ggml-metal.m 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784
  1. #import "ggml-metal.h"
  2. #import "ggml.h"
  3. #import <Foundation/Foundation.h>
  4. #import <Metal/Metal.h>
  5. #import <MetalPerformanceShaders/MetalPerformanceShaders.h>
  6. #ifdef GGML_METAL_NDEBUG
  7. #define metal_printf(...)
  8. #else
  9. #define metal_printf(...) fprintf(stderr, __VA_ARGS__)
  10. #endif
  11. #define UNUSED(x) (void)(x)
  12. struct ggml_metal_buffer {
  13. const char * name;
  14. void * data;
  15. size_t size;
  16. id<MTLBuffer> metal;
  17. };
  18. struct ggml_metal_context {
  19. float * logits;
  20. id<MTLDevice> device;
  21. id<MTLCommandQueue> queue;
  22. id<MTLLibrary> library;
  23. int n_buffers;
  24. struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
  25. // custom kernels
  26. #define GGML_METAL_DECL_KERNEL(name) \
  27. id<MTLFunction> function_##name; \
  28. id<MTLComputePipelineState> pipeline_##name
  29. GGML_METAL_DECL_KERNEL(add);
  30. GGML_METAL_DECL_KERNEL(mul);
  31. GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
  32. GGML_METAL_DECL_KERNEL(scale);
  33. GGML_METAL_DECL_KERNEL(silu);
  34. GGML_METAL_DECL_KERNEL(relu);
  35. GGML_METAL_DECL_KERNEL(gelu);
  36. GGML_METAL_DECL_KERNEL(soft_max);
  37. GGML_METAL_DECL_KERNEL(diag_mask_inf);
  38. GGML_METAL_DECL_KERNEL(get_rows_f16);
  39. GGML_METAL_DECL_KERNEL(get_rows_q4_0);
  40. GGML_METAL_DECL_KERNEL(get_rows_q4_1);
  41. GGML_METAL_DECL_KERNEL(get_rows_q2_k);
  42. GGML_METAL_DECL_KERNEL(get_rows_q4_k);
  43. GGML_METAL_DECL_KERNEL(get_rows_q6_k);
  44. GGML_METAL_DECL_KERNEL(rms_norm);
  45. GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
  46. GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
  47. GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
  48. GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
  49. GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
  50. GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
  51. GGML_METAL_DECL_KERNEL(rope);
  52. GGML_METAL_DECL_KERNEL(cpy_f32_f16);
  53. GGML_METAL_DECL_KERNEL(cpy_f32_f32);
  54. #undef GGML_METAL_DECL_KERNEL
  55. };
  56. // MSL code
  57. // TODO: move the contents here when ready
  58. // for now it is easier to work in a separate file
  59. static NSString * const msl_library_source = @"see metal.metal";
  60. // Here to assist with NSBundle Path Hack
  61. @interface GGMLMetalClass : NSObject
  62. @end
  63. @implementation GGMLMetalClass
  64. @end
  65. struct ggml_metal_context * ggml_metal_init(void) {
  66. fprintf(stderr, "%s: allocating\n", __func__);
  67. struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
  68. ctx->device = MTLCreateSystemDefaultDevice();
  69. ctx->queue = [ctx->device newCommandQueue];
  70. ctx->n_buffers = 0;
  71. // determine if we can use MPS
  72. if (MPSSupportsMTLDevice(ctx->device)) {
  73. fprintf(stderr, "%s: using MPS\n", __func__);
  74. } else {
  75. fprintf(stderr, "%s: not using MPS\n", __func__);
  76. GGML_ASSERT(false && "MPS not supported");
  77. }
  78. #if 0
  79. // compile from source string and show compile log
  80. {
  81. NSError * error = nil;
  82. ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
  83. if (error) {
  84. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  85. exit(1);
  86. }
  87. }
  88. #else
  89. UNUSED(msl_library_source);
  90. // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
  91. {
  92. NSError * error = nil;
  93. //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
  94. NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
  95. NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
  96. fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
  97. NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
  98. if (error) {
  99. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  100. exit(1);
  101. }
  102. ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
  103. if (error) {
  104. fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
  105. exit(1);
  106. }
  107. }
  108. #endif
  109. // load kernels
  110. {
  111. #define GGML_METAL_ADD_KERNEL(name) \
  112. ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
  113. ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
  114. fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
  115. GGML_METAL_ADD_KERNEL(add);
  116. GGML_METAL_ADD_KERNEL(mul);
  117. GGML_METAL_ADD_KERNEL(mul_row);
  118. GGML_METAL_ADD_KERNEL(scale);
  119. GGML_METAL_ADD_KERNEL(silu);
  120. GGML_METAL_ADD_KERNEL(relu);
  121. GGML_METAL_ADD_KERNEL(gelu);
  122. GGML_METAL_ADD_KERNEL(soft_max);
  123. GGML_METAL_ADD_KERNEL(diag_mask_inf);
  124. GGML_METAL_ADD_KERNEL(get_rows_f16);
  125. GGML_METAL_ADD_KERNEL(get_rows_q4_0);
  126. GGML_METAL_ADD_KERNEL(get_rows_q4_1);
  127. GGML_METAL_ADD_KERNEL(get_rows_q2_k);
  128. GGML_METAL_ADD_KERNEL(get_rows_q4_k);
  129. GGML_METAL_ADD_KERNEL(get_rows_q6_k);
  130. GGML_METAL_ADD_KERNEL(rms_norm);
  131. GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
  132. GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
  133. GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
  134. GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
  135. GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
  136. GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
  137. GGML_METAL_ADD_KERNEL(rope);
  138. GGML_METAL_ADD_KERNEL(cpy_f32_f16);
  139. GGML_METAL_ADD_KERNEL(cpy_f32_f32);
  140. #undef GGML_METAL_ADD_KERNEL
  141. }
  142. return ctx;
  143. }
  144. void ggml_metal_free(struct ggml_metal_context * ctx) {
  145. fprintf(stderr, "%s: deallocating\n", __func__);
  146. free(ctx);
  147. }
  148. // finds the Metal buffer that contains the tensor data on the GPU device
  149. // the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
  150. // Metal buffer based on the host memory pointer
  151. //
  152. static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
  153. //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
  154. for (int i = 0; i < ctx->n_buffers; ++i) {
  155. const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
  156. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  157. *offs = (size_t) ioffs;
  158. //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
  159. return ctx->buffers[i].metal;
  160. }
  161. }
  162. fprintf(stderr, "%s: error: buffer is nil\n", __func__);
  163. return nil;
  164. }
  165. bool ggml_metal_add_buffer(
  166. struct ggml_metal_context * ctx,
  167. const char * name,
  168. void * data,
  169. size_t size) {
  170. if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
  171. fprintf(stderr, "%s: too many buffers\n", __func__);
  172. return false;
  173. }
  174. if (data) {
  175. // verify that the buffer does not overlap with any of the existing buffers
  176. for (int i = 0; i < ctx->n_buffers; ++i) {
  177. const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
  178. if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
  179. fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
  180. return false;
  181. }
  182. }
  183. size_t page_size = getpagesize();
  184. size_t aligned_size = size;
  185. if ((aligned_size % page_size) != 0) {
  186. aligned_size += (page_size - (aligned_size % page_size));
  187. }
  188. ctx->buffers[ctx->n_buffers].name = name;
  189. ctx->buffers[ctx->n_buffers].data = data;
  190. ctx->buffers[ctx->n_buffers].size = size;
  191. if (ctx->device.maxBufferLength < aligned_size) {
  192. fprintf(stderr, "%s: buffer '%s' size %zu is larger than buffer maximum of %zu\n", __func__, name, aligned_size, ctx->device.maxBufferLength);
  193. return false;
  194. }
  195. ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:aligned_size options:MTLResourceStorageModeShared deallocator:nil];
  196. if (ctx->buffers[ctx->n_buffers].metal == nil) {
  197. fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  198. return false;
  199. } else {
  200. fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB\n", __func__, name, aligned_size / 1024.0 / 1024.0);
  201. }
  202. ++ctx->n_buffers;
  203. }
  204. return true;
  205. }
  206. void ggml_metal_set_tensor(
  207. struct ggml_metal_context * ctx,
  208. struct ggml_tensor * t) {
  209. metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
  210. size_t offs;
  211. id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
  212. memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
  213. }
  214. void ggml_metal_get_tensor(
  215. struct ggml_metal_context * ctx,
  216. struct ggml_tensor * t) {
  217. metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
  218. size_t offs;
  219. id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
  220. memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
  221. }
  222. void ggml_metal_graph_compute(
  223. struct ggml_metal_context * ctx,
  224. struct ggml_cgraph * gf) {
  225. metal_printf("%s: evaluating graph\n", __func__);
  226. size_t offs_src0 = 0;
  227. size_t offs_src1 = 0;
  228. size_t offs_dst = 0;
  229. id<MTLCommandBuffer> command_buffer = [ctx->queue commandBuffer];
  230. id<MTLComputeCommandEncoder> encoder = nil;
  231. for (int i = 0; i < gf->n_nodes; ++i) {
  232. //metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
  233. struct ggml_tensor * src0 = gf->nodes[i]->src0;
  234. struct ggml_tensor * src1 = gf->nodes[i]->src1;
  235. struct ggml_tensor * dst = gf->nodes[i];
  236. const int64_t ne00 = src0 ? src0->ne[0] : 0;
  237. const int64_t ne01 = src0 ? src0->ne[1] : 0;
  238. const int64_t ne02 = src0 ? src0->ne[2] : 0;
  239. const int64_t ne03 = src0 ? src0->ne[3] : 0;
  240. const uint64_t nb00 = src0 ? src0->nb[0] : 0;
  241. const uint64_t nb01 = src0 ? src0->nb[1] : 0;
  242. const uint64_t nb02 = src0 ? src0->nb[2] : 0;
  243. const uint64_t nb03 = src0 ? src0->nb[3] : 0;
  244. const int64_t ne10 = src1 ? src1->ne[0] : 0;
  245. const int64_t ne11 = src1 ? src1->ne[1] : 0;
  246. const int64_t ne12 = src1 ? src1->ne[2] : 0;
  247. const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  248. const uint64_t nb10 = src1 ? src1->nb[0] : 0;
  249. const uint64_t nb11 = src1 ? src1->nb[1] : 0;
  250. const uint64_t nb12 = src1 ? src1->nb[2] : 0;
  251. const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  252. const int64_t ne0 = dst ? dst->ne[0] : 0;
  253. const int64_t ne1 = dst ? dst->ne[1] : 0;
  254. const int64_t ne2 = dst ? dst->ne[2] : 0;
  255. const int64_t ne3 = dst ? dst->ne[3] : 0;
  256. const uint64_t nb0 = dst ? dst->nb[0] : 0;
  257. const uint64_t nb1 = dst ? dst->nb[1] : 0;
  258. const uint64_t nb2 = dst ? dst->nb[2] : 0;
  259. const uint64_t nb3 = dst ? dst->nb[3] : 0;
  260. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  261. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  262. const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
  263. id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
  264. id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
  265. id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(ctx, dst, &offs_dst) : nil;
  266. //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
  267. //if (src0) {
  268. // metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
  269. // ggml_is_contiguous(src0), src0->name);
  270. //}
  271. //if (src1) {
  272. // metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
  273. // ggml_is_contiguous(src1), src1->name);
  274. //}
  275. //if (dst) {
  276. // metal_printf("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
  277. // dst->name);
  278. //}
  279. switch (dst->op) {
  280. case GGML_OP_RESHAPE:
  281. case GGML_OP_VIEW:
  282. case GGML_OP_TRANSPOSE:
  283. case GGML_OP_PERMUTE:
  284. {
  285. // noop
  286. } break;
  287. case GGML_OP_ADD:
  288. {
  289. if (encoder == nil) {
  290. encoder = [command_buffer computeCommandEncoder];
  291. }
  292. [encoder setComputePipelineState:ctx->pipeline_add];
  293. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  294. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  295. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  296. const int64_t n = ggml_nelements(dst);
  297. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  298. } break;
  299. case GGML_OP_MUL:
  300. {
  301. if (encoder == nil) {
  302. encoder = [command_buffer computeCommandEncoder];
  303. }
  304. if (ggml_nelements(src1) == ne10) {
  305. // src1 is a row
  306. [encoder setComputePipelineState:ctx->pipeline_mul_row];
  307. } else {
  308. [encoder setComputePipelineState:ctx->pipeline_mul];
  309. }
  310. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  311. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  312. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  313. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  314. const int64_t n = ggml_nelements(dst);
  315. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  316. } break;
  317. case GGML_OP_SCALE:
  318. {
  319. if (encoder == nil) {
  320. encoder = [command_buffer computeCommandEncoder];
  321. }
  322. const float scale = *(const float *) src1->data;
  323. [encoder setComputePipelineState:ctx->pipeline_scale];
  324. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  325. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  326. [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
  327. const int64_t n = ggml_nelements(dst);
  328. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  329. } break;
  330. case GGML_OP_SILU:
  331. {
  332. if (encoder == nil) {
  333. encoder = [command_buffer computeCommandEncoder];
  334. }
  335. [encoder setComputePipelineState:ctx->pipeline_silu];
  336. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  337. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  338. const int64_t n = ggml_nelements(dst);
  339. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  340. } break;
  341. case GGML_OP_RELU:
  342. {
  343. if (encoder == nil) {
  344. encoder = [command_buffer computeCommandEncoder];
  345. }
  346. [encoder setComputePipelineState:ctx->pipeline_relu];
  347. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  348. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  349. const int64_t n = ggml_nelements(dst);
  350. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  351. } break;
  352. case GGML_OP_GELU:
  353. {
  354. if (encoder == nil) {
  355. encoder = [command_buffer computeCommandEncoder];
  356. }
  357. [encoder setComputePipelineState:ctx->pipeline_gelu];
  358. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  359. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  360. const int64_t n = ggml_nelements(dst);
  361. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  362. } break;
  363. case GGML_OP_SOFT_MAX:
  364. {
  365. if (encoder == nil) {
  366. encoder = [command_buffer computeCommandEncoder];
  367. }
  368. const int nth = 32;
  369. [encoder setComputePipelineState:ctx->pipeline_soft_max];
  370. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  371. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  372. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  373. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  374. [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
  375. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  376. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  377. } break;
  378. case GGML_OP_DIAG_MASK_INF:
  379. {
  380. if (encoder == nil) {
  381. encoder = [command_buffer computeCommandEncoder];
  382. }
  383. const int n_past = ((int32_t *)(src1->data))[0];
  384. [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
  385. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  386. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  387. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
  388. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
  389. [encoder setBytes:&n_past length:sizeof(int) atIndex:4];
  390. [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  391. } break;
  392. case GGML_OP_MUL_MAT:
  393. {
  394. // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
  395. GGML_ASSERT(ne00 == ne10);
  396. GGML_ASSERT(ne02 == ne12);
  397. if (ggml_is_contiguous(src0) &&
  398. ggml_is_contiguous(src1) &&
  399. (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
  400. if (encoder != nil) {
  401. [encoder endEncoding];
  402. encoder = nil;
  403. }
  404. MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  405. MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
  406. // for F32 x F32 we use MPS
  407. MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
  408. matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
  409. MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
  410. matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
  411. MPSMatrixDescriptor * desc = [MPSMatrixDescriptor
  412. matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
  413. MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
  414. initWithDevice:ctx->device transposeLeft:false transposeRight:true
  415. resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
  416. // we need to do ne02 multiplications
  417. // TODO: is there a way to do this in parallel - currently very slow ..
  418. // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
  419. for (int64_t i02 = 0; i02 < ne02; ++i02) {
  420. size_t offs_src0_cur = offs_src0 + i02*nb02;
  421. size_t offs_src1_cur = offs_src1 + i02*nb12;
  422. size_t offs_dst_cur = offs_dst + i02*nb2;
  423. MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
  424. MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
  425. MPSMatrix * mat_dst = [[MPSMatrix alloc] initWithBuffer:id_dst offset:offs_dst_cur descriptor:desc ];
  426. [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
  427. }
  428. } else {
  429. if (encoder == nil) {
  430. encoder = [command_buffer computeCommandEncoder];
  431. }
  432. int nth0 = 32;
  433. int nth1 = 1;
  434. // use custom matrix x vector kernel
  435. switch (src0t) {
  436. case GGML_TYPE_F16:
  437. {
  438. GGML_ASSERT(ne02 == ne12);
  439. nth0 = 64;
  440. nth1 = 1;
  441. [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
  442. } break;
  443. case GGML_TYPE_Q4_0:
  444. {
  445. GGML_ASSERT(ne02 == 1);
  446. GGML_ASSERT(ne12 == 1);
  447. nth0 = 8;
  448. nth1 = 8;
  449. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
  450. } break;
  451. case GGML_TYPE_Q4_1:
  452. {
  453. GGML_ASSERT(ne02 == 1);
  454. GGML_ASSERT(ne12 == 1);
  455. nth0 = 8;
  456. nth1 = 8;
  457. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
  458. } break;
  459. case GGML_TYPE_Q2_K:
  460. {
  461. GGML_ASSERT(ne02 == 1);
  462. GGML_ASSERT(ne12 == 1);
  463. nth0 = 4;
  464. nth1 = 16;
  465. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
  466. } break;
  467. case GGML_TYPE_Q4_K:
  468. {
  469. GGML_ASSERT(ne02 == 1);
  470. GGML_ASSERT(ne12 == 1);
  471. nth0 = 4;
  472. nth1 = 16;
  473. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
  474. } break;
  475. case GGML_TYPE_Q6_K:
  476. {
  477. GGML_ASSERT(ne02 == 1);
  478. GGML_ASSERT(ne12 == 1);
  479. nth0 = 4;
  480. nth1 = 16;
  481. [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
  482. } break;
  483. default:
  484. {
  485. fprintf(stderr, "Asserting on type %d\n",(int)src0t);
  486. GGML_ASSERT(false && "not implemented");
  487. }
  488. };
  489. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  490. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  491. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  492. [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
  493. [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
  494. [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:5];
  495. [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:6];
  496. [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:7];
  497. [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:8];
  498. [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:9];
  499. [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:10];
  500. [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:11];
  501. [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:12];
  502. [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:13];
  503. [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:14];
  504. if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1) {
  505. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  506. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  507. } else if (src0t == GGML_TYPE_Q2_K) {
  508. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  509. [encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  510. } else if (src0t == GGML_TYPE_Q4_K) {
  511. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  512. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  513. } else if (src0t == GGML_TYPE_Q6_K) {
  514. [encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
  515. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  516. } else {
  517. [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
  518. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
  519. }
  520. }
  521. } break;
  522. case GGML_OP_GET_ROWS:
  523. {
  524. if (encoder == nil) {
  525. encoder = [command_buffer computeCommandEncoder];
  526. }
  527. switch (src0->type) {
  528. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
  529. case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
  530. case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
  531. case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
  532. case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
  533. case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
  534. default: GGML_ASSERT(false && "not implemented");
  535. }
  536. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  537. [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
  538. [encoder setBuffer:id_dst offset:offs_dst atIndex:2];
  539. [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
  540. [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
  541. [encoder setBytes:&(dst->nb[1]) length:sizeof(uint64_t) atIndex:5];
  542. const int64_t n = ggml_nelements(src1);
  543. [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  544. } break;
  545. case GGML_OP_RMS_NORM:
  546. {
  547. if (encoder == nil) {
  548. encoder = [command_buffer computeCommandEncoder];
  549. }
  550. const float eps = 1e-6f;
  551. const int nth = 256;
  552. [encoder setComputePipelineState:ctx->pipeline_rms_norm];
  553. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  554. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  555. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  556. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
  557. [encoder setBytes:&eps length:sizeof( float) atIndex:4];
  558. [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
  559. const int64_t nrows = ggml_nrows(src0);
  560. [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  561. } break;
  562. case GGML_OP_ROPE:
  563. {
  564. if (encoder == nil) {
  565. encoder = [command_buffer computeCommandEncoder];
  566. }
  567. const int n_dims = ((int32_t *) src1->data)[1];
  568. const int mode = ((int32_t *) src1->data)[2];
  569. const int n_past = ((int32_t *)(src1->data))[0];
  570. [encoder setComputePipelineState:ctx->pipeline_rope];
  571. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  572. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  573. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  574. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  575. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  576. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  577. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  578. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  579. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  580. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  581. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  582. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  583. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  584. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  585. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  586. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  587. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  588. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  589. [encoder setBytes:&n_past length:sizeof( int) atIndex:18];
  590. [encoder setBytes:&n_dims length:sizeof( int) atIndex:19];
  591. [encoder setBytes:&mode length:sizeof( int) atIndex:20];
  592. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
  593. } break;
  594. case GGML_OP_CPY:
  595. {
  596. if (encoder == nil) {
  597. encoder = [command_buffer computeCommandEncoder];
  598. }
  599. const int nth = 32;
  600. switch (src0t) {
  601. case GGML_TYPE_F32:
  602. {
  603. switch (dstt) {
  604. case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
  605. case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
  606. default: GGML_ASSERT(false && "not implemented");
  607. };
  608. } break;
  609. default: GGML_ASSERT(false && "not implemented");
  610. }
  611. [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
  612. [encoder setBuffer:id_dst offset:offs_dst atIndex:1];
  613. [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
  614. [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
  615. [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
  616. [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
  617. [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
  618. [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
  619. [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
  620. [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
  621. [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
  622. [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
  623. [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
  624. [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
  625. [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
  626. [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
  627. [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
  628. [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
  629. [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
  630. } break;
  631. default:
  632. fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
  633. GGML_ASSERT(false);
  634. }
  635. }
  636. if (encoder != nil) {
  637. [encoder endEncoding];
  638. encoder = nil;
  639. }
  640. [command_buffer commit];
  641. [command_buffer waitUntilCompleted];
  642. {
  643. const double time_elapsed = [command_buffer GPUEndTime] - [command_buffer GPUStartTime];
  644. UNUSED(time_elapsed);
  645. metal_printf("%s: time elapsed = %f ms\n", __func__, time_elapsed * 1000.0);
  646. }
  647. }