k_quants.c 170 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308
  1. #include "k_quants.h"
  2. #include "ggml.h"
  3. #include <math.h>
  4. #include <string.h>
  5. #include <assert.h>
  6. #ifdef __ARM_NEON
  7. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  8. //
  9. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  10. //
  11. #include <arm_neon.h>
  12. #if !defined(__aarch64__)
  13. inline static int32_t vaddvq_s16(int16x8_t v) {
  14. return
  15. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  16. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  17. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  18. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  19. }
  20. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  21. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  22. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  23. return vcombine_s16(a0, b0);
  24. }
  25. inline static int32_t vaddvq_s32(int32x4_t v) {
  26. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  27. }
  28. #endif
  29. #else
  30. #ifdef __wasm_simd128__
  31. #include <wasm_simd128.h>
  32. #else
  33. #ifdef __POWER9_VECTOR__
  34. #include <altivec.h>
  35. #undef bool
  36. #define bool _Bool
  37. #else
  38. #if defined(_MSC_VER) || defined(__MINGW32__)
  39. #include <intrin.h>
  40. #else
  41. #if !defined(__riscv)
  42. #include <immintrin.h>
  43. #endif
  44. #endif
  45. #endif
  46. #endif
  47. #endif
  48. #undef MIN
  49. #undef MAX
  50. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  51. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  52. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  53. //
  54. // 2-6 bit quantization in super-blocks
  55. //
  56. //
  57. // ===================== Helper functions
  58. //
  59. static inline int nearest_int(float fval) {
  60. assert(fval <= 4194303.f);
  61. float val = fval + 12582912.f;
  62. int i; memcpy(&i, &val, sizeof(int));
  63. return (i & 0x007fffff) - 0x00400000;
  64. }
  65. static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
  66. float max = 0;
  67. float amax = 0;
  68. for (int i = 0; i < n; ++i) {
  69. float ax = fabsf(x[i]);
  70. if (ax > amax) { amax = ax; max = x[i]; }
  71. }
  72. if (!amax) { // all zero
  73. for (int i = 0; i < n; ++i) {
  74. L[i] = 0;
  75. }
  76. return 0.f;
  77. }
  78. float iscale = -nmax / max;
  79. if (rmse_type == 0) {
  80. for (int i = 0; i < n; ++i) {
  81. int l = nearest_int(iscale * x[i]);
  82. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  83. }
  84. return 1/iscale;
  85. }
  86. bool return_early = false;
  87. if (rmse_type < 0) {
  88. rmse_type = -rmse_type;
  89. return_early = true;
  90. }
  91. int weight_type = rmse_type%2;
  92. float sumlx = 0;
  93. float suml2 = 0;
  94. for (int i = 0; i < n; ++i) {
  95. int l = nearest_int(iscale * x[i]);
  96. l = MAX(-nmax, MIN(nmax-1, l));
  97. L[i] = l + nmax;
  98. float w = weight_type == 1 ? x[i] * x[i] : 1;
  99. sumlx += w*x[i]*l;
  100. suml2 += w*l*l;
  101. }
  102. float scale = sumlx/suml2;
  103. if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale;
  104. float best = scale * sumlx;
  105. for (int is = -9; is <= 9; ++is) {
  106. if (is == 0) {
  107. continue;
  108. }
  109. iscale = -(nmax + 0.1f*is) / max;
  110. sumlx = suml2 = 0;
  111. for (int i = 0; i < n; ++i) {
  112. int l = nearest_int(iscale * x[i]);
  113. l = MAX(-nmax, MIN(nmax-1, l));
  114. float w = weight_type == 1 ? x[i] * x[i] : 1;
  115. sumlx += w*x[i]*l;
  116. suml2 += w*l*l;
  117. }
  118. if (suml2 > 0 && sumlx*sumlx > best*suml2) {
  119. for (int i = 0; i < n; ++i) {
  120. int l = nearest_int(iscale * x[i]);
  121. L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
  122. }
  123. scale = sumlx/suml2; best = scale*sumlx;
  124. }
  125. }
  126. return scale;
  127. }
  128. static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
  129. float max = 0;
  130. float amax = 0;
  131. for (int i = 0; i < n; ++i) {
  132. float ax = fabsf(x[i]);
  133. if (ax > amax) { amax = ax; max = x[i]; }
  134. }
  135. if (!amax) { // all zero
  136. for (int i = 0; i < n; ++i) { L[i] = 0; }
  137. return 0.f;
  138. }
  139. float iscale = -nmax / max;
  140. if (do_rmse) {
  141. float sumlx = 0;
  142. float suml2 = 0;
  143. for (int i = 0; i < n; ++i) {
  144. int l = nearest_int(iscale * x[i]);
  145. l = MAX(-nmax, MIN(nmax-1, l));
  146. L[i] = l;
  147. float w = x[i]*x[i];
  148. sumlx += w*x[i]*l;
  149. suml2 += w*l*l;
  150. }
  151. for (int itry = 0; itry < 5; ++itry) {
  152. int n_changed = 0;
  153. for (int i = 0; i < n; ++i) {
  154. float w = x[i]*x[i];
  155. float slx = sumlx - w*x[i]*L[i];
  156. if (slx > 0) {
  157. float sl2 = suml2 - w*L[i]*L[i];
  158. int new_l = nearest_int(x[i] * sl2 / slx);
  159. new_l = MAX(-nmax, MIN(nmax-1, new_l));
  160. if (new_l != L[i]) {
  161. slx += w*x[i]*new_l;
  162. sl2 += w*new_l*new_l;
  163. if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
  164. L[i] = new_l; sumlx = slx; suml2 = sl2;
  165. ++n_changed;
  166. }
  167. }
  168. }
  169. }
  170. if (!n_changed) {
  171. break;
  172. }
  173. }
  174. for (int i = 0; i < n; ++i) {
  175. L[i] += nmax;
  176. }
  177. return sumlx / suml2;
  178. }
  179. for (int i = 0; i < n; ++i) {
  180. int l = nearest_int(iscale * x[i]);
  181. l = MAX(-nmax, MIN(nmax-1, l));
  182. L[i] = l + nmax;
  183. }
  184. return 1/iscale;
  185. }
  186. static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min,
  187. int ntry, float alpha) {
  188. float min = x[0];
  189. float max = x[0];
  190. for (int i = 1; i < n; ++i) {
  191. if (x[i] < min) min = x[i];
  192. if (x[i] > max) max = x[i];
  193. }
  194. if (max == min) {
  195. for (int i = 0; i < n; ++i) L[i] = 0;
  196. *the_min = 0;
  197. return 0.f;
  198. }
  199. if (min > 0) min = 0;
  200. float iscale = nmax/(max - min);
  201. float scale = 1/iscale;
  202. for (int itry = 0; itry < ntry; ++itry) {
  203. float sumlx = 0; int suml2 = 0;
  204. bool did_change = false;
  205. for (int i = 0; i < n; ++i) {
  206. int l = nearest_int(iscale*(x[i] - min));
  207. l = MAX(0, MIN(nmax, l));
  208. if (l != L[i]) {
  209. L[i] = l;
  210. did_change = true;
  211. }
  212. sumlx += (x[i] - min)*l;
  213. suml2 += l*l;
  214. }
  215. scale = sumlx/suml2;
  216. float sum = 0;
  217. for (int i = 0; i < n; ++i) {
  218. sum += x[i] - scale*L[i];
  219. }
  220. min = alpha*min + (1 - alpha)*sum/n;
  221. if (min > 0) min = 0;
  222. iscale = 1/scale;
  223. if (!did_change) break;
  224. }
  225. *the_min = -min;
  226. return scale;
  227. }
  228. static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
  229. uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
  230. float rmin, float rdelta, int nstep, bool use_mad) {
  231. float min = x[0];
  232. float max = x[0];
  233. float sum_w = weights[0];
  234. float sum_x = sum_w * x[0];
  235. for (int i = 1; i < n; ++i) {
  236. if (x[i] < min) min = x[i];
  237. if (x[i] > max) max = x[i];
  238. float w = weights[i];
  239. sum_w += w;
  240. sum_x += w * x[i];
  241. }
  242. if (min > 0) min = 0;
  243. if (max == min) {
  244. for (int i = 0; i < n; ++i) L[i] = 0;
  245. *the_min = -min;
  246. return 0.f;
  247. }
  248. float iscale = nmax/(max - min);
  249. float scale = 1/iscale;
  250. float best_mad = 0;
  251. for (int i = 0; i < n; ++i) {
  252. int l = nearest_int(iscale*(x[i] - min));
  253. L[i] = MAX(0, MIN(nmax, l));
  254. float diff = scale * L[i] + min - x[i];
  255. diff = use_mad ? fabsf(diff) : diff * diff;
  256. float w = weights[i];
  257. best_mad += w * diff;
  258. }
  259. if (nstep < 1) {
  260. *the_min = -min;
  261. return scale;
  262. }
  263. for (int is = 0; is <= nstep; ++is) {
  264. iscale = (rmin + rdelta*is + nmax)/(max - min);
  265. float sum_l = 0, sum_l2 = 0, sum_xl = 0;
  266. for (int i = 0; i < n; ++i) {
  267. int l = nearest_int(iscale*(x[i] - min));
  268. l = MAX(0, MIN(nmax, l));
  269. Laux[i] = l;
  270. float w = weights[i];
  271. sum_l += w*l;
  272. sum_l2 += w*l*l;
  273. sum_xl += w*l*x[i];
  274. }
  275. float D = sum_w * sum_l2 - sum_l * sum_l;
  276. if (D > 0) {
  277. float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D;
  278. float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D;
  279. if (this_min > 0) {
  280. this_min = 0;
  281. this_scale = sum_xl / sum_l2;
  282. }
  283. float mad = 0;
  284. for (int i = 0; i < n; ++i) {
  285. float diff = this_scale * Laux[i] + this_min - x[i];
  286. diff = use_mad ? fabsf(diff) : diff * diff;
  287. float w = weights[i];
  288. mad += w * diff;
  289. }
  290. if (mad < best_mad) {
  291. for (int i = 0; i < n; ++i) {
  292. L[i] = Laux[i];
  293. }
  294. best_mad = mad;
  295. scale = this_scale;
  296. min = this_min;
  297. }
  298. }
  299. }
  300. *the_min = -min;
  301. return scale;
  302. }
  303. #if QK_K == 256
  304. static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
  305. if (j < 4) {
  306. *d = q[j] & 63; *m = q[j + 4] & 63;
  307. } else {
  308. *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
  309. *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
  310. }
  311. }
  312. #endif
  313. //========================- 2-bit (de)-quantization
  314. void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
  315. assert(k % QK_K == 0);
  316. const int nb = k / QK_K;
  317. uint8_t L[QK_K];
  318. uint8_t Laux[16];
  319. float weights[16];
  320. float mins[QK_K/16];
  321. float scales[QK_K/16];
  322. const float q4scale = 15.f;
  323. for (int i = 0; i < nb; i++) {
  324. float max_scale = 0; // as we are deducting the min, scales are always positive
  325. float max_min = 0;
  326. for (int j = 0; j < QK_K/16; ++j) {
  327. for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]);
  328. scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true);
  329. float scale = scales[j];
  330. if (scale > max_scale) {
  331. max_scale = scale;
  332. }
  333. float min = mins[j];
  334. if (min > max_min) {
  335. max_min = min;
  336. }
  337. }
  338. if (max_scale > 0) {
  339. float iscale = q4scale/max_scale;
  340. for (int j = 0; j < QK_K/16; ++j) {
  341. int l = nearest_int(iscale*scales[j]);
  342. y[i].scales[j] = l;
  343. }
  344. y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
  345. } else {
  346. for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
  347. y[i].d = ggml_fp32_to_fp16(0.f);
  348. }
  349. if (max_min > 0) {
  350. float iscale = q4scale/max_min;
  351. for (int j = 0; j < QK_K/16; ++j) {
  352. int l = nearest_int(iscale*mins[j]);
  353. y[i].scales[j] |= (l << 4);
  354. }
  355. y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
  356. } else {
  357. y[i].dmin = ggml_fp32_to_fp16(0.f);
  358. }
  359. for (int j = 0; j < QK_K/16; ++j) {
  360. const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
  361. if (!d) continue;
  362. const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
  363. for (int ii = 0; ii < 16; ++ii) {
  364. int l = nearest_int((x[16*j + ii] + dm)/d);
  365. l = MAX(0, MIN(3, l));
  366. L[16*j + ii] = l;
  367. }
  368. }
  369. #if QK_K == 256
  370. for (int j = 0; j < QK_K; j += 128) {
  371. for (int l = 0; l < 32; ++l) {
  372. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  373. }
  374. }
  375. #else
  376. for (int l = 0; l < 16; ++l) {
  377. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  378. }
  379. #endif
  380. x += QK_K;
  381. }
  382. }
  383. void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
  384. assert(k % QK_K == 0);
  385. const int nb = k / QK_K;
  386. for (int i = 0; i < nb; i++) {
  387. const float d = ggml_fp16_to_fp32(x[i].d);
  388. const float min = ggml_fp16_to_fp32(x[i].dmin);
  389. const uint8_t * q = x[i].qs;
  390. #if QK_K == 256
  391. int is = 0;
  392. float dl, ml;
  393. for (int n = 0; n < QK_K; n += 128) {
  394. int shift = 0;
  395. for (int j = 0; j < 4; ++j) {
  396. uint8_t sc = x[i].scales[is++];
  397. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  398. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
  399. sc = x[i].scales[is++];
  400. dl = d * (sc & 0xF); ml = min * (sc >> 4);
  401. for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
  402. shift += 2;
  403. }
  404. q += 32;
  405. }
  406. #else
  407. float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
  408. float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
  409. float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
  410. float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
  411. for (int l = 0; l < 16; ++l) {
  412. y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
  413. y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
  414. y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
  415. y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
  416. }
  417. y += QK_K;
  418. #endif
  419. }
  420. }
  421. void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
  422. quantize_row_q2_K_reference(x, vy, k);
  423. }
  424. size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  425. const int nb = k / QK_K;
  426. // TODO - collect histograms - although, at a second thought, I don't really care about them
  427. (void)hist;
  428. for (int j = 0; j < nb; j += k) {
  429. block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
  430. quantize_row_q2_K_reference(src + j, y, k);
  431. }
  432. return (n/QK_K*sizeof(block_q2_K));
  433. }
  434. //========================= 3-bit (de)-quantization
  435. void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
  436. assert(k % QK_K == 0);
  437. const int nb = k / QK_K;
  438. int8_t L[QK_K];
  439. float scales[QK_K / 16];
  440. for (int i = 0; i < nb; i++) {
  441. float max_scale = 0;
  442. float amax = 0;
  443. for (int j = 0; j < QK_K/16; ++j) {
  444. scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
  445. float scale = fabsf(scales[j]);
  446. if (scale > amax) {
  447. amax = scale; max_scale = scales[j];
  448. }
  449. }
  450. #if QK_K == 256
  451. memset(y[i].scales, 0, 12);
  452. if (max_scale) {
  453. float iscale = -32.f/max_scale;
  454. for (int j = 0; j < QK_K/16; ++j) {
  455. int8_t l = nearest_int(iscale*scales[j]);
  456. l = MAX(-32, MIN(31, l)) + 32;
  457. if (j < 8) {
  458. y[i].scales[j] = l & 0xF;
  459. } else {
  460. y[i].scales[j-8] |= ((l & 0xF) << 4);
  461. }
  462. l >>= 4;
  463. y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
  464. }
  465. y[i].d = ggml_fp32_to_fp16(1/iscale);
  466. } else {
  467. y[i].d = ggml_fp32_to_fp16(0.f);
  468. }
  469. int8_t sc;
  470. for (int j = 0; j < QK_K/16; ++j) {
  471. sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
  472. sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
  473. float d = ggml_fp16_to_fp32(y[i].d) * sc;
  474. if (!d) {
  475. continue;
  476. }
  477. for (int ii = 0; ii < 16; ++ii) {
  478. int l = nearest_int(x[16*j + ii]/d);
  479. l = MAX(-4, MIN(3, l));
  480. L[16*j + ii] = l + 4;
  481. }
  482. }
  483. #else
  484. if (max_scale) {
  485. float iscale = -8.f/max_scale;
  486. for (int j = 0; j < QK_K/16; j+=2) {
  487. int l1 = nearest_int(iscale*scales[j]);
  488. l1 = 8 + MAX(-8, MIN(7, l1));
  489. int l2 = nearest_int(iscale*scales[j+1]);
  490. l2 = 8 + MAX(-8, MIN(7, l2));
  491. y[i].scales[j/2] = l1 | (l2 << 4);
  492. }
  493. y[i].d = ggml_fp32_to_fp16(1/iscale);
  494. } else {
  495. for (int j = 0; j < QK_K/16; j+=2) {
  496. y[i].scales[j/2] = 0;
  497. }
  498. y[i].d = ggml_fp32_to_fp16(0.f);
  499. }
  500. for (int j = 0; j < QK_K/16; ++j) {
  501. int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
  502. float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
  503. if (!d) {
  504. continue;
  505. }
  506. for (int ii = 0; ii < 16; ++ii) {
  507. int l = nearest_int(x[16*j + ii]/d);
  508. l = MAX(-4, MIN(3, l));
  509. L[16*j + ii] = l + 4;
  510. }
  511. }
  512. #endif
  513. memset(y[i].hmask, 0, QK_K/8);
  514. // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
  515. int m = 0;
  516. uint8_t hm = 1;
  517. for (int j = 0; j < QK_K; ++j) {
  518. if (L[j] > 3) {
  519. y[i].hmask[m] |= hm;
  520. L[j] -= 4;
  521. }
  522. if (++m == QK_K/8) {
  523. m = 0; hm <<= 1;
  524. }
  525. }
  526. #if QK_K == 256
  527. for (int j = 0; j < QK_K; j += 128) {
  528. for (int l = 0; l < 32; ++l) {
  529. y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
  530. }
  531. }
  532. #else
  533. for (int l = 0; l < 16; ++l) {
  534. y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
  535. }
  536. #endif
  537. x += QK_K;
  538. }
  539. }
  540. #if QK_K == 256
  541. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  542. assert(k % QK_K == 0);
  543. const int nb = k / QK_K;
  544. const uint32_t kmask1 = 0x03030303;
  545. const uint32_t kmask2 = 0x0f0f0f0f;
  546. uint32_t aux[4];
  547. const int8_t * scales = (const int8_t*)aux;
  548. for (int i = 0; i < nb; i++) {
  549. const float d_all = ggml_fp16_to_fp32(x[i].d);
  550. const uint8_t * restrict q = x[i].qs;
  551. const uint8_t * restrict hm = x[i].hmask;
  552. uint8_t m = 1;
  553. memcpy(aux, x[i].scales, 12);
  554. uint32_t tmp = aux[2];
  555. aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  556. aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  557. aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  558. aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  559. int is = 0;
  560. float dl;
  561. for (int n = 0; n < QK_K; n += 128) {
  562. int shift = 0;
  563. for (int j = 0; j < 4; ++j) {
  564. dl = d_all * (scales[is++] - 32);
  565. for (int l = 0; l < 16; ++l) {
  566. *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
  567. }
  568. dl = d_all * (scales[is++] - 32);
  569. for (int l = 0; l < 16; ++l) {
  570. *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
  571. }
  572. shift += 2;
  573. m <<= 1;
  574. }
  575. q += 32;
  576. }
  577. }
  578. }
  579. #else
  580. void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
  581. assert(k % QK_K == 0);
  582. assert(QK_K == 64);
  583. const int nb = k / QK_K;
  584. for (int i = 0; i < nb; i++) {
  585. const float d_all = ggml_fp16_to_fp32(x[i].d);
  586. const uint8_t * restrict q = x[i].qs;
  587. const uint8_t * restrict hm = x[i].hmask;
  588. const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
  589. const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
  590. const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
  591. const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
  592. for (int l=0; l<8; ++l) {
  593. uint8_t h = hm[l];
  594. y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
  595. y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
  596. y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
  597. y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
  598. y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
  599. y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
  600. y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
  601. y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
  602. }
  603. y += QK_K;
  604. }
  605. }
  606. #endif
  607. void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
  608. quantize_row_q3_K_reference(x, vy, k);
  609. }
  610. size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  611. const int nb = k / QK_K;
  612. // TODO - collect histograms - although, at a second thought, I don't really care about them
  613. (void)hist;
  614. for (int j = 0; j < nb; j += k) {
  615. block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
  616. quantize_row_q3_K_reference(src + j, y, k);
  617. }
  618. return (n/QK_K*sizeof(block_q3_K));
  619. }
  620. // ====================== 4-bit (de)-quantization
  621. void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
  622. assert(k % QK_K == 0);
  623. const int nb = k / QK_K;
  624. uint8_t L[QK_K];
  625. uint8_t Laux[32];
  626. float weights[32];
  627. float mins[QK_K/32];
  628. float scales[QK_K/32];
  629. for (int i = 0; i < nb; i++) {
  630. float max_scale = 0; // as we are deducting the min, scales are always positive
  631. float max_min = 0;
  632. for (int j = 0; j < QK_K/32; ++j) {
  633. //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  634. float sum_x2 = 0;
  635. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  636. float av_x = sqrtf(sum_x2/32);
  637. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  638. scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false);
  639. float scale = scales[j];
  640. if (scale > max_scale) {
  641. max_scale = scale;
  642. }
  643. float min = mins[j];
  644. if (min > max_min) {
  645. max_min = min;
  646. }
  647. }
  648. #if QK_K == 256
  649. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  650. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  651. for (int j = 0; j < QK_K/32; ++j) {
  652. uint8_t ls = nearest_int(inv_scale*scales[j]);
  653. uint8_t lm = nearest_int(inv_min*mins[j]);
  654. ls = MIN(63, ls);
  655. lm = MIN(63, lm);
  656. if (j < 4) {
  657. y[i].scales[j] = ls;
  658. y[i].scales[j+4] = lm;
  659. } else {
  660. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  661. y[i].scales[j-4] |= ((ls >> 4) << 6);
  662. y[i].scales[j-0] |= ((lm >> 4) << 6);
  663. }
  664. }
  665. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  666. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  667. uint8_t sc, m;
  668. for (int j = 0; j < QK_K/32; ++j) {
  669. get_scale_min_k4(j, y[i].scales, &sc, &m);
  670. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  671. if (!d) continue;
  672. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  673. for (int ii = 0; ii < 32; ++ii) {
  674. int l = nearest_int((x[32*j + ii] + dm)/d);
  675. l = MAX(0, MIN(15, l));
  676. L[32*j + ii] = l;
  677. }
  678. }
  679. #else
  680. const float s_factor = 15.f;
  681. float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
  682. float inv_min = max_min > 0 ? s_factor/max_min : 0.f;
  683. int d1 = nearest_int(inv_scale*scales[0]);
  684. int m1 = nearest_int(inv_min*mins[0]);
  685. int d2 = nearest_int(inv_scale*scales[1]);
  686. int m2 = nearest_int(inv_min*mins[1]);
  687. y[i].scales[0] = d1 | (m1 << 4);
  688. y[i].scales[1] = d2 | (m2 << 4);
  689. y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
  690. y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
  691. float sumlx = 0;
  692. int suml2 = 0;
  693. for (int j = 0; j < QK_K/32; ++j) {
  694. const uint8_t sd = y[i].scales[j] & 0xF;
  695. const uint8_t sm = y[i].scales[j] >> 4;
  696. const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
  697. if (!d) continue;
  698. const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
  699. for (int ii = 0; ii < 32; ++ii) {
  700. int l = nearest_int((x[32*j + ii] + m)/d);
  701. l = MAX(0, MIN(15, l));
  702. L[32*j + ii] = l;
  703. sumlx += (x[32*j + ii] + m)*l*sd;
  704. suml2 += l*l*sd*sd;
  705. }
  706. }
  707. if (suml2) {
  708. y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
  709. }
  710. #endif
  711. uint8_t * q = y[i].qs;
  712. for (int j = 0; j < QK_K; j += 64) {
  713. for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
  714. q += 32;
  715. }
  716. x += QK_K;
  717. }
  718. }
  719. void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
  720. assert(k % QK_K == 0);
  721. const int nb = k / QK_K;
  722. for (int i = 0; i < nb; i++) {
  723. const uint8_t * q = x[i].qs;
  724. #if QK_K == 256
  725. const float d = ggml_fp16_to_fp32(x[i].d);
  726. const float min = ggml_fp16_to_fp32(x[i].dmin);
  727. int is = 0;
  728. uint8_t sc, m;
  729. for (int j = 0; j < QK_K; j += 64) {
  730. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  731. const float d1 = d * sc; const float m1 = min * m;
  732. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  733. const float d2 = d * sc; const float m2 = min * m;
  734. for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
  735. for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
  736. q += 32; is += 2;
  737. }
  738. #else
  739. const float dall = ggml_fp16_to_fp32(x[i].d[0]);
  740. const float mall = ggml_fp16_to_fp32(x[i].d[1]);
  741. const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
  742. const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
  743. for (int l = 0; l < 32; ++l) {
  744. y[l+ 0] = d1 * (q[l] & 0xF) - m1;
  745. y[l+32] = d2 * (q[l] >> 4) - m2;
  746. }
  747. y += QK_K;
  748. #endif
  749. }
  750. }
  751. void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
  752. assert(k % QK_K == 0);
  753. block_q4_K * restrict y = vy;
  754. quantize_row_q4_K_reference(x, y, k);
  755. }
  756. size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  757. assert(k % QK_K == 0);
  758. const int nb = k / QK_K;
  759. (void)hist; // TODO: collect histograms
  760. for (int j = 0; j < nb; j += k) {
  761. block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
  762. quantize_row_q4_K_reference(src + j, y, k);
  763. }
  764. return (n/QK_K*sizeof(block_q4_K));
  765. }
  766. // ====================== 5-bit (de)-quantization
  767. void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
  768. assert(k % QK_K == 0);
  769. const int nb = k / QK_K;
  770. #if QK_K == 256
  771. uint8_t L[QK_K];
  772. float mins[QK_K/32];
  773. float scales[QK_K/32];
  774. float weights[32];
  775. uint8_t Laux[32];
  776. #else
  777. int8_t L[QK_K];
  778. float scales[QK_K/16];
  779. #endif
  780. for (int i = 0; i < nb; i++) {
  781. #if QK_K == 256
  782. float max_scale = 0; // as we are deducting the min, scales are always positive
  783. float max_min = 0;
  784. for (int j = 0; j < QK_K/32; ++j) {
  785. //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f);
  786. float sum_x2 = 0;
  787. for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l];
  788. float av_x = sqrtf(sum_x2/32);
  789. for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]);
  790. scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false);
  791. float scale = scales[j];
  792. if (scale > max_scale) {
  793. max_scale = scale;
  794. }
  795. float min = mins[j];
  796. if (min > max_min) {
  797. max_min = min;
  798. }
  799. }
  800. float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
  801. float inv_min = max_min > 0 ? 63.f/max_min : 0.f;
  802. for (int j = 0; j < QK_K/32; ++j) {
  803. uint8_t ls = nearest_int(inv_scale*scales[j]);
  804. uint8_t lm = nearest_int(inv_min*mins[j]);
  805. ls = MIN(63, ls);
  806. lm = MIN(63, lm);
  807. if (j < 4) {
  808. y[i].scales[j] = ls;
  809. y[i].scales[j+4] = lm;
  810. } else {
  811. y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
  812. y[i].scales[j-4] |= ((ls >> 4) << 6);
  813. y[i].scales[j-0] |= ((lm >> 4) << 6);
  814. }
  815. }
  816. y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
  817. y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
  818. uint8_t sc, m;
  819. for (int j = 0; j < QK_K/32; ++j) {
  820. get_scale_min_k4(j, y[i].scales, &sc, &m);
  821. const float d = ggml_fp16_to_fp32(y[i].d) * sc;
  822. if (!d) continue;
  823. const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
  824. for (int ii = 0; ii < 32; ++ii) {
  825. int l = nearest_int((x[32*j + ii] + dm)/d);
  826. l = MAX(0, MIN(31, l));
  827. L[32*j + ii] = l;
  828. }
  829. }
  830. uint8_t * restrict qh = y[i].qh;
  831. uint8_t * restrict ql = y[i].qs;
  832. memset(qh, 0, QK_K/8);
  833. uint8_t m1 = 1, m2 = 2;
  834. for (int n = 0; n < QK_K; n += 64) {
  835. for (int j = 0; j < 32; ++j) {
  836. int l1 = L[n + j];
  837. if (l1 > 15) {
  838. l1 -= 16; qh[j] |= m1;
  839. }
  840. int l2 = L[n + j + 32];
  841. if (l2 > 15) {
  842. l2 -= 16; qh[j] |= m2;
  843. }
  844. ql[j] = l1 | (l2 << 4);
  845. }
  846. m1 <<= 2; m2 <<= 2;
  847. ql += 32;
  848. }
  849. #else
  850. float max_scale = 0, amax = 0;
  851. for (int j = 0; j < QK_K/16; ++j) {
  852. scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
  853. float abs_scale = fabsf(scales[j]);
  854. if (abs_scale > amax) {
  855. amax = abs_scale;
  856. max_scale = scales[j];
  857. }
  858. }
  859. float iscale = -128.f/max_scale;
  860. for (int j = 0; j < QK_K/16; ++j) {
  861. int l = nearest_int(iscale*scales[j]);
  862. y[i].scales[j] = MAX(-128, MIN(127, l));
  863. }
  864. y[i].d = ggml_fp32_to_fp16(1/iscale);
  865. for (int j = 0; j < QK_K/16; ++j) {
  866. const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  867. if (!d) continue;
  868. for (int ii = 0; ii < 16; ++ii) {
  869. int l = nearest_int(x[16*j + ii]/d);
  870. l = MAX(-16, MIN(15, l));
  871. L[16*j + ii] = l + 16;
  872. }
  873. }
  874. uint8_t * restrict qh = y[i].qh;
  875. uint8_t * restrict ql = y[i].qs;
  876. memset(qh, 0, QK_K/8);
  877. for (int j = 0; j < 32; ++j) {
  878. int jm = j%8;
  879. int is = j/8;
  880. int l1 = L[j];
  881. if (l1 > 15) {
  882. l1 -= 16; qh[jm] |= (1 << is);
  883. }
  884. int l2 = L[j + 32];
  885. if (l2 > 15) {
  886. l2 -= 16; qh[jm] |= (1 << (4 + is));
  887. }
  888. ql[j] = l1 | (l2 << 4);
  889. }
  890. #endif
  891. x += QK_K;
  892. }
  893. }
  894. void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
  895. assert(k % QK_K == 0);
  896. const int nb = k / QK_K;
  897. for (int i = 0; i < nb; i++) {
  898. const uint8_t * ql = x[i].qs;
  899. const uint8_t * qh = x[i].qh;
  900. #if QK_K == 256
  901. const float d = ggml_fp16_to_fp32(x[i].d);
  902. const float min = ggml_fp16_to_fp32(x[i].dmin);
  903. int is = 0;
  904. uint8_t sc, m;
  905. uint8_t u1 = 1, u2 = 2;
  906. for (int j = 0; j < QK_K; j += 64) {
  907. get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
  908. const float d1 = d * sc; const float m1 = min * m;
  909. get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
  910. const float d2 = d * sc; const float m2 = min * m;
  911. for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
  912. for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
  913. ql += 32; is += 2;
  914. u1 <<= 2; u2 <<= 2;
  915. }
  916. #else
  917. float d = ggml_fp16_to_fp32(x[i].d);
  918. const int8_t * restrict s = x[i].scales;
  919. for (int l = 0; l < 8; ++l) {
  920. y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
  921. y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
  922. y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
  923. y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
  924. y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16));
  925. y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16));
  926. y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16));
  927. y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16));
  928. }
  929. y += QK_K;
  930. #endif
  931. }
  932. }
  933. void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
  934. assert(k % QK_K == 0);
  935. block_q5_K * restrict y = vy;
  936. quantize_row_q5_K_reference(x, y, k);
  937. }
  938. size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
  939. assert(k % QK_K == 0);
  940. const int nb = k / QK_K;
  941. (void)hist;
  942. for (int j = 0; j < nb; j += k) {
  943. block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
  944. quantize_row_q5_K_reference(src + j, y, k);
  945. }
  946. return (n/QK_K*sizeof(block_q5_K));
  947. }
  948. // ====================== 6-bit (de)-quantization
  949. void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
  950. assert(k % QK_K == 0);
  951. const int nb = k / QK_K;
  952. int8_t L[QK_K];
  953. float scales[QK_K/16];
  954. for (int i = 0; i < nb; i++) {
  955. float max_scale = 0;
  956. float max_abs_scale = 0;
  957. for (int ib = 0; ib < QK_K/16; ++ib) {
  958. const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
  959. scales[ib] = scale;
  960. const float abs_scale = fabsf(scale);
  961. if (abs_scale > max_abs_scale) {
  962. max_abs_scale = abs_scale;
  963. max_scale = scale;
  964. }
  965. }
  966. float iscale = -128.f/max_scale;
  967. y[i].d = ggml_fp32_to_fp16(1/iscale);
  968. for (int ib = 0; ib < QK_K/16; ++ib) {
  969. y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
  970. }
  971. for (int j = 0; j < QK_K/16; ++j) {
  972. float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
  973. if (!d) {
  974. continue;
  975. }
  976. for (int ii = 0; ii < 16; ++ii) {
  977. int l = nearest_int(x[16*j + ii]/d);
  978. l = MAX(-32, MIN(31, l));
  979. L[16*j + ii] = l + 32;
  980. }
  981. }
  982. uint8_t * restrict ql = y[i].ql;
  983. uint8_t * restrict qh = y[i].qh;
  984. #if QK_K == 256
  985. for (int j = 0; j < QK_K; j += 128) {
  986. for (int l = 0; l < 32; ++l) {
  987. const uint8_t q1 = L[j + l + 0] & 0xF;
  988. const uint8_t q2 = L[j + l + 32] & 0xF;
  989. const uint8_t q3 = L[j + l + 64] & 0xF;
  990. const uint8_t q4 = L[j + l + 96] & 0xF;
  991. ql[l+ 0] = q1 | (q3 << 4);
  992. ql[l+32] = q2 | (q4 << 4);
  993. qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
  994. }
  995. ql += 64;
  996. qh += 32;
  997. }
  998. #else
  999. for (int l = 0; l < 32; ++l) {
  1000. const uint8_t q1 = L[l + 0] & 0xF;
  1001. const uint8_t q2 = L[l + 32] & 0xF;
  1002. ql[l] = q1 | (q2 << 4);
  1003. }
  1004. for (int l = 0; l < 16; ++l) {
  1005. qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
  1006. }
  1007. #endif
  1008. x += QK_K;
  1009. }
  1010. }
  1011. void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
  1012. assert(k % QK_K == 0);
  1013. const int nb = k / QK_K;
  1014. for (int i = 0; i < nb; i++) {
  1015. const float d = ggml_fp16_to_fp32(x[i].d);
  1016. const uint8_t * restrict ql = x[i].ql;
  1017. const uint8_t * restrict qh = x[i].qh;
  1018. const int8_t * restrict sc = x[i].scales;
  1019. #if QK_K == 256
  1020. for (int n = 0; n < QK_K; n += 128) {
  1021. for (int l = 0; l < 32; ++l) {
  1022. int is = l/16;
  1023. const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1024. const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1025. const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1026. const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1027. y[l + 0] = d * sc[is + 0] * q1;
  1028. y[l + 32] = d * sc[is + 2] * q2;
  1029. y[l + 64] = d * sc[is + 4] * q3;
  1030. y[l + 96] = d * sc[is + 6] * q4;
  1031. }
  1032. y += 128;
  1033. ql += 64;
  1034. qh += 32;
  1035. sc += 8;
  1036. }
  1037. #else
  1038. for (int l = 0; l < 16; ++l) {
  1039. const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  1040. const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  1041. const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  1042. const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  1043. y[l+ 0] = d * sc[0] * q1;
  1044. y[l+16] = d * sc[1] * q2;
  1045. y[l+32] = d * sc[2] * q3;
  1046. y[l+48] = d * sc[3] * q4;
  1047. }
  1048. y += 64;
  1049. #endif
  1050. }
  1051. }
  1052. void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
  1053. assert(k % QK_K == 0);
  1054. block_q6_K * restrict y = vy;
  1055. quantize_row_q6_K_reference(x, y, k);
  1056. }
  1057. size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
  1058. assert(k % QK_K == 0);
  1059. const int nb = k / QK_K;
  1060. (void)hist; // TODO
  1061. for (int j = 0; j < nb; j += k) {
  1062. block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
  1063. quantize_row_q6_K_reference(src + j, y, k);
  1064. }
  1065. return (n/QK_K*sizeof(block_q6_K));
  1066. }
  1067. //===================================== Q8_K ==============================================
  1068. void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
  1069. assert(k % QK_K == 0);
  1070. const int nb = k / QK_K;
  1071. for (int i = 0; i < nb; i++) {
  1072. float max = 0;
  1073. float amax = 0;
  1074. for (int j = 0; j < QK_K; ++j) {
  1075. float ax = fabsf(x[j]);
  1076. if (ax > amax) {
  1077. amax = ax; max = x[j];
  1078. }
  1079. }
  1080. if (!amax) {
  1081. y[i].d = 0;
  1082. memset(y[i].qs, 0, QK_K);
  1083. x += QK_K;
  1084. continue;
  1085. }
  1086. const float iscale = -128.f/max;
  1087. for (int j = 0; j < QK_K; ++j) {
  1088. int v = nearest_int(iscale*x[j]);
  1089. y[i].qs[j] = MIN(127, v);
  1090. }
  1091. for (int j = 0; j < QK_K/16; ++j) {
  1092. int sum = 0;
  1093. for (int ii = 0; ii < 16; ++ii) {
  1094. sum += y[i].qs[j*16 + ii];
  1095. }
  1096. y[i].bsums[j] = sum;
  1097. }
  1098. y[i].d = 1/iscale;
  1099. x += QK_K;
  1100. }
  1101. }
  1102. void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
  1103. assert(k % QK_K == 0);
  1104. const int nb = k / QK_K;
  1105. for (int i = 0; i < nb; i++) {
  1106. for (int j = 0; j < QK_K; ++j) {
  1107. *y++ = x[i].d * x[i].qs[j];
  1108. }
  1109. }
  1110. }
  1111. void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
  1112. quantize_row_q8_K_reference(x, y, k);
  1113. }
  1114. //===================================== Dot ptoducts =================================
  1115. //
  1116. // Helper functions
  1117. //
  1118. #if __AVX__ || __AVX2__ || __AVX512F__
  1119. // horizontally add 8 floats
  1120. static inline float hsum_float_8(const __m256 x) {
  1121. __m128 res = _mm256_extractf128_ps(x, 1);
  1122. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  1123. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  1124. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  1125. return _mm_cvtss_f32(res);
  1126. }
  1127. // shuffles to pick the required scales in dot products
  1128. static inline __m256i get_scale_shuffle_q3k(int i) {
  1129. static const uint8_t k_shuffle[128] = {
  1130. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1131. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1132. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1133. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
  1134. };
  1135. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1136. }
  1137. static inline __m256i get_scale_shuffle_k4(int i) {
  1138. static const uint8_t k_shuffle[256] = {
  1139. 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  1140. 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
  1141. 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
  1142. 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
  1143. 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
  1144. 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
  1145. 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
  1146. 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
  1147. };
  1148. return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
  1149. }
  1150. static inline __m128i get_scale_shuffle(int i) {
  1151. static const uint8_t k_shuffle[128] = {
  1152. 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
  1153. 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
  1154. 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
  1155. 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
  1156. 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
  1157. 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
  1158. 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
  1159. 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
  1160. };
  1161. return _mm_loadu_si128((const __m128i*)k_shuffle + i);
  1162. }
  1163. #endif
  1164. #if QK_K == 256
  1165. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1166. const block_q2_K * restrict x = vx;
  1167. const block_q8_K * restrict y = vy;
  1168. const int nb = n / QK_K;
  1169. #ifdef __ARM_NEON
  1170. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1171. const uint8x16_t m4 = vdupq_n_u8(0xF);
  1172. #if defined(__ARM_FEATURE_DOTPROD)
  1173. const int32x4_t vzero = vdupq_n_s32(0);
  1174. #endif
  1175. int8x16x2_t q2bytes;
  1176. uint8_t aux[16];
  1177. float sum = 0;
  1178. for (int i = 0; i < nb; ++i) {
  1179. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1180. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1181. const uint8_t * restrict q2 = x[i].qs;
  1182. const int8_t * restrict q8 = y[i].qs;
  1183. const uint8_t * restrict sc = x[i].scales;
  1184. const uint8x16_t mins_and_scales = vld1q_u8(sc);
  1185. const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
  1186. vst1q_u8(aux, scales);
  1187. const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
  1188. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  1189. const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
  1190. const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
  1191. vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
  1192. const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
  1193. vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
  1194. sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
  1195. int isum = 0;
  1196. int is = 0;
  1197. // We use this macro instead of a function call because for some reason
  1198. // the code runs 2-3% slower, even if the function is declared inline
  1199. #if defined(__ARM_FEATURE_DOTPROD)
  1200. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1201. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
  1202. isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
  1203. #else
  1204. #define MULTIPLY_ACCUM_WITH_SCALE(index)\
  1205. {\
  1206. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
  1207. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
  1208. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
  1209. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
  1210. isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
  1211. }
  1212. #endif
  1213. #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
  1214. q8bytes = vld1q_s8_x2(q8); q8 += 32;\
  1215. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
  1216. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
  1217. MULTIPLY_ACCUM_WITH_SCALE((index));
  1218. for (int j = 0; j < QK_K/128; ++j) {
  1219. const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
  1220. int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
  1221. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
  1222. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
  1223. MULTIPLY_ACCUM_WITH_SCALE(0);
  1224. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
  1225. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
  1226. SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
  1227. is += 8;
  1228. }
  1229. sum += d * isum;
  1230. }
  1231. *s = sum;
  1232. #elif defined __AVX2__
  1233. const __m256i m3 = _mm256_set1_epi8(3);
  1234. const __m128i m4 = _mm_set1_epi8(0xF);
  1235. __m256 acc = _mm256_setzero_ps();
  1236. for (int i = 0; i < nb; ++i) {
  1237. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1238. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1239. const uint8_t * restrict q2 = x[i].qs;
  1240. const int8_t * restrict q8 = y[i].qs;
  1241. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1242. const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
  1243. const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1244. const __m256i mins = _mm256_cvtepi8_epi16(mins8);
  1245. const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
  1246. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
  1247. const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
  1248. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1249. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1250. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1251. __m256i sumi = _mm256_setzero_si256();
  1252. for (int j = 0; j < QK_K/128; ++j) {
  1253. const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
  1254. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1255. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1256. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1257. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1258. const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
  1259. const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
  1260. const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
  1261. const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
  1262. __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1263. __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1264. __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
  1265. __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
  1266. p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
  1267. p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
  1268. p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
  1269. p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
  1270. p0 = _mm256_add_epi32(p0, p1);
  1271. p2 = _mm256_add_epi32(p2, p3);
  1272. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
  1273. }
  1274. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1275. }
  1276. *s = hsum_float_8(acc);
  1277. #elif defined __AVX__
  1278. const __m128i m3 = _mm_set1_epi8(0x3);
  1279. const __m128i m4 = _mm_set1_epi8(0xF);
  1280. const __m128i m2 = _mm_set1_epi8(0x2);
  1281. __m256 acc = _mm256_setzero_ps();
  1282. for (int i = 0; i < nb; ++i) {
  1283. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1284. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1285. const uint8_t * restrict q2 = x[i].qs;
  1286. const int8_t * restrict q8 = y[i].qs;
  1287. // load mins and scales from block_q2_K.scales[QK_K/16]
  1288. const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  1289. const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
  1290. const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
  1291. const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
  1292. const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
  1293. // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
  1294. const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
  1295. const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
  1296. // sumf += -dmin * summs in 32bits*8
  1297. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
  1298. const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
  1299. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
  1300. const __m128i scales[2] = { scales_0, scales_1 };
  1301. __m128i sumi_0 = _mm_setzero_si128();
  1302. __m128i sumi_1 = _mm_setzero_si128();
  1303. for (int j = 0; j < QK_K/128; ++j) {
  1304. // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
  1305. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1306. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1307. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1308. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1309. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1310. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1311. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1312. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1313. // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
  1314. __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1315. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1316. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1317. const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1318. const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1319. q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
  1320. const __m128i q2_1 = _mm_and_si128(q2bits, m3);
  1321. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1322. const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1323. const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1324. // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
  1325. __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
  1326. __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
  1327. __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
  1328. __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
  1329. __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
  1330. __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
  1331. __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
  1332. __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
  1333. // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
  1334. __m128i shuffle = _mm_set1_epi16(0x0100);
  1335. p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
  1336. shuffle = _mm_add_epi16(shuffle, m2);
  1337. p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
  1338. shuffle = _mm_add_epi16(shuffle, m2);
  1339. p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
  1340. shuffle = _mm_add_epi16(shuffle, m2);
  1341. p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
  1342. shuffle = _mm_add_epi16(shuffle, m2);
  1343. p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
  1344. shuffle = _mm_add_epi16(shuffle, m2);
  1345. p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
  1346. shuffle = _mm_add_epi16(shuffle, m2);
  1347. p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
  1348. shuffle = _mm_add_epi16(shuffle, m2);
  1349. p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
  1350. p0 = _mm_add_epi32(p0, p1);
  1351. p2 = _mm_add_epi32(p2, p3);
  1352. p4 = _mm_add_epi32(p4, p5);
  1353. p6 = _mm_add_epi32(p6, p7);
  1354. // isum in 32bits*4*2
  1355. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
  1356. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
  1357. }
  1358. // sumf += dall * isum - dmin * summs in 32bits
  1359. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1360. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
  1361. }
  1362. *s = hsum_float_8(acc);
  1363. #else
  1364. float sumf = 0;
  1365. for (int i = 0; i < nb; ++i) {
  1366. const uint8_t * q2 = x[i].qs;
  1367. const int8_t * q8 = y[i].qs;
  1368. const uint8_t * sc = x[i].scales;
  1369. int summs = 0;
  1370. for (int j = 0; j < 16; ++j) {
  1371. summs += y[i].bsums[j] * (sc[j] >> 4);
  1372. }
  1373. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1374. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1375. int isum = 0;
  1376. int is = 0;
  1377. int d;
  1378. for (int k = 0; k < QK_K/128; ++k) {
  1379. int shift = 0;
  1380. for (int j = 0; j < 4; ++j) {
  1381. d = sc[is++] & 0xF;
  1382. int isuml = 0;
  1383. for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1384. isum += d * isuml;
  1385. d = sc[is++] & 0xF;
  1386. isuml = 0;
  1387. for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
  1388. isum += d * isuml;
  1389. shift += 2;
  1390. q8 += 32;
  1391. }
  1392. q2 += 32;
  1393. }
  1394. sumf += dall * isum - dmin * summs;
  1395. }
  1396. *s = sumf;
  1397. #endif
  1398. }
  1399. #else
  1400. void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1401. const block_q2_K * restrict x = vx;
  1402. const block_q8_K * restrict y = vy;
  1403. const int nb = n / QK_K;
  1404. #ifdef __ARM_NEON
  1405. const uint8x16_t m3 = vdupq_n_u8(0x3);
  1406. #if defined(__ARM_FEATURE_DOTPROD)
  1407. const int32x4_t vzero = vdupq_n_s32(0);
  1408. #endif
  1409. int8x16x4_t q2bytes;
  1410. uint32_t aux32[2];
  1411. const uint8_t * scales = (const uint8_t *)aux32;
  1412. float sum = 0;
  1413. for (int i = 0; i < nb; ++i) {
  1414. const float d = y[i].d * (float)x[i].d;
  1415. const float dmin = -y[i].d * (float)x[i].dmin;
  1416. const uint8_t * restrict q2 = x[i].qs;
  1417. const int8_t * restrict q8 = y[i].qs;
  1418. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1419. aux32[0] = sc[0] & 0x0f0f0f0f;
  1420. aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
  1421. sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
  1422. int isum1 = 0, isum2 = 0;
  1423. const uint8x16_t q2bits = vld1q_u8(q2);
  1424. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  1425. q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
  1426. q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
  1427. q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
  1428. q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
  1429. #if defined(__ARM_FEATURE_DOTPROD)
  1430. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
  1431. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
  1432. isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
  1433. isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
  1434. #else
  1435. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1436. vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1437. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1438. vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1439. isum1 += vaddvq_s16(p1) * scales[0];
  1440. isum2 += vaddvq_s16(p2) * scales[1];
  1441. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1442. vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1443. const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1444. vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1445. isum1 += vaddvq_s16(p3) * scales[2];
  1446. isum2 += vaddvq_s16(p4) * scales[3];
  1447. #endif
  1448. sum += d * (isum1 + isum2);
  1449. }
  1450. *s = sum;
  1451. #elif defined __AVX2__
  1452. const __m256i m3 = _mm256_set1_epi8(3);
  1453. __m256 acc = _mm256_setzero_ps();
  1454. uint32_t ud, um;
  1455. const uint8_t * restrict db = (const uint8_t *)&ud;
  1456. const uint8_t * restrict mb = (const uint8_t *)&um;
  1457. float summs = 0;
  1458. // TODO: optimize this
  1459. for (int i = 0; i < nb; ++i) {
  1460. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1461. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1462. const uint8_t * restrict q2 = x[i].qs;
  1463. const int8_t * restrict q8 = y[i].qs;
  1464. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1465. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1466. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1467. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1468. summs += dmin * smin;
  1469. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1470. const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
  1471. const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
  1472. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1473. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1474. const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
  1475. const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
  1476. const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
  1477. const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
  1478. const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
  1479. const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
  1480. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
  1481. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
  1482. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
  1483. acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
  1484. }
  1485. *s = hsum_float_8(acc) + summs;
  1486. #elif defined __AVX__
  1487. const __m128i m3 = _mm_set1_epi8(3);
  1488. __m256 acc = _mm256_setzero_ps();
  1489. uint32_t ud, um;
  1490. const uint8_t * restrict db = (const uint8_t *)&ud;
  1491. const uint8_t * restrict mb = (const uint8_t *)&um;
  1492. float summs = 0;
  1493. // TODO: optimize this
  1494. for (int i = 0; i < nb; ++i) {
  1495. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1496. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1497. const uint8_t * restrict q2 = x[i].qs;
  1498. const int8_t * restrict q8 = y[i].qs;
  1499. const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
  1500. ud = (sc[0] >> 0) & 0x0f0f0f0f;
  1501. um = (sc[0] >> 4) & 0x0f0f0f0f;
  1502. int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
  1503. summs += dmin * smin;
  1504. const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
  1505. const __m128i q2_0 = _mm_and_si128(q2bits, m3);
  1506. const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
  1507. const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
  1508. const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
  1509. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1510. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1511. const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
  1512. const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
  1513. const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
  1514. const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
  1515. const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
  1516. const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
  1517. const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
  1518. const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
  1519. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
  1520. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
  1521. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
  1522. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
  1523. }
  1524. *s = hsum_float_8(acc) + summs;
  1525. #else
  1526. float sumf = 0;
  1527. int isum[4];
  1528. for (int i = 0; i < nb; ++i) {
  1529. const uint8_t * q2 = x[i].qs;
  1530. const int8_t * q8 = y[i].qs;
  1531. const uint8_t * sc = x[i].scales;
  1532. int summs = 0;
  1533. for (int j = 0; j < QK_K/16; ++j) {
  1534. summs += y[i].bsums[j] * (sc[j] >> 4);
  1535. }
  1536. const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1537. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  1538. isum[0] = isum[1] = isum[2] = isum[3] = 0;
  1539. for (int l = 0; l < 16; ++l) {
  1540. isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
  1541. isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
  1542. isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
  1543. isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
  1544. }
  1545. for (int l = 0; l < 4; ++l) {
  1546. isum[l] *= (sc[l] & 0xF);
  1547. }
  1548. sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
  1549. }
  1550. *s = sumf;
  1551. #endif
  1552. }
  1553. #endif
  1554. #if QK_K == 256
  1555. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1556. assert(n % QK_K == 0);
  1557. const uint32_t kmask1 = 0x03030303;
  1558. const uint32_t kmask2 = 0x0f0f0f0f;
  1559. const block_q3_K * restrict x = vx;
  1560. const block_q8_K * restrict y = vy;
  1561. const int nb = n / QK_K;
  1562. #ifdef __ARM_NEON
  1563. uint32_t aux[3];
  1564. uint32_t utmp[4];
  1565. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1566. #ifdef __ARM_FEATURE_DOTPROD
  1567. const int32x4_t vzero = vdupq_n_s32(0);
  1568. #endif
  1569. const uint8x16_t m0 = vdupq_n_u8(1);
  1570. const uint8x16_t m1 = vshlq_n_u8(m0, 1);
  1571. const uint8x16_t m2 = vshlq_n_u8(m0, 2);
  1572. const uint8x16_t m3 = vshlq_n_u8(m0, 3);
  1573. const int8_t m32 = 32;
  1574. int8x16x4_t q3bytes;
  1575. float sum = 0;
  1576. for (int i = 0; i < nb; ++i) {
  1577. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1578. const uint8_t * restrict q3 = x[i].qs;
  1579. const uint8_t * restrict qh = x[i].hmask;
  1580. const int8_t * restrict q8 = y[i].qs;
  1581. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  1582. uint8x16x4_t q3h;
  1583. int32_t isum = 0;
  1584. // Set up scales
  1585. memcpy(aux, x[i].scales, 12);
  1586. utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
  1587. utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
  1588. utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
  1589. utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
  1590. int8_t * scale = (int8_t *)utmp;
  1591. for (int j = 0; j < 16; ++j) scale[j] -= m32;
  1592. for (int j = 0; j < QK_K/128; ++j) {
  1593. const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
  1594. const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
  1595. const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
  1596. q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
  1597. q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
  1598. q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
  1599. q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
  1600. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1601. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1602. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1603. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1604. #if defined(__ARM_FEATURE_DOTPROD)
  1605. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
  1606. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
  1607. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
  1608. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
  1609. #else
  1610. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
  1611. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
  1612. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
  1613. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
  1614. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
  1615. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
  1616. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
  1617. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
  1618. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1619. #endif
  1620. scale += 4;
  1621. q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
  1622. q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
  1623. q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
  1624. q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
  1625. q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
  1626. q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
  1627. q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
  1628. q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
  1629. #if defined(__ARM_FEATURE_DOTPROD)
  1630. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
  1631. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
  1632. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
  1633. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
  1634. #else
  1635. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
  1636. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
  1637. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
  1638. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
  1639. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
  1640. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
  1641. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
  1642. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
  1643. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  1644. #endif
  1645. scale += 4;
  1646. if (j == 0) {
  1647. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
  1648. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
  1649. }
  1650. }
  1651. sum += d * isum;
  1652. }
  1653. *s = sum;
  1654. #elif defined __AVX2__
  1655. const __m256i m3 = _mm256_set1_epi8(3);
  1656. const __m256i mone = _mm256_set1_epi8(1);
  1657. const __m128i m32 = _mm_set1_epi8(32);
  1658. __m256 acc = _mm256_setzero_ps();
  1659. uint32_t aux[3];
  1660. for (int i = 0; i < nb; ++i) {
  1661. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1662. const uint8_t * restrict q3 = x[i].qs;
  1663. const int8_t * restrict q8 = y[i].qs;
  1664. // Set up scales
  1665. memcpy(aux, x[i].scales, 12);
  1666. __m128i scales128 = _mm_set_epi32(
  1667. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1668. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1669. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1670. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1671. scales128 = _mm_sub_epi8(scales128, m32);
  1672. const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
  1673. const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
  1674. const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
  1675. const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
  1676. // high bit
  1677. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
  1678. // integer accumulator
  1679. __m256i sumi = _mm256_setzero_si256();
  1680. int bit = 0;
  1681. int is = 0;
  1682. for (int j = 0; j < QK_K/128; ++j) {
  1683. // load low 2 bits
  1684. const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
  1685. // prepare low and high bits
  1686. const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
  1687. const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1688. ++bit;
  1689. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
  1690. const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1691. ++bit;
  1692. const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
  1693. const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1694. ++bit;
  1695. const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
  1696. const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
  1697. ++bit;
  1698. // load Q8 quants
  1699. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1700. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1701. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1702. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  1703. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1704. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1705. // and 2 if the high bit was set)
  1706. __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1707. __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1708. __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
  1709. __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
  1710. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  1711. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  1712. __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
  1713. __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
  1714. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  1715. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  1716. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  1717. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  1718. // multiply with scales
  1719. p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
  1720. p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
  1721. p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
  1722. p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
  1723. // accumulate
  1724. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  1725. p16_2 = _mm256_add_epi32(p16_2, p16_3);
  1726. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
  1727. }
  1728. // multiply with block scale and accumulate
  1729. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  1730. }
  1731. *s = hsum_float_8(acc);
  1732. #elif defined __AVX__
  1733. const __m128i m3 = _mm_set1_epi8(3);
  1734. const __m128i mone = _mm_set1_epi8(1);
  1735. const __m128i m32 = _mm_set1_epi8(32);
  1736. const __m128i m2 = _mm_set1_epi8(2);
  1737. __m256 acc = _mm256_setzero_ps();
  1738. const uint32_t *aux;
  1739. for (int i = 0; i < nb; ++i) {
  1740. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1741. const uint8_t * restrict q3 = x[i].qs;
  1742. const int8_t * restrict q8 = y[i].qs;
  1743. // Set up scales
  1744. aux = (const uint32_t *)x[i].scales;
  1745. __m128i scales128 = _mm_set_epi32(
  1746. ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
  1747. ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
  1748. (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
  1749. (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
  1750. scales128 = _mm_sub_epi8(scales128, m32);
  1751. const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
  1752. const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
  1753. const __m128i scales[2] = { scales_0, scales_1 };
  1754. // high bit *128*2 from block_q3_K.hmask[QK_K/8]
  1755. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
  1756. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
  1757. // integer accumulator
  1758. __m128i sumi_0 = _mm_setzero_si128();
  1759. __m128i sumi_1 = _mm_setzero_si128();
  1760. for (int j = 0; j < QK_K/128; ++j) {
  1761. // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
  1762. const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1763. const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
  1764. // prepare low and high bits
  1765. const int bit = j << 2;
  1766. const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
  1767. const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
  1768. const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
  1769. const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
  1770. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
  1771. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
  1772. const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1773. const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
  1774. const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
  1775. const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
  1776. const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1777. const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
  1778. const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
  1779. const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
  1780. const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1781. const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
  1782. // load Q8 quants from block_q8_K.qs[QK_K]
  1783. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1784. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1785. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1786. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1787. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1788. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1789. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1790. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  1791. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1792. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1793. // and 2 if the high bit was set)
  1794. __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
  1795. __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
  1796. __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
  1797. __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
  1798. __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
  1799. __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
  1800. __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
  1801. __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
  1802. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
  1803. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
  1804. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
  1805. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
  1806. __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
  1807. __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
  1808. __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
  1809. __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
  1810. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  1811. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  1812. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  1813. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  1814. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  1815. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  1816. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  1817. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  1818. // multiply with scales
  1819. __m128i shuffle = _mm_set1_epi16(0x0100);
  1820. p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
  1821. shuffle = _mm_add_epi16(shuffle, m2);
  1822. p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
  1823. shuffle = _mm_add_epi16(shuffle, m2);
  1824. p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
  1825. shuffle = _mm_add_epi16(shuffle, m2);
  1826. p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
  1827. shuffle = _mm_add_epi16(shuffle, m2);
  1828. p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
  1829. shuffle = _mm_add_epi16(shuffle, m2);
  1830. p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
  1831. shuffle = _mm_add_epi16(shuffle, m2);
  1832. p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
  1833. shuffle = _mm_add_epi16(shuffle, m2);
  1834. p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
  1835. // accumulate
  1836. p16_0 = _mm_add_epi32(p16_0, p16_1);
  1837. p16_2 = _mm_add_epi32(p16_2, p16_3);
  1838. p16_4 = _mm_add_epi32(p16_4, p16_5);
  1839. p16_6 = _mm_add_epi32(p16_6, p16_7);
  1840. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  1841. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
  1842. }
  1843. // multiply with block scale and accumulate
  1844. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  1845. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  1846. }
  1847. *s = hsum_float_8(acc);
  1848. #else
  1849. // scalar version
  1850. // This function is written like this so the compiler can manage to vectorize most of it
  1851. // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
  1852. // manually vectorized version above. Every other version I tried would run at least 4 times slower.
  1853. // The ideal situation would be if we could just write the code once, and the compiler would
  1854. // automatically produce the best possible set of machine instructions, instead of us having to manually
  1855. // write vectorized versions for AVX, ARM_NEON, etc.
  1856. int8_t aux8[QK_K];
  1857. int16_t aux16[8];
  1858. float sums [8];
  1859. int32_t aux32[8];
  1860. memset(sums, 0, 8*sizeof(float));
  1861. uint32_t auxs[4];
  1862. const int8_t * scales = (const int8_t*)auxs;
  1863. float sumf = 0;
  1864. for (int i = 0; i < nb; ++i) {
  1865. const uint8_t * restrict q3 = x[i].qs;
  1866. const uint8_t * restrict hm = x[i].hmask;
  1867. const int8_t * restrict q8 = y[i].qs;
  1868. memset(aux32, 0, 8*sizeof(int32_t));
  1869. int8_t * restrict a = aux8;
  1870. uint8_t m = 1;
  1871. for (int j = 0; j < QK_K; j += 128) {
  1872. for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
  1873. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1874. a += 32; m <<= 1;
  1875. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
  1876. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1877. a += 32; m <<= 1;
  1878. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
  1879. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1880. a += 32; m <<= 1;
  1881. for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
  1882. for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
  1883. a += 32; m <<= 1;
  1884. q3 += 32;
  1885. }
  1886. a = aux8;
  1887. memcpy(auxs, x[i].scales, 12);
  1888. uint32_t tmp = auxs[2];
  1889. auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
  1890. auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
  1891. auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
  1892. auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
  1893. for (int j = 0; j < QK_K/16; ++j) {
  1894. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1895. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1896. q8 += 8; a += 8;
  1897. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  1898. for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
  1899. q8 += 8; a += 8;
  1900. }
  1901. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  1902. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  1903. }
  1904. for (int l = 0; l < 8; ++l) sumf += sums[l];
  1905. *s = sumf;
  1906. #endif
  1907. }
  1908. #else
  1909. void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1910. assert(n % QK_K == 0);
  1911. const block_q3_K * restrict x = vx;
  1912. const block_q8_K * restrict y = vy;
  1913. const int nb = n / QK_K;
  1914. #ifdef __ARM_NEON
  1915. #ifdef __ARM_FEATURE_DOTPROD
  1916. const int32x4_t vzero = vdupq_n_s32(0);
  1917. #endif
  1918. const uint8x16_t m3b = vdupq_n_u8(0x3);
  1919. const uint8x16_t mh = vdupq_n_u8(4);
  1920. int8x16x4_t q3bytes;
  1921. uint16_t aux16[2];
  1922. int8_t * scales = (int8_t *)aux16;
  1923. float sum = 0;
  1924. for (int i = 0; i < nb; ++i) {
  1925. uint8x16x4_t q3h;
  1926. const uint8x8_t hbits = vld1_u8(x[i].hmask);
  1927. const uint8x16_t q3bits = vld1q_u8(x[i].qs);
  1928. const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
  1929. const uint16_t a = *(const uint16_t *)x[i].scales;
  1930. aux16[0] = a & 0x0f0f;
  1931. aux16[1] = (a >> 4) & 0x0f0f;
  1932. for (int j = 0; j < 4; ++j) scales[j] -= 8;
  1933. int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
  1934. const float d = y[i].d * (float)x[i].d;
  1935. const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
  1936. q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
  1937. q3h.val[1] = vandq_u8(mh, htmp);
  1938. q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
  1939. q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
  1940. q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0]));
  1941. q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
  1942. q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
  1943. q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
  1944. #if defined(__ARM_FEATURE_DOTPROD)
  1945. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
  1946. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
  1947. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
  1948. isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
  1949. #else
  1950. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  1951. vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  1952. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  1953. vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  1954. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  1955. vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  1956. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  1957. vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  1958. isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
  1959. #endif
  1960. sum += d * isum;
  1961. }
  1962. *s = sum;
  1963. #elif defined __AVX2__
  1964. const __m256i m3 = _mm256_set1_epi8(3);
  1965. const __m256i m1 = _mm256_set1_epi8(1);
  1966. __m256 acc = _mm256_setzero_ps();
  1967. uint64_t aux64;
  1968. uint16_t aux16[2];
  1969. const int8_t * aux8 = (const int8_t *)aux16;
  1970. for (int i = 0; i < nb; ++i) {
  1971. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  1972. const uint8_t * restrict q3 = x[i].qs;
  1973. const int8_t * restrict q8 = y[i].qs;
  1974. const uint16_t a = *(const uint16_t *)x[i].scales;
  1975. aux16[0] = a & 0x0f0f;
  1976. aux16[1] = (a >> 4) & 0x0f0f;
  1977. const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
  1978. const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
  1979. memcpy(&aux64, x[i].hmask, 8);
  1980. const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  1981. __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
  1982. __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
  1983. q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
  1984. q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
  1985. // load low 2 bits
  1986. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  1987. // prepare low and high bits
  1988. const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
  1989. const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
  1990. const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
  1991. // load Q8 quants
  1992. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  1993. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  1994. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
  1995. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  1996. // and 2 if the high bit was set)
  1997. const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
  1998. const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
  1999. __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
  2000. __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
  2001. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  2002. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  2003. // multiply with scales
  2004. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2005. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2006. p16_0 = _mm256_add_epi32(p16_0, p16_1);
  2007. // multiply with block scale and accumulate
  2008. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
  2009. }
  2010. *s = hsum_float_8(acc);
  2011. #elif defined __AVX__
  2012. const __m128i m3 = _mm_set1_epi8(3);
  2013. const __m128i m1 = _mm_set1_epi8(1);
  2014. __m256 acc = _mm256_setzero_ps();
  2015. uint64_t aux64;
  2016. uint16_t aux16[2];
  2017. const int8_t * aux8 = (const int8_t *)aux16;
  2018. for (int i = 0; i < nb; ++i) {
  2019. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2020. const uint8_t * restrict q3 = x[i].qs;
  2021. const int8_t * restrict q8 = y[i].qs;
  2022. const uint16_t a = *(const uint16_t *)x[i].scales;
  2023. aux16[0] = a & 0x0f0f;
  2024. aux16[1] = (a >> 4) & 0x0f0f;
  2025. const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
  2026. const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
  2027. const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
  2028. const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
  2029. memcpy(&aux64, x[i].hmask, 8);
  2030. __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
  2031. __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
  2032. __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
  2033. __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
  2034. q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
  2035. q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
  2036. q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
  2037. q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
  2038. // load low 2 bits
  2039. const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
  2040. // prepare low and high bits
  2041. const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
  2042. const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
  2043. const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
  2044. const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
  2045. // load Q8 quants
  2046. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2047. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2048. // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
  2049. // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
  2050. // and 2 if the high bit was set)
  2051. const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
  2052. const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
  2053. const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
  2054. const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
  2055. __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
  2056. __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
  2057. __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
  2058. __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
  2059. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  2060. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  2061. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  2062. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  2063. // multiply with scales
  2064. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2065. p16_1 = _mm_madd_epi16(scale_1, p16_1);
  2066. p16_2 = _mm_madd_epi16(scale_2, p16_2);
  2067. p16_3 = _mm_madd_epi16(scale_3, p16_3);
  2068. p16_0 = _mm_add_epi32(p16_0, p16_2);
  2069. p16_1 = _mm_add_epi32(p16_1, p16_3);
  2070. __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
  2071. // multiply with block scale and accumulate
  2072. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
  2073. }
  2074. *s = hsum_float_8(acc);
  2075. #else
  2076. int8_t aux8[QK_K];
  2077. int16_t aux16[8];
  2078. float sums [8];
  2079. int32_t aux32[8];
  2080. int32_t scales[4];
  2081. memset(sums, 0, 8*sizeof(float));
  2082. float sumf = 0;
  2083. for (int i = 0; i < nb; ++i) {
  2084. const uint8_t * restrict q3 = x[i].qs;
  2085. const uint8_t * restrict hm = x[i].hmask;
  2086. const int8_t * restrict q8 = y[i].qs;
  2087. int8_t * restrict a = aux8;
  2088. for (int l = 0; l < 8; ++l) {
  2089. a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
  2090. a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
  2091. a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
  2092. a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
  2093. a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
  2094. a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
  2095. a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
  2096. a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
  2097. }
  2098. scales[0] = (x[i].scales[0] & 0xF) - 8;
  2099. scales[1] = (x[i].scales[0] >> 4) - 8;
  2100. scales[2] = (x[i].scales[1] & 0xF) - 8;
  2101. scales[3] = (x[i].scales[1] >> 4) - 8;
  2102. memset(aux32, 0, 8*sizeof(int32_t));
  2103. for (int j = 0; j < QK_K/16; ++j) {
  2104. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2105. q8 += 8; a += 8;
  2106. for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
  2107. q8 += 8; a += 8;
  2108. for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
  2109. }
  2110. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2111. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2112. }
  2113. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2114. *s = sumf;
  2115. #endif
  2116. }
  2117. #endif
  2118. #if QK_K == 256
  2119. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2120. assert(n % QK_K == 0);
  2121. const block_q4_K * restrict x = vx;
  2122. const block_q8_K * restrict y = vy;
  2123. const int nb = n / QK_K;
  2124. static const uint32_t kmask1 = 0x3f3f3f3f;
  2125. static const uint32_t kmask2 = 0x0f0f0f0f;
  2126. static const uint32_t kmask3 = 0x03030303;
  2127. uint32_t utmp[4];
  2128. #ifdef __ARM_NEON
  2129. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2130. #ifdef __ARM_FEATURE_DOTPROD
  2131. const int32x4_t mzero = vdupq_n_s32(0);
  2132. #endif
  2133. int8x16x2_t q4bytes;
  2134. int8x16x2_t q8bytes;
  2135. float sumf = 0;
  2136. for (int i = 0; i < nb; ++i) {
  2137. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2138. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2139. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2140. memcpy(utmp, x[i].scales, 12);
  2141. const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
  2142. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2143. utmp[0] &= kmask1;
  2144. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
  2145. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2146. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2147. sumf -= dmin * vaddvq_s32(prod);
  2148. const uint8_t * scales = (const uint8_t *)utmp;
  2149. const uint8_t * restrict q4 = x[i].qs;
  2150. const int8_t * restrict q8 = y[i].qs;
  2151. int32_t sumi1 = 0;
  2152. int32_t sumi2 = 0;
  2153. for (int j = 0; j < QK_K/64; ++j) {
  2154. const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
  2155. #ifdef __ARM_FEATURE_DOTPROD
  2156. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2157. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2158. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2159. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2160. sumi1 += vaddvq_s32(p1) * scales[2*j+0];
  2161. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2162. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2163. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2164. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2165. sumi2 += vaddvq_s32(p2) * scales[2*j+1];
  2166. #else
  2167. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2168. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2169. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2170. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2171. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2172. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2173. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2174. sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
  2175. q8bytes = vld1q_s8_x2(q8); q8 += 32;
  2176. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2177. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2178. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2179. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2180. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2181. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2182. sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
  2183. #endif
  2184. }
  2185. sumf += d * (sumi1 + sumi2);
  2186. }
  2187. *s = sumf;
  2188. #elif defined __AVX2__
  2189. const __m256i m4 = _mm256_set1_epi8(0xF);
  2190. __m256 acc = _mm256_setzero_ps();
  2191. __m128 acc_m = _mm_setzero_ps();
  2192. for (int i = 0; i < nb; ++i) {
  2193. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2194. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2195. memcpy(utmp, x[i].scales, 12);
  2196. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2197. const uint32_t uaux = utmp[1] & kmask1;
  2198. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2199. utmp[2] = uaux;
  2200. utmp[0] &= kmask1;
  2201. const uint8_t * restrict q4 = x[i].qs;
  2202. const int8_t * restrict q8 = y[i].qs;
  2203. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2204. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2205. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2206. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2207. acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
  2208. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2209. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2210. __m256i sumi = _mm256_setzero_si256();
  2211. for (int j = 0; j < QK_K/64; ++j) {
  2212. const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2213. const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2214. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  2215. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2216. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2217. const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2218. __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2219. p16l = _mm256_madd_epi16(scale_l, p16l);
  2220. const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2221. __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2222. p16h = _mm256_madd_epi16(scale_h, p16h);
  2223. const __m256i sumj = _mm256_add_epi32(p16l, p16h);
  2224. sumi = _mm256_add_epi32(sumi, sumj);
  2225. }
  2226. __m256 vd = _mm256_set1_ps(d);
  2227. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2228. }
  2229. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2230. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2231. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2232. #elif defined __AVX__
  2233. const __m128i m4 = _mm_set1_epi8(0xF);
  2234. const __m128i m2 = _mm_set1_epi8(0x2);
  2235. __m256 acc = _mm256_setzero_ps();
  2236. __m128 acc_m = _mm_setzero_ps();
  2237. for (int i = 0; i < nb; ++i) {
  2238. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2239. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2240. const uint8_t * restrict q4 = x[i].qs;
  2241. const int8_t * restrict q8 = y[i].qs;
  2242. memcpy(utmp, x[i].scales, 12);
  2243. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2244. const uint32_t uaux = utmp[1] & kmask1;
  2245. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2246. utmp[2] = uaux;
  2247. utmp[0] &= kmask1;
  2248. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2249. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2250. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2251. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2252. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2253. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2254. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2255. acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
  2256. __m128i sumi_0 = _mm_setzero_si128();
  2257. __m128i sumi_1 = _mm_setzero_si128();
  2258. __m128i shuffle = _mm_set1_epi16(0x0100);
  2259. for (int j = 0; j < QK_K/64; ++j) {
  2260. const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
  2261. shuffle = _mm_add_epi16(shuffle, m2);
  2262. const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
  2263. shuffle = _mm_add_epi16(shuffle, m2);
  2264. __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2265. const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
  2266. const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2267. q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  2268. const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
  2269. const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
  2270. const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2271. __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
  2272. p16l = _mm_madd_epi16(scale_l, p16l);
  2273. sumi_0 = _mm_add_epi32(sumi_0, p16l);
  2274. const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2275. p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
  2276. p16l = _mm_madd_epi16(scale_l, p16l);
  2277. sumi_1 = _mm_add_epi32(sumi_1, p16l);
  2278. const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2279. __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
  2280. p16h = _mm_madd_epi16(scale_h, p16h);
  2281. sumi_0 = _mm_add_epi32(sumi_0, p16h);
  2282. const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2283. p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
  2284. p16h = _mm_madd_epi16(scale_h, p16h);
  2285. sumi_1 = _mm_add_epi32(sumi_1, p16h);
  2286. }
  2287. __m256 vd = _mm256_set1_ps(d);
  2288. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2289. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2290. }
  2291. acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
  2292. acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
  2293. *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
  2294. #else
  2295. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2296. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2297. int8_t aux8[QK_K];
  2298. int16_t aux16[8];
  2299. float sums [8];
  2300. int32_t aux32[8];
  2301. memset(sums, 0, 8*sizeof(float));
  2302. float sumf = 0;
  2303. for (int i = 0; i < nb; ++i) {
  2304. const uint8_t * restrict q4 = x[i].qs;
  2305. const int8_t * restrict q8 = y[i].qs;
  2306. memset(aux32, 0, 8*sizeof(int32_t));
  2307. int8_t * restrict a = aux8;
  2308. for (int j = 0; j < QK_K/64; ++j) {
  2309. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2310. a += 32;
  2311. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2312. a += 32; q4 += 32;
  2313. }
  2314. memcpy(utmp, x[i].scales, 12);
  2315. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2316. const uint32_t uaux = utmp[1] & kmask1;
  2317. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2318. utmp[2] = uaux;
  2319. utmp[0] &= kmask1;
  2320. int sumi = 0;
  2321. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2322. a = aux8;
  2323. int is = 0;
  2324. for (int j = 0; j < QK_K/32; ++j) {
  2325. int32_t scale = scales[is++];
  2326. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2327. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2328. q8 += 8; a += 8;
  2329. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2330. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2331. q8 += 8; a += 8;
  2332. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2333. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2334. q8 += 8; a += 8;
  2335. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2336. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2337. q8 += 8; a += 8;
  2338. }
  2339. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2340. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2341. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2342. sumf -= dmin * sumi;
  2343. }
  2344. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2345. *s = sumf;
  2346. #endif
  2347. }
  2348. #else
  2349. void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2350. assert(n % QK_K == 0);
  2351. const block_q4_K * restrict x = vx;
  2352. const block_q8_K * restrict y = vy;
  2353. const int nb = n / QK_K;
  2354. #ifdef __ARM_NEON
  2355. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2356. #ifdef __ARM_FEATURE_DOTPROD
  2357. const int32x4_t mzero = vdupq_n_s32(0);
  2358. #endif
  2359. float sumf = 0;
  2360. int8x16x2_t q4bytes;
  2361. int8x16x4_t q8bytes;
  2362. float sum_mins = 0.f;
  2363. uint16_t aux16[2];
  2364. const uint8_t * restrict scales = (const uint8_t *)aux16;
  2365. for (int i = 0; i < nb; ++i) {
  2366. const uint8_t * restrict q4 = x[i].qs;
  2367. const int8_t * restrict q8 = y[i].qs;
  2368. const uint16_t * restrict a = (const uint16_t *)x[i].scales;
  2369. aux16[0] = a[0] & 0x0f0f;
  2370. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2371. const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
  2372. sum_mins += y[i].d * (float)x[i].d[1] * summi;
  2373. const float d = y[i].d * (float)x[i].d[0];
  2374. const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
  2375. #ifdef __ARM_FEATURE_DOTPROD
  2376. q8bytes = vld1q_s8_x4(q8);
  2377. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2378. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2379. const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
  2380. const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
  2381. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2382. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2383. const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
  2384. const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
  2385. #else
  2386. q8bytes = vld1q_s8_x4(q8);
  2387. q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
  2388. q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
  2389. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2390. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2391. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2392. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2393. int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
  2394. q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
  2395. q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
  2396. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
  2397. vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
  2398. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
  2399. vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
  2400. int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
  2401. #endif
  2402. sumf += d * (sumi1 + sumi2);
  2403. }
  2404. *s = sumf - sum_mins;
  2405. #elif defined __AVX2__
  2406. const __m256i m4 = _mm256_set1_epi8(0xF);
  2407. __m256 acc = _mm256_setzero_ps();
  2408. float summs = 0;
  2409. uint16_t aux16[2];
  2410. const uint8_t * scales = (const uint8_t *)aux16;
  2411. for (int i = 0; i < nb; ++i) {
  2412. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2413. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2414. const __m256 vd = _mm256_set1_ps(d);
  2415. const uint16_t * a = (const uint16_t *)x[i].scales;
  2416. aux16[0] = a[0] & 0x0f0f;
  2417. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2418. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2419. const uint8_t * restrict q4 = x[i].qs;
  2420. const int8_t * restrict q8 = y[i].qs;
  2421. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2422. const __m256i q4l = _mm256_and_si256(q4bits, m4);
  2423. const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
  2424. const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2425. const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
  2426. const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
  2427. const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
  2428. const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
  2429. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
  2430. const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
  2431. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
  2432. }
  2433. *s = hsum_float_8(acc) - summs;
  2434. #elif defined __AVX__
  2435. const __m128i m4 = _mm_set1_epi8(0xF);
  2436. __m256 acc = _mm256_setzero_ps();
  2437. float summs = 0;
  2438. uint16_t aux16[2];
  2439. const uint8_t * scales = (const uint8_t *)aux16;
  2440. for (int i = 0; i < nb; ++i) {
  2441. const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
  2442. const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
  2443. const __m256 vd = _mm256_set1_ps(d);
  2444. const uint16_t * a = (const uint16_t *)x[i].scales;
  2445. aux16[0] = a[0] & 0x0f0f;
  2446. aux16[1] = (a[0] >> 4) & 0x0f0f;
  2447. summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2448. const uint8_t * restrict q4 = x[i].qs;
  2449. const int8_t * restrict q8 = y[i].qs;
  2450. const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
  2451. const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
  2452. const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
  2453. const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
  2454. const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
  2455. const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
  2456. const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
  2457. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2458. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2459. const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  2460. const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  2461. const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  2462. const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  2463. const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
  2464. const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
  2465. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
  2466. const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
  2467. const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
  2468. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
  2469. }
  2470. *s = hsum_float_8(acc) - summs;
  2471. #else
  2472. uint8_t aux8[QK_K];
  2473. int16_t aux16[16];
  2474. float sums [8];
  2475. memset(sums, 0, 8*sizeof(float));
  2476. uint16_t s16[2];
  2477. const uint8_t * restrict scales = (const uint8_t *)s16;
  2478. float sumf = 0;
  2479. for (int i = 0; i < nb; ++i) {
  2480. const uint8_t * restrict q4 = x[i].qs;
  2481. const int8_t * restrict q8 = y[i].qs;
  2482. uint8_t * restrict a = aux8;
  2483. for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
  2484. for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4;
  2485. const uint16_t * restrict b = (const uint16_t *)x[i].scales;
  2486. s16[0] = b[0] & 0x0f0f;
  2487. s16[1] = (b[0] >> 4) & 0x0f0f;
  2488. sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
  2489. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
  2490. for (int j = 0; j < QK_K/32; ++j) {
  2491. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2492. q8 += 16; a += 16;
  2493. for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
  2494. q8 += 16; a += 16;
  2495. const float dl = d * scales[j];
  2496. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
  2497. }
  2498. }
  2499. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2500. *s = sumf;
  2501. #endif
  2502. }
  2503. #endif
  2504. #if QK_K == 256
  2505. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2506. assert(n % QK_K == 0);
  2507. const block_q5_K * restrict x = vx;
  2508. const block_q8_K * restrict y = vy;
  2509. const int nb = n / QK_K;
  2510. static const uint32_t kmask1 = 0x3f3f3f3f;
  2511. static const uint32_t kmask2 = 0x0f0f0f0f;
  2512. static const uint32_t kmask3 = 0x03030303;
  2513. uint32_t utmp[4];
  2514. #ifdef __ARM_NEON
  2515. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2516. const uint8x16_t mone = vdupq_n_u8(1);
  2517. const uint8x16_t mtwo = vdupq_n_u8(2);
  2518. #if defined(__ARM_FEATURE_DOTPROD)
  2519. const int32x4_t mzero = vdupq_n_s32(0);
  2520. #endif
  2521. int8x16x4_t q5bytes;
  2522. float sumf = 0;
  2523. for (int i = 0; i < nb; ++i) {
  2524. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2525. const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2526. const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
  2527. memcpy(utmp, x[i].scales, 12);
  2528. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2529. const uint32_t uaux = utmp[1] & kmask1;
  2530. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2531. utmp[2] = uaux;
  2532. utmp[0] &= kmask1;
  2533. const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
  2534. const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
  2535. const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
  2536. vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
  2537. int32_t sumi_mins = vaddvq_s32(prod);
  2538. const uint8_t * scales = (const uint8_t *)utmp;
  2539. const uint8_t * restrict q5 = x[i].qs;
  2540. const uint8_t * restrict qh = x[i].qh;
  2541. const int8_t * restrict q8 = y[i].qs;
  2542. uint8x16x2_t qhbits = vld1q_u8_x2(qh);
  2543. uint8x16x4_t q5h;
  2544. int32_t sumi = 0;
  2545. for (int j = 0; j < QK_K/64; ++j) {
  2546. const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
  2547. const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2548. q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2549. q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2550. q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
  2551. q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
  2552. qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
  2553. qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
  2554. q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
  2555. q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
  2556. q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
  2557. q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
  2558. #if defined(__ARM_FEATURE_DOTPROD)
  2559. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
  2560. sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
  2561. #else
  2562. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2563. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2564. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2565. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2566. sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
  2567. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2568. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2569. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2570. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2571. sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
  2572. #endif
  2573. }
  2574. sumf += d * sumi - dmin * sumi_mins;
  2575. }
  2576. *s = sumf;
  2577. #elif defined __AVX2__
  2578. const __m256i m4 = _mm256_set1_epi8(0xF);
  2579. const __m128i mzero = _mm_setzero_si128();
  2580. const __m256i mone = _mm256_set1_epi8(1);
  2581. __m256 acc = _mm256_setzero_ps();
  2582. float summs = 0.f;
  2583. for (int i = 0; i < nb; ++i) {
  2584. const uint8_t * restrict q5 = x[i].qs;
  2585. const int8_t * restrict q8 = y[i].qs;
  2586. #if QK_K == 256
  2587. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2588. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2589. memcpy(utmp, x[i].scales, 12);
  2590. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2591. const uint32_t uaux = utmp[1] & kmask1;
  2592. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2593. utmp[2] = uaux;
  2594. utmp[0] &= kmask1;
  2595. #else
  2596. // TODO
  2597. const float d = 0, dmin = 0;
  2598. #endif
  2599. const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
  2600. const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
  2601. const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
  2602. const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
  2603. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2604. summs += dmin * _mm_extract_epi32(hsum, 0);
  2605. const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0);
  2606. const __m256i scales = MM256_SET_M128I(sc128, sc128);
  2607. const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
  2608. __m256i hmask = mone;
  2609. __m256i sumi = _mm256_setzero_si256();
  2610. int bit = 0;
  2611. for (int j = 0; j < QK_K/64; ++j) {
  2612. const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
  2613. const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
  2614. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
  2615. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2616. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2617. const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0);
  2618. hmask = _mm256_slli_epi16(hmask, 1);
  2619. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2620. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
  2621. const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1);
  2622. hmask = _mm256_slli_epi16(hmask, 1);
  2623. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2624. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  2625. __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
  2626. __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
  2627. p16_0 = _mm256_madd_epi16(scale_0, p16_0);
  2628. p16_1 = _mm256_madd_epi16(scale_1, p16_1);
  2629. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  2630. }
  2631. __m256 vd = _mm256_set1_ps(d);
  2632. acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
  2633. }
  2634. *s = hsum_float_8(acc) + summs;
  2635. #elif defined __AVX__
  2636. const __m128i m4 = _mm_set1_epi8(0xF);
  2637. const __m128i mzero = _mm_setzero_si128();
  2638. const __m128i mone = _mm_set1_epi8(1);
  2639. const __m128i m2 = _mm_set1_epi8(2);
  2640. __m256 acc = _mm256_setzero_ps();
  2641. float summs = 0.f;
  2642. for (int i = 0; i < nb; ++i) {
  2643. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2644. const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
  2645. const uint8_t * restrict q5 = x[i].qs;
  2646. const int8_t * restrict q8 = y[i].qs;
  2647. memcpy(utmp, x[i].scales, 12);
  2648. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2649. const uint32_t uaux = utmp[1] & kmask1;
  2650. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2651. utmp[2] = uaux;
  2652. utmp[0] &= kmask1;
  2653. const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
  2654. const __m128i scales = _mm_cvtepu8_epi16(utmps);
  2655. const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
  2656. const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
  2657. const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
  2658. const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
  2659. const __m128i prod = _mm_madd_epi16(mins, q8s);
  2660. const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
  2661. summs += dmin * _mm_extract_epi32(hsum, 0);
  2662. const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
  2663. const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
  2664. __m128i hmask = mone;
  2665. __m128i sumi_0 = _mm_setzero_si128();
  2666. __m128i sumi_1 = _mm_setzero_si128();
  2667. int bit = 0;
  2668. __m128i shuffle = _mm_set1_epi16(0x0100);
  2669. for (int j = 0; j < QK_K/64; ++j) {
  2670. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  2671. shuffle = _mm_add_epi16(shuffle, m2);
  2672. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  2673. shuffle = _mm_add_epi16(shuffle, m2);
  2674. const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2675. const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
  2676. __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
  2677. __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
  2678. __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2679. __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2680. __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2681. __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2682. hmask = _mm_slli_epi16(hmask, 1);
  2683. __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2684. __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2685. __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
  2686. __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
  2687. p16_0 = _mm_madd_epi16(scale_0, p16_0);
  2688. p16_1 = _mm_madd_epi16(scale_0, p16_1);
  2689. q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
  2690. q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
  2691. q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
  2692. q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
  2693. q5_0 = _mm_add_epi8(q5l_0, q5h_0);
  2694. q5_1 = _mm_add_epi8(q5l_1, q5h_1);
  2695. hmask = _mm_slli_epi16(hmask, 1);
  2696. q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2697. q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  2698. __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
  2699. __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
  2700. p16_2 = _mm_madd_epi16(scale_1, p16_2);
  2701. p16_3 = _mm_madd_epi16(scale_1, p16_3);
  2702. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  2703. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  2704. }
  2705. __m256 vd = _mm256_set1_ps(d);
  2706. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  2707. acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
  2708. }
  2709. *s = hsum_float_8(acc) + summs;
  2710. #else
  2711. const uint8_t * scales = (const uint8_t*)&utmp[0];
  2712. const uint8_t * mins = (const uint8_t*)&utmp[2];
  2713. int8_t aux8[QK_K];
  2714. int16_t aux16[8];
  2715. float sums [8];
  2716. int32_t aux32[8];
  2717. memset(sums, 0, 8*sizeof(float));
  2718. float sumf = 0;
  2719. for (int i = 0; i < nb; ++i) {
  2720. const uint8_t * restrict q4 = x[i].qs;
  2721. const uint8_t * restrict hm = x[i].qh;
  2722. const int8_t * restrict q8 = y[i].qs;
  2723. memset(aux32, 0, 8*sizeof(int32_t));
  2724. int8_t * restrict a = aux8;
  2725. uint8_t m = 1;
  2726. for (int j = 0; j < QK_K/64; ++j) {
  2727. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
  2728. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2729. a += 32; m <<= 1;
  2730. for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4);
  2731. for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
  2732. a += 32; m <<= 1;
  2733. q4 += 32;
  2734. }
  2735. memcpy(utmp, x[i].scales, 12);
  2736. utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
  2737. const uint32_t uaux = utmp[1] & kmask1;
  2738. utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
  2739. utmp[2] = uaux;
  2740. utmp[0] &= kmask1;
  2741. int sumi = 0;
  2742. for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
  2743. a = aux8;
  2744. int is = 0;
  2745. for (int j = 0; j < QK_K/32; ++j) {
  2746. int32_t scale = scales[is++];
  2747. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2748. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2749. q8 += 8; a += 8;
  2750. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2751. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2752. q8 += 8; a += 8;
  2753. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2754. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2755. q8 += 8; a += 8;
  2756. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  2757. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  2758. q8 += 8; a += 8;
  2759. }
  2760. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  2761. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  2762. const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
  2763. sumf -= dmin * sumi;
  2764. }
  2765. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2766. *s = sumf;
  2767. #endif
  2768. }
  2769. #else
  2770. void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2771. assert(n % QK_K == 0);
  2772. const block_q5_K * restrict x = vx;
  2773. const block_q8_K * restrict y = vy;
  2774. const int nb = n / QK_K;
  2775. #ifdef __ARM_NEON
  2776. const uint8x16_t m4b = vdupq_n_u8(0xf);
  2777. const uint8x16_t mh = vdupq_n_u8(16);
  2778. #if defined(__ARM_FEATURE_DOTPROD)
  2779. const int32x4_t mzero = vdupq_n_s32(0);
  2780. #endif
  2781. int8x16x4_t q5bytes;
  2782. uint8x16x4_t q5h;
  2783. float sumf = 0;
  2784. for (int i = 0; i < nb; ++i) {
  2785. const float d = y[i].d * (float)x[i].d;
  2786. const int8_t * sc = x[i].scales;
  2787. const uint8_t * restrict q5 = x[i].qs;
  2788. const uint8_t * restrict qh = x[i].qh;
  2789. const int8_t * restrict q8 = y[i].qs;
  2790. const uint8x8_t qhbits = vld1_u8(qh);
  2791. const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
  2792. const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  2793. const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
  2794. q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
  2795. q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
  2796. q5h.val[2] = vbicq_u8(mh, htmp);
  2797. q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
  2798. q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
  2799. q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
  2800. q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
  2801. q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
  2802. #if defined(__ARM_FEATURE_DOTPROD)
  2803. int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
  2804. int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
  2805. int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
  2806. int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
  2807. sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
  2808. #else
  2809. const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2810. vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2811. const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2812. vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2813. int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
  2814. const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2815. vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2816. const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2817. vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2818. sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
  2819. sumf += d*sumi;
  2820. #endif
  2821. }
  2822. *s = sumf;
  2823. #elif defined __AVX2__
  2824. const __m256i m4 = _mm256_set1_epi8(0xF);
  2825. const __m256i mone = _mm256_set1_epi8(1);
  2826. __m256 acc = _mm256_setzero_ps();
  2827. for (int i = 0; i < nb; ++i) {
  2828. const uint8_t * restrict q5 = x[i].qs;
  2829. const int8_t * restrict q8 = y[i].qs;
  2830. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2831. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2832. const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
  2833. const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
  2834. int64_t aux64;
  2835. memcpy(&aux64, x[i].qh, 8);
  2836. const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
  2837. const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
  2838. const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
  2839. const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
  2840. const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
  2841. const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
  2842. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2843. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2844. const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
  2845. const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
  2846. const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
  2847. const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
  2848. const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
  2849. acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
  2850. }
  2851. *s = hsum_float_8(acc);
  2852. #elif defined __AVX__
  2853. const __m128i m4 = _mm_set1_epi8(0xF);
  2854. const __m128i mone = _mm_set1_epi8(1);
  2855. __m256 acc = _mm256_setzero_ps();
  2856. for (int i = 0; i < nb; ++i) {
  2857. const uint8_t * restrict q5 = x[i].qs;
  2858. const int8_t * restrict q8 = y[i].qs;
  2859. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2860. const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
  2861. const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
  2862. const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
  2863. const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
  2864. const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
  2865. int64_t aux64;
  2866. memcpy(&aux64, x[i].qh, 8);
  2867. const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
  2868. const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
  2869. const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
  2870. const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
  2871. const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
  2872. const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
  2873. const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
  2874. const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
  2875. const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
  2876. const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
  2877. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  2878. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  2879. const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
  2880. const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
  2881. const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
  2882. const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
  2883. const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
  2884. const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
  2885. const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
  2886. const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
  2887. const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
  2888. const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
  2889. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
  2890. }
  2891. *s = hsum_float_8(acc);
  2892. #else
  2893. int8_t aux8[QK_K];
  2894. int16_t aux16[16];
  2895. float sums [8];
  2896. memset(sums, 0, 8*sizeof(float));
  2897. float sumf = 0;
  2898. for (int i = 0; i < nb; ++i) {
  2899. const uint8_t * restrict q4 = x[i].qs;
  2900. const uint8_t * restrict hm = x[i].qh;
  2901. const int8_t * restrict q8 = y[i].qs;
  2902. int8_t * restrict a = aux8;
  2903. for (int l = 0; l < 32; ++l) {
  2904. a[l+ 0] = q4[l] & 0xF;
  2905. a[l+32] = q4[l] >> 4;
  2906. }
  2907. for (int is = 0; is < 8; ++is) {
  2908. uint8_t m = 1 << is;
  2909. for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
  2910. }
  2911. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  2912. const int8_t * restrict sc = x[i].scales;
  2913. for (int j = 0; j < QK_K/16; ++j) {
  2914. const float dl = d * sc[j];
  2915. for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
  2916. for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
  2917. q8 += 16; a += 16;
  2918. }
  2919. }
  2920. for (int l = 0; l < 8; ++l) sumf += sums[l];
  2921. *s = sumf;
  2922. #endif
  2923. }
  2924. #endif
  2925. #if QK_K == 256
  2926. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2927. assert(n % QK_K == 0);
  2928. const block_q6_K * restrict x = vx;
  2929. const block_q8_K * restrict y = vy;
  2930. const int nb = n / QK_K;
  2931. #ifdef __ARM_NEON
  2932. float sum = 0;
  2933. const uint8x16_t m4b = vdupq_n_u8(0xF);
  2934. #if defined(__ARM_FEATURE_DOTPROD)
  2935. const int32x4_t vzero = vdupq_n_s32(0);
  2936. #endif
  2937. //const int8x16_t m32s = vdupq_n_s8(32);
  2938. const uint8x16_t mone = vdupq_n_u8(3);
  2939. int8x16x4_t q6bytes;
  2940. uint8x16x4_t q6h;
  2941. for (int i = 0; i < nb; ++i) {
  2942. const float d_all = ggml_fp16_to_fp32(x[i].d);
  2943. const uint8_t * restrict q6 = x[i].ql;
  2944. const uint8_t * restrict qh = x[i].qh;
  2945. const int8_t * restrict q8 = y[i].qs;
  2946. const int8_t * restrict scale = x[i].scales;
  2947. const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
  2948. const int8x16_t scales = vld1q_s8(scale);
  2949. const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
  2950. const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
  2951. vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
  2952. vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
  2953. vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
  2954. int32_t isum_mins = vaddvq_s32(prod);
  2955. int32_t isum = 0;
  2956. for (int j = 0; j < QK_K/128; ++j) {
  2957. uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
  2958. uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
  2959. int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2960. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
  2961. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
  2962. uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
  2963. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2964. shifted = vshrq_n_u8(qhbits.val[1], 2);
  2965. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2966. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  2967. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  2968. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
  2969. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
  2970. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
  2971. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
  2972. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
  2973. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
  2974. #if defined(__ARM_FEATURE_DOTPROD)
  2975. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  2976. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  2977. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  2978. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  2979. scale += 4;
  2980. #else
  2981. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  2982. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  2983. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  2984. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  2985. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  2986. scale += 2;
  2987. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  2988. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  2989. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  2990. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  2991. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  2992. scale += 2;
  2993. #endif
  2994. q8bytes = vld1q_s8_x4(q8); q8 += 64;
  2995. shifted = vshrq_n_u8(qhbits.val[0], 4);
  2996. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2997. shifted = vshrq_n_u8(qhbits.val[1], 4);
  2998. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  2999. shifted = vshrq_n_u8(qhbits.val[0], 6);
  3000. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3001. shifted = vshrq_n_u8(qhbits.val[1], 6);
  3002. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3003. //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
  3004. //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
  3005. //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
  3006. //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
  3007. q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
  3008. q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
  3009. q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
  3010. q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
  3011. #if defined(__ARM_FEATURE_DOTPROD)
  3012. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3013. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3014. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3015. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3016. scale += 4;
  3017. //for (int l = 0; l < 4; ++l) {
  3018. // const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
  3019. // isum += vaddvq_s32(p) * *scale++;
  3020. //}
  3021. #else
  3022. p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3023. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3024. p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3025. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3026. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3027. scale += 2;
  3028. p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3029. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3030. p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3031. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3032. isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
  3033. scale += 2;
  3034. #endif
  3035. }
  3036. //sum += isum * d_all * y[i].d;
  3037. sum += d_all * y[i].d * (isum - 32 * isum_mins);
  3038. }
  3039. *s = sum;
  3040. #elif defined __AVX2__
  3041. const __m256i m4 = _mm256_set1_epi8(0xF);
  3042. const __m256i m2 = _mm256_set1_epi8(3);
  3043. const __m256i m32s = _mm256_set1_epi8(32);
  3044. __m256 acc = _mm256_setzero_ps();
  3045. for (int i = 0; i < nb; ++i) {
  3046. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3047. const uint8_t * restrict q4 = x[i].ql;
  3048. const uint8_t * restrict qh = x[i].qh;
  3049. const int8_t * restrict q8 = y[i].qs;
  3050. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3051. __m256i sumi = _mm256_setzero_si256();
  3052. int is = 0;
  3053. for (int j = 0; j < QK_K/128; ++j) {
  3054. const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
  3055. const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
  3056. const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
  3057. const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
  3058. is += 4;
  3059. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3060. const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
  3061. const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
  3062. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
  3063. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
  3064. const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
  3065. const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
  3066. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3067. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
  3068. const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
  3069. const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
  3070. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3071. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3072. const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3073. const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
  3074. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3075. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3076. __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
  3077. __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
  3078. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3079. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3080. __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
  3081. __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
  3082. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3083. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3084. p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
  3085. p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
  3086. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3087. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3088. p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
  3089. p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
  3090. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3091. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
  3092. }
  3093. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3094. }
  3095. *s = hsum_float_8(acc);
  3096. #elif defined __AVX__
  3097. const __m128i m4 = _mm_set1_epi8(0xF);
  3098. const __m128i m3 = _mm_set1_epi8(3);
  3099. const __m128i m32s = _mm_set1_epi8(32);
  3100. const __m128i m2 = _mm_set1_epi8(2);
  3101. __m256 acc = _mm256_setzero_ps();
  3102. for (int i = 0; i < nb; ++i) {
  3103. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3104. const uint8_t * restrict q4 = x[i].ql;
  3105. const uint8_t * restrict qh = x[i].qh;
  3106. const int8_t * restrict q8 = y[i].qs;
  3107. const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
  3108. __m128i sumi_0 = _mm_setzero_si128();
  3109. __m128i sumi_1 = _mm_setzero_si128();
  3110. __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  3111. for (int j = 0; j < QK_K/128; ++j) {
  3112. const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3113. const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
  3114. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
  3115. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
  3116. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
  3117. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
  3118. const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
  3119. const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
  3120. const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
  3121. const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
  3122. const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3123. const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3124. const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3125. const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
  3126. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
  3127. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
  3128. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
  3129. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
  3130. const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
  3131. const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
  3132. const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
  3133. const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
  3134. const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3135. const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3136. const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3137. const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3138. const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3139. const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3140. const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3141. const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
  3142. __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
  3143. __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
  3144. __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
  3145. __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
  3146. __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
  3147. __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
  3148. __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
  3149. __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
  3150. __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
  3151. __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
  3152. __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
  3153. __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
  3154. __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
  3155. __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
  3156. __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
  3157. __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
  3158. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3159. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3160. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3161. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3162. p16_4 = _mm_sub_epi16(p16_4, q8s_4);
  3163. p16_5 = _mm_sub_epi16(p16_5, q8s_5);
  3164. p16_6 = _mm_sub_epi16(p16_6, q8s_6);
  3165. p16_7 = _mm_sub_epi16(p16_7, q8s_7);
  3166. const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
  3167. shuffle = _mm_add_epi8(shuffle, m2);
  3168. const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
  3169. shuffle = _mm_add_epi8(shuffle, m2);
  3170. const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
  3171. shuffle = _mm_add_epi8(shuffle, m2);
  3172. const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
  3173. shuffle = _mm_add_epi8(shuffle, m2);
  3174. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3175. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3176. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3177. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3178. p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
  3179. p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
  3180. p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
  3181. p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
  3182. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3183. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3184. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
  3185. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
  3186. }
  3187. __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
  3188. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
  3189. }
  3190. *s = hsum_float_8(acc);
  3191. #else
  3192. int8_t aux8[QK_K];
  3193. int16_t aux16[8];
  3194. float sums [8];
  3195. int32_t aux32[8];
  3196. memset(sums, 0, 8*sizeof(float));
  3197. float sumf = 0;
  3198. for (int i = 0; i < nb; ++i) {
  3199. const uint8_t * restrict q4 = x[i].ql;
  3200. const uint8_t * restrict qh = x[i].qh;
  3201. const int8_t * restrict q8 = y[i].qs;
  3202. memset(aux32, 0, 8*sizeof(int32_t));
  3203. int8_t * restrict a = aux8;
  3204. for (int j = 0; j < QK_K; j += 128) {
  3205. for (int l = 0; l < 32; ++l) {
  3206. a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3207. a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3208. a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3209. a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3210. }
  3211. a += 128;
  3212. q4 += 64;
  3213. qh += 32;
  3214. }
  3215. a = aux8;
  3216. int is = 0;
  3217. for (int j = 0; j < QK_K/16; ++j) {
  3218. int scale = x[i].scales[is++];
  3219. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3220. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3221. q8 += 8; a += 8;
  3222. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3223. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3224. q8 += 8; a += 8;
  3225. }
  3226. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3227. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3228. }
  3229. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3230. *s = sumf;
  3231. #endif
  3232. }
  3233. #else
  3234. void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  3235. assert(n % QK_K == 0);
  3236. const block_q6_K * restrict x = vx;
  3237. const block_q8_K * restrict y = vy;
  3238. const int nb = n / QK_K;
  3239. #ifdef __ARM_NEON
  3240. float sum = 0;
  3241. const uint8x16_t m4b = vdupq_n_u8(0xF);
  3242. const int8x16_t m32s = vdupq_n_s8(32);
  3243. #if defined(__ARM_FEATURE_DOTPROD)
  3244. const int32x4_t vzero = vdupq_n_s32(0);
  3245. #endif
  3246. const uint8x16_t mone = vdupq_n_u8(3);
  3247. int8x16x4_t q6bytes;
  3248. uint8x16x4_t q6h;
  3249. for (int i = 0; i < nb; ++i) {
  3250. const float d_all = (float)x[i].d;
  3251. const uint8_t * restrict q6 = x[i].ql;
  3252. const uint8_t * restrict qh = x[i].qh;
  3253. const int8_t * restrict q8 = y[i].qs;
  3254. const int8_t * restrict scale = x[i].scales;
  3255. int32_t isum = 0;
  3256. uint8x16_t qhbits = vld1q_u8(qh);
  3257. uint8x16x2_t q6bits = vld1q_u8_x2(q6);
  3258. int8x16x4_t q8bytes = vld1q_s8_x4(q8);
  3259. q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
  3260. uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
  3261. q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3262. shifted = vshrq_n_u8(qhbits, 4);
  3263. q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3264. shifted = vshrq_n_u8(qhbits, 6);
  3265. q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
  3266. q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
  3267. q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
  3268. q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
  3269. q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
  3270. #if defined(__ARM_FEATURE_DOTPROD)
  3271. isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
  3272. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
  3273. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
  3274. vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
  3275. #else
  3276. int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
  3277. vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
  3278. int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
  3279. vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
  3280. isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
  3281. int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
  3282. vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
  3283. int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
  3284. vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
  3285. isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
  3286. #endif
  3287. sum += isum * d_all * y[i].d;
  3288. }
  3289. *s = sum;
  3290. #elif defined __AVX2__
  3291. const __m256i m4 = _mm256_set1_epi8(0xF);
  3292. const __m256i m2 = _mm256_set1_epi8(3);
  3293. const __m256i m32s = _mm256_set1_epi8(32);
  3294. __m256 acc = _mm256_setzero_ps();
  3295. for (int i = 0; i < nb; ++i) {
  3296. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3297. const uint8_t * restrict q4 = x[i].ql;
  3298. const uint8_t * restrict qh = x[i].qh;
  3299. const int8_t * restrict q8 = y[i].qs;
  3300. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3301. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3302. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3303. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3304. __m256i sumi = _mm256_setzero_si256();
  3305. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3306. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3307. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3308. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3309. const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
  3310. const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
  3311. const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
  3312. const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
  3313. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3314. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3315. __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
  3316. __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
  3317. __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
  3318. __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
  3319. p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
  3320. p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
  3321. p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
  3322. p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
  3323. sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
  3324. acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
  3325. }
  3326. *s = hsum_float_8(acc);
  3327. #elif defined __AVX__
  3328. const __m128i m4 = _mm_set1_epi8(0xF);
  3329. const __m128i m2 = _mm_set1_epi8(3);
  3330. const __m128i m32s = _mm_set1_epi8(32);
  3331. __m256 acc = _mm256_setzero_ps();
  3332. for (int i = 0; i < nb; ++i) {
  3333. const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
  3334. const uint8_t * restrict q4 = x[i].ql;
  3335. const uint8_t * restrict qh = x[i].qh;
  3336. const int8_t * restrict q8 = y[i].qs;
  3337. const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
  3338. const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
  3339. const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
  3340. const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
  3341. __m128i sumi_0 = _mm_setzero_si128();
  3342. __m128i sumi_1 = _mm_setzero_si128();
  3343. const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
  3344. const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
  3345. const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
  3346. const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
  3347. const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
  3348. const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
  3349. const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
  3350. const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
  3351. const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
  3352. const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
  3353. const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
  3354. const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
  3355. const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
  3356. const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
  3357. __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
  3358. __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
  3359. __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
  3360. __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
  3361. __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
  3362. __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
  3363. __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
  3364. __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
  3365. p16_0 = _mm_sub_epi16(p16_0, q8s_0);
  3366. p16_1 = _mm_sub_epi16(p16_1, q8s_1);
  3367. p16_2 = _mm_sub_epi16(p16_2, q8s_2);
  3368. p16_3 = _mm_sub_epi16(p16_3, q8s_3);
  3369. p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
  3370. p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
  3371. p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
  3372. p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
  3373. sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
  3374. sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
  3375. acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
  3376. }
  3377. *s = hsum_float_8(acc);
  3378. #else
  3379. int8_t aux8[QK_K];
  3380. int16_t aux16[8];
  3381. float sums [8];
  3382. int32_t aux32[8];
  3383. memset(sums, 0, 8*sizeof(float));
  3384. float sumf = 0;
  3385. for (int i = 0; i < nb; ++i) {
  3386. const uint8_t * restrict q4 = x[i].ql;
  3387. const uint8_t * restrict qh = x[i].qh;
  3388. const int8_t * restrict q8 = y[i].qs;
  3389. memset(aux32, 0, 8*sizeof(int32_t));
  3390. int8_t * restrict a = aux8;
  3391. for (int l = 0; l < 16; ++l) {
  3392. a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
  3393. a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
  3394. a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
  3395. a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
  3396. }
  3397. int is = 0;
  3398. for (int j = 0; j < QK_K/16; ++j) {
  3399. int scale = x[i].scales[is++];
  3400. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3401. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3402. q8 += 8; a += 8;
  3403. for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
  3404. for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
  3405. q8 += 8; a += 8;
  3406. }
  3407. const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
  3408. for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
  3409. }
  3410. for (int l = 0; l < 8; ++l) sumf += sums[l];
  3411. *s = sumf;
  3412. #endif
  3413. }
  3414. #endif