. return ggml_dup_impl(ctx, a, false);
  4265. }
  4266. struct ggml_tensor * ggml_dup_inplace(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a) {
  4269. return ggml_dup_impl(ctx, a, true);
  4270. }
  4271. // ggml_add
  4272. static struct ggml_tensor * ggml_add_impl(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a,
  4275. struct ggml_tensor * b,
  4276. bool inplace) {
  4277. // TODO: support less-strict constraint
  4278. // GGML_ASSERT(ggml_can_repeat(b, a));
  4279. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4280. bool is_node = false;
  4281. if (!inplace && (a->grad || b->grad)) {
  4282. // TODO: support backward pass for broadcasting
  4283. GGML_ASSERT(ggml_are_same_shape(a, b));
  4284. is_node = true;
  4285. }
  4286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4287. result->op = GGML_OP_ADD;
  4288. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4289. result->src[0] = a;
  4290. result->src[1] = b;
  4291. return result;
  4292. }
  4293. struct ggml_tensor * ggml_add(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b) {
  4297. return ggml_add_impl(ctx, a, b, false);
  4298. }
  4299. struct ggml_tensor * ggml_add_inplace(
  4300. struct ggml_context * ctx,
  4301. struct ggml_tensor * a,
  4302. struct ggml_tensor * b) {
  4303. return ggml_add_impl(ctx, a, b, true);
  4304. }
  4305. // ggml_add1
  4306. static struct ggml_tensor * ggml_add1_impl(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a,
  4309. struct ggml_tensor * b,
  4310. bool inplace) {
  4311. GGML_ASSERT(ggml_is_scalar(b));
  4312. GGML_ASSERT(ggml_is_padded_1d(a));
  4313. bool is_node = false;
  4314. if (a->grad || b->grad) {
  4315. is_node = true;
  4316. }
  4317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4318. result->op = GGML_OP_ADD1;
  4319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4320. result->src[0] = a;
  4321. result->src[1] = b;
  4322. return result;
  4323. }
  4324. struct ggml_tensor * ggml_add1(
  4325. struct ggml_context * ctx,
  4326. struct ggml_tensor * a,
  4327. struct ggml_tensor * b) {
  4328. return ggml_add1_impl(ctx, a, b, false);
  4329. }
  4330. struct ggml_tensor * ggml_add1_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a,
  4333. struct ggml_tensor * b) {
  4334. return ggml_add1_impl(ctx, a, b, true);
  4335. }
  4336. // ggml_acc
  4337. static struct ggml_tensor * ggml_acc_impl(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a,
  4340. struct ggml_tensor * b,
  4341. size_t nb1,
  4342. size_t nb2,
  4343. size_t nb3,
  4344. size_t offset,
  4345. bool inplace) {
  4346. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4347. GGML_ASSERT(ggml_is_contiguous(a));
  4348. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4349. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4350. bool is_node = false;
  4351. if (!inplace && (a->grad || b->grad)) {
  4352. is_node = true;
  4353. }
  4354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4355. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4356. ggml_set_op_params(result, params, sizeof(params));
  4357. result->op = GGML_OP_ACC;
  4358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4359. result->src[0] = a;
  4360. result->src[1] = b;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_acc(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. struct ggml_tensor * b,
  4367. size_t nb1,
  4368. size_t nb2,
  4369. size_t nb3,
  4370. size_t offset) {
  4371. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4372. }
  4373. struct ggml_tensor * ggml_acc_inplace(
  4374. struct ggml_context * ctx,
  4375. struct ggml_tensor * a,
  4376. struct ggml_tensor * b,
  4377. size_t nb1,
  4378. size_t nb2,
  4379. size_t nb3,
  4380. size_t offset) {
  4381. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4382. }
  4383. // ggml_sub
  4384. static struct ggml_tensor * ggml_sub_impl(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a,
  4387. struct ggml_tensor * b,
  4388. bool inplace) {
  4389. GGML_ASSERT(ggml_are_same_shape(a, b));
  4390. bool is_node = false;
  4391. if (!inplace && (a->grad || b->grad)) {
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. result->op = GGML_OP_SUB;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. result->src[1] = b;
  4399. return result;
  4400. }
  4401. struct ggml_tensor * ggml_sub(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a,
  4404. struct ggml_tensor * b) {
  4405. return ggml_sub_impl(ctx, a, b, false);
  4406. }
  4407. struct ggml_tensor * ggml_sub_inplace(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a,
  4410. struct ggml_tensor * b) {
  4411. return ggml_sub_impl(ctx, a, b, true);
  4412. }
  4413. // ggml_mul
  4414. static struct ggml_tensor * ggml_mul_impl(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a,
  4417. struct ggml_tensor * b,
  4418. bool inplace) {
  4419. // TODO: support less-strict constraint
  4420. // GGML_ASSERT(ggml_can_repeat(b, a));
  4421. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4422. bool is_node = false;
  4423. if (!inplace && (a->grad || b->grad)) {
  4424. // TODO: support backward pass for broadcasting
  4425. GGML_ASSERT(ggml_are_same_shape(a, b));
  4426. is_node = true;
  4427. }
  4428. if (inplace) {
  4429. GGML_ASSERT(is_node == false);
  4430. }
  4431. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4432. result->op = GGML_OP_MUL;
  4433. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4434. result->src[0] = a;
  4435. result->src[1] = b;
  4436. return result;
  4437. }
  4438. struct ggml_tensor * ggml_mul(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b) {
  4442. return ggml_mul_impl(ctx, a, b, false);
  4443. }
  4444. struct ggml_tensor * ggml_mul_inplace(
  4445. struct ggml_context * ctx,
  4446. struct ggml_tensor * a,
  4447. struct ggml_tensor * b) {
  4448. return ggml_mul_impl(ctx, a, b, true);
  4449. }
  4450. // ggml_div
  4451. static struct ggml_tensor * ggml_div_impl(
  4452. struct ggml_context * ctx,
  4453. struct ggml_tensor * a,
  4454. struct ggml_tensor * b,
  4455. bool inplace) {
  4456. GGML_ASSERT(ggml_are_same_shape(a, b));
  4457. bool is_node = false;
  4458. if (!inplace && (a->grad || b->grad)) {
  4459. is_node = true;
  4460. }
  4461. if (inplace) {
  4462. GGML_ASSERT(is_node == false);
  4463. }
  4464. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4465. result->op = GGML_OP_DIV;
  4466. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4467. result->src[0] = a;
  4468. result->src[1] = b;
  4469. return result;
  4470. }
  4471. struct ggml_tensor * ggml_div(
  4472. struct ggml_context * ctx,
  4473. struct ggml_tensor * a,
  4474. struct ggml_tensor * b) {
  4475. return ggml_div_impl(ctx, a, b, false);
  4476. }
  4477. struct ggml_tensor * ggml_div_inplace(
  4478. struct ggml_context * ctx,
  4479. struct ggml_tensor * a,
  4480. struct ggml_tensor * b) {
  4481. return ggml_div_impl(ctx, a, b, true);
  4482. }
  4483. // ggml_sqr
  4484. static struct ggml_tensor * ggml_sqr_impl(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a,
  4487. bool inplace) {
  4488. bool is_node = false;
  4489. if (!inplace && (a->grad)) {
  4490. is_node = true;
  4491. }
  4492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4493. result->op = GGML_OP_SQR;
  4494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4495. result->src[0] = a;
  4496. return result;
  4497. }
  4498. struct ggml_tensor * ggml_sqr(
  4499. struct ggml_context * ctx,
  4500. struct ggml_tensor * a) {
  4501. return ggml_sqr_impl(ctx, a, false);
  4502. }
  4503. struct ggml_tensor * ggml_sqr_inplace(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a) {
  4506. return ggml_sqr_impl(ctx, a, true);
  4507. }
  4508. // ggml_sqrt
  4509. static struct ggml_tensor * ggml_sqrt_impl(
  4510. struct ggml_context * ctx,
  4511. struct ggml_tensor * a,
  4512. bool inplace) {
  4513. bool is_node = false;
  4514. if (!inplace && (a->grad)) {
  4515. is_node = true;
  4516. }
  4517. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4518. result->op = GGML_OP_SQRT;
  4519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4520. result->src[0] = a;
  4521. return result;
  4522. }
  4523. struct ggml_tensor * ggml_sqrt(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a) {
  4526. return ggml_sqrt_impl(ctx, a, false);
  4527. }
  4528. struct ggml_tensor * ggml_sqrt_inplace(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a) {
  4531. return ggml_sqrt_impl(ctx, a, true);
  4532. }
  4533. // ggml_log
  4534. static struct ggml_tensor * ggml_log_impl(
  4535. struct ggml_context * ctx,
  4536. struct ggml_tensor * a,
  4537. bool inplace) {
  4538. bool is_node = false;
  4539. if (!inplace && (a->grad)) {
  4540. is_node = true;
  4541. }
  4542. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4543. result->op = GGML_OP_LOG;
  4544. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4545. result->src[0] = a;
  4546. return result;
  4547. }
  4548. struct ggml_tensor * ggml_log(
  4549. struct ggml_context * ctx,
  4550. struct ggml_tensor * a) {
  4551. return ggml_log_impl(ctx, a, false);
  4552. }
  4553. struct ggml_tensor * ggml_log_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_log_impl(ctx, a, true);
  4557. }
  4558. // ggml_sum
  4559. struct ggml_tensor * ggml_sum(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a) {
  4562. bool is_node = false;
  4563. if (a->grad) {
  4564. is_node = true;
  4565. }
  4566. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4567. result->op = GGML_OP_SUM;
  4568. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4569. result->src[0] = a;
  4570. return result;
  4571. }
  4572. // ggml_sum_rows
  4573. struct ggml_tensor * ggml_sum_rows(
  4574. struct ggml_context * ctx,
  4575. struct ggml_tensor * a) {
  4576. bool is_node = false;
  4577. if (a->grad) {
  4578. is_node = true;
  4579. }
  4580. int64_t ne[4] = {1,1,1,1};
  4581. for (int i=1; i<a->n_dims; ++i) {
  4582. ne[i] = a->ne[i];
  4583. }
  4584. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4585. result->op = GGML_OP_SUM_ROWS;
  4586. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4587. result->src[0] = a;
  4588. return result;
  4589. }
  4590. // ggml_mean
  4591. struct ggml_tensor * ggml_mean(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a) {
  4594. bool is_node = false;
  4595. if (a->grad) {
  4596. GGML_ASSERT(false); // TODO: implement
  4597. is_node = true;
  4598. }
  4599. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4600. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4601. result->op = GGML_OP_MEAN;
  4602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4603. result->src[0] = a;
  4604. return result;
  4605. }
  4606. // ggml_argmax
  4607. struct ggml_tensor * ggml_argmax(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a) {
  4610. GGML_ASSERT(ggml_is_matrix(a));
  4611. bool is_node = false;
  4612. if (a->grad) {
  4613. GGML_ASSERT(false);
  4614. is_node = true;
  4615. }
  4616. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4617. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4618. result->op = GGML_OP_ARGMAX;
  4619. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4620. result->src[0] = a;
  4621. return result;
  4622. }
  4623. // ggml_repeat
  4624. struct ggml_tensor * ggml_repeat(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. struct ggml_tensor * b) {
  4628. GGML_ASSERT(ggml_can_repeat(a, b));
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. is_node = true;
  4632. }
  4633. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4634. result->op = GGML_OP_REPEAT;
  4635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4636. result->src[0] = a;
  4637. result->src[1] = b;
  4638. return result;
  4639. }
  4640. // ggml_repeat_back
  4641. struct ggml_tensor * ggml_repeat_back(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. struct ggml_tensor * b) {
  4645. GGML_ASSERT(ggml_can_repeat(b, a));
  4646. bool is_node = false;
  4647. if (a->grad) {
  4648. is_node = true;
  4649. }
  4650. if (ggml_are_same_shape(a, b) && !is_node) {
  4651. return a;
  4652. }
  4653. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4654. result->op = GGML_OP_REPEAT_BACK;
  4655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4656. result->src[0] = a;
  4657. result->src[1] = b;
  4658. return result;
  4659. }
  4660. // ggml_concat
  4661. struct ggml_tensor * ggml_concat(
  4662. struct ggml_context* ctx,
  4663. struct ggml_tensor* a,
  4664. struct ggml_tensor* b) {
  4665. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4666. bool is_node = false;
  4667. if (a->grad || b->grad) {
  4668. is_node = true;
  4669. }
  4670. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4671. result->op = GGML_OP_CONCAT;
  4672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4673. result->src[0] = a;
  4674. result->src[1] = b;
  4675. return result;
  4676. }
  4677. // ggml_abs
  4678. struct ggml_tensor * ggml_abs(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a) {
  4681. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4682. }
  4683. struct ggml_tensor * ggml_abs_inplace(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a) {
  4686. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4687. }
  4688. // ggml_sgn
  4689. struct ggml_tensor * ggml_sgn(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a) {
  4692. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4693. }
  4694. struct ggml_tensor * ggml_sgn_inplace(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a) {
  4697. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4698. }
  4699. // ggml_neg
  4700. struct ggml_tensor * ggml_neg(
  4701. struct ggml_context * ctx,
  4702. struct ggml_tensor * a) {
  4703. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4704. }
  4705. struct ggml_tensor * ggml_neg_inplace(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a) {
  4708. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4709. }
  4710. // ggml_step
  4711. struct ggml_tensor * ggml_step(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a) {
  4714. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4715. }
  4716. struct ggml_tensor * ggml_step_inplace(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a) {
  4719. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4720. }
  4721. // ggml_tanh
  4722. struct ggml_tensor * ggml_tanh(
  4723. struct ggml_context * ctx,
  4724. struct ggml_tensor * a) {
  4725. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4726. }
  4727. struct ggml_tensor * ggml_tanh_inplace(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a) {
  4730. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4731. }
  4732. // ggml_elu
  4733. struct ggml_tensor * ggml_elu(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a) {
  4736. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4737. }
  4738. struct ggml_tensor * ggml_elu_inplace(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a) {
  4741. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4742. }
  4743. // ggml_relu
  4744. struct ggml_tensor * ggml_relu(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a) {
  4747. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4748. }
  4749. struct ggml_tensor * ggml_relu_inplace(
  4750. struct ggml_context * ctx,
  4751. struct ggml_tensor * a) {
  4752. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4753. }
  4754. // ggml_gelu
  4755. struct ggml_tensor * ggml_gelu(
  4756. struct ggml_context * ctx,
  4757. struct ggml_tensor * a) {
  4758. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4759. }
  4760. struct ggml_tensor * ggml_gelu_inplace(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a) {
  4763. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4764. }
  4765. // ggml_gelu_quick
  4766. struct ggml_tensor * ggml_gelu_quick(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a) {
  4769. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4770. }
  4771. struct ggml_tensor * ggml_gelu_quick_inplace(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a) {
  4774. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4775. }
  4776. // ggml_silu
  4777. struct ggml_tensor * ggml_silu(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a) {
  4780. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4781. }
  4782. struct ggml_tensor * ggml_silu_inplace(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a) {
  4785. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4786. }
  4787. // ggml_silu_back
  4788. struct ggml_tensor * ggml_silu_back(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. struct ggml_tensor * b) {
  4792. bool is_node = false;
  4793. if (a->grad || b->grad) {
  4794. // TODO: implement backward
  4795. is_node = true;
  4796. }
  4797. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4798. result->op = GGML_OP_SILU_BACK;
  4799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4800. result->src[0] = a;
  4801. result->src[1] = b;
  4802. return result;
  4803. }
  4804. // ggml_norm
  4805. static struct ggml_tensor * ggml_norm_impl(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a,
  4808. float eps,
  4809. bool inplace) {
  4810. bool is_node = false;
  4811. if (!inplace && (a->grad)) {
  4812. GGML_ASSERT(false); // TODO: implement backward
  4813. is_node = true;
  4814. }
  4815. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4816. ggml_set_op_params(result, &eps, sizeof(eps));
  4817. result->op = GGML_OP_NORM;
  4818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4819. result->src[0] = a;
  4820. return result;
  4821. }
  4822. struct ggml_tensor * ggml_norm(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. float eps) {
  4826. return ggml_norm_impl(ctx, a, eps, false);
  4827. }
  4828. struct ggml_tensor * ggml_norm_inplace(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a,
  4831. float eps) {
  4832. return ggml_norm_impl(ctx, a, eps, true);
  4833. }
  4834. // ggml_rms_norm
  4835. static struct ggml_tensor * ggml_rms_norm_impl(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. float eps,
  4839. bool inplace) {
  4840. bool is_node = false;
  4841. if (!inplace && (a->grad)) {
  4842. is_node = true;
  4843. }
  4844. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4845. ggml_set_op_params(result, &eps, sizeof(eps));
  4846. result->op = GGML_OP_RMS_NORM;
  4847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4848. result->src[0] = a;
  4849. return result;
  4850. }
  4851. struct ggml_tensor * ggml_rms_norm(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. float eps) {
  4855. return ggml_rms_norm_impl(ctx, a, eps, false);
  4856. }
  4857. struct ggml_tensor * ggml_rms_norm_inplace(
  4858. struct ggml_context * ctx,
  4859. struct ggml_tensor * a,
  4860. float eps) {
  4861. return ggml_rms_norm_impl(ctx, a, eps, true);
  4862. }
  4863. // ggml_rms_norm_back
  4864. struct ggml_tensor * ggml_rms_norm_back(
  4865. struct ggml_context * ctx,
  4866. struct ggml_tensor * a,
  4867. struct ggml_tensor * b,
  4868. float eps) {
  4869. bool is_node = false;
  4870. if (a->grad) {
  4871. // TODO: implement backward
  4872. is_node = true;
  4873. }
  4874. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4875. ggml_set_op_params(result, &eps, sizeof(eps));
  4876. result->op = GGML_OP_RMS_NORM_BACK;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src[0] = a;
  4879. result->src[1] = b;
  4880. return result;
  4881. }
  4882. // ggml_group_norm
  4883. static struct ggml_tensor * ggml_group_norm_impl(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * a,
  4886. int n_groups,
  4887. bool inplace) {
  4888. bool is_node = false;
  4889. if (!inplace && (a->grad)) {
  4890. GGML_ASSERT(false); // TODO: implement backward
  4891. is_node = true;
  4892. }
  4893. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4894. result->op = GGML_OP_GROUP_NORM;
  4895. result->op_params[0] = n_groups;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src[0] = a;
  4898. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4899. return result;
  4900. }
  4901. struct ggml_tensor * ggml_group_norm(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a,
  4904. int n_groups) {
  4905. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4906. }
  4907. struct ggml_tensor * ggml_group_norm_inplace(
  4908. struct ggml_context * ctx,
  4909. struct ggml_tensor * a,
  4910. int n_groups) {
  4911. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4912. }
  4913. // ggml_mul_mat
  4914. struct ggml_tensor * ggml_mul_mat(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b) {
  4918. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4919. GGML_ASSERT(!ggml_is_transposed(a));
  4920. bool is_node = false;
  4921. if (a->grad || b->grad) {
  4922. is_node = true;
  4923. }
  4924. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4925. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4926. result->op = GGML_OP_MUL_MAT;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src[0] = a;
  4929. result->src[1] = b;
  4930. return result;
  4931. }
  4932. // ggml_out_prod
  4933. struct ggml_tensor * ggml_out_prod(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b) {
  4937. GGML_ASSERT(ggml_can_out_prod(a, b));
  4938. GGML_ASSERT(!ggml_is_transposed(a));
  4939. bool is_node = false;
  4940. if (a->grad || b->grad) {
  4941. is_node = true;
  4942. }
  4943. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4944. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4945. result->op = GGML_OP_OUT_PROD;
  4946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4947. result->src[0] = a;
  4948. result->src[1] = b;
  4949. return result;
  4950. }
  4951. // ggml_scale
  4952. static struct ggml_tensor * ggml_scale_impl(
  4953. struct ggml_context * ctx,
  4954. struct ggml_tensor * a,
  4955. struct ggml_tensor * b,
  4956. bool inplace) {
  4957. GGML_ASSERT(ggml_is_scalar(b));
  4958. GGML_ASSERT(ggml_is_padded_1d(a));
  4959. bool is_node = false;
  4960. if (a->grad || b->grad) {
  4961. is_node = true;
  4962. }
  4963. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4964. result->op = GGML_OP_SCALE;
  4965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4966. result->src[0] = a;
  4967. result->src[1] = b;
  4968. return result;
  4969. }
  4970. struct ggml_tensor * ggml_scale(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a,
  4973. struct ggml_tensor * b) {
  4974. return ggml_scale_impl(ctx, a, b, false);
  4975. }
  4976. struct ggml_tensor * ggml_scale_inplace(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b) {
  4980. return ggml_scale_impl(ctx, a, b, true);
  4981. }
  4982. // ggml_set
  4983. static struct ggml_tensor * ggml_set_impl(
  4984. struct ggml_context * ctx,
  4985. struct ggml_tensor * a,
  4986. struct ggml_tensor * b,
  4987. size_t nb1,
  4988. size_t nb2,
  4989. size_t nb3,
  4990. size_t offset,
  4991. bool inplace) {
  4992. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4993. bool is_node = false;
  4994. if (a->grad || b->grad) {
  4995. is_node = true;
  4996. }
  4997. // make a view of the destination
  4998. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4999. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5000. ggml_set_op_params(result, params, sizeof(params));
  5001. result->op = GGML_OP_SET;
  5002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5003. result->src[0] = a;
  5004. result->src[1] = b;
  5005. return result;
  5006. }
  5007. struct ggml_tensor * ggml_set(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. struct ggml_tensor * b,
  5011. size_t nb1,
  5012. size_t nb2,
  5013. size_t nb3,
  5014. size_t offset) {
  5015. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5016. }
  5017. struct ggml_tensor * ggml_set_inplace(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. struct ggml_tensor * b,
  5021. size_t nb1,
  5022. size_t nb2,
  5023. size_t nb3,
  5024. size_t offset) {
  5025. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5026. }
  5027. struct ggml_tensor * ggml_set_1d(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. struct ggml_tensor * b,
  5031. size_t offset) {
  5032. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5033. }
  5034. struct ggml_tensor * ggml_set_1d_inplace(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b,
  5038. size_t offset) {
  5039. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5040. }
  5041. struct ggml_tensor * ggml_set_2d(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. struct ggml_tensor * b,
  5045. size_t nb1,
  5046. size_t offset) {
  5047. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5048. }
  5049. struct ggml_tensor * ggml_set_2d_inplace(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. struct ggml_tensor * b,
  5053. size_t nb1,
  5054. size_t offset) {
  5055. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5056. }
  5057. // ggml_cpy
  5058. static struct ggml_tensor * ggml_cpy_impl(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. struct ggml_tensor * b,
  5062. bool inplace) {
  5063. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5064. bool is_node = false;
  5065. if (!inplace && (a->grad || b->grad)) {
  5066. is_node = true;
  5067. }
  5068. // make a view of the destination
  5069. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5070. if (strlen(b->name) > 0) {
  5071. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5072. } else {
  5073. ggml_format_name(result, "%s (copy)", a->name);
  5074. }
  5075. result->op = GGML_OP_CPY;
  5076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5077. result->src[0] = a;
  5078. result->src[1] = b;
  5079. return result;
  5080. }
  5081. struct ggml_tensor * ggml_cpy(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. struct ggml_tensor * b) {
  5085. return ggml_cpy_impl(ctx, a, b, false);
  5086. }
  5087. struct ggml_tensor * ggml_cpy_inplace(
  5088. struct ggml_context * ctx,
  5089. struct ggml_tensor * a,
  5090. struct ggml_tensor * b) {
  5091. return ggml_cpy_impl(ctx, a, b, true);
  5092. }
  5093. // ggml_cont
  5094. static struct ggml_tensor * ggml_cont_impl(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. bool inplace) {
  5098. bool is_node = false;
  5099. if (!inplace && a->grad) {
  5100. is_node = true;
  5101. }
  5102. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5103. ggml_format_name(result, "%s (cont)", a->name);
  5104. result->op = GGML_OP_CONT;
  5105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5106. result->src[0] = a;
  5107. return result;
  5108. }
  5109. struct ggml_tensor * ggml_cont(
  5110. struct ggml_context * ctx,
  5111. struct ggml_tensor * a) {
  5112. return ggml_cont_impl(ctx, a, false);
  5113. }
  5114. struct ggml_tensor * ggml_cont_inplace(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a) {
  5117. return ggml_cont_impl(ctx, a, true);
  5118. }
  5119. // ggml_reshape
  5120. struct ggml_tensor * ggml_reshape(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. struct ggml_tensor * b) {
  5124. GGML_ASSERT(ggml_is_contiguous(a));
  5125. GGML_ASSERT(ggml_is_contiguous(b));
  5126. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5127. bool is_node = false;
  5128. if (a->grad) {
  5129. is_node = true;
  5130. }
  5131. if (b->grad) {
  5132. // gradient propagation is not supported
  5133. //GGML_ASSERT(false);
  5134. }
  5135. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5136. ggml_format_name(result, "%s (reshaped)", a->name);
  5137. result->op = GGML_OP_RESHAPE;
  5138. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5139. result->src[0] = a;
  5140. return result;
  5141. }
  5142. struct ggml_tensor * ggml_reshape_1d(
  5143. struct ggml_context * ctx,
  5144. struct ggml_tensor * a,
  5145. int64_t ne0) {
  5146. GGML_ASSERT(ggml_is_contiguous(a));
  5147. GGML_ASSERT(ggml_nelements(a) == ne0);
  5148. bool is_node = false;
  5149. if (a->grad) {
  5150. is_node = true;
  5151. }
  5152. const int64_t ne[1] = { ne0 };
  5153. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5154. ggml_format_name(result, "%s (reshaped)", a->name);
  5155. result->op = GGML_OP_RESHAPE;
  5156. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5157. result->src[0] = a;
  5158. return result;
  5159. }
  5160. struct ggml_tensor * ggml_reshape_2d(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. int64_t ne0,
  5164. int64_t ne1) {
  5165. GGML_ASSERT(ggml_is_contiguous(a));
  5166. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5167. bool is_node = false;
  5168. if (a->grad) {
  5169. is_node = true;
  5170. }
  5171. const int64_t ne[2] = { ne0, ne1 };
  5172. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5173. ggml_format_name(result, "%s (reshaped)", a->name);
  5174. result->op = GGML_OP_RESHAPE;
  5175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5176. result->src[0] = a;
  5177. return result;
  5178. }
  5179. struct ggml_tensor * ggml_reshape_3d(
  5180. struct ggml_context * ctx,
  5181. struct ggml_tensor * a,
  5182. int64_t ne0,
  5183. int64_t ne1,
  5184. int64_t ne2) {
  5185. GGML_ASSERT(ggml_is_contiguous(a));
  5186. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5187. bool is_node = false;
  5188. if (a->grad) {
  5189. is_node = true;
  5190. }
  5191. const int64_t ne[3] = { ne0, ne1, ne2 };
  5192. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5193. ggml_format_name(result, "%s (reshaped)", a->name);
  5194. result->op = GGML_OP_RESHAPE;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src[0] = a;
  5197. return result;
  5198. }
  5199. struct ggml_tensor * ggml_reshape_4d(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. int64_t ne0,
  5203. int64_t ne1,
  5204. int64_t ne2,
  5205. int64_t ne3) {
  5206. GGML_ASSERT(ggml_is_contiguous(a));
  5207. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5208. bool is_node = false;
  5209. if (a->grad) {
  5210. is_node = true;
  5211. }
  5212. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5213. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5214. ggml_format_name(result, "%s (reshaped)", a->name);
  5215. result->op = GGML_OP_RESHAPE;
  5216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5217. result->src[0] = a;
  5218. return result;
  5219. }
  5220. static struct ggml_tensor * ggml_view_impl(
  5221. struct ggml_context * ctx,
  5222. struct ggml_tensor * a,
  5223. int n_dims,
  5224. const int64_t * ne,
  5225. size_t offset) {
  5226. bool is_node = false;
  5227. if (a->grad) {
  5228. is_node = true;
  5229. }
  5230. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5231. ggml_format_name(result, "%s (view)", a->name);
  5232. ggml_set_op_params(result, &offset, sizeof(offset));
  5233. result->op = GGML_OP_VIEW;
  5234. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5235. result->src[0] = a;
  5236. return result;
  5237. }
  5238. // ggml_view_1d
  5239. struct ggml_tensor * ggml_view_1d(
  5240. struct ggml_context * ctx,
  5241. struct ggml_tensor * a,
  5242. int64_t ne0,
  5243. size_t offset) {
  5244. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5245. return result;
  5246. }
  5247. // ggml_view_2d
  5248. struct ggml_tensor * ggml_view_2d(
  5249. struct ggml_context * ctx,
  5250. struct ggml_tensor * a,
  5251. int64_t ne0,
  5252. int64_t ne1,
  5253. size_t nb1,
  5254. size_t offset) {
  5255. const int64_t ne[2] = { ne0, ne1 };
  5256. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5257. result->nb[1] = nb1;
  5258. result->nb[2] = result->nb[1]*ne1;
  5259. result->nb[3] = result->nb[2];
  5260. return result;
  5261. }
  5262. // ggml_view_3d
  5263. struct ggml_tensor * ggml_view_3d(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. int64_t ne0,
  5267. int64_t ne1,
  5268. int64_t ne2,
  5269. size_t nb1,
  5270. size_t nb2,
  5271. size_t offset) {
  5272. const int64_t ne[3] = { ne0, ne1, ne2 };
  5273. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5274. result->nb[1] = nb1;
  5275. result->nb[2] = nb2;
  5276. result->nb[3] = result->nb[2]*ne2;
  5277. return result;
  5278. }
  5279. // ggml_view_4d
  5280. struct ggml_tensor * ggml_view_4d(
  5281. struct ggml_context * ctx,
  5282. struct ggml_tensor * a,
  5283. int64_t ne0,
  5284. int64_t ne1,
  5285. int64_t ne2,
  5286. int64_t ne3,
  5287. size_t nb1,
  5288. size_t nb2,
  5289. size_t nb3,
  5290. size_t offset) {
  5291. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5292. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5293. result->nb[1] = nb1;
  5294. result->nb[2] = nb2;
  5295. result->nb[3] = nb3;
  5296. return result;
  5297. }
  5298. // ggml_permute
  5299. struct ggml_tensor * ggml_permute(
  5300. struct ggml_context * ctx,
  5301. struct ggml_tensor * a,
  5302. int axis0,
  5303. int axis1,
  5304. int axis2,
  5305. int axis3) {
  5306. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5307. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5308. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5309. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5310. GGML_ASSERT(axis0 != axis1);
  5311. GGML_ASSERT(axis0 != axis2);
  5312. GGML_ASSERT(axis0 != axis3);
  5313. GGML_ASSERT(axis1 != axis2);
  5314. GGML_ASSERT(axis1 != axis3);
  5315. GGML_ASSERT(axis2 != axis3);
  5316. bool is_node = false;
  5317. if (a->grad) {
  5318. is_node = true;
  5319. }
  5320. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5321. ggml_format_name(result, "%s (permuted)", a->name);
  5322. int ne[GGML_MAX_DIMS];
  5323. int nb[GGML_MAX_DIMS];
  5324. ne[axis0] = a->ne[0];
  5325. ne[axis1] = a->ne[1];
  5326. ne[axis2] = a->ne[2];
  5327. ne[axis3] = a->ne[3];
  5328. nb[axis0] = a->nb[0];
  5329. nb[axis1] = a->nb[1];
  5330. nb[axis2] = a->nb[2];
  5331. nb[axis3] = a->nb[3];
  5332. result->ne[0] = ne[0];
  5333. result->ne[1] = ne[1];
  5334. result->ne[2] = ne[2];
  5335. result->ne[3] = ne[3];
  5336. result->nb[0] = nb[0];
  5337. result->nb[1] = nb[1];
  5338. result->nb[2] = nb[2];
  5339. result->nb[3] = nb[3];
  5340. result->op = GGML_OP_PERMUTE;
  5341. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5342. result->src[0] = a;
  5343. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5344. ggml_set_op_params(result, params, sizeof(params));
  5345. return result;
  5346. }
  5347. // ggml_transpose
  5348. struct ggml_tensor * ggml_transpose(
  5349. struct ggml_context * ctx,
  5350. struct ggml_tensor * a) {
  5351. bool is_node = false;
  5352. if (a->grad) {
  5353. is_node = true;
  5354. }
  5355. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5356. ggml_format_name(result, "%s (transposed)", a->name);
  5357. result->ne[0] = a->ne[1];
  5358. result->ne[1] = a->ne[0];
  5359. result->nb[0] = a->nb[1];
  5360. result->nb[1] = a->nb[0];
  5361. result->op = GGML_OP_TRANSPOSE;
  5362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5363. result->src[0] = a;
  5364. return result;
  5365. }
  5366. // ggml_get_rows
  5367. struct ggml_tensor * ggml_get_rows(
  5368. struct ggml_context * ctx,
  5369. struct ggml_tensor * a,
  5370. struct ggml_tensor * b) {
  5371. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5372. bool is_node = false;
  5373. if (a->grad || b->grad) {
  5374. is_node = true;
  5375. }
  5376. // TODO: implement non F32 return
  5377. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5378. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5379. result->op = GGML_OP_GET_ROWS;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src[0] = a;
  5382. result->src[1] = b;
  5383. return result;
  5384. }
  5385. // ggml_get_rows_back
  5386. struct ggml_tensor * ggml_get_rows_back(
  5387. struct ggml_context * ctx,
  5388. struct ggml_tensor * a,
  5389. struct ggml_tensor * b,
  5390. struct ggml_tensor * c) {
  5391. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5392. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5393. bool is_node = false;
  5394. if (a->grad || b->grad) {
  5395. is_node = true;
  5396. }
  5397. // TODO: implement non F32 return
  5398. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5399. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5400. result->op = GGML_OP_GET_ROWS_BACK;
  5401. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5402. result->src[0] = a;
  5403. result->src[1] = b;
  5404. result->src[2] = c;
  5405. return result;
  5406. }
  5407. // ggml_diag
  5408. struct ggml_tensor * ggml_diag(
  5409. struct ggml_context * ctx,
  5410. struct ggml_tensor * a) {
  5411. GGML_ASSERT(a->ne[1] == 1);
  5412. bool is_node = false;
  5413. if (a->grad) {
  5414. is_node = true;
  5415. }
  5416. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5417. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5418. result->op = GGML_OP_DIAG;
  5419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5420. result->src[0] = a;
  5421. return result;
  5422. }
  5423. // ggml_diag_mask_inf
  5424. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a,
  5427. int n_past,
  5428. bool inplace) {
  5429. bool is_node = false;
  5430. if (a->grad) {
  5431. is_node = true;
  5432. }
  5433. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5434. int32_t params[] = { n_past };
  5435. ggml_set_op_params(result, params, sizeof(params));
  5436. result->op = GGML_OP_DIAG_MASK_INF;
  5437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5438. result->src[0] = a;
  5439. return result;
  5440. }
  5441. struct ggml_tensor * ggml_diag_mask_inf(
  5442. struct ggml_context * ctx,
  5443. struct ggml_tensor * a,
  5444. int n_past) {
  5445. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5446. }
  5447. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5448. struct ggml_context * ctx,
  5449. struct ggml_tensor * a,
  5450. int n_past) {
  5451. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5452. }
  5453. // ggml_diag_mask_zero
  5454. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5455. struct ggml_context * ctx,
  5456. struct ggml_tensor * a,
  5457. int n_past,
  5458. bool inplace) {
  5459. bool is_node = false;
  5460. if (a->grad) {
  5461. is_node = true;
  5462. }
  5463. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5464. int32_t params[] = { n_past };
  5465. ggml_set_op_params(result, params, sizeof(params));
  5466. result->op = GGML_OP_DIAG_MASK_ZERO;
  5467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5468. result->src[0] = a;
  5469. return result;
  5470. }
  5471. struct ggml_tensor * ggml_diag_mask_zero(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. int n_past) {
  5475. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5476. }
  5477. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. int n_past) {
  5481. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5482. }
  5483. // ggml_soft_max
  5484. static struct ggml_tensor * ggml_soft_max_impl(
  5485. struct ggml_context * ctx,
  5486. struct ggml_tensor * a,
  5487. bool inplace) {
  5488. bool is_node = false;
  5489. if (a->grad) {
  5490. is_node = true;
  5491. }
  5492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5493. result->op = GGML_OP_SOFT_MAX;
  5494. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5495. result->src[0] = a;
  5496. return result;
  5497. }
  5498. struct ggml_tensor * ggml_soft_max(
  5499. struct ggml_context * ctx,
  5500. struct ggml_tensor * a) {
  5501. return ggml_soft_max_impl(ctx, a, false);
  5502. }
  5503. struct ggml_tensor * ggml_soft_max_inplace(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a) {
  5506. return ggml_soft_max_impl(ctx, a, true);
  5507. }
  5508. // ggml_soft_max_back
  5509. static struct ggml_tensor * ggml_soft_max_back_impl(
  5510. struct ggml_context * ctx,
  5511. struct ggml_tensor * a,
  5512. struct ggml_tensor * b,
  5513. bool inplace) {
  5514. bool is_node = false;
  5515. if (a->grad || b->grad) {
  5516. is_node = true; // TODO : implement backward pass
  5517. }
  5518. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5519. result->op = GGML_OP_SOFT_MAX_BACK;
  5520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5521. result->src[0] = a;
  5522. result->src[1] = b;
  5523. return result;
  5524. }
  5525. struct ggml_tensor * ggml_soft_max_back(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. struct ggml_tensor * b) {
  5529. return ggml_soft_max_back_impl(ctx, a, b, false);
  5530. }
  5531. struct ggml_tensor * ggml_soft_max_back_inplace(
  5532. struct ggml_context * ctx,
  5533. struct ggml_tensor * a,
  5534. struct ggml_tensor * b) {
  5535. return ggml_soft_max_back_impl(ctx, a, b, true);
  5536. }
  5537. // ggml_rope
  5538. static struct ggml_tensor * ggml_rope_impl(
  5539. struct ggml_context * ctx,
  5540. struct ggml_tensor * a,
  5541. int n_past,
  5542. int n_dims,
  5543. int mode,
  5544. int n_ctx,
  5545. float freq_base,
  5546. float freq_scale,
  5547. float xpos_base,
  5548. bool xpos_down,
  5549. bool inplace) {
  5550. GGML_ASSERT(n_past >= 0);
  5551. bool is_node = false;
  5552. if (a->grad) {
  5553. is_node = true;
  5554. }
  5555. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5556. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5557. memcpy(params + 4, &freq_base, sizeof(float));
  5558. memcpy(params + 5, &freq_scale, sizeof(float));
  5559. memcpy(params + 6, &xpos_base, sizeof(float));
  5560. memcpy(params + 7, &xpos_down, sizeof(bool));
  5561. ggml_set_op_params(result, params, sizeof(params));
  5562. result->op = GGML_OP_ROPE;
  5563. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5564. result->src[0] = a;
  5565. return result;
  5566. }
  5567. struct ggml_tensor * ggml_rope(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a,
  5570. int n_past,
  5571. int n_dims,
  5572. int mode,
  5573. int n_ctx) {
  5574. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5575. }
  5576. struct ggml_tensor * ggml_rope_inplace(
  5577. struct ggml_context * ctx,
  5578. struct ggml_tensor * a,
  5579. int n_past,
  5580. int n_dims,
  5581. int mode,
  5582. int n_ctx) {
  5583. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5584. }
  5585. struct ggml_tensor * ggml_rope_custom(
  5586. struct ggml_context * ctx,
  5587. struct ggml_tensor * a,
  5588. int n_past,
  5589. int n_dims,
  5590. int mode,
  5591. int n_ctx,
  5592. float freq_base,
  5593. float freq_scale) {
  5594. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5595. }
  5596. struct ggml_tensor * ggml_rope_custom_inplace(
  5597. struct ggml_context * ctx,
  5598. struct ggml_tensor * a,
  5599. int n_past,
  5600. int n_dims,
  5601. int mode,
  5602. int n_ctx,
  5603. float freq_base,
  5604. float freq_scale) {
  5605. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5606. }
  5607. struct ggml_tensor * ggml_rope_xpos_inplace(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. int n_past,
  5611. int n_dims,
  5612. float base,
  5613. bool down) {
  5614. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5615. }
  5616. // ggml_rope_back
  5617. struct ggml_tensor * ggml_rope_back(
  5618. struct ggml_context * ctx,
  5619. struct ggml_tensor * a,
  5620. int n_past,
  5621. int n_dims,
  5622. int mode,
  5623. int n_ctx,
  5624. float freq_base,
  5625. float freq_scale,
  5626. float xpos_base,
  5627. bool xpos_down) {
  5628. GGML_ASSERT(n_past >= 0);
  5629. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5630. bool is_node = false;
  5631. if (a->grad) {
  5632. is_node = false; // TODO: implement backward
  5633. }
  5634. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5635. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5636. memcpy(params + 4, &freq_base, sizeof(float));
  5637. memcpy(params + 5, &freq_scale, sizeof(float));
  5638. memcpy(params + 6, &xpos_base, sizeof(float));
  5639. memcpy(params + 7, &xpos_down, sizeof(bool));
  5640. ggml_set_op_params(result, params, sizeof(params));
  5641. result->op = GGML_OP_ROPE_BACK;
  5642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5643. result->src[0] = a;
  5644. return result;
  5645. }
  5646. // ggml_alibi
  5647. struct ggml_tensor * ggml_alibi(
  5648. struct ggml_context * ctx,
  5649. struct ggml_tensor * a,
  5650. int n_past,
  5651. int n_head,
  5652. float bias_max) {
  5653. GGML_ASSERT(n_past >= 0);
  5654. bool is_node = false;
  5655. if (a->grad) {
  5656. GGML_ASSERT(false); // TODO: implement backward
  5657. is_node = true;
  5658. }
  5659. // TODO: when implement backward, fix this:
  5660. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5661. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5662. int32_t op_params[3] = { n_past, n_head };
  5663. memcpy(op_params + 2, &bias_max, sizeof(float));
  5664. ggml_set_op_params(result, op_params, sizeof(op_params));
  5665. result->op = GGML_OP_ALIBI;
  5666. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5667. result->src[0] = a;
  5668. return result;
  5669. }
  5670. // ggml_clamp
  5671. struct ggml_tensor * ggml_clamp(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. float min,
  5675. float max) {
  5676. bool is_node = false;
  5677. if (a->grad) {
  5678. GGML_ASSERT(false); // TODO: implement backward
  5679. is_node = true;
  5680. }
  5681. // TODO: when implement backward, fix this:
  5682. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5683. float params[] = { min, max };
  5684. ggml_set_op_params(result, params, sizeof(params));
  5685. result->op = GGML_OP_CLAMP;
  5686. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5687. result->src[0] = a;
  5688. return result;
  5689. }
  5690. // ggml_conv_1d
  5691. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5692. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5693. }
  5694. GGML_API struct ggml_tensor * ggml_conv_1d(
  5695. struct ggml_context * ctx,
  5696. struct ggml_tensor * a,
  5697. struct ggml_tensor * b,
  5698. int s0,
  5699. int p0,
  5700. int d0) {
  5701. GGML_ASSERT(ggml_is_matrix(b));
  5702. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5703. bool is_node = false;
  5704. if (a->grad || b->grad) {
  5705. GGML_ASSERT(false); // TODO: implement backward
  5706. is_node = true;
  5707. }
  5708. const int64_t ne[4] = {
  5709. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5710. a->ne[2], 1, 1,
  5711. };
  5712. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5713. int32_t params[] = { s0, p0, d0 };
  5714. ggml_set_op_params(result, params, sizeof(params));
  5715. result->op = GGML_OP_CONV_1D;
  5716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5717. result->src[0] = a;
  5718. result->src[1] = b;
  5719. return result;
  5720. }
  5721. // ggml_conv_1d_ph
  5722. struct ggml_tensor* ggml_conv_1d_ph(
  5723. struct ggml_context * ctx,
  5724. struct ggml_tensor * a,
  5725. struct ggml_tensor * b,
  5726. int s,
  5727. int d) {
  5728. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5729. }
  5730. // ggml_conv_2d
  5731. struct ggml_tensor * ggml_conv_2d(
  5732. struct ggml_context * ctx,
  5733. struct ggml_tensor * a,
  5734. struct ggml_tensor * b,
  5735. int s0,
  5736. int s1,
  5737. int p0,
  5738. int p1,
  5739. int d0,
  5740. int d1) {
  5741. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5742. bool is_node = false;
  5743. if (a->grad || b->grad) {
  5744. GGML_ASSERT(false); // TODO: implement backward
  5745. is_node = true;
  5746. }
  5747. const int64_t ne[4] = {
  5748. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5749. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5750. a->ne[3], b->ne[3],
  5751. };
  5752. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5753. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5754. ggml_set_op_params(result, params, sizeof(params));
  5755. result->op = GGML_OP_CONV_2D;
  5756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5757. result->src[0] = a;
  5758. result->src[1] = b;
  5759. return result;
  5760. }
  5761. // ggml_conv_2d_sk_p0
  5762. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5763. struct ggml_context * ctx,
  5764. struct ggml_tensor * a,
  5765. struct ggml_tensor * b) {
  5766. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5767. }
  5768. // ggml_conv_2d_s1_ph
  5769. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5770. struct ggml_context * ctx,
  5771. struct ggml_tensor * a,
  5772. struct ggml_tensor * b) {
  5773. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5774. }
  5775. // ggml_conv_transpose_2d_p0
  5776. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5777. return (ins - 1) * s - 2 * p + ks;
  5778. }
  5779. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5780. struct ggml_context * ctx,
  5781. struct ggml_tensor * a,
  5782. struct ggml_tensor * b,
  5783. int stride) {
  5784. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5785. bool is_node = false;
  5786. if (a->grad || b->grad) {
  5787. GGML_ASSERT(false); // TODO: implement backward
  5788. is_node = true;
  5789. }
  5790. const int64_t ne[4] = {
  5791. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5792. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5793. a->ne[2], b->ne[3],
  5794. };
  5795. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5796. ggml_set_op_params_i32(result, 0, stride);
  5797. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5798. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5799. result->src[0] = a;
  5800. result->src[1] = b;
  5801. return result;
  5802. }
  5803. // ggml_pool_*
  5804. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5805. return (ins + 2 * p - ks) / s + 1;
  5806. }
  5807. // ggml_pool_1d
  5808. struct ggml_tensor * ggml_pool_1d(
  5809. struct ggml_context * ctx,
  5810. struct ggml_tensor * a,
  5811. enum ggml_op_pool op,
  5812. int k0,
  5813. int s0,
  5814. int p0) {
  5815. bool is_node = false;
  5816. if (a->grad) {
  5817. GGML_ASSERT(false); // TODO: implement backward
  5818. is_node = true;
  5819. }
  5820. const int64_t ne[3] = {
  5821. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5822. a->ne[1],
  5823. };
  5824. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5825. int32_t params[] = { op, k0, s0, p0 };
  5826. ggml_set_op_params(result, params, sizeof(params));
  5827. result->op = GGML_OP_POOL_1D;
  5828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5829. result->src[0] = a;
  5830. return result;
  5831. }
  5832. // ggml_pool_2d
  5833. struct ggml_tensor * ggml_pool_2d(
  5834. struct ggml_context * ctx,
  5835. struct ggml_tensor * a,
  5836. enum ggml_op_pool op,
  5837. int k0,
  5838. int k1,
  5839. int s0,
  5840. int s1,
  5841. int p0,
  5842. int p1) {
  5843. bool is_node = false;
  5844. if (a->grad) {
  5845. GGML_ASSERT(false); // TODO: implement backward
  5846. is_node = true;
  5847. }
  5848. const int64_t ne[3] = {
  5849. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5850. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5851. a->ne[2],
  5852. };
  5853. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5854. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5855. ggml_set_op_params(result, params, sizeof(params));
  5856. result->op = GGML_OP_POOL_2D;
  5857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5858. result->src[0] = a;
  5859. return result;
  5860. }
  5861. // ggml_upscale
  5862. static struct ggml_tensor * ggml_upscale_impl(
  5863. struct ggml_context * ctx,
  5864. struct ggml_tensor * a,
  5865. int scale_factor) {
  5866. bool is_node = false;
  5867. if (a->grad) {
  5868. GGML_ASSERT(false); // TODO: implement backward
  5869. is_node = true;
  5870. }
  5871. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5872. a->ne[0] * scale_factor,
  5873. a->ne[1] * scale_factor,
  5874. a->ne[2], a->ne[3]);
  5875. result->op = GGML_OP_UPSCALE;
  5876. result->op_params[0] = scale_factor;
  5877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5878. result->src[0] = a;
  5879. result->src[1] = NULL;
  5880. return result;
  5881. }
  5882. struct ggml_tensor * ggml_upscale(
  5883. struct ggml_context * ctx,
  5884. struct ggml_tensor * a,
  5885. int scale_factor) {
  5886. return ggml_upscale_impl(ctx, a, scale_factor);
  5887. }
  5888. // ggml_flash_attn
  5889. struct ggml_tensor * ggml_flash_attn(
  5890. struct ggml_context * ctx,
  5891. struct ggml_tensor * q,
  5892. struct ggml_tensor * k,
  5893. struct ggml_tensor * v,
  5894. bool masked) {
  5895. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5896. // TODO: check if vT can be multiplied by (k*qT)
  5897. bool is_node = false;
  5898. if (q->grad || k->grad || v->grad) {
  5899. is_node = true;
  5900. }
  5901. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5902. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5903. int32_t t = masked ? 1 : 0;
  5904. ggml_set_op_params(result, &t, sizeof(t));
  5905. result->op = GGML_OP_FLASH_ATTN;
  5906. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5907. result->src[0] = q;
  5908. result->src[1] = k;
  5909. result->src[2] = v;
  5910. return result;
  5911. }
  5912. // ggml_flash_ff
  5913. struct ggml_tensor * ggml_flash_ff(
  5914. struct ggml_context * ctx,
  5915. struct ggml_tensor * a,
  5916. struct ggml_tensor * b0,
  5917. struct ggml_tensor * b1,
  5918. struct ggml_tensor * c0,
  5919. struct ggml_tensor * c1) {
  5920. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5921. // TODO: more checks
  5922. bool is_node = false;
  5923. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5924. is_node = true;
  5925. }
  5926. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5927. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5928. result->op = GGML_OP_FLASH_FF;
  5929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5930. result->src[0] = a;
  5931. result->src[1] = b0;
  5932. result->src[2] = b1;
  5933. result->src[3] = c0;
  5934. result->src[4] = c1;
  5935. return result;
  5936. }
  5937. // ggml_flash_attn_back
  5938. struct ggml_tensor * ggml_flash_attn_back(
  5939. struct ggml_context * ctx,
  5940. struct ggml_tensor * q,
  5941. struct ggml_tensor * k,
  5942. struct ggml_tensor * v,
  5943. struct ggml_tensor * d,
  5944. bool masked) {
  5945. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5946. // TODO: check if vT can be multiplied by (k*qT)
  5947. // d shape [D,N,ne2,ne3]
  5948. // q shape [D,N,ne2,ne3]
  5949. // k shape [D,M,ne2,ne3]
  5950. // v shape [M,D,ne2,ne3]
  5951. const int64_t D = q->ne[0];
  5952. const int64_t N = q->ne[1];
  5953. const int64_t M = k->ne[1];
  5954. const int64_t ne2 = q->ne[2];
  5955. const int64_t ne3 = q->ne[3];
  5956. GGML_ASSERT(k->ne[0] == D);
  5957. GGML_ASSERT(v->ne[0] == M);
  5958. GGML_ASSERT(v->ne[1] == D);
  5959. GGML_ASSERT(d->ne[0] == D);
  5960. GGML_ASSERT(d->ne[1] == N);
  5961. GGML_ASSERT(k->ne[2] == ne2);
  5962. GGML_ASSERT(k->ne[3] == ne3);
  5963. GGML_ASSERT(v->ne[2] == ne2);
  5964. GGML_ASSERT(v->ne[3] == ne3);
  5965. GGML_ASSERT(d->ne[2] == ne2);
  5966. GGML_ASSERT(d->ne[3] == ne3);
  5967. bool is_node = false;
  5968. if (q->grad || k->grad || v->grad) {
  5969. // when using this operation (in backwards pass) these grads are set.
  5970. // we don't want to create (big) grad of our result, so is_node is false.
  5971. is_node = false;
  5972. }
  5973. // store gradients of q, k and v as continuous tensors concatenated in result.
  5974. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5975. // gradq->data = result->data
  5976. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5977. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5978. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5979. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5980. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5981. int32_t masked_i = masked ? 1 : 0;
  5982. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5983. result->op = GGML_OP_FLASH_ATTN_BACK;
  5984. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5985. result->src[0] = q;
  5986. result->src[1] = k;
  5987. result->src[2] = v;
  5988. result->src[3] = d;
  5989. return result;
  5990. }
  5991. // ggml_win_part
  5992. struct ggml_tensor * ggml_win_part(
  5993. struct ggml_context * ctx,
  5994. struct ggml_tensor * a,
  5995. int w) {
  5996. GGML_ASSERT(a->ne[3] == 1);
  5997. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5998. bool is_node = false;
  5999. if (a->grad) {
  6000. GGML_ASSERT(false); // TODO: implement backward
  6001. is_node = true;
  6002. }
  6003. // padding
  6004. const int px = (w - a->ne[1]%w)%w;
  6005. const int py = (w - a->ne[2]%w)%w;
  6006. const int npx = (px + a->ne[1])/w;
  6007. const int npy = (py + a->ne[2])/w;
  6008. const int np = npx*npy;
  6009. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6010. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6011. int32_t params[] = { npx, npy, w };
  6012. ggml_set_op_params(result, params, sizeof(params));
  6013. result->op = GGML_OP_WIN_PART;
  6014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6015. result->src[0] = a;
  6016. return result;
  6017. }
  6018. // ggml_win_unpart
  6019. struct ggml_tensor * ggml_win_unpart(
  6020. struct ggml_context * ctx,
  6021. struct ggml_tensor * a,
  6022. int w0,
  6023. int h0,
  6024. int w) {
  6025. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6026. bool is_node = false;
  6027. if (a->grad) {
  6028. GGML_ASSERT(false); // TODO: implement backward
  6029. is_node = true;
  6030. }
  6031. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6032. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6033. int32_t params[] = { w };
  6034. ggml_set_op_params(result, params, sizeof(params));
  6035. result->op = GGML_OP_WIN_UNPART;
  6036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6037. result->src[0] = a;
  6038. return result;
  6039. }
  6040. // ggml_get_rel_pos
  6041. struct ggml_tensor * ggml_get_rel_pos(
  6042. struct ggml_context * ctx,
  6043. struct ggml_tensor * a,
  6044. int qh,
  6045. int kh) {
  6046. GGML_ASSERT(qh == kh);
  6047. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6048. bool is_node = false;
  6049. if (a->grad) {
  6050. GGML_ASSERT(false); // TODO: implement backward
  6051. is_node = true;
  6052. }
  6053. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6054. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6055. result->op = GGML_OP_GET_REL_POS;
  6056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6057. result->src[0] = a;
  6058. result->src[1] = NULL;
  6059. return result;
  6060. }
  6061. // ggml_add_rel_pos
  6062. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6063. struct ggml_context * ctx,
  6064. struct ggml_tensor * a,
  6065. struct ggml_tensor * pw,
  6066. struct ggml_tensor * ph,
  6067. bool inplace) {
  6068. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6069. GGML_ASSERT(ggml_is_contiguous(a));
  6070. GGML_ASSERT(ggml_is_contiguous(pw));
  6071. GGML_ASSERT(ggml_is_contiguous(ph));
  6072. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6073. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6074. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6075. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6076. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6077. bool is_node = false;
  6078. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6079. is_node = true;
  6080. }
  6081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6082. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6083. result->op = GGML_OP_ADD_REL_POS;
  6084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6085. result->src[0] = a;
  6086. result->src[1] = pw;
  6087. result->src[2] = ph;
  6088. return result;
  6089. }
  6090. struct ggml_tensor * ggml_add_rel_pos(
  6091. struct ggml_context * ctx,
  6092. struct ggml_tensor * a,
  6093. struct ggml_tensor * pw,
  6094. struct ggml_tensor * ph) {
  6095. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6096. }
  6097. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6098. struct ggml_context * ctx,
  6099. struct ggml_tensor * a,
  6100. struct ggml_tensor * pw,
  6101. struct ggml_tensor * ph) {
  6102. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6103. }
  6104. // gmml_unary
  6105. static struct ggml_tensor * ggml_unary_impl(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. enum ggml_unary_op op,
  6109. bool inplace) {
  6110. bool is_node = false;
  6111. if (!inplace && (a->grad)) {
  6112. is_node = true;
  6113. }
  6114. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6115. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6116. result->op = GGML_OP_UNARY;
  6117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6118. result->src[0] = a;
  6119. return result;
  6120. }
  6121. struct ggml_tensor * ggml_unary(
  6122. struct ggml_context * ctx,
  6123. struct ggml_tensor * a,
  6124. enum ggml_unary_op op) {
  6125. return ggml_unary_impl(ctx, a, op, false);
  6126. }
  6127. struct ggml_tensor * ggml_unary_inplace(
  6128. struct ggml_context * ctx,
  6129. struct ggml_tensor * a,
  6130. enum ggml_unary_op op) {
  6131. return ggml_unary_impl(ctx, a, op, true);
  6132. }
  6133. // ggml_map_unary
  6134. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. const ggml_unary_op_f32_t fun,
  6138. bool inplace) {
  6139. bool is_node = false;
  6140. if (!inplace && a->grad) {
  6141. is_node = true;
  6142. }
  6143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6144. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6145. result->op = GGML_OP_MAP_UNARY;
  6146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6147. result->src[0] = a;
  6148. return result;
  6149. }
  6150. struct ggml_tensor * ggml_map_unary_f32(
  6151. struct ggml_context * ctx,
  6152. struct ggml_tensor * a,
  6153. const ggml_unary_op_f32_t fun) {
  6154. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6155. }
  6156. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. const ggml_unary_op_f32_t fun) {
  6160. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6161. }
  6162. // ggml_map_binary
  6163. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * a,
  6166. struct ggml_tensor * b,
  6167. const ggml_binary_op_f32_t fun,
  6168. bool inplace) {
  6169. GGML_ASSERT(ggml_are_same_shape(a, b));
  6170. bool is_node = false;
  6171. if (!inplace && (a->grad || b->grad)) {
  6172. is_node = true;
  6173. }
  6174. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6175. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6176. result->op = GGML_OP_MAP_BINARY;
  6177. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6178. result->src[0] = a;
  6179. result->src[1] = b;
  6180. return result;
  6181. }
  6182. struct ggml_tensor * ggml_map_binary_f32(
  6183. struct ggml_context * ctx,
  6184. struct ggml_tensor * a,
  6185. struct ggml_tensor * b,
  6186. const ggml_binary_op_f32_t fun) {
  6187. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6188. }
  6189. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6190. struct ggml_context * ctx,
  6191. struct ggml_tensor * a,
  6192. struct ggml_tensor * b,
  6193. const ggml_binary_op_f32_t fun) {
  6194. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6195. }
  6196. // ggml_map_custom1_f32
  6197. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6198. struct ggml_context * ctx,
  6199. struct ggml_tensor * a,
  6200. const ggml_custom1_op_f32_t fun,
  6201. bool inplace) {
  6202. bool is_node = false;
  6203. if (!inplace && a->grad) {
  6204. is_node = true;
  6205. }
  6206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6207. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6208. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6209. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6210. result->src[0] = a;
  6211. return result;
  6212. }
  6213. struct ggml_tensor * ggml_map_custom1_f32(
  6214. struct ggml_context * ctx,
  6215. struct ggml_tensor * a,
  6216. const ggml_custom1_op_f32_t fun) {
  6217. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6218. }
  6219. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6220. struct ggml_context * ctx,
  6221. struct ggml_tensor * a,
  6222. const ggml_custom1_op_f32_t fun) {
  6223. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6224. }
  6225. // ggml_map_custom2_f32
  6226. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6227. struct ggml_context * ctx,
  6228. struct ggml_tensor * a,
  6229. struct ggml_tensor * b,
  6230. const ggml_custom2_op_f32_t fun,
  6231. bool inplace) {
  6232. bool is_node = false;
  6233. if (!inplace && (a->grad || b->grad)) {
  6234. is_node = true;
  6235. }
  6236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6237. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6238. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6240. result->src[0] = a;
  6241. result->src[1] = b;
  6242. return result;
  6243. }
  6244. struct ggml_tensor * ggml_map_custom2_f32(
  6245. struct ggml_context * ctx,
  6246. struct ggml_tensor * a,
  6247. struct ggml_tensor * b,
  6248. const ggml_custom2_op_f32_t fun) {
  6249. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6250. }
  6251. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6252. struct ggml_context * ctx,
  6253. struct ggml_tensor * a,
  6254. struct ggml_tensor * b,
  6255. const ggml_custom2_op_f32_t fun) {
  6256. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6257. }
  6258. // ggml_map_custom3_f32
  6259. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6260. struct ggml_context * ctx,
  6261. struct ggml_tensor * a,
  6262. struct ggml_tensor * b,
  6263. struct ggml_tensor * c,
  6264. const ggml_custom3_op_f32_t fun,
  6265. bool inplace) {
  6266. bool is_node = false;
  6267. if (!inplace && (a->grad || b->grad || c->grad)) {
  6268. is_node = true;
  6269. }
  6270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6271. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6272. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6274. result->src[0] = a;
  6275. result->src[1] = b;
  6276. result->src[2] = c;
  6277. return result;
  6278. }
  6279. struct ggml_tensor * ggml_map_custom3_f32(
  6280. struct ggml_context * ctx,
  6281. struct ggml_tensor * a,
  6282. struct ggml_tensor * b,
  6283. struct ggml_tensor * c,
  6284. const ggml_custom3_op_f32_t fun) {
  6285. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6286. }
  6287. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6288. struct ggml_context * ctx,
  6289. struct ggml_tensor * a,
  6290. struct ggml_tensor * b,
  6291. struct ggml_tensor * c,
  6292. const ggml_custom3_op_f32_t fun) {
  6293. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6294. }
  6295. // ggml_map_custom1
  6296. struct ggml_map_custom1_op_params {
  6297. ggml_custom1_op_t fun;
  6298. int n_tasks;
  6299. void * userdata;
  6300. };
  6301. static struct ggml_tensor * ggml_map_custom1_impl(
  6302. struct ggml_context * ctx,
  6303. struct ggml_tensor * a,
  6304. const ggml_custom1_op_t fun,
  6305. int n_tasks,
  6306. void * userdata,
  6307. bool inplace) {
  6308. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6309. bool is_node = false;
  6310. if (!inplace && a->grad) {
  6311. is_node = true;
  6312. }
  6313. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6314. struct ggml_map_custom1_op_params params = {
  6315. /*.fun =*/ fun,
  6316. /*.n_tasks =*/ n_tasks,
  6317. /*.userdata =*/ userdata
  6318. };
  6319. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6320. result->op = GGML_OP_MAP_CUSTOM1;
  6321. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6322. result->src[0] = a;
  6323. return result;
  6324. }
  6325. struct ggml_tensor * ggml_map_custom1(
  6326. struct ggml_context * ctx,
  6327. struct ggml_tensor * a,
  6328. const ggml_custom1_op_t fun,
  6329. int n_tasks,
  6330. void * userdata) {
  6331. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6332. }
  6333. struct ggml_tensor * ggml_map_custom1_inplace(
  6334. struct ggml_context * ctx,
  6335. struct ggml_tensor * a,
  6336. const ggml_custom1_op_t fun,
  6337. int n_tasks,
  6338. void * userdata) {
  6339. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6340. }
  6341. // ggml_map_custom2
  6342. struct ggml_map_custom2_op_params {
  6343. ggml_custom2_op_t fun;
  6344. int n_tasks;
  6345. void * userdata;
  6346. };
  6347. static struct ggml_tensor * ggml_map_custom2_impl(
  6348. struct ggml_context * ctx,
  6349. struct ggml_tensor * a,
  6350. struct ggml_tensor * b,
  6351. const ggml_custom2_op_t fun,
  6352. int n_tasks,
  6353. void * userdata,
  6354. bool inplace) {
  6355. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6356. bool is_node = false;
  6357. if (!inplace && (a->grad || b->grad)) {
  6358. is_node = true;
  6359. }
  6360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6361. struct ggml_map_custom2_op_params params = {
  6362. /*.fun =*/ fun,
  6363. /*.n_tasks =*/ n_tasks,
  6364. /*.userdata =*/ userdata
  6365. };
  6366. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6367. result->op = GGML_OP_MAP_CUSTOM2;
  6368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6369. result->src[0] = a;
  6370. result->src[1] = b;
  6371. return result;
  6372. }
  6373. struct ggml_tensor * ggml_map_custom2(
  6374. struct ggml_context * ctx,
  6375. struct ggml_tensor * a,
  6376. struct ggml_tensor * b,
  6377. const ggml_custom2_op_t fun,
  6378. int n_tasks,
  6379. void * userdata) {
  6380. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6381. }
  6382. struct ggml_tensor * ggml_map_custom2_inplace(
  6383. struct ggml_context * ctx,
  6384. struct ggml_tensor * a,
  6385. struct ggml_tensor * b,
  6386. const ggml_custom2_op_t fun,
  6387. int n_tasks,
  6388. void * userdata) {
  6389. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6390. }
  6391. // ggml_map_custom3
  6392. struct ggml_map_custom3_op_params {
  6393. ggml_custom3_op_t fun;
  6394. int n_tasks;
  6395. void * userdata;
  6396. };
  6397. static struct ggml_tensor * ggml_map_custom3_impl(
  6398. struct ggml_context * ctx,
  6399. struct ggml_tensor * a,
  6400. struct ggml_tensor * b,
  6401. struct ggml_tensor * c,
  6402. const ggml_custom3_op_t fun,
  6403. int n_tasks,
  6404. void * userdata,
  6405. bool inplace) {
  6406. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6407. bool is_node = false;
  6408. if (!inplace && (a->grad || b->grad || c->grad)) {
  6409. is_node = true;
  6410. }
  6411. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6412. struct ggml_map_custom3_op_params params = {
  6413. /*.fun =*/ fun,
  6414. /*.n_tasks =*/ n_tasks,
  6415. /*.userdata =*/ userdata
  6416. };
  6417. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6418. result->op = GGML_OP_MAP_CUSTOM3;
  6419. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6420. result->src[0] = a;
  6421. result->src[1] = b;
  6422. result->src[2] = c;
  6423. return result;
  6424. }
  6425. struct ggml_tensor * ggml_map_custom3(
  6426. struct ggml_context * ctx,
  6427. struct ggml_tensor * a,
  6428. struct ggml_tensor * b,
  6429. struct ggml_tensor * c,
  6430. const ggml_custom3_op_t fun,
  6431. int n_tasks,
  6432. void * userdata) {
  6433. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6434. }
  6435. struct ggml_tensor * ggml_map_custom3_inplace(
  6436. struct ggml_context * ctx,
  6437. struct ggml_tensor * a,
  6438. struct ggml_tensor * b,
  6439. struct ggml_tensor * c,
  6440. const ggml_custom3_op_t fun,
  6441. int n_tasks,
  6442. void * userdata) {
  6443. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6444. }
  6445. // ggml_cross_entropy_loss
  6446. struct ggml_tensor * ggml_cross_entropy_loss(
  6447. struct ggml_context * ctx,
  6448. struct ggml_tensor * a,
  6449. struct ggml_tensor * b) {
  6450. GGML_ASSERT(ggml_are_same_shape(a, b));
  6451. bool is_node = false;
  6452. if (a->grad || b->grad) {
  6453. is_node = true;
  6454. }
  6455. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6456. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6458. result->src[0] = a;
  6459. result->src[1] = b;
  6460. return result;
  6461. }
  6462. // ggml_cross_entropy_loss_back
  6463. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6464. struct ggml_context * ctx,
  6465. struct ggml_tensor * a,
  6466. struct ggml_tensor * b,
  6467. struct ggml_tensor * c) {
  6468. GGML_ASSERT(ggml_are_same_shape(a, b));
  6469. GGML_ASSERT(ggml_is_scalar(c));
  6470. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6471. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6472. result->grad = NULL;
  6473. result->src[0] = a;
  6474. result->src[1] = b;
  6475. result->src[2] = c;
  6476. return result;
  6477. }
  6478. ////////////////////////////////////////////////////////////////////////////////
  6479. void ggml_set_param(
  6480. struct ggml_context * ctx,
  6481. struct ggml_tensor * tensor) {
  6482. tensor->is_param = true;
  6483. GGML_ASSERT(tensor->grad == NULL);
  6484. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6485. }
  6486. // ggml_compute_forward_dup
  6487. static void ggml_compute_forward_dup_same_cont(
  6488. const struct ggml_compute_params * params,
  6489. const struct ggml_tensor * src0,
  6490. struct ggml_tensor * dst) {
  6491. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6492. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6493. GGML_ASSERT(src0->type == dst->type);
  6494. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6495. return;
  6496. }
  6497. const size_t nb00 = src0->nb[0];
  6498. const size_t nb0 = dst->nb[0];
  6499. const int ith = params->ith; // thread index
  6500. const int nth = params->nth; // number of threads
  6501. // parallelize by elements
  6502. const int ne = ggml_nelements(dst);
  6503. const int dr = (ne + nth - 1) / nth;
  6504. const int ie0 = dr * ith;
  6505. const int ie1 = MIN(ie0 + dr, ne);
  6506. if (ie0 < ie1) {
  6507. memcpy(
  6508. ((char *) dst->data + ie0*nb0),
  6509. ((char *) src0->data + ie0*nb00),
  6510. (ie1 - ie0) * ggml_type_size(src0->type));
  6511. }
  6512. }
  6513. static void ggml_compute_forward_dup_f16(
  6514. const struct ggml_compute_params * params,
  6515. const struct ggml_tensor * src0,
  6516. struct ggml_tensor * dst) {
  6517. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6519. return;
  6520. }
  6521. GGML_TENSOR_UNARY_OP_LOCALS;
  6522. const int ith = params->ith; // thread index
  6523. const int nth = params->nth; // number of threads
  6524. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6525. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6526. return;
  6527. }
  6528. // parallelize by rows
  6529. const int nr = ne01;
  6530. // number of rows per thread
  6531. const int dr = (nr + nth - 1) / nth;
  6532. // row range for this thread
  6533. const int ir0 = dr * ith;
  6534. const int ir1 = MIN(ir0 + dr, nr);
  6535. if (src0->type == dst->type &&
  6536. ne00 == ne0 &&
  6537. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6538. // copy by rows
  6539. const size_t rs = ne00*nb00;
  6540. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6541. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6542. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6543. memcpy(
  6544. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6545. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6546. rs);
  6547. }
  6548. }
  6549. }
  6550. return;
  6551. }
  6552. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6553. if (ggml_is_contiguous(dst)) {
  6554. if (nb00 == sizeof(ggml_fp16_t)) {
  6555. if (dst->type == GGML_TYPE_F16) {
  6556. size_t id = 0;
  6557. const size_t rs = ne00 * nb00;
  6558. char * dst_ptr = (char *) dst->data;
  6559. for (int i03 = 0; i03 < ne03; i03++) {
  6560. for (int i02 = 0; i02 < ne02; i02++) {
  6561. id += rs * ir0;
  6562. for (int i01 = ir0; i01 < ir1; i01++) {
  6563. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6564. memcpy(dst_ptr + id, src0_ptr, rs);
  6565. id += rs;
  6566. }
  6567. id += rs * (ne01 - ir1);
  6568. }
  6569. }
  6570. } else if (dst->type == GGML_TYPE_F32) {
  6571. size_t id = 0;
  6572. float * dst_ptr = (float *) dst->data;
  6573. for (int i03 = 0; i03 < ne03; i03++) {
  6574. for (int i02 = 0; i02 < ne02; i02++) {
  6575. id += ne00 * ir0;
  6576. for (int i01 = ir0; i01 < ir1; i01++) {
  6577. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6578. for (int i00 = 0; i00 < ne00; i00++) {
  6579. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6580. id++;
  6581. }
  6582. }
  6583. id += ne00 * (ne01 - ir1);
  6584. }
  6585. }
  6586. } else if (type_traits[dst->type].from_float) {
  6587. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6588. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6589. size_t id = 0;
  6590. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6591. char * dst_ptr = (char *) dst->data;
  6592. for (int i03 = 0; i03 < ne03; i03++) {
  6593. for (int i02 = 0; i02 < ne02; i02++) {
  6594. id += rs * ir0;
  6595. for (int i01 = ir0; i01 < ir1; i01++) {
  6596. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6597. for (int i00 = 0; i00 < ne00; i00++) {
  6598. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6599. }
  6600. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6601. id += rs;
  6602. }
  6603. id += rs * (ne01 - ir1);
  6604. }
  6605. }
  6606. } else {
  6607. GGML_ASSERT(false); // TODO: implement
  6608. }
  6609. } else {
  6610. //printf("%s: this is not optimal - fix me\n", __func__);
  6611. if (dst->type == GGML_TYPE_F32) {
  6612. size_t id = 0;
  6613. float * dst_ptr = (float *) dst->data;
  6614. for (int i03 = 0; i03 < ne03; i03++) {
  6615. for (int i02 = 0; i02 < ne02; i02++) {
  6616. id += ne00 * ir0;
  6617. for (int i01 = ir0; i01 < ir1; i01++) {
  6618. for (int i00 = 0; i00 < ne00; i00++) {
  6619. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6620. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6621. id++;
  6622. }
  6623. }
  6624. id += ne00 * (ne01 - ir1);
  6625. }
  6626. }
  6627. } else if (dst->type == GGML_TYPE_F16) {
  6628. size_t id = 0;
  6629. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6630. for (int i03 = 0; i03 < ne03; i03++) {
  6631. for (int i02 = 0; i02 < ne02; i02++) {
  6632. id += ne00 * ir0;
  6633. for (int i01 = ir0; i01 < ir1; i01++) {
  6634. for (int i00 = 0; i00 < ne00; i00++) {
  6635. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6636. dst_ptr[id] = *src0_ptr;
  6637. id++;
  6638. }
  6639. }
  6640. id += ne00 * (ne01 - ir1);
  6641. }
  6642. }
  6643. } else {
  6644. GGML_ASSERT(false); // TODO: implement
  6645. }
  6646. }
  6647. return;
  6648. }
  6649. // dst counters
  6650. int64_t i10 = 0;
  6651. int64_t i11 = 0;
  6652. int64_t i12 = 0;
  6653. int64_t i13 = 0;
  6654. if (dst->type == GGML_TYPE_F16) {
  6655. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6656. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6657. i10 += ne00 * ir0;
  6658. while (i10 >= ne0) {
  6659. i10 -= ne0;
  6660. if (++i11 == ne1) {
  6661. i11 = 0;
  6662. if (++i12 == ne2) {
  6663. i12 = 0;
  6664. if (++i13 == ne3) {
  6665. i13 = 0;
  6666. }
  6667. }
  6668. }
  6669. }
  6670. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6671. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6672. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6673. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6674. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6675. if (++i10 == ne00) {
  6676. i10 = 0;
  6677. if (++i11 == ne01) {
  6678. i11 = 0;
  6679. if (++i12 == ne02) {
  6680. i12 = 0;
  6681. if (++i13 == ne03) {
  6682. i13 = 0;
  6683. }
  6684. }
  6685. }
  6686. }
  6687. }
  6688. }
  6689. i10 += ne00 * (ne01 - ir1);
  6690. while (i10 >= ne0) {
  6691. i10 -= ne0;
  6692. if (++i11 == ne1) {
  6693. i11 = 0;
  6694. if (++i12 == ne2) {
  6695. i12 = 0;
  6696. if (++i13 == ne3) {
  6697. i13 = 0;
  6698. }
  6699. }
  6700. }
  6701. }
  6702. }
  6703. }
  6704. } else if (dst->type == GGML_TYPE_F32) {
  6705. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6706. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6707. i10 += ne00 * ir0;
  6708. while (i10 >= ne0) {
  6709. i10 -= ne0;
  6710. if (++i11 == ne1) {
  6711. i11 = 0;
  6712. if (++i12 == ne2) {
  6713. i12 = 0;
  6714. if (++i13 == ne3) {
  6715. i13 = 0;
  6716. }
  6717. }
  6718. }
  6719. }
  6720. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6721. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6722. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6723. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6724. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6725. if (++i10 == ne0) {
  6726. i10 = 0;
  6727. if (++i11 == ne1) {
  6728. i11 = 0;
  6729. if (++i12 == ne2) {
  6730. i12 = 0;
  6731. if (++i13 == ne3) {
  6732. i13 = 0;
  6733. }
  6734. }
  6735. }
  6736. }
  6737. }
  6738. }
  6739. i10 += ne00 * (ne01 - ir1);
  6740. while (i10 >= ne0) {
  6741. i10 -= ne0;
  6742. if (++i11 == ne1) {
  6743. i11 = 0;
  6744. if (++i12 == ne2) {
  6745. i12 = 0;
  6746. if (++i13 == ne3) {
  6747. i13 = 0;
  6748. }
  6749. }
  6750. }
  6751. }
  6752. }
  6753. }
  6754. } else {
  6755. GGML_ASSERT(false); // TODO: implement
  6756. }
  6757. }
  6758. static void ggml_compute_forward_dup_f32(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * src0,
  6761. struct ggml_tensor * dst) {
  6762. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6763. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6764. return;
  6765. }
  6766. GGML_TENSOR_UNARY_OP_LOCALS;
  6767. const int ith = params->ith; // thread index
  6768. const int nth = params->nth; // number of threads
  6769. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6770. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6771. return;
  6772. }
  6773. // parallelize by rows
  6774. const int nr = ne01;
  6775. // number of rows per thread
  6776. const int dr = (nr + nth - 1) / nth;
  6777. // row range for this thread
  6778. const int ir0 = dr * ith;
  6779. const int ir1 = MIN(ir0 + dr, nr);
  6780. if (src0->type == dst->type &&
  6781. ne00 == ne0 &&
  6782. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6783. // copy by rows
  6784. const size_t rs = ne00*nb00;
  6785. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6786. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6787. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6788. memcpy(
  6789. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6790. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6791. rs);
  6792. }
  6793. }
  6794. }
  6795. return;
  6796. }
  6797. if (ggml_is_contiguous(dst)) {
  6798. // TODO: simplify
  6799. if (nb00 == sizeof(float)) {
  6800. if (dst->type == GGML_TYPE_F32) {
  6801. size_t id = 0;
  6802. const size_t rs = ne00 * nb00;
  6803. char * dst_ptr = (char *) dst->data;
  6804. for (int i03 = 0; i03 < ne03; i03++) {
  6805. for (int i02 = 0; i02 < ne02; i02++) {
  6806. id += rs * ir0;
  6807. for (int i01 = ir0; i01 < ir1; i01++) {
  6808. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6809. memcpy(dst_ptr + id, src0_ptr, rs);
  6810. id += rs;
  6811. }
  6812. id += rs * (ne01 - ir1);
  6813. }
  6814. }
  6815. } else if (type_traits[dst->type].from_float) {
  6816. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6817. size_t id = 0;
  6818. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6819. char * dst_ptr = (char *) dst->data;
  6820. for (int i03 = 0; i03 < ne03; i03++) {
  6821. for (int i02 = 0; i02 < ne02; i02++) {
  6822. id += rs * ir0;
  6823. for (int i01 = ir0; i01 < ir1; i01++) {
  6824. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6825. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6826. id += rs;
  6827. }
  6828. id += rs * (ne01 - ir1);
  6829. }
  6830. }
  6831. } else {
  6832. GGML_ASSERT(false); // TODO: implement
  6833. }
  6834. } else {
  6835. //printf("%s: this is not optimal - fix me\n", __func__);
  6836. if (dst->type == GGML_TYPE_F32) {
  6837. size_t id = 0;
  6838. float * dst_ptr = (float *) dst->data;
  6839. for (int i03 = 0; i03 < ne03; i03++) {
  6840. for (int i02 = 0; i02 < ne02; i02++) {
  6841. id += ne00 * ir0;
  6842. for (int i01 = ir0; i01 < ir1; i01++) {
  6843. for (int i00 = 0; i00 < ne00; i00++) {
  6844. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6845. dst_ptr[id] = *src0_ptr;
  6846. id++;
  6847. }
  6848. }
  6849. id += ne00 * (ne01 - ir1);
  6850. }
  6851. }
  6852. } else if (dst->type == GGML_TYPE_F16) {
  6853. size_t id = 0;
  6854. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6855. for (int i03 = 0; i03 < ne03; i03++) {
  6856. for (int i02 = 0; i02 < ne02; i02++) {
  6857. id += ne00 * ir0;
  6858. for (int i01 = ir0; i01 < ir1; i01++) {
  6859. for (int i00 = 0; i00 < ne00; i00++) {
  6860. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6861. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6862. id++;
  6863. }
  6864. }
  6865. id += ne00 * (ne01 - ir1);
  6866. }
  6867. }
  6868. } else {
  6869. GGML_ASSERT(false); // TODO: implement
  6870. }
  6871. }
  6872. return;
  6873. }
  6874. // dst counters
  6875. int64_t i10 = 0;
  6876. int64_t i11 = 0;
  6877. int64_t i12 = 0;
  6878. int64_t i13 = 0;
  6879. if (dst->type == GGML_TYPE_F32) {
  6880. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6881. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6882. i10 += ne00 * ir0;
  6883. while (i10 >= ne0) {
  6884. i10 -= ne0;
  6885. if (++i11 == ne1) {
  6886. i11 = 0;
  6887. if (++i12 == ne2) {
  6888. i12 = 0;
  6889. if (++i13 == ne3) {
  6890. i13 = 0;
  6891. }
  6892. }
  6893. }
  6894. }
  6895. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6896. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6897. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6898. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6899. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6900. if (++i10 == ne0) {
  6901. i10 = 0;
  6902. if (++i11 == ne1) {
  6903. i11 = 0;
  6904. if (++i12 == ne2) {
  6905. i12 = 0;
  6906. if (++i13 == ne3) {
  6907. i13 = 0;
  6908. }
  6909. }
  6910. }
  6911. }
  6912. }
  6913. }
  6914. i10 += ne00 * (ne01 - ir1);
  6915. while (i10 >= ne0) {
  6916. i10 -= ne0;
  6917. if (++i11 == ne1) {
  6918. i11 = 0;
  6919. if (++i12 == ne2) {
  6920. i12 = 0;
  6921. if (++i13 == ne3) {
  6922. i13 = 0;
  6923. }
  6924. }
  6925. }
  6926. }
  6927. }
  6928. }
  6929. } else if (dst->type == GGML_TYPE_F16) {
  6930. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6931. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6932. i10 += ne00 * ir0;
  6933. while (i10 >= ne0) {
  6934. i10 -= ne0;
  6935. if (++i11 == ne1) {
  6936. i11 = 0;
  6937. if (++i12 == ne2) {
  6938. i12 = 0;
  6939. if (++i13 == ne3) {
  6940. i13 = 0;
  6941. }
  6942. }
  6943. }
  6944. }
  6945. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6946. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6947. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6948. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6949. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6950. if (++i10 == ne0) {
  6951. i10 = 0;
  6952. if (++i11 == ne1) {
  6953. i11 = 0;
  6954. if (++i12 == ne2) {
  6955. i12 = 0;
  6956. if (++i13 == ne3) {
  6957. i13 = 0;
  6958. }
  6959. }
  6960. }
  6961. }
  6962. }
  6963. }
  6964. i10 += ne00 * (ne01 - ir1);
  6965. while (i10 >= ne0) {
  6966. i10 -= ne0;
  6967. if (++i11 == ne1) {
  6968. i11 = 0;
  6969. if (++i12 == ne2) {
  6970. i12 = 0;
  6971. if (++i13 == ne3) {
  6972. i13 = 0;
  6973. }
  6974. }
  6975. }
  6976. }
  6977. }
  6978. }
  6979. } else {
  6980. GGML_ASSERT(false); // TODO: implement
  6981. }
  6982. }
  6983. static void ggml_compute_forward_dup(
  6984. const struct ggml_compute_params * params,
  6985. const struct ggml_tensor * src0,
  6986. struct ggml_tensor * dst) {
  6987. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6988. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6989. return;
  6990. }
  6991. switch (src0->type) {
  6992. case GGML_TYPE_F16:
  6993. {
  6994. ggml_compute_forward_dup_f16(params, src0, dst);
  6995. } break;
  6996. case GGML_TYPE_F32:
  6997. {
  6998. ggml_compute_forward_dup_f32(params, src0, dst);
  6999. } break;
  7000. default:
  7001. {
  7002. GGML_ASSERT(false);
  7003. } break;
  7004. }
  7005. }
  7006. // ggml_compute_forward_add
  7007. static void ggml_compute_forward_add_f32(
  7008. const struct ggml_compute_params * params,
  7009. const struct ggml_tensor * src0,
  7010. const struct ggml_tensor * src1,
  7011. struct ggml_tensor * dst) {
  7012. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7014. return;
  7015. }
  7016. const int ith = params->ith;
  7017. const int nth = params->nth;
  7018. const int nr = ggml_nrows(src0);
  7019. GGML_TENSOR_BINARY_OP_LOCALS;
  7020. GGML_ASSERT( nb0 == sizeof(float));
  7021. GGML_ASSERT(nb00 == sizeof(float));
  7022. // rows per thread
  7023. const int dr = (nr + nth - 1)/nth;
  7024. // row range for this thread
  7025. const int ir0 = dr*ith;
  7026. const int ir1 = MIN(ir0 + dr, nr);
  7027. if (nb10 == sizeof(float)) {
  7028. for (int ir = ir0; ir < ir1; ++ir) {
  7029. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7030. const int64_t i03 = ir/(ne02*ne01);
  7031. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7032. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7033. const int64_t i13 = i03 % ne13;
  7034. const int64_t i12 = i02 % ne12;
  7035. const int64_t i11 = i01 % ne11;
  7036. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7037. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7038. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7039. #ifdef GGML_USE_ACCELERATE
  7040. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7041. #else
  7042. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7043. #endif
  7044. // }
  7045. // }
  7046. }
  7047. } else {
  7048. // src1 is not contiguous
  7049. for (int ir = ir0; ir < ir1; ++ir) {
  7050. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7051. const int64_t i03 = ir/(ne02*ne01);
  7052. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7053. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7054. const int64_t i13 = i03 % ne13;
  7055. const int64_t i12 = i02 % ne12;
  7056. const int64_t i11 = i01 % ne11;
  7057. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7058. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7059. for (int i0 = 0; i0 < ne0; i0++) {
  7060. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7061. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7062. }
  7063. }
  7064. }
  7065. }
  7066. static void ggml_compute_forward_add_f16_f32(
  7067. const struct ggml_compute_params * params,
  7068. const struct ggml_tensor * src0,
  7069. const struct ggml_tensor * src1,
  7070. struct ggml_tensor * dst) {
  7071. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7072. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7073. return;
  7074. }
  7075. const int ith = params->ith;
  7076. const int nth = params->nth;
  7077. const int nr = ggml_nrows(src0);
  7078. GGML_TENSOR_BINARY_OP_LOCALS;
  7079. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7080. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7081. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7082. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7083. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7084. // rows per thread
  7085. const int dr = (nr + nth - 1)/nth;
  7086. // row range for this thread
  7087. const int ir0 = dr*ith;
  7088. const int ir1 = MIN(ir0 + dr, nr);
  7089. if (nb10 == sizeof(float)) {
  7090. for (int ir = ir0; ir < ir1; ++ir) {
  7091. // src0, src1 and dst are same shape => same indices
  7092. const int i3 = ir/(ne2*ne1);
  7093. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7094. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7095. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7096. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7097. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7098. for (int i = 0; i < ne0; i++) {
  7099. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7100. }
  7101. }
  7102. }
  7103. else {
  7104. // src1 is not contiguous
  7105. GGML_ASSERT(false);
  7106. }
  7107. }
  7108. static void ggml_compute_forward_add_f16_f16(
  7109. const struct ggml_compute_params * params,
  7110. const struct ggml_tensor * src0,
  7111. const struct ggml_tensor * src1,
  7112. struct ggml_tensor * dst) {
  7113. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7115. return;
  7116. }
  7117. const int ith = params->ith;
  7118. const int nth = params->nth;
  7119. const int nr = ggml_nrows(src0);
  7120. GGML_TENSOR_BINARY_OP_LOCALS;
  7121. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7122. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7123. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7124. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7125. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7126. // rows per thread
  7127. const int dr = (nr + nth - 1)/nth;
  7128. // row range for this thread
  7129. const int ir0 = dr*ith;
  7130. const int ir1 = MIN(ir0 + dr, nr);
  7131. if (nb10 == sizeof(ggml_fp16_t)) {
  7132. for (int ir = ir0; ir < ir1; ++ir) {
  7133. // src0, src1 and dst are same shape => same indices
  7134. const int i3 = ir/(ne2*ne1);
  7135. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7136. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7137. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7138. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7139. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7140. for (int i = 0; i < ne0; i++) {
  7141. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7142. }
  7143. }
  7144. }
  7145. else {
  7146. // src1 is not contiguous
  7147. GGML_ASSERT(false);
  7148. }
  7149. }
  7150. static void ggml_compute_forward_add_q_f32(
  7151. const struct ggml_compute_params * params,
  7152. const struct ggml_tensor * src0,
  7153. const struct ggml_tensor * src1,
  7154. struct ggml_tensor * dst) {
  7155. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7157. return;
  7158. }
  7159. const int nr = ggml_nrows(src0);
  7160. GGML_TENSOR_BINARY_OP_LOCALS;
  7161. const int ith = params->ith;
  7162. const int nth = params->nth;
  7163. const enum ggml_type type = src0->type;
  7164. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7165. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7166. // we don't support permuted src0 or src1
  7167. GGML_ASSERT(nb00 == ggml_type_size(type));
  7168. GGML_ASSERT(nb10 == sizeof(float));
  7169. // dst cannot be transposed or permuted
  7170. GGML_ASSERT(nb0 <= nb1);
  7171. GGML_ASSERT(nb1 <= nb2);
  7172. GGML_ASSERT(nb2 <= nb3);
  7173. GGML_ASSERT(ggml_is_quantized(src0->type));
  7174. GGML_ASSERT(dst->type == src0->type);
  7175. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7176. // rows per thread
  7177. const int dr = (nr + nth - 1)/nth;
  7178. // row range for this thread
  7179. const int ir0 = dr*ith;
  7180. const int ir1 = MIN(ir0 + dr, nr);
  7181. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7182. for (int ir = ir0; ir < ir1; ++ir) {
  7183. // src0 indices
  7184. const int i03 = ir/(ne02*ne01);
  7185. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7186. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7187. // src1 and dst are same shape as src0 => same indices
  7188. const int i13 = i03;
  7189. const int i12 = i02;
  7190. const int i11 = i01;
  7191. const int i3 = i03;
  7192. const int i2 = i02;
  7193. const int i1 = i01;
  7194. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7195. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7196. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7197. assert(ne00 % 32 == 0);
  7198. // unquantize row from src0 to temp buffer
  7199. dequantize_row_q(src0_row, wdata, ne00);
  7200. // add src1
  7201. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7202. // quantize row to dst
  7203. quantize_row_q(wdata, dst_row, ne00);
  7204. }
  7205. }
  7206. static void ggml_compute_forward_add(
  7207. const struct ggml_compute_params * params,
  7208. const struct ggml_tensor * src0,
  7209. const struct ggml_tensor * src1,
  7210. struct ggml_tensor * dst) {
  7211. switch (src0->type) {
  7212. case GGML_TYPE_F32:
  7213. {
  7214. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7215. } break;
  7216. case GGML_TYPE_F16:
  7217. {
  7218. if (src1->type == GGML_TYPE_F16) {
  7219. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7220. }
  7221. else if (src1->type == GGML_TYPE_F32) {
  7222. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7223. }
  7224. else {
  7225. GGML_ASSERT(false);
  7226. }
  7227. } break;
  7228. case GGML_TYPE_Q4_0:
  7229. case GGML_TYPE_Q4_1:
  7230. case GGML_TYPE_Q5_0:
  7231. case GGML_TYPE_Q5_1:
  7232. case GGML_TYPE_Q8_0:
  7233. case GGML_TYPE_Q2_K:
  7234. case GGML_TYPE_Q3_K:
  7235. case GGML_TYPE_Q4_K:
  7236. case GGML_TYPE_Q5_K:
  7237. case GGML_TYPE_Q6_K:
  7238. {
  7239. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7240. } break;
  7241. default:
  7242. {
  7243. GGML_ASSERT(false);
  7244. } break;
  7245. }
  7246. }
  7247. // ggml_compute_forward_add1
  7248. static void ggml_compute_forward_add1_f32(
  7249. const struct ggml_compute_params * params,
  7250. const struct ggml_tensor * src0,
  7251. const struct ggml_tensor * src1,
  7252. struct ggml_tensor * dst) {
  7253. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7254. GGML_ASSERT(ggml_is_scalar(src1));
  7255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7256. return;
  7257. }
  7258. const int ith = params->ith;
  7259. const int nth = params->nth;
  7260. const int nr = ggml_nrows(src0);
  7261. GGML_TENSOR_UNARY_OP_LOCALS;
  7262. GGML_ASSERT( nb0 == sizeof(float));
  7263. GGML_ASSERT(nb00 == sizeof(float));
  7264. // rows per thread
  7265. const int dr = (nr + nth - 1)/nth;
  7266. // row range for this thread
  7267. const int ir0 = dr*ith;
  7268. const int ir1 = MIN(ir0 + dr, nr);
  7269. for (int ir = ir0; ir < ir1; ++ir) {
  7270. // src0 and dst are same shape => same indices
  7271. const int i3 = ir/(ne2*ne1);
  7272. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7273. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7274. #ifdef GGML_USE_ACCELERATE
  7275. UNUSED(ggml_vec_add1_f32);
  7276. vDSP_vadd(
  7277. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7278. (float *) ((char *) src1->data), 0,
  7279. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7280. ne0);
  7281. #else
  7282. ggml_vec_add1_f32(ne0,
  7283. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7284. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7285. *(float *) src1->data);
  7286. #endif
  7287. }
  7288. }
  7289. static void ggml_compute_forward_add1_f16_f32(
  7290. const struct ggml_compute_params * params,
  7291. const struct ggml_tensor * src0,
  7292. const struct ggml_tensor * src1,
  7293. struct ggml_tensor * dst) {
  7294. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7295. GGML_ASSERT(ggml_is_scalar(src1));
  7296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7297. return;
  7298. }
  7299. // scalar to add
  7300. const float v = *(float *) src1->data;
  7301. const int ith = params->ith;
  7302. const int nth = params->nth;
  7303. const int nr = ggml_nrows(src0);
  7304. GGML_TENSOR_UNARY_OP_LOCALS;
  7305. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7306. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7307. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7308. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7309. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7310. // rows per thread
  7311. const int dr = (nr + nth - 1)/nth;
  7312. // row range for this thread
  7313. const int ir0 = dr*ith;
  7314. const int ir1 = MIN(ir0 + dr, nr);
  7315. for (int ir = ir0; ir < ir1; ++ir) {
  7316. // src0 and dst are same shape => same indices
  7317. const int i3 = ir/(ne2*ne1);
  7318. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7319. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7320. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7321. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7322. for (int i = 0; i < ne0; i++) {
  7323. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7324. }
  7325. }
  7326. }
  7327. static void ggml_compute_forward_add1_f16_f16(
  7328. const struct ggml_compute_params * params,
  7329. const struct ggml_tensor * src0,
  7330. const struct ggml_tensor * src1,
  7331. struct ggml_tensor * dst) {
  7332. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7333. GGML_ASSERT(ggml_is_scalar(src1));
  7334. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7335. return;
  7336. }
  7337. // scalar to add
  7338. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7339. const int ith = params->ith;
  7340. const int nth = params->nth;
  7341. const int nr = ggml_nrows(src0);
  7342. GGML_TENSOR_UNARY_OP_LOCALS;
  7343. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7344. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7345. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7346. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7347. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7348. // rows per thread
  7349. const int dr = (nr + nth - 1)/nth;
  7350. // row range for this thread
  7351. const int ir0 = dr*ith;
  7352. const int ir1 = MIN(ir0 + dr, nr);
  7353. for (int ir = ir0; ir < ir1; ++ir) {
  7354. // src0 and dst are same shape => same indices
  7355. const int i3 = ir/(ne2*ne1);
  7356. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7357. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7358. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7359. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7360. for (int i = 0; i < ne0; i++) {
  7361. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7362. }
  7363. }
  7364. }
  7365. static void ggml_compute_forward_add1_q_f32(
  7366. const struct ggml_compute_params * params,
  7367. const struct ggml_tensor * src0,
  7368. const struct ggml_tensor * src1,
  7369. struct ggml_tensor * dst) {
  7370. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7371. GGML_ASSERT(ggml_is_scalar(src1));
  7372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7373. return;
  7374. }
  7375. // scalar to add
  7376. const float v = *(float *) src1->data;
  7377. const int ith = params->ith;
  7378. const int nth = params->nth;
  7379. const int nr = ggml_nrows(src0);
  7380. GGML_TENSOR_UNARY_OP_LOCALS;
  7381. const enum ggml_type type = src0->type;
  7382. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7383. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7384. // we don't support permuted src0
  7385. GGML_ASSERT(nb00 == ggml_type_size(type));
  7386. // dst cannot be transposed or permuted
  7387. GGML_ASSERT(nb0 <= nb1);
  7388. GGML_ASSERT(nb1 <= nb2);
  7389. GGML_ASSERT(nb2 <= nb3);
  7390. GGML_ASSERT(ggml_is_quantized(src0->type));
  7391. GGML_ASSERT(dst->type == src0->type);
  7392. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7393. // rows per thread
  7394. const int dr = (nr + nth - 1)/nth;
  7395. // row range for this thread
  7396. const int ir0 = dr*ith;
  7397. const int ir1 = MIN(ir0 + dr, nr);
  7398. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7399. for (int ir = ir0; ir < ir1; ++ir) {
  7400. // src0 and dst are same shape => same indices
  7401. const int i3 = ir/(ne2*ne1);
  7402. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7403. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7404. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7405. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7406. assert(ne0 % 32 == 0);
  7407. // unquantize row from src0 to temp buffer
  7408. dequantize_row_q(src0_row, wdata, ne0);
  7409. // add src1
  7410. ggml_vec_acc1_f32(ne0, wdata, v);
  7411. // quantize row to dst
  7412. quantize_row_q(wdata, dst_row, ne0);
  7413. }
  7414. }
  7415. static void ggml_compute_forward_add1(
  7416. const struct ggml_compute_params * params,
  7417. const struct ggml_tensor * src0,
  7418. const struct ggml_tensor * src1,
  7419. struct ggml_tensor * dst) {
  7420. switch (src0->type) {
  7421. case GGML_TYPE_F32:
  7422. {
  7423. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7424. } break;
  7425. case GGML_TYPE_F16:
  7426. {
  7427. if (src1->type == GGML_TYPE_F16) {
  7428. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7429. }
  7430. else if (src1->type == GGML_TYPE_F32) {
  7431. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7432. }
  7433. else {
  7434. GGML_ASSERT(false);
  7435. }
  7436. } break;
  7437. case GGML_TYPE_Q4_0:
  7438. case GGML_TYPE_Q4_1:
  7439. case GGML_TYPE_Q5_0:
  7440. case GGML_TYPE_Q5_1:
  7441. case GGML_TYPE_Q8_0:
  7442. case GGML_TYPE_Q8_1:
  7443. case GGML_TYPE_Q2_K:
  7444. case GGML_TYPE_Q3_K:
  7445. case GGML_TYPE_Q4_K:
  7446. case GGML_TYPE_Q5_K:
  7447. case GGML_TYPE_Q6_K:
  7448. {
  7449. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7450. } break;
  7451. default:
  7452. {
  7453. GGML_ASSERT(false);
  7454. } break;
  7455. }
  7456. }
  7457. // ggml_compute_forward_acc
  7458. static void ggml_compute_forward_acc_f32(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. const struct ggml_tensor * src1,
  7462. struct ggml_tensor * dst) {
  7463. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7464. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7465. // view src0 and dst with these strides and data offset inbytes during acc
  7466. // nb0 is implicitely element_size because src0 and dst are contiguous
  7467. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7468. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7469. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7470. size_t offset = ((int32_t *) dst->op_params)[3];
  7471. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7472. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7473. // memcpy needs to be synchronized across threads to avoid race conditions.
  7474. // => do it in INIT phase
  7475. memcpy(
  7476. ((char *) dst->data),
  7477. ((char *) src0->data),
  7478. ggml_nbytes(dst));
  7479. }
  7480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7481. return;
  7482. }
  7483. const int ith = params->ith;
  7484. const int nth = params->nth;
  7485. const int nr = ggml_nrows(src1);
  7486. const int nc = src1->ne[0];
  7487. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7488. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7489. // src0 and dst as viewed during acc
  7490. const size_t nb0 = ggml_element_size(src0);
  7491. const size_t nb00 = nb0;
  7492. const size_t nb01 = nb1;
  7493. const size_t nb02 = nb2;
  7494. const size_t nb03 = nb3;
  7495. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7496. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7497. GGML_ASSERT(nb10 == sizeof(float));
  7498. // rows per thread
  7499. const int dr = (nr + nth - 1)/nth;
  7500. // row range for this thread
  7501. const int ir0 = dr*ith;
  7502. const int ir1 = MIN(ir0 + dr, nr);
  7503. for (int ir = ir0; ir < ir1; ++ir) {
  7504. // src0 and dst are viewed with shape of src1 and offset
  7505. // => same indices
  7506. const int i3 = ir/(ne12*ne11);
  7507. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7508. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7509. #ifdef GGML_USE_ACCELERATE
  7510. vDSP_vadd(
  7511. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7512. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7513. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7514. #else
  7515. ggml_vec_add_f32(nc,
  7516. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7517. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7518. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7519. #endif
  7520. }
  7521. }
  7522. static void ggml_compute_forward_acc(
  7523. const struct ggml_compute_params * params,
  7524. const struct ggml_tensor * src0,
  7525. const struct ggml_tensor * src1,
  7526. struct ggml_tensor * dst) {
  7527. switch (src0->type) {
  7528. case GGML_TYPE_F32:
  7529. {
  7530. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7531. } break;
  7532. case GGML_TYPE_F16:
  7533. case GGML_TYPE_Q4_0:
  7534. case GGML_TYPE_Q4_1:
  7535. case GGML_TYPE_Q5_0:
  7536. case GGML_TYPE_Q5_1:
  7537. case GGML_TYPE_Q8_0:
  7538. case GGML_TYPE_Q8_1:
  7539. case GGML_TYPE_Q2_K:
  7540. case GGML_TYPE_Q3_K:
  7541. case GGML_TYPE_Q4_K:
  7542. case GGML_TYPE_Q5_K:
  7543. case GGML_TYPE_Q6_K:
  7544. default:
  7545. {
  7546. GGML_ASSERT(false);
  7547. } break;
  7548. }
  7549. }
  7550. // ggml_compute_forward_sub
  7551. static void ggml_compute_forward_sub_f32(
  7552. const struct ggml_compute_params * params,
  7553. const struct ggml_tensor * src0,
  7554. const struct ggml_tensor * src1,
  7555. struct ggml_tensor * dst) {
  7556. assert(params->ith == 0);
  7557. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7559. return;
  7560. }
  7561. const int nr = ggml_nrows(src0);
  7562. GGML_TENSOR_BINARY_OP_LOCALS;
  7563. GGML_ASSERT( nb0 == sizeof(float));
  7564. GGML_ASSERT(nb00 == sizeof(float));
  7565. if (nb10 == sizeof(float)) {
  7566. for (int ir = 0; ir < nr; ++ir) {
  7567. // src0, src1 and dst are same shape => same indices
  7568. const int i3 = ir/(ne2*ne1);
  7569. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7570. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7571. #ifdef GGML_USE_ACCELERATE
  7572. vDSP_vsub(
  7573. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7574. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7575. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7576. ne0);
  7577. #else
  7578. ggml_vec_sub_f32(ne0,
  7579. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7580. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7581. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7582. #endif
  7583. // }
  7584. // }
  7585. }
  7586. } else {
  7587. // src1 is not contiguous
  7588. for (int ir = 0; ir < nr; ++ir) {
  7589. // src0, src1 and dst are same shape => same indices
  7590. const int i3 = ir/(ne2*ne1);
  7591. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7592. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7593. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7594. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7595. for (int i0 = 0; i0 < ne0; i0++) {
  7596. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7597. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7598. }
  7599. }
  7600. }
  7601. }
  7602. static void ggml_compute_forward_sub(
  7603. const struct ggml_compute_params * params,
  7604. const struct ggml_tensor * src0,
  7605. const struct ggml_tensor * src1,
  7606. struct ggml_tensor * dst) {
  7607. switch (src0->type) {
  7608. case GGML_TYPE_F32:
  7609. {
  7610. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7611. } break;
  7612. default:
  7613. {
  7614. GGML_ASSERT(false);
  7615. } break;
  7616. }
  7617. }
  7618. // ggml_compute_forward_mul
  7619. static void ggml_compute_forward_mul_f32(
  7620. const struct ggml_compute_params * params,
  7621. const struct ggml_tensor * src0,
  7622. const struct ggml_tensor * src1,
  7623. struct ggml_tensor * dst) {
  7624. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7626. return;
  7627. }
  7628. const int ith = params->ith;
  7629. const int nth = params->nth;
  7630. #ifdef GGML_USE_CLBLAST
  7631. if (src1->backend == GGML_BACKEND_GPU) {
  7632. if (ith == 0) {
  7633. ggml_cl_mul(src0, src1, dst);
  7634. }
  7635. return;
  7636. }
  7637. #endif
  7638. const int64_t nr = ggml_nrows(src0);
  7639. GGML_TENSOR_BINARY_OP_LOCALS;
  7640. GGML_ASSERT( nb0 == sizeof(float));
  7641. GGML_ASSERT(nb00 == sizeof(float));
  7642. GGML_ASSERT(ne00 == ne10);
  7643. if (nb10 == sizeof(float)) {
  7644. for (int64_t ir = ith; ir < nr; ir += nth) {
  7645. // src0 and dst are same shape => same indices
  7646. const int64_t i03 = ir/(ne02*ne01);
  7647. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7648. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7649. const int64_t i13 = i03 % ne13;
  7650. const int64_t i12 = i02 % ne12;
  7651. const int64_t i11 = i01 % ne11;
  7652. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7653. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7654. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7655. #ifdef GGML_USE_ACCELERATE
  7656. UNUSED(ggml_vec_mul_f32);
  7657. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7658. #else
  7659. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7660. #endif
  7661. // }
  7662. // }
  7663. }
  7664. } else {
  7665. // src1 is not contiguous
  7666. for (int64_t ir = ith; ir < nr; ir += nth) {
  7667. // src0 and dst are same shape => same indices
  7668. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7669. const int64_t i03 = ir/(ne02*ne01);
  7670. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7671. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7672. const int64_t i13 = i03 % ne13;
  7673. const int64_t i12 = i02 % ne12;
  7674. const int64_t i11 = i01 % ne11;
  7675. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7676. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7677. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7678. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7679. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7680. }
  7681. }
  7682. }
  7683. }
  7684. static void ggml_compute_forward_mul(
  7685. const struct ggml_compute_params * params,
  7686. const struct ggml_tensor * src0,
  7687. const struct ggml_tensor * src1,
  7688. struct ggml_tensor * dst) {
  7689. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7690. switch (src0->type) {
  7691. case GGML_TYPE_F32:
  7692. {
  7693. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7694. } break;
  7695. default:
  7696. {
  7697. GGML_ASSERT(false);
  7698. } break;
  7699. }
  7700. }
  7701. // ggml_compute_forward_div
  7702. static void ggml_compute_forward_div_f32(
  7703. const struct ggml_compute_params * params,
  7704. const struct ggml_tensor * src0,
  7705. const struct ggml_tensor * src1,
  7706. struct ggml_tensor * dst) {
  7707. assert(params->ith == 0);
  7708. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7710. return;
  7711. }
  7712. const int nr = ggml_nrows(src0);
  7713. GGML_TENSOR_BINARY_OP_LOCALS;
  7714. GGML_ASSERT( nb0 == sizeof(float));
  7715. GGML_ASSERT(nb00 == sizeof(float));
  7716. if (nb10 == sizeof(float)) {
  7717. for (int ir = 0; ir < nr; ++ir) {
  7718. // src0, src1 and dst are same shape => same indices
  7719. const int i3 = ir/(ne2*ne1);
  7720. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7721. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7722. #ifdef GGML_USE_ACCELERATE
  7723. UNUSED(ggml_vec_div_f32);
  7724. vDSP_vdiv(
  7725. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7726. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7727. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7728. ne0);
  7729. #else
  7730. ggml_vec_div_f32(ne0,
  7731. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7732. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7733. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7734. #endif
  7735. // }
  7736. // }
  7737. }
  7738. } else {
  7739. // src1 is not contiguous
  7740. for (int ir = 0; ir < nr; ++ir) {
  7741. // src0, src1 and dst are same shape => same indices
  7742. const int i3 = ir/(ne2*ne1);
  7743. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7744. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7745. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7746. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7747. for (int i0 = 0; i0 < ne0; i0++) {
  7748. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7749. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7750. }
  7751. }
  7752. }
  7753. }
  7754. static void ggml_compute_forward_div(
  7755. const struct ggml_compute_params * params,
  7756. const struct ggml_tensor * src0,
  7757. const struct ggml_tensor * src1,
  7758. struct ggml_tensor * dst) {
  7759. switch (src0->type) {
  7760. case GGML_TYPE_F32:
  7761. {
  7762. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7763. } break;
  7764. default:
  7765. {
  7766. GGML_ASSERT(false);
  7767. } break;
  7768. }
  7769. }
  7770. // ggml_compute_forward_sqr
  7771. static void ggml_compute_forward_sqr_f32(
  7772. const struct ggml_compute_params * params,
  7773. const struct ggml_tensor * src0,
  7774. struct ggml_tensor * dst) {
  7775. assert(params->ith == 0);
  7776. assert(ggml_are_same_shape(src0, dst));
  7777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7778. return;
  7779. }
  7780. const int n = ggml_nrows(src0);
  7781. const int nc = src0->ne[0];
  7782. assert( dst->nb[0] == sizeof(float));
  7783. assert(src0->nb[0] == sizeof(float));
  7784. for (int i = 0; i < n; i++) {
  7785. ggml_vec_sqr_f32(nc,
  7786. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7787. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7788. }
  7789. }
  7790. static void ggml_compute_forward_sqr(
  7791. const struct ggml_compute_params * params,
  7792. const struct ggml_tensor * src0,
  7793. struct ggml_tensor * dst) {
  7794. switch (src0->type) {
  7795. case GGML_TYPE_F32:
  7796. {
  7797. ggml_compute_forward_sqr_f32(params, src0, dst);
  7798. } break;
  7799. default:
  7800. {
  7801. GGML_ASSERT(false);
  7802. } break;
  7803. }
  7804. }
  7805. // ggml_compute_forward_sqrt
  7806. static void ggml_compute_forward_sqrt_f32(
  7807. const struct ggml_compute_params * params,
  7808. const struct ggml_tensor * src0,
  7809. struct ggml_tensor * dst) {
  7810. assert(params->ith == 0);
  7811. assert(ggml_are_same_shape(src0, dst));
  7812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7813. return;
  7814. }
  7815. const int n = ggml_nrows(src0);
  7816. const int nc = src0->ne[0];
  7817. assert( dst->nb[0] == sizeof(float));
  7818. assert(src0->nb[0] == sizeof(float));
  7819. for (int i = 0; i < n; i++) {
  7820. ggml_vec_sqrt_f32(nc,
  7821. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7822. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7823. }
  7824. }
  7825. static void ggml_compute_forward_sqrt(
  7826. const struct ggml_compute_params * params,
  7827. const struct ggml_tensor * src0,
  7828. struct ggml_tensor * dst) {
  7829. switch (src0->type) {
  7830. case GGML_TYPE_F32:
  7831. {
  7832. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7833. } break;
  7834. default:
  7835. {
  7836. GGML_ASSERT(false);
  7837. } break;
  7838. }
  7839. }
  7840. // ggml_compute_forward_log
  7841. static void ggml_compute_forward_log_f32(
  7842. const struct ggml_compute_params * params,
  7843. const struct ggml_tensor * src0,
  7844. struct ggml_tensor * dst) {
  7845. GGML_ASSERT(params->ith == 0);
  7846. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7847. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7848. return;
  7849. }
  7850. const int n = ggml_nrows(src0);
  7851. const int nc = src0->ne[0];
  7852. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7853. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7854. for (int i = 0; i < n; i++) {
  7855. ggml_vec_log_f32(nc,
  7856. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7857. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7858. }
  7859. }
  7860. static void ggml_compute_forward_log(
  7861. const struct ggml_compute_params * params,
  7862. const struct ggml_tensor * src0,
  7863. struct ggml_tensor * dst) {
  7864. switch (src0->type) {
  7865. case GGML_TYPE_F32:
  7866. {
  7867. ggml_compute_forward_log_f32(params, src0, dst);
  7868. } break;
  7869. default:
  7870. {
  7871. GGML_ASSERT(false);
  7872. } break;
  7873. }
  7874. }
  7875. // ggml_compute_forward_sum
  7876. static void ggml_compute_forward_sum_f32(
  7877. const struct ggml_compute_params * params,
  7878. const struct ggml_tensor * src0,
  7879. struct ggml_tensor * dst) {
  7880. assert(params->ith == 0);
  7881. assert(ggml_is_scalar(dst));
  7882. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7883. return;
  7884. }
  7885. assert(ggml_is_scalar(dst));
  7886. assert(src0->nb[0] == sizeof(float));
  7887. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7888. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7889. ggml_float sum = 0;
  7890. ggml_float row_sum = 0;
  7891. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7892. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7893. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7894. ggml_vec_sum_f32_ggf(ne00,
  7895. &row_sum,
  7896. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7897. sum += row_sum;
  7898. }
  7899. }
  7900. }
  7901. ((float *) dst->data)[0] = sum;
  7902. }
  7903. static void ggml_compute_forward_sum_f16(
  7904. const struct ggml_compute_params * params,
  7905. const struct ggml_tensor * src0,
  7906. struct ggml_tensor * dst) {
  7907. assert(params->ith == 0);
  7908. assert(ggml_is_scalar(dst));
  7909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7910. return;
  7911. }
  7912. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7913. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7914. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7915. float sum = 0;
  7916. float row_sum = 0;
  7917. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7918. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7919. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7920. ggml_vec_sum_f16_ggf(ne00,
  7921. &row_sum,
  7922. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7923. sum += row_sum;
  7924. }
  7925. }
  7926. }
  7927. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7928. }
  7929. static void ggml_compute_forward_sum(
  7930. const struct ggml_compute_params * params,
  7931. const struct ggml_tensor * src0,
  7932. struct ggml_tensor * dst) {
  7933. switch (src0->type) {
  7934. case GGML_TYPE_F32:
  7935. {
  7936. ggml_compute_forward_sum_f32(params, src0, dst);
  7937. } break;
  7938. case GGML_TYPE_F16:
  7939. {
  7940. ggml_compute_forward_sum_f16(params, src0, dst);
  7941. } break;
  7942. default:
  7943. {
  7944. GGML_ASSERT(false);
  7945. } break;
  7946. }
  7947. }
  7948. // ggml_compute_forward_sum_rows
  7949. static void ggml_compute_forward_sum_rows_f32(
  7950. const struct ggml_compute_params * params,
  7951. const struct ggml_tensor * src0,
  7952. struct ggml_tensor * dst) {
  7953. GGML_ASSERT(params->ith == 0);
  7954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7955. return;
  7956. }
  7957. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7958. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7959. GGML_TENSOR_UNARY_OP_LOCALS;
  7960. GGML_ASSERT(ne0 == 1);
  7961. GGML_ASSERT(ne1 == ne01);
  7962. GGML_ASSERT(ne2 == ne02);
  7963. GGML_ASSERT(ne3 == ne03);
  7964. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7965. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7966. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7967. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7968. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7969. float row_sum = 0;
  7970. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7971. dst_row[0] = row_sum;
  7972. }
  7973. }
  7974. }
  7975. }
  7976. static void ggml_compute_forward_sum_rows(
  7977. const struct ggml_compute_params * params,
  7978. const struct ggml_tensor * src0,
  7979. struct ggml_tensor * dst) {
  7980. switch (src0->type) {
  7981. case GGML_TYPE_F32:
  7982. {
  7983. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7984. } break;
  7985. default:
  7986. {
  7987. GGML_ASSERT(false);
  7988. } break;
  7989. }
  7990. }
  7991. // ggml_compute_forward_mean
  7992. static void ggml_compute_forward_mean_f32(
  7993. const struct ggml_compute_params * params,
  7994. const struct ggml_tensor * src0,
  7995. struct ggml_tensor * dst) {
  7996. assert(params->ith == 0);
  7997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7998. return;
  7999. }
  8000. assert(src0->nb[0] == sizeof(float));
  8001. GGML_TENSOR_UNARY_OP_LOCALS;
  8002. assert(ne0 == 1);
  8003. assert(ne1 == ne01);
  8004. assert(ne2 == ne02);
  8005. assert(ne3 == ne03);
  8006. UNUSED(ne0);
  8007. UNUSED(ne1);
  8008. UNUSED(ne2);
  8009. UNUSED(ne3);
  8010. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8011. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8012. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8013. ggml_vec_sum_f32(ne00,
  8014. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8015. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8016. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8017. }
  8018. }
  8019. }
  8020. }
  8021. static void ggml_compute_forward_mean(
  8022. const struct ggml_compute_params * params,
  8023. const struct ggml_tensor * src0,
  8024. struct ggml_tensor * dst) {
  8025. switch (src0->type) {
  8026. case GGML_TYPE_F32:
  8027. {
  8028. ggml_compute_forward_mean_f32(params, src0, dst);
  8029. } break;
  8030. default:
  8031. {
  8032. GGML_ASSERT(false);
  8033. } break;
  8034. }
  8035. }
  8036. // ggml_compute_forward_argmax
  8037. static void ggml_compute_forward_argmax_f32(
  8038. const struct ggml_compute_params * params,
  8039. const struct ggml_tensor * src0,
  8040. struct ggml_tensor * dst) {
  8041. assert(params->ith == 0);
  8042. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8043. return;
  8044. }
  8045. assert(src0->nb[0] == sizeof(float));
  8046. assert(dst->nb[0] == sizeof(float));
  8047. const int64_t ne00 = src0->ne[0];
  8048. const int64_t ne01 = src0->ne[1];
  8049. const size_t nb01 = src0->nb[1];
  8050. const size_t nb0 = dst->nb[0];
  8051. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8052. float * src = (float *) ((char *) src0->data + i1*nb01);
  8053. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8054. int v = 0;
  8055. ggml_vec_argmax_f32(ne00, &v, src);
  8056. dst_[0] = v;
  8057. }
  8058. }
  8059. static void ggml_compute_forward_argmax(
  8060. const struct ggml_compute_params * params,
  8061. const struct ggml_tensor * src0,
  8062. struct ggml_tensor * dst) {
  8063. switch (src0->type) {
  8064. case GGML_TYPE_F32:
  8065. {
  8066. ggml_compute_forward_argmax_f32(params, src0, dst);
  8067. } break;
  8068. default:
  8069. {
  8070. GGML_ASSERT(false);
  8071. } break;
  8072. }
  8073. }
  8074. // ggml_compute_forward_repeat
  8075. static void ggml_compute_forward_repeat_f32(
  8076. const struct ggml_compute_params * params,
  8077. const struct ggml_tensor * src0,
  8078. struct ggml_tensor * dst) {
  8079. GGML_ASSERT(params->ith == 0);
  8080. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8082. return;
  8083. }
  8084. GGML_TENSOR_UNARY_OP_LOCALS;
  8085. // guaranteed to be an integer due to the check in ggml_can_repeat
  8086. const int nr0 = (int)(ne0/ne00);
  8087. const int nr1 = (int)(ne1/ne01);
  8088. const int nr2 = (int)(ne2/ne02);
  8089. const int nr3 = (int)(ne3/ne03);
  8090. // TODO: support for transposed / permuted tensors
  8091. GGML_ASSERT(nb0 == sizeof(float));
  8092. GGML_ASSERT(nb00 == sizeof(float));
  8093. // TODO: maybe this is not optimal?
  8094. for (int i3 = 0; i3 < nr3; i3++) {
  8095. for (int k3 = 0; k3 < ne03; k3++) {
  8096. for (int i2 = 0; i2 < nr2; i2++) {
  8097. for (int k2 = 0; k2 < ne02; k2++) {
  8098. for (int i1 = 0; i1 < nr1; i1++) {
  8099. for (int k1 = 0; k1 < ne01; k1++) {
  8100. for (int i0 = 0; i0 < nr0; i0++) {
  8101. ggml_vec_cpy_f32(ne00,
  8102. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8103. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8104. }
  8105. }
  8106. }
  8107. }
  8108. }
  8109. }
  8110. }
  8111. }
  8112. static void ggml_compute_forward_repeat(
  8113. const struct ggml_compute_params * params,
  8114. const struct ggml_tensor * src0,
  8115. struct ggml_tensor * dst) {
  8116. switch (src0->type) {
  8117. case GGML_TYPE_F32:
  8118. {
  8119. ggml_compute_forward_repeat_f32(params, src0, dst);
  8120. } break;
  8121. default:
  8122. {
  8123. GGML_ASSERT(false);
  8124. } break;
  8125. }
  8126. }
  8127. // ggml_compute_forward_repeat_back
  8128. static void ggml_compute_forward_repeat_back_f32(
  8129. const struct ggml_compute_params * params,
  8130. const struct ggml_tensor * src0,
  8131. struct ggml_tensor * dst) {
  8132. GGML_ASSERT(params->ith == 0);
  8133. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8134. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8135. return;
  8136. }
  8137. GGML_TENSOR_UNARY_OP_LOCALS;
  8138. // guaranteed to be an integer due to the check in ggml_can_repeat
  8139. const int nr0 = (int)(ne00/ne0);
  8140. const int nr1 = (int)(ne01/ne1);
  8141. const int nr2 = (int)(ne02/ne2);
  8142. const int nr3 = (int)(ne03/ne3);
  8143. // TODO: support for transposed / permuted tensors
  8144. GGML_ASSERT(nb0 == sizeof(float));
  8145. GGML_ASSERT(nb00 == sizeof(float));
  8146. if (ggml_is_contiguous(dst)) {
  8147. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8148. } else {
  8149. for (int k3 = 0; k3 < ne3; k3++) {
  8150. for (int k2 = 0; k2 < ne2; k2++) {
  8151. for (int k1 = 0; k1 < ne1; k1++) {
  8152. ggml_vec_set_f32(ne0,
  8153. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8154. 0);
  8155. }
  8156. }
  8157. }
  8158. }
  8159. // TODO: maybe this is not optimal?
  8160. for (int i3 = 0; i3 < nr3; i3++) {
  8161. for (int k3 = 0; k3 < ne3; k3++) {
  8162. for (int i2 = 0; i2 < nr2; i2++) {
  8163. for (int k2 = 0; k2 < ne2; k2++) {
  8164. for (int i1 = 0; i1 < nr1; i1++) {
  8165. for (int k1 = 0; k1 < ne1; k1++) {
  8166. for (int i0 = 0; i0 < nr0; i0++) {
  8167. ggml_vec_acc_f32(ne0,
  8168. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8169. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8170. }
  8171. }
  8172. }
  8173. }
  8174. }
  8175. }
  8176. }
  8177. }
  8178. static void ggml_compute_forward_repeat_back(
  8179. const struct ggml_compute_params * params,
  8180. const struct ggml_tensor * src0,
  8181. struct ggml_tensor * dst) {
  8182. switch (src0->type) {
  8183. case GGML_TYPE_F32:
  8184. {
  8185. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8186. } break;
  8187. default:
  8188. {
  8189. GGML_ASSERT(false);
  8190. } break;
  8191. }
  8192. }
  8193. // ggml_compute_forward_concat
  8194. static void ggml_compute_forward_concat_f32(
  8195. const struct ggml_compute_params * params,
  8196. const struct ggml_tensor * src0,
  8197. const struct ggml_tensor * src1,
  8198. struct ggml_tensor * dst) {
  8199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8200. return;
  8201. }
  8202. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8203. const int ith = params->ith;
  8204. GGML_TENSOR_BINARY_OP_LOCALS;
  8205. // TODO: support for transposed / permuted tensors
  8206. GGML_ASSERT(nb0 == sizeof(float));
  8207. GGML_ASSERT(nb00 == sizeof(float));
  8208. GGML_ASSERT(nb10 == sizeof(float));
  8209. for (int i3 = 0; i3 < ne3; i3++) {
  8210. for (int i2 = ith; i2 < ne2; i2++) {
  8211. if (i2 < ne02) { // src0
  8212. for (int i1 = 0; i1 < ne1; i1++) {
  8213. for (int i0 = 0; i0 < ne0; i0++) {
  8214. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8215. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8216. *y = *x;
  8217. }
  8218. }
  8219. } // src1
  8220. else {
  8221. for (int i1 = 0; i1 < ne1; i1++) {
  8222. for (int i0 = 0; i0 < ne0; i0++) {
  8223. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8224. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8225. *y = *x;
  8226. }
  8227. }
  8228. }
  8229. }
  8230. }
  8231. }
  8232. static void ggml_compute_forward_concat(
  8233. const struct ggml_compute_params* params,
  8234. const struct ggml_tensor* src0,
  8235. const struct ggml_tensor* src1,
  8236. struct ggml_tensor* dst) {
  8237. switch (src0->type) {
  8238. case GGML_TYPE_F32:
  8239. {
  8240. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8241. } break;
  8242. default:
  8243. {
  8244. GGML_ASSERT(false);
  8245. } break;
  8246. }
  8247. }
  8248. // ggml_compute_forward_abs
  8249. static void ggml_compute_forward_abs_f32(
  8250. const struct ggml_compute_params * params,
  8251. const struct ggml_tensor * src0,
  8252. struct ggml_tensor * dst) {
  8253. assert(params->ith == 0);
  8254. assert(ggml_are_same_shape(src0, dst));
  8255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8256. return;
  8257. }
  8258. const int n = ggml_nrows(src0);
  8259. const int nc = src0->ne[0];
  8260. assert(dst->nb[0] == sizeof(float));
  8261. assert(src0->nb[0] == sizeof(float));
  8262. for (int i = 0; i < n; i++) {
  8263. ggml_vec_abs_f32(nc,
  8264. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8265. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8266. }
  8267. }
  8268. static void ggml_compute_forward_abs(
  8269. const struct ggml_compute_params * params,
  8270. const struct ggml_tensor * src0,
  8271. struct ggml_tensor * dst) {
  8272. switch (src0->type) {
  8273. case GGML_TYPE_F32:
  8274. {
  8275. ggml_compute_forward_abs_f32(params, src0, dst);
  8276. } break;
  8277. default:
  8278. {
  8279. GGML_ASSERT(false);
  8280. } break;
  8281. }
  8282. }
  8283. // ggml_compute_forward_sgn
  8284. static void ggml_compute_forward_sgn_f32(
  8285. const struct ggml_compute_params * params,
  8286. const struct ggml_tensor * src0,
  8287. struct ggml_tensor * dst) {
  8288. assert(params->ith == 0);
  8289. assert(ggml_are_same_shape(src0, dst));
  8290. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8291. return;
  8292. }
  8293. const int n = ggml_nrows(src0);
  8294. const int nc = src0->ne[0];
  8295. assert(dst->nb[0] == sizeof(float));
  8296. assert(src0->nb[0] == sizeof(float));
  8297. for (int i = 0; i < n; i++) {
  8298. ggml_vec_sgn_f32(nc,
  8299. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8300. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8301. }
  8302. }
  8303. static void ggml_compute_forward_sgn(
  8304. const struct ggml_compute_params * params,
  8305. const struct ggml_tensor * src0,
  8306. struct ggml_tensor * dst) {
  8307. switch (src0->type) {
  8308. case GGML_TYPE_F32:
  8309. {
  8310. ggml_compute_forward_sgn_f32(params, src0, dst);
  8311. } break;
  8312. default:
  8313. {
  8314. GGML_ASSERT(false);
  8315. } break;
  8316. }
  8317. }
  8318. // ggml_compute_forward_neg
  8319. static void ggml_compute_forward_neg_f32(
  8320. const struct ggml_compute_params * params,
  8321. const struct ggml_tensor * src0,
  8322. struct ggml_tensor * dst) {
  8323. assert(params->ith == 0);
  8324. assert(ggml_are_same_shape(src0, dst));
  8325. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8326. return;
  8327. }
  8328. const int n = ggml_nrows(src0);
  8329. const int nc = src0->ne[0];
  8330. assert(dst->nb[0] == sizeof(float));
  8331. assert(src0->nb[0] == sizeof(float));
  8332. for (int i = 0; i < n; i++) {
  8333. ggml_vec_neg_f32(nc,
  8334. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8335. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8336. }
  8337. }
  8338. static void ggml_compute_forward_neg(
  8339. const struct ggml_compute_params * params,
  8340. const struct ggml_tensor * src0,
  8341. struct ggml_tensor * dst) {
  8342. switch (src0->type) {
  8343. case GGML_TYPE_F32:
  8344. {
  8345. ggml_compute_forward_neg_f32(params, src0, dst);
  8346. } break;
  8347. default:
  8348. {
  8349. GGML_ASSERT(false);
  8350. } break;
  8351. }
  8352. }
  8353. // ggml_compute_forward_step
  8354. static void ggml_compute_forward_step_f32(
  8355. const struct ggml_compute_params * params,
  8356. const struct ggml_tensor * src0,
  8357. struct ggml_tensor * dst) {
  8358. assert(params->ith == 0);
  8359. assert(ggml_are_same_shape(src0, dst));
  8360. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8361. return;
  8362. }
  8363. const int n = ggml_nrows(src0);
  8364. const int nc = src0->ne[0];
  8365. assert(dst->nb[0] == sizeof(float));
  8366. assert(src0->nb[0] == sizeof(float));
  8367. for (int i = 0; i < n; i++) {
  8368. ggml_vec_step_f32(nc,
  8369. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8370. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8371. }
  8372. }
  8373. static void ggml_compute_forward_step(
  8374. const struct ggml_compute_params * params,
  8375. const struct ggml_tensor * src0,
  8376. struct ggml_tensor * dst) {
  8377. switch (src0->type) {
  8378. case GGML_TYPE_F32:
  8379. {
  8380. ggml_compute_forward_step_f32(params, src0, dst);
  8381. } break;
  8382. default:
  8383. {
  8384. GGML_ASSERT(false);
  8385. } break;
  8386. }
  8387. }
  8388. // ggml_compute_forward_tanh
  8389. static void ggml_compute_forward_tanh_f32(
  8390. const struct ggml_compute_params * params,
  8391. const struct ggml_tensor * src0,
  8392. struct ggml_tensor * dst) {
  8393. assert(params->ith == 0);
  8394. assert(ggml_are_same_shape(src0, dst));
  8395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8396. return;
  8397. }
  8398. const int n = ggml_nrows(src0);
  8399. const int nc = src0->ne[0];
  8400. assert(dst->nb[0] == sizeof(float));
  8401. assert(src0->nb[0] == sizeof(float));
  8402. for (int i = 0; i < n; i++) {
  8403. ggml_vec_tanh_f32(nc,
  8404. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8405. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8406. }
  8407. }
  8408. static void ggml_compute_forward_tanh(
  8409. const struct ggml_compute_params * params,
  8410. const struct ggml_tensor * src0,
  8411. struct ggml_tensor * dst) {
  8412. switch (src0->type) {
  8413. case GGML_TYPE_F32:
  8414. {
  8415. ggml_compute_forward_tanh_f32(params, src0, dst);
  8416. } break;
  8417. default:
  8418. {
  8419. GGML_ASSERT(false);
  8420. } break;
  8421. }
  8422. }
  8423. // ggml_compute_forward_elu
  8424. static void ggml_compute_forward_elu_f32(
  8425. const struct ggml_compute_params * params,
  8426. const struct ggml_tensor * src0,
  8427. struct ggml_tensor * dst) {
  8428. assert(params->ith == 0);
  8429. assert(ggml_are_same_shape(src0, dst));
  8430. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8431. return;
  8432. }
  8433. const int n = ggml_nrows(src0);
  8434. const int nc = src0->ne[0];
  8435. assert(dst->nb[0] == sizeof(float));
  8436. assert(src0->nb[0] == sizeof(float));
  8437. for (int i = 0; i < n; i++) {
  8438. ggml_vec_elu_f32(nc,
  8439. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8440. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8441. }
  8442. }
  8443. static void ggml_compute_forward_elu(
  8444. const struct ggml_compute_params * params,
  8445. const struct ggml_tensor * src0,
  8446. struct ggml_tensor * dst) {
  8447. switch (src0->type) {
  8448. case GGML_TYPE_F32:
  8449. {
  8450. ggml_compute_forward_elu_f32(params, src0, dst);
  8451. } break;
  8452. default:
  8453. {
  8454. GGML_ASSERT(false);
  8455. } break;
  8456. }
  8457. }
  8458. // ggml_compute_forward_relu
  8459. static void ggml_compute_forward_relu_f32(
  8460. const struct ggml_compute_params * params,
  8461. const struct ggml_tensor * src0,
  8462. struct ggml_tensor * dst) {
  8463. assert(params->ith == 0);
  8464. assert(ggml_are_same_shape(src0, dst));
  8465. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8466. return;
  8467. }
  8468. const int n = ggml_nrows(src0);
  8469. const int nc = src0->ne[0];
  8470. assert(dst->nb[0] == sizeof(float));
  8471. assert(src0->nb[0] == sizeof(float));
  8472. for (int i = 0; i < n; i++) {
  8473. ggml_vec_relu_f32(nc,
  8474. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8475. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8476. }
  8477. }
  8478. static void ggml_compute_forward_relu(
  8479. const struct ggml_compute_params * params,
  8480. const struct ggml_tensor * src0,
  8481. struct ggml_tensor * dst) {
  8482. switch (src0->type) {
  8483. case GGML_TYPE_F32:
  8484. {
  8485. ggml_compute_forward_relu_f32(params, src0, dst);
  8486. } break;
  8487. default:
  8488. {
  8489. GGML_ASSERT(false);
  8490. } break;
  8491. }
  8492. }
  8493. // ggml_compute_forward_gelu
  8494. static void ggml_compute_forward_gelu_f32(
  8495. const struct ggml_compute_params * params,
  8496. const struct ggml_tensor * src0,
  8497. struct ggml_tensor * dst) {
  8498. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8499. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8500. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8501. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8502. return;
  8503. }
  8504. const int ith = params->ith;
  8505. const int nth = params->nth;
  8506. const int nc = src0->ne[0];
  8507. const int nr = ggml_nrows(src0);
  8508. // rows per thread
  8509. const int dr = (nr + nth - 1)/nth;
  8510. // row range for this thread
  8511. const int ir0 = dr*ith;
  8512. const int ir1 = MIN(ir0 + dr, nr);
  8513. for (int i1 = ir0; i1 < ir1; i1++) {
  8514. ggml_vec_gelu_f32(nc,
  8515. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8516. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8517. #ifndef NDEBUG
  8518. for (int k = 0; k < nc; k++) {
  8519. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8520. UNUSED(x);
  8521. assert(!isnan(x));
  8522. assert(!isinf(x));
  8523. }
  8524. #endif
  8525. }
  8526. }
  8527. static void ggml_compute_forward_gelu(
  8528. const struct ggml_compute_params * params,
  8529. const struct ggml_tensor * src0,
  8530. struct ggml_tensor * dst) {
  8531. switch (src0->type) {
  8532. case GGML_TYPE_F32:
  8533. {
  8534. ggml_compute_forward_gelu_f32(params, src0, dst);
  8535. } break;
  8536. default:
  8537. {
  8538. GGML_ASSERT(false);
  8539. } break;
  8540. }
  8541. }
  8542. // ggml_compute_forward_gelu_quick
  8543. static void ggml_compute_forward_gelu_quick_f32(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. struct ggml_tensor * dst) {
  8547. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8548. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8549. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8551. return;
  8552. }
  8553. const int ith = params->ith;
  8554. const int nth = params->nth;
  8555. const int nc = src0->ne[0];
  8556. const int nr = ggml_nrows(src0);
  8557. // rows per thread
  8558. const int dr = (nr + nth - 1)/nth;
  8559. // row range for this thread
  8560. const int ir0 = dr*ith;
  8561. const int ir1 = MIN(ir0 + dr, nr);
  8562. for (int i1 = ir0; i1 < ir1; i1++) {
  8563. ggml_vec_gelu_quick_f32(nc,
  8564. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8565. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8566. #ifndef NDEBUG
  8567. for (int k = 0; k < nc; k++) {
  8568. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8569. UNUSED(x);
  8570. assert(!isnan(x));
  8571. assert(!isinf(x));
  8572. }
  8573. #endif
  8574. }
  8575. }
  8576. static void ggml_compute_forward_gelu_quick(
  8577. const struct ggml_compute_params * params,
  8578. const struct ggml_tensor * src0,
  8579. struct ggml_tensor * dst) {
  8580. switch (src0->type) {
  8581. case GGML_TYPE_F32:
  8582. {
  8583. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8584. } break;
  8585. default:
  8586. {
  8587. GGML_ASSERT(false);
  8588. } break;
  8589. }
  8590. }
  8591. // ggml_compute_forward_silu
  8592. static void ggml_compute_forward_silu_f32(
  8593. const struct ggml_compute_params * params,
  8594. const struct ggml_tensor * src0,
  8595. struct ggml_tensor * dst) {
  8596. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8597. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8598. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8599. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8600. return;
  8601. }
  8602. const int ith = params->ith;
  8603. const int nth = params->nth;
  8604. const int nc = src0->ne[0];
  8605. const int nr = ggml_nrows(src0);
  8606. // rows per thread
  8607. const int dr = (nr + nth - 1)/nth;
  8608. // row range for this thread
  8609. const int ir0 = dr*ith;
  8610. const int ir1 = MIN(ir0 + dr, nr);
  8611. for (int i1 = ir0; i1 < ir1; i1++) {
  8612. ggml_vec_silu_f32(nc,
  8613. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8614. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8615. #ifndef NDEBUG
  8616. for (int k = 0; k < nc; k++) {
  8617. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8618. UNUSED(x);
  8619. assert(!isnan(x));
  8620. assert(!isinf(x));
  8621. }
  8622. #endif
  8623. }
  8624. }
  8625. static void ggml_compute_forward_silu(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. struct ggml_tensor * dst) {
  8629. switch (src0->type) {
  8630. case GGML_TYPE_F32:
  8631. {
  8632. ggml_compute_forward_silu_f32(params, src0, dst);
  8633. } break;
  8634. default:
  8635. {
  8636. GGML_ASSERT(false);
  8637. } break;
  8638. }
  8639. }
  8640. // ggml_compute_forward_silu_back
  8641. static void ggml_compute_forward_silu_back_f32(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * src0,
  8644. const struct ggml_tensor * grad,
  8645. struct ggml_tensor * dst) {
  8646. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8647. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8648. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8649. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8650. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8651. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8652. return;
  8653. }
  8654. const int ith = params->ith;
  8655. const int nth = params->nth;
  8656. const int nc = src0->ne[0];
  8657. const int nr = ggml_nrows(src0);
  8658. // rows per thread
  8659. const int dr = (nr + nth - 1)/nth;
  8660. // row range for this thread
  8661. const int ir0 = dr*ith;
  8662. const int ir1 = MIN(ir0 + dr, nr);
  8663. for (int i1 = ir0; i1 < ir1; i1++) {
  8664. ggml_vec_silu_backward_f32(nc,
  8665. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8666. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8667. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8668. #ifndef NDEBUG
  8669. for (int k = 0; k < nc; k++) {
  8670. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8671. UNUSED(x);
  8672. assert(!isnan(x));
  8673. assert(!isinf(x));
  8674. }
  8675. #endif
  8676. }
  8677. }
  8678. static void ggml_compute_forward_silu_back(
  8679. const struct ggml_compute_params * params,
  8680. const struct ggml_tensor * src0,
  8681. const struct ggml_tensor * grad,
  8682. struct ggml_tensor * dst) {
  8683. switch (src0->type) {
  8684. case GGML_TYPE_F32:
  8685. {
  8686. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8687. } break;
  8688. default:
  8689. {
  8690. GGML_ASSERT(false);
  8691. } break;
  8692. }
  8693. }
  8694. // ggml_compute_forward_norm
  8695. static void ggml_compute_forward_norm_f32(
  8696. const struct ggml_compute_params * params,
  8697. const struct ggml_tensor * src0,
  8698. struct ggml_tensor * dst) {
  8699. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8700. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8701. return;
  8702. }
  8703. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8704. const int ith = params->ith;
  8705. const int nth = params->nth;
  8706. GGML_TENSOR_UNARY_OP_LOCALS;
  8707. float eps;
  8708. memcpy(&eps, dst->op_params, sizeof(float));
  8709. // TODO: optimize
  8710. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8711. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8712. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8713. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8714. ggml_float sum = 0.0;
  8715. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8716. sum += (ggml_float)x[i00];
  8717. }
  8718. float mean = sum/ne00;
  8719. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8720. ggml_float sum2 = 0.0;
  8721. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8722. float v = x[i00] - mean;
  8723. y[i00] = v;
  8724. sum2 += (ggml_float)(v*v);
  8725. }
  8726. float variance = sum2/ne00;
  8727. const float scale = 1.0f/sqrtf(variance + eps);
  8728. ggml_vec_scale_f32(ne00, y, scale);
  8729. }
  8730. }
  8731. }
  8732. }
  8733. static void ggml_compute_forward_norm(
  8734. const struct ggml_compute_params * params,
  8735. const struct ggml_tensor * src0,
  8736. struct ggml_tensor * dst) {
  8737. switch (src0->type) {
  8738. case GGML_TYPE_F32:
  8739. {
  8740. ggml_compute_forward_norm_f32(params, src0, dst);
  8741. } break;
  8742. default:
  8743. {
  8744. GGML_ASSERT(false);
  8745. } break;
  8746. }
  8747. }
  8748. // ggml_compute_forward_group_rms_norm
  8749. static void ggml_compute_forward_rms_norm_f32(
  8750. const struct ggml_compute_params * params,
  8751. const struct ggml_tensor * src0,
  8752. struct ggml_tensor * dst) {
  8753. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8754. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8755. return;
  8756. }
  8757. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8758. const int ith = params->ith;
  8759. const int nth = params->nth;
  8760. GGML_TENSOR_UNARY_OP_LOCALS;
  8761. float eps;
  8762. memcpy(&eps, dst->op_params, sizeof(float));
  8763. // TODO: optimize
  8764. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8765. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8766. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8767. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8768. ggml_float sum = 0.0;
  8769. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8770. sum += (ggml_float)(x[i00] * x[i00]);
  8771. }
  8772. const float mean = sum/ne00;
  8773. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8774. memcpy(y, x, ne00 * sizeof(float));
  8775. // for (int i00 = 0; i00 < ne00; i00++) {
  8776. // y[i00] = x[i00];
  8777. // }
  8778. const float scale = 1.0f/sqrtf(mean + eps);
  8779. ggml_vec_scale_f32(ne00, y, scale);
  8780. }
  8781. }
  8782. }
  8783. }
  8784. static void ggml_compute_forward_rms_norm(
  8785. const struct ggml_compute_params * params,
  8786. const struct ggml_tensor * src0,
  8787. struct ggml_tensor * dst) {
  8788. switch (src0->type) {
  8789. case GGML_TYPE_F32:
  8790. {
  8791. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8792. } break;
  8793. default:
  8794. {
  8795. GGML_ASSERT(false);
  8796. } break;
  8797. }
  8798. }
  8799. static void ggml_compute_forward_rms_norm_back_f32(
  8800. const struct ggml_compute_params * params,
  8801. const struct ggml_tensor * src0,
  8802. const struct ggml_tensor * src1,
  8803. struct ggml_tensor * dst) {
  8804. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8805. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8806. return;
  8807. }
  8808. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8809. const int ith = params->ith;
  8810. const int nth = params->nth;
  8811. GGML_TENSOR_BINARY_OP_LOCALS;
  8812. float eps;
  8813. memcpy(&eps, dst->op_params, sizeof(float));
  8814. // TODO: optimize
  8815. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8816. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8817. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8818. // src1 is same shape as src0 => same indices
  8819. const int64_t i11 = i01;
  8820. const int64_t i12 = i02;
  8821. const int64_t i13 = i03;
  8822. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8823. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8824. ggml_float sum_xx = 0.0;
  8825. ggml_float sum_xdz = 0.0;
  8826. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8827. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8828. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8829. }
  8830. //const float mean = (float)(sum_xx)/ne00;
  8831. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8832. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8833. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8834. // we could cache rms from forward pass to improve performance.
  8835. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8836. //const float rms = sqrtf(mean_eps);
  8837. const float rrms = 1.0f / sqrtf(mean_eps);
  8838. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8839. {
  8840. // z = rms_norm(x)
  8841. //
  8842. // rms_norm(src0) =
  8843. // scale(
  8844. // src0,
  8845. // div(
  8846. // 1,
  8847. // sqrt(
  8848. // add(
  8849. // scale(
  8850. // sum(
  8851. // sqr(
  8852. // src0)),
  8853. // (1.0/N)),
  8854. // eps))));
  8855. // postorder:
  8856. // ## op args grad
  8857. // 00 param src0 grad[#00]
  8858. // 01 const 1
  8859. // 02 sqr (#00) grad[#02]
  8860. // 03 sum (#02) grad[#03]
  8861. // 04 const 1/N
  8862. // 05 scale (#03, #04) grad[#05]
  8863. // 06 const eps
  8864. // 07 add (#05, #06) grad[#07]
  8865. // 08 sqrt (#07) grad[#08]
  8866. // 09 div (#01,#08) grad[#09]
  8867. // 10 scale (#00,#09) grad[#10]
  8868. //
  8869. // backward pass, given grad[#10]
  8870. // #10: scale
  8871. // grad[#00] += scale(grad[#10],#09)
  8872. // grad[#09] += sum(mul(grad[#10],#00))
  8873. // #09: div
  8874. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8875. // #08: sqrt
  8876. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8877. // #07: add
  8878. // grad[#05] += grad[#07]
  8879. // #05: scale
  8880. // grad[#03] += scale(grad[#05],#04)
  8881. // #03: sum
  8882. // grad[#02] += repeat(grad[#03], #02)
  8883. // #02:
  8884. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8885. //
  8886. // substitute and simplify:
  8887. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8888. // grad[#02] = repeat(grad[#03], #02)
  8889. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8890. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8891. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8892. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8893. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8894. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8895. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8896. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8897. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8898. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8899. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8900. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8901. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8902. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8903. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8904. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8905. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8906. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8907. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8908. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8909. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8910. // a = b*c + d*e
  8911. // a = b*c*f/f + d*e*f/f
  8912. // a = (b*c*f + d*e*f)*(1/f)
  8913. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8914. // a = (b + d*e/c)*c
  8915. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8916. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8917. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8918. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8919. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8920. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8921. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8922. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8923. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8924. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8925. }
  8926. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8927. // post-order:
  8928. // dx := x
  8929. // dx := scale(dx,-mean_xdz/mean_eps)
  8930. // dx := add(dx, dz)
  8931. // dx := scale(dx, rrms)
  8932. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8933. ggml_vec_cpy_f32 (ne00, dx, x);
  8934. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8935. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8936. ggml_vec_acc_f32 (ne00, dx, dz);
  8937. ggml_vec_scale_f32(ne00, dx, rrms);
  8938. }
  8939. }
  8940. }
  8941. }
  8942. static void ggml_compute_forward_rms_norm_back(
  8943. const struct ggml_compute_params * params,
  8944. const struct ggml_tensor * src0,
  8945. const struct ggml_tensor * src1,
  8946. struct ggml_tensor * dst) {
  8947. switch (src0->type) {
  8948. case GGML_TYPE_F32:
  8949. {
  8950. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8951. } break;
  8952. default:
  8953. {
  8954. GGML_ASSERT(false);
  8955. } break;
  8956. }
  8957. }
  8958. // ggml_compute_forward_group_norm
  8959. static void ggml_compute_forward_group_norm_f32(
  8960. const struct ggml_compute_params * params,
  8961. const struct ggml_tensor * src0,
  8962. struct ggml_tensor * dst) {
  8963. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8964. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8965. return;
  8966. }
  8967. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8968. const int ith = params->ith;
  8969. const int nth = params->nth;
  8970. GGML_TENSOR_UNARY_OP_LOCALS;
  8971. const float eps = 1e-6f; // TODO: make this a parameter
  8972. // TODO: optimize
  8973. int n_channels = src0->ne[2];
  8974. int n_groups = dst->op_params[0];
  8975. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8976. for (int i = ith; i < n_groups; i+=nth) {
  8977. int start = i * n_channels_per_group;
  8978. int end = start + n_channels_per_group;
  8979. if (end > n_channels) {
  8980. end = n_channels;
  8981. }
  8982. int step = end - start;
  8983. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8984. ggml_float sum = 0.0;
  8985. for (int64_t i02 = start; i02 < end; i02++) {
  8986. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8987. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8989. sum += (ggml_float)x[i00];
  8990. }
  8991. }
  8992. }
  8993. float mean = sum / (ne00 * ne01 * step);
  8994. ggml_float sum2 = 0.0;
  8995. for (int64_t i02 = start; i02 < end; i02++) {
  8996. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8997. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8998. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8999. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9000. float v = x[i00] - mean;
  9001. y[i00] = v;
  9002. sum2 += (ggml_float)(v * v);
  9003. }
  9004. }
  9005. }
  9006. float variance = sum2 / (ne00 * ne01 * step);
  9007. const float scale = 1.0f / sqrtf(variance + eps);
  9008. for (int64_t i02 = start; i02 < end; i02++) {
  9009. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9010. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9011. ggml_vec_scale_f32(ne00, y, scale);
  9012. }
  9013. }
  9014. }
  9015. }
  9016. }
  9017. static void ggml_compute_forward_group_norm(
  9018. const struct ggml_compute_params * params,
  9019. const struct ggml_tensor * src0,
  9020. struct ggml_tensor * dst) {
  9021. switch (src0->type) {
  9022. case GGML_TYPE_F32:
  9023. {
  9024. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9025. } break;
  9026. default:
  9027. {
  9028. GGML_ASSERT(false);
  9029. } break;
  9030. }
  9031. }
  9032. // ggml_compute_forward_mul_mat
  9033. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9034. // helper function to determine if it is better to use BLAS or not
  9035. // for large matrices, BLAS is faster
  9036. static bool ggml_compute_forward_mul_mat_use_blas(
  9037. const struct ggml_tensor * src0,
  9038. const struct ggml_tensor * src1,
  9039. struct ggml_tensor * dst) {
  9040. //const int64_t ne00 = src0->ne[0];
  9041. //const int64_t ne01 = src0->ne[1];
  9042. const int64_t ne10 = src1->ne[0];
  9043. const int64_t ne0 = dst->ne[0];
  9044. const int64_t ne1 = dst->ne[1];
  9045. // TODO: find the optimal values for these
  9046. if (ggml_is_contiguous(src0) &&
  9047. ggml_is_contiguous(src1) &&
  9048. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9049. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9050. return true;
  9051. }
  9052. return false;
  9053. }
  9054. #endif
  9055. static void ggml_compute_forward_mul_mat(
  9056. const struct ggml_compute_params * params,
  9057. const struct ggml_tensor * src0,
  9058. const struct ggml_tensor * src1,
  9059. struct ggml_tensor * dst) {
  9060. int64_t t0 = ggml_perf_time_us();
  9061. UNUSED(t0);
  9062. GGML_TENSOR_BINARY_OP_LOCALS;
  9063. const int ith = params->ith;
  9064. const int nth = params->nth;
  9065. const enum ggml_type type = src0->type;
  9066. const bool src1_cont = ggml_is_contiguous(src1);
  9067. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9068. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9069. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9070. GGML_ASSERT(ne0 == ne01);
  9071. GGML_ASSERT(ne1 == ne11);
  9072. GGML_ASSERT(ne2 == ne12);
  9073. GGML_ASSERT(ne3 == ne13);
  9074. // we don't support permuted src0 or src1
  9075. GGML_ASSERT(nb00 == ggml_type_size(type));
  9076. GGML_ASSERT(nb10 == sizeof(float));
  9077. // dst cannot be transposed or permuted
  9078. GGML_ASSERT(nb0 == sizeof(float));
  9079. GGML_ASSERT(nb0 <= nb1);
  9080. GGML_ASSERT(nb1 <= nb2);
  9081. GGML_ASSERT(nb2 <= nb3);
  9082. // broadcast factors
  9083. const int64_t r2 = ne12/ne02;
  9084. const int64_t r3 = ne13/ne03;
  9085. // nb01 >= nb00 - src0 is not transposed
  9086. // compute by src0 rows
  9087. #if defined(GGML_USE_CLBLAST)
  9088. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9089. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9090. // ref: https://github.com/ggerganov/ggml/pull/224
  9091. GGML_ASSERT(ne02 == ne12);
  9092. GGML_ASSERT(ne03 == ne13);
  9093. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9094. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9095. }
  9096. return;
  9097. }
  9098. #endif
  9099. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9100. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9101. if (params->ith != 0) {
  9102. return;
  9103. }
  9104. if (params->type == GGML_TASK_INIT) {
  9105. return;
  9106. }
  9107. if (params->type == GGML_TASK_FINALIZE) {
  9108. return;
  9109. }
  9110. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9111. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9112. // broadcast src0 into src1 across 2nd,3rd dimension
  9113. const int64_t i03 = i13/r3;
  9114. const int64_t i02 = i12/r2;
  9115. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9116. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9117. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9118. if (type != GGML_TYPE_F32) {
  9119. float * const wdata = params->wdata;
  9120. ggml_to_float_t const to_float = type_traits[type].to_float;
  9121. size_t id = 0;
  9122. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9123. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9124. id += ne00;
  9125. }
  9126. assert(id*sizeof(float) <= params->wsize);
  9127. x = wdata;
  9128. }
  9129. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9130. ne11, ne01, ne10,
  9131. 1.0f, y, ne10,
  9132. x, ne00,
  9133. 0.0f, d, ne01);
  9134. }
  9135. }
  9136. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9137. return;
  9138. }
  9139. #endif
  9140. if (params->type == GGML_TASK_INIT) {
  9141. if (src1->type != vec_dot_type) {
  9142. char * wdata = params->wdata;
  9143. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9144. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9145. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9146. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9147. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9148. wdata += row_size;
  9149. }
  9150. }
  9151. }
  9152. }
  9153. return;
  9154. }
  9155. if (params->type == GGML_TASK_FINALIZE) {
  9156. return;
  9157. }
  9158. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9159. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9160. const int64_t nr0 = ne01; // src0 rows
  9161. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9162. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9163. // distribute the thread work across the inner or outer loop based on which one is larger
  9164. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9165. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9166. const int64_t ith0 = ith % nth0;
  9167. const int64_t ith1 = ith / nth0;
  9168. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9169. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9170. const int64_t ir010 = dr0*ith0;
  9171. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9172. const int64_t ir110 = dr1*ith1;
  9173. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9174. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9175. // threads with no work simply yield (not sure if it helps)
  9176. if (ir010 >= ir011 || ir110 >= ir111) {
  9177. sched_yield();
  9178. return;
  9179. }
  9180. assert(ne12 % ne02 == 0);
  9181. assert(ne13 % ne03 == 0);
  9182. // block-tiling attempt
  9183. const int64_t blck_0 = 16;
  9184. const int64_t blck_1 = 16;
  9185. // attempt to reduce false-sharing (does not seem to make a difference)
  9186. float tmp[16];
  9187. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9188. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9189. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9190. const int64_t i13 = (ir1/(ne12*ne11));
  9191. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9192. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9193. // broadcast src0 into src1
  9194. const int64_t i03 = i13/r3;
  9195. const int64_t i02 = i12/r2;
  9196. const int64_t i1 = i11;
  9197. const int64_t i2 = i12;
  9198. const int64_t i3 = i13;
  9199. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9200. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9201. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9202. // the original src1 data pointer, so we should index using the indices directly
  9203. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9204. const char * src1_col = (const char *) wdata +
  9205. (src1_cont || src1->type != vec_dot_type
  9206. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9207. : (i11*nb11 + i12*nb12 + i13*nb13));
  9208. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9209. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9210. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9211. //}
  9212. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9213. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9214. }
  9215. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9216. }
  9217. }
  9218. }
  9219. }
  9220. // ggml_compute_forward_out_prod
  9221. static void ggml_compute_forward_out_prod_f32(
  9222. const struct ggml_compute_params * params,
  9223. const struct ggml_tensor * src0,
  9224. const struct ggml_tensor * src1,
  9225. struct ggml_tensor * dst) {
  9226. int64_t t0 = ggml_perf_time_us();
  9227. UNUSED(t0);
  9228. GGML_TENSOR_BINARY_OP_LOCALS;
  9229. const int ith = params->ith;
  9230. const int nth = params->nth;
  9231. GGML_ASSERT(ne02 == ne12);
  9232. GGML_ASSERT(ne03 == ne13);
  9233. GGML_ASSERT(ne2 == ne12);
  9234. GGML_ASSERT(ne3 == ne13);
  9235. // we don't support permuted src0 or src1
  9236. GGML_ASSERT(nb00 == sizeof(float));
  9237. // dst cannot be transposed or permuted
  9238. GGML_ASSERT(nb0 == sizeof(float));
  9239. // GGML_ASSERT(nb0 <= nb1);
  9240. // GGML_ASSERT(nb1 <= nb2);
  9241. // GGML_ASSERT(nb2 <= nb3);
  9242. GGML_ASSERT(ne0 == ne00);
  9243. GGML_ASSERT(ne1 == ne10);
  9244. GGML_ASSERT(ne2 == ne02);
  9245. GGML_ASSERT(ne3 == ne03);
  9246. // nb01 >= nb00 - src0 is not transposed
  9247. // compute by src0 rows
  9248. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9249. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9250. if (params->type == GGML_TASK_INIT) {
  9251. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9252. return;
  9253. }
  9254. if (params->type == GGML_TASK_FINALIZE) {
  9255. return;
  9256. }
  9257. // parallelize by last three dimensions
  9258. // total rows in dst
  9259. const int64_t nr = ne1*ne2*ne3;
  9260. // rows per thread
  9261. const int64_t dr = (nr + nth - 1)/nth;
  9262. // row range for this thread
  9263. const int64_t ir0 = dr*ith;
  9264. const int64_t ir1 = MIN(ir0 + dr, nr);
  9265. // dst[:,:,:,:] = 0
  9266. // for i2,i3:
  9267. // for i1:
  9268. // for i01:
  9269. // for i0:
  9270. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9271. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9272. // dst indices
  9273. const int64_t i3 = ir/(ne2*ne1);
  9274. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9275. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9276. const int64_t i02 = i2;
  9277. const int64_t i03 = i3;
  9278. //const int64_t i10 = i1;
  9279. const int64_t i12 = i2;
  9280. const int64_t i13 = i3;
  9281. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9282. const int64_t i11 = i01;
  9283. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9284. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9285. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9286. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9287. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9288. // d[i0] += s0[i0] * s1[i1];
  9289. // }
  9290. }
  9291. }
  9292. //int64_t t1 = ggml_perf_time_us();
  9293. //static int64_t acc = 0;
  9294. //acc += t1 - t0;
  9295. //if (t1 - t0 > 10) {
  9296. // printf("\n");
  9297. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9298. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9299. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9300. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9301. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9302. //}
  9303. }
  9304. static void ggml_compute_forward_out_prod(
  9305. const struct ggml_compute_params * params,
  9306. const struct ggml_tensor * src0,
  9307. const struct ggml_tensor * src1,
  9308. struct ggml_tensor * dst) {
  9309. switch (src0->type) {
  9310. case GGML_TYPE_Q4_0:
  9311. case GGML_TYPE_Q4_1:
  9312. case GGML_TYPE_Q5_0:
  9313. case GGML_TYPE_Q5_1:
  9314. case GGML_TYPE_Q8_0:
  9315. case GGML_TYPE_Q8_1:
  9316. {
  9317. GGML_ASSERT(false); // todo
  9318. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9319. } break;
  9320. case GGML_TYPE_F16:
  9321. {
  9322. GGML_ASSERT(false); // todo
  9323. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9324. } break;
  9325. case GGML_TYPE_F32:
  9326. {
  9327. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9328. } break;
  9329. default:
  9330. {
  9331. GGML_ASSERT(false);
  9332. } break;
  9333. }
  9334. }
  9335. // ggml_compute_forward_scale
  9336. static void ggml_compute_forward_scale_f32(
  9337. const struct ggml_compute_params * params,
  9338. const struct ggml_tensor * src0,
  9339. const struct ggml_tensor * src1,
  9340. struct ggml_tensor * dst) {
  9341. GGML_ASSERT(ggml_is_contiguous(src0));
  9342. GGML_ASSERT(ggml_is_contiguous(dst));
  9343. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9344. GGML_ASSERT(ggml_is_scalar(src1));
  9345. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9346. return;
  9347. }
  9348. // scale factor
  9349. const float v = *(float *) src1->data;
  9350. const int ith = params->ith;
  9351. const int nth = params->nth;
  9352. const int nc = src0->ne[0];
  9353. const int nr = ggml_nrows(src0);
  9354. // rows per thread
  9355. const int dr = (nr + nth - 1)/nth;
  9356. // row range for this thread
  9357. const int ir0 = dr*ith;
  9358. const int ir1 = MIN(ir0 + dr, nr);
  9359. const size_t nb01 = src0->nb[1];
  9360. const size_t nb1 = dst->nb[1];
  9361. for (int i1 = ir0; i1 < ir1; i1++) {
  9362. if (dst->data != src0->data) {
  9363. // src0 is same shape as dst => same indices
  9364. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9365. }
  9366. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9367. }
  9368. }
  9369. static void ggml_compute_forward_scale(
  9370. const struct ggml_compute_params * params,
  9371. const struct ggml_tensor * src0,
  9372. const struct ggml_tensor * src1,
  9373. struct ggml_tensor * dst) {
  9374. switch (src0->type) {
  9375. case GGML_TYPE_F32:
  9376. {
  9377. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9378. } break;
  9379. default:
  9380. {
  9381. GGML_ASSERT(false);
  9382. } break;
  9383. }
  9384. }
  9385. // ggml_compute_forward_set
  9386. static void ggml_compute_forward_set_f32(
  9387. const struct ggml_compute_params * params,
  9388. const struct ggml_tensor * src0,
  9389. const struct ggml_tensor * src1,
  9390. struct ggml_tensor * dst) {
  9391. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9392. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9393. // view src0 and dst with these strides and data offset inbytes during set
  9394. // nb0 is implicitely element_size because src0 and dst are contiguous
  9395. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9396. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9397. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9398. size_t offset = ((int32_t *) dst->op_params)[3];
  9399. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9400. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9401. // memcpy needs to be synchronized across threads to avoid race conditions.
  9402. // => do it in INIT phase
  9403. memcpy(
  9404. ((char *) dst->data),
  9405. ((char *) src0->data),
  9406. ggml_nbytes(dst));
  9407. }
  9408. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9409. return;
  9410. }
  9411. const int ith = params->ith;
  9412. const int nth = params->nth;
  9413. const int nr = ggml_nrows(src1);
  9414. const int nc = src1->ne[0];
  9415. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9416. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9417. // src0 and dst as viewed during set
  9418. const size_t nb0 = ggml_element_size(src0);
  9419. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9420. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9421. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9422. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9423. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9424. GGML_ASSERT(nb10 == sizeof(float));
  9425. // rows per thread
  9426. const int dr = (nr + nth - 1)/nth;
  9427. // row range for this thread
  9428. const int ir0 = dr*ith;
  9429. const int ir1 = MIN(ir0 + dr, nr);
  9430. for (int ir = ir0; ir < ir1; ++ir) {
  9431. // src0 and dst are viewed with shape of src1 and offset
  9432. // => same indices
  9433. const int i3 = ir/(ne12*ne11);
  9434. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9435. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9436. ggml_vec_cpy_f32(nc,
  9437. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9438. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9439. }
  9440. }
  9441. static void ggml_compute_forward_set(
  9442. const struct ggml_compute_params * params,
  9443. const struct ggml_tensor * src0,
  9444. const struct ggml_tensor * src1,
  9445. struct ggml_tensor * dst) {
  9446. switch (src0->type) {
  9447. case GGML_TYPE_F32:
  9448. {
  9449. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9450. } break;
  9451. case GGML_TYPE_F16:
  9452. case GGML_TYPE_Q4_0:
  9453. case GGML_TYPE_Q4_1:
  9454. case GGML_TYPE_Q5_0:
  9455. case GGML_TYPE_Q5_1:
  9456. case GGML_TYPE_Q8_0:
  9457. case GGML_TYPE_Q8_1:
  9458. case GGML_TYPE_Q2_K:
  9459. case GGML_TYPE_Q3_K:
  9460. case GGML_TYPE_Q4_K:
  9461. case GGML_TYPE_Q5_K:
  9462. case GGML_TYPE_Q6_K:
  9463. default:
  9464. {
  9465. GGML_ASSERT(false);
  9466. } break;
  9467. }
  9468. }
  9469. // ggml_compute_forward_cpy
  9470. static void ggml_compute_forward_cpy(
  9471. const struct ggml_compute_params * params,
  9472. const struct ggml_tensor * src0,
  9473. struct ggml_tensor * dst) {
  9474. ggml_compute_forward_dup(params, src0, dst);
  9475. }
  9476. // ggml_compute_forward_cont
  9477. static void ggml_compute_forward_cont(
  9478. const struct ggml_compute_params * params,
  9479. const struct ggml_tensor * src0,
  9480. struct ggml_tensor * dst) {
  9481. ggml_compute_forward_dup(params, src0, dst);
  9482. }
  9483. // ggml_compute_forward_reshape
  9484. static void ggml_compute_forward_reshape(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * src0,
  9487. struct ggml_tensor * dst) {
  9488. // NOP
  9489. UNUSED(params);
  9490. UNUSED(src0);
  9491. UNUSED(dst);
  9492. }
  9493. // ggml_compute_forward_view
  9494. static void ggml_compute_forward_view(
  9495. const struct ggml_compute_params * params,
  9496. const struct ggml_tensor * src0) {
  9497. // NOP
  9498. UNUSED(params);
  9499. UNUSED(src0);
  9500. }
  9501. // ggml_compute_forward_permute
  9502. static void ggml_compute_forward_permute(
  9503. const struct ggml_compute_params * params,
  9504. const struct ggml_tensor * src0) {
  9505. // NOP
  9506. UNUSED(params);
  9507. UNUSED(src0);
  9508. }
  9509. // ggml_compute_forward_transpose
  9510. static void ggml_compute_forward_transpose(
  9511. const struct ggml_compute_params * params,
  9512. const struct ggml_tensor * src0) {
  9513. // NOP
  9514. UNUSED(params);
  9515. UNUSED(src0);
  9516. }
  9517. // ggml_compute_forward_get_rows
  9518. static void ggml_compute_forward_get_rows_q(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * src0,
  9521. const struct ggml_tensor * src1,
  9522. struct ggml_tensor * dst) {
  9523. assert(params->ith == 0);
  9524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9525. return;
  9526. }
  9527. const int nc = src0->ne[0];
  9528. const int nr = ggml_nelements(src1);
  9529. const enum ggml_type type = src0->type;
  9530. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9531. assert( dst->ne[0] == nc);
  9532. assert( dst->ne[1] == nr);
  9533. assert(src0->nb[0] == ggml_type_size(type));
  9534. for (int i = 0; i < nr; ++i) {
  9535. const int r = ((int32_t *) src1->data)[i];
  9536. dequantize_row_q(
  9537. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9538. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9539. }
  9540. }
  9541. static void ggml_compute_forward_get_rows_f16(
  9542. const struct ggml_compute_params * params,
  9543. const struct ggml_tensor * src0,
  9544. const struct ggml_tensor * src1,
  9545. struct ggml_tensor * dst) {
  9546. assert(params->ith == 0);
  9547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9548. return;
  9549. }
  9550. const int nc = src0->ne[0];
  9551. const int nr = ggml_nelements(src1);
  9552. assert( dst->ne[0] == nc);
  9553. assert( dst->ne[1] == nr);
  9554. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9555. for (int i = 0; i < nr; ++i) {
  9556. const int r = ((int32_t *) src1->data)[i];
  9557. for (int j = 0; j < nc; ++j) {
  9558. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9559. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9560. }
  9561. }
  9562. }
  9563. static void ggml_compute_forward_get_rows_f32(
  9564. const struct ggml_compute_params * params,
  9565. const struct ggml_tensor * src0,
  9566. const struct ggml_tensor * src1,
  9567. struct ggml_tensor * dst) {
  9568. assert(params->ith == 0);
  9569. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9570. return;
  9571. }
  9572. const int nc = src0->ne[0];
  9573. const int nr = ggml_nelements(src1);
  9574. assert( dst->ne[0] == nc);
  9575. assert( dst->ne[1] == nr);
  9576. assert(src0->nb[0] == sizeof(float));
  9577. for (int i = 0; i < nr; ++i) {
  9578. const int r = ((int32_t *) src1->data)[i];
  9579. ggml_vec_cpy_f32(nc,
  9580. (float *) ((char *) dst->data + i*dst->nb[1]),
  9581. (float *) ((char *) src0->data + r*src0->nb[1]));
  9582. }
  9583. }
  9584. static void ggml_compute_forward_get_rows(
  9585. const struct ggml_compute_params * params,
  9586. const struct ggml_tensor * src0,
  9587. const struct ggml_tensor * src1,
  9588. struct ggml_tensor * dst) {
  9589. switch (src0->type) {
  9590. case GGML_TYPE_Q4_0:
  9591. case GGML_TYPE_Q4_1:
  9592. case GGML_TYPE_Q5_0:
  9593. case GGML_TYPE_Q5_1:
  9594. case GGML_TYPE_Q8_0:
  9595. case GGML_TYPE_Q8_1:
  9596. case GGML_TYPE_Q2_K:
  9597. case GGML_TYPE_Q3_K:
  9598. case GGML_TYPE_Q4_K:
  9599. case GGML_TYPE_Q5_K:
  9600. case GGML_TYPE_Q6_K:
  9601. {
  9602. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9603. } break;
  9604. case GGML_TYPE_F16:
  9605. {
  9606. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9607. } break;
  9608. case GGML_TYPE_F32:
  9609. {
  9610. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9611. } break;
  9612. default:
  9613. {
  9614. GGML_ASSERT(false);
  9615. } break;
  9616. }
  9617. //static bool first = true;
  9618. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9619. //if (first) {
  9620. // first = false;
  9621. //} else {
  9622. // for (int k = 0; k < dst->ne[1]; ++k) {
  9623. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9624. // for (int i = 0; i < 16; ++i) {
  9625. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9626. // }
  9627. // printf("\n");
  9628. // }
  9629. // printf("\n");
  9630. // }
  9631. // printf("\n");
  9632. // exit(0);
  9633. //}
  9634. }
  9635. // ggml_compute_forward_get_rows_back
  9636. static void ggml_compute_forward_get_rows_back_f32_f16(
  9637. const struct ggml_compute_params * params,
  9638. const struct ggml_tensor * src0,
  9639. const struct ggml_tensor * src1,
  9640. const struct ggml_tensor * opt0,
  9641. struct ggml_tensor * dst) {
  9642. GGML_ASSERT(params->ith == 0);
  9643. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9644. GGML_ASSERT(ggml_is_contiguous(opt0));
  9645. GGML_ASSERT(ggml_is_contiguous(dst));
  9646. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9647. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9648. return;
  9649. }
  9650. const int nc = src0->ne[0];
  9651. const int nr = ggml_nelements(src1);
  9652. GGML_ASSERT( dst->ne[0] == nc);
  9653. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9654. for (int i = 0; i < nr; ++i) {
  9655. const int r = ((int32_t *) src1->data)[i];
  9656. for (int j = 0; j < nc; ++j) {
  9657. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9658. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9659. }
  9660. }
  9661. }
  9662. static void ggml_compute_forward_get_rows_back_f32(
  9663. const struct ggml_compute_params * params,
  9664. const struct ggml_tensor * src0,
  9665. const struct ggml_tensor * src1,
  9666. const struct ggml_tensor * opt0,
  9667. struct ggml_tensor * dst) {
  9668. GGML_ASSERT(params->ith == 0);
  9669. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9670. GGML_ASSERT(ggml_is_contiguous(opt0));
  9671. GGML_ASSERT(ggml_is_contiguous(dst));
  9672. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9673. if (params->type == GGML_TASK_INIT) {
  9674. memset(dst->data, 0, ggml_nbytes(dst));
  9675. }
  9676. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9677. return;
  9678. }
  9679. const int nc = src0->ne[0];
  9680. const int nr = ggml_nelements(src1);
  9681. GGML_ASSERT( dst->ne[0] == nc);
  9682. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9683. for (int i = 0; i < nr; ++i) {
  9684. const int r = ((int32_t *) src1->data)[i];
  9685. ggml_vec_add_f32(nc,
  9686. (float *) ((char *) dst->data + r*dst->nb[1]),
  9687. (float *) ((char *) dst->data + r*dst->nb[1]),
  9688. (float *) ((char *) src0->data + i*src0->nb[1]));
  9689. }
  9690. }
  9691. static void ggml_compute_forward_get_rows_back(
  9692. const struct ggml_compute_params * params,
  9693. const struct ggml_tensor * src0,
  9694. const struct ggml_tensor * src1,
  9695. const struct ggml_tensor * opt0,
  9696. struct ggml_tensor * dst) {
  9697. switch (src0->type) {
  9698. case GGML_TYPE_F16:
  9699. {
  9700. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9701. } break;
  9702. case GGML_TYPE_F32:
  9703. {
  9704. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9705. } break;
  9706. default:
  9707. {
  9708. GGML_ASSERT(false);
  9709. } break;
  9710. }
  9711. //static bool first = true;
  9712. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9713. //if (first) {
  9714. // first = false;
  9715. //} else {
  9716. // for (int k = 0; k < dst->ne[1]; ++k) {
  9717. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9718. // for (int i = 0; i < 16; ++i) {
  9719. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9720. // }
  9721. // printf("\n");
  9722. // }
  9723. // printf("\n");
  9724. // }
  9725. // printf("\n");
  9726. // exit(0);
  9727. //}
  9728. }
  9729. // ggml_compute_forward_diag
  9730. static void ggml_compute_forward_diag_f32(
  9731. const struct ggml_compute_params * params,
  9732. const struct ggml_tensor * src0,
  9733. struct ggml_tensor * dst) {
  9734. GGML_ASSERT(params->ith == 0);
  9735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9736. return;
  9737. }
  9738. // TODO: handle transposed/permuted matrices
  9739. GGML_TENSOR_UNARY_OP_LOCALS;
  9740. GGML_ASSERT(ne00 == ne0);
  9741. GGML_ASSERT(ne00 == ne1);
  9742. GGML_ASSERT(ne01 == 1);
  9743. GGML_ASSERT(ne02 == ne2);
  9744. GGML_ASSERT(ne03 == ne3);
  9745. GGML_ASSERT(nb00 == sizeof(float));
  9746. GGML_ASSERT(nb0 == sizeof(float));
  9747. for (int i3 = 0; i3 < ne3; i3++) {
  9748. for (int i2 = 0; i2 < ne2; i2++) {
  9749. for (int i1 = 0; i1 < ne1; i1++) {
  9750. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9751. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9752. for (int i0 = 0; i0 < i1; i0++) {
  9753. d[i0] = 0;
  9754. }
  9755. d[i1] = s[i1];
  9756. for (int i0 = i1+1; i0 < ne0; i0++) {
  9757. d[i0] = 0;
  9758. }
  9759. }
  9760. }
  9761. }
  9762. }
  9763. static void ggml_compute_forward_diag(
  9764. const struct ggml_compute_params * params,
  9765. const struct ggml_tensor * src0,
  9766. struct ggml_tensor * dst) {
  9767. switch (src0->type) {
  9768. case GGML_TYPE_F32:
  9769. {
  9770. ggml_compute_forward_diag_f32(params, src0, dst);
  9771. } break;
  9772. default:
  9773. {
  9774. GGML_ASSERT(false);
  9775. } break;
  9776. }
  9777. }
  9778. // ggml_compute_forward_diag_mask_inf
  9779. static void ggml_compute_forward_diag_mask_f32(
  9780. const struct ggml_compute_params * params,
  9781. const struct ggml_tensor * src0,
  9782. struct ggml_tensor * dst,
  9783. const float value) {
  9784. const int ith = params->ith;
  9785. const int nth = params->nth;
  9786. const int n_past = ((int32_t *) dst->op_params)[0];
  9787. const bool inplace = src0->data == dst->data;
  9788. GGML_ASSERT(n_past >= 0);
  9789. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9790. // memcpy needs to be synchronized across threads to avoid race conditions.
  9791. // => do it in INIT phase
  9792. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9793. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9794. memcpy(
  9795. ((char *) dst->data),
  9796. ((char *) src0->data),
  9797. ggml_nbytes(dst));
  9798. }
  9799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9800. return;
  9801. }
  9802. // TODO: handle transposed/permuted matrices
  9803. const int n = ggml_nrows(src0);
  9804. const int nc = src0->ne[0];
  9805. const int nr = src0->ne[1];
  9806. const int nz = n/nr;
  9807. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9808. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9809. for (int k = 0; k < nz; k++) {
  9810. for (int j = ith; j < nr; j += nth) {
  9811. for (int i = n_past; i < nc; i++) {
  9812. if (i > n_past + j) {
  9813. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9814. }
  9815. }
  9816. }
  9817. }
  9818. }
  9819. static void ggml_compute_forward_diag_mask_inf(
  9820. const struct ggml_compute_params * params,
  9821. const struct ggml_tensor * src0,
  9822. struct ggml_tensor * dst) {
  9823. switch (src0->type) {
  9824. case GGML_TYPE_F32:
  9825. {
  9826. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9827. } break;
  9828. default:
  9829. {
  9830. GGML_ASSERT(false);
  9831. } break;
  9832. }
  9833. }
  9834. static void ggml_compute_forward_diag_mask_zero(
  9835. const struct ggml_compute_params * params,
  9836. const struct ggml_tensor * src0,
  9837. struct ggml_tensor * dst) {
  9838. switch (src0->type) {
  9839. case GGML_TYPE_F32:
  9840. {
  9841. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9842. } break;
  9843. default:
  9844. {
  9845. GGML_ASSERT(false);
  9846. } break;
  9847. }
  9848. }
  9849. // ggml_compute_forward_soft_max
  9850. static void ggml_compute_forward_soft_max_f32(
  9851. const struct ggml_compute_params * params,
  9852. const struct ggml_tensor * src0,
  9853. struct ggml_tensor * dst) {
  9854. GGML_ASSERT(ggml_is_contiguous(src0));
  9855. GGML_ASSERT(ggml_is_contiguous(dst));
  9856. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9858. return;
  9859. }
  9860. // TODO: handle transposed/permuted matrices
  9861. const int ith = params->ith;
  9862. const int nth = params->nth;
  9863. const int nc = src0->ne[0];
  9864. const int nr = ggml_nrows(src0);
  9865. // rows per thread
  9866. const int dr = (nr + nth - 1)/nth;
  9867. // row range for this thread
  9868. const int ir0 = dr*ith;
  9869. const int ir1 = MIN(ir0 + dr, nr);
  9870. for (int i1 = ir0; i1 < ir1; i1++) {
  9871. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9872. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9873. #ifndef NDEBUG
  9874. for (int i = 0; i < nc; ++i) {
  9875. //printf("p[%d] = %f\n", i, p[i]);
  9876. assert(!isnan(sp[i]));
  9877. }
  9878. #endif
  9879. float max = -INFINITY;
  9880. ggml_vec_max_f32(nc, &max, sp);
  9881. ggml_float sum = 0.0;
  9882. uint16_t scvt;
  9883. for (int i = 0; i < nc; i++) {
  9884. if (sp[i] == -INFINITY) {
  9885. dp[i] = 0.0f;
  9886. } else {
  9887. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9888. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9889. memcpy(&scvt, &s, sizeof(scvt));
  9890. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9891. sum += (ggml_float)val;
  9892. dp[i] = val;
  9893. }
  9894. }
  9895. assert(sum > 0.0);
  9896. sum = 1.0/sum;
  9897. ggml_vec_scale_f32(nc, dp, sum);
  9898. #ifndef NDEBUG
  9899. for (int i = 0; i < nc; ++i) {
  9900. assert(!isnan(dp[i]));
  9901. assert(!isinf(dp[i]));
  9902. }
  9903. #endif
  9904. }
  9905. }
  9906. static void ggml_compute_forward_soft_max(
  9907. const struct ggml_compute_params * params,
  9908. const struct ggml_tensor * src0,
  9909. struct ggml_tensor * dst) {
  9910. switch (src0->type) {
  9911. case GGML_TYPE_F32:
  9912. {
  9913. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9914. } break;
  9915. default:
  9916. {
  9917. GGML_ASSERT(false);
  9918. } break;
  9919. }
  9920. }
  9921. // ggml_compute_forward_soft_max_back
  9922. static void ggml_compute_forward_soft_max_back_f32(
  9923. const struct ggml_compute_params * params,
  9924. const struct ggml_tensor * src0,
  9925. const struct ggml_tensor * src1,
  9926. struct ggml_tensor * dst) {
  9927. GGML_ASSERT(ggml_is_contiguous(src0));
  9928. GGML_ASSERT(ggml_is_contiguous(src1));
  9929. GGML_ASSERT(ggml_is_contiguous(dst));
  9930. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9931. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9932. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9933. return;
  9934. }
  9935. // TODO: handle transposed/permuted matrices
  9936. const int ith = params->ith;
  9937. const int nth = params->nth;
  9938. const int nc = src0->ne[0];
  9939. const int nr = ggml_nrows(src0);
  9940. // rows per thread
  9941. const int dr = (nr + nth - 1)/nth;
  9942. // row range for this thread
  9943. const int ir0 = dr*ith;
  9944. const int ir1 = MIN(ir0 + dr, nr);
  9945. for (int i1 = ir0; i1 < ir1; i1++) {
  9946. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9947. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9948. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9949. #ifndef NDEBUG
  9950. for (int i = 0; i < nc; ++i) {
  9951. //printf("p[%d] = %f\n", i, p[i]);
  9952. assert(!isnan(dy[i]));
  9953. assert(!isnan(y[i]));
  9954. }
  9955. #endif
  9956. // Jii = yi - yi*yi
  9957. // Jij = -yi*yj
  9958. // J = diag(y)-y.T*y
  9959. // dx = J * dy
  9960. // dxk = sum_i(Jki * dyi)
  9961. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9962. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9963. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9964. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9965. // dxk = -yk * dot(y, dy) + yk*dyk
  9966. // dxk = yk * (- dot(y, dy) + dyk)
  9967. // dxk = yk * (dyk - dot(y, dy))
  9968. //
  9969. // post-order:
  9970. // dot_y_dy := dot(y, dy)
  9971. // dx := dy
  9972. // dx := dx - dot_y_dy
  9973. // dx := dx * y
  9974. // linear runtime, no additional memory
  9975. float dot_y_dy = 0;
  9976. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9977. ggml_vec_cpy_f32 (nc, dx, dy);
  9978. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9979. ggml_vec_mul_f32 (nc, dx, dx, y);
  9980. #ifndef NDEBUG
  9981. for (int i = 0; i < nc; ++i) {
  9982. assert(!isnan(dx[i]));
  9983. assert(!isinf(dx[i]));
  9984. }
  9985. #endif
  9986. }
  9987. }
  9988. static void ggml_compute_forward_soft_max_back(
  9989. const struct ggml_compute_params * params,
  9990. const struct ggml_tensor * src0,
  9991. const struct ggml_tensor * src1,
  9992. struct ggml_tensor * dst) {
  9993. switch (src0->type) {
  9994. case GGML_TYPE_F32:
  9995. {
  9996. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9997. } break;
  9998. default:
  9999. {
  10000. GGML_ASSERT(false);
  10001. } break;
  10002. }
  10003. }
  10004. // ggml_compute_forward_alibi
  10005. static void ggml_compute_forward_alibi_f32(
  10006. const struct ggml_compute_params * params,
  10007. const struct ggml_tensor * src0,
  10008. struct ggml_tensor * dst) {
  10009. assert(params->ith == 0);
  10010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10011. return;
  10012. }
  10013. const int n_past = ((int32_t *) dst->op_params)[0];
  10014. const int n_head = ((int32_t *) dst->op_params)[1];
  10015. float max_bias;
  10016. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10017. assert(n_past >= 0);
  10018. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10019. const int ne1 = src0->ne[1]; // seq_len_without_past
  10020. const int ne2 = src0->ne[2]; // n_head -> this is k
  10021. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10022. const int n = ggml_nrows(src0);
  10023. const int ne2_ne3 = n/ne1; // ne2*ne3
  10024. const int nb0 = src0->nb[0];
  10025. const int nb1 = src0->nb[1];
  10026. const int nb2 = src0->nb[2];
  10027. //const int nb3 = src0->nb[3];
  10028. GGML_ASSERT(nb0 == sizeof(float));
  10029. GGML_ASSERT(ne1 + n_past == ne0);
  10030. GGML_ASSERT(n_head == ne2);
  10031. // add alibi to src0 (KQ_scaled)
  10032. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10033. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10034. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10035. for (int i = 0; i < ne0; i++) {
  10036. for (int j = 0; j < ne1; j++) {
  10037. for (int k = 0; k < ne2_ne3; k++) {
  10038. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10039. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10040. // TODO: k*nb2 or k*nb3
  10041. float m_k;
  10042. if (k < n_heads_log2_floor) {
  10043. m_k = powf(m0, k + 1);
  10044. } else {
  10045. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10046. }
  10047. pdst[0] = i * m_k + src[0];
  10048. }
  10049. }
  10050. }
  10051. }
  10052. static void ggml_compute_forward_alibi_f16(
  10053. const struct ggml_compute_params * params,
  10054. const struct ggml_tensor * src0,
  10055. struct ggml_tensor * dst) {
  10056. assert(params->ith == 0);
  10057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10058. return;
  10059. }
  10060. const int n_past = ((int32_t *) dst->op_params)[0];
  10061. const int n_head = ((int32_t *) dst->op_params)[1];
  10062. float max_bias;
  10063. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10064. assert(n_past >= 0);
  10065. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10066. const int ne1 = src0->ne[1]; // seq_len_without_past
  10067. const int ne2 = src0->ne[2]; // n_head -> this is k
  10068. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10069. const int n = ggml_nrows(src0);
  10070. const int ne2_ne3 = n/ne1; // ne2*ne3
  10071. const int nb0 = src0->nb[0];
  10072. const int nb1 = src0->nb[1];
  10073. const int nb2 = src0->nb[2];
  10074. //const int nb3 = src0->nb[3];
  10075. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10076. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10077. GGML_ASSERT(n_head == ne2);
  10078. // add alibi to src0 (KQ_scaled)
  10079. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10080. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10081. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10082. for (int i = 0; i < ne0; i++) {
  10083. for (int j = 0; j < ne1; j++) {
  10084. for (int k = 0; k < ne2_ne3; k++) {
  10085. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10086. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10087. // TODO: k*nb2 or k*nb3
  10088. float m_k;
  10089. if (k < n_heads_log2_floor) {
  10090. m_k = powf(m0, k + 1);
  10091. } else {
  10092. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10093. }
  10094. // we return F32
  10095. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10096. }
  10097. }
  10098. }
  10099. }
  10100. static void ggml_compute_forward_alibi(
  10101. const struct ggml_compute_params * params,
  10102. const struct ggml_tensor * src0,
  10103. struct ggml_tensor * dst) {
  10104. switch (src0->type) {
  10105. case GGML_TYPE_F16:
  10106. {
  10107. ggml_compute_forward_alibi_f16(params, src0, dst);
  10108. } break;
  10109. case GGML_TYPE_F32:
  10110. {
  10111. ggml_compute_forward_alibi_f32(params, src0, dst);
  10112. } break;
  10113. case GGML_TYPE_Q4_0:
  10114. case GGML_TYPE_Q4_1:
  10115. case GGML_TYPE_Q5_0:
  10116. case GGML_TYPE_Q5_1:
  10117. case GGML_TYPE_Q8_0:
  10118. case GGML_TYPE_Q8_1:
  10119. case GGML_TYPE_Q2_K:
  10120. case GGML_TYPE_Q3_K:
  10121. case GGML_TYPE_Q4_K:
  10122. case GGML_TYPE_Q5_K:
  10123. case GGML_TYPE_Q6_K:
  10124. case GGML_TYPE_Q8_K:
  10125. case GGML_TYPE_I8:
  10126. case GGML_TYPE_I16:
  10127. case GGML_TYPE_I32:
  10128. case GGML_TYPE_COUNT:
  10129. {
  10130. GGML_ASSERT(false);
  10131. } break;
  10132. }
  10133. }
  10134. // ggml_compute_forward_clamp
  10135. static void ggml_compute_forward_clamp_f32(
  10136. const struct ggml_compute_params * params,
  10137. const struct ggml_tensor * src0,
  10138. struct ggml_tensor * dst) {
  10139. assert(params->ith == 0);
  10140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10141. return;
  10142. }
  10143. float min;
  10144. float max;
  10145. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10146. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10147. const int ith = params->ith;
  10148. const int nth = params->nth;
  10149. const int n = ggml_nrows(src0);
  10150. const int nc = src0->ne[0];
  10151. const size_t nb00 = src0->nb[0];
  10152. const size_t nb01 = src0->nb[1];
  10153. const size_t nb0 = dst->nb[0];
  10154. const size_t nb1 = dst->nb[1];
  10155. GGML_ASSERT( nb0 == sizeof(float));
  10156. GGML_ASSERT(nb00 == sizeof(float));
  10157. for (int j = ith; j < n; j += nth) {
  10158. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10159. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10160. for (int i = 0; i < nc; i++) {
  10161. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10162. }
  10163. }
  10164. }
  10165. static void ggml_compute_forward_clamp(
  10166. const struct ggml_compute_params * params,
  10167. const struct ggml_tensor * src0,
  10168. struct ggml_tensor * dst) {
  10169. switch (src0->type) {
  10170. case GGML_TYPE_F32:
  10171. {
  10172. ggml_compute_forward_clamp_f32(params, src0, dst);
  10173. } break;
  10174. case GGML_TYPE_F16:
  10175. case GGML_TYPE_Q4_0:
  10176. case GGML_TYPE_Q4_1:
  10177. case GGML_TYPE_Q5_0:
  10178. case GGML_TYPE_Q5_1:
  10179. case GGML_TYPE_Q8_0:
  10180. case GGML_TYPE_Q8_1:
  10181. case GGML_TYPE_Q2_K:
  10182. case GGML_TYPE_Q3_K:
  10183. case GGML_TYPE_Q4_K:
  10184. case GGML_TYPE_Q5_K:
  10185. case GGML_TYPE_Q6_K:
  10186. case GGML_TYPE_Q8_K:
  10187. case GGML_TYPE_I8:
  10188. case GGML_TYPE_I16:
  10189. case GGML_TYPE_I32:
  10190. case GGML_TYPE_COUNT:
  10191. {
  10192. GGML_ASSERT(false);
  10193. } break;
  10194. }
  10195. }
  10196. // ggml_compute_forward_rope
  10197. static void ggml_compute_forward_rope_f32(
  10198. const struct ggml_compute_params * params,
  10199. const struct ggml_tensor * src0,
  10200. struct ggml_tensor * dst) {
  10201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10202. return;
  10203. }
  10204. float freq_base;
  10205. float freq_scale;
  10206. // these two only relevant for xPos RoPE:
  10207. float xpos_base;
  10208. bool xpos_down;
  10209. const int n_past = ((int32_t *) dst->op_params)[0];
  10210. const int n_dims = ((int32_t *) dst->op_params)[1];
  10211. const int mode = ((int32_t *) dst->op_params)[2];
  10212. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10213. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10214. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10215. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10216. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10217. assert(n_past >= 0);
  10218. GGML_TENSOR_UNARY_OP_LOCALS;
  10219. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10220. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10221. GGML_ASSERT(nb00 == sizeof(float));
  10222. const int ith = params->ith;
  10223. const int nth = params->nth;
  10224. const int nr = ggml_nrows(dst);
  10225. GGML_ASSERT(n_dims <= ne0);
  10226. GGML_ASSERT(n_dims % 2 == 0);
  10227. // rows per thread
  10228. const int dr = (nr + nth - 1)/nth;
  10229. // row range for this thread
  10230. const int ir0 = dr*ith;
  10231. const int ir1 = MIN(ir0 + dr, nr);
  10232. // row index used to determine which thread to use
  10233. int ir = 0;
  10234. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10235. const bool is_neox = mode & 2;
  10236. const bool is_glm = mode & 4;
  10237. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10238. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10239. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10240. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10241. if (ir++ < ir0) continue;
  10242. if (ir > ir1) break;
  10243. float theta = freq_scale * (float)p;
  10244. if (is_glm) {
  10245. theta = MIN(p, n_ctx - 2);
  10246. float block_theta = MAX(p - (n_ctx - 2), 0);
  10247. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10248. const float cos_theta = cosf(theta);
  10249. const float sin_theta = sinf(theta);
  10250. const float cos_block_theta = cosf(block_theta);
  10251. const float sin_block_theta = sinf(block_theta);
  10252. theta *= theta_scale;
  10253. block_theta *= theta_scale;
  10254. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10255. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10256. const float x0 = src[0];
  10257. const float x1 = src[n_dims/2];
  10258. const float x2 = src[n_dims];
  10259. const float x3 = src[n_dims/2*3];
  10260. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10261. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10262. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10263. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10264. }
  10265. } else if (!is_neox) {
  10266. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10267. const float cos_theta = cosf(theta);
  10268. const float sin_theta = sinf(theta);
  10269. // zeta scaling for xPos only:
  10270. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10271. if (xpos_down) zeta = 1.0f / zeta;
  10272. theta *= theta_scale;
  10273. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10274. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10275. const float x0 = src[0];
  10276. const float x1 = src[1];
  10277. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10278. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10279. }
  10280. } else {
  10281. // TODO: this might be wrong for ne0 != n_dims - need double check
  10282. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10283. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10284. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10285. const float cos_theta = cosf(theta);
  10286. const float sin_theta = sinf(theta);
  10287. theta *= theta_scale;
  10288. const int64_t i0 = ib*n_dims + ic/2;
  10289. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10290. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10291. const float x0 = src[0];
  10292. const float x1 = src[n_dims/2];
  10293. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10294. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10295. }
  10296. }
  10297. }
  10298. }
  10299. }
  10300. }
  10301. }
  10302. static void ggml_compute_forward_rope_f16(
  10303. const struct ggml_compute_params * params,
  10304. const struct ggml_tensor * src0,
  10305. struct ggml_tensor * dst) {
  10306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10307. return;
  10308. }
  10309. float freq_base;
  10310. float freq_scale;
  10311. const int n_past = ((int32_t *) dst->op_params)[0];
  10312. const int n_dims = ((int32_t *) dst->op_params)[1];
  10313. const int mode = ((int32_t *) dst->op_params)[2];
  10314. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10315. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10316. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10317. assert(n_past >= 0);
  10318. GGML_TENSOR_UNARY_OP_LOCALS;
  10319. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10320. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10321. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10322. const int ith = params->ith;
  10323. const int nth = params->nth;
  10324. const int nr = ggml_nrows(dst);
  10325. GGML_ASSERT(n_dims <= ne0);
  10326. GGML_ASSERT(n_dims % 2 == 0);
  10327. // rows per thread
  10328. const int dr = (nr + nth - 1)/nth;
  10329. // row range for this thread
  10330. const int ir0 = dr*ith;
  10331. const int ir1 = MIN(ir0 + dr, nr);
  10332. // row index used to determine which thread to use
  10333. int ir = 0;
  10334. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10335. const bool is_neox = mode & 2;
  10336. const bool is_glm = mode & 4;
  10337. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10338. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10339. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10340. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10341. if (ir++ < ir0) continue;
  10342. if (ir > ir1) break;
  10343. float theta = freq_scale * (float)p;
  10344. if (is_glm) {
  10345. theta = MIN(p, n_ctx - 2);
  10346. float block_theta = MAX(p - (n_ctx - 2), 0);
  10347. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10348. const float cos_theta = cosf(theta);
  10349. const float sin_theta = sinf(theta);
  10350. const float cos_block_theta = cosf(block_theta);
  10351. const float sin_block_theta = sinf(block_theta);
  10352. theta *= theta_scale;
  10353. block_theta *= theta_scale;
  10354. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10355. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10356. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10357. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10358. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10359. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10360. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10361. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10362. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10363. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10364. }
  10365. } if (!is_neox) {
  10366. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10367. const float cos_theta = cosf(theta);
  10368. const float sin_theta = sinf(theta);
  10369. theta *= theta_scale;
  10370. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10371. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10372. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10373. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10374. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10375. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10376. }
  10377. } else {
  10378. // TODO: this might be wrong for ne0 != n_dims - need double check
  10379. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10380. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10381. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10382. const float cos_theta = cosf(theta);
  10383. const float sin_theta = sinf(theta);
  10384. theta *= theta_scale;
  10385. const int64_t i0 = ib*n_dims + ic/2;
  10386. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10387. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10388. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10389. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10390. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10391. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10392. }
  10393. }
  10394. }
  10395. }
  10396. }
  10397. }
  10398. }
  10399. static void ggml_compute_forward_rope(
  10400. const struct ggml_compute_params * params,
  10401. const struct ggml_tensor * src0,
  10402. struct ggml_tensor * dst) {
  10403. switch (src0->type) {
  10404. case GGML_TYPE_F16:
  10405. {
  10406. ggml_compute_forward_rope_f16(params, src0, dst);
  10407. } break;
  10408. case GGML_TYPE_F32:
  10409. {
  10410. ggml_compute_forward_rope_f32(params, src0, dst);
  10411. } break;
  10412. default:
  10413. {
  10414. GGML_ASSERT(false);
  10415. } break;
  10416. }
  10417. }
  10418. // ggml_compute_forward_rope_back
  10419. static void ggml_compute_forward_rope_back_f32(
  10420. const struct ggml_compute_params * params,
  10421. const struct ggml_tensor * src0,
  10422. struct ggml_tensor * dst) {
  10423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10424. return;
  10425. }
  10426. // y = rope(x, src1)
  10427. // dx = rope_back(dy, src1)
  10428. // src0 is dy, src1 contains options
  10429. float freq_base;
  10430. float freq_scale;
  10431. // these two only relevant for xPos RoPE:
  10432. float xpos_base;
  10433. bool xpos_down;
  10434. const int n_past = ((int32_t *) dst->op_params)[0];
  10435. const int n_dims = ((int32_t *) dst->op_params)[1];
  10436. const int mode = ((int32_t *) dst->op_params)[2];
  10437. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10438. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10439. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10440. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10441. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10442. assert(n_past >= 0);
  10443. GGML_TENSOR_UNARY_OP_LOCALS;
  10444. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10445. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10446. assert(nb0 == sizeof(float));
  10447. const int ith = params->ith;
  10448. const int nth = params->nth;
  10449. const int nr = ggml_nrows(dst);
  10450. // rows per thread
  10451. const int dr = (nr + nth - 1)/nth;
  10452. // row range for this thread
  10453. const int ir0 = dr*ith;
  10454. const int ir1 = MIN(ir0 + dr, nr);
  10455. // row index used to determine which thread to use
  10456. int ir = 0;
  10457. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10458. const bool is_neox = mode & 2;
  10459. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10460. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10461. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10462. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10463. if (ir++ < ir0) continue;
  10464. if (ir > ir1) break;
  10465. float theta = freq_scale * (float)p;
  10466. if (!is_neox) {
  10467. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10468. const float cos_theta = cosf(theta);
  10469. const float sin_theta = sinf(theta);
  10470. // zeta scaling for xPos only:
  10471. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10472. if (xpos_down) zeta = 1.0f / zeta;
  10473. theta *= theta_scale;
  10474. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10475. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10476. const float dy0 = dy[0];
  10477. const float dy1 = dy[1];
  10478. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10479. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10480. }
  10481. } else {
  10482. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10483. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10484. const float cos_theta = cosf(theta);
  10485. const float sin_theta = sinf(theta);
  10486. theta *= theta_scale;
  10487. const int64_t i0 = ib*n_dims + ic/2;
  10488. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10489. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10490. const float dy0 = dy[0];
  10491. const float dy1 = dy[n_dims/2];
  10492. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10493. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10494. }
  10495. }
  10496. }
  10497. }
  10498. }
  10499. }
  10500. }
  10501. static void ggml_compute_forward_rope_back_f16(
  10502. const struct ggml_compute_params * params,
  10503. const struct ggml_tensor * src0,
  10504. struct ggml_tensor * dst) {
  10505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10506. return;
  10507. }
  10508. // y = rope(x, src1)
  10509. // dx = rope_back(dy, src1)
  10510. // src0 is dy, src1 contains options
  10511. const int n_past = ((int32_t *) dst->op_params)[0];
  10512. const int n_dims = ((int32_t *) dst->op_params)[1];
  10513. const int mode = ((int32_t *) dst->op_params)[2];
  10514. assert(n_past >= 0);
  10515. GGML_TENSOR_UNARY_OP_LOCALS;
  10516. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10517. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10518. assert(nb0 == sizeof(ggml_fp16_t));
  10519. const int ith = params->ith;
  10520. const int nth = params->nth;
  10521. const int nr = ggml_nrows(dst);
  10522. // rows per thread
  10523. const int dr = (nr + nth - 1)/nth;
  10524. // row range for this thread
  10525. const int ir0 = dr*ith;
  10526. const int ir1 = MIN(ir0 + dr, nr);
  10527. // row index used to determine which thread to use
  10528. int ir = 0;
  10529. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10530. const bool is_neox = mode & 2;
  10531. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10532. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10533. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10534. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10535. if (ir++ < ir0) continue;
  10536. if (ir > ir1) break;
  10537. float theta = (float)p;
  10538. if (!is_neox) {
  10539. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10540. const float cos_theta = cosf(theta);
  10541. const float sin_theta = sinf(theta);
  10542. theta *= theta_scale;
  10543. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10544. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10545. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10546. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10547. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10548. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10549. }
  10550. } else {
  10551. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10552. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10553. const float cos_theta = cosf(theta);
  10554. const float sin_theta = sinf(theta);
  10555. theta *= theta_scale;
  10556. const int64_t i0 = ib*n_dims + ic/2;
  10557. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10558. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10559. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10560. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10561. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10562. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10563. }
  10564. }
  10565. }
  10566. }
  10567. }
  10568. }
  10569. }
  10570. static void ggml_compute_forward_rope_back(
  10571. const struct ggml_compute_params * params,
  10572. const struct ggml_tensor * src0,
  10573. struct ggml_tensor * dst) {
  10574. switch (src0->type) {
  10575. case GGML_TYPE_F16:
  10576. {
  10577. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10578. } break;
  10579. case GGML_TYPE_F32:
  10580. {
  10581. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10582. } break;
  10583. default:
  10584. {
  10585. GGML_ASSERT(false);
  10586. } break;
  10587. }
  10588. }
  10589. // ggml_compute_forward_conv_1d
  10590. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10591. const struct ggml_compute_params * params,
  10592. const struct ggml_tensor * src0,
  10593. const struct ggml_tensor * src1,
  10594. struct ggml_tensor * dst) {
  10595. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10596. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10597. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10598. int64_t t0 = ggml_perf_time_us();
  10599. UNUSED(t0);
  10600. GGML_TENSOR_BINARY_OP_LOCALS;
  10601. const int ith = params->ith;
  10602. const int nth = params->nth;
  10603. const int nk = ne00;
  10604. const int nh = nk/2;
  10605. const int ew0 = ggml_up32(ne01);
  10606. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10607. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10608. GGML_ASSERT(nb10 == sizeof(float));
  10609. if (params->type == GGML_TASK_INIT) {
  10610. // TODO: fix this memset (wsize is overestimated)
  10611. memset(params->wdata, 0, params->wsize);
  10612. // prepare kernel data (src0)
  10613. {
  10614. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10615. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10616. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10617. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10618. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10619. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10620. dst_data[i00*ew0 + i01] = src[i00];
  10621. }
  10622. }
  10623. }
  10624. }
  10625. // prepare source data (src1)
  10626. {
  10627. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10628. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10629. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10630. ggml_fp16_t * dst_data = wdata;
  10631. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10632. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10633. }
  10634. }
  10635. }
  10636. return;
  10637. }
  10638. if (params->type == GGML_TASK_FINALIZE) {
  10639. return;
  10640. }
  10641. // total rows in dst
  10642. const int nr = ne02;
  10643. // rows per thread
  10644. const int dr = (nr + nth - 1)/nth;
  10645. // row range for this thread
  10646. const int ir0 = dr*ith;
  10647. const int ir1 = MIN(ir0 + dr, nr);
  10648. for (int i1 = ir0; i1 < ir1; i1++) {
  10649. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10650. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10651. dst_data[i0] = 0;
  10652. for (int k = -nh; k <= nh; k++) {
  10653. float v = 0.0f;
  10654. ggml_vec_dot_f16(ew0, &v,
  10655. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10656. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10657. dst_data[i0] += v;
  10658. }
  10659. }
  10660. }
  10661. }
  10662. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10663. const struct ggml_compute_params * params,
  10664. const struct ggml_tensor * src0,
  10665. const struct ggml_tensor * src1,
  10666. struct ggml_tensor * dst) {
  10667. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10668. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10669. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10670. int64_t t0 = ggml_perf_time_us();
  10671. UNUSED(t0);
  10672. GGML_TENSOR_BINARY_OP_LOCALS;
  10673. const int ith = params->ith;
  10674. const int nth = params->nth;
  10675. const int nk = ne00;
  10676. const int nh = nk/2;
  10677. const int ew0 = ggml_up32(ne01);
  10678. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10679. GGML_ASSERT(nb00 == sizeof(float));
  10680. GGML_ASSERT(nb10 == sizeof(float));
  10681. if (params->type == GGML_TASK_INIT) {
  10682. // TODO: fix this memset (wsize is overestimated)
  10683. memset(params->wdata, 0, params->wsize);
  10684. // prepare kernel data (src0)
  10685. {
  10686. float * const wdata = (float *) params->wdata + 0;
  10687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10688. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10689. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10690. float * dst_data = wdata + i02*ew0*ne00;
  10691. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10692. dst_data[i00*ew0 + i01] = src[i00];
  10693. }
  10694. }
  10695. }
  10696. }
  10697. // prepare source data (src1)
  10698. {
  10699. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10700. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10701. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10702. float * dst_data = wdata;
  10703. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10704. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10705. }
  10706. }
  10707. }
  10708. return;
  10709. }
  10710. if (params->type == GGML_TASK_FINALIZE) {
  10711. return;
  10712. }
  10713. // total rows in dst
  10714. const int nr = ne02;
  10715. // rows per thread
  10716. const int dr = (nr + nth - 1)/nth;
  10717. // row range for this thread
  10718. const int ir0 = dr*ith;
  10719. const int ir1 = MIN(ir0 + dr, nr);
  10720. for (int i1 = ir0; i1 < ir1; i1++) {
  10721. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10722. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10723. dst_data[i0] = 0;
  10724. for (int k = -nh; k <= nh; k++) {
  10725. float v = 0.0f;
  10726. ggml_vec_dot_f32(ew0, &v,
  10727. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10728. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10729. dst_data[i0] += v;
  10730. }
  10731. }
  10732. }
  10733. }
  10734. static void ggml_compute_forward_conv_1d_s1_ph(
  10735. const struct ggml_compute_params * params,
  10736. const struct ggml_tensor * src0,
  10737. const struct ggml_tensor * src1,
  10738. struct ggml_tensor * dst) {
  10739. switch (src0->type) {
  10740. case GGML_TYPE_F16:
  10741. {
  10742. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10743. } break;
  10744. case GGML_TYPE_F32:
  10745. {
  10746. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10747. } break;
  10748. default:
  10749. {
  10750. GGML_ASSERT(false);
  10751. } break;
  10752. }
  10753. }
  10754. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10755. const struct ggml_compute_params * params,
  10756. const struct ggml_tensor * src0,
  10757. const struct ggml_tensor * src1,
  10758. struct ggml_tensor * dst) {
  10759. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10760. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10761. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10762. int64_t t0 = ggml_perf_time_us();
  10763. UNUSED(t0);
  10764. GGML_TENSOR_BINARY_OP_LOCALS;
  10765. const int ith = params->ith;
  10766. const int nth = params->nth;
  10767. const int nk = ne00;
  10768. const int nh = nk/2;
  10769. const int ew0 = ggml_up32(ne01);
  10770. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10771. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10772. GGML_ASSERT(nb10 == sizeof(float));
  10773. if (params->type == GGML_TASK_INIT) {
  10774. // TODO: fix this memset (wsize is overestimated)
  10775. memset(params->wdata, 0, params->wsize);
  10776. // prepare kernel data (src0)
  10777. {
  10778. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10779. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10780. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10781. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10782. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10783. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10784. dst_data[i00*ew0 + i01] = src[i00];
  10785. }
  10786. }
  10787. }
  10788. }
  10789. // prepare source data (src1)
  10790. {
  10791. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10792. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10793. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10794. ggml_fp16_t * dst_data = wdata;
  10795. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10796. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10797. }
  10798. }
  10799. }
  10800. return;
  10801. }
  10802. if (params->type == GGML_TASK_FINALIZE) {
  10803. return;
  10804. }
  10805. // total rows in dst
  10806. const int nr = ne02;
  10807. // rows per thread
  10808. const int dr = (nr + nth - 1)/nth;
  10809. // row range for this thread
  10810. const int ir0 = dr*ith;
  10811. const int ir1 = MIN(ir0 + dr, nr);
  10812. for (int i1 = ir0; i1 < ir1; i1++) {
  10813. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10814. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10815. dst_data[i0/2] = 0;
  10816. for (int k = -nh; k <= nh; k++) {
  10817. float v = 0.0f;
  10818. ggml_vec_dot_f16(ew0, &v,
  10819. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10820. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10821. dst_data[i0/2] += v;
  10822. }
  10823. }
  10824. }
  10825. }
  10826. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10827. const struct ggml_compute_params * params,
  10828. const struct ggml_tensor * src0,
  10829. const struct ggml_tensor * src1,
  10830. struct ggml_tensor * dst) {
  10831. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10832. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10833. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10834. int64_t t0 = ggml_perf_time_us();
  10835. UNUSED(t0);
  10836. GGML_TENSOR_BINARY_OP_LOCALS;
  10837. const int ith = params->ith;
  10838. const int nth = params->nth;
  10839. const int nk = ne00;
  10840. const int nh = nk/2;
  10841. const int ew0 = ggml_up32(ne01);
  10842. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10843. GGML_ASSERT(nb00 == sizeof(float));
  10844. GGML_ASSERT(nb10 == sizeof(float));
  10845. if (params->type == GGML_TASK_INIT) {
  10846. // TODO: fix this memset (wsize is overestimated)
  10847. memset(params->wdata, 0, params->wsize);
  10848. // prepare kernel data (src0)
  10849. {
  10850. float * const wdata = (float *) params->wdata + 0;
  10851. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10852. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10853. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10854. float * dst_data = wdata + i02*ew0*ne00;
  10855. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10856. dst_data[i00*ew0 + i01] = src[i00];
  10857. }
  10858. }
  10859. }
  10860. }
  10861. // prepare source data (src1)
  10862. {
  10863. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10864. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10865. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10866. float * dst_data = wdata;
  10867. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10868. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10869. }
  10870. }
  10871. }
  10872. return;
  10873. }
  10874. if (params->type == GGML_TASK_FINALIZE) {
  10875. return;
  10876. }
  10877. // total rows in dst
  10878. const int nr = ne02;
  10879. // rows per thread
  10880. const int dr = (nr + nth - 1)/nth;
  10881. // row range for this thread
  10882. const int ir0 = dr*ith;
  10883. const int ir1 = MIN(ir0 + dr, nr);
  10884. for (int i1 = ir0; i1 < ir1; i1++) {
  10885. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10886. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10887. dst_data[i0/2] = 0;
  10888. for (int k = -nh; k <= nh; k++) {
  10889. float v = 0.0f;
  10890. ggml_vec_dot_f32(ew0, &v,
  10891. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10892. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10893. dst_data[i0/2] += v;
  10894. }
  10895. }
  10896. }
  10897. }
  10898. static void ggml_compute_forward_conv_1d_s2_ph(
  10899. const struct ggml_compute_params * params,
  10900. const struct ggml_tensor * src0,
  10901. const struct ggml_tensor * src1,
  10902. struct ggml_tensor * dst) {
  10903. switch (src0->type) {
  10904. case GGML_TYPE_F16:
  10905. {
  10906. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10907. } break;
  10908. case GGML_TYPE_F32:
  10909. {
  10910. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10911. } break;
  10912. default:
  10913. {
  10914. GGML_ASSERT(false);
  10915. } break;
  10916. }
  10917. }
  10918. // ggml_compute_forward_conv_1d
  10919. static void ggml_compute_forward_conv_1d(
  10920. const struct ggml_compute_params * params,
  10921. const struct ggml_tensor * src0,
  10922. const struct ggml_tensor * src1,
  10923. struct ggml_tensor * dst) {
  10924. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10925. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10926. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10927. GGML_ASSERT(d0 == 1); // dilation not supported
  10928. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10929. if (s0 == 1) {
  10930. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10931. } else if (s0 == 2) {
  10932. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10933. } else {
  10934. GGML_ASSERT(false); // only stride 1 and 2 supported
  10935. };
  10936. }
  10937. // ggml_compute_forward_conv_2d
  10938. static void ggml_compute_forward_conv_2d_f16_f32(
  10939. const struct ggml_compute_params * params,
  10940. const struct ggml_tensor * src0,
  10941. const struct ggml_tensor * src1,
  10942. struct ggml_tensor * dst) {
  10943. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10944. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10945. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10946. int64_t t0 = ggml_perf_time_us();
  10947. UNUSED(t0);
  10948. GGML_TENSOR_BINARY_OP_LOCALS;
  10949. const int ith = params->ith;
  10950. const int nth = params->nth;
  10951. const int nk0 = ne00;
  10952. const int nk1 = ne01;
  10953. // size of the convolution row - the kernel size unrolled across all channels
  10954. const int ew0 = nk0*nk1*ne02;
  10955. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10956. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10957. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10958. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10959. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10960. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10961. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10962. GGML_ASSERT(nb10 == sizeof(float));
  10963. if (params->type == GGML_TASK_INIT) {
  10964. memset(params->wdata, 0, params->wsize);
  10965. // prepare source data (src1)
  10966. {
  10967. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10968. for (int i12 = 0; i12 < ne12; i12++) {
  10969. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10970. ggml_fp16_t * dst_data = wdata;
  10971. for (int i1 = 0; i1 < ne1; i1++) {
  10972. for (int i0 = 0; i0 < ne0; i0++) {
  10973. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10974. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10975. const int idx0 = i0*s0 + ik0*d0 - p0;
  10976. const int idx1 = i1*s1 + ik1*d1 - p1;
  10977. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10978. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10979. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10980. }
  10981. }
  10982. }
  10983. }
  10984. }
  10985. }
  10986. }
  10987. return;
  10988. }
  10989. if (params->type == GGML_TASK_FINALIZE) {
  10990. return;
  10991. }
  10992. // total patches in dst
  10993. const int np = ne2;
  10994. // patches per thread
  10995. const int dp = (np + nth - 1)/nth;
  10996. // patch range for this thread
  10997. const int ip0 = dp*ith;
  10998. const int ip1 = MIN(ip0 + dp, np);
  10999. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11000. for (int i3 = 0; i3 < ne3; i3++) {
  11001. for (int i2 = ip0; i2 < ip1; i2++) {
  11002. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11003. for (int i1 = 0; i1 < ne1; ++i1) {
  11004. for (int i0 = 0; i0 < ne0; ++i0) {
  11005. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11006. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11007. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11008. }
  11009. }
  11010. }
  11011. }
  11012. }
  11013. static void ggml_compute_forward_conv_2d(
  11014. const struct ggml_compute_params * params,
  11015. const struct ggml_tensor * src0,
  11016. const struct ggml_tensor * src1,
  11017. struct ggml_tensor * dst) {
  11018. switch (src0->type) {
  11019. case GGML_TYPE_F16:
  11020. {
  11021. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11022. } break;
  11023. case GGML_TYPE_F32:
  11024. {
  11025. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11026. GGML_ASSERT(false);
  11027. } break;
  11028. default:
  11029. {
  11030. GGML_ASSERT(false);
  11031. } break;
  11032. }
  11033. }
  11034. // ggml_compute_forward_conv_transpose_2d
  11035. static void ggml_compute_forward_conv_transpose_2d(
  11036. const struct ggml_compute_params * params,
  11037. const struct ggml_tensor * src0,
  11038. const struct ggml_tensor * src1,
  11039. struct ggml_tensor * dst) {
  11040. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11041. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11042. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11043. int64_t t0 = ggml_perf_time_us();
  11044. UNUSED(t0);
  11045. GGML_TENSOR_BINARY_OP_LOCALS;
  11046. const int ith = params->ith;
  11047. const int nth = params->nth;
  11048. const int nk = ne00*ne01*ne02*ne03;
  11049. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11050. GGML_ASSERT(nb10 == sizeof(float));
  11051. if (params->type == GGML_TASK_INIT) {
  11052. memset(params->wdata, 0, params->wsize);
  11053. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11054. {
  11055. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11056. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11057. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11058. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11059. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11060. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11061. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11062. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11063. }
  11064. }
  11065. }
  11066. }
  11067. }
  11068. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11069. {
  11070. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11071. for (int i12 = 0; i12 < ne12; i12++) {
  11072. for (int i11 = 0; i11 < ne11; i11++) {
  11073. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11074. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11075. for (int i10 = 0; i10 < ne10; i10++) {
  11076. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11077. }
  11078. }
  11079. }
  11080. }
  11081. return;
  11082. }
  11083. if (params->type == GGML_TASK_FINALIZE) {
  11084. return;
  11085. }
  11086. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11087. // total patches in dst
  11088. const int np = ne2;
  11089. // patches per thread
  11090. const int dp = (np + nth - 1)/nth;
  11091. // patch range for this thread
  11092. const int ip0 = dp*ith;
  11093. const int ip1 = MIN(ip0 + dp, np);
  11094. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11095. ggml_fp16_t * const wdata_src = wdata + nk;
  11096. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11097. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11098. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11099. for (int i11 = 0; i11 < ne11; i11++) {
  11100. for (int i10 = 0; i10 < ne10; i10++) {
  11101. const int i1n = i11*ne10*ne12 + i10*ne12;
  11102. for (int i01 = 0; i01 < ne01; i01++) {
  11103. for (int i00 = 0; i00 < ne00; i00++) {
  11104. float v = 0;
  11105. ggml_vec_dot_f16(ne03, &v,
  11106. wdata_src + i1n,
  11107. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11108. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11109. }
  11110. }
  11111. }
  11112. }
  11113. }
  11114. }
  11115. // ggml_compute_forward_pool_1d_sk_p0
  11116. static void ggml_compute_forward_pool_1d_sk_p0(
  11117. const struct ggml_compute_params * params,
  11118. const enum ggml_op_pool op,
  11119. const struct ggml_tensor * src,
  11120. const int k,
  11121. struct ggml_tensor * dst) {
  11122. assert(src->type == GGML_TYPE_F32);
  11123. assert(params->ith == 0);
  11124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11125. return;
  11126. }
  11127. const char * cdata = (const char *)src->data;
  11128. const char * const data_end = cdata + ggml_nbytes(src);
  11129. float * drow = (float *)dst->data;
  11130. const int64_t rs = dst->ne[0];
  11131. while (cdata < data_end) {
  11132. const float * const srow = (const float *)cdata;
  11133. int j = 0;
  11134. for (int64_t i = 0; i < rs; ++i) {
  11135. switch (op) {
  11136. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11137. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11138. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11139. }
  11140. for (int ki = 0; ki < k; ++ki) {
  11141. switch (op) {
  11142. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11143. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11144. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11145. }
  11146. ++j;
  11147. }
  11148. switch (op) {
  11149. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11150. case GGML_OP_POOL_MAX: break;
  11151. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11152. }
  11153. }
  11154. cdata += src->nb[1];
  11155. drow += rs;
  11156. }
  11157. }
  11158. // ggml_compute_forward_pool_1d
  11159. static void ggml_compute_forward_pool_1d(
  11160. const struct ggml_compute_params * params,
  11161. const struct ggml_tensor * src0,
  11162. struct ggml_tensor * dst) {
  11163. const int32_t * opts = (const int32_t *)dst->op_params;
  11164. enum ggml_op_pool op = opts[0];
  11165. const int k0 = opts[1];
  11166. const int s0 = opts[2];
  11167. const int p0 = opts[3];
  11168. GGML_ASSERT(p0 == 0); // padding not supported
  11169. GGML_ASSERT(k0 == s0); // only s = k supported
  11170. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11171. }
  11172. // ggml_compute_forward_pool_2d_sk_p0
  11173. static void ggml_compute_forward_pool_2d_sk_p0(
  11174. const struct ggml_compute_params * params,
  11175. const enum ggml_op_pool op,
  11176. const struct ggml_tensor * src,
  11177. const int k0,
  11178. const int k1,
  11179. struct ggml_tensor * dst) {
  11180. assert(src->type == GGML_TYPE_F32);
  11181. assert(params->ith == 0);
  11182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11183. return;
  11184. }
  11185. const char * cdata = (const char*)src->data;
  11186. const char * const data_end = cdata + ggml_nbytes(src);
  11187. const int64_t px = dst->ne[0];
  11188. const int64_t py = dst->ne[1];
  11189. const int64_t pa = px * py;
  11190. float * dplane = (float *)dst->data;
  11191. const int ka = k0 * k1;
  11192. while (cdata < data_end) {
  11193. for (int oy = 0; oy < py; ++oy) {
  11194. float * const drow = dplane + oy * px;
  11195. for (int ox = 0; ox < px; ++ox) {
  11196. float * const out = drow + ox;
  11197. switch (op) {
  11198. case GGML_OP_POOL_AVG: *out = 0; break;
  11199. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11200. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11201. }
  11202. const int ix = ox * k0;
  11203. const int iy = oy * k1;
  11204. for (int ky = 0; ky < k1; ++ky) {
  11205. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11206. for (int kx = 0; kx < k0; ++kx) {
  11207. int j = ix + kx;
  11208. switch (op) {
  11209. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11210. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11211. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11212. }
  11213. }
  11214. }
  11215. switch (op) {
  11216. case GGML_OP_POOL_AVG: *out /= ka; break;
  11217. case GGML_OP_POOL_MAX: break;
  11218. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11219. }
  11220. }
  11221. }
  11222. cdata += src->nb[2];
  11223. dplane += pa;
  11224. }
  11225. }
  11226. // ggml_compute_forward_pool_2d
  11227. static void ggml_compute_forward_pool_2d(
  11228. const struct ggml_compute_params * params,
  11229. const struct ggml_tensor * src0,
  11230. struct ggml_tensor * dst) {
  11231. const int32_t * opts = (const int32_t *)dst->op_params;
  11232. enum ggml_op_pool op = opts[0];
  11233. const int k0 = opts[1];
  11234. const int k1 = opts[2];
  11235. const int s0 = opts[3];
  11236. const int s1 = opts[4];
  11237. const int p0 = opts[5];
  11238. const int p1 = opts[6];
  11239. GGML_ASSERT(p0 == 0);
  11240. GGML_ASSERT(p1 == 0); // padding not supported
  11241. GGML_ASSERT(k0 == s0);
  11242. GGML_ASSERT(k1 == s1); // only s = k supported
  11243. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11244. }
  11245. // ggml_compute_forward_upscale
  11246. static void ggml_compute_forward_upscale_f32(
  11247. const struct ggml_compute_params * params,
  11248. const struct ggml_tensor * src0,
  11249. struct ggml_tensor * dst) {
  11250. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11251. return;
  11252. }
  11253. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11254. const int ith = params->ith;
  11255. GGML_TENSOR_UNARY_OP_LOCALS;
  11256. const int scale_factor = dst->op_params[0];
  11257. // TODO: optimize
  11258. for (int i03 = 0; i03 < ne03; i03++) {
  11259. for (int i02 = ith; i02 < ne02; i02++) {
  11260. for (int m = 0; m < dst->ne[1]; m++) {
  11261. int i01 = m / scale_factor;
  11262. for (int n = 0; n < dst->ne[0]; n++) {
  11263. int i00 = n / scale_factor;
  11264. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11265. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11266. *y = *x;
  11267. }
  11268. }
  11269. }
  11270. }
  11271. }
  11272. static void ggml_compute_forward_upscale(
  11273. const struct ggml_compute_params * params,
  11274. const struct ggml_tensor * src0,
  11275. struct ggml_tensor * dst) {
  11276. switch (src0->type) {
  11277. case GGML_TYPE_F32:
  11278. {
  11279. ggml_compute_forward_upscale_f32(params, src0, dst);
  11280. } break;
  11281. default:
  11282. {
  11283. GGML_ASSERT(false);
  11284. } break;
  11285. }
  11286. }
  11287. // ggml_compute_forward_flash_attn
  11288. static void ggml_compute_forward_flash_attn_f32(
  11289. const struct ggml_compute_params * params,
  11290. const struct ggml_tensor * q,
  11291. const struct ggml_tensor * k,
  11292. const struct ggml_tensor * v,
  11293. const bool masked,
  11294. struct ggml_tensor * dst) {
  11295. int64_t t0 = ggml_perf_time_us();
  11296. UNUSED(t0);
  11297. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11298. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11299. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11300. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11301. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11302. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11303. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11304. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11305. const int ith = params->ith;
  11306. const int nth = params->nth;
  11307. const int64_t D = neq0;
  11308. const int64_t N = neq1;
  11309. const int64_t P = nek1 - N;
  11310. const int64_t M = P + N;
  11311. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11312. GGML_ASSERT(ne0 == D);
  11313. GGML_ASSERT(ne1 == N);
  11314. GGML_ASSERT(P >= 0);
  11315. GGML_ASSERT(nbq0 == sizeof(float));
  11316. GGML_ASSERT(nbk0 == sizeof(float));
  11317. GGML_ASSERT(nbv0 == sizeof(float));
  11318. GGML_ASSERT(neq0 == D);
  11319. GGML_ASSERT(nek0 == D);
  11320. GGML_ASSERT(nev1 == D);
  11321. GGML_ASSERT(neq1 == N);
  11322. GGML_ASSERT(nek1 == N + P);
  11323. GGML_ASSERT(nev1 == D);
  11324. // dst cannot be transposed or permuted
  11325. GGML_ASSERT(nb0 == sizeof(float));
  11326. GGML_ASSERT(nb0 <= nb1);
  11327. GGML_ASSERT(nb1 <= nb2);
  11328. GGML_ASSERT(nb2 <= nb3);
  11329. if (params->type == GGML_TASK_INIT) {
  11330. return;
  11331. }
  11332. if (params->type == GGML_TASK_FINALIZE) {
  11333. return;
  11334. }
  11335. // parallelize by q rows using ggml_vec_dot_f32
  11336. // total rows in q
  11337. const int nr = neq1*neq2*neq3;
  11338. // rows per thread
  11339. const int dr = (nr + nth - 1)/nth;
  11340. // row range for this thread
  11341. const int ir0 = dr*ith;
  11342. const int ir1 = MIN(ir0 + dr, nr);
  11343. const float scale = 1.0f/sqrtf(D);
  11344. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11345. for (int ir = ir0; ir < ir1; ++ir) {
  11346. // q indices
  11347. const int iq3 = ir/(neq2*neq1);
  11348. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11349. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11350. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11351. for (int i = M; i < Mup; ++i) {
  11352. S[i] = -INFINITY;
  11353. }
  11354. for (int64_t ic = 0; ic < nek1; ++ic) {
  11355. // k indices
  11356. const int ik3 = iq3;
  11357. const int ik2 = iq2;
  11358. const int ik1 = ic;
  11359. // S indices
  11360. const int i1 = ik1;
  11361. ggml_vec_dot_f32(neq0,
  11362. S + i1,
  11363. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11364. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11365. }
  11366. // scale
  11367. ggml_vec_scale_f32(nek1, S, scale);
  11368. if (masked) {
  11369. for (int64_t i = P; i < M; i++) {
  11370. if (i > P + iq1) {
  11371. S[i] = -INFINITY;
  11372. }
  11373. }
  11374. }
  11375. // softmax
  11376. {
  11377. float max = -INFINITY;
  11378. ggml_vec_max_f32(M, &max, S);
  11379. ggml_float sum = 0.0;
  11380. {
  11381. #ifdef GGML_SOFT_MAX_ACCELERATE
  11382. max = -max;
  11383. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11384. vvexpf(S, S, &Mup);
  11385. ggml_vec_sum_f32(Mup, &sum, S);
  11386. #else
  11387. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11388. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11389. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11390. float * SS = S + i;
  11391. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11392. if (SS[j] == -INFINITY) {
  11393. SS[j] = 0.0f;
  11394. } else {
  11395. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11396. const float val = expf(SS[j] - max);
  11397. #else
  11398. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11399. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11400. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11401. #endif
  11402. sump[j] += (ggml_float)val;
  11403. SS[j] = val;
  11404. }
  11405. }
  11406. }
  11407. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11408. sum += sump[i];
  11409. }
  11410. #endif
  11411. }
  11412. assert(sum > 0.0);
  11413. sum = 1.0/sum;
  11414. ggml_vec_scale_f32(M, S, sum);
  11415. #ifndef NDEBUG
  11416. for (int i = 0; i < M; ++i) {
  11417. assert(!isnan(S[i]));
  11418. assert(!isinf(S[i]));
  11419. }
  11420. #endif
  11421. }
  11422. for (int64_t ic = 0; ic < nev1; ++ic) {
  11423. // dst indices
  11424. const int i1 = iq1;
  11425. const int i2 = iq2;
  11426. const int i3 = iq3;
  11427. ggml_vec_dot_f32(nek1,
  11428. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11429. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11430. S);
  11431. }
  11432. }
  11433. }
  11434. static void ggml_compute_forward_flash_attn_f16(
  11435. const struct ggml_compute_params * params,
  11436. const struct ggml_tensor * q,
  11437. const struct ggml_tensor * k,
  11438. const struct ggml_tensor * v,
  11439. const bool masked,
  11440. struct ggml_tensor * dst) {
  11441. int64_t t0 = ggml_perf_time_us();
  11442. UNUSED(t0);
  11443. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11444. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11445. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11446. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11447. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11448. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11449. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11450. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11451. const int ith = params->ith;
  11452. const int nth = params->nth;
  11453. const int64_t D = neq0;
  11454. const int64_t N = neq1;
  11455. const int64_t P = nek1 - N;
  11456. const int64_t M = P + N;
  11457. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11458. GGML_ASSERT(ne0 == D);
  11459. GGML_ASSERT(ne1 == N);
  11460. GGML_ASSERT(P >= 0);
  11461. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11462. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11463. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11464. GGML_ASSERT(neq0 == D);
  11465. GGML_ASSERT(nek0 == D);
  11466. GGML_ASSERT(nev1 == D);
  11467. GGML_ASSERT(neq1 == N);
  11468. GGML_ASSERT(nek1 == N + P);
  11469. GGML_ASSERT(nev1 == D);
  11470. // dst cannot be transposed or permuted
  11471. GGML_ASSERT(nb0 == sizeof(float));
  11472. GGML_ASSERT(nb0 <= nb1);
  11473. GGML_ASSERT(nb1 <= nb2);
  11474. GGML_ASSERT(nb2 <= nb3);
  11475. if (params->type == GGML_TASK_INIT) {
  11476. return;
  11477. }
  11478. if (params->type == GGML_TASK_FINALIZE) {
  11479. return;
  11480. }
  11481. // parallelize by q rows using ggml_vec_dot_f32
  11482. // total rows in q
  11483. const int nr = neq1*neq2*neq3;
  11484. // rows per thread
  11485. const int dr = (nr + nth - 1)/nth;
  11486. // row range for this thread
  11487. const int ir0 = dr*ith;
  11488. const int ir1 = MIN(ir0 + dr, nr);
  11489. const float scale = 1.0f/sqrtf(D);
  11490. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11491. for (int ir = ir0; ir < ir1; ++ir) {
  11492. // q indices
  11493. const int iq3 = ir/(neq2*neq1);
  11494. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11495. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11496. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11497. for (int i = M; i < Mup; ++i) {
  11498. S[i] = -INFINITY;
  11499. }
  11500. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11501. for (int64_t ic = 0; ic < nek1; ++ic) {
  11502. // k indices
  11503. const int ik3 = iq3;
  11504. const int ik2 = iq2;
  11505. const int ik1 = ic;
  11506. // S indices
  11507. const int i1 = ik1;
  11508. ggml_vec_dot_f16(neq0,
  11509. S + i1,
  11510. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11511. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11512. }
  11513. } else {
  11514. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11515. // k indices
  11516. const int ik3 = iq3;
  11517. const int ik2 = iq2;
  11518. const int ik1 = ic;
  11519. // S indices
  11520. const int i1 = ik1;
  11521. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11522. S + i1,
  11523. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11524. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11525. }
  11526. }
  11527. // scale
  11528. ggml_vec_scale_f32(nek1, S, scale);
  11529. if (masked) {
  11530. for (int64_t i = P; i < M; i++) {
  11531. if (i > P + iq1) {
  11532. S[i] = -INFINITY;
  11533. }
  11534. }
  11535. }
  11536. // softmax
  11537. {
  11538. float max = -INFINITY;
  11539. ggml_vec_max_f32(M, &max, S);
  11540. ggml_float sum = 0.0;
  11541. {
  11542. #ifdef GGML_SOFT_MAX_ACCELERATE
  11543. max = -max;
  11544. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11545. vvexpf(S, S, &Mup);
  11546. ggml_vec_sum_f32(Mup, &sum, S);
  11547. #else
  11548. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11549. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11550. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11551. float * SS = S + i;
  11552. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11553. if (SS[j] == -INFINITY) {
  11554. SS[j] = 0.0f;
  11555. } else {
  11556. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11557. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11558. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11559. sump[j] += (ggml_float)val;
  11560. SS[j] = val;
  11561. }
  11562. }
  11563. }
  11564. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11565. sum += sump[i];
  11566. }
  11567. #endif
  11568. }
  11569. assert(sum > 0.0);
  11570. sum = 1.0/sum;
  11571. ggml_vec_scale_f32(M, S, sum);
  11572. #ifndef NDEBUG
  11573. for (int i = 0; i < M; ++i) {
  11574. assert(!isnan(S[i]));
  11575. assert(!isinf(S[i]));
  11576. }
  11577. #endif
  11578. }
  11579. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11580. for (int64_t i = 0; i < M; i++) {
  11581. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11582. }
  11583. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11584. for (int64_t ic = 0; ic < nev1; ++ic) {
  11585. // dst indices
  11586. const int i1 = iq1;
  11587. const int i2 = iq2;
  11588. const int i3 = iq3;
  11589. ggml_vec_dot_f16(nek1,
  11590. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11591. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11592. S16);
  11593. }
  11594. } else {
  11595. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11596. // dst indices
  11597. const int i1 = iq1;
  11598. const int i2 = iq2;
  11599. const int i3 = iq3;
  11600. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11601. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11602. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11603. S16);
  11604. }
  11605. }
  11606. }
  11607. }
  11608. static void ggml_compute_forward_flash_attn(
  11609. const struct ggml_compute_params * params,
  11610. const struct ggml_tensor * q,
  11611. const struct ggml_tensor * k,
  11612. const struct ggml_tensor * v,
  11613. const bool masked,
  11614. struct ggml_tensor * dst) {
  11615. switch (q->type) {
  11616. case GGML_TYPE_F16:
  11617. {
  11618. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11619. } break;
  11620. case GGML_TYPE_F32:
  11621. {
  11622. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11623. } break;
  11624. default:
  11625. {
  11626. GGML_ASSERT(false);
  11627. } break;
  11628. }
  11629. }
  11630. // ggml_compute_forward_flash_ff
  11631. static void ggml_compute_forward_flash_ff_f16(
  11632. const struct ggml_compute_params * params,
  11633. const struct ggml_tensor * a, // F16
  11634. const struct ggml_tensor * b0, // F16 fc_w
  11635. const struct ggml_tensor * b1, // F32 fc_b
  11636. const struct ggml_tensor * c0, // F16 proj_w
  11637. const struct ggml_tensor * c1, // F32 proj_b
  11638. struct ggml_tensor * dst) {
  11639. int64_t t0 = ggml_perf_time_us();
  11640. UNUSED(t0);
  11641. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11642. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11643. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11644. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11645. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11646. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11647. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11648. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11649. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11650. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11651. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11652. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11653. const int ith = params->ith;
  11654. const int nth = params->nth;
  11655. const int64_t D = nea0;
  11656. //const int64_t N = nea1;
  11657. const int64_t M = neb01;
  11658. GGML_ASSERT(ne0 == nea0);
  11659. GGML_ASSERT(ne1 == nea1);
  11660. GGML_ASSERT(ne2 == nea2);
  11661. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11662. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11663. GGML_ASSERT(nbb10 == sizeof(float));
  11664. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11665. GGML_ASSERT(nbc10 == sizeof(float));
  11666. GGML_ASSERT(neb00 == D);
  11667. GGML_ASSERT(neb01 == M);
  11668. GGML_ASSERT(neb10 == M);
  11669. GGML_ASSERT(neb11 == 1);
  11670. GGML_ASSERT(nec00 == M);
  11671. GGML_ASSERT(nec01 == D);
  11672. GGML_ASSERT(nec10 == D);
  11673. GGML_ASSERT(nec11 == 1);
  11674. // dst cannot be transposed or permuted
  11675. GGML_ASSERT(nb0 == sizeof(float));
  11676. GGML_ASSERT(nb0 <= nb1);
  11677. GGML_ASSERT(nb1 <= nb2);
  11678. GGML_ASSERT(nb2 <= nb3);
  11679. if (params->type == GGML_TASK_INIT) {
  11680. return;
  11681. }
  11682. if (params->type == GGML_TASK_FINALIZE) {
  11683. return;
  11684. }
  11685. // parallelize by a rows using ggml_vec_dot_f32
  11686. // total rows in a
  11687. const int nr = nea1*nea2*nea3;
  11688. // rows per thread
  11689. const int dr = (nr + nth - 1)/nth;
  11690. // row range for this thread
  11691. const int ir0 = dr*ith;
  11692. const int ir1 = MIN(ir0 + dr, nr);
  11693. for (int ir = ir0; ir < ir1; ++ir) {
  11694. // a indices
  11695. const int ia3 = ir/(nea2*nea1);
  11696. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11697. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11698. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11699. for (int64_t ic = 0; ic < neb01; ++ic) {
  11700. // b0 indices
  11701. const int ib03 = ia3;
  11702. const int ib02 = ia2;
  11703. const int ib01 = ic;
  11704. // S indices
  11705. const int i1 = ib01;
  11706. ggml_vec_dot_f16(nea0,
  11707. S + i1,
  11708. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11709. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11710. }
  11711. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11712. //ggml_vec_gelu_f32(neb01, S, S);
  11713. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11714. for (int64_t i = 0; i < M; i++) {
  11715. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11716. }
  11717. ggml_vec_gelu_f16(neb01, S16, S16);
  11718. {
  11719. // dst indices
  11720. const int i1 = ia1;
  11721. const int i2 = ia2;
  11722. const int i3 = ia3;
  11723. for (int64_t ic = 0; ic < nec01; ++ic) {
  11724. ggml_vec_dot_f16(neb01,
  11725. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11726. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11727. S16);
  11728. }
  11729. ggml_vec_add_f32(nec01,
  11730. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11731. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11732. (float *) c1->data);
  11733. }
  11734. }
  11735. }
  11736. static void ggml_compute_forward_flash_ff(
  11737. const struct ggml_compute_params * params,
  11738. const struct ggml_tensor * a,
  11739. const struct ggml_tensor * b0,
  11740. const struct ggml_tensor * b1,
  11741. const struct ggml_tensor * c0,
  11742. const struct ggml_tensor * c1,
  11743. struct ggml_tensor * dst) {
  11744. switch (b0->type) {
  11745. case GGML_TYPE_F16:
  11746. {
  11747. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11748. } break;
  11749. case GGML_TYPE_F32:
  11750. {
  11751. GGML_ASSERT(false); // TODO
  11752. } break;
  11753. default:
  11754. {
  11755. GGML_ASSERT(false);
  11756. } break;
  11757. }
  11758. }
  11759. // ggml_compute_forward_flash_attn_back
  11760. static void ggml_compute_forward_flash_attn_back_f32(
  11761. const struct ggml_compute_params * params,
  11762. const struct ggml_tensor * q,
  11763. const struct ggml_tensor * k,
  11764. const struct ggml_tensor * v,
  11765. const struct ggml_tensor * d,
  11766. const bool masked,
  11767. struct ggml_tensor * dst) {
  11768. int64_t t0 = ggml_perf_time_us();
  11769. UNUSED(t0);
  11770. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11771. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11772. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11773. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11774. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11775. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11776. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11777. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11778. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11779. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11780. const int ith = params->ith;
  11781. const int nth = params->nth;
  11782. const int64_t D = neq0;
  11783. const int64_t N = neq1;
  11784. const int64_t P = nek1 - N;
  11785. const int64_t M = P + N;
  11786. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11787. const int mxDM = MAX(D, Mup);
  11788. // GGML_ASSERT(ne0 == D);
  11789. // GGML_ASSERT(ne1 == N);
  11790. GGML_ASSERT(P >= 0);
  11791. GGML_ASSERT(nbq0 == sizeof(float));
  11792. GGML_ASSERT(nbk0 == sizeof(float));
  11793. GGML_ASSERT(nbv0 == sizeof(float));
  11794. GGML_ASSERT(neq0 == D);
  11795. GGML_ASSERT(nek0 == D);
  11796. GGML_ASSERT(nev1 == D);
  11797. GGML_ASSERT(ned0 == D);
  11798. GGML_ASSERT(neq1 == N);
  11799. GGML_ASSERT(nek1 == N + P);
  11800. GGML_ASSERT(nev1 == D);
  11801. GGML_ASSERT(ned1 == N);
  11802. // dst cannot be transposed or permuted
  11803. GGML_ASSERT(nb0 == sizeof(float));
  11804. GGML_ASSERT(nb0 <= nb1);
  11805. GGML_ASSERT(nb1 <= nb2);
  11806. GGML_ASSERT(nb2 <= nb3);
  11807. if (params->type == GGML_TASK_INIT) {
  11808. if (ith == 0) {
  11809. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11810. }
  11811. return;
  11812. }
  11813. if (params->type == GGML_TASK_FINALIZE) {
  11814. return;
  11815. }
  11816. // parallelize by q rows using ggml_vec_dot_f32
  11817. // total rows in q
  11818. const int nr = neq2*neq3;
  11819. // rows per thread
  11820. const int dr = (nr + nth - 1)/nth;
  11821. // row range for this thread
  11822. const int ir0 = dr*ith;
  11823. const int ir1 = MIN(ir0 + dr, nr);
  11824. const float scale = 1.0f/sqrtf(D);
  11825. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11826. for (int ir = ir0; ir < ir1; ++ir) {
  11827. // q indices
  11828. const int iq3 = ir/(neq2);
  11829. const int iq2 = ir - iq3*neq2;
  11830. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11831. // not sure about CACHE_LINE_SIZE_F32..
  11832. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11833. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11834. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11835. for (int i = M; i < Mup; ++i) {
  11836. S[i] = -INFINITY;
  11837. }
  11838. for (int64_t ic = 0; ic < nek1; ++ic) {
  11839. // k indices
  11840. const int ik3 = iq3;
  11841. const int ik2 = iq2;
  11842. const int ik1 = ic;
  11843. // S indices
  11844. const int i1 = ik1;
  11845. ggml_vec_dot_f32(neq0,
  11846. S + i1,
  11847. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11848. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11849. }
  11850. // scale
  11851. ggml_vec_scale_f32(nek1, S, scale);
  11852. if (masked) {
  11853. for (int64_t i = P; i < M; i++) {
  11854. if (i > P + iq1) {
  11855. S[i] = -INFINITY;
  11856. }
  11857. }
  11858. }
  11859. // softmax
  11860. {
  11861. float max = -INFINITY;
  11862. ggml_vec_max_f32(M, &max, S);
  11863. ggml_float sum = 0.0;
  11864. {
  11865. #ifdef GGML_SOFT_MAX_ACCELERATE
  11866. max = -max;
  11867. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11868. vvexpf(SM, SM, &Mup);
  11869. ggml_vec_sum_f32(Mup, &sum, SM);
  11870. #else
  11871. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11872. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11873. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11874. float * SR = S + i;
  11875. float * SW = SM + i;
  11876. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11877. if (SR[j] == -INFINITY) {
  11878. SW[j] = 0.0f;
  11879. } else {
  11880. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11881. const float val = expf(SR[j] - max);
  11882. #else
  11883. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11884. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11885. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11886. #endif
  11887. sump[j] += (ggml_float)val;
  11888. SW[j] = val;
  11889. }
  11890. }
  11891. }
  11892. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11893. sum += sump[i];
  11894. }
  11895. #endif
  11896. }
  11897. assert(sum > 0.0);
  11898. sum = 1.0/sum;
  11899. ggml_vec_scale_f32(M, SM, sum);
  11900. }
  11901. // step-by-step explanation
  11902. {
  11903. // forward-process shape grads from backward process
  11904. // parallel_for iq2,iq3:
  11905. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11906. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11907. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11908. // for iq1:
  11909. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11910. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11911. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11912. // S0 = -Inf [D,1,1,1]
  11913. // ~S1[i] = dot(kcur[:D,i], qcur)
  11914. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11915. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11916. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11917. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11918. // ~S5[i] = dot(vcur[:,i], S4)
  11919. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11920. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11921. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11922. // dst backward-/ grad[dst] = d
  11923. //
  11924. // output gradients with their dependencies:
  11925. //
  11926. // grad[kcur] = grad[S1].T @ qcur
  11927. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11928. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11929. // grad[S4] = grad[S5] @ vcur
  11930. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11931. // grad[qcur] = grad[S1] @ kcur
  11932. // grad[vcur] = grad[S5].T @ S4
  11933. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11934. //
  11935. // in post-order:
  11936. //
  11937. // S1 = qcur @ kcur.T
  11938. // S2 = S1 * scale
  11939. // S3 = diag_mask_inf(S2, P)
  11940. // S4 = softmax(S3)
  11941. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11942. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11943. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11944. // grad[qcur] = grad[S1] @ kcur
  11945. // grad[kcur] = grad[S1].T @ qcur
  11946. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11947. //
  11948. // using less variables (SM=S4):
  11949. //
  11950. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11951. // SM = softmax(S)
  11952. // S = d[:D,iq1,iq2,iq3] @ vcur
  11953. // dot_SM_gradSM = dot(SM, S)
  11954. // S = SM * (S - dot(SM, S))
  11955. // S = diag_mask_zero(S, P) * scale
  11956. //
  11957. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11958. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11959. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11960. }
  11961. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11962. // S = d[:D,iq1,iq2,iq3] @ vcur
  11963. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11964. ggml_vec_set_f32(M, S, 0);
  11965. for (int64_t ic = 0; ic < D; ++ic) {
  11966. // dst indices
  11967. const int i1 = iq1;
  11968. const int i2 = iq2;
  11969. const int i3 = iq3;
  11970. ggml_vec_mad_f32(M,
  11971. S,
  11972. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11973. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11974. }
  11975. // S = SM * (S - dot(SM, S))
  11976. float dot_SM_gradSM = 0;
  11977. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11978. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11979. ggml_vec_mul_f32 (M, S, S, SM);
  11980. // S = diag_mask_zero(S, P) * scale
  11981. if (masked) {
  11982. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11983. // S[i] = 0;
  11984. // }
  11985. for (int64_t i = P; i < M; i++) {
  11986. if (i > P + iq1) {
  11987. S[i] = 0;
  11988. }
  11989. }
  11990. }
  11991. ggml_vec_scale_f32(M, S, scale);
  11992. void * grad_q = (char *) dst->data;
  11993. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11994. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11995. const size_t nbgq1 = nb0*neq0;
  11996. const size_t nbgq2 = nb0*neq0*neq1;
  11997. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11998. const size_t nbgk1 = nb0*nek0;
  11999. const size_t nbgk2 = nb0*nek0*nek1;
  12000. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12001. const size_t nbgv1 = nb0*nev0;
  12002. const size_t nbgv2 = nb0*nev0*nev1;
  12003. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12004. // S shape [M,1]
  12005. // SM shape [M,1]
  12006. // kcur shape [D,M]
  12007. // qcur shape [D,1]
  12008. // vcur shape [M,D]
  12009. //
  12010. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12011. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12012. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  12013. //
  12014. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  12015. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  12016. for (int64_t ic = 0; ic < M; ++ic) {
  12017. // dst indices
  12018. const int i1 = iq1;
  12019. const int i2 = iq2;
  12020. const int i3 = iq3;
  12021. ggml_vec_mad_f32(D,
  12022. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  12023. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  12024. S[ic]);
  12025. }
  12026. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12027. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12028. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12029. for (int64_t ic = 0; ic < M; ++ic) {
  12030. // dst indices
  12031. const int i1 = iq1;
  12032. const int i2 = iq2;
  12033. const int i3 = iq3;
  12034. // ggml_vec_set_f32(D,
  12035. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12036. // 0);
  12037. ggml_vec_mad_f32(D,
  12038. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12039. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  12040. S[ic]);
  12041. }
  12042. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12043. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  12044. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  12045. for (int64_t ic = 0; ic < D; ++ic) {
  12046. // dst indices
  12047. const int i1 = iq1;
  12048. const int i2 = iq2;
  12049. const int i3 = iq3;
  12050. // ggml_vec_set_f32(M,
  12051. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12052. // 0);
  12053. ggml_vec_mad_f32(M,
  12054. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12055. SM,
  12056. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12057. }
  12058. }
  12059. }
  12060. }
  12061. static void ggml_compute_forward_flash_attn_back(
  12062. const struct ggml_compute_params * params,
  12063. const struct ggml_tensor * q,
  12064. const struct ggml_tensor * k,
  12065. const struct ggml_tensor * v,
  12066. const struct ggml_tensor * d,
  12067. const bool masked,
  12068. struct ggml_tensor * dst) {
  12069. switch (q->type) {
  12070. case GGML_TYPE_F32:
  12071. {
  12072. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12073. } break;
  12074. default:
  12075. {
  12076. GGML_ASSERT(false);
  12077. } break;
  12078. }
  12079. }
  12080. // ggml_compute_forward_win_part
  12081. static void ggml_compute_forward_win_part_f32(
  12082. const struct ggml_compute_params * params,
  12083. const struct ggml_tensor * src0,
  12084. struct ggml_tensor * dst) {
  12085. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12086. return;
  12087. }
  12088. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12089. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12090. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12091. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12092. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12093. assert(ne00 == ne0);
  12094. assert(ne3 == nep0*nep1);
  12095. // TODO: optimize / multi-thread
  12096. for (int py = 0; py < nep1; ++py) {
  12097. for (int px = 0; px < nep0; ++px) {
  12098. const int64_t i3 = py*nep0 + px;
  12099. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12100. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12101. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12102. const int64_t i02 = py*w + i2;
  12103. const int64_t i01 = px*w + i1;
  12104. const int64_t i00 = i0;
  12105. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12106. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12107. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12108. ((float *) dst->data)[i] = 0.0f;
  12109. } else {
  12110. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12111. }
  12112. }
  12113. }
  12114. }
  12115. }
  12116. }
  12117. }
  12118. static void ggml_compute_forward_win_part(
  12119. const struct ggml_compute_params * params,
  12120. const struct ggml_tensor * src0,
  12121. struct ggml_tensor * dst) {
  12122. switch (src0->type) {
  12123. case GGML_TYPE_F32:
  12124. {
  12125. ggml_compute_forward_win_part_f32(params, src0, dst);
  12126. } break;
  12127. default:
  12128. {
  12129. GGML_ASSERT(false);
  12130. } break;
  12131. }
  12132. }
  12133. // ggml_compute_forward_win_unpart
  12134. static void ggml_compute_forward_win_unpart_f32(
  12135. const struct ggml_compute_params * params,
  12136. const struct ggml_tensor * src0,
  12137. struct ggml_tensor * dst) {
  12138. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12139. return;
  12140. }
  12141. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12142. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12143. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12144. // padding
  12145. const int px = (w - ne1%w)%w;
  12146. //const int py = (w - ne2%w)%w;
  12147. const int npx = (px + ne1)/w;
  12148. //const int npy = (py + ne2)/w;
  12149. assert(ne0 == ne00);
  12150. // TODO: optimize / multi-thread
  12151. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12152. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12153. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12154. const int ip2 = i2/w;
  12155. const int ip1 = i1/w;
  12156. const int64_t i02 = i2%w;
  12157. const int64_t i01 = i1%w;
  12158. const int64_t i00 = i0;
  12159. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12160. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12161. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12162. }
  12163. }
  12164. }
  12165. }
  12166. static void ggml_compute_forward_win_unpart(
  12167. const struct ggml_compute_params * params,
  12168. const struct ggml_tensor * src0,
  12169. struct ggml_tensor * dst) {
  12170. switch (src0->type) {
  12171. case GGML_TYPE_F32:
  12172. {
  12173. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12174. } break;
  12175. default:
  12176. {
  12177. GGML_ASSERT(false);
  12178. } break;
  12179. }
  12180. }
  12181. //gmml_compute_forward_unary
  12182. static void ggml_compute_forward_unary(
  12183. const struct ggml_compute_params * params,
  12184. const struct ggml_tensor * src0,
  12185. struct ggml_tensor * dst) {
  12186. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12187. switch (op) {
  12188. case GGML_UNARY_OP_ABS:
  12189. {
  12190. ggml_compute_forward_abs(params, src0, dst);
  12191. } break;
  12192. case GGML_UNARY_OP_SGN:
  12193. {
  12194. ggml_compute_forward_sgn(params, src0, dst);
  12195. } break;
  12196. case GGML_UNARY_OP_NEG:
  12197. {
  12198. ggml_compute_forward_neg(params, src0, dst);
  12199. } break;
  12200. case GGML_UNARY_OP_STEP:
  12201. {
  12202. ggml_compute_forward_step(params, src0, dst);
  12203. } break;
  12204. case GGML_UNARY_OP_TANH:
  12205. {
  12206. ggml_compute_forward_tanh(params, src0, dst);
  12207. } break;
  12208. case GGML_UNARY_OP_ELU:
  12209. {
  12210. ggml_compute_forward_elu(params, src0, dst);
  12211. } break;
  12212. case GGML_UNARY_OP_RELU:
  12213. {
  12214. ggml_compute_forward_relu(params, src0, dst);
  12215. } break;
  12216. case GGML_UNARY_OP_GELU:
  12217. {
  12218. ggml_compute_forward_gelu(params, src0, dst);
  12219. } break;
  12220. case GGML_UNARY_OP_GELU_QUICK:
  12221. {
  12222. ggml_compute_forward_gelu_quick(params, src0, dst);
  12223. } break;
  12224. case GGML_UNARY_OP_SILU:
  12225. {
  12226. ggml_compute_forward_silu(params, src0, dst);
  12227. } break;
  12228. default:
  12229. {
  12230. GGML_ASSERT(false);
  12231. } break;
  12232. }
  12233. }
  12234. // ggml_compute_forward_get_rel_pos
  12235. static void ggml_compute_forward_get_rel_pos_f16(
  12236. const struct ggml_compute_params * params,
  12237. const struct ggml_tensor * src0,
  12238. struct ggml_tensor * dst) {
  12239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12240. return;
  12241. }
  12242. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12243. GGML_TENSOR_UNARY_OP_LOCALS;
  12244. const int64_t w = ne1;
  12245. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12246. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12247. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12248. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12249. const int64_t pos = (w - i1 - 1) + i2;
  12250. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12251. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12252. }
  12253. }
  12254. }
  12255. }
  12256. static void ggml_compute_forward_get_rel_pos(
  12257. const struct ggml_compute_params * params,
  12258. const struct ggml_tensor * src0,
  12259. struct ggml_tensor * dst) {
  12260. switch (src0->type) {
  12261. case GGML_TYPE_F16:
  12262. {
  12263. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12264. } break;
  12265. default:
  12266. {
  12267. GGML_ASSERT(false);
  12268. } break;
  12269. }
  12270. }
  12271. // ggml_compute_forward_add_rel_pos
  12272. static void ggml_compute_forward_add_rel_pos_f32(
  12273. const struct ggml_compute_params * params,
  12274. const struct ggml_tensor * src0,
  12275. const struct ggml_tensor * src1,
  12276. const struct ggml_tensor * src2,
  12277. struct ggml_tensor * dst) {
  12278. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12279. if (!inplace && params->type == GGML_TASK_INIT) {
  12280. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12281. return;
  12282. }
  12283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12284. return;
  12285. }
  12286. int64_t t0 = ggml_perf_time_us();
  12287. UNUSED(t0);
  12288. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12289. float * src1_data = (float *) src1->data;
  12290. float * src2_data = (float *) src2->data;
  12291. float * dst_data = (float *) dst->data;
  12292. const int64_t ne10 = src1->ne[0];
  12293. const int64_t ne11 = src1->ne[1];
  12294. const int64_t ne12 = src1->ne[2];
  12295. const int64_t ne13 = src1->ne[3];
  12296. const int ith = params->ith;
  12297. const int nth = params->nth;
  12298. // total patches in dst
  12299. const int np = ne13;
  12300. // patches per thread
  12301. const int dp = (np + nth - 1)/nth;
  12302. // patch range for this thread
  12303. const int ip0 = dp*ith;
  12304. const int ip1 = MIN(ip0 + dp, np);
  12305. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12306. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12307. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12308. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12309. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12310. const int64_t jp0 = jp1 + i10;
  12311. const float src1_e = src1_data[jp0];
  12312. const float src2_e = src2_data[jp0];
  12313. const int64_t jdh = jp0 * ne10;
  12314. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12315. for (int64_t j = 0; j < ne10; ++j) {
  12316. dst_data[jdh + j ] += src2_e;
  12317. dst_data[jdw + j*ne10] += src1_e;
  12318. }
  12319. }
  12320. }
  12321. }
  12322. }
  12323. }
  12324. static void ggml_compute_forward_add_rel_pos(
  12325. const struct ggml_compute_params * params,
  12326. const struct ggml_tensor * src0,
  12327. const struct ggml_tensor * src1,
  12328. const struct ggml_tensor * src2,
  12329. struct ggml_tensor * dst) {
  12330. switch (src0->type) {
  12331. case GGML_TYPE_F32:
  12332. {
  12333. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12334. } break;
  12335. default:
  12336. {
  12337. GGML_ASSERT(false);
  12338. } break;
  12339. }
  12340. }
  12341. // ggml_compute_forward_map_unary
  12342. static void ggml_compute_forward_map_unary_f32(
  12343. const struct ggml_compute_params * params,
  12344. const struct ggml_tensor * src0,
  12345. struct ggml_tensor * dst,
  12346. const ggml_unary_op_f32_t fun) {
  12347. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12349. return;
  12350. }
  12351. const int n = ggml_nrows(src0);
  12352. const int nc = src0->ne[0];
  12353. assert( dst->nb[0] == sizeof(float));
  12354. assert(src0->nb[0] == sizeof(float));
  12355. for (int i = 0; i < n; i++) {
  12356. fun(nc,
  12357. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12358. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12359. }
  12360. }
  12361. static void ggml_compute_forward_map_unary(
  12362. const struct ggml_compute_params * params,
  12363. const struct ggml_tensor * src0,
  12364. struct ggml_tensor * dst,
  12365. const ggml_unary_op_f32_t fun) {
  12366. switch (src0->type) {
  12367. case GGML_TYPE_F32:
  12368. {
  12369. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12370. } break;
  12371. default:
  12372. {
  12373. GGML_ASSERT(false);
  12374. } break;
  12375. }
  12376. }
  12377. // ggml_compute_forward_map_binary
  12378. static void ggml_compute_forward_map_binary_f32(
  12379. const struct ggml_compute_params * params,
  12380. const struct ggml_tensor * src0,
  12381. const struct ggml_tensor * src1,
  12382. struct ggml_tensor * dst,
  12383. const ggml_binary_op_f32_t fun) {
  12384. assert(params->ith == 0);
  12385. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12387. return;
  12388. }
  12389. const int n = ggml_nrows(src0);
  12390. const int nc = src0->ne[0];
  12391. assert( dst->nb[0] == sizeof(float));
  12392. assert(src0->nb[0] == sizeof(float));
  12393. assert(src1->nb[0] == sizeof(float));
  12394. for (int i = 0; i < n; i++) {
  12395. fun(nc,
  12396. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12397. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12398. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12399. }
  12400. }
  12401. static void ggml_compute_forward_map_binary(
  12402. const struct ggml_compute_params * params,
  12403. const struct ggml_tensor * src0,
  12404. const struct ggml_tensor * src1,
  12405. struct ggml_tensor * dst,
  12406. const ggml_binary_op_f32_t fun) {
  12407. switch (src0->type) {
  12408. case GGML_TYPE_F32:
  12409. {
  12410. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12411. } break;
  12412. default:
  12413. {
  12414. GGML_ASSERT(false);
  12415. } break;
  12416. }
  12417. }
  12418. // ggml_compute_forward_map_custom1
  12419. static void ggml_compute_forward_map_custom1_f32(
  12420. const struct ggml_compute_params * params,
  12421. const struct ggml_tensor * a,
  12422. struct ggml_tensor * dst,
  12423. const ggml_custom1_op_f32_t fun) {
  12424. assert(params->ith == 0);
  12425. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12426. return;
  12427. }
  12428. fun(dst, a);
  12429. }
  12430. // ggml_compute_forward_map_custom2
  12431. static void ggml_compute_forward_map_custom2_f32(
  12432. const struct ggml_compute_params * params,
  12433. const struct ggml_tensor * a,
  12434. const struct ggml_tensor * b,
  12435. struct ggml_tensor * dst,
  12436. const ggml_custom2_op_f32_t fun) {
  12437. assert(params->ith == 0);
  12438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12439. return;
  12440. }
  12441. fun(dst, a, b);
  12442. }
  12443. // ggml_compute_forward_map_custom3
  12444. static void ggml_compute_forward_map_custom3_f32(
  12445. const struct ggml_compute_params * params,
  12446. const struct ggml_tensor * a,
  12447. const struct ggml_tensor * b,
  12448. const struct ggml_tensor * c,
  12449. struct ggml_tensor * dst,
  12450. const ggml_custom3_op_f32_t fun) {
  12451. assert(params->ith == 0);
  12452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12453. return;
  12454. }
  12455. fun(dst, a, b, c);
  12456. }
  12457. // ggml_compute_forward_map_custom1
  12458. static void ggml_compute_forward_map_custom1(
  12459. const struct ggml_compute_params * params,
  12460. const struct ggml_tensor * a,
  12461. struct ggml_tensor * dst) {
  12462. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12463. return;
  12464. }
  12465. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12466. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12467. }
  12468. // ggml_compute_forward_map_custom2
  12469. static void ggml_compute_forward_map_custom2(
  12470. const struct ggml_compute_params * params,
  12471. const struct ggml_tensor * a,
  12472. const struct ggml_tensor * b,
  12473. struct ggml_tensor * dst) {
  12474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12475. return;
  12476. }
  12477. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12478. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12479. }
  12480. // ggml_compute_forward_map_custom3
  12481. static void ggml_compute_forward_map_custom3(
  12482. const struct ggml_compute_params * params,
  12483. const struct ggml_tensor * a,
  12484. const struct ggml_tensor * b,
  12485. const struct ggml_tensor * c,
  12486. struct ggml_tensor * dst) {
  12487. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12488. return;
  12489. }
  12490. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12491. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12492. }
  12493. // ggml_compute_forward_cross_entropy_loss
  12494. static void ggml_compute_forward_cross_entropy_loss_f32(
  12495. const struct ggml_compute_params * params,
  12496. const struct ggml_tensor * src0,
  12497. const struct ggml_tensor * src1,
  12498. struct ggml_tensor * dst) {
  12499. GGML_ASSERT(ggml_is_contiguous(src0));
  12500. GGML_ASSERT(ggml_is_contiguous(src1));
  12501. GGML_ASSERT(ggml_is_scalar(dst));
  12502. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12503. const int ith = params->ith;
  12504. const int nth = params->nth;
  12505. float * sums = (float *) params->wdata;
  12506. // TODO: handle transposed/permuted matrices
  12507. const int nc = src0->ne[0];
  12508. const int nr = ggml_nrows(src0);
  12509. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12510. if (params->type == GGML_TASK_INIT) {
  12511. if (ith == 0) {
  12512. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12513. }
  12514. return;
  12515. }
  12516. if (params->type == GGML_TASK_FINALIZE) {
  12517. if (ith == 0) {
  12518. float * dp = (float *) dst->data;
  12519. ggml_vec_sum_f32(nth, dp, sums);
  12520. dp[0] *= -1.0f / (float) nr;
  12521. }
  12522. return;
  12523. }
  12524. const double eps = 1e-9;
  12525. // rows per thread
  12526. const int dr = (nr + nth - 1)/nth;
  12527. // row range for this thread
  12528. const int ir0 = dr*ith;
  12529. const int ir1 = MIN(ir0 + dr, nr);
  12530. for (int i1 = ir0; i1 < ir1; i1++) {
  12531. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12532. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12533. float * st = ((float *) params->wdata) + nth + ith*nc;
  12534. #ifndef NDEBUG
  12535. for (int i = 0; i < nc; ++i) {
  12536. //printf("p[%d] = %f\n", i, p[i]);
  12537. assert(!isnan(s0[i]));
  12538. assert(!isnan(s1[i]));
  12539. }
  12540. #endif
  12541. // soft_max
  12542. ggml_float sum = 0.0;
  12543. {
  12544. float max = -INFINITY;
  12545. ggml_vec_max_f32(nc, &max, s0);
  12546. uint16_t scvt; UNUSED(scvt);
  12547. for (int i = 0; i < nc; i++) {
  12548. if (s0[i] == -INFINITY) {
  12549. st[i] = 0.0f;
  12550. } else {
  12551. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12552. const float s = s0[i] - max;
  12553. const float val = expf(s);
  12554. #else
  12555. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12556. memcpy(&scvt, &s, sizeof(scvt));
  12557. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12558. #endif
  12559. sum += (ggml_float)val;
  12560. st[i] = val;
  12561. }
  12562. }
  12563. assert(sum > 0.0);
  12564. // sum = 1.0/sum;
  12565. }
  12566. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12567. sum = (1.0 - eps) / sum;
  12568. ggml_vec_scale_f32(nc, st, sum);
  12569. ggml_vec_add1_f32(nc, st, st, eps);
  12570. ggml_vec_log_f32(nc, st, st);
  12571. ggml_vec_mul_f32(nc, st, st, s1);
  12572. float st_sum = 0;
  12573. ggml_vec_sum_f32(nc, &st_sum, st);
  12574. sums[ith] += st_sum;
  12575. #ifndef NDEBUG
  12576. for (int i = 0; i < nc; ++i) {
  12577. assert(!isnan(st[i]));
  12578. assert(!isinf(st[i]));
  12579. }
  12580. #endif
  12581. }
  12582. }
  12583. static void ggml_compute_forward_cross_entropy_loss(
  12584. const struct ggml_compute_params * params,
  12585. const struct ggml_tensor * src0,
  12586. const struct ggml_tensor * src1,
  12587. struct ggml_tensor * dst) {
  12588. switch (src0->type) {
  12589. case GGML_TYPE_F32:
  12590. {
  12591. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12592. } break;
  12593. default:
  12594. {
  12595. GGML_ASSERT(false);
  12596. } break;
  12597. }
  12598. }
  12599. // ggml_compute_forward_cross_entropy_loss_back
  12600. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12601. const struct ggml_compute_params * params,
  12602. const struct ggml_tensor * src0,
  12603. const struct ggml_tensor * src1,
  12604. const struct ggml_tensor * opt0,
  12605. struct ggml_tensor * dst) {
  12606. GGML_ASSERT(ggml_is_contiguous(dst));
  12607. GGML_ASSERT(ggml_is_contiguous(src0));
  12608. GGML_ASSERT(ggml_is_contiguous(src1));
  12609. GGML_ASSERT(ggml_is_contiguous(opt0));
  12610. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12611. const int64_t ith = params->ith;
  12612. const int64_t nth = params->nth;
  12613. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12614. return;
  12615. }
  12616. const double eps = 1e-9;
  12617. // TODO: handle transposed/permuted matrices
  12618. const int64_t nc = src0->ne[0];
  12619. const int64_t nr = ggml_nrows(src0);
  12620. // rows per thread
  12621. const int64_t dr = (nr + nth - 1)/nth;
  12622. // row range for this thread
  12623. const int64_t ir0 = dr*ith;
  12624. const int64_t ir1 = MIN(ir0 + dr, nr);
  12625. float * d = (float *) opt0->data;
  12626. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12627. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12628. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12629. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12630. #ifndef NDEBUG
  12631. for (int i = 0; i < nc; ++i) {
  12632. //printf("p[%d] = %f\n", i, p[i]);
  12633. assert(!isnan(s0[i]));
  12634. assert(!isnan(s1[i]));
  12635. }
  12636. #endif
  12637. // soft_max
  12638. ggml_float sum = 0.0;
  12639. {
  12640. float max = -INFINITY;
  12641. ggml_vec_max_f32(nc, &max, s0);
  12642. uint16_t scvt; UNUSED(scvt);
  12643. for (int i = 0; i < nc; i++) {
  12644. if (s0[i] == -INFINITY) {
  12645. ds0[i] = 0.0f;
  12646. } else {
  12647. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12648. const float s = s0[i] - max;
  12649. const float val = expf(s);
  12650. #else
  12651. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12652. memcpy(&scvt, &s, sizeof(scvt));
  12653. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12654. #endif
  12655. sum += (ggml_float)val;
  12656. ds0[i] = val;
  12657. }
  12658. }
  12659. assert(sum > 0.0);
  12660. sum = (1.0 - eps)/sum;
  12661. }
  12662. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12663. ggml_vec_scale_f32(nc, ds0, sum);
  12664. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12665. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12666. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12667. #ifndef NDEBUG
  12668. for (int i = 0; i < nc; ++i) {
  12669. assert(!isnan(ds0[i]));
  12670. assert(!isinf(ds0[i]));
  12671. }
  12672. #endif
  12673. }
  12674. }
  12675. static void ggml_compute_forward_cross_entropy_loss_back(
  12676. const struct ggml_compute_params * params,
  12677. const struct ggml_tensor * src0,
  12678. const struct ggml_tensor * src1,
  12679. const struct ggml_tensor * opt0,
  12680. struct ggml_tensor * dst) {
  12681. switch (src0->type) {
  12682. case GGML_TYPE_F32:
  12683. {
  12684. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12685. } break;
  12686. default:
  12687. {
  12688. GGML_ASSERT(false);
  12689. } break;
  12690. }
  12691. }
  12692. /////////////////////////////////
  12693. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12694. GGML_ASSERT(params);
  12695. #ifdef GGML_USE_CUBLAS
  12696. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12697. if (skip_cpu) {
  12698. return;
  12699. }
  12700. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12701. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12702. #endif // GGML_USE_CUBLAS
  12703. switch (tensor->op) {
  12704. case GGML_OP_DUP:
  12705. {
  12706. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12707. } break;
  12708. case GGML_OP_ADD:
  12709. {
  12710. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12711. } break;
  12712. case GGML_OP_ADD1:
  12713. {
  12714. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12715. } break;
  12716. case GGML_OP_ACC:
  12717. {
  12718. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12719. } break;
  12720. case GGML_OP_SUB:
  12721. {
  12722. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12723. } break;
  12724. case GGML_OP_MUL:
  12725. {
  12726. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12727. } break;
  12728. case GGML_OP_DIV:
  12729. {
  12730. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12731. } break;
  12732. case GGML_OP_SQR:
  12733. {
  12734. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12735. } break;
  12736. case GGML_OP_SQRT:
  12737. {
  12738. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12739. } break;
  12740. case GGML_OP_LOG:
  12741. {
  12742. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12743. } break;
  12744. case GGML_OP_SUM:
  12745. {
  12746. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12747. } break;
  12748. case GGML_OP_SUM_ROWS:
  12749. {
  12750. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12751. } break;
  12752. case GGML_OP_MEAN:
  12753. {
  12754. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12755. } break;
  12756. case GGML_OP_ARGMAX:
  12757. {
  12758. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12759. } break;
  12760. case GGML_OP_REPEAT:
  12761. {
  12762. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12763. } break;
  12764. case GGML_OP_REPEAT_BACK:
  12765. {
  12766. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12767. } break;
  12768. case GGML_OP_CONCAT:
  12769. {
  12770. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12771. } break;
  12772. case GGML_OP_SILU_BACK:
  12773. {
  12774. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12775. } break;
  12776. case GGML_OP_NORM:
  12777. {
  12778. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12779. } break;
  12780. case GGML_OP_RMS_NORM:
  12781. {
  12782. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12783. } break;
  12784. case GGML_OP_RMS_NORM_BACK:
  12785. {
  12786. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12787. } break;
  12788. case GGML_OP_GROUP_NORM:
  12789. {
  12790. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12791. } break;
  12792. case GGML_OP_MUL_MAT:
  12793. {
  12794. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12795. } break;
  12796. case GGML_OP_OUT_PROD:
  12797. {
  12798. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12799. } break;
  12800. case GGML_OP_SCALE:
  12801. {
  12802. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12803. } break;
  12804. case GGML_OP_SET:
  12805. {
  12806. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12807. } break;
  12808. case GGML_OP_CPY:
  12809. {
  12810. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12811. } break;
  12812. case GGML_OP_CONT:
  12813. {
  12814. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12815. } break;
  12816. case GGML_OP_RESHAPE:
  12817. {
  12818. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12819. } break;
  12820. case GGML_OP_VIEW:
  12821. {
  12822. ggml_compute_forward_view(params, tensor->src[0]);
  12823. } break;
  12824. case GGML_OP_PERMUTE:
  12825. {
  12826. ggml_compute_forward_permute(params, tensor->src[0]);
  12827. } break;
  12828. case GGML_OP_TRANSPOSE:
  12829. {
  12830. ggml_compute_forward_transpose(params, tensor->src[0]);
  12831. } break;
  12832. case GGML_OP_GET_ROWS:
  12833. {
  12834. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12835. } break;
  12836. case GGML_OP_GET_ROWS_BACK:
  12837. {
  12838. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12839. } break;
  12840. case GGML_OP_DIAG:
  12841. {
  12842. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12843. } break;
  12844. case GGML_OP_DIAG_MASK_INF:
  12845. {
  12846. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12847. } break;
  12848. case GGML_OP_DIAG_MASK_ZERO:
  12849. {
  12850. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12851. } break;
  12852. case GGML_OP_SOFT_MAX:
  12853. {
  12854. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12855. } break;
  12856. case GGML_OP_SOFT_MAX_BACK:
  12857. {
  12858. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12859. } break;
  12860. case GGML_OP_ROPE:
  12861. {
  12862. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12863. } break;
  12864. case GGML_OP_ROPE_BACK:
  12865. {
  12866. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12867. } break;
  12868. case GGML_OP_ALIBI:
  12869. {
  12870. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12871. } break;
  12872. case GGML_OP_CLAMP:
  12873. {
  12874. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12875. } break;
  12876. case GGML_OP_CONV_1D:
  12877. {
  12878. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12879. } break;
  12880. case GGML_OP_CONV_2D:
  12881. {
  12882. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12883. } break;
  12884. case GGML_OP_CONV_TRANSPOSE_2D:
  12885. {
  12886. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12887. } break;
  12888. case GGML_OP_POOL_1D:
  12889. {
  12890. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12891. } break;
  12892. case GGML_OP_POOL_2D:
  12893. {
  12894. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12895. } break;
  12896. case GGML_OP_UPSCALE:
  12897. {
  12898. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12899. } break;
  12900. case GGML_OP_FLASH_ATTN:
  12901. {
  12902. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12903. GGML_ASSERT(t == 0 || t == 1);
  12904. const bool masked = t != 0;
  12905. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12906. } break;
  12907. case GGML_OP_FLASH_FF:
  12908. {
  12909. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12910. } break;
  12911. case GGML_OP_FLASH_ATTN_BACK:
  12912. {
  12913. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12914. GGML_ASSERT(t == 0 || t == 1);
  12915. bool masked = t != 0;
  12916. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12917. } break;
  12918. case GGML_OP_WIN_PART:
  12919. {
  12920. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12921. } break;
  12922. case GGML_OP_WIN_UNPART:
  12923. {
  12924. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12925. } break;
  12926. case GGML_OP_UNARY:
  12927. {
  12928. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12929. } break;
  12930. case GGML_OP_GET_REL_POS:
  12931. {
  12932. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12933. } break;
  12934. case GGML_OP_ADD_REL_POS:
  12935. {
  12936. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12937. } break;
  12938. case GGML_OP_MAP_UNARY:
  12939. {
  12940. ggml_unary_op_f32_t fun;
  12941. memcpy(&fun, tensor->op_params, sizeof(fun));
  12942. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12943. }
  12944. break;
  12945. case GGML_OP_MAP_BINARY:
  12946. {
  12947. ggml_binary_op_f32_t fun;
  12948. memcpy(&fun, tensor->op_params, sizeof(fun));
  12949. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12950. }
  12951. break;
  12952. case GGML_OP_MAP_CUSTOM1_F32:
  12953. {
  12954. ggml_custom1_op_f32_t fun;
  12955. memcpy(&fun, tensor->op_params, sizeof(fun));
  12956. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12957. }
  12958. break;
  12959. case GGML_OP_MAP_CUSTOM2_F32:
  12960. {
  12961. ggml_custom2_op_f32_t fun;
  12962. memcpy(&fun, tensor->op_params, sizeof(fun));
  12963. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12964. }
  12965. break;
  12966. case GGML_OP_MAP_CUSTOM3_F32:
  12967. {
  12968. ggml_custom3_op_f32_t fun;
  12969. memcpy(&fun, tensor->op_params, sizeof(fun));
  12970. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12971. }
  12972. break;
  12973. case GGML_OP_MAP_CUSTOM1:
  12974. {
  12975. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12976. }
  12977. break;
  12978. case GGML_OP_MAP_CUSTOM2:
  12979. {
  12980. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12981. }
  12982. break;
  12983. case GGML_OP_MAP_CUSTOM3:
  12984. {
  12985. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12986. }
  12987. break;
  12988. case GGML_OP_CROSS_ENTROPY_LOSS:
  12989. {
  12990. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12991. }
  12992. break;
  12993. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12994. {
  12995. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12996. }
  12997. break;
  12998. case GGML_OP_NONE:
  12999. {
  13000. // nop
  13001. } break;
  13002. case GGML_OP_COUNT:
  13003. {
  13004. GGML_ASSERT(false);
  13005. } break;
  13006. }
  13007. }
  13008. ////////////////////////////////////////////////////////////////////////////////
  13009. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  13010. struct ggml_tensor * src0 = tensor->src[0];
  13011. struct ggml_tensor * src1 = tensor->src[1];
  13012. switch (tensor->op) {
  13013. case GGML_OP_DUP:
  13014. {
  13015. if (src0->grad) {
  13016. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13017. }
  13018. } break;
  13019. case GGML_OP_ADD:
  13020. {
  13021. if (src0->grad) {
  13022. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13023. }
  13024. if (src1->grad) {
  13025. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  13026. }
  13027. } break;
  13028. case GGML_OP_ADD1:
  13029. {
  13030. if (src0->grad) {
  13031. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13032. }
  13033. if (src1->grad) {
  13034. src1->grad = ggml_add_impl(ctx,
  13035. src1->grad,
  13036. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13037. inplace);
  13038. }
  13039. } break;
  13040. case GGML_OP_ACC:
  13041. {
  13042. if (src0->grad) {
  13043. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13044. }
  13045. if (src1->grad) {
  13046. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13047. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13048. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13049. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13050. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13051. tensor->grad,
  13052. src1->grad->ne[0],
  13053. src1->grad->ne[1],
  13054. src1->grad->ne[2],
  13055. src1->grad->ne[3],
  13056. nb1, nb2, nb3, offset);
  13057. src1->grad =
  13058. ggml_add_impl(ctx,
  13059. src1->grad,
  13060. ggml_reshape(ctx,
  13061. ggml_cont(ctx, tensor_grad_view),
  13062. src1->grad),
  13063. inplace);
  13064. }
  13065. } break;
  13066. case GGML_OP_SUB:
  13067. {
  13068. if (src0->grad) {
  13069. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13070. }
  13071. if (src1->grad) {
  13072. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13073. }
  13074. } break;
  13075. case GGML_OP_MUL:
  13076. {
  13077. if (src0->grad) {
  13078. src0->grad =
  13079. ggml_add_impl(ctx,
  13080. src0->grad,
  13081. ggml_mul(ctx, src1, tensor->grad),
  13082. inplace);
  13083. }
  13084. if (src1->grad) {
  13085. src1->grad =
  13086. ggml_add_impl(ctx,
  13087. src1->grad,
  13088. ggml_mul(ctx, src0, tensor->grad),
  13089. inplace);
  13090. }
  13091. } break;
  13092. case GGML_OP_DIV:
  13093. {
  13094. if (src0->grad) {
  13095. src0->grad =
  13096. ggml_add_impl(ctx,
  13097. src0->grad,
  13098. ggml_div(ctx, tensor->grad, src1),
  13099. inplace);
  13100. }
  13101. if (src1->grad) {
  13102. src1->grad =
  13103. ggml_sub_impl(ctx,
  13104. src1->grad,
  13105. ggml_mul(ctx,
  13106. tensor->grad,
  13107. ggml_div(ctx, tensor, src1)),
  13108. inplace);
  13109. }
  13110. } break;
  13111. case GGML_OP_SQR:
  13112. {
  13113. if (src0->grad) {
  13114. src0->grad =
  13115. ggml_add_impl(ctx,
  13116. src0->grad,
  13117. ggml_scale(ctx,
  13118. ggml_mul(ctx, src0, tensor->grad),
  13119. ggml_new_f32(ctx, 2.0f)),
  13120. inplace);
  13121. }
  13122. } break;
  13123. case GGML_OP_SQRT:
  13124. {
  13125. if (src0->grad) {
  13126. src0->grad =
  13127. ggml_add_impl(ctx,
  13128. src0->grad,
  13129. ggml_scale(ctx,
  13130. ggml_div(ctx,
  13131. tensor->grad,
  13132. tensor),
  13133. ggml_new_f32(ctx, 0.5f)),
  13134. inplace);
  13135. }
  13136. } break;
  13137. case GGML_OP_LOG:
  13138. {
  13139. if (src0->grad) {
  13140. src0->grad =
  13141. ggml_add_impl(ctx,
  13142. src0->grad,
  13143. ggml_div(ctx,
  13144. tensor->grad,
  13145. src0),
  13146. inplace);
  13147. }
  13148. } break;
  13149. case GGML_OP_SUM:
  13150. {
  13151. if (src0->grad) {
  13152. src0->grad =
  13153. ggml_add1_impl(ctx,
  13154. src0->grad,
  13155. tensor->grad,
  13156. inplace);
  13157. }
  13158. } break;
  13159. case GGML_OP_SUM_ROWS:
  13160. {
  13161. if (src0->grad) {
  13162. src0->grad =
  13163. ggml_add_impl(ctx,
  13164. src0->grad,
  13165. ggml_repeat(ctx,
  13166. tensor->grad,
  13167. src0->grad),
  13168. inplace);
  13169. }
  13170. } break;
  13171. case GGML_OP_MEAN:
  13172. case GGML_OP_ARGMAX:
  13173. {
  13174. GGML_ASSERT(false); // TODO: implement
  13175. } break;
  13176. case GGML_OP_REPEAT:
  13177. {
  13178. // necessary for llama
  13179. if (src0->grad) {
  13180. src0->grad = ggml_add_impl(ctx,
  13181. src0->grad,
  13182. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13183. inplace);
  13184. }
  13185. } break;
  13186. case GGML_OP_REPEAT_BACK:
  13187. {
  13188. if (src0->grad) {
  13189. // TODO: test this
  13190. src0->grad = ggml_add_impl(ctx,
  13191. src0->grad,
  13192. ggml_repeat(ctx, tensor->grad, src0->grad),
  13193. inplace);
  13194. }
  13195. } break;
  13196. case GGML_OP_CONCAT:
  13197. {
  13198. GGML_ASSERT(false); // TODO: implement
  13199. } break;
  13200. case GGML_OP_SILU_BACK:
  13201. {
  13202. GGML_ASSERT(false); // TODO: not implemented
  13203. } break;
  13204. case GGML_OP_NORM:
  13205. {
  13206. GGML_ASSERT(false); // TODO: not implemented
  13207. } break;
  13208. case GGML_OP_RMS_NORM:
  13209. {
  13210. // necessary for llama
  13211. if (src0->grad) {
  13212. float eps;
  13213. memcpy(&eps, tensor->op_params, sizeof(float));
  13214. src0->grad = ggml_add_impl(ctx,
  13215. src0->grad,
  13216. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13217. inplace);
  13218. }
  13219. } break;
  13220. case GGML_OP_RMS_NORM_BACK:
  13221. {
  13222. GGML_ASSERT(false); // TODO: not implemented
  13223. } break;
  13224. case GGML_OP_GROUP_NORM:
  13225. {
  13226. GGML_ASSERT(false); // TODO: not implemented
  13227. } break;
  13228. case GGML_OP_MUL_MAT:
  13229. {
  13230. // https://cs231n.github.io/optimization-2/#staged
  13231. // # forward pass
  13232. // s0 = np.random.randn(5, 10)
  13233. // s1 = np.random.randn(10, 3)
  13234. // t = s0.dot(s1)
  13235. // # now suppose we had the gradient on t from above in the circuit
  13236. // dt = np.random.randn(*t.shape) # same shape as t
  13237. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13238. // ds1 = t.T.dot(dt)
  13239. // tensor.shape [m,p]
  13240. // src0.shape [n,m]
  13241. // src1.shape [n,p]
  13242. // necessary for llama
  13243. if (src0->grad) {
  13244. src0->grad =
  13245. ggml_add_impl(ctx,
  13246. src0->grad,
  13247. ggml_out_prod(ctx, // [n,m]
  13248. src1, // [n,p]
  13249. tensor->grad), // [m,p]
  13250. inplace);
  13251. }
  13252. if (src1->grad) {
  13253. src1->grad =
  13254. ggml_add_impl(ctx,
  13255. src1->grad,
  13256. // ggml_mul_mat(ctx, // [n,p]
  13257. // ggml_cont(ctx, // [m,n]
  13258. // ggml_transpose(ctx, src0)), // [m,n]
  13259. // tensor->grad), // [m,p]
  13260. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13261. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13262. // // and then use ggml_out_prod
  13263. ggml_out_prod(ctx, // [n,p]
  13264. src0, // [n,m]
  13265. ggml_transpose(ctx, // [p,m]
  13266. tensor->grad)), // [m,p]
  13267. inplace);
  13268. }
  13269. } break;
  13270. case GGML_OP_OUT_PROD:
  13271. {
  13272. GGML_ASSERT(false); // TODO: not implemented
  13273. } break;
  13274. case GGML_OP_SCALE:
  13275. {
  13276. // necessary for llama
  13277. if (src0->grad) {
  13278. src0->grad =
  13279. ggml_add_impl(ctx,
  13280. src0->grad,
  13281. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13282. inplace);
  13283. }
  13284. if (src1->grad) {
  13285. src1->grad =
  13286. ggml_add_impl(ctx,
  13287. src1->grad,
  13288. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13289. inplace);
  13290. }
  13291. } break;
  13292. case GGML_OP_SET:
  13293. {
  13294. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13295. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13296. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13297. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13298. struct ggml_tensor * tensor_grad_view = NULL;
  13299. if (src0->grad || src1->grad) {
  13300. GGML_ASSERT(src0->type == tensor->type);
  13301. GGML_ASSERT(tensor->grad->type == tensor->type);
  13302. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13303. tensor_grad_view = ggml_view_4d(ctx,
  13304. tensor->grad,
  13305. src1->grad->ne[0],
  13306. src1->grad->ne[1],
  13307. src1->grad->ne[2],
  13308. src1->grad->ne[3],
  13309. nb1, nb2, nb3, offset);
  13310. }
  13311. if (src0->grad) {
  13312. src0->grad = ggml_add_impl(ctx,
  13313. src0->grad,
  13314. ggml_acc_impl(ctx,
  13315. tensor->grad,
  13316. ggml_neg(ctx, tensor_grad_view),
  13317. nb1, nb2, nb3, offset, false),
  13318. inplace);
  13319. }
  13320. if (src1->grad) {
  13321. src1->grad =
  13322. ggml_add_impl(ctx,
  13323. src1->grad,
  13324. ggml_reshape(ctx,
  13325. ggml_cont(ctx, tensor_grad_view),
  13326. src1->grad),
  13327. inplace);
  13328. }
  13329. } break;
  13330. case GGML_OP_CPY:
  13331. {
  13332. // necessary for llama
  13333. // cpy overwrites value of src1 by src0 and returns view(src1)
  13334. // the overwriting is mathematically equivalent to:
  13335. // tensor = src0 * 1 + src1 * 0
  13336. if (src0->grad) {
  13337. // dsrc0 = dtensor * 1
  13338. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13339. }
  13340. if (src1->grad) {
  13341. // dsrc1 = dtensor * 0 -> noop
  13342. }
  13343. } break;
  13344. case GGML_OP_CONT:
  13345. {
  13346. // same as cpy
  13347. if (src0->grad) {
  13348. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13349. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13350. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13351. }
  13352. } break;
  13353. case GGML_OP_RESHAPE:
  13354. {
  13355. // necessary for llama
  13356. if (src0->grad) {
  13357. src0->grad =
  13358. ggml_add_impl(ctx, src0->grad,
  13359. ggml_reshape(ctx, tensor->grad, src0->grad),
  13360. inplace);
  13361. }
  13362. } break;
  13363. case GGML_OP_VIEW:
  13364. {
  13365. // necessary for llama
  13366. if (src0->grad) {
  13367. size_t offset;
  13368. memcpy(&offset, tensor->op_params, sizeof(offset));
  13369. size_t nb1 = tensor->nb[1];
  13370. size_t nb2 = tensor->nb[2];
  13371. size_t nb3 = tensor->nb[3];
  13372. if (src0->type != src0->grad->type) {
  13373. // gradient is typically F32, but src0 could be other type
  13374. size_t ng = ggml_element_size(src0->grad);
  13375. size_t n0 = ggml_element_size(src0);
  13376. GGML_ASSERT(offset % n0 == 0);
  13377. GGML_ASSERT(nb1 % n0 == 0);
  13378. GGML_ASSERT(nb2 % n0 == 0);
  13379. GGML_ASSERT(nb3 % n0 == 0);
  13380. offset = (offset / n0) * ng;
  13381. nb1 = (nb1 / n0) * ng;
  13382. nb2 = (nb2 / n0) * ng;
  13383. nb3 = (nb3 / n0) * ng;
  13384. }
  13385. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13386. }
  13387. } break;
  13388. case GGML_OP_PERMUTE:
  13389. {
  13390. // necessary for llama
  13391. if (src0->grad) {
  13392. int32_t * axes = (int32_t *) tensor->op_params;
  13393. int axis0 = axes[0] & 0x3;
  13394. int axis1 = axes[1] & 0x3;
  13395. int axis2 = axes[2] & 0x3;
  13396. int axis3 = axes[3] & 0x3;
  13397. int axes_backward[4] = {0,0,0,0};
  13398. axes_backward[axis0] = 0;
  13399. axes_backward[axis1] = 1;
  13400. axes_backward[axis2] = 2;
  13401. axes_backward[axis3] = 3;
  13402. src0->grad =
  13403. ggml_add_impl(ctx, src0->grad,
  13404. ggml_permute(ctx,
  13405. tensor->grad,
  13406. axes_backward[0],
  13407. axes_backward[1],
  13408. axes_backward[2],
  13409. axes_backward[3]),
  13410. inplace);
  13411. }
  13412. } break;
  13413. case GGML_OP_TRANSPOSE:
  13414. {
  13415. // necessary for llama
  13416. if (src0->grad) {
  13417. src0->grad =
  13418. ggml_add_impl(ctx, src0->grad,
  13419. ggml_transpose(ctx, tensor->grad),
  13420. inplace);
  13421. }
  13422. } break;
  13423. case GGML_OP_GET_ROWS:
  13424. {
  13425. // necessary for llama (only for tokenizer)
  13426. if (src0->grad) {
  13427. src0->grad =
  13428. ggml_add_impl(ctx, src0->grad,
  13429. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13430. inplace);
  13431. }
  13432. if (src1->grad) {
  13433. // noop
  13434. }
  13435. } break;
  13436. case GGML_OP_GET_ROWS_BACK:
  13437. {
  13438. GGML_ASSERT(false); // TODO: not implemented
  13439. } break;
  13440. case GGML_OP_DIAG:
  13441. {
  13442. GGML_ASSERT(false); // TODO: not implemented
  13443. } break;
  13444. case GGML_OP_DIAG_MASK_INF:
  13445. {
  13446. // necessary for llama
  13447. if (src0->grad) {
  13448. const int n_past = ((int32_t *) tensor->op_params)[0];
  13449. src0->grad =
  13450. ggml_add_impl(ctx, src0->grad,
  13451. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13452. inplace);
  13453. }
  13454. } break;
  13455. case GGML_OP_DIAG_MASK_ZERO:
  13456. {
  13457. // necessary for llama
  13458. if (src0->grad) {
  13459. const int n_past = ((int32_t *) tensor->op_params)[0];
  13460. src0->grad =
  13461. ggml_add_impl(ctx, src0->grad,
  13462. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13463. inplace);
  13464. }
  13465. } break;
  13466. case GGML_OP_SOFT_MAX:
  13467. {
  13468. // necessary for llama
  13469. if (src0->grad) {
  13470. src0->grad =
  13471. ggml_add_impl(ctx, src0->grad,
  13472. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13473. inplace);
  13474. }
  13475. } break;
  13476. case GGML_OP_SOFT_MAX_BACK:
  13477. {
  13478. GGML_ASSERT(false); // TODO: not implemented
  13479. } break;
  13480. case GGML_OP_ROPE:
  13481. {
  13482. // necessary for llama
  13483. if (src0->grad) {
  13484. const int n_past = ((int32_t *) tensor->op_params)[0];
  13485. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13486. const int mode = ((int32_t *) tensor->op_params)[2];
  13487. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13488. float freq_base;
  13489. float freq_scale;
  13490. float xpos_base;
  13491. bool xpos_down;
  13492. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13493. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13494. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13495. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13496. src0->grad = ggml_add_impl(ctx,
  13497. src0->grad,
  13498. ggml_rope_back(ctx,
  13499. tensor->grad,
  13500. n_past,
  13501. n_dims,
  13502. mode,
  13503. n_ctx,
  13504. freq_base,
  13505. freq_scale,
  13506. xpos_base,
  13507. xpos_down),
  13508. inplace);
  13509. }
  13510. } break;
  13511. case GGML_OP_ROPE_BACK:
  13512. {
  13513. if (src0->grad) {
  13514. const int n_past = ((int32_t *) tensor->op_params)[0];
  13515. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13516. const int mode = ((int32_t *) tensor->op_params)[2];
  13517. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13518. float freq_base;
  13519. float freq_scale;
  13520. float xpos_base;
  13521. bool xpos_down;
  13522. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13523. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13524. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13525. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13526. src0->grad = ggml_add_impl(ctx,
  13527. src0->grad,
  13528. ggml_rope_impl(ctx,
  13529. tensor->grad,
  13530. n_past,
  13531. n_dims,
  13532. mode,
  13533. n_ctx,
  13534. freq_base,
  13535. freq_scale,
  13536. xpos_base,
  13537. xpos_down,
  13538. false),
  13539. inplace);
  13540. }
  13541. } break;
  13542. case GGML_OP_ALIBI:
  13543. {
  13544. GGML_ASSERT(false); // TODO: not implemented
  13545. } break;
  13546. case GGML_OP_CLAMP:
  13547. {
  13548. GGML_ASSERT(false); // TODO: not implemented
  13549. } break;
  13550. case GGML_OP_CONV_1D:
  13551. {
  13552. GGML_ASSERT(false); // TODO: not implemented
  13553. } break;
  13554. case GGML_OP_CONV_2D:
  13555. {
  13556. GGML_ASSERT(false); // TODO: not implemented
  13557. } break;
  13558. case GGML_OP_CONV_TRANSPOSE_2D:
  13559. {
  13560. GGML_ASSERT(false); // TODO: not implemented
  13561. } break;
  13562. case GGML_OP_POOL_1D:
  13563. {
  13564. GGML_ASSERT(false); // TODO: not implemented
  13565. } break;
  13566. case GGML_OP_POOL_2D:
  13567. {
  13568. GGML_ASSERT(false); // TODO: not implemented
  13569. } break;
  13570. case GGML_OP_UPSCALE:
  13571. {
  13572. GGML_ASSERT(false); // TODO: not implemented
  13573. } break;
  13574. case GGML_OP_FLASH_ATTN:
  13575. {
  13576. struct ggml_tensor * flash_grad = NULL;
  13577. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13578. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13579. GGML_ASSERT(t == 0 || t == 1);
  13580. bool masked = t != 0;
  13581. flash_grad =
  13582. ggml_flash_attn_back(ctx,
  13583. src0,
  13584. src1,
  13585. tensor->src[2],
  13586. tensor->grad,
  13587. masked);
  13588. }
  13589. if (src0->grad) {
  13590. struct ggml_tensor * grad_q = NULL;
  13591. const size_t nb0 = flash_grad->nb[0];
  13592. const size_t offset = 0;
  13593. switch(src0->n_dims) {
  13594. case 2:
  13595. {
  13596. grad_q = ggml_view_2d(ctx,
  13597. flash_grad,
  13598. src0->ne[0],
  13599. src0->ne[1],
  13600. nb0*src0->ne[0],
  13601. offset);
  13602. } break;
  13603. case 3:
  13604. {
  13605. grad_q = ggml_view_3d(ctx,
  13606. flash_grad,
  13607. src0->ne[0],
  13608. src0->ne[1],
  13609. src0->ne[2],
  13610. nb0*src0->ne[0],
  13611. nb0*src0->ne[0]*src0->ne[1],
  13612. offset);
  13613. } break;
  13614. case 4:
  13615. {
  13616. grad_q = ggml_view_4d(ctx,
  13617. flash_grad,
  13618. src0->ne[0],
  13619. src0->ne[1],
  13620. src0->ne[2],
  13621. src0->ne[3],
  13622. nb0*src0->ne[0],
  13623. nb0*src0->ne[0]*src0->ne[1],
  13624. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13625. offset);
  13626. } break;
  13627. }
  13628. src0->grad = ggml_add_impl(ctx,
  13629. src0->grad,
  13630. grad_q,
  13631. inplace);
  13632. }
  13633. if (src1->grad) {
  13634. struct ggml_tensor * grad_k = NULL;
  13635. const size_t nb0 = flash_grad->nb[0];
  13636. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13637. switch(src1->n_dims) {
  13638. case 2:
  13639. {
  13640. grad_k = ggml_view_2d(ctx,
  13641. flash_grad,
  13642. src1->ne[0],
  13643. src1->ne[1],
  13644. nb0*src1->ne[0],
  13645. offset);
  13646. } break;
  13647. case 3:
  13648. {
  13649. grad_k = ggml_view_3d(ctx,
  13650. flash_grad,
  13651. src1->ne[0],
  13652. src1->ne[1],
  13653. src1->ne[2],
  13654. nb0*src1->ne[0],
  13655. nb0*src1->ne[0]*src1->ne[1],
  13656. offset);
  13657. } break;
  13658. case 4:
  13659. {
  13660. grad_k = ggml_view_4d(ctx,
  13661. flash_grad,
  13662. src1->ne[0],
  13663. src1->ne[1],
  13664. src1->ne[2],
  13665. src1->ne[3],
  13666. nb0*src1->ne[0],
  13667. nb0*src1->ne[0]*src1->ne[1],
  13668. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13669. offset);
  13670. } break;
  13671. }
  13672. src1->grad = ggml_add_impl(ctx,
  13673. src1->grad,
  13674. grad_k,
  13675. inplace);
  13676. }
  13677. struct ggml_tensor * opt0 = tensor->src[2];
  13678. if (opt0->grad) {
  13679. struct ggml_tensor * grad_v = NULL;
  13680. const size_t nb0 = flash_grad->nb[0];
  13681. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13682. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13683. switch(opt0->n_dims) {
  13684. case 2:
  13685. {
  13686. grad_v = ggml_view_2d(ctx,
  13687. flash_grad,
  13688. opt0->ne[0],
  13689. opt0->ne[1],
  13690. nb0*opt0->ne[0],
  13691. offset);
  13692. } break;
  13693. case 3:
  13694. {
  13695. grad_v = ggml_view_3d(ctx,
  13696. flash_grad,
  13697. opt0->ne[0],
  13698. opt0->ne[1],
  13699. opt0->ne[2],
  13700. nb0*opt0->ne[0],
  13701. nb0*opt0->ne[0]*opt0->ne[1],
  13702. offset);
  13703. } break;
  13704. case 4:
  13705. {
  13706. grad_v = ggml_view_4d(ctx,
  13707. flash_grad,
  13708. opt0->ne[0],
  13709. opt0->ne[1],
  13710. opt0->ne[2],
  13711. opt0->ne[3],
  13712. nb0*opt0->ne[0],
  13713. nb0*opt0->ne[0]*opt0->ne[1],
  13714. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13715. offset);
  13716. } break;
  13717. }
  13718. opt0->grad = ggml_add_impl(ctx,
  13719. opt0->grad,
  13720. grad_v,
  13721. inplace);
  13722. }
  13723. } break;
  13724. case GGML_OP_FLASH_FF:
  13725. {
  13726. GGML_ASSERT(false); // not supported
  13727. } break;
  13728. case GGML_OP_FLASH_ATTN_BACK:
  13729. {
  13730. GGML_ASSERT(false); // not supported
  13731. } break;
  13732. case GGML_OP_WIN_PART:
  13733. case GGML_OP_WIN_UNPART:
  13734. case GGML_OP_UNARY:
  13735. {
  13736. switch (ggml_get_unary_op(tensor)) {
  13737. case GGML_UNARY_OP_ABS:
  13738. {
  13739. if (src0->grad) {
  13740. src0->grad =
  13741. ggml_add_impl(ctx,
  13742. src0->grad,
  13743. ggml_mul(ctx,
  13744. ggml_sgn(ctx, src0),
  13745. tensor->grad),
  13746. inplace);
  13747. }
  13748. } break;
  13749. case GGML_UNARY_OP_SGN:
  13750. {
  13751. if (src0->grad) {
  13752. // noop
  13753. }
  13754. } break;
  13755. case GGML_UNARY_OP_NEG:
  13756. {
  13757. if (src0->grad) {
  13758. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13759. }
  13760. } break;
  13761. case GGML_UNARY_OP_STEP:
  13762. {
  13763. if (src0->grad) {
  13764. // noop
  13765. }
  13766. } break;
  13767. case GGML_UNARY_OP_TANH:
  13768. {
  13769. GGML_ASSERT(false); // TODO: not implemented
  13770. } break;
  13771. case GGML_UNARY_OP_ELU:
  13772. {
  13773. GGML_ASSERT(false); // TODO: not implemented
  13774. } break;
  13775. case GGML_UNARY_OP_RELU:
  13776. {
  13777. if (src0->grad) {
  13778. src0->grad = ggml_add_impl(ctx,
  13779. src0->grad,
  13780. ggml_mul(ctx,
  13781. ggml_step(ctx, src0),
  13782. tensor->grad),
  13783. inplace);
  13784. }
  13785. } break;
  13786. case GGML_UNARY_OP_GELU:
  13787. {
  13788. GGML_ASSERT(false); // TODO: not implemented
  13789. } break;
  13790. case GGML_UNARY_OP_GELU_QUICK:
  13791. {
  13792. GGML_ASSERT(false); // TODO: not implemented
  13793. } break;
  13794. case GGML_UNARY_OP_SILU:
  13795. {
  13796. // necessary for llama
  13797. if (src0->grad) {
  13798. src0->grad = ggml_add_impl(ctx,
  13799. src0->grad,
  13800. ggml_silu_back(ctx, src0, tensor->grad),
  13801. inplace);
  13802. }
  13803. } break;
  13804. default:
  13805. GGML_ASSERT(false);
  13806. }
  13807. } break;
  13808. case GGML_OP_GET_REL_POS:
  13809. case GGML_OP_ADD_REL_POS:
  13810. case GGML_OP_MAP_UNARY:
  13811. case GGML_OP_MAP_BINARY:
  13812. case GGML_OP_MAP_CUSTOM1_F32:
  13813. case GGML_OP_MAP_CUSTOM2_F32:
  13814. case GGML_OP_MAP_CUSTOM3_F32:
  13815. case GGML_OP_MAP_CUSTOM1:
  13816. case GGML_OP_MAP_CUSTOM2:
  13817. case GGML_OP_MAP_CUSTOM3:
  13818. {
  13819. GGML_ASSERT(false); // not supported
  13820. } break;
  13821. case GGML_OP_CROSS_ENTROPY_LOSS:
  13822. {
  13823. if (src0->grad) {
  13824. src0->grad = ggml_add_impl(ctx,
  13825. src0->grad,
  13826. ggml_cross_entropy_loss_back(ctx,
  13827. src0,
  13828. src1,
  13829. tensor->grad),
  13830. inplace);
  13831. }
  13832. } break;
  13833. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13834. {
  13835. GGML_ASSERT(false); // not supported
  13836. } break;
  13837. case GGML_OP_NONE:
  13838. {
  13839. // nop
  13840. } break;
  13841. case GGML_OP_COUNT:
  13842. {
  13843. GGML_ASSERT(false);
  13844. } break;
  13845. }
  13846. }
  13847. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13848. static size_t hash(void * p) {
  13849. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13850. }
  13851. static bool hash_insert(void * hash_table[], void * p) {
  13852. size_t h = hash(p);
  13853. // linear probing
  13854. size_t i = h;
  13855. while (hash_table[i] != NULL && hash_table[i] != p) {
  13856. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13857. if (i == h) {
  13858. // hash table is full
  13859. GGML_ASSERT(false);
  13860. }
  13861. }
  13862. if (hash_table[i] == p) {
  13863. return true;
  13864. }
  13865. // insert
  13866. hash_table[i] = p;
  13867. return false;
  13868. }
  13869. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13870. if (node->grad == NULL) {
  13871. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13872. // it can also happen during forward pass, if the user performs computations with constants
  13873. if (node->op != GGML_OP_NONE) {
  13874. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13875. }
  13876. }
  13877. // check if already visited
  13878. if (hash_insert(cgraph->visited_hash_table, node)) {
  13879. return;
  13880. }
  13881. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13882. if (node->src[i]) {
  13883. ggml_visit_parents(cgraph, node->src[i]);
  13884. }
  13885. }
  13886. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13887. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13888. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13889. if (strlen(node->name) == 0) {
  13890. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13891. }
  13892. cgraph->leafs[cgraph->n_leafs] = node;
  13893. cgraph->n_leafs++;
  13894. } else {
  13895. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13896. if (strlen(node->name) == 0) {
  13897. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13898. }
  13899. cgraph->nodes[cgraph->n_nodes] = node;
  13900. cgraph->grads[cgraph->n_nodes] = node->grad;
  13901. cgraph->n_nodes++;
  13902. }
  13903. }
  13904. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13905. if (!expand) {
  13906. cgraph->n_nodes = 0;
  13907. cgraph->n_leafs = 0;
  13908. }
  13909. const int n0 = cgraph->n_nodes;
  13910. UNUSED(n0);
  13911. ggml_visit_parents(cgraph, tensor);
  13912. const int n_new = cgraph->n_nodes - n0;
  13913. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13914. if (n_new > 0) {
  13915. // the last added node should always be starting point
  13916. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13917. }
  13918. }
  13919. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13920. ggml_build_forward_impl(cgraph, tensor, true);
  13921. }
  13922. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13923. struct ggml_cgraph result = {
  13924. /*.n_nodes =*/ 0,
  13925. /*.n_leafs =*/ 0,
  13926. /*.nodes =*/ { NULL },
  13927. /*.grads =*/ { NULL },
  13928. /*.leafs =*/ { NULL },
  13929. /*.hash_table =*/ { NULL },
  13930. /*.perf_runs =*/ 0,
  13931. /*.perf_cycles =*/ 0,
  13932. /*.perf_time_us =*/ 0,
  13933. };
  13934. ggml_build_forward_impl(&result, tensor, false);
  13935. return result;
  13936. }
  13937. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13938. GGML_ASSERT(gf->n_nodes > 0);
  13939. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13940. if (keep) {
  13941. for (int i = 0; i < gf->n_nodes; i++) {
  13942. struct ggml_tensor * node = gf->nodes[i];
  13943. if (node->grad) {
  13944. node->grad = ggml_dup_tensor(ctx, node);
  13945. gf->grads[i] = node->grad;
  13946. }
  13947. }
  13948. }
  13949. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13950. struct ggml_tensor * node = gf->nodes[i];
  13951. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13952. if (node->grad) {
  13953. ggml_compute_backward(ctx, node, keep);
  13954. }
  13955. }
  13956. for (int i = 0; i < gf->n_nodes; i++) {
  13957. struct ggml_tensor * node = gf->nodes[i];
  13958. if (node->is_param) {
  13959. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13960. ggml_build_forward_expand(gb, node->grad);
  13961. }
  13962. }
  13963. }
  13964. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13965. struct ggml_cgraph result = *gf;
  13966. ggml_build_backward_expand(ctx, gf, &result, keep);
  13967. return result;
  13968. }
  13969. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13970. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13971. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13972. *cgraph = (struct ggml_cgraph) {
  13973. /*.n_nodes =*/ 0,
  13974. /*.n_leafs =*/ 0,
  13975. /*.nodes =*/ { NULL },
  13976. /*.grads =*/ { NULL },
  13977. /*.leafs =*/ { NULL },
  13978. /*.hash_table =*/ { NULL },
  13979. /*.perf_runs =*/ 0,
  13980. /*.perf_cycles =*/ 0,
  13981. /*.perf_time_us =*/ 0,
  13982. };
  13983. return cgraph;
  13984. }
  13985. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13986. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13987. ggml_build_forward_impl(cgraph, tensor, false);
  13988. return cgraph;
  13989. }
  13990. size_t ggml_graph_overhead(void) {
  13991. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13992. }
  13993. //
  13994. // thread data
  13995. //
  13996. // synchronization is done via busy loops
  13997. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13998. //
  13999. #ifdef __APPLE__
  14000. //#include <os/lock.h>
  14001. //
  14002. //typedef os_unfair_lock ggml_lock_t;
  14003. //
  14004. //#define ggml_lock_init(x) UNUSED(x)
  14005. //#define ggml_lock_destroy(x) UNUSED(x)
  14006. //#define ggml_lock_lock os_unfair_lock_lock
  14007. //#define ggml_lock_unlock os_unfair_lock_unlock
  14008. //
  14009. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14010. typedef int ggml_lock_t;
  14011. #define ggml_lock_init(x) UNUSED(x)
  14012. #define ggml_lock_destroy(x) UNUSED(x)
  14013. #define ggml_lock_lock(x) UNUSED(x)
  14014. #define ggml_lock_unlock(x) UNUSED(x)
  14015. #define GGML_LOCK_INITIALIZER 0
  14016. typedef pthread_t ggml_thread_t;
  14017. #define ggml_thread_create pthread_create
  14018. #define ggml_thread_join pthread_join
  14019. #else
  14020. //typedef pthread_spinlock_t ggml_lock_t;
  14021. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14022. //#define ggml_lock_destroy pthread_spin_destroy
  14023. //#define ggml_lock_lock pthread_spin_lock
  14024. //#define ggml_lock_unlock pthread_spin_unlock
  14025. typedef int ggml_lock_t;
  14026. #define ggml_lock_init(x) UNUSED(x)
  14027. #define ggml_lock_destroy(x) UNUSED(x)
  14028. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14029. #define ggml_lock_lock(x) _mm_pause()
  14030. #else
  14031. #define ggml_lock_lock(x) UNUSED(x)
  14032. #endif
  14033. #define ggml_lock_unlock(x) UNUSED(x)
  14034. #define GGML_LOCK_INITIALIZER 0
  14035. typedef pthread_t ggml_thread_t;
  14036. #define ggml_thread_create pthread_create
  14037. #define ggml_thread_join pthread_join
  14038. #endif
  14039. // Android's libc implementation "bionic" does not support setting affinity
  14040. #if defined(__linux__) && !defined(__BIONIC__)
  14041. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14042. if (!ggml_is_numa()) {
  14043. return;
  14044. }
  14045. // run thread on node_num thread_n / (threads per node)
  14046. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14047. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14048. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14049. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14050. CPU_ZERO_S(setsize, cpus);
  14051. for (size_t i = 0; i < node->n_cpus; ++i) {
  14052. CPU_SET_S(node->cpus[i], setsize, cpus);
  14053. }
  14054. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14055. if (rv) {
  14056. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14057. strerror(rv));
  14058. }
  14059. CPU_FREE(cpus);
  14060. }
  14061. static void clear_numa_thread_affinity(void) {
  14062. if (!ggml_is_numa()) {
  14063. return;
  14064. }
  14065. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14066. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14067. CPU_ZERO_S(setsize, cpus);
  14068. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14069. CPU_SET_S(i, setsize, cpus);
  14070. }
  14071. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14072. if (rv) {
  14073. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14074. strerror(rv));
  14075. }
  14076. CPU_FREE(cpus);
  14077. }
  14078. #else
  14079. // TODO: Windows etc.
  14080. // (the linux implementation may also work on BSD, someone should test)
  14081. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14082. static void clear_numa_thread_affinity(void) {}
  14083. #endif
  14084. struct ggml_compute_state_shared {
  14085. const struct ggml_cgraph * cgraph;
  14086. const struct ggml_cplan * cplan;
  14087. int64_t perf_node_start_cycles;
  14088. int64_t perf_node_start_time_us;
  14089. const int n_threads;
  14090. // synchronization primitives
  14091. atomic_int n_active; // num active threads
  14092. atomic_int node_n; // active graph node
  14093. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14094. void * abort_callback_data;
  14095. };
  14096. struct ggml_compute_state {
  14097. ggml_thread_t thrd;
  14098. int ith;
  14099. struct ggml_compute_state_shared * shared;
  14100. };
  14101. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14102. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14103. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14104. node->perf_runs++;
  14105. node->perf_cycles += cycles_cur;
  14106. node->perf_time_us += time_us_cur;
  14107. }
  14108. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14109. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14110. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14111. const struct ggml_cplan * cplan = state->shared->cplan;
  14112. const int * n_tasks_arr = cplan->n_tasks;
  14113. const int n_threads = state->shared->n_threads;
  14114. set_numa_thread_affinity(state->ith, n_threads);
  14115. int node_n = -1;
  14116. while (true) {
  14117. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14118. state->shared->node_n += 1;
  14119. return (thread_ret_t) GGML_EXIT_ABORTED;
  14120. }
  14121. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14122. // all other threads are finished and spinning
  14123. // do finalize and init here so we don't have synchronize again
  14124. struct ggml_compute_params params = {
  14125. /*.type =*/ GGML_TASK_FINALIZE,
  14126. /*.ith =*/ 0,
  14127. /*.nth =*/ 0,
  14128. /*.wsize =*/ cplan->work_size,
  14129. /*.wdata =*/ cplan->work_data,
  14130. };
  14131. if (node_n != -1) {
  14132. /* FINALIZE */
  14133. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14134. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14135. params.nth = n_tasks_arr[node_n];
  14136. ggml_compute_forward(&params, node);
  14137. }
  14138. ggml_graph_compute_perf_stats_node(node, state->shared);
  14139. }
  14140. // distribute new work or execute it direct if 1T
  14141. while (++node_n < cgraph->n_nodes) {
  14142. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14143. struct ggml_tensor * node = cgraph->nodes[node_n];
  14144. const int n_tasks = n_tasks_arr[node_n];
  14145. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14146. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14147. params.nth = n_tasks;
  14148. /* INIT */
  14149. if (GGML_OP_HAS_INIT[node->op]) {
  14150. params.type = GGML_TASK_INIT;
  14151. ggml_compute_forward(&params, node);
  14152. }
  14153. if (n_tasks == 1) {
  14154. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14155. // they do something more efficient than spinning (?)
  14156. params.type = GGML_TASK_COMPUTE;
  14157. ggml_compute_forward(&params, node);
  14158. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14159. params.type = GGML_TASK_FINALIZE;
  14160. ggml_compute_forward(&params, node);
  14161. }
  14162. ggml_graph_compute_perf_stats_node(node, state->shared);
  14163. } else {
  14164. break;
  14165. }
  14166. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14167. break;
  14168. }
  14169. }
  14170. atomic_store(&state->shared->n_active, n_threads);
  14171. atomic_store(&state->shared->node_n, node_n);
  14172. } else {
  14173. // wait for other threads to finish
  14174. const int last = node_n;
  14175. do {
  14176. //sched_yield();
  14177. node_n = atomic_load(&state->shared->node_n);
  14178. } while (node_n == last);
  14179. }
  14180. // check if we should stop
  14181. if (node_n >= cgraph->n_nodes) break;
  14182. /* COMPUTE */
  14183. struct ggml_tensor * node = cgraph->nodes[node_n];
  14184. const int n_tasks = n_tasks_arr[node_n];
  14185. struct ggml_compute_params params = {
  14186. /*.type =*/ GGML_TASK_COMPUTE,
  14187. /*.ith =*/ state->ith,
  14188. /*.nth =*/ n_tasks,
  14189. /*.wsize =*/ cplan->work_size,
  14190. /*.wdata =*/ cplan->work_data,
  14191. };
  14192. if (state->ith < n_tasks) {
  14193. ggml_compute_forward(&params, node);
  14194. }
  14195. }
  14196. return GGML_EXIT_SUCCESS;
  14197. }
  14198. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14199. if (n_threads <= 0) {
  14200. n_threads = GGML_DEFAULT_N_THREADS;
  14201. }
  14202. size_t work_size = 0;
  14203. struct ggml_cplan cplan;
  14204. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14205. // thread scheduling for the different operations + work buffer size estimation
  14206. for (int i = 0; i < cgraph->n_nodes; i++) {
  14207. int n_tasks = 1;
  14208. struct ggml_tensor * node = cgraph->nodes[i];
  14209. switch (node->op) {
  14210. case GGML_OP_CPY:
  14211. case GGML_OP_DUP:
  14212. {
  14213. n_tasks = n_threads;
  14214. size_t cur = 0;
  14215. if (ggml_is_quantized(node->type)) {
  14216. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14217. }
  14218. work_size = MAX(work_size, cur);
  14219. } break;
  14220. case GGML_OP_ADD:
  14221. case GGML_OP_ADD1:
  14222. {
  14223. n_tasks = n_threads;
  14224. size_t cur = 0;
  14225. if (ggml_is_quantized(node->src[0]->type)) {
  14226. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14227. }
  14228. work_size = MAX(work_size, cur);
  14229. } break;
  14230. case GGML_OP_ACC:
  14231. {
  14232. n_tasks = n_threads;
  14233. size_t cur = 0;
  14234. if (ggml_is_quantized(node->src[0]->type)) {
  14235. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14236. }
  14237. work_size = MAX(work_size, cur);
  14238. } break;
  14239. case GGML_OP_SUB:
  14240. case GGML_OP_DIV:
  14241. case GGML_OP_SQR:
  14242. case GGML_OP_SQRT:
  14243. case GGML_OP_LOG:
  14244. case GGML_OP_SUM:
  14245. case GGML_OP_SUM_ROWS:
  14246. case GGML_OP_MEAN:
  14247. case GGML_OP_ARGMAX:
  14248. case GGML_OP_REPEAT:
  14249. case GGML_OP_REPEAT_BACK:
  14250. {
  14251. n_tasks = 1;
  14252. } break;
  14253. case GGML_OP_UNARY:
  14254. {
  14255. switch (ggml_get_unary_op(node)) {
  14256. case GGML_UNARY_OP_ABS:
  14257. case GGML_UNARY_OP_SGN:
  14258. case GGML_UNARY_OP_NEG:
  14259. case GGML_UNARY_OP_STEP:
  14260. case GGML_UNARY_OP_TANH:
  14261. case GGML_UNARY_OP_ELU:
  14262. case GGML_UNARY_OP_RELU:
  14263. {
  14264. n_tasks = 1;
  14265. } break;
  14266. case GGML_UNARY_OP_GELU:
  14267. case GGML_UNARY_OP_GELU_QUICK:
  14268. case GGML_UNARY_OP_SILU:
  14269. {
  14270. n_tasks = n_threads;
  14271. } break;
  14272. }
  14273. } break;
  14274. case GGML_OP_SILU_BACK:
  14275. case GGML_OP_MUL:
  14276. case GGML_OP_NORM:
  14277. case GGML_OP_RMS_NORM:
  14278. case GGML_OP_RMS_NORM_BACK:
  14279. case GGML_OP_GROUP_NORM:
  14280. {
  14281. n_tasks = n_threads;
  14282. } break;
  14283. case GGML_OP_CONCAT:
  14284. case GGML_OP_MUL_MAT:
  14285. case GGML_OP_OUT_PROD:
  14286. {
  14287. n_tasks = n_threads;
  14288. // TODO: use different scheduling for different matrix sizes
  14289. //const int nr0 = ggml_nrows(node->src[0]);
  14290. //const int nr1 = ggml_nrows(node->src[1]);
  14291. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14292. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14293. size_t cur = 0;
  14294. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14295. #if defined(GGML_USE_CUBLAS)
  14296. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14297. n_tasks = 1; // TODO: this actually is doing nothing
  14298. // the threads are still spinning
  14299. } else
  14300. #elif defined(GGML_USE_CLBLAST)
  14301. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14302. n_tasks = 1; // TODO: this actually is doing nothing
  14303. // the threads are still spinning
  14304. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14305. } else
  14306. #endif
  14307. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14308. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14309. n_tasks = 1; // TODO: this actually is doing nothing
  14310. // the threads are still spinning
  14311. if (node->src[0]->type != GGML_TYPE_F32) {
  14312. // here we need memory just for single 2D matrix from src0
  14313. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14314. }
  14315. } else
  14316. #endif
  14317. if (node->src[1]->type != vec_dot_type) {
  14318. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14319. } else {
  14320. cur = 0;
  14321. }
  14322. work_size = MAX(work_size, cur);
  14323. } break;
  14324. case GGML_OP_SCALE:
  14325. {
  14326. n_tasks = 1;
  14327. } break;
  14328. case GGML_OP_SET:
  14329. case GGML_OP_CONT:
  14330. case GGML_OP_RESHAPE:
  14331. case GGML_OP_VIEW:
  14332. case GGML_OP_PERMUTE:
  14333. case GGML_OP_TRANSPOSE:
  14334. case GGML_OP_GET_ROWS:
  14335. case GGML_OP_GET_ROWS_BACK:
  14336. case GGML_OP_DIAG:
  14337. {
  14338. n_tasks = 1;
  14339. } break;
  14340. case GGML_OP_DIAG_MASK_ZERO:
  14341. case GGML_OP_DIAG_MASK_INF:
  14342. case GGML_OP_SOFT_MAX:
  14343. case GGML_OP_SOFT_MAX_BACK:
  14344. case GGML_OP_ROPE:
  14345. case GGML_OP_ROPE_BACK:
  14346. case GGML_OP_ADD_REL_POS:
  14347. {
  14348. n_tasks = n_threads;
  14349. } break;
  14350. case GGML_OP_ALIBI:
  14351. {
  14352. n_tasks = 1; //TODO
  14353. } break;
  14354. case GGML_OP_CLAMP:
  14355. {
  14356. n_tasks = 1; //TODO
  14357. } break;
  14358. case GGML_OP_CONV_1D:
  14359. {
  14360. n_tasks = n_threads;
  14361. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14362. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14363. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14364. size_t cur = 0;
  14365. const int nk = node->src[0]->ne[0];
  14366. if (node->src[0]->type == GGML_TYPE_F16 &&
  14367. node->src[1]->type == GGML_TYPE_F32) {
  14368. cur = sizeof(ggml_fp16_t)*(
  14369. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14370. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14371. );
  14372. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14373. node->src[1]->type == GGML_TYPE_F32) {
  14374. cur = sizeof(float)*(
  14375. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14376. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14377. );
  14378. } else {
  14379. GGML_ASSERT(false);
  14380. }
  14381. work_size = MAX(work_size, cur);
  14382. } break;
  14383. case GGML_OP_CONV_2D:
  14384. {
  14385. n_tasks = n_threads;
  14386. const int64_t ne00 = node->src[0]->ne[0]; // W
  14387. const int64_t ne01 = node->src[0]->ne[1]; // H
  14388. const int64_t ne02 = node->src[0]->ne[2]; // C
  14389. const int64_t ne03 = node->src[0]->ne[3]; // N
  14390. const int64_t ne10 = node->src[1]->ne[0]; // W
  14391. const int64_t ne11 = node->src[1]->ne[1]; // H
  14392. const int64_t ne12 = node->src[1]->ne[2]; // C
  14393. const int64_t ne0 = node->ne[0];
  14394. const int64_t ne1 = node->ne[1];
  14395. const int64_t ne2 = node->ne[2];
  14396. const int64_t nk = ne00*ne01;
  14397. const int64_t ew0 = nk * ne02;
  14398. UNUSED(ne03);
  14399. UNUSED(ne2);
  14400. size_t cur = 0;
  14401. if (node->src[0]->type == GGML_TYPE_F16 &&
  14402. node->src[1]->type == GGML_TYPE_F32) {
  14403. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14404. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14405. node->src[1]->type == GGML_TYPE_F32) {
  14406. cur = sizeof(float)* (ne10*ne11*ne12);
  14407. } else {
  14408. GGML_ASSERT(false);
  14409. }
  14410. work_size = MAX(work_size, cur);
  14411. } break;
  14412. case GGML_OP_CONV_TRANSPOSE_2D:
  14413. {
  14414. n_tasks = n_threads;
  14415. const int64_t ne00 = node->src[0]->ne[0]; // W
  14416. const int64_t ne01 = node->src[0]->ne[1]; // H
  14417. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14418. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14419. const int64_t ne10 = node->src[1]->ne[0]; // W
  14420. const int64_t ne11 = node->src[1]->ne[1]; // H
  14421. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14422. size_t cur = 0;
  14423. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14424. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14425. work_size = MAX(work_size, cur);
  14426. } break;
  14427. case GGML_OP_POOL_1D:
  14428. case GGML_OP_POOL_2D:
  14429. {
  14430. n_tasks = 1;
  14431. } break;
  14432. case GGML_OP_UPSCALE:
  14433. {
  14434. n_tasks = n_threads;
  14435. } break;
  14436. case GGML_OP_FLASH_ATTN:
  14437. {
  14438. n_tasks = n_threads;
  14439. size_t cur = 0;
  14440. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14441. if (node->src[1]->type == GGML_TYPE_F32) {
  14442. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14443. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14444. }
  14445. if (node->src[1]->type == GGML_TYPE_F16) {
  14446. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14447. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14448. }
  14449. work_size = MAX(work_size, cur);
  14450. } break;
  14451. case GGML_OP_FLASH_FF:
  14452. {
  14453. n_tasks = n_threads;
  14454. size_t cur = 0;
  14455. if (node->src[1]->type == GGML_TYPE_F32) {
  14456. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14457. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14458. }
  14459. if (node->src[1]->type == GGML_TYPE_F16) {
  14460. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14461. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14462. }
  14463. work_size = MAX(work_size, cur);
  14464. } break;
  14465. case GGML_OP_FLASH_ATTN_BACK:
  14466. {
  14467. n_tasks = n_threads;
  14468. size_t cur = 0;
  14469. const int64_t D = node->src[0]->ne[0];
  14470. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14471. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14472. if (node->src[1]->type == GGML_TYPE_F32) {
  14473. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14474. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14475. }
  14476. if (node->src[1]->type == GGML_TYPE_F16) {
  14477. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14478. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14479. }
  14480. work_size = MAX(work_size, cur);
  14481. } break;
  14482. case GGML_OP_WIN_PART:
  14483. case GGML_OP_WIN_UNPART:
  14484. case GGML_OP_GET_REL_POS:
  14485. case GGML_OP_MAP_UNARY:
  14486. case GGML_OP_MAP_BINARY:
  14487. case GGML_OP_MAP_CUSTOM1_F32:
  14488. case GGML_OP_MAP_CUSTOM2_F32:
  14489. case GGML_OP_MAP_CUSTOM3_F32:
  14490. {
  14491. n_tasks = 1;
  14492. } break;
  14493. case GGML_OP_MAP_CUSTOM1:
  14494. {
  14495. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14496. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14497. n_tasks = n_threads;
  14498. } else {
  14499. n_tasks = MIN(p->n_tasks, n_threads);
  14500. }
  14501. } break;
  14502. case GGML_OP_MAP_CUSTOM2:
  14503. {
  14504. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14505. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14506. n_tasks = n_threads;
  14507. } else {
  14508. n_tasks = MIN(p->n_tasks, n_threads);
  14509. }
  14510. } break;
  14511. case GGML_OP_MAP_CUSTOM3:
  14512. {
  14513. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14514. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14515. n_tasks = n_threads;
  14516. } else {
  14517. n_tasks = MIN(p->n_tasks, n_threads);
  14518. }
  14519. } break;
  14520. case GGML_OP_CROSS_ENTROPY_LOSS:
  14521. {
  14522. n_tasks = n_threads;
  14523. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14524. work_size = MAX(work_size, cur);
  14525. } break;
  14526. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14527. {
  14528. n_tasks = n_threads;
  14529. } break;
  14530. case GGML_OP_NONE:
  14531. {
  14532. n_tasks = 1;
  14533. } break;
  14534. case GGML_OP_COUNT:
  14535. {
  14536. GGML_ASSERT(false);
  14537. } break;
  14538. }
  14539. cplan.n_tasks[i] = n_tasks;
  14540. }
  14541. if (work_size > 0) {
  14542. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14543. }
  14544. cplan.n_threads = n_threads;
  14545. cplan.work_size = work_size;
  14546. cplan.work_data = NULL;
  14547. return cplan;
  14548. }
  14549. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14550. {
  14551. GGML_ASSERT(cplan);
  14552. GGML_ASSERT(cplan->n_threads > 0);
  14553. if (cplan->work_size > 0) {
  14554. GGML_ASSERT(cplan->work_data);
  14555. }
  14556. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14557. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14558. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14559. }
  14560. }
  14561. }
  14562. const int n_threads = cplan->n_threads;
  14563. struct ggml_compute_state_shared state_shared = {
  14564. /*.cgraph =*/ cgraph,
  14565. /*.cgraph_plan =*/ cplan,
  14566. /*.perf_node_start_cycles =*/ 0,
  14567. /*.perf_node_start_time_us =*/ 0,
  14568. /*.n_threads =*/ n_threads,
  14569. /*.n_active =*/ n_threads,
  14570. /*.node_n =*/ -1,
  14571. /*.abort_callback =*/ NULL,
  14572. /*.abort_callback_data =*/ NULL,
  14573. };
  14574. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14575. // create thread pool
  14576. if (n_threads > 1) {
  14577. for (int j = 1; j < n_threads; ++j) {
  14578. workers[j] = (struct ggml_compute_state) {
  14579. .thrd = 0,
  14580. .ith = j,
  14581. .shared = &state_shared,
  14582. };
  14583. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14584. GGML_ASSERT(rc == 0);
  14585. UNUSED(rc);
  14586. }
  14587. }
  14588. workers[0].ith = 0;
  14589. workers[0].shared = &state_shared;
  14590. const int64_t perf_start_cycles = ggml_perf_cycles();
  14591. const int64_t perf_start_time_us = ggml_perf_time_us();
  14592. // this is a work thread too
  14593. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14594. // don't leave affinity set on the main thread
  14595. clear_numa_thread_affinity();
  14596. // join or kill thread pool
  14597. if (n_threads > 1) {
  14598. for (int j = 1; j < n_threads; j++) {
  14599. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14600. GGML_ASSERT(rc == 0);
  14601. }
  14602. }
  14603. // performance stats (graph)
  14604. {
  14605. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14606. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14607. cgraph->perf_runs++;
  14608. cgraph->perf_cycles += perf_cycles_cur;
  14609. cgraph->perf_time_us += perf_time_us_cur;
  14610. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14611. __func__, cgraph->perf_runs,
  14612. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14613. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14614. (double) perf_time_us_cur / 1000.0,
  14615. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14616. }
  14617. return compute_status;
  14618. }
  14619. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14620. for (int i = 0; i < cgraph->n_nodes; i++) {
  14621. struct ggml_tensor * grad = cgraph->grads[i];
  14622. if (grad) {
  14623. ggml_set_zero(grad);
  14624. }
  14625. }
  14626. }
  14627. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14628. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14629. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14630. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14631. ggml_graph_compute(cgraph, &cplan);
  14632. }
  14633. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14634. for (int i = 0; i < cgraph->n_leafs; i++) {
  14635. struct ggml_tensor * leaf = cgraph->leafs[i];
  14636. if (strcmp(leaf->name, name) == 0) {
  14637. return leaf;
  14638. }
  14639. }
  14640. for (int i = 0; i < cgraph->n_nodes; i++) {
  14641. struct ggml_tensor * node = cgraph->nodes[i];
  14642. if (strcmp(node->name, name) == 0) {
  14643. return node;
  14644. }
  14645. }
  14646. return NULL;
  14647. }
  14648. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14649. const int64_t * ne = tensor->ne;
  14650. const size_t * nb = tensor->nb;
  14651. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14652. ggml_type_name(tensor->type),
  14653. ggml_op_name (tensor->op),
  14654. tensor->n_dims,
  14655. ne[0], ne[1], ne[2], ne[3],
  14656. nb[0], nb[1], nb[2], nb[3],
  14657. tensor->data,
  14658. tensor->name);
  14659. }
  14660. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14661. const int64_t * ne = tensor->ne;
  14662. const size_t * nb = tensor->nb;
  14663. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14664. arg,
  14665. ggml_type_name(tensor->type),
  14666. ggml_op_name (tensor->op),
  14667. tensor->n_dims,
  14668. ne[0], ne[1], ne[2], ne[3],
  14669. nb[0], nb[1], nb[2], nb[3],
  14670. tensor->data,
  14671. tensor->name);
  14672. }
  14673. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14674. uint64_t size_eval = 0;
  14675. // compute size of intermediate results
  14676. // TODO: does not take into account scratch buffers !!!!
  14677. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14678. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14679. }
  14680. // print
  14681. {
  14682. FILE * fout = stdout;
  14683. fprintf(fout, "\n");
  14684. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14685. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14686. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14687. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14688. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14689. // header
  14690. fprintf(fout, "\n");
  14691. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14692. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14693. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14694. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14695. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14696. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14697. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14698. }
  14699. // header
  14700. fprintf(fout, "\n");
  14701. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14702. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14703. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14704. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14705. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14706. if (cgraph->nodes[i]->src[j]) {
  14707. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14708. }
  14709. }
  14710. fprintf(fout, "\n");
  14711. }
  14712. fprintf(fout, "\n");
  14713. }
  14714. // write binary data
  14715. {
  14716. FILE * fout = fopen(fname, "wb");
  14717. if (!fout) {
  14718. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14719. return;
  14720. }
  14721. // header
  14722. {
  14723. const uint32_t magic = GGML_FILE_MAGIC;
  14724. const uint32_t version = GGML_FILE_VERSION;
  14725. const uint32_t n_leafs = cgraph->n_leafs;
  14726. const uint32_t nodes = cgraph->n_nodes;
  14727. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14728. fwrite(&version, sizeof(uint32_t), 1, fout);
  14729. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14730. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14731. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14732. }
  14733. // leafs
  14734. {
  14735. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14736. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14737. const uint32_t type = tensor->type;
  14738. const uint32_t op = tensor->op;
  14739. const uint32_t n_dims = tensor->n_dims;
  14740. fwrite(&type, sizeof(uint32_t), 1, fout);
  14741. fwrite(&op, sizeof(uint32_t), 1, fout);
  14742. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14743. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14744. const uint64_t ne = tensor->ne[j];
  14745. const uint64_t nb = tensor->nb[j];
  14746. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14747. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14748. }
  14749. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14750. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14751. // dump the data
  14752. // TODO: pad this to 32 byte boundary
  14753. {
  14754. const size_t size = ggml_nbytes(tensor);
  14755. fwrite(tensor->data, sizeof(char), size, fout);
  14756. }
  14757. }
  14758. }
  14759. // nodes
  14760. {
  14761. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14762. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14763. const uint32_t type = tensor->type;
  14764. const uint32_t op = tensor->op;
  14765. const uint32_t n_dims = tensor->n_dims;
  14766. fwrite(&type, sizeof(uint32_t), 1, fout);
  14767. fwrite(&op, sizeof(uint32_t), 1, fout);
  14768. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14769. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14770. const uint64_t ne = tensor->ne[j];
  14771. const uint64_t nb = tensor->nb[j];
  14772. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14773. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14774. }
  14775. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14776. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14777. // output the op arguments
  14778. {
  14779. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14780. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14781. args[j] = tensor->src[j];
  14782. }
  14783. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14784. if (args[j]) {
  14785. int32_t idx = -1;
  14786. // check if leaf
  14787. {
  14788. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14789. if (args[j] == cgraph->leafs[k]) {
  14790. idx = k;
  14791. break;
  14792. }
  14793. }
  14794. }
  14795. // check if node
  14796. if (idx == -1) {
  14797. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14798. if (args[j] == cgraph->nodes[k]) {
  14799. idx = GGML_MAX_NODES + k;
  14800. break;
  14801. }
  14802. }
  14803. }
  14804. if (idx == -1) {
  14805. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14806. return;
  14807. }
  14808. fwrite(&idx, sizeof(int32_t), 1, fout);
  14809. } else {
  14810. const int32_t nul = -1;
  14811. fwrite(&nul, sizeof(int32_t), 1, fout);
  14812. }
  14813. }
  14814. }
  14815. }
  14816. }
  14817. fclose(fout);
  14818. }
  14819. }
  14820. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14821. assert(*ctx_data == NULL);
  14822. assert(*ctx_eval == NULL);
  14823. struct ggml_cgraph result = { 0 };
  14824. struct ggml_tensor * data = NULL;
  14825. // read file into data
  14826. {
  14827. FILE * fin = fopen(fname, "rb");
  14828. if (!fin) {
  14829. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14830. return result;
  14831. }
  14832. size_t fsize = 0;
  14833. fseek(fin, 0, SEEK_END);
  14834. fsize = ftell(fin);
  14835. fseek(fin, 0, SEEK_SET);
  14836. // create the data context
  14837. {
  14838. const size_t overhead = 1*ggml_tensor_overhead();
  14839. struct ggml_init_params params = {
  14840. .mem_size = fsize + overhead,
  14841. .mem_buffer = NULL,
  14842. .no_alloc = false,
  14843. };
  14844. *ctx_data = ggml_init(params);
  14845. if (!*ctx_data) {
  14846. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14847. fclose(fin);
  14848. return result;
  14849. }
  14850. }
  14851. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14852. {
  14853. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14854. if (ret != fsize) {
  14855. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14856. fclose(fin);
  14857. return result;
  14858. }
  14859. }
  14860. fclose(fin);
  14861. }
  14862. // populate result
  14863. {
  14864. char * ptr = (char *) data->data;
  14865. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14866. if (magic != GGML_FILE_MAGIC) {
  14867. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14868. return result;
  14869. }
  14870. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14871. if (version != GGML_FILE_VERSION) {
  14872. fprintf(stderr, "%s: invalid version number\n", __func__);
  14873. return result;
  14874. }
  14875. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14876. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14877. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14878. result.n_leafs = n_leafs;
  14879. result.n_nodes = n_nodes;
  14880. // create the data context
  14881. {
  14882. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14883. struct ggml_init_params params = {
  14884. .mem_size = size_eval + overhead,
  14885. .mem_buffer = NULL,
  14886. .no_alloc = true,
  14887. };
  14888. *ctx_eval = ggml_init(params);
  14889. if (!*ctx_eval) {
  14890. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14891. return result;
  14892. }
  14893. }
  14894. // leafs
  14895. {
  14896. uint32_t type;
  14897. uint32_t op;
  14898. uint32_t n_dims;
  14899. for (uint32_t i = 0; i < n_leafs; ++i) {
  14900. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14901. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14902. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14903. int64_t ne[GGML_MAX_DIMS];
  14904. size_t nb[GGML_MAX_DIMS];
  14905. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14906. uint64_t ne_cur;
  14907. uint64_t nb_cur;
  14908. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14909. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14910. ne[j] = ne_cur;
  14911. nb[j] = nb_cur;
  14912. }
  14913. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14914. tensor->op = (enum ggml_op) op;
  14915. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14916. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14917. tensor->data = (void *) ptr;
  14918. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14919. tensor->nb[j] = nb[j];
  14920. }
  14921. result.leafs[i] = tensor;
  14922. ptr += ggml_nbytes(tensor);
  14923. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14924. }
  14925. }
  14926. ggml_set_no_alloc(*ctx_eval, false);
  14927. // nodes
  14928. {
  14929. uint32_t type;
  14930. uint32_t op;
  14931. uint32_t n_dims;
  14932. for (uint32_t i = 0; i < n_nodes; ++i) {
  14933. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14934. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14935. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14936. enum ggml_op eop = (enum ggml_op) op;
  14937. int64_t ne[GGML_MAX_DIMS];
  14938. size_t nb[GGML_MAX_DIMS];
  14939. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14940. uint64_t ne_cur;
  14941. uint64_t nb_cur;
  14942. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14943. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14944. ne[j] = ne_cur;
  14945. nb[j] = nb_cur;
  14946. }
  14947. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14948. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14949. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14950. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14951. // parse args
  14952. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14953. const int32_t arg_idx = ptr_arg_idx[j];
  14954. if (arg_idx == -1) {
  14955. continue;
  14956. }
  14957. if (arg_idx < GGML_MAX_NODES) {
  14958. args[j] = result.leafs[arg_idx];
  14959. } else {
  14960. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14961. }
  14962. }
  14963. // create the tensor
  14964. // "view" operations are handled differently
  14965. // TODO: handle inplace ops - currently a copy is always made
  14966. struct ggml_tensor * tensor = NULL;
  14967. switch (eop) {
  14968. // TODO: implement other view ops
  14969. case GGML_OP_RESHAPE:
  14970. {
  14971. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14972. } break;
  14973. case GGML_OP_VIEW:
  14974. {
  14975. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14976. size_t offs;
  14977. memcpy(&offs, ptr_op_params, sizeof(offs));
  14978. tensor->data = ((char *) tensor->data) + offs;
  14979. } break;
  14980. case GGML_OP_TRANSPOSE:
  14981. {
  14982. tensor = ggml_transpose(*ctx_eval, args[0]);
  14983. } break;
  14984. case GGML_OP_PERMUTE:
  14985. {
  14986. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14987. } break;
  14988. default:
  14989. {
  14990. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14991. tensor->op = eop;
  14992. } break;
  14993. }
  14994. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14995. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14996. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14997. tensor->nb[j] = nb[j];
  14998. }
  14999. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15000. tensor->src[j] = args[j];
  15001. }
  15002. result.nodes[i] = tensor;
  15003. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15004. }
  15005. }
  15006. }
  15007. return result;
  15008. }
  15009. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15010. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15011. GGML_PRINT("=== GRAPH ===\n");
  15012. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15013. for (int i = 0; i < cgraph->n_nodes; i++) {
  15014. struct ggml_tensor * node = cgraph->nodes[i];
  15015. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15016. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15017. i,
  15018. node->ne[0], node->ne[1], node->ne[2],
  15019. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15020. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15021. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15022. (double) node->perf_time_us / 1000.0,
  15023. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15024. }
  15025. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15026. for (int i = 0; i < cgraph->n_leafs; i++) {
  15027. struct ggml_tensor * node = cgraph->leafs[i];
  15028. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  15029. i,
  15030. node->ne[0], node->ne[1],
  15031. ggml_op_name(node->op));
  15032. }
  15033. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15034. if (perf_total_per_op_us[i] == 0) {
  15035. continue;
  15036. }
  15037. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15038. }
  15039. GGML_PRINT("========================================\n");
  15040. }
  15041. // check if node is part of the graph
  15042. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15043. if (cgraph == NULL) {
  15044. return true;
  15045. }
  15046. for (int i = 0; i < cgraph->n_nodes; i++) {
  15047. if (cgraph->nodes[i] == node) {
  15048. return true;
  15049. }
  15050. }
  15051. return false;
  15052. }
  15053. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15054. for (int i = 0; i < cgraph->n_nodes; i++) {
  15055. struct ggml_tensor * parent = cgraph->nodes[i];
  15056. if (parent->grad == node) {
  15057. return parent;
  15058. }
  15059. }
  15060. return NULL;
  15061. }
  15062. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15063. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15064. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15065. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15066. gparent0 ? (void *) gparent0 : (void *) parent,
  15067. gparent0 ? "g" : "x",
  15068. gparent ? (void *) gparent : (void *) node,
  15069. gparent ? "g" : "x",
  15070. gparent ? "empty" : "vee",
  15071. gparent ? "dashed" : "solid",
  15072. label);
  15073. }
  15074. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15075. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15076. (void *) parent, "x",
  15077. (void *) node, "x",
  15078. label);
  15079. }
  15080. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15081. char color[16];
  15082. FILE * fp = fopen(filename, "w");
  15083. GGML_ASSERT(fp);
  15084. fprintf(fp, "digraph G {\n");
  15085. fprintf(fp, " newrank = true;\n");
  15086. fprintf(fp, " rankdir = LR;\n");
  15087. for (int i = 0; i < gb->n_nodes; i++) {
  15088. struct ggml_tensor * node = gb->nodes[i];
  15089. if (ggml_graph_get_parent(gb, node) != NULL) {
  15090. continue;
  15091. }
  15092. if (node->is_param) {
  15093. snprintf(color, sizeof(color), "yellow");
  15094. } else if (node->grad) {
  15095. if (ggml_graph_find(gf, node)) {
  15096. snprintf(color, sizeof(color), "green");
  15097. } else {
  15098. snprintf(color, sizeof(color), "lightblue");
  15099. }
  15100. } else {
  15101. snprintf(color, sizeof(color), "white");
  15102. }
  15103. fprintf(fp, " \"%p\" [ "
  15104. "style = filled; fillcolor = %s; shape = record; "
  15105. "label=\"",
  15106. (void *) node, color);
  15107. if (strlen(node->name) > 0) {
  15108. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15109. } else {
  15110. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15111. }
  15112. if (node->n_dims == 2) {
  15113. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15114. } else {
  15115. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15116. }
  15117. if (node->grad) {
  15118. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15119. } else {
  15120. fprintf(fp, "\"; ]\n");
  15121. }
  15122. }
  15123. for (int i = 0; i < gb->n_leafs; i++) {
  15124. struct ggml_tensor * node = gb->leafs[i];
  15125. snprintf(color, sizeof(color), "pink");
  15126. fprintf(fp, " \"%p\" [ "
  15127. "style = filled; fillcolor = %s; shape = record; "
  15128. "label=\"<x>",
  15129. (void *) node, color);
  15130. if (strlen(node->name) > 0) {
  15131. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15132. } else {
  15133. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15134. }
  15135. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15136. if (ggml_nelements(node) < 5) {
  15137. fprintf(fp, " | (");
  15138. for (int j = 0; j < ggml_nelements(node); j++) {
  15139. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15140. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15141. }
  15142. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15143. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15144. }
  15145. else {
  15146. fprintf(fp, "#");
  15147. }
  15148. if (j < ggml_nelements(node) - 1) {
  15149. fprintf(fp, ", ");
  15150. }
  15151. }
  15152. fprintf(fp, ")");
  15153. }
  15154. fprintf(fp, "\"; ]\n");
  15155. }
  15156. for (int i = 0; i < gb->n_nodes; i++) {
  15157. struct ggml_tensor * node = gb->nodes[i];
  15158. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15159. if (node->src[j]) {
  15160. char label[16];
  15161. snprintf(label, sizeof(label), "src %d", j);
  15162. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15163. }
  15164. }
  15165. }
  15166. for (int i = 0; i < gb->n_leafs; i++) {
  15167. struct ggml_tensor * node = gb->leafs[i];
  15168. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15169. if (node->src[j]) {
  15170. char label[16];
  15171. snprintf(label, sizeof(label), "src %d", j);
  15172. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15173. }
  15174. }
  15175. }
  15176. fprintf(fp, "}\n");
  15177. fclose(fp);
  15178. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15179. }
  15180. ////////////////////////////////////////////////////////////////////////////////
  15181. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15182. int i = 0;
  15183. for (int p = 0; p < np; ++p) {
  15184. const int64_t ne = ggml_nelements(ps[p]) ;
  15185. // TODO: add function to set tensor from array
  15186. for (int64_t j = 0; j < ne; ++j) {
  15187. ggml_set_f32_1d(ps[p], j, x[i++]);
  15188. }
  15189. }
  15190. }
  15191. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15192. int i = 0;
  15193. for (int p = 0; p < np; ++p) {
  15194. const int64_t ne = ggml_nelements(ps[p]) ;
  15195. // TODO: add function to get all elements at once
  15196. for (int64_t j = 0; j < ne; ++j) {
  15197. x[i++] = ggml_get_f32_1d(ps[p], j);
  15198. }
  15199. }
  15200. }
  15201. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15202. int i = 0;
  15203. for (int p = 0; p < np; ++p) {
  15204. const int64_t ne = ggml_nelements(ps[p]) ;
  15205. // TODO: add function to get all elements at once
  15206. for (int64_t j = 0; j < ne; ++j) {
  15207. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15208. }
  15209. }
  15210. }
  15211. //
  15212. // ADAM
  15213. //
  15214. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15215. //
  15216. static enum ggml_opt_result ggml_opt_adam(
  15217. struct ggml_context * ctx,
  15218. struct ggml_opt_context * opt,
  15219. struct ggml_opt_params params,
  15220. struct ggml_tensor * f,
  15221. struct ggml_cgraph * gf,
  15222. struct ggml_cgraph * gb,
  15223. ggml_opt_callback callback,
  15224. void * callback_data) {
  15225. GGML_ASSERT(ggml_is_scalar(f));
  15226. // these will store the parameters we want to optimize
  15227. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15228. int np = 0;
  15229. int64_t nx = 0;
  15230. for (int i = 0; i < gf->n_nodes; ++i) {
  15231. if (gf->nodes[i]->is_param) {
  15232. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15233. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15234. ps[np++] = gf->nodes[i];
  15235. nx += ggml_nelements(gf->nodes[i]);
  15236. }
  15237. }
  15238. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15239. int iter = opt->iter;
  15240. ggml_opt_init(opt->ctx, opt, params, nx);
  15241. opt->iter = iter;
  15242. }
  15243. // constants
  15244. float sched = params.adam.sched;
  15245. const float alpha = params.adam.alpha;
  15246. const float decay = params.adam.decay * alpha;
  15247. const float beta1 = params.adam.beta1;
  15248. const float beta2 = params.adam.beta2;
  15249. const float eps = params.adam.eps;
  15250. const float gclip = params.adam.gclip;
  15251. const int decay_min_ndim = params.adam.decay_min_ndim;
  15252. float * m = opt->adam.m->data; // first moment
  15253. float * v = opt->adam.v->data; // second moment
  15254. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15255. if (callback) {
  15256. callback(callback_data, &sched);
  15257. }
  15258. // compute the function value
  15259. ggml_graph_reset (gf);
  15260. ggml_set_f32 (f->grad, 1.0f);
  15261. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15262. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15263. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15264. ggml_graph_compute(gb, &cplan);
  15265. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15266. opt->adam.fx_best = opt->adam.fx_prev;
  15267. if (pf) {
  15268. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15269. }
  15270. opt->loss_before = opt->adam.fx_prev;
  15271. opt->loss_after = opt->adam.fx_prev;
  15272. // initialize
  15273. if (opt->just_initialized) {
  15274. opt->adam.n_no_improvement = 0;
  15275. opt->just_initialized = false;
  15276. }
  15277. float * fx_best = &opt->adam.fx_best;
  15278. float * fx_prev = &opt->adam.fx_prev;
  15279. int * n_no_improvement = &opt->adam.n_no_improvement;
  15280. int iter0 = opt->iter;
  15281. // run the optimizer
  15282. for (int t = 0; t < params.adam.n_iter; ++t) {
  15283. opt->iter = iter0 + t + 1;
  15284. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15285. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15286. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15287. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15288. for (int i = 0; i < np; ++i) {
  15289. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15290. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15291. }
  15292. const int64_t t_start_wall = ggml_time_us();
  15293. const int64_t t_start_cpu = ggml_cycles();
  15294. UNUSED(t_start_wall);
  15295. UNUSED(t_start_cpu);
  15296. {
  15297. float gnorm = 1.0f;
  15298. if (gclip > 0.0f) {
  15299. // gradient clipping
  15300. ggml_float sum = 0.0;
  15301. for (int p = 0; p < np; ++p) {
  15302. const int64_t ne = ggml_nelements(ps[p]);
  15303. for (int64_t j = 0; j < ne; ++j) {
  15304. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15305. sum += (ggml_float)(g*g);
  15306. }
  15307. }
  15308. ggml_float norm = sqrt(sum);
  15309. if (norm > (ggml_float) gclip) {
  15310. gnorm = (float) ((ggml_float) gclip / norm);
  15311. }
  15312. }
  15313. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15314. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15315. int64_t i = 0;
  15316. for (int p = 0; p < np; ++p) {
  15317. const int64_t ne = ggml_nelements(ps[p]);
  15318. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15319. for (int64_t j = 0; j < ne; ++j) {
  15320. float x = ggml_get_f32_1d(ps[p], j);
  15321. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15322. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15323. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15324. float mh = m[i]*beta1h;
  15325. float vh = v[i]*beta2h;
  15326. vh = sqrtf(vh) + eps;
  15327. x = x*(1.0f - p_decay) - mh/vh;
  15328. ggml_set_f32_1d(ps[p], j, x);
  15329. ++i;
  15330. }
  15331. }
  15332. }
  15333. if (callback) {
  15334. callback(callback_data, &sched);
  15335. }
  15336. ggml_graph_reset (gf);
  15337. ggml_set_f32 (f->grad, 1.0f);
  15338. ggml_graph_compute(gb, &cplan);
  15339. const float fx = ggml_get_f32_1d(f, 0);
  15340. opt->loss_after = fx;
  15341. // check convergence
  15342. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15343. GGML_PRINT_DEBUG("converged\n");
  15344. return GGML_OPT_OK;
  15345. }
  15346. // delta-based convergence test
  15347. if (pf != NULL) {
  15348. // need at least params.past iterations to start checking for convergence
  15349. if (params.past <= iter0 + t) {
  15350. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15351. if (fabsf(rate) < params.delta) {
  15352. return GGML_OPT_OK;
  15353. }
  15354. }
  15355. pf[(iter0 + t)%params.past] = fx;
  15356. }
  15357. // check for improvement
  15358. if (params.max_no_improvement > 0) {
  15359. if (fx_best[0] > fx) {
  15360. fx_best[0] = fx;
  15361. n_no_improvement[0] = 0;
  15362. } else {
  15363. ++n_no_improvement[0];
  15364. if (n_no_improvement[0] >= params.max_no_improvement) {
  15365. return GGML_OPT_OK;
  15366. }
  15367. }
  15368. }
  15369. fx_prev[0] = fx;
  15370. {
  15371. const int64_t t_end_cpu = ggml_cycles();
  15372. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15373. UNUSED(t_end_cpu);
  15374. const int64_t t_end_wall = ggml_time_us();
  15375. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15376. UNUSED(t_end_wall);
  15377. }
  15378. }
  15379. return GGML_OPT_DID_NOT_CONVERGE;
  15380. }
  15381. //
  15382. // L-BFGS
  15383. //
  15384. // the L-BFGS implementation below is based on the following implementation:
  15385. //
  15386. // https://github.com/chokkan/liblbfgs
  15387. //
  15388. struct ggml_lbfgs_iteration_data {
  15389. float alpha;
  15390. float ys;
  15391. float * s;
  15392. float * y;
  15393. };
  15394. static enum ggml_opt_result linesearch_backtracking(
  15395. const struct ggml_opt_params * params,
  15396. int nx,
  15397. float * x,
  15398. float * fx,
  15399. float * g,
  15400. float * d,
  15401. float * step,
  15402. const float * xp,
  15403. struct ggml_tensor * f,
  15404. struct ggml_cgraph * gf,
  15405. struct ggml_cgraph * gb,
  15406. struct ggml_cplan * cplan,
  15407. const int np,
  15408. struct ggml_tensor * ps[],
  15409. ggml_opt_callback callback,
  15410. void * callback_data) {
  15411. int count = 0;
  15412. float width = 0.0f;
  15413. float dg = 0.0f;
  15414. float finit = 0.0f;
  15415. float dginit = 0.0f;
  15416. float dgtest = 0.0f;
  15417. const float dec = 0.5f;
  15418. const float inc = 2.1f;
  15419. if (*step <= 0.f) {
  15420. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15421. }
  15422. // compute the initial gradient in the search direction
  15423. ggml_vec_dot_f32(nx, &dginit, g, d);
  15424. // make sure that d points to a descent direction
  15425. if (0 < dginit) {
  15426. return GGML_LINESEARCH_FAIL;
  15427. }
  15428. // initialize local variables
  15429. finit = *fx;
  15430. dgtest = params->lbfgs.ftol*dginit;
  15431. while (true) {
  15432. if (callback) {
  15433. // LBFG-S does not support learning rate -> ignore learning schedule
  15434. float sched = 0;
  15435. callback(callback_data, &sched);
  15436. }
  15437. ggml_vec_cpy_f32(nx, x, xp);
  15438. ggml_vec_mad_f32(nx, x, d, *step);
  15439. // evaluate the function and gradient values
  15440. {
  15441. ggml_opt_set_params(np, ps, x);
  15442. ggml_graph_reset (gf);
  15443. ggml_set_f32 (f->grad, 1.0f);
  15444. ggml_graph_compute(gb, cplan);
  15445. ggml_opt_get_grad(np, ps, g);
  15446. *fx = ggml_get_f32_1d(f, 0);
  15447. }
  15448. ++count;
  15449. if (*fx > finit + (*step)*dgtest) {
  15450. width = dec;
  15451. } else {
  15452. // Armijo condition is satisfied
  15453. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15454. return count;
  15455. }
  15456. ggml_vec_dot_f32(nx, &dg, g, d);
  15457. // check the Wolfe condition
  15458. if (dg < params->lbfgs.wolfe * dginit) {
  15459. width = inc;
  15460. } else {
  15461. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15462. // regular Wolfe conditions
  15463. return count;
  15464. }
  15465. if(dg > -params->lbfgs.wolfe*dginit) {
  15466. width = dec;
  15467. } else {
  15468. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15469. return count;
  15470. }
  15471. return count;
  15472. }
  15473. }
  15474. if (*step < params->lbfgs.min_step) {
  15475. return GGML_LINESEARCH_MINIMUM_STEP;
  15476. }
  15477. if (*step > params->lbfgs.max_step) {
  15478. return GGML_LINESEARCH_MAXIMUM_STEP;
  15479. }
  15480. if (params->lbfgs.max_linesearch <= count) {
  15481. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15482. }
  15483. (*step) *= width;
  15484. }
  15485. return GGML_LINESEARCH_FAIL;
  15486. }
  15487. static enum ggml_opt_result ggml_opt_lbfgs(
  15488. struct ggml_context * ctx,
  15489. struct ggml_opt_context * opt,
  15490. struct ggml_opt_params params,
  15491. struct ggml_tensor * f,
  15492. struct ggml_cgraph * gf,
  15493. struct ggml_cgraph * gb,
  15494. ggml_opt_callback callback,
  15495. void * callback_data) {
  15496. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15497. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15498. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15499. return GGML_OPT_INVALID_WOLFE;
  15500. }
  15501. }
  15502. const int m = params.lbfgs.m;
  15503. // these will store the parameters we want to optimize
  15504. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15505. int np = 0;
  15506. int nx = 0;
  15507. for (int i = 0; i < gf->n_nodes; ++i) {
  15508. if (gf->nodes[i]->is_param) {
  15509. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15510. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15511. ps[np++] = gf->nodes[i];
  15512. nx += ggml_nelements(gf->nodes[i]);
  15513. }
  15514. }
  15515. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15516. int iter = opt->iter;
  15517. ggml_opt_init(ctx, opt, params, nx);
  15518. opt->iter = iter;
  15519. }
  15520. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15521. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15522. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15523. float * x = opt->lbfgs.x->data; // current parameters
  15524. float * xp = opt->lbfgs.xp->data; // previous parameters
  15525. float * g = opt->lbfgs.g->data; // current gradient
  15526. float * gp = opt->lbfgs.gp->data; // previous gradient
  15527. float * d = opt->lbfgs.d->data; // search direction
  15528. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15529. float fx = 0.0f; // cost function value
  15530. float xnorm = 0.0f; // ||x||
  15531. float gnorm = 0.0f; // ||g||
  15532. // initialize x from the graph nodes
  15533. ggml_opt_get_params(np, ps, x);
  15534. // the L-BFGS memory
  15535. float * lm_alpha = opt->lbfgs.lmal->data;
  15536. float * lm_ys = opt->lbfgs.lmys->data;
  15537. float * lm_s = opt->lbfgs.lms->data;
  15538. float * lm_y = opt->lbfgs.lmy->data;
  15539. if (callback) {
  15540. // LBFG-S does not support learning rate -> ignore learning schedule
  15541. float sched = 0;
  15542. callback(callback_data, &sched);
  15543. }
  15544. // evaluate the function value and its gradient
  15545. {
  15546. ggml_opt_set_params(np, ps, x);
  15547. ggml_graph_reset (gf);
  15548. ggml_set_f32 (f->grad, 1.0f);
  15549. ggml_graph_compute(gb, &cplan);
  15550. ggml_opt_get_grad(np, ps, g);
  15551. fx = ggml_get_f32_1d(f, 0);
  15552. opt->loss_before = fx;
  15553. opt->loss_after = fx;
  15554. }
  15555. // search direction = -gradient
  15556. ggml_vec_neg_f32(nx, d, g);
  15557. // ||x||, ||g||
  15558. ggml_vec_norm_f32(nx, &xnorm, x);
  15559. ggml_vec_norm_f32(nx, &gnorm, g);
  15560. if (xnorm < 1.0f) {
  15561. xnorm = 1.0f;
  15562. }
  15563. // already optimized
  15564. if (gnorm/xnorm <= params.lbfgs.eps) {
  15565. return GGML_OPT_OK;
  15566. }
  15567. if (opt->just_initialized) {
  15568. if (pf) {
  15569. pf[0] = fx;
  15570. }
  15571. opt->lbfgs.fx_best = fx;
  15572. // initial step
  15573. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15574. opt->lbfgs.j = 0;
  15575. opt->lbfgs.k = 1;
  15576. opt->lbfgs.end = 0;
  15577. opt->lbfgs.n_no_improvement = 0;
  15578. opt->just_initialized = false;
  15579. }
  15580. float * fx_best = &opt->lbfgs.fx_best;
  15581. float * step = &opt->lbfgs.step;
  15582. int * j = &opt->lbfgs.j;
  15583. int * k = &opt->lbfgs.k;
  15584. int * end = &opt->lbfgs.end;
  15585. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15586. int ls = 0;
  15587. int bound = 0;
  15588. float ys = 0.0f;
  15589. float yy = 0.0f;
  15590. float beta = 0.0f;
  15591. int it = 0;
  15592. while (true) {
  15593. // store the current position and gradient vectors
  15594. ggml_vec_cpy_f32(nx, xp, x);
  15595. ggml_vec_cpy_f32(nx, gp, g);
  15596. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15597. if (ls < 0) {
  15598. // linesearch failed - go back to the previous point and return
  15599. ggml_vec_cpy_f32(nx, x, xp);
  15600. ggml_vec_cpy_f32(nx, g, gp);
  15601. return ls;
  15602. }
  15603. opt->loss_after = fx;
  15604. ggml_vec_norm_f32(nx, &xnorm, x);
  15605. ggml_vec_norm_f32(nx, &gnorm, g);
  15606. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15607. if (xnorm < 1.0f) {
  15608. xnorm = 1.0f;
  15609. }
  15610. if (gnorm/xnorm <= params.lbfgs.eps) {
  15611. // converged
  15612. return GGML_OPT_OK;
  15613. }
  15614. // delta-based convergence test
  15615. if (pf != NULL) {
  15616. // need at least params.past iterations to start checking for convergence
  15617. if (params.past <= k[0]) {
  15618. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15619. if (fabsf(rate) < params.delta) {
  15620. return GGML_OPT_OK;
  15621. }
  15622. }
  15623. pf[k[0]%params.past] = fx;
  15624. }
  15625. // check for improvement
  15626. if (params.max_no_improvement > 0) {
  15627. if (fx < fx_best[0]) {
  15628. fx_best[0] = fx;
  15629. n_no_improvement[0] = 0;
  15630. } else {
  15631. n_no_improvement[0]++;
  15632. if (n_no_improvement[0] >= params.max_no_improvement) {
  15633. return GGML_OPT_OK;
  15634. }
  15635. }
  15636. }
  15637. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15638. // reached the maximum number of iterations
  15639. return GGML_OPT_DID_NOT_CONVERGE;
  15640. }
  15641. // update vectors s and y:
  15642. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15643. // y_{k+1} = g_{k+1} - g_{k}.
  15644. //
  15645. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15646. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15647. // compute scalars ys and yy:
  15648. // ys = y^t \cdot s -> 1 / \rho.
  15649. // yy = y^t \cdot y.
  15650. //
  15651. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15652. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15653. lm_ys[end[0]] = ys;
  15654. // find new search direction
  15655. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15656. bound = (m <= k[0]) ? m : k[0];
  15657. k[0]++;
  15658. it++;
  15659. end[0] = (end[0] + 1)%m;
  15660. // initialize search direction with -g
  15661. ggml_vec_neg_f32(nx, d, g);
  15662. j[0] = end[0];
  15663. for (int i = 0; i < bound; ++i) {
  15664. j[0] = (j[0] + m - 1) % m;
  15665. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15666. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15667. lm_alpha[j[0]] /= lm_ys[j[0]];
  15668. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15669. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15670. }
  15671. ggml_vec_scale_f32(nx, d, ys/yy);
  15672. for (int i = 0; i < bound; ++i) {
  15673. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15674. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15675. beta /= lm_ys[j[0]];
  15676. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15677. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15678. j[0] = (j[0] + 1)%m;
  15679. }
  15680. step[0] = 1.0;
  15681. }
  15682. return GGML_OPT_DID_NOT_CONVERGE;
  15683. }
  15684. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15685. struct ggml_opt_params result;
  15686. switch (type) {
  15687. case GGML_OPT_ADAM:
  15688. {
  15689. result = (struct ggml_opt_params) {
  15690. .type = GGML_OPT_ADAM,
  15691. .n_threads = 1,
  15692. .past = 0,
  15693. .delta = 1e-5f,
  15694. .max_no_improvement = 100,
  15695. .print_forward_graph = true,
  15696. .print_backward_graph = true,
  15697. .adam = {
  15698. .n_iter = 10000,
  15699. .sched = 1.000f,
  15700. .decay = 0.0f,
  15701. .decay_min_ndim = 2,
  15702. .alpha = 0.001f,
  15703. .beta1 = 0.9f,
  15704. .beta2 = 0.999f,
  15705. .eps = 1e-8f,
  15706. .eps_f = 1e-5f,
  15707. .eps_g = 1e-3f,
  15708. .gclip = 0.0f,
  15709. },
  15710. };
  15711. } break;
  15712. case GGML_OPT_LBFGS:
  15713. {
  15714. result = (struct ggml_opt_params) {
  15715. .type = GGML_OPT_LBFGS,
  15716. .n_threads = 1,
  15717. .past = 0,
  15718. .delta = 1e-5f,
  15719. .max_no_improvement = 0,
  15720. .print_forward_graph = true,
  15721. .print_backward_graph = true,
  15722. .lbfgs = {
  15723. .m = 6,
  15724. .n_iter = 100,
  15725. .max_linesearch = 20,
  15726. .eps = 1e-5f,
  15727. .ftol = 1e-4f,
  15728. .wolfe = 0.9f,
  15729. .min_step = 1e-20f,
  15730. .max_step = 1e+20f,
  15731. .linesearch = GGML_LINESEARCH_DEFAULT,
  15732. },
  15733. };
  15734. } break;
  15735. }
  15736. return result;
  15737. }
  15738. GGML_API void ggml_opt_init(
  15739. struct ggml_context * ctx,
  15740. struct ggml_opt_context * opt,
  15741. struct ggml_opt_params params,
  15742. int64_t nx) {
  15743. opt->ctx = ctx;
  15744. opt->params = params;
  15745. opt->iter = 0;
  15746. opt->nx = nx;
  15747. opt->just_initialized = true;
  15748. switch (opt->params.type) {
  15749. case GGML_OPT_ADAM:
  15750. {
  15751. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15752. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15753. opt->adam.pf = params.past > 0
  15754. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15755. : NULL;
  15756. ggml_set_zero(opt->adam.m);
  15757. ggml_set_zero(opt->adam.v);
  15758. if (opt->adam.pf) {
  15759. ggml_set_zero(opt->adam.pf);
  15760. }
  15761. } break;
  15762. case GGML_OPT_LBFGS:
  15763. {
  15764. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15765. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15766. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15767. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15768. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15769. opt->lbfgs.pf = params.past > 0
  15770. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15771. : NULL;
  15772. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15773. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15774. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15775. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15776. ggml_set_zero(opt->lbfgs.x);
  15777. ggml_set_zero(opt->lbfgs.xp);
  15778. ggml_set_zero(opt->lbfgs.g);
  15779. ggml_set_zero(opt->lbfgs.gp);
  15780. ggml_set_zero(opt->lbfgs.d);
  15781. if (opt->lbfgs.pf) {
  15782. ggml_set_zero(opt->lbfgs.pf);
  15783. }
  15784. ggml_set_zero(opt->lbfgs.lmal);
  15785. ggml_set_zero(opt->lbfgs.lmys);
  15786. ggml_set_zero(opt->lbfgs.lms);
  15787. ggml_set_zero(opt->lbfgs.lmy);
  15788. } break;
  15789. }
  15790. }
  15791. enum ggml_opt_result ggml_opt(
  15792. struct ggml_context * ctx,
  15793. struct ggml_opt_params params,
  15794. struct ggml_tensor * f) {
  15795. bool free_ctx = false;
  15796. if (ctx == NULL) {
  15797. struct ggml_init_params params_ctx = {
  15798. .mem_size = 16*1024*1024,
  15799. .mem_buffer = NULL,
  15800. .no_alloc = false,
  15801. };
  15802. ctx = ggml_init(params_ctx);
  15803. if (ctx == NULL) {
  15804. return GGML_OPT_NO_CONTEXT;
  15805. }
  15806. free_ctx = true;
  15807. }
  15808. enum ggml_opt_result result = GGML_OPT_OK;
  15809. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15810. ggml_opt_init(ctx, opt, params, 0);
  15811. result = ggml_opt_resume(ctx, opt, f);
  15812. if (free_ctx) {
  15813. ggml_free(ctx);
  15814. }
  15815. return result;
  15816. }
  15817. enum ggml_opt_result ggml_opt_resume(
  15818. struct ggml_context * ctx,
  15819. struct ggml_opt_context * opt,
  15820. struct ggml_tensor * f) {
  15821. // build forward + backward compute graphs
  15822. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15823. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15824. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15825. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15826. *gf = ggml_build_forward (f);
  15827. *gb = ggml_build_backward(ctx, gf, true);
  15828. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15829. }
  15830. enum ggml_opt_result ggml_opt_resume_g(
  15831. struct ggml_context * ctx,
  15832. struct ggml_opt_context * opt,
  15833. struct ggml_tensor * f,
  15834. struct ggml_cgraph * gf,
  15835. struct ggml_cgraph * gb,
  15836. ggml_opt_callback callback,
  15837. void * callback_data) {
  15838. // build forward + backward compute graphs
  15839. enum ggml_opt_result result = GGML_OPT_OK;
  15840. switch (opt->params.type) {
  15841. case GGML_OPT_ADAM:
  15842. {
  15843. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15844. } break;
  15845. case GGML_OPT_LBFGS:
  15846. {
  15847. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15848. } break;
  15849. }
  15850. if (opt->params.print_forward_graph) {
  15851. ggml_graph_print (gf);
  15852. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15853. }
  15854. if (opt->params.print_backward_graph) {
  15855. ggml_graph_print (gb);
  15856. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15857. }
  15858. return result;
  15859. }
  15860. ////////////////////////////////////////////////////////////////////////////////
  15861. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15862. assert(k % QK4_0 == 0);
  15863. const int nb = k / QK4_0;
  15864. for (int b = 0; b < n; b += k) {
  15865. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15866. quantize_row_q4_0_reference(src + b, y, k);
  15867. for (int i = 0; i < nb; i++) {
  15868. for (int j = 0; j < QK4_0; j += 2) {
  15869. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15870. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15871. hist[vi0]++;
  15872. hist[vi1]++;
  15873. }
  15874. }
  15875. }
  15876. return (n/QK4_0*sizeof(block_q4_0));
  15877. }
  15878. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15879. assert(k % QK4_1 == 0);
  15880. const int nb = k / QK4_1;
  15881. for (int b = 0; b < n; b += k) {
  15882. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15883. quantize_row_q4_1_reference(src + b, y, k);
  15884. for (int i = 0; i < nb; i++) {
  15885. for (int j = 0; j < QK4_1; j += 2) {
  15886. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15887. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15888. hist[vi0]++;
  15889. hist[vi1]++;
  15890. }
  15891. }
  15892. }
  15893. return (n/QK4_1*sizeof(block_q4_1));
  15894. }
  15895. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15896. assert(k % QK5_0 == 0);
  15897. const int nb = k / QK5_0;
  15898. for (int b = 0; b < n; b += k) {
  15899. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15900. quantize_row_q5_0_reference(src + b, y, k);
  15901. for (int i = 0; i < nb; i++) {
  15902. uint32_t qh;
  15903. memcpy(&qh, &y[i].qh, sizeof(qh));
  15904. for (int j = 0; j < QK5_0; j += 2) {
  15905. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15906. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15907. // cast to 16 bins
  15908. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15909. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15910. hist[vi0]++;
  15911. hist[vi1]++;
  15912. }
  15913. }
  15914. }
  15915. return (n/QK5_0*sizeof(block_q5_0));
  15916. }
  15917. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15918. assert(k % QK5_1 == 0);
  15919. const int nb = k / QK5_1;
  15920. for (int b = 0; b < n; b += k) {
  15921. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15922. quantize_row_q5_1_reference(src + b, y, k);
  15923. for (int i = 0; i < nb; i++) {
  15924. uint32_t qh;
  15925. memcpy(&qh, &y[i].qh, sizeof(qh));
  15926. for (int j = 0; j < QK5_1; j += 2) {
  15927. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15928. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15929. // cast to 16 bins
  15930. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15931. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15932. hist[vi0]++;
  15933. hist[vi1]++;
  15934. }
  15935. }
  15936. }
  15937. return (n/QK5_1*sizeof(block_q5_1));
  15938. }
  15939. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15940. assert(k % QK8_0 == 0);
  15941. const int nb = k / QK8_0;
  15942. for (int b = 0; b < n; b += k) {
  15943. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15944. quantize_row_q8_0_reference(src + b, y, k);
  15945. for (int i = 0; i < nb; i++) {
  15946. for (int j = 0; j < QK8_0; ++j) {
  15947. const int8_t vi = y[i].qs[j];
  15948. hist[vi/16 + 8]++;
  15949. }
  15950. }
  15951. }
  15952. return (n/QK8_0*sizeof(block_q8_0));
  15953. }
  15954. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15955. size_t result = 0;
  15956. switch (type) {
  15957. case GGML_TYPE_Q4_0:
  15958. {
  15959. GGML_ASSERT(start % QK4_0 == 0);
  15960. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15961. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15962. } break;
  15963. case GGML_TYPE_Q4_1:
  15964. {
  15965. GGML_ASSERT(start % QK4_1 == 0);
  15966. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15967. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15968. } break;
  15969. case GGML_TYPE_Q5_0:
  15970. {
  15971. GGML_ASSERT(start % QK5_0 == 0);
  15972. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15973. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15974. } break;
  15975. case GGML_TYPE_Q5_1:
  15976. {
  15977. GGML_ASSERT(start % QK5_1 == 0);
  15978. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15979. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15980. } break;
  15981. case GGML_TYPE_Q8_0:
  15982. {
  15983. GGML_ASSERT(start % QK8_0 == 0);
  15984. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15985. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15986. } break;
  15987. #ifdef GGML_USE_K_QUANTS
  15988. case GGML_TYPE_Q2_K:
  15989. {
  15990. GGML_ASSERT(start % QK_K == 0);
  15991. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15992. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15993. } break;
  15994. case GGML_TYPE_Q3_K:
  15995. {
  15996. GGML_ASSERT(start % QK_K == 0);
  15997. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15998. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15999. } break;
  16000. case GGML_TYPE_Q4_K:
  16001. {
  16002. GGML_ASSERT(start % QK_K == 0);
  16003. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16004. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16005. } break;
  16006. case GGML_TYPE_Q5_K:
  16007. {
  16008. GGML_ASSERT(start % QK_K == 0);
  16009. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16010. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16011. } break;
  16012. case GGML_TYPE_Q6_K:
  16013. {
  16014. GGML_ASSERT(start % QK_K == 0);
  16015. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16016. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16017. } break;
  16018. #endif
  16019. case GGML_TYPE_F16:
  16020. {
  16021. int elemsize = sizeof(ggml_fp16_t);
  16022. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16023. result = n * elemsize;
  16024. } break;
  16025. case GGML_TYPE_F32:
  16026. {
  16027. int elemsize = sizeof(float);
  16028. result = n * elemsize;
  16029. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16030. } break;
  16031. default:
  16032. assert(false);
  16033. }
  16034. return result;
  16035. }
  16036. ////////////////////////////////////////////////////////////////////////////////
  16037. struct gguf_str {
  16038. uint64_t n; // GGUFv2
  16039. char * data;
  16040. };
  16041. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16042. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16043. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16044. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16045. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16046. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16047. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16048. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16049. [GGUF_TYPE_BOOL] = sizeof(bool),
  16050. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16051. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16052. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16053. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16054. [GGUF_TYPE_ARRAY] = 0, // undefined
  16055. };
  16056. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16057. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16058. [GGUF_TYPE_UINT8] = "u8",
  16059. [GGUF_TYPE_INT8] = "i8",
  16060. [GGUF_TYPE_UINT16] = "u16",
  16061. [GGUF_TYPE_INT16] = "i16",
  16062. [GGUF_TYPE_UINT32] = "u32",
  16063. [GGUF_TYPE_INT32] = "i32",
  16064. [GGUF_TYPE_FLOAT32] = "f32",
  16065. [GGUF_TYPE_BOOL] = "bool",
  16066. [GGUF_TYPE_STRING] = "str",
  16067. [GGUF_TYPE_ARRAY] = "arr",
  16068. [GGUF_TYPE_UINT64] = "u64",
  16069. [GGUF_TYPE_INT64] = "i64",
  16070. [GGUF_TYPE_FLOAT64] = "f64",
  16071. };
  16072. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16073. union gguf_value {
  16074. uint8_t uint8;
  16075. int8_t int8;
  16076. uint16_t uint16;
  16077. int16_t int16;
  16078. uint32_t uint32;
  16079. int32_t int32;
  16080. float float32;
  16081. uint64_t uint64;
  16082. int64_t int64;
  16083. double float64;
  16084. bool bool_;
  16085. struct gguf_str str;
  16086. struct {
  16087. enum gguf_type type;
  16088. uint64_t n; // GGUFv2
  16089. void * data;
  16090. } arr;
  16091. };
  16092. struct gguf_kv {
  16093. struct gguf_str key;
  16094. enum gguf_type type;
  16095. union gguf_value value;
  16096. };
  16097. struct gguf_header {
  16098. uint32_t magic;
  16099. uint32_t version;
  16100. uint64_t n_tensors; // GGUFv2
  16101. uint64_t n_kv; // GGUFv2
  16102. };
  16103. struct gguf_tensor_info {
  16104. struct gguf_str name;
  16105. uint32_t n_dims;
  16106. uint64_t ne[GGML_MAX_DIMS];
  16107. enum ggml_type type;
  16108. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16109. // for writing API
  16110. const void * data;
  16111. size_t size;
  16112. };
  16113. struct gguf_context {
  16114. struct gguf_header header;
  16115. struct gguf_kv * kv;
  16116. struct gguf_tensor_info * infos;
  16117. size_t alignment;
  16118. size_t offset; // offset of `data` from beginning of file
  16119. size_t size; // size of `data` in bytes
  16120. //uint8_t * padding;
  16121. void * data;
  16122. };
  16123. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16124. const size_t n = fread(dst, 1, size, file);
  16125. *offset += n;
  16126. return n == size;
  16127. }
  16128. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16129. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16130. p->n = 0;
  16131. p->data = NULL;
  16132. bool ok = true;
  16133. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16134. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16135. return ok;
  16136. }
  16137. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16138. p->n = 0;
  16139. p->data = NULL;
  16140. bool ok = true;
  16141. uint32_t n = 0;
  16142. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16143. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16144. return ok;
  16145. }
  16146. struct gguf_context * gguf_init_empty(void) {
  16147. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16148. ctx->header.magic = GGUF_MAGIC;
  16149. ctx->header.version = GGUF_VERSION;
  16150. ctx->header.n_tensors = 0;
  16151. ctx->header.n_kv = 0;
  16152. ctx->kv = NULL;
  16153. ctx->infos = NULL;
  16154. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16155. ctx->offset = 0;
  16156. ctx->size = 0;
  16157. ctx->data = NULL;
  16158. return ctx;
  16159. }
  16160. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16161. FILE * file = fopen(fname, "rb");
  16162. if (!file) {
  16163. return NULL;
  16164. }
  16165. // offset from start of file
  16166. size_t offset = 0;
  16167. uint32_t magic = 0;
  16168. // check the magic before making allocations
  16169. {
  16170. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16171. if (magic != GGUF_MAGIC) {
  16172. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16173. fclose(file);
  16174. return NULL;
  16175. }
  16176. }
  16177. bool ok = true;
  16178. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16179. // read the header
  16180. {
  16181. ctx->header.magic = magic;
  16182. ctx->kv = NULL;
  16183. ctx->infos = NULL;
  16184. ctx->data = NULL;
  16185. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16186. if (ctx->header.version == 1) {
  16187. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16188. uint32_t n_tensors = 0;
  16189. uint32_t n_kv = 0;
  16190. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16191. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16192. ctx->header.n_tensors = n_tensors;
  16193. ctx->header.n_kv = n_kv;
  16194. } else {
  16195. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16196. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16197. }
  16198. if (!ok) {
  16199. fprintf(stderr, "%s: failed to read header\n", __func__);
  16200. fclose(file);
  16201. gguf_free(ctx);
  16202. return NULL;
  16203. }
  16204. }
  16205. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16206. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16207. if (ctx->header.version == 1) {
  16208. gguf_fread_str = gguf_fread_str_v1;
  16209. }
  16210. // read the kv pairs
  16211. {
  16212. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16213. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16214. struct gguf_kv * kv = &ctx->kv[i];
  16215. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16216. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16217. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16218. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16219. switch (kv->type) {
  16220. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16221. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16222. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16223. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16224. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16225. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16226. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16227. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16228. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16229. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16230. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16231. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16232. case GGUF_TYPE_ARRAY:
  16233. {
  16234. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16235. if (ctx->header.version == 1) {
  16236. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16237. uint32_t n = 0;
  16238. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16239. kv->value.arr.n = n;
  16240. } else {
  16241. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16242. }
  16243. switch (kv->value.arr.type) {
  16244. case GGUF_TYPE_UINT8:
  16245. case GGUF_TYPE_INT8:
  16246. case GGUF_TYPE_UINT16:
  16247. case GGUF_TYPE_INT16:
  16248. case GGUF_TYPE_UINT32:
  16249. case GGUF_TYPE_INT32:
  16250. case GGUF_TYPE_FLOAT32:
  16251. case GGUF_TYPE_UINT64:
  16252. case GGUF_TYPE_INT64:
  16253. case GGUF_TYPE_FLOAT64:
  16254. case GGUF_TYPE_BOOL:
  16255. {
  16256. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16257. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16258. } break;
  16259. case GGUF_TYPE_STRING:
  16260. {
  16261. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16262. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16263. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16264. }
  16265. } break;
  16266. case GGUF_TYPE_ARRAY:
  16267. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16268. };
  16269. } break;
  16270. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16271. };
  16272. if (!ok) {
  16273. break;
  16274. }
  16275. }
  16276. if (!ok) {
  16277. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16278. fclose(file);
  16279. gguf_free(ctx);
  16280. return NULL;
  16281. }
  16282. }
  16283. // read the tensor infos
  16284. {
  16285. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16286. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16287. struct gguf_tensor_info * info = &ctx->infos[i];
  16288. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16289. info->ne[j] = 1;
  16290. }
  16291. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16292. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16293. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16294. if (ctx->header.version == 1) {
  16295. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16296. uint32_t t = 0;
  16297. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16298. info->ne[j] = t;
  16299. } else {
  16300. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16301. }
  16302. }
  16303. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16304. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16305. if (!ok) {
  16306. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16307. fclose(file);
  16308. gguf_free(ctx);
  16309. return NULL;
  16310. }
  16311. }
  16312. }
  16313. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16314. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16315. if (alignment_idx != -1) {
  16316. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16317. }
  16318. // we require the data section to be aligned, so take into account any padding
  16319. {
  16320. const size_t offset_pad = offset % ctx->alignment;
  16321. if (offset_pad != 0) {
  16322. offset += ctx->alignment - offset_pad;
  16323. fseek(file, offset, SEEK_SET);
  16324. }
  16325. }
  16326. // store the current file offset - this is where the data section starts
  16327. ctx->offset = offset;
  16328. // compute the total size of the data section, taking into account the alignment
  16329. {
  16330. ctx->size = 0;
  16331. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16332. struct gguf_tensor_info * info = &ctx->infos[i];
  16333. const int64_t ne =
  16334. (int64_t) info->ne[0] *
  16335. (int64_t) info->ne[1] *
  16336. (int64_t) info->ne[2] *
  16337. (int64_t) info->ne[3];
  16338. if (ne % ggml_blck_size(info->type) != 0) {
  16339. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16340. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16341. fclose(file);
  16342. gguf_free(ctx);
  16343. return NULL;
  16344. }
  16345. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16346. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16347. }
  16348. }
  16349. // load the tensor data only if requested
  16350. if (params.ctx != NULL) {
  16351. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16352. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16353. // the ggml_tensor structs to the appropriate locations in the binary blob
  16354. // compute the exact size needed for the new ggml_context
  16355. const size_t mem_size =
  16356. params.no_alloc ?
  16357. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16358. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16359. struct ggml_init_params pdata = {
  16360. .mem_size = mem_size,
  16361. .mem_buffer = NULL,
  16362. .no_alloc = params.no_alloc,
  16363. };
  16364. *params.ctx = ggml_init(pdata);
  16365. struct ggml_context * ctx_data = *params.ctx;
  16366. struct ggml_tensor * data = NULL;
  16367. if (params.no_alloc == false) {
  16368. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16369. ok = ok && data != NULL;
  16370. // read the binary blob with the tensor data
  16371. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16372. if (!ok) {
  16373. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16374. fclose(file);
  16375. ggml_free(ctx_data);
  16376. gguf_free(ctx);
  16377. return NULL;
  16378. }
  16379. ctx->data = data->data;
  16380. }
  16381. ggml_set_no_alloc(ctx_data, true);
  16382. // create the tensors
  16383. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16384. const int64_t ne[GGML_MAX_DIMS] = {
  16385. ctx->infos[i].ne[0],
  16386. ctx->infos[i].ne[1],
  16387. ctx->infos[i].ne[2],
  16388. ctx->infos[i].ne[3],
  16389. };
  16390. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16391. ok = ok && cur != NULL;
  16392. ggml_set_name(cur, ctx->infos[i].name.data);
  16393. if (!ok) {
  16394. break;
  16395. }
  16396. // point the data member to the appropriate location in the binary blob using the tensor infos
  16397. if (params.no_alloc == false) {
  16398. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16399. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16400. }
  16401. }
  16402. if (!ok) {
  16403. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16404. fclose(file);
  16405. ggml_free(ctx_data);
  16406. gguf_free(ctx);
  16407. return NULL;
  16408. }
  16409. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16410. }
  16411. fclose(file);
  16412. return ctx;
  16413. }
  16414. void gguf_free(struct gguf_context * ctx) {
  16415. if (ctx == NULL) {
  16416. return;
  16417. }
  16418. if (ctx->kv) {
  16419. // free string memory - not great..
  16420. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16421. struct gguf_kv * kv = &ctx->kv[i];
  16422. if (kv->key.data) {
  16423. free(kv->key.data);
  16424. }
  16425. if (kv->type == GGUF_TYPE_STRING) {
  16426. if (kv->value.str.data) {
  16427. free(kv->value.str.data);
  16428. }
  16429. }
  16430. if (kv->type == GGUF_TYPE_ARRAY) {
  16431. if (kv->value.arr.data) {
  16432. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16433. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16434. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16435. if (str->data) {
  16436. free(str->data);
  16437. }
  16438. }
  16439. }
  16440. free(kv->value.arr.data);
  16441. }
  16442. }
  16443. }
  16444. free(ctx->kv);
  16445. }
  16446. if (ctx->infos) {
  16447. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16448. struct gguf_tensor_info * info = &ctx->infos[i];
  16449. if (info->name.data) {
  16450. free(info->name.data);
  16451. }
  16452. }
  16453. free(ctx->infos);
  16454. }
  16455. GGML_ALIGNED_FREE(ctx);
  16456. }
  16457. const char * gguf_type_name(enum gguf_type type) {
  16458. return GGUF_TYPE_NAME[type];
  16459. }
  16460. int gguf_get_version(struct gguf_context * ctx) {
  16461. return ctx->header.version;
  16462. }
  16463. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16464. return ctx->alignment;
  16465. }
  16466. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16467. return ctx->offset;
  16468. }
  16469. void * gguf_get_data(struct gguf_context * ctx) {
  16470. return ctx->data;
  16471. }
  16472. int gguf_get_n_kv(struct gguf_context * ctx) {
  16473. return ctx->header.n_kv;
  16474. }
  16475. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16476. // return -1 if key not found
  16477. int keyfound = -1;
  16478. const int n_kv = gguf_get_n_kv(ctx);
  16479. for (int i = 0; i < n_kv; ++i) {
  16480. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16481. keyfound = i;
  16482. break;
  16483. }
  16484. }
  16485. return keyfound;
  16486. }
  16487. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16488. return ctx->kv[i].key.data;
  16489. }
  16490. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16491. return ctx->kv[i].type;
  16492. }
  16493. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16494. return ctx->kv[i].value.arr.type;
  16495. }
  16496. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16497. return ctx->kv[i].value.arr.data;
  16498. }
  16499. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16500. struct gguf_kv * kv = &ctx->kv[key_id];
  16501. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16502. return str->data;
  16503. }
  16504. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16505. return ctx->kv[i].value.arr.n;
  16506. }
  16507. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16508. return ctx->kv[i].value.uint8;
  16509. }
  16510. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16511. return ctx->kv[i].value.int8;
  16512. }
  16513. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16514. return ctx->kv[i].value.uint16;
  16515. }
  16516. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16517. return ctx->kv[i].value.int16;
  16518. }
  16519. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16520. return ctx->kv[i].value.uint32;
  16521. }
  16522. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16523. return ctx->kv[i].value.int32;
  16524. }
  16525. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16526. return ctx->kv[i].value.float32;
  16527. }
  16528. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16529. return ctx->kv[i].value.uint64;
  16530. }
  16531. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16532. return ctx->kv[i].value.int64;
  16533. }
  16534. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16535. return ctx->kv[i].value.float64;
  16536. }
  16537. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16538. return ctx->kv[i].value.bool_;
  16539. }
  16540. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16541. return ctx->kv[i].value.str.data;
  16542. }
  16543. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16544. return ctx->header.n_tensors;
  16545. }
  16546. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16547. // return -1 if tensor not found
  16548. int tensorfound = -1;
  16549. const int n_tensors = gguf_get_n_tensors(ctx);
  16550. for (int i = 0; i < n_tensors; ++i) {
  16551. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16552. tensorfound = i;
  16553. break;
  16554. }
  16555. }
  16556. return tensorfound;
  16557. }
  16558. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16559. return ctx->infos[i].offset;
  16560. }
  16561. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16562. return ctx->infos[i].name.data;
  16563. }
  16564. // returns the index
  16565. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16566. const int idx = gguf_find_key(ctx, key);
  16567. if (idx >= 0) {
  16568. return idx;
  16569. }
  16570. const int n_kv = gguf_get_n_kv(ctx);
  16571. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16572. ctx->kv[n_kv].key.n = strlen(key);
  16573. ctx->kv[n_kv].key.data = strdup(key);
  16574. ctx->header.n_kv++;
  16575. return n_kv;
  16576. }
  16577. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16578. const int idx = gguf_get_or_add_key(ctx, key);
  16579. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16580. ctx->kv[idx].value.uint8 = val;
  16581. }
  16582. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16583. const int idx = gguf_get_or_add_key(ctx, key);
  16584. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16585. ctx->kv[idx].value.int8 = val;
  16586. }
  16587. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16588. const int idx = gguf_get_or_add_key(ctx, key);
  16589. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16590. ctx->kv[idx].value.uint16 = val;
  16591. }
  16592. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16593. const int idx = gguf_get_or_add_key(ctx, key);
  16594. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16595. ctx->kv[idx].value.int16 = val;
  16596. }
  16597. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16598. const int idx = gguf_get_or_add_key(ctx, key);
  16599. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16600. ctx->kv[idx].value.uint32 = val;
  16601. }
  16602. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16603. const int idx = gguf_get_or_add_key(ctx, key);
  16604. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16605. ctx->kv[idx].value.int32 = val;
  16606. }
  16607. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16608. const int idx = gguf_get_or_add_key(ctx, key);
  16609. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16610. ctx->kv[idx].value.float32 = val;
  16611. }
  16612. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16613. const int idx = gguf_get_or_add_key(ctx, key);
  16614. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16615. ctx->kv[idx].value.uint64 = val;
  16616. }
  16617. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16618. const int idx = gguf_get_or_add_key(ctx, key);
  16619. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16620. ctx->kv[idx].value.int64 = val;
  16621. }
  16622. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16623. const int idx = gguf_get_or_add_key(ctx, key);
  16624. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16625. ctx->kv[idx].value.float64 = val;
  16626. }
  16627. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16628. const int idx = gguf_get_or_add_key(ctx, key);
  16629. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16630. ctx->kv[idx].value.bool_ = val;
  16631. }
  16632. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16633. const int idx = gguf_get_or_add_key(ctx, key);
  16634. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16635. ctx->kv[idx].value.str.n = strlen(val);
  16636. ctx->kv[idx].value.str.data = strdup(val);
  16637. }
  16638. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16639. const int idx = gguf_get_or_add_key(ctx, key);
  16640. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16641. ctx->kv[idx].value.arr.type = type;
  16642. ctx->kv[idx].value.arr.n = n;
  16643. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16644. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16645. }
  16646. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16647. const int idx = gguf_get_or_add_key(ctx, key);
  16648. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16649. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16650. ctx->kv[idx].value.arr.n = n;
  16651. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16652. for (int i = 0; i < n; i++) {
  16653. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16654. str->n = strlen(data[i]);
  16655. str->data = strdup(data[i]);
  16656. }
  16657. }
  16658. // set or add KV pairs from another context
  16659. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16660. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16661. switch (src->kv[i].type) {
  16662. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16663. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16664. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16665. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16666. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16667. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16668. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16669. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16670. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16671. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16672. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16673. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16674. case GGUF_TYPE_ARRAY:
  16675. {
  16676. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16677. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16678. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16679. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16680. }
  16681. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16682. free(data);
  16683. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16684. GGML_ASSERT(false && "nested arrays not supported");
  16685. } else {
  16686. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16687. }
  16688. } break;
  16689. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16690. }
  16691. }
  16692. }
  16693. void gguf_add_tensor(
  16694. struct gguf_context * ctx,
  16695. const struct ggml_tensor * tensor) {
  16696. const int idx = ctx->header.n_tensors;
  16697. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16698. ctx->infos[idx].name.n = strlen(tensor->name);
  16699. ctx->infos[idx].name.data = strdup(tensor->name);
  16700. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16701. ctx->infos[idx].ne[i] = 1;
  16702. }
  16703. ctx->infos[idx].n_dims = tensor->n_dims;
  16704. for (int i = 0; i < tensor->n_dims; i++) {
  16705. ctx->infos[idx].ne[i] = tensor->ne[i];
  16706. }
  16707. ctx->infos[idx].type = tensor->type;
  16708. ctx->infos[idx].offset = 0;
  16709. ctx->infos[idx].data = tensor->data;
  16710. ctx->infos[idx].size = ggml_nbytes(tensor);
  16711. if (ctx->header.n_tensors > 0) {
  16712. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16713. }
  16714. ctx->header.n_tensors++;
  16715. }
  16716. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16717. const int idx = gguf_find_tensor(ctx, name);
  16718. if (idx < 0) {
  16719. GGML_ASSERT(false && "tensor not found");
  16720. }
  16721. ctx->infos[idx].type = type;
  16722. }
  16723. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16724. const int idx = gguf_find_tensor(ctx, name);
  16725. if (idx < 0) {
  16726. GGML_ASSERT(false && "tensor not found");
  16727. }
  16728. ctx->infos[idx].data = data;
  16729. ctx->infos[idx].size = size;
  16730. // update offsets
  16731. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16732. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16733. }
  16734. }
  16735. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16736. // fwrite(&val->n, sizeof(val->n), 1, file);
  16737. // fwrite(val->data, sizeof(char), val->n, file);
  16738. //}
  16739. //
  16740. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16741. // fwrite(val, sizeof(char), size, file);
  16742. //}
  16743. struct gguf_buf {
  16744. void * data;
  16745. size_t size;
  16746. size_t offset;
  16747. };
  16748. static struct gguf_buf gguf_buf_init(size_t size) {
  16749. struct gguf_buf buf = {
  16750. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16751. /*buf.size =*/ size,
  16752. /*buf.offset =*/ 0,
  16753. };
  16754. return buf;
  16755. }
  16756. static void gguf_buf_free(struct gguf_buf buf) {
  16757. if (buf.data) {
  16758. free(buf.data);
  16759. }
  16760. }
  16761. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16762. if (buf->offset + size > buf->size) {
  16763. buf->size = 1.5*(buf->offset + size);
  16764. if (buf->data) {
  16765. buf->data = realloc(buf->data, buf->size);
  16766. }
  16767. }
  16768. }
  16769. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16770. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16771. if (buf->data) {
  16772. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16773. }
  16774. buf->offset += sizeof(val->n);
  16775. if (buf->data) {
  16776. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16777. }
  16778. buf->offset += val->n;
  16779. }
  16780. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16781. gguf_buf_grow(buf, el_size);
  16782. if (buf->data) {
  16783. memcpy((char *) buf->data + buf->offset, val, el_size);
  16784. }
  16785. buf->offset += el_size;
  16786. }
  16787. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16788. // write header
  16789. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16790. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16791. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16792. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16793. // write key-value pairs
  16794. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16795. struct gguf_kv * kv = &ctx->kv[i];
  16796. gguf_bwrite_str(buf, &kv->key);
  16797. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16798. switch (kv->type) {
  16799. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16800. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16801. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16802. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16803. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16804. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16805. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16806. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16807. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16808. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16809. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16810. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16811. case GGUF_TYPE_ARRAY:
  16812. {
  16813. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16814. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16815. switch (kv->value.arr.type) {
  16816. case GGUF_TYPE_UINT8:
  16817. case GGUF_TYPE_INT8:
  16818. case GGUF_TYPE_UINT16:
  16819. case GGUF_TYPE_INT16:
  16820. case GGUF_TYPE_UINT32:
  16821. case GGUF_TYPE_INT32:
  16822. case GGUF_TYPE_FLOAT32:
  16823. case GGUF_TYPE_UINT64:
  16824. case GGUF_TYPE_INT64:
  16825. case GGUF_TYPE_FLOAT64:
  16826. case GGUF_TYPE_BOOL:
  16827. {
  16828. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16829. } break;
  16830. case GGUF_TYPE_STRING:
  16831. {
  16832. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16833. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16834. }
  16835. } break;
  16836. case GGUF_TYPE_ARRAY:
  16837. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16838. };
  16839. } break;
  16840. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16841. };
  16842. }
  16843. // write tensor infos
  16844. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16845. struct gguf_tensor_info * info = &ctx->infos[i];
  16846. gguf_bwrite_str(buf, &info->name);
  16847. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16848. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16849. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16850. }
  16851. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16852. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16853. }
  16854. // we require the data section to be aligned, so take into account any padding
  16855. {
  16856. const size_t offset = buf->offset;
  16857. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16858. if (offset_pad != offset) {
  16859. uint8_t pad = 0;
  16860. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16861. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16862. }
  16863. }
  16864. }
  16865. if (only_meta) {
  16866. return;
  16867. }
  16868. size_t offset = 0;
  16869. // write tensor data
  16870. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16871. struct gguf_tensor_info * info = &ctx->infos[i];
  16872. const size_t size = info->size;
  16873. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16874. gguf_bwrite_el(buf, info->data, size);
  16875. if (size_pad != size) {
  16876. uint8_t pad = 0;
  16877. for (size_t j = 0; j < size_pad - size; ++j) {
  16878. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16879. }
  16880. }
  16881. GGML_ASSERT(offset == info->offset);
  16882. offset += size_pad;
  16883. }
  16884. }
  16885. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16886. FILE * file = fopen(fname, "wb");
  16887. if (!file) {
  16888. GGML_ASSERT(false && "failed to open file for writing");
  16889. }
  16890. struct gguf_buf buf = gguf_buf_init(16*1024);
  16891. gguf_write_to_buf(ctx, &buf, only_meta);
  16892. fwrite(buf.data, 1, buf.offset, file);
  16893. gguf_buf_free(buf);
  16894. fclose(file);
  16895. }
  16896. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16897. // no allocs - only compute size
  16898. struct gguf_buf buf = gguf_buf_init(0);
  16899. gguf_write_to_buf(ctx, &buf, true);
  16900. return buf.offset;
  16901. }
  16902. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16903. struct gguf_buf buf = gguf_buf_init(16*1024);
  16904. gguf_write_to_buf(ctx, &buf, true);
  16905. memcpy(data, buf.data, buf.offset);
  16906. gguf_buf_free(buf);
  16907. }
  16908. ////////////////////////////////////////////////////////////////////////////////
  16909. int ggml_cpu_has_avx(void) {
  16910. #if defined(__AVX__)
  16911. return 1;
  16912. #else
  16913. return 0;
  16914. #endif
  16915. }
  16916. int ggml_cpu_has_avx2(void) {
  16917. #if defined(__AVX2__)
  16918. return 1;
  16919. #else
  16920. return 0;
  16921. #endif
  16922. }
  16923. int ggml_cpu_has_avx512(void) {
  16924. #if defined(__AVX512F__)
  16925. return 1;
  16926. #else
  16927. return 0;
  16928. #endif
  16929. }
  16930. int ggml_cpu_has_avx512_vbmi(void) {
  16931. #if defined(__AVX512VBMI__)
  16932. return 1;
  16933. #else
  16934. return 0;
  16935. #endif
  16936. }
  16937. int ggml_cpu_has_avx512_vnni(void) {
  16938. #if defined(__AVX512VNNI__)
  16939. return 1;
  16940. #else
  16941. return 0;
  16942. #endif
  16943. }
  16944. int ggml_cpu_has_fma(void) {
  16945. #if defined(__FMA__)
  16946. return 1;
  16947. #else
  16948. return 0;
  16949. #endif
  16950. }
  16951. int ggml_cpu_has_neon(void) {
  16952. #if defined(__ARM_NEON)
  16953. return 1;
  16954. #else
  16955. return 0;
  16956. #endif
  16957. }
  16958. int ggml_cpu_has_arm_fma(void) {
  16959. #if defined(__ARM_FEATURE_FMA)
  16960. return 1;
  16961. #else
  16962. return 0;
  16963. #endif
  16964. }
  16965. int ggml_cpu_has_f16c(void) {
  16966. #if defined(__F16C__)
  16967. return 1;
  16968. #else
  16969. return 0;
  16970. #endif
  16971. }
  16972. int ggml_cpu_has_fp16_va(void) {
  16973. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16974. return 1;
  16975. #else
  16976. return 0;
  16977. #endif
  16978. }
  16979. int ggml_cpu_has_wasm_simd(void) {
  16980. #if defined(__wasm_simd128__)
  16981. return 1;
  16982. #else
  16983. return 0;
  16984. #endif
  16985. }
  16986. int ggml_cpu_has_blas(void) {
  16987. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16988. return 1;
  16989. #else
  16990. return 0;
  16991. #endif
  16992. }
  16993. int ggml_cpu_has_cublas(void) {
  16994. #if defined(GGML_USE_CUBLAS)
  16995. return 1;
  16996. #else
  16997. return 0;
  16998. #endif
  16999. }
  17000. int ggml_cpu_has_clblast(void) {
  17001. #if defined(GGML_USE_CLBLAST)
  17002. return 1;
  17003. #else
  17004. return 0;
  17005. #endif
  17006. }
  17007. int ggml_cpu_has_gpublas(void) {
  17008. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17009. }
  17010. int ggml_cpu_has_sse3(void) {
  17011. #if defined(__SSE3__)
  17012. return 1;
  17013. #else
  17014. return 0;
  17015. #endif
  17016. }
  17017. int ggml_cpu_has_ssse3(void) {
  17018. #if defined(__SSSE3__)
  17019. return 1;
  17020. #else
  17021. return 0;
  17022. #endif
  17023. }
  17024. int ggml_cpu_has_vsx(void) {
  17025. #if defined(__POWER9_VECTOR__)
  17026. return 1;
  17027. #else
  17028. return 0;
  17029. #endif
  17030. }
  17031. ////////////////////////////////////////////////////////////////////////////////