| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import json
- import os
- import shutil
- import struct
- import sys
- import tempfile
- from enum import IntEnum, auto
- from io import BufferedWriter
- from pathlib import Path
- from typing import IO, Any, BinaryIO, Callable, Sequence
- import numpy as np
- #
- # constants
- #
- GGUF_MAGIC = 0x46554747
- GGUF_VERSION = 2
- GGUF_DEFAULT_ALIGNMENT = 32
- # general
- KEY_GENERAL_ARCHITECTURE = "general.architecture"
- KEY_GENERAL_QUANTIZATION_VERSION = "general.quantization_version"
- KEY_GENERAL_ALIGNMENT = "general.alignment"
- KEY_GENERAL_NAME = "general.name"
- KEY_GENERAL_AUTHOR = "general.author"
- KEY_GENERAL_URL = "general.url"
- KEY_GENERAL_DESCRIPTION = "general.description"
- KEY_GENERAL_LICENSE = "general.license"
- KEY_GENERAL_SOURCE_URL = "general.source.url"
- KEY_GENERAL_SOURCE_HF_REPO = "general.source.hugginface.repository"
- KEY_GENERAL_FILE_TYPE = "general.file_type"
- # LLM
- KEY_CONTEXT_LENGTH = "{arch}.context_length"
- KEY_EMBEDDING_LENGTH = "{arch}.embedding_length"
- KEY_BLOCK_COUNT = "{arch}.block_count"
- KEY_FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
- KEY_USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
- KEY_TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
- # attention
- KEY_ATTENTION_HEAD_COUNT = "{arch}.attention.head_count"
- KEY_ATTENTION_HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
- KEY_ATTENTION_MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
- KEY_ATTENTION_CLAMP_KQV = "{arch}.attention.clamp_kqv"
- KEY_ATTENTION_LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
- KEY_ATTENTION_LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
- # RoPE
- KEY_ROPE_DIMENSION_COUNT = "{arch}.rope.dimension_count"
- KEY_ROPE_FREQ_BASE = "{arch}.rope.freq_base"
- KEY_ROPE_SCALE_LINEAR = "{arch}.rope.scale_linear"
- # tokenization
- KEY_TOKENIZER_MODEL = "tokenizer.ggml.model"
- KEY_TOKENIZER_LIST = "tokenizer.ggml.tokens"
- KEY_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type"
- KEY_TOKENIZER_SCORES = "tokenizer.ggml.scores"
- KEY_TOKENIZER_MERGES = "tokenizer.ggml.merges"
- KEY_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id"
- KEY_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id"
- KEY_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id"
- KEY_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id"
- KEY_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id"
- KEY_TOKENIZER_HF_JSON = "tokenizer.huggingface.json"
- KEY_TOKENIZER_RWKV = "tokenizer.rwkv.world"
- #
- # recommended mapping of model tensor names for storage in gguf
- #
- class MODEL_ARCH(IntEnum):
- LLAMA : int = auto()
- FALCON : int = auto()
- GPT2 : int = auto()
- GPTJ : int = auto()
- GPTNEOX: int = auto()
- MPT : int = auto()
- class MODEL_TENSOR(IntEnum):
- TOKEN_EMBD : int = auto()
- POS_EMBD : int = auto()
- OUTPUT : int = auto()
- OUTPUT_NORM : int = auto()
- ROPE_FREQS : int = auto()
- ATTN_Q : int = auto()
- ATTN_K : int = auto()
- ATTN_V : int = auto()
- ATTN_QKV : int = auto()
- ATTN_OUT : int = auto()
- ATTN_NORM : int = auto()
- ATTN_NORM_2 : int = auto()
- ATTN_ROT_EMBD: int = auto()
- FFN_GATE : int = auto()
- FFN_DOWN : int = auto()
- FFN_UP : int = auto()
- FFN_NORM : int = auto()
- MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
- MODEL_ARCH.LLAMA: "llama",
- MODEL_ARCH.FALCON: "falcon",
- MODEL_ARCH.GPT2: "gpt2",
- MODEL_ARCH.GPTJ: "gptj",
- MODEL_ARCH.GPTNEOX: "gptneox",
- MODEL_ARCH.MPT: "mpt",
- }
- MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
- MODEL_ARCH.LLAMA: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
- MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
- MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.GPTNEOX: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.FALCON: {
- MODEL_TENSOR.TOKEN_EMBD: "token_embd",
- MODEL_TENSOR.OUTPUT_NORM: "output_norm",
- MODEL_TENSOR.OUTPUT: "output",
- MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
- MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
- MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
- MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
- MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
- MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
- },
- MODEL_ARCH.GPT2: {
- # TODO
- },
- # TODO
- }
- # tensors that will not be serialized
- MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
- MODEL_ARCH.LLAMA: [
- MODEL_TENSOR.ROPE_FREQS,
- MODEL_TENSOR.ATTN_ROT_EMBD,
- ],
- }
- class TensorNameMap:
- mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
- # Token embeddings
- MODEL_TENSOR.TOKEN_EMBD: (
- "gpt_neox.embed_in", # gptneox
- "transformer.wte", # gpt2 mpt
- "transformer.word_embeddings", # falcon
- "model.embed_tokens", # llama-hf
- "tok_embeddings", # llama-pth
- ),
- # Position embeddings
- MODEL_TENSOR.POS_EMBD: (
- "transformer.wpe", # gpt2
- ),
- # Output
- MODEL_TENSOR.OUTPUT: (
- "embed_out", # gptneox
- "lm_head", # gpt2 mpt falcon llama-hf
- "output", # llama-pth
- ),
- # Output norm
- MODEL_TENSOR.OUTPUT_NORM: (
- "gpt_neox.final_layer_norm", # gptneox
- "transformer.ln_f", # gpt2 falcon
- "model.norm", # llama-hf
- "norm", # llama-pth
- ),
- # Rope frequencies
- MODEL_TENSOR.ROPE_FREQS: (
- "rope.freqs", # llama-pth
- ),
- }
- block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
- # Attention norm
- MODEL_TENSOR.ATTN_NORM: (
- "gpt_neox.layers.{bid}.input_layernorm", # gptneox
- "transformer.h.{bid}.ln_1", # gpt2
- "transformer.blocks.{bid}.norm_1", # mpt
- "transformer.h.{bid}.input_layernorm", # falcon7b
- "transformer.h.{bid}.ln_mlp", # falcon40b
- "model.layers.{bid}.input_layernorm", # llama-hf
- "layers.{bid}.attention_norm", # llama-pth
- ),
- # Attention norm 2
- MODEL_TENSOR.ATTN_NORM_2: (
- "transformer.h.{bid}.ln_attn", # falcon40b
- ),
- # Attention query-key-value
- MODEL_TENSOR.ATTN_QKV: (
- "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
- "transformer.h.{bid}.attn.c_attn", # gpt2
- "transformer.blocks.{bid}.attn.Wqkv", # mpt
- "transformer.h.{bid}.self_attention.query_key_value", # falcon
- ),
- # Attention query
- MODEL_TENSOR.ATTN_Q: (
- "model.layers.{bid}.self_attn.q_proj", # llama-hf
- "layers.{bid}.attention.wq", # llama-pth
- ),
- # Attention key
- MODEL_TENSOR.ATTN_K: (
- "model.layers.{bid}.self_attn.k_proj", # llama-hf
- "layers.{bid}.attention.wk", # llama-pth
- ),
- # Attention value
- MODEL_TENSOR.ATTN_V: (
- "model.layers.{bid}.self_attn.v_proj", # llama-hf
- "layers.{bid}.attention.wv", # llama-pth
- ),
- # Attention output
- MODEL_TENSOR.ATTN_OUT: (
- "gpt_neox.layers.{bid}.attention.dense", # gptneox
- "transformer.h.{bid}.attn.c_proj", # gpt2
- "transformer.blocks.{bid}.attn.out_proj", # mpt
- "transformer.h.{bid}.self_attention.dense", # falcon
- "model.layers.{bid}.self_attn.o_proj", # llama-hf
- "layers.{bid}.attention.wo", # llama-pth
- ),
- # Rotary embeddings
- MODEL_TENSOR.ATTN_ROT_EMBD: (
- "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
- "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
- ),
- # Feed-forward norm
- MODEL_TENSOR.FFN_NORM: (
- "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
- "transformer.h.{bid}.ln_2", # gpt2
- "transformer.blocks.{bid}.norm_2", # mpt
- "model.layers.{bid}.post_attention_layernorm", # llama-hf
- "layers.{bid}.ffn_norm", # llama-pth
- ),
- # Feed-forward up
- MODEL_TENSOR.FFN_UP: (
- "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
- "transformer.h.{bid}.mlp.c_fc", # gpt2
- "transformer.blocks.{bid}.ffn.up_proj", # mpt
- "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
- "model.layers.{bid}.mlp.up_proj", # llama-hf
- "layers.{bid}.feed_forward.w3", # llama-pth
- ),
- # Feed-forward gate
- MODEL_TENSOR.FFN_GATE: (
- "model.layers.{bid}.mlp.gate_proj", # llama-hf
- "layers.{bid}.feed_forward.w1", # llama-pth
- ),
- # Feed-forward down
- MODEL_TENSOR.FFN_DOWN: (
- "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
- "transformer.h.{bid}.mlp.c_proj", # gpt2
- "transformer.blocks.{bid}.ffn.down_proj", # mpt
- "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
- "model.layers.{bid}.mlp.down_proj", # llama-hf
- "layers.{bid}.feed_forward.w2", # llama-pth
- ),
- }
- mapping: dict[str, tuple[MODEL_TENSOR, str]]
- tensor_names: dict[MODEL_TENSOR, str]
- def __init__(self, arch: MODEL_ARCH, n_blocks: int):
- mapping = self.mapping = {}
- tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
- for tensor, keys in self.mappings_cfg.items():
- tensor_name = tensor_names.get(tensor)
- if tensor_name is None:
- continue
- for key in keys:
- mapping[key] = (tensor, tensor_name)
- for bid in range(n_blocks):
- for tensor, keys in self.block_mappings_cfg.items():
- tensor_name = tensor_names.get(tensor)
- if tensor_name is None:
- continue
- tensor_name = tensor_name.format(bid = bid)
- for key in keys:
- key = key.format(bid = bid)
- mapping[key] = (tensor, tensor_name)
- def get_type_and_name(self, key: str, try_suffixes: Sequence[str]) -> tuple[MODEL_TENSOR, str] | None:
- result = self.mapping.get(key)
- if result is not None:
- return result
- for suffix in try_suffixes:
- if key.endswith(suffix):
- result = self.mapping.get(key[:-len(suffix)])
- if result is not None:
- return (result[0], result[1] + suffix)
- return None
- def get_name(self, key: str, try_suffixes: Sequence[str]) -> str | None:
- result = self.get_type_and_name(key, try_suffixes = try_suffixes)
- if result is None:
- return None
- return result[1]
- def get_type(self, key: str, try_suffixes: Sequence[str]) -> MODEL_TENSOR | None:
- result = self.get_type_and_name(key, try_suffixes = try_suffixes)
- if result is None:
- return None
- return result[0]
- def __getitem__(self, key: str) -> str:
- try:
- return self.mapping[key][1]
- except KeyError:
- raise KeyError(key)
- def __contains__(self, key: str) -> bool:
- return key in self.mapping
- def __repr__(self) -> str:
- return repr(self.mapping)
- def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
- return TensorNameMap(arch, n_blocks)
- class TokenType(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- #
- # implementation
- #
- class GGMLQuantizationType(IntEnum):
- F32 = 0
- F16 = 1
- Q4_0 = 2
- Q4_1 = 3
- Q5_0 = 6
- Q5_1 = 7
- Q8_0 = 8
- Q8_1 = 9
- Q2_K = 10
- Q3_K = 11
- Q4_K = 12
- Q5_K = 13
- Q6_K = 14
- Q8_K = 15
- class GGUFValueType(IntEnum):
- UINT8 = 0
- INT8 = 1
- UINT16 = 2
- INT16 = 3
- UINT32 = 4
- INT32 = 5
- FLOAT32 = 6
- BOOL = 7
- STRING = 8
- ARRAY = 9
- UINT64 = 10
- INT64 = 11
- FLOAT64 = 12
- @staticmethod
- def get_type(val):
- if isinstance(val, str) or isinstance(val, bytes) or isinstance(val, bytearray):
- return GGUFValueType.STRING
- elif isinstance(val, list):
- return GGUFValueType.ARRAY
- elif isinstance(val, float):
- return GGUFValueType.FLOAT32
- elif isinstance(val, bool):
- return GGUFValueType.BOOL
- elif isinstance(val, int):
- return GGUFValueType.INT32
- # TODO: need help with 64-bit types in Python
- else:
- print("Unknown type: "+str(type(val)))
- sys.exit()
- class GGUFWriter:
- fout: BufferedWriter
- arch: str
- offset_tensor = 0
- data_alignment = GGUF_DEFAULT_ALIGNMENT
- kv_data = b""
- kv_data_count = 0
- ti_data = b""
- ti_data_count = 0
- use_temp_file: bool
- temp_file: tempfile.SpooledTemporaryFile[bytes] | None = None
- tensors: list[tuple[np.ndarray[Any, Any], int]]
- def __init__(self, path: os.PathLike[str] | str, arch: str, use_temp_file = True):
- self.fout = open(path, "wb")
- self.arch = arch
- self.add_architecture()
- self.use_temp_file = use_temp_file
- self.tensors = []
- def write_header_to_file(self):
- self.fout.write(struct.pack("<I", GGUF_MAGIC))
- self.fout.write(struct.pack("<I", GGUF_VERSION))
- self.fout.write(struct.pack("<Q", self.ti_data_count))
- self.fout.write(struct.pack("<Q", self.kv_data_count))
- self.flush()
- # print("tensors " + str(self.ti_data_count) + " kv " + str(self.kv_data_count))
- def write_kv_data_to_file(self):
- self.fout.write(self.kv_data)
- self.flush()
- def write_ti_data_to_file(self):
- self.fout.write(self.ti_data)
- self.flush()
- def add_key(self, key: str):
- self.add_val(key, GGUFValueType.STRING, add_vtype=False)
- def add_uint8(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT8)
- def add_int8(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT8)
- def add_uint16(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT16)
- def add_int16(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT16)
- def add_uint32(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT32)
- def add_int32(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT32)
- def add_float32(self, key: str, val: float):
- self.add_key(key)
- self.add_val(val, GGUFValueType.FLOAT32)
- def add_uint64(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.UINT64)
- def add_int64(self, key: str, val: int):
- self.add_key(key)
- self.add_val(val, GGUFValueType.INT64)
- def add_float64(self, key: str, val: float):
- self.add_key(key)
- self.add_val(val, GGUFValueType.FLOAT64)
- def add_bool(self, key: str, val: bool):
- self.add_key(key)
- self.add_val(val, GGUFValueType.BOOL)
- def add_string(self, key: str, val: str):
- if len(val) == 0:
- return
- self.add_key(key)
- self.add_val(val, GGUFValueType.STRING)
- def add_array(self, key: str, val: Sequence[Any]):
- if not isinstance(val, Sequence):
- raise ValueError("Value must be a sequence for array type")
- self.add_key(key)
- self.add_val(val, GGUFValueType.ARRAY)
- _simple_value_packing = {
- GGUFValueType.UINT8: "<B",
- GGUFValueType.INT8: "<b",
- GGUFValueType.UINT16: "<H",
- GGUFValueType.INT16: "<h",
- GGUFValueType.UINT32: "<I",
- GGUFValueType.INT32: "<i",
- GGUFValueType.FLOAT32: "<f",
- GGUFValueType.UINT64: "<Q",
- GGUFValueType.INT64: "<q",
- GGUFValueType.FLOAT64: "<d",
- GGUFValueType.BOOL: "?" ,
- }
- def add_val(self, val: Any, vtype: GGUFValueType | None = None, add_vtype: bool = True):
- if vtype is None:
- vtype = GGUFValueType.get_type(val)
- if add_vtype:
- self.kv_data += struct.pack("<I", vtype)
- self.kv_data_count += 1
- pack_fmt = self._simple_value_packing.get(vtype)
- if pack_fmt is not None:
- self.kv_data += struct.pack(pack_fmt, val)
- elif vtype == GGUFValueType.STRING:
- encoded_val = val.encode("utf8") if isinstance(val, str) else val
- self.kv_data += struct.pack("<Q", len(encoded_val))
- self.kv_data += encoded_val
- elif vtype == GGUFValueType.ARRAY and isinstance(val, Sequence) and len(val) > 0:
- ltype = GGUFValueType.get_type(val[0])
- if not all(GGUFValueType.get_type(i) is ltype for i in val[1:]):
- raise ValueError("All items in a GGUF array should be of the same type")
- self.kv_data += struct.pack("<I", ltype)
- self.kv_data += struct.pack("<Q", len(val))
- for item in val:
- self.add_val(item, add_vtype=False)
- else:
- raise ValueError("Invalid GGUF metadata value type or value")
- @staticmethod
- def ggml_pad(x: int, n: int) -> int:
- return ((x + n - 1) // n) * n
- def add_tensor_info(self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32], tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None):
- assert raw_dtype is not None or tensor_dtype in (np.float32, np.float16), "Only F32 and F16 tensors are supported for now"
- encoded_name = name.encode("utf8")
- self.ti_data += struct.pack("<Q", len(encoded_name))
- self.ti_data += encoded_name
- n_dims = len(tensor_shape)
- self.ti_data += struct.pack("<I", n_dims)
- for i in range(n_dims):
- self.ti_data += struct.pack("<Q", tensor_shape[n_dims - 1 - i])
- if raw_dtype is None:
- dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
- else:
- dtype = raw_dtype
- self.ti_data += struct.pack("<I", dtype)
- self.ti_data += struct.pack("<Q", self.offset_tensor)
- self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
- self.ti_data_count += 1
- def add_tensor(self, name: str, tensor: np.ndarray[Any, Any], raw_shape: Sequence[int] | None = None, raw_dtype: GGMLQuantizationType | None = None):
- if self.use_temp_file and self.temp_file is None:
- fp = tempfile.SpooledTemporaryFile(mode="w+b", max_size=256*1024*1024)
- fp.seek(0)
- self.temp_file = fp
- shape: Sequence[int] = raw_shape if raw_shape is not None else tensor.shape
- self.add_tensor_info(name, shape, tensor.dtype, tensor.nbytes, raw_dtype = raw_dtype)
- pad = GGUFWriter.ggml_pad(tensor.nbytes, self.data_alignment) - tensor.nbytes
- if self.temp_file is None:
- self.tensors.append((tensor, pad))
- return
- tensor.tofile(self.temp_file)
- if pad != 0:
- self.temp_file.write(bytes([0] * pad))
- def write_padding(self, fp: BinaryIO, n: int, align: int | None = None):
- pad = GGUFWriter.ggml_pad(n, align if align is not None else self.data_alignment) - n
- if pad != 0:
- fp.write(bytes([0] * pad))
- def write_tensor_data(self, tensor: np.ndarray[Any, Any]):
- self.write_padding(self.fout, self.fout.tell())
- tensor.tofile(self.fout)
- self.write_padding(self.fout, tensor.nbytes)
- def write_tensors_to_file(self):
- self.write_ti_data_to_file()
- self.write_padding(self.fout, self.fout.tell())
- if self.temp_file is None:
- for (currtensor, currpad) in self.tensors:
- currtensor.tofile(self.fout)
- if currpad != 0:
- self.fout.write(bytes([0] * currpad))
- return
- self.temp_file.seek(0)
- shutil.copyfileobj(self.temp_file, self.fout)
- self.flush()
- self.temp_file.close()
- def flush(self):
- self.fout.flush()
- def close(self):
- self.fout.close()
- def add_architecture(self):
- self.add_string(KEY_GENERAL_ARCHITECTURE, self.arch)
- def add_author(self, author: str):
- self.add_string(KEY_GENERAL_AUTHOR, author)
- def add_tensor_data_layout(self, layout: str):
- self.add_string(KEY_TENSOR_DATA_LAYOUT.format(arch=self.arch), layout)
- def add_url(self, url: str):
- self.add_string(KEY_GENERAL_URL, url)
- def add_description(self, description: str):
- self.add_string(KEY_GENERAL_DESCRIPTION, description)
- def add_source_url(self, url: str):
- self.add_string(KEY_GENERAL_SOURCE_URL, url)
- def add_source_hf_repo(self, repo: str):
- self.add_string(KEY_GENERAL_SOURCE_HF_REPO, repo)
- def add_file_type(self, ftype: int):
- self.add_uint32(KEY_GENERAL_FILE_TYPE, ftype)
- def add_name(self, name: str):
- self.add_string(KEY_GENERAL_NAME, name)
- def add_quantization_version(self, quantization_version: GGMLQuantizationType):
- self.add_uint32(
- KEY_GENERAL_QUANTIZATION_VERSION, quantization_version)
- def add_custom_alignment(self, alignment: int):
- self.data_alignment = alignment
- self.add_uint32(KEY_GENERAL_ALIGNMENT, alignment)
- def add_context_length(self, length: int):
- self.add_uint32(
- KEY_CONTEXT_LENGTH.format(arch=self.arch), length)
- def add_embedding_length(self, length: int):
- self.add_uint32(
- KEY_EMBEDDING_LENGTH.format(arch=self.arch), length)
- def add_block_count(self, length: int):
- self.add_uint32(
- KEY_BLOCK_COUNT.format(arch=self.arch), length)
- def add_feed_forward_length(self, length: int):
- self.add_uint32(
- KEY_FEED_FORWARD_LENGTH.format(arch=self.arch), length)
- def add_parallel_residual(self, use: bool):
- self.add_bool(
- KEY_USE_PARALLEL_RESIDUAL.format(arch=self.arch), use)
- def add_head_count(self, count: int):
- self.add_uint32(
- KEY_ATTENTION_HEAD_COUNT.format(arch=self.arch), count)
- def add_head_count_kv(self, count: int):
- self.add_uint32(
- KEY_ATTENTION_HEAD_COUNT_KV.format(arch=self.arch), count)
- def add_max_alibi_bias(self, bias: float):
- self.add_float32(
- KEY_ATTENTION_MAX_ALIBI_BIAS.format(arch=self.arch), bias)
- def add_clamp_kqv(self, value: float):
- self.add_float32(
- KEY_ATTENTION_CLAMP_KQV.format(arch=self.arch), value)
- def add_layer_norm_eps(self, value: float):
- self.add_float32(
- KEY_ATTENTION_LAYERNORM_EPS.format(arch=self.arch), value)
- def add_layer_norm_rms_eps(self, value: float):
- self.add_float32(
- KEY_ATTENTION_LAYERNORM_RMS_EPS.format(arch=self.arch), value)
- def add_rope_dimension_count(self, count: int):
- self.add_uint32(
- KEY_ROPE_DIMENSION_COUNT.format(arch=self.arch), count)
- def add_rope_freq_base(self, value: float):
- self.add_float32(KEY_ROPE_FREQ_BASE.format(arch=self.arch), value)
- def add_rope_scale_linear(self, value: float):
- self.add_float32(KEY_ROPE_SCALE_LINEAR.format(arch=self.arch), value)
- def add_tokenizer_model(self, model: str):
- self.add_string(KEY_TOKENIZER_MODEL, model)
- def add_token_list(self, tokens: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
- self.add_array(KEY_TOKENIZER_LIST, tokens)
- def add_token_merges(self, merges: Sequence[str] | Sequence[bytes] | Sequence[bytearray]):
- self.add_array(KEY_TOKENIZER_MERGES, merges)
- def add_token_types(self, types: Sequence[TokenType] | Sequence[int]):
- self.add_array(KEY_TOKENIZER_TOKEN_TYPE, types)
- def add_token_scores(self, scores: Sequence[float]):
- self.add_array(KEY_TOKENIZER_SCORES, scores)
- def add_bos_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_BOS_ID, id)
- def add_eos_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_EOS_ID, id)
- def add_unk_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_UNK_ID, id)
- def add_sep_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_SEP_ID, id)
- def add_pad_token_id(self, id: int):
- self.add_uint32(KEY_TOKENIZER_PAD_ID, id)
- class SpecialVocab:
- load_merges: bool = False
- merges: list[str] = []
- special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
- special_token_ids: dict[str, int] = {}
- def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
- self.special_token_ids = {}
- self.load_merges = load_merges
- if special_token_types is not None:
- self.special_token_types = special_token_types
- self.load(path)
- def load(self, path: Path):
- if not self.try_load_from_tokenizer_json(path):
- self.try_load_from_config_json(path)
- def try_load_from_tokenizer_json(self, path: Path) -> bool:
- tokenizer_file = path / 'tokenizer.json'
- if not tokenizer_file.is_file():
- return False
- with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
- tokenizer = json.load(f)
- if self.load_merges:
- merges = tokenizer.get('model', {}).get('merges')
- if isinstance(merges, list) and len(merges) > 0 and isinstance(merges[0], str):
- self.merges = merges
- tokenizer_config_file = path / 'tokenizer_config.json'
- added_tokens = tokenizer.get('added_tokens')
- if added_tokens is None or not tokenizer_config_file.is_file():
- return True
- with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
- tokenizer_config = json.load(f)
- for typ in self.special_token_types:
- entry = tokenizer_config.get(f'{typ}_token')
- if isinstance(entry, str):
- tc_content = entry
- elif isinstance(entry, dict):
- entry_content = entry.get('content')
- if not isinstance(entry_content, str):
- continue
- tc_content = entry_content
- else:
- continue
- for maybe_token_id in (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content):
- if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
- self.special_token_ids[typ] = maybe_token_id
- break
- return True
- def try_load_from_config_json(self, path: Path) -> bool:
- config_file = path / 'config.json'
- if not config_file.is_file():
- return False
- with open(config_file, 'r', encoding = 'utf-8') as f:
- config = json.load(f)
- for typ in self.special_token_types:
- maybe_token_id = config.get(f'{typ}_token_id')
- if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
- self.special_token_ids[typ] = maybe_token_id
- return True
- def add_to_gguf(self, gw: GGUFWriter):
- if len(self.merges) > 0:
- print(f'gguf: Adding {len(self.merges)} merge(s).')
- gw.add_token_merges(self.merges)
- for typ, tokid in self.special_token_ids.items():
- handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
- if handler is None:
- print(f'gguf: WARNING: No handler for special token type {typ} with id {tokid} - skipping')
- continue
- print(f'gguf: Setting special token type {typ} to {tokid}')
- handler(tokid)
- def __repr__(self):
- return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
- # Example usage:
- if __name__ == "__main__":
- # Example usage with a file
- gguf_writer = GGUFWriter("example.gguf", "llama")
- gguf_writer.add_architecture()
- gguf_writer.add_block_count(12)
- gguf_writer.add_uint32("answer", 42) # Write a 32-bit integer
- gguf_writer.add_float32("answer_in_float", 42.0) # Write a 32-bit float
- gguf_writer.add_custom_alignment(64)
- tensor1 = np.ones((32,), dtype=np.float32) * 100.0
- tensor2 = np.ones((64,), dtype=np.float32) * 101.0
- tensor3 = np.ones((96,), dtype=np.float32) * 102.0
- gguf_writer.add_tensor("tensor1", tensor1)
- gguf_writer.add_tensor("tensor2", tensor2)
- gguf_writer.add_tensor("tensor3", tensor3)
- gguf_writer.write_header_to_file()
- gguf_writer.write_kv_data_to_file()
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
|