| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- #include "common.h"
- #include "ggml.h"
- #include "llama.h"
- #include <cmath>
- #include <cstdint>
- #include <cstdio>
- #include <string>
- #include <vector>
- int main(int argc, char ** argv){
- gpt_params params;
- if (!gpt_params_parse(argc, argv, params)) {
- return 1;
- }
- // max/min n-grams size to search for in prompt
- const int ngram_max = 4;
- const int ngram_min = 1;
- // length of the candidate / draft sequence, if match is found
- const int n_draft = params.n_draft;
- const bool dump_kv_cache = params.dump_kv_cache;
- #ifndef LOG_DISABLE_LOGS
- log_set_target(log_filename_generator("lookup", "log"));
- LOG_TEE("Log start\n");
- log_dump_cmdline(argc, argv);
- #endif // LOG_DISABLE_LOGS
- // init llama.cpp
- llama_backend_init(params.numa);
- llama_model * model = NULL;
- llama_context * ctx = NULL;
- // load the model
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- // tokenize the prompt
- const bool add_bos = llama_should_add_bos_token(model);
- LOG("add_bos tgt: %d\n", add_bos);
- std::vector<llama_token> inp;
- inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
- const int max_context_size = llama_n_ctx(ctx);
- const int max_tokens_list_size = max_context_size - 4;
- if ((int) inp.size() > max_tokens_list_size) {
- fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
- return 1;
- }
- fprintf(stderr, "\n\n");
- for (auto id : inp) {
- fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
- }
- fflush(stderr);
- const int n_input = inp.size();
- const auto t_enc_start = ggml_time_us();
- llama_decode(ctx, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
- llama_decode(ctx, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
- const auto t_enc_end = ggml_time_us();
- int n_predict = 0;
- int n_drafted = 0;
- int n_accept = 0;
- int64_t t_draft_us = 0;
- int n_past = inp.size();
- bool has_eos = false;
- struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
- std::vector<llama_token> draft;
- llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, 1);
- // debug
- struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, 1);
- const auto t_dec_start = ggml_time_us();
- while (true) {
- // debug
- if (dump_kv_cache) {
- llama_kv_cache_view_update(ctx, &kvc_view);
- dump_kv_cache_view_seqs(kvc_view, 40);
- }
- // print current draft sequence
- LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
- int i_dft = 0;
- while (true) {
- // sample from the target model
- llama_token id = llama_sampling_sample(ctx_sampling, ctx, NULL, i_dft);
- llama_sampling_accept(ctx_sampling, ctx, id, true);
- const std::string token_str = llama_token_to_piece(ctx, id);
- if (!params.use_color) {
- printf("%s", token_str.c_str());
- }
- if (id == llama_token_eos(model)) {
- has_eos = true;
- }
- ++n_predict;
- // check if the target token matches the draft
- if (i_dft < (int) draft.size() && id == draft[i_dft]) {
- LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
- ++n_accept;
- ++n_past;
- ++i_dft;
- inp.push_back(id);
- if (params.use_color) {
- // color accepted draft token
- printf("\033[34m%s\033[0m", token_str.c_str());
- fflush(stdout);
- }
- continue;
- }
- if (params.use_color) {
- printf("%s", token_str.c_str());
- }
- fflush(stdout);
- LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
- draft.clear();
- draft.push_back(id);
- inp.push_back(id);
- break;
- }
- if ((params.n_predict > 0 && n_predict > params.n_predict) || has_eos) {
- break;
- }
- // KV cache management
- // clean the cache of draft tokens that weren't accepted
- llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
- llama_batch_clear(batch_tgt);
- llama_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);
- // generate n_pred tokens through prompt lookup
- auto prompt_lookup = [&]() -> void {
- const int inp_size = inp.size();
- for (int ngram_size = ngram_max ; ngram_size > ngram_min; --ngram_size){
- const llama_token * ngram = &inp[inp_size - ngram_size];
- for (int i = 0; i <= (int) inp_size - (ngram_size * 2); ++i) {
- bool match = true;
- for (int j = 0; j < ngram_size; ++j) {
- if (inp[i + j] != ngram[j]) {
- match = false;
- break;
- }
- }
- if (match) {
- const int startIdx = i + ngram_size;
- const int endIdx = startIdx + n_draft;
- if (endIdx < inp_size) {
- for (int j = startIdx; j < endIdx; ++j) {
- LOG(" - draft candidate %d: %d\n", j, inp[j]);
- draft.push_back(inp[j]);
- llama_batch_add(batch_tgt, inp[j], n_past + (j - startIdx) + 1, { 0 }, true);
- ++n_drafted;
- }
- return;
- }
- }
- }
- }
- return;
- };
- const int64_t t_start_draft_us = ggml_time_us();
- prompt_lookup();
- t_draft_us += ggml_time_us() - t_start_draft_us;
- llama_decode(ctx, batch_tgt);
- ++n_past;
- draft.erase(draft.begin());
- }
- auto t_dec_end = ggml_time_us();
- LOG_TEE("\n\n");
- LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
- LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
- LOG_TEE("\n");
- LOG_TEE("n_draft = %d\n", n_draft);
- LOG_TEE("n_predict = %d\n", n_predict);
- LOG_TEE("n_drafted = %d\n", n_drafted);
- LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
- t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
- LOG_TEE("n_accept = %d\n", n_accept);
- LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
- LOG_TEE("\ntarget:\n");
- llama_print_timings(ctx);
- llama_sampling_free(ctx_sampling);
- llama_batch_free(batch_tgt);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|