| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865 |
- /*
- WebGPU backend implementation.
- Note: Use ClangFormat to format this file.
- */
- #include "ggml-webgpu.h"
- #include "ggml-backend-impl.h"
- #include "ggml-impl.h"
- #include "ggml-wgsl-shaders.hpp"
- #ifdef __EMSCRIPTEN__
- # include <emscripten/emscripten.h>
- #endif
- #include <webgpu/webgpu_cpp.h>
- #include <atomic>
- #include <condition_variable>
- #include <cstring>
- #include <iostream>
- #include <map>
- #include <mutex>
- #include <optional>
- #include <string>
- #include <vector>
- #define ROUNDUP_POW2(x, pow2) (((x) + ((pow2) - 1)) & ~((pow2) - 1))
- #define CEIL_DIV(M, N) (((M) + (N) - 1) / (N))
- #ifdef GGML_WEBGPU_DEBUG
- # define WEBGPU_LOG_DEBUG(msg) std::cout << msg << std::endl
- # define WEBGPU_DEBUG_BUF_ELEMS 32
- #else
- # define WEBGPU_LOG_DEBUG(msg) ((void) 0)
- #endif // GGML_WEBGPU_DEBUG
- #ifdef GGML_WEBGPU_CPU_PROFILE
- // total timing (aggregated)
- # define WEBGPU_CPU_PROFILE_TOTAL_START(id) auto cpu_total_start_##id = std::chrono::high_resolution_clock::now();
- # define WEBGPU_CPU_PROFILE_TOTAL_END(id, ctx) \
- auto cpu_total_end_##id = std::chrono::high_resolution_clock::now(); \
- double cpu_total_time_##id = \
- std::chrono::duration<double, std::milli>(cpu_total_end_##id - cpu_total_start_##id).count(); \
- (ctx)->cpu_time_ms[#id] += cpu_total_time_##id;
- // fine-grained timing (not included in totals)
- # define WEBGPU_CPU_PROFILE_DETAIL_START(id) auto cpu_detail_start_##id = std::chrono::high_resolution_clock::now();
- # define WEBGPU_CPU_PROFILE_DETAIL_END(id, ctx) \
- auto cpu_detail_end_##id = std::chrono::high_resolution_clock::now(); \
- double cpu_detail_time_##id = \
- std::chrono::duration<double, std::milli>(cpu_detail_end_##id - cpu_detail_start_##id).count(); \
- (ctx)->cpu_detail_ms[#id] += cpu_detail_time_##id;
- #else
- # define WEBGPU_CPU_PROFILE_TOTAL_START(id)
- # define WEBGPU_CPU_PROFILE_TOTAL_END(id, ctx)
- # define WEBGPU_CPU_PROFILE_DETAIL_START(id)
- # define WEBGPU_CPU_PROFILE_DETAIL_END(id, ctx)
- #endif // GGML_WEBGPU_CPU_PROFILE
- #ifdef GGML_WEBGPU_GPU_PROFILE
- # define WEBGPU_NUM_TIMESTAMP_QUERY_BUFS 24
- # define WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES 16 // e.g. enough for two timestamps
- #endif
- /* Constants */
- // Track https://github.com/gpuweb/gpuweb/issues/5315 for fixes to implementations so this can be removed.
- #define WEBGPU_MAX_WG_SIZE 288
- #define WEBGPU_MUL_MAT_WG_SIZE 256
- #define WEBGPU_NUM_PARAM_BUFS 32u
- #define WEBGPU_COMMAND_SUBMIT_BATCH_SIZE 8u
- #define WEBGPU_WAIT_ANY_TIMEOUT_MS 0
- // Maximum number of in-flight submissions per-thread, to avoid exhausting the parameter buffer pool
- #define WEBGPU_MAX_INFLIGHT_SUBS_PER_THREAD WEBGPU_NUM_PARAM_BUFS / WEBGPU_COMMAND_SUBMIT_BATCH_SIZE
- #define WEBGPU_PARAMS_BUF_SIZE_BYTES 128 // enough for 32 parameters
- #define WEBGPU_NUM_SET_ROWS_ERROR_BUFS 32
- #define WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES 4
- #define WEBGPU_STORAGE_BUF_BINDING_MULT 4 // a storage buffer binding size must be a multiple of 4
- // For operations which process a row in parallel, this seems like a reasonable default
- #define WEBGPU_ROW_SPLIT_WG_SIZE 64
- // Matrix multiplication parameters
- // Register tiling parameters
- #define WEBGPU_MUL_MAT_TILE_M 8
- #define WEBGPU_MUL_MAT_TILE_N 8
- #define WEBGPU_MUL_MAT_WG_SIZE_M 8
- #define WEBGPU_MUL_MAT_WG_SIZE_N 8
- #define WEBGPU_MUL_MAT_TILE_K 32
- // Subgroup matrix parameters
- // The number of subgroups in the M dimension
- #define WEBGPU_MUL_MAT_SUBGROUP_M 2
- // The number of subgroups in the N dimension
- #define WEBGPU_MUL_MAT_SUBGROUP_N 2
- // The number of subgroup matrices each subgroup accumulates over
- #define WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M 4
- #define WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N 2
- // Matrix-vector multiplication parameters
- #define WEBGPU_MUL_MAT_VEC_WG_SIZE 256
- // Must be multiple of 4 to work with vectorized paths, and must divide mul_mat_vec wg size
- #define WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG 64
- #define WEBGPU_MUL_MAT_VEC_TILE_K 256
- /* End Constants */
- // This is a "fake" base pointer, since WebGPU buffers do not have pointers to their locations.
- static void * const webgpu_ptr_base = (void *) (uintptr_t) 0x1000; // NOLINT
- // Always returns the base offset of a tensor, regardless of views.
- static uint64_t webgpu_tensor_offset(const ggml_tensor * tensor) {
- if (tensor->view_src) {
- return (uint8_t *) tensor->view_src->data - (uint8_t *) webgpu_ptr_base;
- }
- return (uint8_t *) tensor->data - (uint8_t *) webgpu_ptr_base;
- }
- /* Struct definitions */
- // Forward reference
- static void ggml_webgpu_create_buffer(wgpu::Device & device,
- wgpu::Buffer & buffer,
- size_t size,
- wgpu::BufferUsage usage,
- const char * label);
- struct webgpu_pool_bufs {
- wgpu::Buffer host_buf;
- wgpu::Buffer dev_buf;
- };
- // The futures to wait on for a single queue submission
- struct webgpu_submission_futures {
- std::vector<wgpu::FutureWaitInfo> futures;
- };
- // Holds a pool of parameter buffers for WebGPU operations
- struct webgpu_buf_pool {
- std::vector<webgpu_pool_bufs> free;
- std::mutex mutex;
- std::condition_variable cv;
- void init(wgpu::Device device,
- int num_bufs,
- size_t buf_size,
- wgpu::BufferUsage dev_buf_usage,
- wgpu::BufferUsage host_buf_usage) {
- for (int i = 0; i < num_bufs; i++) {
- wgpu::Buffer host_buf;
- wgpu::Buffer dev_buf;
- ggml_webgpu_create_buffer(device, host_buf, buf_size, host_buf_usage, "ggml_webgpu_host_pool_buf");
- ggml_webgpu_create_buffer(device, dev_buf, buf_size, dev_buf_usage, "ggml_webgpu_dev_pool_buf");
- free.push_back({ host_buf, dev_buf });
- }
- }
- webgpu_pool_bufs alloc_bufs() {
- std::unique_lock<std::mutex> lock(mutex);
- cv.wait(lock, [this] { return !free.empty(); });
- webgpu_pool_bufs bufs = free.back();
- free.pop_back();
- return bufs;
- }
- void free_bufs(std::vector<webgpu_pool_bufs> bufs) {
- std::lock_guard<std::mutex> lock(mutex);
- free.insert(free.end(), bufs.begin(), bufs.end());
- cv.notify_all();
- }
- void cleanup() {
- std::lock_guard<std::mutex> lock(mutex);
- for (auto & bufs : free) {
- bufs.host_buf.Destroy();
- bufs.dev_buf.Destroy();
- }
- free.clear();
- }
- };
- #ifdef GGML_WEBGPU_GPU_PROFILE
- struct webgpu_gpu_profile_bufs {
- wgpu::Buffer host_buf;
- wgpu::Buffer dev_buf;
- wgpu::QuerySet query_set;
- };
- // Holds a pool of parameter buffers for WebGPU operations
- struct webgpu_gpu_profile_buf_pool {
- std::vector<webgpu_gpu_profile_bufs> free;
- std::mutex mutex;
- std::condition_variable cv;
- void init(wgpu::Device device,
- int num_bufs,
- size_t buf_size,
- wgpu::BufferUsage dev_buf_usage,
- wgpu::BufferUsage host_buf_usage) {
- for (int i = 0; i < num_bufs; i++) {
- wgpu::Buffer host_buf;
- wgpu::Buffer dev_buf;
- ggml_webgpu_create_buffer(device, host_buf, buf_size, host_buf_usage, "ggml_webgpu_host_profile_buf");
- ggml_webgpu_create_buffer(device, dev_buf, buf_size, dev_buf_usage, "ggml_webgpu_dev_profile_buf");
- // Create a query set for 2 timestamps
- wgpu::QuerySetDescriptor ts_query_set_desc = {};
- ts_query_set_desc.type = wgpu::QueryType::Timestamp;
- ts_query_set_desc.count = 2;
- wgpu::QuerySet ts_query_set = device.CreateQuerySet(&ts_query_set_desc);
- free.push_back({ host_buf, dev_buf, ts_query_set });
- }
- }
- webgpu_gpu_profile_bufs alloc_bufs() {
- std::unique_lock<std::mutex> lock(mutex);
- cv.wait(lock, [this] { return !free.empty(); });
- webgpu_gpu_profile_bufs bufs = free.back();
- free.pop_back();
- return bufs;
- }
- void free_bufs(std::vector<webgpu_gpu_profile_bufs> bufs) {
- std::lock_guard<std::mutex> lock(mutex);
- free.insert(free.end(), bufs.begin(), bufs.end());
- cv.notify_all();
- }
- void cleanup() {
- std::lock_guard<std::mutex> lock(mutex);
- for (auto & bufs : free) {
- bufs.host_buf.Destroy();
- bufs.dev_buf.Destroy();
- bufs.query_set.Destroy();
- }
- free.clear();
- }
- };
- #endif
- struct webgpu_pipeline {
- wgpu::ComputePipeline pipeline;
- std::string name;
- };
- struct webgpu_command {
- wgpu::CommandBuffer commands;
- webgpu_pool_bufs params_bufs;
- std::optional<webgpu_pool_bufs> set_rows_error_bufs;
- #ifdef GGML_WEBGPU_GPU_PROFILE
- webgpu_gpu_profile_bufs timestamp_query_bufs;
- std::string pipeline_name;
- #endif
- };
- // All the base objects needed to run operations on a WebGPU device
- struct webgpu_context_struct {
- wgpu::Instance instance;
- wgpu::Adapter adapter;
- wgpu::Device device;
- wgpu::Queue queue;
- wgpu::Limits limits;
- uint32_t subgroup_size;
- #ifndef __EMSCRIPTEN__
- bool supports_subgroup_matrix = false;
- wgpu::SubgroupMatrixConfig subgroup_matrix_config;
- #endif
- std::recursive_mutex mutex;
- std::atomic_uint inflight_threads = 0;
- webgpu_buf_pool param_buf_pool;
- webgpu_buf_pool set_rows_error_buf_pool;
- std::map<int, webgpu_pipeline> memset_pipelines; // variant or type index
- std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> mul_mat_pipelines; // src0_type, src1_type, vectorized
- std::map<int, std::map<int, std::map<int, webgpu_pipeline>>>
- mul_mat_vec_pipelines; // src0_type, src1_type, vectorized
- std::map<int, std::map<int, webgpu_pipeline>> set_rows_pipelines; // dst_type, vectorized
- std::map<int, std::map<int, webgpu_pipeline>> get_rows_pipelines; // src_type, vectorized
- std::map<int, std::map<int, webgpu_pipeline>> cpy_pipelines; // src_type, dst_type
- std::map<int, std::map<int, webgpu_pipeline>> add_pipelines; // type, inplace
- std::map<int, std::map<int, webgpu_pipeline>> sub_pipelines; // type, inplace
- std::map<int, std::map<int, webgpu_pipeline>> mul_pipelines; // type, inplace
- std::map<int, std::map<int, webgpu_pipeline>> div_pipelines; // type, inplace
- std::map<int, webgpu_pipeline> rms_norm_pipelines; // inplace
- std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> rope_pipelines; // type, ff, inplace
- std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> glu_pipelines; // glu_op, type, split
- std::map<int, webgpu_pipeline> scale_pipelines; // inplace
- std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> soft_max_pipelines; // mask_type, has_sink, inplace
- std::map<int, std::map<int, std::map<int, webgpu_pipeline>>> unary_pipelines; // unary_op, type, inplace
- size_t memset_bytes_per_thread;
- // Staging buffer for reading data from the GPU
- wgpu::Buffer get_tensor_staging_buf;
- #ifdef GGML_WEBGPU_DEBUG
- wgpu::Buffer debug_host_buf;
- wgpu::Buffer debug_dev_buf;
- #endif
- #ifdef GGML_WEBGPU_CPU_PROFILE
- // Profiling: labeled CPU time in ms (total)
- std::unordered_map<std::string, double> cpu_time_ms;
- // Profiling: detailed CPU time in ms
- std::unordered_map<std::string, double> cpu_detail_ms;
- #endif
- #ifdef GGML_WEBGPU_GPU_PROFILE
- // Profiling: per-shader GPU time in ms
- std::unordered_map<std::string, double> shader_gpu_time_ms;
- // Profiling: pool of timestamp query buffers (one per operation)
- webgpu_gpu_profile_buf_pool timestamp_query_buf_pool;
- #endif
- };
- typedef std::shared_ptr<webgpu_context_struct> webgpu_context;
- struct ggml_backend_webgpu_reg_context {
- webgpu_context webgpu_ctx;
- size_t device_count;
- const char * name;
- };
- struct ggml_backend_webgpu_device_context {
- webgpu_context webgpu_ctx;
- std::string device_name;
- std::string device_desc;
- };
- struct ggml_backend_webgpu_context {
- webgpu_context webgpu_ctx;
- std::string name;
- };
- struct ggml_backend_webgpu_buffer_context {
- webgpu_context webgpu_ctx;
- wgpu::Buffer buffer;
- std::string label;
- ggml_backend_webgpu_buffer_context(webgpu_context ctx, wgpu::Buffer buf, std::string lbl) :
- webgpu_ctx(std::move(ctx)),
- buffer(std::move(buf)),
- label(std::move(lbl)) {}
- };
- /* End struct definitions */
- /* WebGPU object initializations */
- // Process a WGSL shader string, replacing tokens of the form {{KEY}} with
- // the corresponding values provided in `repls`.
- static std::string ggml_webgpu_process_shader_repls(const char * src,
- const std::map<std::string, std::string> & repls) {
- if (!src) {
- return std::string();
- }
- std::string s = src;
- for (const auto & kv : repls) {
- std::string token = "{{" + kv.first + "}}";
- size_t pos = 0;
- while ((pos = s.find(token, pos)) != std::string::npos) {
- s.replace(pos, token.length(), kv.second);
- pos += kv.second.length();
- }
- }
- return s;
- }
- static webgpu_pipeline ggml_webgpu_create_pipeline(wgpu::Device & device,
- const char * shader_code,
- const char * label,
- const std::vector<wgpu::ConstantEntry> & constants = {}) {
- wgpu::ShaderSourceWGSL shader_source;
- shader_source.code = shader_code;
- wgpu::ShaderModuleDescriptor shader_desc;
- shader_desc.nextInChain = &shader_source;
- wgpu::ShaderModule shader_module = device.CreateShaderModule(&shader_desc);
- wgpu::ComputePipelineDescriptor pipeline_desc;
- pipeline_desc.label = label;
- pipeline_desc.compute.module = shader_module;
- pipeline_desc.compute.entryPoint = "main"; // Entry point in the WGSL code
- pipeline_desc.layout = nullptr; // nullptr means auto layout
- if (constants.size() > 0) {
- pipeline_desc.compute.constants = constants.data();
- pipeline_desc.compute.constantCount = constants.size();
- }
- return { device.CreateComputePipeline(&pipeline_desc), label };
- }
- static void ggml_webgpu_create_buffer(wgpu::Device & device,
- wgpu::Buffer & buffer,
- size_t size,
- wgpu::BufferUsage usage,
- const char * label) {
- wgpu::BufferDescriptor buffer_desc;
- buffer_desc.size = size;
- buffer_desc.usage = usage;
- buffer_desc.label = label;
- buffer_desc.mappedAtCreation = false;
- // TODO: error handling
- buffer = device.CreateBuffer(&buffer_desc);
- }
- /** End WebGPU object initializations */
- /** WebGPU Actions */
- // Wait for the queue to finish processing all submitted work
- static void ggml_backend_webgpu_wait(webgpu_context & ctx,
- std::vector<webgpu_submission_futures> & futures,
- bool block = true) {
- // If we have too many in-flight submissions, wait on the oldest one first. If there are many threads,
- // inflight_max may be 0, meaning that we must wait on all futures.
- uint64_t timeout_ms = block ? UINT64_MAX : 0;
- uint32_t inflight_threads = ctx->inflight_threads;
- uint32_t inflight_max = WEBGPU_MAX_INFLIGHT_SUBS_PER_THREAD / std::max(inflight_threads, 1u);
- while (futures.size() >= inflight_max && futures.size() > 0) {
- ctx->instance.WaitAny(futures[0].futures.size(), futures[0].futures.data(), UINT64_MAX);
- futures.erase(futures.begin());
- }
- size_t i = 0;
- while (i < futures.size()) {
- auto waitStatus = ctx->instance.WaitAny(futures[i].futures.size(), futures[i].futures.data(), timeout_ms);
- switch (waitStatus) {
- case wgpu::WaitStatus::Success:
- futures.erase(futures.begin() + i);
- break;
- case wgpu::WaitStatus::TimedOut:
- i++;
- break;
- case wgpu::WaitStatus::Error:
- GGML_LOG_ERROR("ggml_webgpu: WaitAny returned an error\n");
- break;
- default:
- GGML_LOG_ERROR("ggml_webgpu: WaitAny returned an unknown status\n");
- break;
- }
- }
- }
- static void ggml_backend_webgpu_map_buffer(webgpu_context & ctx,
- wgpu::Buffer & buffer,
- wgpu::MapMode mode,
- size_t offset,
- size_t size) {
- ctx->instance.WaitAny(buffer.MapAsync(mode, offset, size, wgpu::CallbackMode::AllowSpontaneous,
- [](wgpu::MapAsyncStatus status, wgpu::StringView message) {
- if (status != wgpu::MapAsyncStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to map buffer: %s\n",
- message.data);
- }
- }),
- UINT64_MAX);
- }
- #ifdef GGML_WEBGPU_DEBUG
- // This function adds debugging information to shaders, as WebGPU does not support printing directly.
- // To use, add a bind group entry to the setup for the shader you are debugging, add the buffer and
- // debug statements in the shader, and then call this function after encoding the commands and submitting them.
- static void ggml_backend_webgpu_debug(webgpu_context & ctx) {
- wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder();
- encoder.CopyBufferToBuffer(ctx->debug_dev_buf, 0, ctx->debug_host_buf, 0, ctx->debug_host_buf.GetSize());
- wgpu::CommandBuffer commands = encoder.Finish();
- ctx->queue.Submit(1, &commands);
- ggml_backend_webgpu_map_buffer(ctx, ctx->debug_host_buf, wgpu::MapMode::Read, 0, ctx->debug_host_buf.GetSize());
- const uint32_t * debug_data = (const uint32_t *) ctx->debug_host_buf.GetConstMappedRange();
- std::cout << "debug data:";
- for (size_t i = 0; i < WEBGPU_DEBUG_BUF_ELEMS; i++) {
- std::cout << " " << i << ": " << debug_data[i];
- }
- std::cout << "\n";
- ctx->debug_host_buf.Unmap();
- }
- #endif
- static webgpu_submission_futures ggml_backend_webgpu_submit(webgpu_context ctx, std::vector<webgpu_command> commands) {
- std::vector<wgpu::CommandBuffer> command_buffers;
- std::vector<webgpu_pool_bufs> params_bufs;
- std::vector<webgpu_pool_bufs> set_rows_error_bufs;
- #ifdef GGML_WEBGPU_GPU_PROFILE
- std::vector<std::pair<std::string, webgpu_gpu_profile_bufs>> pipeline_name_and_ts_bufs;
- #endif
- for (const auto & command : commands) {
- command_buffers.push_back(command.commands);
- params_bufs.push_back(command.params_bufs);
- if (command.set_rows_error_bufs) {
- set_rows_error_bufs.push_back(command.set_rows_error_bufs.value());
- }
- }
- ctx->queue.Submit(command_buffers.size(), command_buffers.data());
- std::vector<wgpu::FutureWaitInfo> futures;
- wgpu::Future p_f = ctx->queue.OnSubmittedWorkDone(
- wgpu::CallbackMode::AllowSpontaneous,
- [ctx, params_bufs](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
- if (status != wgpu::QueueWorkDoneStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n", std::string(message).c_str());
- }
- // Free the staged buffers
- ctx->param_buf_pool.free_bufs({ params_bufs });
- });
- futures.push_back({ p_f });
- for (const auto & bufs : set_rows_error_bufs) {
- wgpu::Future f = bufs.host_buf.MapAsync(
- wgpu::MapMode::Read, 0, bufs.host_buf.GetSize(), wgpu::CallbackMode::AllowSpontaneous,
- [ctx, bufs](wgpu::MapAsyncStatus status, wgpu::StringView message) {
- if (status != wgpu::MapAsyncStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to map error buffer: %s\n", std::string(message).c_str());
- } else {
- const uint32_t * error_data = (const uint32_t *) bufs.host_buf.GetConstMappedRange();
- if (*error_data) {
- GGML_ABORT("ggml_webgpu: SET_ROWS index > 2^32, unsupported.");
- }
- // We can't unmap in here due to WebGPU reentrancy limitations.
- ctx->set_rows_error_buf_pool.free_bufs({ bufs });
- }
- });
- futures.push_back({ f });
- }
- #ifdef GGML_WEBGPU_GPU_PROFILE
- for (const auto & command : commands) {
- auto label = command.pipeline_name;
- auto ts_bufs = command.timestamp_query_bufs;
- wgpu::Future f = ts_bufs.host_buf.MapAsync(
- wgpu::MapMode::Read, 0, ts_bufs.host_buf.GetSize(), wgpu::CallbackMode::AllowSpontaneous,
- [ctx, ts_bufs, label](wgpu::MapAsyncStatus status, wgpu::StringView message) {
- if (status != wgpu::MapAsyncStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to map timestamp buffer: %s\n", std::string(message).c_str());
- } else {
- const uint64_t * ts_data = (const uint64_t *) ts_bufs.host_buf.GetConstMappedRange();
- // WebGPU timestamps are in ns; convert to ms
- double elapsed_ms = double(ts_data[1] - ts_data[0]) * 1e-6;
- ctx->shader_gpu_time_ms[label] += elapsed_ms;
- // We can't unmap in here due to WebGPU reentrancy limitations.
- ctx->timestamp_query_buf_pool.free_bufs({ ts_bufs });
- }
- });
- futures.push_back({ f });
- }
- #endif
- return { futures };
- }
- static webgpu_command ggml_backend_webgpu_build(webgpu_context & ctx,
- webgpu_pipeline & pipeline,
- std::vector<uint32_t> params,
- std::vector<wgpu::BindGroupEntry> bind_group_entries,
- uint32_t wg_x,
- uint32_t wg_y = 1,
- std::optional<webgpu_pool_bufs> set_rows_error_bufs = std::nullopt) {
- webgpu_pool_bufs params_bufs = ctx->param_buf_pool.alloc_bufs();
- ggml_backend_webgpu_map_buffer(ctx, params_bufs.host_buf, wgpu::MapMode::Write, 0, params_bufs.host_buf.GetSize());
- uint32_t * _params = (uint32_t *) params_bufs.host_buf.GetMappedRange();
- for (size_t i = 0; i < params.size(); i++) {
- _params[i] = params[i];
- };
- params_bufs.host_buf.Unmap();
- uint32_t params_bufs_binding_num = bind_group_entries.size();
- bind_group_entries.push_back({ .binding = params_bufs_binding_num,
- .buffer = params_bufs.dev_buf,
- .offset = 0,
- .size = params_bufs.dev_buf.GetSize() });
- wgpu::BindGroupDescriptor bind_group_desc;
- bind_group_desc.layout = pipeline.pipeline.GetBindGroupLayout(0);
- bind_group_desc.entryCount = bind_group_entries.size();
- bind_group_desc.entries = bind_group_entries.data();
- bind_group_desc.label = pipeline.name.c_str();
- wgpu::BindGroup bind_group = ctx->device.CreateBindGroup(&bind_group_desc);
- wgpu::CommandEncoder encoder = ctx->device.CreateCommandEncoder();
- encoder.CopyBufferToBuffer(params_bufs.host_buf, 0, params_bufs.dev_buf, 0, params_bufs.dev_buf.GetSize());
- #ifdef GGML_WEBGPU_GPU_PROFILE
- // --- Profiling: GPU timestamp queries ---
- // Allocate a timestamp query buffer (2 timestamps: start/end)
- webgpu_gpu_profile_bufs ts_bufs = ctx->timestamp_query_buf_pool.alloc_bufs();
- if (ts_bufs.host_buf.GetMapState() == wgpu::BufferMapState::Mapped) {
- ts_bufs.host_buf.Unmap();
- }
- wgpu::PassTimestampWrites ts_writes = { .querySet = ts_bufs.query_set,
- .beginningOfPassWriteIndex = 0,
- .endOfPassWriteIndex = 1 };
- wgpu::ComputePassDescriptor pass_desc = { .timestampWrites = &ts_writes };
- wgpu::ComputePassEncoder pass = encoder.BeginComputePass(&pass_desc);
- #else
- wgpu::ComputePassEncoder pass = encoder.BeginComputePass();
- #endif
- pass.SetPipeline(pipeline.pipeline);
- pass.SetBindGroup(0, bind_group);
- pass.DispatchWorkgroups(wg_x, wg_y, 1);
- pass.End();
- #ifdef GGML_WEBGPU_GPU_PROFILE
- // Resolve the query set into the device buffer
- encoder.ResolveQuerySet(ts_bufs.query_set, 0, 2, ts_bufs.dev_buf, 0);
- encoder.CopyBufferToBuffer(ts_bufs.dev_buf, 0, ts_bufs.host_buf, 0, ts_bufs.host_buf.GetSize());
- #endif
- // If there are SET_ROWS operations in this submission, copy their error buffers to the host.
- if (set_rows_error_bufs) {
- encoder.CopyBufferToBuffer(set_rows_error_bufs->dev_buf, 0, set_rows_error_bufs->host_buf, 0,
- set_rows_error_bufs->host_buf.GetSize());
- }
- wgpu::CommandBuffer commands = encoder.Finish();
- webgpu_command result = {};
- result.commands = commands;
- result.params_bufs = params_bufs;
- result.set_rows_error_bufs = set_rows_error_bufs;
- #ifdef GGML_WEBGPU_GPU_PROFILE
- result.timestamp_query_bufs = ts_bufs;
- result.pipeline_name = pipeline.name;
- #endif
- return result;
- }
- static void ggml_backend_webgpu_buffer_memset(webgpu_context & ctx,
- wgpu::Buffer & buf,
- uint32_t value,
- size_t offset,
- size_t size) {
- std::vector<uint32_t> params = { (uint32_t) offset, (uint32_t) size, value };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0, .buffer = buf, .offset = 0, .size = buf.GetSize() }
- };
- size_t bytes_per_wg = WEBGPU_MAX_WG_SIZE * ctx->memset_bytes_per_thread;
- uint32_t wg_x = CEIL_DIV(size + 3, bytes_per_wg);
- webgpu_command command = ggml_backend_webgpu_build(ctx, ctx->memset_pipelines[0], params, entries, wg_x);
- std::vector<webgpu_submission_futures> futures = { ggml_backend_webgpu_submit(ctx, { command }) };
- ggml_backend_webgpu_wait(ctx, futures);
- }
- /** End WebGPU Actions */
- /** GGML Backend Interface */
- static const char * ggml_backend_webgpu_name(ggml_backend_t backend) {
- ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context;
- return ctx->name.c_str();
- }
- static void ggml_backend_webgpu_free(ggml_backend_t backend) {
- ggml_backend_webgpu_context * ctx = (ggml_backend_webgpu_context *) backend->context;
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_free(" << ctx->name << ")");
- #ifdef GGML_WEBGPU_CPU_PROFILE
- std::cout << "\n[ggml_webgpu cpu profiling summary]\n";
- double total_cpu = 0.0;
- for (const auto & kv : ctx->webgpu_ctx->cpu_time_ms) {
- total_cpu += kv.second;
- }
- std::cout << "ggml_webgpu: total cpu time: " << total_cpu << " ms\n";
- std::cout << "ggml_webgpu: cpu breakdown:\n";
- for (const auto & kv : ctx->webgpu_ctx->cpu_time_ms) {
- double pct = (total_cpu > 0.0) ? (kv.second / total_cpu * 100.0) : 0.0;
- std::cout << "ggml_webgpu: " << kv.first << ": " << kv.second << " ms (" << pct << "%)\n";
- }
- if (ctx->webgpu_ctx->cpu_detail_ms.size() > 0) {
- std::cout << "ggml_webgpu: cpu detailed breakdown:\n";
- }
- for (const auto & kv : ctx->webgpu_ctx->cpu_detail_ms) {
- double pct = (total_cpu > 0.0) ? (kv.second / total_cpu * 100.0) : 0.0;
- std::cout << "ggml_webgpu: " << kv.first << ": " << kv.second << " ms (" << pct << "%)\n";
- }
- #endif
- #ifdef GGML_WEBGPU_GPU_PROFILE
- std::cout << "\n[ggml_webgpu gpu profiling summary]\n";
- double total_gpu = 0.0;
- for (const auto & kv : ctx->webgpu_ctx->shader_gpu_time_ms) {
- total_gpu += kv.second;
- }
- std::cout << "ggml_webgpu: total gpu time (all shaders): " << total_gpu << " ms\n";
- std::cout << "\nggml_webgpu: gpu breakdown:\n";
- for (const auto & kv : ctx->webgpu_ctx->shader_gpu_time_ms) {
- double pct = (total_gpu > 0.0) ? (kv.second / total_gpu * 100.0) : 0.0;
- std::cout << "ggml_webgpu: " << kv.first << ": " << kv.second << " ms (" << pct << "%)\n";
- }
- #endif
- #if defined(GGML_WEBGPU_CPU_PROFILE) && defined(GGML_WEBGPU_GPU_PROFILE)
- std::cout << "ggml_webgpu: gpu/cpu ratio: " << (total_cpu > 0.0 ? total_gpu / total_cpu : 0.0) << "\n";
- #endif
- #if !defined(GGML_WEBGPU_CPU_PROFILE) && !defined(GGML_WEBGPU_GPU_PROFILE)
- GGML_UNUSED(ctx);
- #endif
- }
- static size_t ggml_webgpu_tensor_offset(const ggml_tensor * tensor) {
- return webgpu_tensor_offset(tensor) + tensor->view_offs;
- }
- static wgpu::Buffer ggml_webgpu_tensor_buf(const ggml_tensor * tensor) {
- ggml_backend_webgpu_buffer_context * ctx = (ggml_backend_webgpu_buffer_context *) tensor->buffer->context;
- return ctx->buffer;
- }
- static size_t ggml_webgpu_tensor_misalignment(webgpu_context & ctx, ggml_tensor * t) {
- size_t offset = ggml_webgpu_tensor_offset(t);
- return offset & (ctx->limits.minStorageBufferOffsetAlignment - 1);
- }
- static size_t ggml_webgpu_tensor_align_offset(webgpu_context & ctx, ggml_tensor * t) {
- size_t offset = ggml_webgpu_tensor_offset(t);
- return offset & ~(ctx->limits.minStorageBufferOffsetAlignment - 1);
- }
- static size_t ggml_webgpu_tensor_binding_size(webgpu_context & ctx, ggml_tensor * t) {
- return ROUNDUP_POW2(ggml_nbytes(t) + ggml_webgpu_tensor_misalignment(ctx, t), WEBGPU_STORAGE_BUF_BINDING_MULT);
- }
- // Used to determine if two tensors are the same for in-place operations
- static bool ggml_webgpu_tensor_equal(ggml_tensor * a, ggml_tensor * b) {
- return (ggml_webgpu_tensor_buf(a).Get() == ggml_webgpu_tensor_buf(b).Get()) &&
- (ggml_webgpu_tensor_offset(a) == ggml_webgpu_tensor_offset(b));
- }
- static webgpu_command ggml_webgpu_cpy(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
- uint32_t ne = (uint32_t) ggml_nelements(dst);
- std::vector<uint32_t> params = {
- ne, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- // Convert byte-strides to element-strides
- (uint32_t) (src->nb[0] / ggml_type_size(src->type)), (uint32_t) (src->nb[1] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)),
- (uint32_t) (dst->nb[0] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- // Logical shapes
- (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) dst->ne[0],
- (uint32_t) dst->ne[1], (uint32_t) dst->ne[2]
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src),
- .size = ggml_webgpu_tensor_binding_size(ctx, src) },
- { .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) }
- };
- uint32_t wg_x = CEIL_DIV(ne, WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, ctx->cpy_pipelines[src->type][dst->type], params, entries, wg_x);
- }
- static std::optional<webgpu_command> ggml_webgpu_set_rows(webgpu_context & ctx,
- ggml_tensor * src,
- ggml_tensor * idx,
- ggml_tensor * dst) {
- // For set rows specifically, we need to check if src and idx are empty tensors.
- if (ggml_is_empty(src) || ggml_is_empty(idx)) {
- return std::nullopt;
- }
- webgpu_pool_bufs error_bufs = ctx->set_rows_error_buf_pool.alloc_bufs();
- if (error_bufs.host_buf.GetMapState() == wgpu::BufferMapState::Mapped) {
- error_bufs.host_buf.Unmap();
- }
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, idx) / ggml_type_size(idx->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- // Convert byte-strides to element-strides
- (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (idx->nb[0] / ggml_type_size(idx->type)),
- (uint32_t) (idx->nb[1] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[2] / ggml_type_size(idx->type)),
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- // Shape of src
- (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) src->ne[3],
- // Shape of idx
- (uint32_t) (idx->ne[1]), (uint32_t) (idx->ne[2])
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src),
- .size = ggml_webgpu_tensor_binding_size(ctx, src) },
- { .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(idx),
- .offset = ggml_webgpu_tensor_align_offset(ctx, idx),
- .size = ggml_webgpu_tensor_binding_size(ctx, idx) },
- { .binding = 2,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) },
- { .binding = 3, .buffer = error_bufs.dev_buf, .offset = 0, .size = error_bufs.dev_buf.GetSize() }
- };
- int vectorized = src->ne[0] % 4 == 0;
- webgpu_pipeline pipeline = ctx->set_rows_pipelines[0][vectorized];
- uint32_t threads;
- if (vectorized) {
- threads = (src->ne[1] * src->ne[2] * src->ne[3]) * (src->ne[0] / 4);
- } else {
- threads = src->ne[0] * src->ne[1] * src->ne[2] * src->ne[3];
- }
- uint32_t wg_x = CEIL_DIV(threads, WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, 1, error_bufs);
- }
- static webgpu_command ggml_webgpu_get_rows(webgpu_context & ctx,
- ggml_tensor * src,
- ggml_tensor * idx,
- ggml_tensor * dst) {
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, idx) / ggml_type_size(idx->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- // Convert byte-strides to element-strides
- (uint32_t) (src->nb[1] / ggml_type_size(src->type)), (uint32_t) (src->nb[2] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[3] / ggml_type_size(src->type)), (uint32_t) (idx->nb[0] / ggml_type_size(idx->type)),
- (uint32_t) (idx->nb[1] / ggml_type_size(idx->type)), (uint32_t) (idx->nb[2] / ggml_type_size(idx->type)),
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- // Shape of dst
- (uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3],
- // Shape of idx
- (uint32_t) (idx->ne[1]), (uint32_t) (idx->ne[2])
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src),
- .size = ggml_webgpu_tensor_binding_size(ctx, src) },
- { .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(idx),
- .offset = ggml_webgpu_tensor_align_offset(ctx, idx),
- .size = ggml_webgpu_tensor_binding_size(ctx, idx) },
- { .binding = 2,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) }
- };
- uint32_t wg_x = CEIL_DIV(dst->ne[1] * dst->ne[2] * dst->ne[3], WEBGPU_MAX_WG_SIZE);
- uint32_t vectorized = src->type == GGML_TYPE_F32 && dst->ne[0] % 4 == 0;
- webgpu_pipeline pipeline = ctx->get_rows_pipelines[src->type][vectorized];
- return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
- }
- static webgpu_command ggml_webgpu_mul_mat(webgpu_context & ctx,
- ggml_tensor * src0,
- ggml_tensor * src1,
- ggml_tensor * dst) {
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) dst->ne[0], // number of rows in result (M, transposed)
- (uint32_t) dst->ne[1], // number of columns in result (N)
- (uint32_t) src0->ne[0], // number of columns in src0/src1 (K)
- (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)), // stride (elements/blocks) of src0 in dimension 1
- (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)), // stride (elements/blocks) of src1 in dimension 1
- (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)), // stride (elements/blocks) of src0 in dimension 2
- (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)), // stride (elements/blocks) of src1 in dimension 2
- (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)), // stride (elements/blocks) of src0 in dimension 3
- (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)), // stride (elements/blocks) of src1 in dimension 3
- (uint32_t) src0->ne[2], // batch size in dimension 2
- (uint32_t) src0->ne[3], // batch size in dimension 3
- (uint32_t) (src1->ne[2] / src0->ne[2]), // broadcast in dimension 2
- (uint32_t) (src1->ne[3] / src0->ne[3]) // broadcast in dimension 3
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src0),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src0),
- .size = ggml_webgpu_tensor_binding_size(ctx, src0) },
- { .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(src1),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src1),
- .size = ggml_webgpu_tensor_binding_size(ctx, src1) },
- { .binding = 2,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) },
- };
- webgpu_pipeline pipeline = ctx->mul_mat_pipelines[src0->type][src1->type][0];
- uint32_t wg_x = CEIL_DIV(dst->ne[0] * dst->ne[1] * dst->ne[2] * dst->ne[3], WEBGPU_MUL_MAT_WG_SIZE);
- uint32_t wg_y = 1;
- bool use_fast = false;
- switch (src1->type) {
- case GGML_TYPE_F16:
- use_fast = (src0->type == GGML_TYPE_F16);
- break;
- case GGML_TYPE_F32:
- switch (src0->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- use_fast = true;
- break;
- default:
- break;
- }
- break;
- default:
- break;
- }
- if (use_fast) {
- int vectorized = src0->ne[0] % 4 == 0 && dst->ne[0] % 4 == 0 && dst->ne[1] % 4 == 0;
- if (dst->ne[1] == 1) {
- // We don't support vectorized mul_mat_vec for quantized types
- vectorized = vectorized && (src0->type < 2);
- pipeline = ctx->mul_mat_vec_pipelines[src0->type][src1->type][vectorized];
- uint32_t batches = dst->ne[2] * dst->ne[3];
- uint32_t output_groups = CEIL_DIV(dst->ne[0], WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG);
- uint32_t total_wg = output_groups * batches;
- wg_x = total_wg % ctx->limits.maxComputeWorkgroupsPerDimension;
- wg_y = CEIL_DIV(total_wg, ctx->limits.maxComputeWorkgroupsPerDimension);
- } else {
- pipeline = ctx->mul_mat_pipelines[src0->type][src1->type][vectorized];
- uint32_t wg_m;
- uint32_t wg_n;
- #ifndef __EMSCRIPTEN__
- if (ctx->supports_subgroup_matrix) {
- // The total number of subgroups/workgroups needed per matrix.
- uint32_t wg_m_sg_tile =
- WEBGPU_MUL_MAT_SUBGROUP_M * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M * ctx->subgroup_matrix_config.M;
- wg_m = CEIL_DIV(dst->ne[0], wg_m_sg_tile);
- uint32_t wg_n_sg_tile =
- WEBGPU_MUL_MAT_SUBGROUP_N * WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N * ctx->subgroup_matrix_config.N;
- wg_n = CEIL_DIV(dst->ne[1], wg_n_sg_tile);
- } else {
- #endif
- uint32_t tile_m_s = WEBGPU_MUL_MAT_TILE_M * WEBGPU_MUL_MAT_WG_SIZE_M;
- uint32_t tile_n_s = WEBGPU_MUL_MAT_TILE_N * WEBGPU_MUL_MAT_WG_SIZE_N;
- wg_m = CEIL_DIV(dst->ne[0], tile_m_s);
- wg_n = CEIL_DIV(dst->ne[1], tile_n_s);
- #ifndef __EMSCRIPTEN__
- }
- #endif
- wg_x = wg_m * wg_n * dst->ne[2] * dst->ne[3];
- }
- }
- return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x, wg_y);
- }
- static webgpu_command ggml_webgpu_unary_op(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
- uint32_t ne = (uint32_t) ggml_nelements(dst);
- ggml_unary_op unary_op = ggml_get_unary_op(dst);
- uint32_t inplace = ggml_webgpu_tensor_equal(src, dst);
- std::vector<uint32_t> params = {
- ne, (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- // Convert byte-strides to element-strides
- (uint32_t) (src->nb[0] / ggml_type_size(src->type)), (uint32_t) (src->nb[1] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[2] / ggml_type_size(src->type)), (uint32_t) (src->nb[3] / ggml_type_size(src->type)),
- (uint32_t) (dst->nb[0] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)), (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- // Logical shapes
- (uint32_t) src->ne[0], (uint32_t) src->ne[1], (uint32_t) src->ne[2], (uint32_t) dst->ne[0],
- (uint32_t) dst->ne[1], (uint32_t) dst->ne[2]
- };
- switch (unary_op) {
- case GGML_UNARY_OP_XIELU:
- {
- // Get float parameters and reinterpret their bit patterns as uint32_t
- // for passing through the params buffer
- float alpha_n = ggml_get_op_params_f32(dst, 1);
- float alpha_p = ggml_get_op_params_f32(dst, 2);
- float beta = ggml_get_op_params_f32(dst, 3);
- float eps = ggml_get_op_params_f32(dst, 4);
- params.push_back(*reinterpret_cast<const uint32_t *>(&alpha_n));
- params.push_back(*reinterpret_cast<const uint32_t *>(&alpha_p));
- params.push_back(*reinterpret_cast<const uint32_t *>(&beta));
- params.push_back(*reinterpret_cast<const uint32_t *>(&eps));
- break;
- }
- default:
- break;
- }
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src),
- .size = ggml_webgpu_tensor_binding_size(ctx, src) },
- };
- if (!inplace) {
- entries.push_back({ .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- }
- uint32_t wg_x = CEIL_DIV(ne, WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, ctx->unary_pipelines[unary_op][dst->type][inplace], params, entries, wg_x);
- }
- static webgpu_command ggml_webgpu_binary_op(webgpu_context & ctx,
- ggml_tensor * src0,
- ggml_tensor * src1,
- ggml_tensor * dst,
- webgpu_pipeline & pipeline,
- bool inplace) {
- std::vector<uint32_t> params = {
- (uint32_t) ggml_nelements(dst),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) (src1->nb[0] / ggml_type_size(src1->type)),
- (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)),
- (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)),
- (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)),
- (uint32_t) src0->ne[0],
- (uint32_t) src0->ne[1],
- (uint32_t) src0->ne[2],
- (uint32_t) src1->ne[0],
- (uint32_t) src1->ne[1],
- (uint32_t) src1->ne[2],
- (uint32_t) src1->ne[3],
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src0),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src0),
- .size = ggml_webgpu_tensor_binding_size(ctx, src0) },
- { .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(src1),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src1),
- .size = ggml_webgpu_tensor_binding_size(ctx, src1) }
- };
- if (!inplace) {
- entries.push_back({ .binding = 2,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- }
- uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
- }
- static webgpu_command ggml_webgpu_rms_norm(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
- int inplace = ggml_webgpu_tensor_equal(src, dst);
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) (src->nb[1] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[2] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[3] / ggml_type_size(src->type)),
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- (uint32_t) src->ne[0],
- (uint32_t) src->ne[1],
- (uint32_t) src->ne[2],
- (uint32_t) src->ne[3],
- *(uint32_t *) dst->op_params // epsilon, treated as f32 in the shader
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src),
- .size = ggml_webgpu_tensor_binding_size(ctx, src) }
- };
- if (!inplace) {
- entries.push_back({ .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- }
- return ggml_backend_webgpu_build(ctx, ctx->rms_norm_pipelines[inplace], params, entries, ggml_nrows(src));
- }
- static webgpu_command ggml_webgpu_rope(webgpu_context & ctx,
- ggml_tensor * src0,
- ggml_tensor * src1,
- ggml_tensor * src2,
- ggml_tensor * dst) {
- const int inplace = ggml_webgpu_tensor_equal(src0, dst);
- const int has_freq_factor = (src2 != nullptr);
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- int sections[4];
- memcpy(sections, (int32_t *) dst->op_params + 11, 4 * sizeof(int));
- float theta_scale = powf(freq_base, -2.0f / n_dims);
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)),
- src2 != nullptr ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src2) / ggml_type_size(src2->type)) : 0,
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
- (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
- (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- (uint32_t) ggml_nelements(src0) / 2,
- (uint32_t) src0->ne[0],
- (uint32_t) src0->ne[1],
- (uint32_t) src0->ne[2],
- (uint32_t) n_dims,
- (uint32_t) mode,
- *(uint32_t *) &theta_scale,
- *(uint32_t *) &attn_factor,
- *(uint32_t *) &freq_scale,
- *(uint32_t *) &ext_factor,
- *(uint32_t *) &corr_dims[0],
- *(uint32_t *) &corr_dims[1],
- (uint32_t) sections[0],
- (uint32_t) sections[1],
- (uint32_t) sections[2],
- (uint32_t) sections[3]
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src0),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src0),
- .size = ggml_webgpu_tensor_binding_size(ctx, src0) },
- { .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(src1),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src1),
- .size = ggml_webgpu_tensor_binding_size(ctx, src1) }
- };
- uint32_t dst_binding = 2;
- if (has_freq_factor) {
- dst_binding = 3;
- entries.push_back({ .binding = 2,
- .buffer = ggml_webgpu_tensor_buf(src2),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src2),
- .size = ggml_webgpu_tensor_binding_size(ctx, src2) });
- }
- if (!inplace) {
- entries.push_back({ .binding = dst_binding,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- }
- webgpu_pipeline pipeline = ctx->rope_pipelines[dst->type][has_freq_factor][inplace];
- uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
- }
- static webgpu_command ggml_webgpu_glu(webgpu_context & ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst) {
- const int split = (src1 != nullptr);
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
- src1 != nullptr ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)) : 0,
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
- (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
- (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
- src1 != nullptr ? (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)) :
- (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
- src1 != nullptr ? (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)) :
- (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
- src1 != nullptr ? (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)) :
- (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- (uint32_t) ggml_nelements(dst),
- (uint32_t) dst->ne[0],
- (uint32_t) dst->ne[1],
- (uint32_t) dst->ne[2],
- (uint32_t) ((int32_t *) dst->op_params)[1], // swapped
- *(uint32_t *) &dst->op_params[2], // alpha, for swiglu_oai
- *(uint32_t *) &dst->op_params[3], // limit, for swiglu_oai
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src0),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src0),
- .size = ggml_webgpu_tensor_binding_size(ctx, src0) },
- };
- uint32_t dst_binding = 1;
- if (split) {
- dst_binding = 2;
- entries.push_back({ .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(src1),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src1),
- .size = ggml_webgpu_tensor_binding_size(ctx, src1) });
- }
- entries.push_back({ .binding = dst_binding,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- webgpu_pipeline pipeline = ctx->glu_pipelines[ggml_get_glu_op(dst)][dst->type][split];
- uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, pipeline, params, entries, wg_x);
- }
- static webgpu_command ggml_webgpu_scale(webgpu_context & ctx, ggml_tensor * src, ggml_tensor * dst) {
- int inplace = ggml_webgpu_tensor_equal(src, dst);
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src) / ggml_type_size(src->type)),
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) (src->nb[1] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[2] / ggml_type_size(src->type)),
- (uint32_t) (src->nb[3] / ggml_type_size(src->type)),
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- (uint32_t) ggml_nelements(dst),
- (uint32_t) src->ne[0],
- (uint32_t) src->ne[1],
- (uint32_t) src->ne[2],
- *(uint32_t *) dst->op_params, // scale
- *(uint32_t *) &dst->op_params[1] // bias
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src),
- .size = ggml_webgpu_tensor_binding_size(ctx, src) }
- };
- if (!inplace) {
- entries.push_back({ .binding = 1,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- }
- uint32_t wg_x = CEIL_DIV(ggml_nelements(dst), WEBGPU_MAX_WG_SIZE);
- return ggml_backend_webgpu_build(ctx, ctx->scale_pipelines[inplace], params, entries, wg_x);
- }
- static webgpu_command ggml_webgpu_soft_max(webgpu_context & ctx,
- ggml_tensor * src0,
- ggml_tensor * src1,
- ggml_tensor * src2,
- ggml_tensor * dst) {
- const int inplace = ggml_webgpu_tensor_equal(src0, dst);
- const int mask_type = (src1 != nullptr) ? src1->type : 2; // use 2 for no mask here
- const int has_sink = (src2 != nullptr);
- float max_bias;
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- float n_head_log2 = float(1u << (uint32_t) floor(log2(src0->ne[2])));
- float m0 = powf(2.0f, -(max_bias) / n_head_log2);
- float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- std::vector<uint32_t> params = {
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src0) / ggml_type_size(src0->type)),
- mask_type < 2 ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src1) / ggml_type_size(src1->type)) : 0,
- has_sink ? (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, src2) / ggml_type_size(src2->type)) : 0,
- (uint32_t) (ggml_webgpu_tensor_misalignment(ctx, dst) / ggml_type_size(dst->type)),
- (uint32_t) (src0->nb[1] / ggml_type_size(src0->type)),
- (uint32_t) (src0->nb[2] / ggml_type_size(src0->type)),
- (uint32_t) (src0->nb[3] / ggml_type_size(src0->type)),
- mask_type < 2 ? (uint32_t) (src1->nb[1] / ggml_type_size(src1->type)) : 0,
- mask_type < 2 ? (uint32_t) (src1->nb[2] / ggml_type_size(src1->type)) : 0,
- mask_type < 2 ? (uint32_t) (src1->nb[3] / ggml_type_size(src1->type)) : 0,
- (uint32_t) (dst->nb[1] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[2] / ggml_type_size(dst->type)),
- (uint32_t) (dst->nb[3] / ggml_type_size(dst->type)),
- (uint32_t) ggml_nelements(dst),
- (uint32_t) src0->ne[0],
- (uint32_t) src0->ne[1],
- (uint32_t) src0->ne[2],
- mask_type < 2 ? (uint32_t) src1->ne[2] : 0,
- mask_type < 2 ? (uint32_t) src1->ne[3] : 0,
- *(uint32_t *) dst->op_params, // scale
- *(uint32_t *) &max_bias,
- *(uint32_t *) &n_head_log2,
- *(uint32_t *) &m0,
- *(uint32_t *) &m1
- };
- std::vector<wgpu::BindGroupEntry> entries = {
- { .binding = 0,
- .buffer = ggml_webgpu_tensor_buf(src0),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src0),
- .size = ggml_webgpu_tensor_binding_size(ctx, src0) }
- };
- uint32_t binding_num = 1;
- if (mask_type < 2) {
- entries.push_back({ .binding = binding_num,
- .buffer = ggml_webgpu_tensor_buf(src1),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src1),
- .size = ggml_webgpu_tensor_binding_size(ctx, src1) });
- binding_num++;
- }
- if (has_sink) {
- entries.push_back({ .binding = binding_num,
- .buffer = ggml_webgpu_tensor_buf(src2),
- .offset = ggml_webgpu_tensor_align_offset(ctx, src2),
- .size = ggml_webgpu_tensor_binding_size(ctx, src2) });
- binding_num++;
- }
- if (!inplace) {
- entries.push_back({ .binding = binding_num,
- .buffer = ggml_webgpu_tensor_buf(dst),
- .offset = ggml_webgpu_tensor_align_offset(ctx, dst),
- .size = ggml_webgpu_tensor_binding_size(ctx, dst) });
- }
- return ggml_backend_webgpu_build(ctx, ctx->soft_max_pipelines[mask_type][has_sink][inplace], params, entries,
- ggml_nrows(dst));
- }
- // Returns the encoded command, or std::nullopt if the operation is a no-op
- static std::optional<webgpu_command> ggml_webgpu_encode_node(webgpu_context ctx, ggml_tensor * node) {
- if (ggml_is_empty(node)) {
- return std::nullopt;
- }
- WEBGPU_LOG_DEBUG("ggml_webgpu_encode_node(" << node << ", " << ggml_op_name(node->op) << ")");
- ggml_tensor * src0 = node->src[0];
- ggml_tensor * src1 = node->src[1];
- ggml_tensor * src2 = node->src[2];
- switch (node->op) {
- // no-ops
- case GGML_OP_NONE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_RESHAPE:
- return std::nullopt;
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- return ggml_webgpu_cpy(ctx, src0, node);
- case GGML_OP_SET_ROWS:
- return ggml_webgpu_set_rows(ctx, src0, src1, node);
- case GGML_OP_GET_ROWS:
- return ggml_webgpu_get_rows(ctx, src0, src1, node);
- case GGML_OP_MUL_MAT:
- return ggml_webgpu_mul_mat(ctx, src0, src1, node);
- case GGML_OP_ADD:
- {
- int inplace = ggml_webgpu_tensor_equal(src0, node);
- return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->add_pipelines[node->type][inplace], inplace);
- }
- case GGML_OP_SUB:
- {
- int inplace = ggml_webgpu_tensor_equal(src0, node);
- return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->sub_pipelines[node->type][inplace], inplace);
- }
- case GGML_OP_MUL:
- {
- int inplace = ggml_webgpu_tensor_equal(src0, node);
- return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->mul_pipelines[node->type][inplace], inplace);
- }
- case GGML_OP_DIV:
- {
- int inplace = ggml_webgpu_tensor_equal(src0, node);
- return ggml_webgpu_binary_op(ctx, src0, src1, node, ctx->div_pipelines[node->type][inplace], inplace);
- }
- case GGML_OP_RMS_NORM:
- return ggml_webgpu_rms_norm(ctx, src0, node);
- case GGML_OP_ROPE:
- return ggml_webgpu_rope(ctx, src0, src1, src2, node);
- case GGML_OP_GLU:
- return ggml_webgpu_glu(ctx, src0, src1, node);
- case GGML_OP_SCALE:
- return ggml_webgpu_scale(ctx, src0, node);
- case GGML_OP_SOFT_MAX:
- return ggml_webgpu_soft_max(ctx, src0, src1, src2, node);
- case GGML_OP_UNARY:
- return ggml_webgpu_unary_op(ctx, src0, node);
- default:
- return std::nullopt;
- }
- }
- static ggml_status ggml_backend_webgpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_graph_compute(" << cgraph->n_nodes << " nodes)");
- ggml_backend_webgpu_context * backend_ctx = static_cast<ggml_backend_webgpu_context *>(backend->context);
- webgpu_context ctx = backend_ctx->webgpu_ctx;
- WEBGPU_CPU_PROFILE_TOTAL_START(graph_compute);
- ctx->inflight_threads++;
- std::vector<webgpu_command> commands;
- std::vector<webgpu_submission_futures> futures;
- for (int i = 0; i < cgraph->n_nodes; i++) {
- if (auto cmd = ggml_webgpu_encode_node(ctx, cgraph->nodes[i])) {
- commands.push_back(*cmd);
- }
- // compute the batch size based on the number of inflight threads
- uint32_t inflight_threads = ctx->inflight_threads;
- uint32_t batch_size = std::min(std::max(1u, WEBGPU_NUM_PARAM_BUFS / std::max(inflight_threads, 1u)),
- WEBGPU_COMMAND_SUBMIT_BATCH_SIZE);
- if (commands.size() >= batch_size) {
- futures.push_back(ggml_backend_webgpu_submit(ctx, commands));
- // Process events and check for completed submissions
- ctx->instance.ProcessEvents();
- ggml_backend_webgpu_wait(ctx, futures, false);
- commands.clear();
- }
- }
- if (!commands.empty()) {
- webgpu_submission_futures new_futures = ggml_backend_webgpu_submit(ctx, commands);
- futures.push_back(new_futures);
- }
- ggml_backend_webgpu_wait(ctx, futures);
- ctx->inflight_threads--;
- WEBGPU_CPU_PROFILE_TOTAL_END(graph_compute, ctx);
- return GGML_STATUS_SUCCESS;
- }
- static ggml_backend_i ggml_backend_webgpu_i = {
- /* .get_name = */ ggml_backend_webgpu_name,
- /* .free = */ ggml_backend_webgpu_free,
- /* .set_tensor_async = */ NULL,
- /* .get_tensor_async = */ NULL,
- /* .cpy_tensor_async = */ NULL,
- /* .synchronize = */ NULL,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_webgpu_graph_compute,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- /* .graph_optimize = */ NULL,
- };
- /* End GGML Backend Interface */
- /* GGML Backend Buffer Interface */
- static void ggml_backend_webgpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_webgpu_buffer_context * ctx = static_cast<ggml_backend_webgpu_buffer_context *>(buffer->context);
- ctx->buffer.Destroy();
- }
- // Returns the "fake" base pointer.
- static void * ggml_backend_webgpu_buffer_get_base(ggml_backend_buffer_t buffer) {
- GGML_UNUSED(buffer);
- return webgpu_ptr_base;
- }
- static void ggml_backend_webgpu_buffer_memset_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor * tensor,
- uint8_t value,
- size_t offset,
- size_t size) {
- if (size == 0) {
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor: size is zero, nothing to do.");
- return;
- }
- WEBGPU_CPU_PROFILE_TOTAL_START(memset_tensor);
- ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_memset_tensor(" << buf_ctx->label << ", " << tensor << ", " << value
- << ", " << offset << ", " << size << ")");
- size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
- // This is a trick to set all bytes of a u32 to the same 1 byte value.
- uint32_t val32 = (uint32_t) value * 0x01010101;
- ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, val32, total_offset, size);
- WEBGPU_CPU_PROFILE_TOTAL_END(memset_tensor, buf_ctx->webgpu_ctx);
- }
- static void ggml_backend_webgpu_buffer_set_tensor(ggml_backend_buffer_t buffer,
- ggml_tensor * tensor,
- const void * data,
- size_t offset,
- size_t size) {
- WEBGPU_CPU_PROFILE_TOTAL_START(set_tensor);
- ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
- webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_set_tensor(" << buf_ctx->label << ", " << tensor << ", " << data
- << ", " << offset << ", " << size << ")");
- size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
- webgpu_ctx->queue.WriteBuffer(buf_ctx->buffer, total_offset, data, (size / 4) * 4);
- if (size % 4 != 0) {
- // If size is not a multiple of 4, we need to memset the remaining bytes
- size_t remaining_size = size % 4;
- // pack the remaining bytes into a uint32_t
- uint32_t val32 = 0;
- for (size_t i = 0; i < remaining_size; i++) {
- ((uint8_t *) &val32)[i] = ((const uint8_t *) data)[size - remaining_size + i];
- }
- // memset the remaining bytes
- ggml_backend_webgpu_buffer_memset(webgpu_ctx, buf_ctx->buffer, val32, total_offset + (size - remaining_size),
- remaining_size);
- } else {
- // wait for WriteBuffer to complete
- webgpu_ctx->instance.WaitAny(
- webgpu_ctx->queue.OnSubmittedWorkDone(wgpu::CallbackMode::AllowSpontaneous,
- [](wgpu::QueueWorkDoneStatus status, wgpu::StringView message) {
- if (status != wgpu::QueueWorkDoneStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to submit commands: %s\n",
- std::string(message).c_str());
- }
- }),
- UINT64_MAX);
- }
- WEBGPU_CPU_PROFILE_TOTAL_END(set_tensor, webgpu_ctx);
- }
- static void ggml_backend_webgpu_buffer_get_tensor(ggml_backend_buffer_t buffer,
- const ggml_tensor * tensor,
- void * data,
- size_t offset,
- size_t size) {
- WEBGPU_CPU_PROFILE_TOTAL_START(get_tensor);
- ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_get_tensor(" << buf_ctx->label << ", " << tensor << ", " << data
- << ", " << offset << ", " << size << ")");
- webgpu_context webgpu_ctx = buf_ctx->webgpu_ctx;
- wgpu::Device device = webgpu_ctx->device;
- size_t total_offset = webgpu_tensor_offset(tensor) + tensor->view_offs + offset;
- size_t final_size = size;
- if (size % 4 != 0) {
- // If size is not a multiple of 4, we need to round it up to the next multiple of 4
- final_size = size + (4 - (size % 4));
- }
- std::lock_guard<std::recursive_mutex> lock(webgpu_ctx->mutex);
- if (webgpu_ctx->get_tensor_staging_buf == nullptr || webgpu_ctx->get_tensor_staging_buf.GetSize() < final_size) {
- // Create a new staging buffer if it doesn't exist or is too small
- if (webgpu_ctx->get_tensor_staging_buf) {
- webgpu_ctx->get_tensor_staging_buf.Destroy();
- }
- ggml_webgpu_create_buffer(device, webgpu_ctx->get_tensor_staging_buf, final_size,
- wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "get_tensor_staging_buf");
- }
- // Copy the data from the buffer to the staging buffer
- wgpu::CommandEncoder encoder = device.CreateCommandEncoder();
- encoder.CopyBufferToBuffer(buf_ctx->buffer, total_offset, webgpu_ctx->get_tensor_staging_buf, 0, final_size);
- wgpu::CommandBuffer commands = encoder.Finish();
- // Submit the command buffer to the queue
- webgpu_ctx->queue.Submit(1, &commands);
- // Map the staging buffer to read the data
- ggml_backend_webgpu_map_buffer(webgpu_ctx, webgpu_ctx->get_tensor_staging_buf, wgpu::MapMode::Read, 0, final_size);
- // Must specify size here since the staging buffer might be larger than the tensor size
- const void * mapped_range = webgpu_ctx->get_tensor_staging_buf.GetConstMappedRange(0, final_size);
- // Copy the data from the mapped range to the output buffer
- std::memcpy(data, mapped_range, size);
- webgpu_ctx->get_tensor_staging_buf.Unmap();
- WEBGPU_CPU_PROFILE_TOTAL_END(get_tensor, webgpu_ctx);
- }
- static void ggml_backend_webgpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_clear(" << buffer << ", " << (uint32_t) value << ")");
- WEBGPU_CPU_PROFILE_TOTAL_START(clear);
- ggml_backend_webgpu_buffer_context * buf_ctx = (ggml_backend_webgpu_buffer_context *) buffer->context;
- ggml_backend_webgpu_buffer_memset(buf_ctx->webgpu_ctx, buf_ctx->buffer, value, 0, buffer->size);
- WEBGPU_CPU_PROFILE_TOTAL_END(clear, buf_ctx->webgpu_ctx);
- }
- static ggml_backend_buffer_i ggml_backend_webgpu_buffer_interface = {
- /* .free_buffer = */ ggml_backend_webgpu_buffer_free_buffer,
- /* .get_base = */ ggml_backend_webgpu_buffer_get_base,
- /* .init_tensor = */ NULL, // TODO: optional, needed?
- /* .memset_tensor = */ ggml_backend_webgpu_buffer_memset_tensor,
- /* .set_tensor = */ ggml_backend_webgpu_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_webgpu_buffer_get_tensor,
- /* .cpy_tensor = */ NULL, // TODO: optional, implement this
- /* .clear = */ ggml_backend_webgpu_buffer_clear,
- /* .reset = */ NULL, // TODO: optional, think it coordinates with .init_tensor
- };
- /* End GGML Backend Buffer Interface */
- /* GGML Backend Buffer Type Interface */
- static const char * ggml_backend_webgpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
- return ctx->device_name.c_str();
- }
- static ggml_backend_buffer_t ggml_backend_webgpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
- size_t size) {
- static std::atomic<int> buffer_count;
- int buffer_id = buffer_count++;
- std::string buf_name = "tensor_buf" + std::to_string(buffer_id);
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_buffer_type_alloc_buffer_" << buffer_id << ": " << size << " bytes");
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
- wgpu::Buffer buf;
- ggml_webgpu_create_buffer(ctx->webgpu_ctx->device, buf, ROUNDUP_POW2(size, WEBGPU_STORAGE_BUF_BINDING_MULT),
- wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::CopyDst,
- buf_name.c_str());
- ggml_backend_webgpu_buffer_context * buf_ctx =
- new ggml_backend_webgpu_buffer_context(ctx->webgpu_ctx, buf, buf_name);
- return ggml_backend_buffer_init(buft, ggml_backend_webgpu_buffer_interface, buf_ctx, size);
- }
- static size_t ggml_backend_webgpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
- return ctx->webgpu_ctx->limits.minStorageBufferOffsetAlignment;
- }
- // maxBufferSize might be larger, but you can't bind more than maxStorageBufferBindingSize to a single binding.
- static size_t ggml_backend_webgpu_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(buft->device->context);
- return ctx->webgpu_ctx->limits.maxStorageBufferBindingSize;
- }
- /* End GGML Backend Buffer Type Interface */
- /* GGML Backend Device Interface */
- static const char * ggml_backend_webgpu_device_get_name(ggml_backend_dev_t dev) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
- return ctx->device_name.c_str();
- }
- static const char * ggml_backend_webgpu_device_get_description(ggml_backend_dev_t dev) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
- return ctx->device_desc.c_str();
- }
- static void ggml_backend_webgpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
- // TODO: what do we actually want to return here? maxBufferSize might not be the full available memory.
- *free = ctx->webgpu_ctx->limits.maxBufferSize;
- *total = ctx->webgpu_ctx->limits.maxBufferSize;
- }
- static enum ggml_backend_dev_type ggml_backend_webgpu_device_get_type(ggml_backend_dev_t dev) {
- GGML_UNUSED(dev);
- return GGML_BACKEND_DEVICE_TYPE_GPU;
- }
- static void ggml_backend_webgpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- props->name = ggml_backend_webgpu_device_get_name(dev);
- props->description = ggml_backend_webgpu_device_get_description(dev);
- props->type = ggml_backend_webgpu_device_get_type(dev);
- ggml_backend_webgpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = {
- /* .async = */ false,
- /* .host_buffer = */ false,
- /* .buffer_from_host_ptr = */ false,
- /* .events = */ false,
- };
- }
- static ggml_guid_t ggml_backend_webgpu_guid(void) {
- static const char * guid_str = "__ggml_webgpu :)";
- return reinterpret_cast<ggml_guid_t>((void *) guid_str);
- }
- // Workgroup size is a common constant
- static std::vector<wgpu::ConstantEntry> ggml_webgpu_wg_size_entry(uint32_t wg_size) {
- std::vector<wgpu::ConstantEntry> constants(1);
- constants[0].key = "wg_size";
- constants[0].value = wg_size;
- return constants;
- }
- static void ggml_webgpu_init_memset_pipeline(webgpu_context & webgpu_ctx) {
- // we use the maximum workgroup size for the memset pipeline
- size_t max_threads = WEBGPU_MAX_WG_SIZE * webgpu_ctx->limits.maxComputeWorkgroupsPerDimension;
- // Size the bytes_per_thread so that the largest buffer size can be handled
- webgpu_ctx->memset_bytes_per_thread = CEIL_DIV(webgpu_ctx->limits.maxStorageBufferBindingSize, max_threads);
- std::vector<wgpu::ConstantEntry> constants(2);
- constants[0].key = "wg_size";
- constants[0].value = WEBGPU_MAX_WG_SIZE;
- constants[1].key = "bytes_per_thread";
- constants[1].value = webgpu_ctx->memset_bytes_per_thread;
- webgpu_ctx->memset_pipelines[0] = ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_memset, "memset", constants);
- }
- static void ggml_webgpu_init_mul_mat_pipeline(webgpu_context & webgpu_ctx) {
- // Q4/Q5/Q8 classic quantizations
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q4_0_f32, "mul_mat_q4_0_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_1][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q4_1_f32, "mul_mat_q4_1_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q5_0][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q5_0_f32, "mul_mat_q5_0_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q5_1][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q5_1_f32, "mul_mat_q5_1_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q8_0][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q8_0_f32, "mul_mat_q8_0_f32");
- // K-quantizations
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q2_K][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q2_k_f32, "mul_mat_q2_k_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q3_K][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q3_k_f32, "mul_mat_q3_k_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_K][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q4_k_f32, "mul_mat_q4_k_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q5_K][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q5_k_f32, "mul_mat_q5_k_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q6_K][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_q6_k_f32, "mul_mat_q6_k_f32");
- // IQ quantizations (2-, 3-, 4-bit variants)
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ2_XXS][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq2_xxs_f32, "mul_mat_iq2_xxs_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ2_XS][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq2_xs_f32, "mul_mat_iq2_xs_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ2_S][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq2_s_f32, "mul_mat_iq2_s_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ3_XXS][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq3_xxs_f32, "mul_mat_iq3_xxs_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ3_S][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq3_s_f32, "mul_mat_iq3_s_f32");
- // 1-bit and 4-bit IQ variants
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ1_S][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq1_s_f32, "mul_mat_iq1_s_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ1_M][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq1_m_f32, "mul_mat_iq1_m_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ4_NL][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq4_nl_f32, "mul_mat_iq4_nl_f32");
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_IQ4_XS][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_mat_iq4_xs_f32, "mul_mat_iq4_xs_f32");
- std::string proc_mul_mat_f32_f32;
- std::string proc_mul_mat_f32_f32_vec;
- std::string proc_mul_mat_f16_f32;
- std::string proc_mul_mat_f16_f32_vec;
- std::string proc_mul_mat_f16_f16;
- std::string proc_mul_mat_f16_f16_vec;
- std::string proc_mul_mat_q4_0_f32;
- std::string proc_mul_mat_q4_0_f32_vec;
- std::vector<wgpu::ConstantEntry> mul_mat_constants;
- #ifndef __EMSCRIPTEN__
- if (webgpu_ctx->supports_subgroup_matrix) {
- std::map<std::string, std::string> sg_matrix_repls;
- sg_matrix_repls["WEBGPU_MAX_SUBGROUP_SIZE"] = std::to_string(webgpu_ctx->subgroup_size);
- sg_matrix_repls["WEBGPU_TILE_K"] = std::to_string(WEBGPU_MUL_MAT_TILE_K);
- sg_matrix_repls["WEBGPU_SUBGROUP_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_M);
- sg_matrix_repls["WEBGPU_SUBGROUP_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_N);
- sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_M"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_M);
- sg_matrix_repls["WEBGPU_SUBGROUP_MATRIX_N"] = std::to_string(WEBGPU_MUL_MAT_SUBGROUP_MATRIX_N);
- sg_matrix_repls["WEBGPU_SG_MAT_M_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.M);
- sg_matrix_repls["WEBGPU_SG_MAT_N_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.N);
- sg_matrix_repls["WEBGPU_SG_MAT_K_SIZE"] = std::to_string(webgpu_ctx->subgroup_matrix_config.K);
- proc_mul_mat_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32, sg_matrix_repls);
- proc_mul_mat_f32_f32_vec =
- ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f32_f32_vec, sg_matrix_repls);
- proc_mul_mat_f16_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f32, sg_matrix_repls);
- proc_mul_mat_f16_f32_vec =
- ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f32_vec, sg_matrix_repls);
- proc_mul_mat_f16_f16 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f16, sg_matrix_repls);
- proc_mul_mat_f16_f16_vec =
- ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_f16_f16_vec, sg_matrix_repls);
- proc_mul_mat_q4_0_f32 =
- ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_q4_0_f32, sg_matrix_repls);
- proc_mul_mat_q4_0_f32_vec =
- ggml_webgpu_process_shader_repls(wgsl_mul_mat_subgroup_matrix_q4_0_f32_vec, sg_matrix_repls);
- } else {
- #endif
- mul_mat_constants.push_back({ .key = "TILE_K", .value = WEBGPU_MUL_MAT_TILE_K });
- mul_mat_constants.push_back({ .key = "WORKGROUP_SIZE_M", .value = WEBGPU_MUL_MAT_WG_SIZE_M });
- mul_mat_constants.push_back({ .key = "WORKGROUP_SIZE_N", .value = WEBGPU_MUL_MAT_WG_SIZE_N });
- std::map<std::string, std::string> reg_repls;
- reg_repls["WEBGPU_TILE_M"] = std::to_string(WEBGPU_MUL_MAT_TILE_M);
- reg_repls["WEBGPU_TILE_N"] = std::to_string(WEBGPU_MUL_MAT_TILE_N);
- proc_mul_mat_f32_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f32_f32, reg_repls);
- proc_mul_mat_f32_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f32_f32_vec, reg_repls);
- proc_mul_mat_f16_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f32, reg_repls);
- proc_mul_mat_f16_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f32_vec, reg_repls);
- proc_mul_mat_f16_f16 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f16, reg_repls);
- proc_mul_mat_f16_f16_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_f16_f16_vec, reg_repls);
- proc_mul_mat_q4_0_f32 = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_q4_0_f32, reg_repls);
- proc_mul_mat_q4_0_f32_vec = ggml_webgpu_process_shader_repls(wgsl_mul_mat_reg_tile_q4_0_f32_vec, reg_repls);
- #ifndef __EMSCRIPTEN__
- }
- #endif
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_f32_f32.c_str(), "mul_mat_f32_f32", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_f32_f32_vec.c_str(), "mul_mat_f32_f32_vec", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_f16_f32.c_str(), "mul_mat_f16_f32", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_f16_f32_vec.c_str(), "mul_mat_f16_f32_vec", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_f16_f16.c_str(), "mul_mat_f16_f16", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_f16_f16_vec.c_str(), "mul_mat_f16_f16_vec", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_q4_0_f32.c_str(), "mul_mat_q4_0_f32", mul_mat_constants);
- webgpu_ctx->mul_mat_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, proc_mul_mat_q4_0_f32_vec.c_str(), "mul_mat_q4_0_f32_vec", mul_mat_constants);
- std::vector<wgpu::ConstantEntry> mul_mat_vec_constants(3);
- mul_mat_vec_constants[0].key = "WORKGROUP_SIZE";
- mul_mat_vec_constants[0].value = WEBGPU_MUL_MAT_VEC_WG_SIZE;
- mul_mat_vec_constants[1].key = "TILE_K";
- mul_mat_vec_constants[1].value = WEBGPU_MUL_MAT_VEC_TILE_K;
- mul_mat_vec_constants[2].key = "OUTPUTS_PER_WG";
- mul_mat_vec_constants[2].value = WEBGPU_MUL_MAT_VEC_OUTPUTS_PER_WG;
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_f32_f32, "mul_mat_vec_f32_f32", mul_mat_vec_constants);
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F32][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_f32_f32_vec, "mul_mat_vec_f32_f32_vec", mul_mat_vec_constants);
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_f16_f32, "mul_mat_vec_f16_f32", mul_mat_vec_constants);
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_f16_f32_vec, "mul_mat_vec_f16_f32_vec", mul_mat_vec_constants);
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_f16_f16, "mul_mat_vec_f16_f16", mul_mat_vec_constants);
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_F16][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_f16_f16_vec, "mul_mat_vec_f16_f16_vec", mul_mat_vec_constants);
- webgpu_ctx->mul_mat_vec_pipelines[GGML_TYPE_Q4_0][GGML_TYPE_F32][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_mul_mat_vec_q4_0_f32, "mul_mat_vec_q4_0_f32", mul_mat_vec_constants);
- }
- static void ggml_webgpu_init_set_rows_pipeline(webgpu_context & webgpu_ctx) {
- webgpu_ctx->set_rows_pipelines[0][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_set_rows_f16, "set_rows_f16", ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE));
- webgpu_ctx->set_rows_pipelines[0][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_set_rows_f16_vec, "set_rows_f16_vec", ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE));
- }
- static void ggml_webgpu_init_get_rows_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_f32, "get_rows_f32", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_f32_vec, "get_rows_f32_vec", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_f16, "get_rows_f16", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_I32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_i32, "get_rows_i32", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q4_0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q4_0, "get_rows_q4_0", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q4_1][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q4_1, "get_rows_q4_1", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q5_0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q5_0, "get_rows_q5_0", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q5_1][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q5_1, "get_rows_q5_1", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q8_0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q8_0, "get_rows_q8_0", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q2_K][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q2_k, "get_rows_q2_k", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q3_K][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q3_k, "get_rows_q3_k", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q4_K][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q4_k, "get_rows_q4_k", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q5_K][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q5_k, "get_rows_q5_k", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_Q6_K][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_q6_k, "get_rows_q6_k", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ2_XXS][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq2_xxs, "get_rows_iq2_xxs", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ2_XS][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq2_xs, "get_rows_iq2_xs", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ2_S][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq2_s, "get_rows_iq2_s", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ3_XXS][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq3_xxs, "get_rows_iq3_xxs", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ3_S][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq3_s, "get_rows_iq3_s", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ1_S][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq1_s, "get_rows_iq1_s", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ1_M][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq1_m, "get_rows_iq1_m", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ4_NL][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq4_nl, "get_rows_iq4_nl", constants);
- webgpu_ctx->get_rows_pipelines[GGML_TYPE_IQ4_XS][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_get_rows_iq4_xs, "get_rows_iq4_xs", constants);
- }
- static void ggml_webgpu_init_cpy_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->cpy_pipelines[GGML_TYPE_F32][GGML_TYPE_F32] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_cpy_f32_f32, "cpy_f32_f32", constants);
- webgpu_ctx->cpy_pipelines[GGML_TYPE_F32][GGML_TYPE_F16] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_cpy_f32_f16, "cpy_f32_f16", constants);
- webgpu_ctx->cpy_pipelines[GGML_TYPE_F16][GGML_TYPE_F32] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_cpy_f16_f32, "cpy_f16_f32", constants);
- webgpu_ctx->cpy_pipelines[GGML_TYPE_F16][GGML_TYPE_F16] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_cpy_f16_f16, "cpy_f16_f16", constants);
- }
- static void ggml_webgpu_init_add_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->add_pipelines[GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_add_f32, "add_f32", constants);
- webgpu_ctx->add_pipelines[GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_add_f16, "add_f16", constants);
- webgpu_ctx->add_pipelines[GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_add_f32_inplace, "add_f32_inplace", constants);
- webgpu_ctx->add_pipelines[GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_add_f16_inplace, "add_f16_inplace", constants);
- }
- static void ggml_webgpu_init_sub_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->sub_pipelines[GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sub_f32, "sub_f32", constants);
- webgpu_ctx->sub_pipelines[GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sub_f16, "sub_f16", constants);
- webgpu_ctx->sub_pipelines[GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sub_f32_inplace, "sub_f32_inplace", constants);
- webgpu_ctx->sub_pipelines[GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sub_f16_inplace, "sub_f16_inplace", constants);
- }
- static void ggml_webgpu_init_mul_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->mul_pipelines[GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_f32, "mul_f32", constants);
- webgpu_ctx->mul_pipelines[GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_f16, "mul_f16", constants);
- webgpu_ctx->mul_pipelines[GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_f32_inplace, "mul_f32_inplace", constants);
- webgpu_ctx->mul_pipelines[GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_mul_f16_inplace, "mul_f16_inplace", constants);
- }
- static void ggml_webgpu_init_div_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->div_pipelines[GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_div_f32, "div_f32", constants);
- webgpu_ctx->div_pipelines[GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_div_f16, "div_f16", constants);
- webgpu_ctx->div_pipelines[GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_div_f32_inplace, "div_f32_inplace", constants);
- webgpu_ctx->div_pipelines[GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_div_f16_inplace, "div_f16_inplace", constants);
- }
- static void ggml_webgpu_init_rms_norm_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE);
- webgpu_ctx->rms_norm_pipelines[0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rms_norm, "rms_norm", constants);
- webgpu_ctx->rms_norm_pipelines[1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rms_norm_inplace, "rms_norm_inplace", constants);
- }
- static void ggml_webgpu_init_rope_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F32][0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f32, "rope_f32", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F32][0][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f32_inplace, "rope_f32_inplace", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F32][1][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f32_ff, "rope_f32_ff", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F32][1][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f32_ff_inplace, "rope_f32_ff_inplace", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F16][0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f16, "rope_f16", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F16][0][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f16_inplace, "rope_f16_inplace", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F16][1][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f16_ff, "rope_f16_ff", constants);
- webgpu_ctx->rope_pipelines[GGML_TYPE_F16][1][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_rope_f16_ff_inplace, "rope_f16_ff_inplace", constants);
- }
- static void ggml_webgpu_init_glu_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- // REGLU
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_REGLU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_reglu_f32, "reglu_f32", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_REGLU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_reglu_f16, "reglu_f16", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_REGLU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_reglu_f32_split, "reglu_f32_split", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_REGLU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_reglu_f16_split, "reglu_f16_split", constants);
- // GEGLU
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_f32, "geglu_f32", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_f16, "geglu_f16", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_f32_split, "geglu_f32_split", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_f16_split, "geglu_f16_split", constants);
- // SWIGLU
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_SWIGLU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_swiglu_f32, "swiglu_f32", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_SWIGLU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_swiglu_f16, "swiglu_f16", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_SWIGLU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_swiglu_f32_split, "swiglu_f32_split", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_SWIGLU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_swiglu_f16_split, "swiglu_f16_split", constants);
- // SWIGLU_OAI
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_SWIGLU_OAI][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_swiglu_oai_f32, "swiglu_oai_f32", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_SWIGLU_OAI][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_swiglu_oai_f32_split, "swiglu_oai_f32_split", constants);
- // GEGLU_ERF
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_erf_f32, "geglu_erf_f32", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_erf_f16, "geglu_erf_f16", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_erf_f32_split, "geglu_erf_f32_split", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_ERF][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_erf_f16_split, "geglu_erf_f16_split", constants);
- // GEGLU_QUICK
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_quick_f32, "geglu_quick_f32", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_quick_f16, "geglu_quick_f16", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_quick_f32_split, "geglu_quick_f32_split", constants);
- webgpu_ctx->glu_pipelines[GGML_GLU_OP_GEGLU_QUICK][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_geglu_quick_f16_split, "geglu_quick_f16_split", constants);
- }
- static void ggml_webgpu_init_unary_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- // ABS
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ABS][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_abs_f32, "abs_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ABS][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_abs_f16, "abs_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ABS][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_abs_inplace_f32, "abs_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ABS][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_abs_inplace_f16, "abs_inplace_f16", constants);
- // SGN
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SGN][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sgn_f32, "sgn_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SGN][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sgn_f16, "sgn_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SGN][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sgn_inplace_f32, "sgn_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SGN][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sgn_inplace_f16, "sgn_inplace_f16", constants);
- // NEG
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_NEG][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_neg_f32, "neg_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_NEG][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_neg_f16, "neg_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_NEG][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_neg_inplace_f32, "neg_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_NEG][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_neg_inplace_f16, "neg_inplace_f16", constants);
- // STEP
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_STEP][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_step_f32, "step_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_STEP][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_step_f16, "step_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_STEP][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_step_inplace_f32, "step_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_STEP][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_step_inplace_f16, "step_inplace_f16", constants);
- // TANH
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_TANH][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_tanh_f32, "tanh_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_TANH][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_tanh_f16, "tanh_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_TANH][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_tanh_inplace_f32, "tanh_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_TANH][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_tanh_inplace_f16, "tanh_inplace_f16", constants);
- // ELU
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ELU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_elu_f32, "elu_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ELU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_elu_f16, "elu_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ELU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_elu_inplace_f32, "elu_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_ELU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_elu_inplace_f16, "elu_inplace_f16", constants);
- // RELU
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_RELU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_relu_f32, "relu_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_RELU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_relu_f16, "relu_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_RELU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_relu_inplace_f32, "relu_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_RELU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_relu_inplace_f16, "relu_inplace_f16", constants);
- // SIGMOID
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SIGMOID][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sigmoid_f32, "sigmoid_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SIGMOID][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sigmoid_f16, "sigmoid_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SIGMOID][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sigmoid_inplace_f32, "sigmoid_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SIGMOID][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_sigmoid_inplace_f16, "sigmoid_inplace_f16", constants);
- // GELU
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_f32, "gelu_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_f16, "gelu_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_inplace_f32, "gelu_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_inplace_f16, "gelu_inplace_f16", constants);
- // GELU_QUICK
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_QUICK][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_quick_f32, "gelu_quick_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_QUICK][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_quick_f16, "gelu_quick_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_QUICK][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_gelu_quick_inplace_f32, "gelu_quick_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_QUICK][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_gelu_quick_inplace_f16, "gelu_quick_inplace_f16", constants);
- // SILU
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SILU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_silu_f32, "silu_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SILU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_silu_f16, "silu_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SILU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_silu_inplace_f32, "silu_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_SILU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_silu_inplace_f16, "silu_inplace_f16", constants);
- // HARDSWISH
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSWISH][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_hardswish_f32, "hardswish_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSWISH][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_hardswish_f16, "hardswish_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSWISH][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_hardswish_inplace_f32, "hardswish_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSWISH][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_hardswish_inplace_f16, "hardswish_inplace_f16", constants);
- // HARDSIGMOID
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSIGMOID][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_hardsigmoid_f32, "hardsigmoid_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSIGMOID][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_hardsigmoid_f16, "hardsigmoid_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSIGMOID][GGML_TYPE_F32][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_hardsigmoid_inplace_f32, "hardsigmoid_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_HARDSIGMOID][GGML_TYPE_F16][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_hardsigmoid_inplace_f16, "hardsigmoid_inplace_f16", constants);
- // EXP
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_EXP][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_exp_f32, "exp_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_EXP][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_exp_f16, "exp_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_EXP][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_exp_inplace_f32, "exp_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_EXP][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_exp_inplace_f16, "exp_inplace_f16", constants);
- // GELU_ERF
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_ERF][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_erf_f32, "gelu_erf_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_ERF][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_erf_f16, "gelu_erf_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_ERF][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_erf_inplace_f32, "gelu_erf_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_GELU_ERF][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_gelu_erf_inplace_f16, "gelu_erf_inplace_f16", constants);
- // XIELU
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_XIELU][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_xielu_f32, "xielu_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_XIELU][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_xielu_f16, "xielu_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_XIELU][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_xielu_inplace_f32, "xielu_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_XIELU][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_xielu_inplace_f16, "xielu_inplace_f16", constants);
- // CEIL
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F32][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_f32, "ceil_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F16][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_f16, "ceil_f16", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F32][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_inplace_f32, "ceil_inplace_f32", constants);
- webgpu_ctx->unary_pipelines[GGML_UNARY_OP_CEIL][GGML_TYPE_F16][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_ceil_inplace_f16, "ceil_inplace_f16", constants);
- }
- static void ggml_webgpu_init_scale_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_MAX_WG_SIZE);
- webgpu_ctx->scale_pipelines[0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_scale_f32, "scale_f32", constants);
- webgpu_ctx->scale_pipelines[1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_scale_f32_inplace, "scale_f32_inplace", constants);
- }
- static void ggml_webgpu_init_soft_max_pipeline(webgpu_context & webgpu_ctx) {
- std::vector<wgpu::ConstantEntry> constants = ggml_webgpu_wg_size_entry(WEBGPU_ROW_SPLIT_WG_SIZE);
- // f32 (no mask)
- webgpu_ctx->soft_max_pipelines[2][0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_soft_max_f32, "soft_max_f32", constants);
- webgpu_ctx->soft_max_pipelines[2][0][1] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_soft_max_f32_inplace, "soft_max_f32_inplace", constants);
- webgpu_ctx->soft_max_pipelines[2][1][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_soft_max_f32_sink, "soft_max_f32_sink", constants);
- webgpu_ctx->soft_max_pipelines[2][1][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_sink_inplace, "soft_max_f32_sink_inplace", constants);
- // f32 mask (mask_type = 0)
- webgpu_ctx->soft_max_pipelines[0][0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_soft_max_f32_mask_f32, "soft_max_f32_mask_f32", constants);
- webgpu_ctx->soft_max_pipelines[0][0][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_mask_f32_inplace, "soft_max_f32_mask_f32_inplace", constants);
- webgpu_ctx->soft_max_pipelines[0][1][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_mask_f32_sink, "soft_max_f32_mask_f32_sink", constants);
- webgpu_ctx->soft_max_pipelines[0][1][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_mask_f32_sink_inplace, "soft_max_f32_mask_f32_sink_inplace", constants);
- // f16 mask (mask_type = 1)
- webgpu_ctx->soft_max_pipelines[1][0][0] =
- ggml_webgpu_create_pipeline(webgpu_ctx->device, wgsl_soft_max_f32_mask_f16, "soft_max_f32_mask_f16", constants);
- webgpu_ctx->soft_max_pipelines[1][0][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_mask_f16_inplace, "soft_max_f32_mask_f16_inplace", constants);
- webgpu_ctx->soft_max_pipelines[1][1][0] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_mask_f16_sink, "soft_max_f32_mask_f16_sink", constants);
- webgpu_ctx->soft_max_pipelines[1][1][1] = ggml_webgpu_create_pipeline(
- webgpu_ctx->device, wgsl_soft_max_f32_mask_f16_sink_inplace, "soft_max_f32_mask_f16_sink_inplace", constants);
- }
- static ggml_backend_t ggml_backend_webgpu_device_init(ggml_backend_dev_t dev, const char * params) {
- GGML_UNUSED(params);
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_device_init()");
- ggml_backend_webgpu_device_context * dev_ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
- webgpu_context webgpu_ctx = dev_ctx->webgpu_ctx;
- static ggml_backend_webgpu_context backend_ctx;
- backend_ctx.name = GGML_WEBGPU_NAME + std::string(": ") + dev_ctx->device_name;
- backend_ctx.webgpu_ctx = webgpu_ctx;
- // See GGML Backend Interface section
- static ggml_backend backend = {
- /* .guid = */ ggml_backend_webgpu_guid(),
- /* .interface = */ ggml_backend_webgpu_i,
- /* .device = */ dev,
- /* .context = */ &backend_ctx,
- };
- return &backend;
- }
- static ggml_backend_buffer_type_t ggml_backend_webgpu_device_get_buffer_type(ggml_backend_dev_t dev) {
- // See GGML Backend Buffer Type Interface section
- static struct ggml_backend_buffer_type ggml_backend_webgpu_buffer_type = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_webgpu_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_webgpu_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_webgpu_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_webgpu_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .is_host = */ NULL, // defaults to false
- },
- /* .device = */
- dev,
- /* .context = */ NULL,
- };
- return &ggml_backend_webgpu_buffer_type;
- }
- static bool ggml_backend_webgpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- GGML_UNUSED(dev);
- return buft->iface.get_name == ggml_backend_webgpu_buffer_type_get_name;
- }
- static bool ggml_webgpu_supported_qtype(ggml_type type) {
- switch (type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- return true;
- default:
- return false;
- }
- }
- static bool ggml_backend_webgpu_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
- ggml_backend_webgpu_device_context * ctx = static_cast<ggml_backend_webgpu_device_context *>(dev->context);
- webgpu_context webgpu_ctx = ctx->webgpu_ctx;
- ggml_tensor * src0 = op->src[0];
- ggml_tensor * src1 = op->src[1];
- ggml_tensor * src2 = op->src[2];
- // on smaller devices (or CI), tensors may be larger than the max storage buffer size
- if (ggml_nbytes(op) > webgpu_ctx->limits.maxStorageBufferBindingSize ||
- (src0 != nullptr && ggml_nbytes(src0) > webgpu_ctx->limits.maxStorageBufferBindingSize) ||
- (src1 != nullptr && ggml_nbytes(src1) > webgpu_ctx->limits.maxStorageBufferBindingSize)) {
- return false;
- }
- bool supports_op = false;
- switch (op->op) {
- case GGML_OP_NONE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_RESHAPE:
- supports_op = true;
- break;
- case GGML_OP_ADD:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- // TODO: support non-contiguous tensors, e.g. for MOE_EXPERT_REDUCE
- // see https://github.com/ggml-org/llama.cpp/pull/16857
- supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (src0->type == op->type) &&
- (src1->type == op->type) && ggml_is_contiguous(src0) && ggml_is_contiguous(src1);
- break;
- case GGML_OP_CPY:
- case GGML_OP_CONT:
- supports_op = (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) &&
- (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
- break;
- case GGML_OP_SET_ROWS:
- supports_op = (op->type == GGML_TYPE_F16 && src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_I64);
- break;
- case GGML_OP_GET_ROWS:
- if (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_I32 ||
- ggml_webgpu_supported_qtype(src0->type)) {
- supports_op = (op->type == GGML_TYPE_F32);
- }
- break;
- case GGML_OP_MUL_MAT:
- {
- switch (src1->type) {
- case GGML_TYPE_F16:
- supports_op |= (src0->type == GGML_TYPE_F16);
- break;
- case GGML_TYPE_F32:
- switch (src0->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- supports_op = true;
- break;
- default:
- break;
- }
- default:
- break;
- }
- break;
- }
- case GGML_OP_RMS_NORM:
- supports_op = op->type == GGML_TYPE_F32 && src0->type == GGML_TYPE_F32;
- break;
- case GGML_OP_ROPE:
- supports_op = op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16;
- break;
- case GGML_OP_GLU:
- switch (ggml_get_glu_op(op)) {
- case GGML_GLU_OP_REGLU:
- case GGML_GLU_OP_GEGLU:
- case GGML_GLU_OP_SWIGLU:
- case GGML_GLU_OP_GEGLU_ERF:
- case GGML_GLU_OP_GEGLU_QUICK:
- supports_op = op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16;
- break;
- case GGML_GLU_OP_SWIGLU_OAI:
- supports_op = op->type == GGML_TYPE_F32;
- break;
- default:
- break;
- }
- break;
- case GGML_OP_SCALE:
- supports_op = op->type == GGML_TYPE_F32;
- break;
- case GGML_OP_SOFT_MAX:
- supports_op = op->type == GGML_TYPE_F32;
- break;
- case GGML_OP_UNARY:
- {
- const ggml_unary_op UNARY_OP = ggml_get_unary_op(op);
- switch (UNARY_OP) {
- case GGML_UNARY_OP_ABS:
- case GGML_UNARY_OP_SGN:
- case GGML_UNARY_OP_NEG:
- case GGML_UNARY_OP_STEP:
- case GGML_UNARY_OP_TANH:
- case GGML_UNARY_OP_ELU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_SIGMOID:
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_EXP:
- case GGML_UNARY_OP_GELU_ERF:
- case GGML_UNARY_OP_XIELU:
- case GGML_UNARY_OP_CEIL:
- supports_op = supports_op =
- (op->type == GGML_TYPE_F32 || op->type == GGML_TYPE_F16) && (src0->type == op->type);
- break;
- default:
- break;
- }
- }
- break;
- default:
- break;
- }
- if (ggml_nbytes(op) > webgpu_ctx->limits.maxStorageBufferBindingSize ||
- (src0 != nullptr && ggml_nbytes(src0) > webgpu_ctx->limits.maxStorageBufferBindingSize) ||
- (src1 != nullptr && ggml_nbytes(src1) > webgpu_ctx->limits.maxStorageBufferBindingSize) ||
- (src2 != nullptr && ggml_nbytes(src2) > webgpu_ctx->limits.maxStorageBufferBindingSize)) {
- supports_op = false;
- WEBGPU_LOG_DEBUG("ggml_webgpu op not supported due to size: ");
- }
- if (!supports_op) {
- WEBGPU_LOG_DEBUG("ggml_webgpu op not supported: "
- << ggml_op_name(op->op) << " with types dst: " << ggml_type_name(op->type)
- << ", src0: " << (op->src[0] ? ggml_type_name(op->src[0]->type) : "null")
- << ", src1: " << (op->src[1] ? ggml_type_name(op->src[1]->type) : "null"));
- } else {
- WEBGPU_LOG_DEBUG("ggml_webgpu op supported: "
- << ggml_op_name(op->op) << " with types dst: " << ggml_type_name(op->type)
- << ", src0: " << (op->src[0] ? ggml_type_name(op->src[0]->type) : "null")
- << ", src1: " << (op->src[1] ? ggml_type_name(op->src[1]->type) : "null"));
- }
- return supports_op;
- }
- static struct ggml_backend_device_i ggml_backend_webgpu_device_i = {
- /* .get_name = */ ggml_backend_webgpu_device_get_name,
- /* .get_description = */ ggml_backend_webgpu_device_get_description,
- /* .get_memory = */ ggml_backend_webgpu_device_get_memory,
- /* .get_type = */ ggml_backend_webgpu_device_get_type,
- /* .get_props = */ ggml_backend_webgpu_device_get_props,
- /* .init_backend = */ ggml_backend_webgpu_device_init,
- /* .get_buffer_type = */ ggml_backend_webgpu_device_get_buffer_type,
- /* .get_host_buffer_type = */ NULL,
- /* .buffer_from_host_ptr = */ NULL,
- /* .supports_op = */ ggml_backend_webgpu_device_supports_op,
- /* .supports_buft = */ ggml_backend_webgpu_device_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- /* End GGML Backend Device Interface */
- /* GGML Backend Registration Interface */
- static const char * ggml_backend_webgpu_reg_get_name(ggml_backend_reg_t reg) {
- ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
- return ctx->name;
- }
- static size_t ggml_backend_webgpu_reg_get_device_count(ggml_backend_reg_t reg) {
- ggml_backend_webgpu_reg_context * ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
- return ctx->device_count;
- }
- // TODO: Does this need to be thread safe? Is it only called once?
- // Only one device is supported for now
- static ggml_backend_dev_t ggml_backend_webgpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
- GGML_ASSERT(index == 0);
- WEBGPU_LOG_DEBUG("ggml_backend_reg_get_device()");
- WEBGPU_CPU_PROFILE_TOTAL_START(reg_get_device);
- ggml_backend_webgpu_reg_context * reg_ctx = static_cast<ggml_backend_webgpu_reg_context *>(reg->context);
- webgpu_context ctx = reg_ctx->webgpu_ctx;
- wgpu::RequestAdapterOptions options = {};
- #ifndef __EMSCRIPTEN__
- // TODO: track need for these toggles: https://issues.chromium.org/issues/42251215
- const char * const adapterEnabledToggles[] = { "vulkan_enable_f16_on_nvidia", "use_vulkan_memory_model" };
- wgpu::DawnTogglesDescriptor adapterTogglesDesc;
- adapterTogglesDesc.enabledToggles = adapterEnabledToggles;
- adapterTogglesDesc.enabledToggleCount = 2;
- options.nextInChain = &adapterTogglesDesc;
- #endif
- ctx->instance.WaitAny(ctx->instance.RequestAdapter(
- &options, wgpu::CallbackMode::AllowSpontaneous,
- [&ctx](wgpu::RequestAdapterStatus status, wgpu::Adapter adapter, const char * message) {
- if (status != wgpu::RequestAdapterStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to get an adapter: %s\n", message);
- return;
- }
- ctx->adapter = std::move(adapter);
- }),
- UINT64_MAX);
- GGML_ASSERT(ctx->adapter != nullptr);
- ctx->adapter.GetLimits(&ctx->limits);
- wgpu::AdapterInfo info{};
- #ifndef __EMSCRIPTEN__
- wgpu::AdapterPropertiesSubgroupMatrixConfigs subgroup_matrix_configs{};
- if (ctx->adapter.HasFeature(wgpu::FeatureName::ChromiumExperimentalSubgroupMatrix)) {
- info.nextInChain = &subgroup_matrix_configs;
- }
- #endif
- ctx->adapter.GetInfo(&info);
- wgpu::SupportedFeatures features;
- ctx->adapter.GetFeatures(&features);
- // we require f16 support
- GGML_ASSERT(ctx->adapter.HasFeature(wgpu::FeatureName::ShaderF16));
- #ifndef __EMSCRIPTEN__
- // Only support square f16 matrices of size 8 or 16 for now
- bool valid_subgroup_matrix_config = false;
- if (ctx->adapter.HasFeature(wgpu::FeatureName::ChromiumExperimentalSubgroupMatrix)) {
- for (size_t i = 0; i < subgroup_matrix_configs.configCount; i++) {
- const wgpu::SubgroupMatrixConfig config = subgroup_matrix_configs.configs[i];
- if (config.M == config.N && config.N == config.K && (config.K == 8 || config.K == 16) &&
- config.componentType == wgpu::SubgroupMatrixComponentType::F16 &&
- config.resultComponentType == wgpu::SubgroupMatrixComponentType::F16) {
- ctx->subgroup_matrix_config = config;
- valid_subgroup_matrix_config = true;
- break;
- }
- }
- }
- ctx->supports_subgroup_matrix = valid_subgroup_matrix_config;
- #endif
- // For subgroup matrix code to be the most efficient, we would like the subgroup size to be consistent and accurate.
- // Unfortunately, that is not possible, so we use the maximum subgroup size reported by the adapter.
- ctx->subgroup_size = info.subgroupMaxSize;
- // Initialize device
- std::vector<wgpu::FeatureName> required_features = { wgpu::FeatureName::ShaderF16 };
- #ifndef __EMSCRIPTEN__
- required_features.push_back(wgpu::FeatureName::ImplicitDeviceSynchronization);
- if (ctx->supports_subgroup_matrix) {
- required_features.push_back(wgpu::FeatureName::Subgroups);
- required_features.push_back(wgpu::FeatureName::ChromiumExperimentalSubgroupMatrix);
- }
- #endif
- #ifdef GGML_WEBGPU_GPU_PROFILE
- required_features.push_back(wgpu::FeatureName::TimestampQuery);
- #endif
- wgpu::DeviceDescriptor dev_desc;
- dev_desc.requiredLimits = &ctx->limits;
- dev_desc.requiredFeatures = required_features.data();
- dev_desc.requiredFeatureCount = required_features.size();
- dev_desc.SetDeviceLostCallback(
- wgpu::CallbackMode::AllowSpontaneous,
- [](const wgpu::Device & device, wgpu::DeviceLostReason reason, wgpu::StringView message) {
- GGML_UNUSED(device);
- GGML_LOG_ERROR("ggml_webgpu: Device lost! Reason: %d, Message: %s\n", static_cast<int>(reason),
- std::string(message).c_str());
- });
- dev_desc.SetUncapturedErrorCallback(
- [](const wgpu::Device & device, wgpu::ErrorType reason, wgpu::StringView message) {
- GGML_UNUSED(device);
- GGML_ABORT("ggml_webgpu: Device error! Reason: %d, Message: %s\n", static_cast<int>(reason),
- std::string(message).c_str());
- });
- #ifndef __EMSCRIPTEN__
- // Enable Dawn-specific toggles to increase native performance
- // TODO: Maybe WebGPU needs a "fast" mode where you can request compilers skip adding checks like these,
- // only for native performance?
- const char * const deviceEnabledToggles[] = { "skip_validation", "disable_robustness", "disable_workgroup_init",
- "disable_polyfills_on_integer_div_and_mod" };
- const char * const deviceDisabledToggles[] = { "timestamp_quantization" };
- wgpu::DawnTogglesDescriptor deviceTogglesDesc;
- deviceTogglesDesc.enabledToggles = deviceEnabledToggles;
- deviceTogglesDesc.enabledToggleCount = 4;
- deviceTogglesDesc.disabledToggles = deviceDisabledToggles;
- deviceTogglesDesc.disabledToggleCount = 1;
- dev_desc.nextInChain = &deviceTogglesDesc;
- #endif
- ctx->instance.WaitAny(ctx->adapter.RequestDevice(
- &dev_desc, wgpu::CallbackMode::AllowSpontaneous,
- [ctx](wgpu::RequestDeviceStatus status, wgpu::Device device, wgpu::StringView message) {
- if (status != wgpu::RequestDeviceStatus::Success) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to get a device: %s\n",
- std::string(message).c_str());
- return;
- }
- ctx->device = std::move(device);
- }),
- UINT64_MAX);
- GGML_ASSERT(ctx->device != nullptr);
- // Initialize (compute) queue
- ctx->queue = ctx->device.GetQueue();
- // Create buffer pool for shader parameters
- ctx->param_buf_pool.init(ctx->device, WEBGPU_NUM_PARAM_BUFS, WEBGPU_PARAMS_BUF_SIZE_BYTES,
- wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::Uniform,
- wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::MapWrite);
- #ifdef GGML_WEBGPU_GPU_PROFILE
- // Initialize buffer pool for timestamp queries (profiling)
- ctx->timestamp_query_buf_pool.init(ctx->device, WEBGPU_NUM_TIMESTAMP_QUERY_BUFS,
- WEBGPU_TIMESTAMP_QUERY_BUF_SIZE_BYTES,
- wgpu::BufferUsage::QueryResolve | wgpu::BufferUsage::CopySrc,
- wgpu::BufferUsage::MapRead | wgpu::BufferUsage::CopyDst);
- #endif
- ctx->set_rows_error_buf_pool.init(ctx->device, WEBGPU_NUM_SET_ROWS_ERROR_BUFS, WEBGPU_SET_ROWS_ERROR_BUF_SIZE_BYTES,
- wgpu::BufferUsage::CopySrc | wgpu::BufferUsage::Storage,
- wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead);
- ggml_webgpu_init_memset_pipeline(ctx);
- ggml_webgpu_init_mul_mat_pipeline(ctx);
- ggml_webgpu_init_set_rows_pipeline(ctx);
- ggml_webgpu_init_get_rows_pipeline(ctx);
- ggml_webgpu_init_cpy_pipeline(ctx);
- ggml_webgpu_init_add_pipeline(ctx);
- ggml_webgpu_init_sub_pipeline(ctx);
- ggml_webgpu_init_mul_pipeline(ctx);
- ggml_webgpu_init_div_pipeline(ctx);
- ggml_webgpu_init_rms_norm_pipeline(ctx);
- ggml_webgpu_init_rope_pipeline(ctx);
- ggml_webgpu_init_glu_pipeline(ctx);
- ggml_webgpu_init_scale_pipeline(ctx);
- ggml_webgpu_init_soft_max_pipeline(ctx);
- ggml_webgpu_init_unary_pipeline(ctx);
- #ifdef GGML_WEBGPU_DEBUG
- // Initialize debug buffers
- ggml_webgpu_create_buffer(ctx->device, ctx->debug_host_buf, WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t),
- wgpu::BufferUsage::CopyDst | wgpu::BufferUsage::MapRead, "debug_host_buf");
- ggml_webgpu_create_buffer(ctx->device, ctx->debug_dev_buf, WEBGPU_DEBUG_BUF_ELEMS * sizeof(uint32_t),
- wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopySrc, "debug_dev_buf");
- #endif
- static ggml_backend_webgpu_device_context device_ctx;
- device_ctx.webgpu_ctx = ctx;
- device_ctx.device_name = GGML_WEBGPU_NAME;
- device_ctx.device_desc = info.description;
- GGML_LOG_INFO(
- "ggml_webgpu: adapter_info: vendor_id: %u | vendor: %s | architecture: %s | device_id: %u | name: %s | "
- "device_desc: %s\n",
- info.vendorID, std::string(info.vendor).c_str(), std::string(info.architecture).c_str(), info.deviceID,
- std::string(info.device).c_str(), std::string(info.description).c_str());
- // See GGML Backend Device Interface section
- static ggml_backend_device device = {
- /* .iface = */ ggml_backend_webgpu_device_i,
- /* .reg = */ reg,
- /* .context = */ &device_ctx,
- };
- WEBGPU_CPU_PROFILE_TOTAL_END(reg_get_device, ctx);
- return &device;
- }
- static const struct ggml_backend_reg_i ggml_backend_webgpu_reg_i = {
- /* .get_name = */ ggml_backend_webgpu_reg_get_name,
- /* .get_device_count = */ ggml_backend_webgpu_reg_get_device_count,
- /* .get_device = */ ggml_backend_webgpu_reg_get_device,
- /* .get_proc_address = */ NULL,
- };
- /* End GGML Backend Registration Interface */
- ggml_backend_reg_t ggml_backend_webgpu_reg() {
- WEBGPU_LOG_DEBUG("ggml_backend_webgpu_reg()");
- webgpu_context webgpu_ctx = std::make_shared<webgpu_context_struct>();
- static ggml_backend_webgpu_reg_context ctx;
- ctx.webgpu_ctx = webgpu_ctx;
- ctx.name = GGML_WEBGPU_NAME;
- ctx.device_count = 1;
- wgpu::InstanceDescriptor instance_descriptor{};
- std::vector<wgpu::InstanceFeatureName> instance_features = { wgpu::InstanceFeatureName::TimedWaitAny };
- instance_descriptor.requiredFeatures = instance_features.data();
- instance_descriptor.requiredFeatureCount = instance_features.size();
- #ifndef __EMSCRIPTEN__
- const char * const instanceEnabledToggles[] = { "allow_unsafe_apis" };
- wgpu::DawnTogglesDescriptor instanceTogglesDesc;
- instanceTogglesDesc.enabledToggles = instanceEnabledToggles;
- instanceTogglesDesc.enabledToggleCount = 1;
- instance_descriptor.nextInChain = &instanceTogglesDesc;
- #endif
- webgpu_ctx->instance = wgpu::CreateInstance(&instance_descriptor);
- #ifdef __EMSCRIPTEN__
- if (webgpu_ctx->instance == nullptr) {
- GGML_LOG_ERROR("ggml_webgpu: Failed to create WebGPU instance. Make sure either -sASYNCIFY or -sJSPI is set\n");
- return nullptr;
- }
- #endif
- GGML_ASSERT(webgpu_ctx->instance != nullptr);
- static ggml_backend_reg reg = {
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_webgpu_reg_i,
- /* .context = */ &ctx,
- };
- return ®
- }
- ggml_backend_t ggml_backend_webgpu_init(void) {
- ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_webgpu_reg(), 0);
- return ggml_backend_webgpu_device_init(dev, nullptr);
- }
- GGML_BACKEND_DL_IMPL(ggml_backend_webgpu_reg)
|