convert_hf_to_gguf.py 392 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  559. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  560. res = "glm4"
  561. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  562. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  563. res = "minerva-7b"
  564. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  565. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  566. res = "hunyuan"
  567. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  568. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  569. res = "hunyuan-dense"
  570. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  577. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  578. res = "falcon-h1"
  579. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  580. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  581. res = "falcon-h1"
  582. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  583. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  584. res = "kimi-k2"
  585. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  586. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  587. res = "qwen2"
  588. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  589. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  590. res = "llama-bpe"
  591. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  592. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  593. res = "deepseek-llm"
  594. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  595. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  596. res = "deepseek-coder"
  597. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  598. # ref: https://huggingface.co/tiiuae/falcon-7b
  599. res = "falcon"
  600. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  601. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  602. res = "bert-bge"
  603. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  604. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  605. res = "falcon3"
  606. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  607. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  608. res = "bert-bge-large"
  609. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  610. # ref: https://huggingface.co/mosaicml/mpt-7b
  611. res = "mpt"
  612. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  613. # ref: https://huggingface.co/bigcode/starcoder2-3b
  614. res = "starcoder"
  615. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  616. # ref: https://huggingface.co/openai-community/gpt2
  617. res = "gpt-2"
  618. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  619. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  620. res = "stablelm2"
  621. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  622. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  623. res = "refact"
  624. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  625. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  626. res = "command-r"
  627. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  628. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  629. res = "qwen2"
  630. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  631. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  632. res = "olmo"
  633. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  634. # ref: https://huggingface.co/databricks/dbrx-base
  635. res = "dbrx"
  636. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  637. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  638. res = "jina-v1-en"
  639. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  640. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  641. res = "jina-v2-en"
  642. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  643. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  644. res = "jina-v2-es"
  645. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  646. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  647. res = "jina-v2-de"
  648. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  649. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  650. res = "smaug-bpe"
  651. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  652. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  653. res = "poro-chat"
  654. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  655. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  656. res = "jina-v2-code"
  657. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  658. # ref: https://huggingface.co/LumiOpen/Viking-7B
  659. res = "viking"
  660. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  661. # ref: https://huggingface.co/core42/jais-13b
  662. res = "jais"
  663. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  664. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  665. res = "codeshell"
  666. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  667. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  668. res = "tekken"
  669. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  670. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  671. res = "smollm"
  672. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  673. # ref: https://huggingface.co/bigscience/bloom
  674. res = "bloom"
  675. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  676. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  677. res = "gpt3-finnish"
  678. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  679. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  680. res = "exaone"
  681. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  682. # ref: https://huggingface.co/microsoft/phi-2
  683. res = "phi-2"
  684. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  685. # ref: https://huggingface.co/facebook/chameleon-7b
  686. res = "chameleon"
  687. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  688. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  689. res = "roberta-bpe"
  690. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  691. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  692. res = "gigachat"
  693. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  694. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  695. res = "megrez"
  696. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  697. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  698. res = "deepseek-v3"
  699. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  700. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  701. res = "deepseek-r1-qwen"
  702. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  703. # ref: https://huggingface.co/Xenova/gpt-4o
  704. res = "gpt-4o"
  705. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  706. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  707. res = "superbpe"
  708. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  709. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  710. res = "trillion"
  711. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  712. # ref: https://huggingface.co/inclusionAI/Ling-lite
  713. res = "bailingmoe"
  714. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  715. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  716. res = "llama4"
  717. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  718. # ref: https://huggingface.co/mistral-community/pixtral-12b
  719. res = "pixtral"
  720. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  721. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  722. res = "seed-coder"
  723. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  724. # ref: https://huggingface.co/skt/A.X-4.0
  725. res = "a.x-4.0"
  726. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  727. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  728. res = "midm-2.0"
  729. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  730. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  731. res = "lfm2"
  732. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  733. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  734. res = "exaone4"
  735. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  736. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  737. res = "mellum"
  738. if res is None:
  739. logger.warning("\n")
  740. logger.warning("**************************************************************************************")
  741. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  742. logger.warning("** There are 2 possible reasons for this:")
  743. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  744. logger.warning("** - the pre-tokenization config has changed upstream")
  745. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  746. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  747. logger.warning("**")
  748. logger.warning(f"** chkhsh: {chkhsh}")
  749. logger.warning("**************************************************************************************")
  750. logger.warning("\n")
  751. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  752. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  753. logger.debug(f"chkhsh: {chkhsh}")
  754. return res
  755. # Marker: End get_vocab_base_pre
  756. def _set_vocab_none(self) -> None:
  757. self.gguf_writer.add_tokenizer_model("none")
  758. def _set_vocab_gpt2(self) -> None:
  759. tokens, toktypes, tokpre = self.get_vocab_base()
  760. self.gguf_writer.add_tokenizer_model("gpt2")
  761. self.gguf_writer.add_tokenizer_pre(tokpre)
  762. self.gguf_writer.add_token_list(tokens)
  763. self.gguf_writer.add_token_types(toktypes)
  764. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  765. special_vocab.add_to_gguf(self.gguf_writer)
  766. def _set_vocab_qwen(self):
  767. dir_model = self.dir_model
  768. hparams = self.hparams
  769. tokens: list[str] = []
  770. toktypes: list[int] = []
  771. from transformers import AutoTokenizer
  772. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  773. vocab_size = hparams["vocab_size"]
  774. assert max(tokenizer.get_vocab().values()) < vocab_size
  775. tokpre = self.get_vocab_base_pre(tokenizer)
  776. merges = []
  777. vocab = {}
  778. mergeable_ranks = tokenizer.mergeable_ranks
  779. for token, rank in mergeable_ranks.items():
  780. vocab[QwenModel.token_bytes_to_string(token)] = rank
  781. if len(token) == 1:
  782. continue
  783. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  784. assert len(merged) == 2
  785. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  786. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  787. added_vocab = tokenizer.special_tokens
  788. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  789. for i in range(vocab_size):
  790. if i not in reverse_vocab:
  791. tokens.append(f"[PAD{i}]")
  792. toktypes.append(gguf.TokenType.UNUSED)
  793. elif reverse_vocab[i] in added_vocab:
  794. tokens.append(reverse_vocab[i])
  795. toktypes.append(gguf.TokenType.CONTROL)
  796. else:
  797. tokens.append(reverse_vocab[i])
  798. toktypes.append(gguf.TokenType.NORMAL)
  799. self.gguf_writer.add_tokenizer_model("gpt2")
  800. self.gguf_writer.add_tokenizer_pre(tokpre)
  801. self.gguf_writer.add_token_list(tokens)
  802. self.gguf_writer.add_token_types(toktypes)
  803. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  804. special_vocab.merges = merges
  805. # only add special tokens when they were not already loaded from config.json
  806. if len(special_vocab.special_token_ids) == 0:
  807. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  808. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  809. # this one is usually not in config.json anyway
  810. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  811. special_vocab.add_to_gguf(self.gguf_writer)
  812. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  813. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  814. self.gguf_writer.add_tokenizer_model("llama")
  815. self.gguf_writer.add_tokenizer_pre("default")
  816. self.gguf_writer.add_token_list(tokens)
  817. self.gguf_writer.add_token_scores(scores)
  818. self.gguf_writer.add_token_types(toktypes)
  819. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  820. special_vocab.add_to_gguf(self.gguf_writer)
  821. def _create_vocab_sentencepiece(self):
  822. from sentencepiece import SentencePieceProcessor
  823. tokenizer_path = self.dir_model / 'tokenizer.model'
  824. if not tokenizer_path.is_file():
  825. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  826. tokenizer = SentencePieceProcessor()
  827. tokenizer.LoadFromFile(str(tokenizer_path))
  828. vocab_size = self.find_hparam([
  829. "vocab_size_per_layer_input", # gemma3n
  830. "vocab_size",
  831. ], optional=True) or tokenizer.vocab_size()
  832. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  833. scores: list[float] = [-10000.0] * vocab_size
  834. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  835. for token_id in range(tokenizer.vocab_size()):
  836. if token_id >= vocab_size:
  837. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  838. break
  839. piece = tokenizer.IdToPiece(token_id)
  840. text = piece.encode("utf-8")
  841. score = tokenizer.GetScore(token_id)
  842. toktype = SentencePieceTokenTypes.NORMAL
  843. if tokenizer.IsUnknown(token_id):
  844. toktype = SentencePieceTokenTypes.UNKNOWN
  845. elif tokenizer.IsControl(token_id):
  846. toktype = SentencePieceTokenTypes.CONTROL
  847. elif tokenizer.IsUnused(token_id):
  848. toktype = SentencePieceTokenTypes.UNUSED
  849. elif tokenizer.IsByte(token_id):
  850. toktype = SentencePieceTokenTypes.BYTE
  851. tokens[token_id] = text
  852. scores[token_id] = score
  853. toktypes[token_id] = toktype
  854. added_tokens_file = self.dir_model / 'added_tokens.json'
  855. if added_tokens_file.is_file():
  856. with open(added_tokens_file, "r", encoding="utf-8") as f:
  857. added_tokens_json = json.load(f)
  858. for key in added_tokens_json:
  859. token_id = added_tokens_json[key]
  860. if token_id >= vocab_size:
  861. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  862. continue
  863. tokens[token_id] = key.encode("utf-8")
  864. scores[token_id] = -1000.0
  865. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  866. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  867. if tokenizer_config_file.is_file():
  868. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  869. tokenizer_config_json = json.load(f)
  870. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  871. for token_id, token_data in added_tokens_decoder.items():
  872. token_id = int(token_id)
  873. token: str = token_data["content"]
  874. if token_id >= vocab_size:
  875. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  876. continue
  877. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  878. if tokens[token_id] != token.encode("utf-8"):
  879. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  880. if token_data.get("special") or self.does_token_look_special(token):
  881. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  882. else:
  883. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  884. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  885. scores[token_id] = -1000.0
  886. tokens[token_id] = token.encode("utf-8")
  887. if vocab_size > len(tokens):
  888. pad_count = vocab_size - len(tokens)
  889. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  890. for i in range(1, pad_count + 1):
  891. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  892. scores.append(-1000.0)
  893. toktypes.append(SentencePieceTokenTypes.UNUSED)
  894. return tokens, scores, toktypes
  895. def _set_vocab_llama_hf(self):
  896. vocab = gguf.LlamaHfVocab(self.dir_model)
  897. tokens = []
  898. scores = []
  899. toktypes = []
  900. for text, score, toktype in vocab.all_tokens():
  901. tokens.append(text)
  902. scores.append(score)
  903. toktypes.append(toktype)
  904. assert len(tokens) == vocab.vocab_size
  905. self.gguf_writer.add_tokenizer_model("llama")
  906. self.gguf_writer.add_tokenizer_pre("default")
  907. self.gguf_writer.add_token_list(tokens)
  908. self.gguf_writer.add_token_scores(scores)
  909. self.gguf_writer.add_token_types(toktypes)
  910. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  911. special_vocab.add_to_gguf(self.gguf_writer)
  912. def _set_vocab_rwkv_world(self):
  913. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  914. vocab_size = self.hparams.get("vocab_size", 65536)
  915. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  916. toktypes: list[int] = [gguf.TokenType.CONTROL]
  917. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  918. lines = f.readlines()
  919. for line in lines:
  920. parts = line.split(' ')
  921. assert len(parts) >= 3
  922. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  923. token = token.encode("utf-8") if isinstance(token, str) else token
  924. assert isinstance(token, bytes)
  925. assert len(token) == token_len
  926. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  927. tokens.append(token_text.encode("utf-8"))
  928. toktypes.append(gguf.TokenType.NORMAL)
  929. remainder = vocab_size - len(tokens)
  930. assert remainder >= 0
  931. for i in range(len(tokens), vocab_size):
  932. tokens.append(f"[PAD{i}]".encode("utf-8"))
  933. toktypes.append(gguf.TokenType.UNUSED)
  934. self.gguf_writer.add_tokenizer_model("rwkv")
  935. self.gguf_writer.add_token_list(tokens)
  936. self.gguf_writer.add_token_types(toktypes)
  937. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  938. if special_vocab.chat_template is None:
  939. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  940. if template_path.is_file():
  941. with open(template_path, "r", encoding="utf-8") as f:
  942. template = f.read()
  943. else:
  944. template = "rwkv-world"
  945. special_vocab.chat_template = template
  946. # hack: Add '\n\n' as the EOT token to make it chat normally
  947. special_vocab._set_special_token("eot", 261)
  948. # hack: Override these as they have already been set (incorrectly)
  949. special_vocab.special_token_ids["bos"] = 0
  950. special_vocab.special_token_ids["eos"] = 0
  951. special_vocab.add_to_gguf(self.gguf_writer)
  952. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  953. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  954. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  955. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  956. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  958. assert field # tokenizer model
  959. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  960. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  961. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  962. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  963. assert field # token list
  964. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  965. if model_name == "llama-spm":
  966. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  967. assert field # token scores
  968. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  969. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  970. assert field # token types
  971. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  972. if model_name != "llama-spm":
  973. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  974. assert field # token merges
  975. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  976. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  977. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  978. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  979. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  980. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  981. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  982. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  983. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  984. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  985. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  986. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  987. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  988. def _try_set_pooling_type(self) -> None:
  989. # get pooling path
  990. pooling_path = None
  991. module_path = self.dir_model / "modules.json"
  992. if module_path.is_file():
  993. with open(module_path, encoding="utf-8") as f:
  994. modules = json.load(f)
  995. for mod in modules:
  996. if mod["type"] == "sentence_transformers.models.Pooling":
  997. pooling_path = mod["path"]
  998. break
  999. # get pooling type
  1000. if pooling_path is not None:
  1001. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1002. pooling = json.load(f)
  1003. if pooling["pooling_mode_mean_tokens"]:
  1004. pooling_type = gguf.PoolingType.MEAN
  1005. elif pooling["pooling_mode_cls_token"]:
  1006. pooling_type = gguf.PoolingType.CLS
  1007. elif pooling["pooling_mode_lasttoken"]:
  1008. pooling_type = gguf.PoolingType.LAST
  1009. else:
  1010. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1011. self.gguf_writer.add_pooling_type(pooling_type)
  1012. class MmprojModel(ModelBase):
  1013. model_type = ModelType.MMPROJ
  1014. model_arch = gguf.MODEL_ARCH.MMPROJ
  1015. preprocessor_config: dict[str, Any]
  1016. global_config: dict[str, Any]
  1017. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1018. has_vision_encoder: bool = True # by default
  1019. has_audio_encoder: bool = False
  1020. # for models having multiple encoders, we need to separate their hparams
  1021. hparams_vision: dict[str, Any] | None = None
  1022. hparams_audio: dict[str, Any] | None = None
  1023. def __init__(self, *args, **kwargs):
  1024. super().__init__(*args, **kwargs)
  1025. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1026. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1027. # get n_embd of the text model
  1028. if "text_config" not in self.hparams:
  1029. self.hparams["text_config"] = {}
  1030. if "audio_config" not in self.hparams:
  1031. self.hparams["audio_config"] = {}
  1032. text_config = {**self.hparams, **self.hparams["text_config"]}
  1033. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1034. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1035. # move vision config to the top level, while preserving the original hparams in global_config
  1036. import copy
  1037. self.global_config = copy.deepcopy(self.hparams)
  1038. self.hparams_vision = self.get_vision_config()
  1039. self.hparams_audio = self.get_audio_config()
  1040. if self.hparams_vision is None and self.hparams_audio is None:
  1041. raise ValueError("vision_config / audio_config not found in hparams")
  1042. # for compat with vision-only models
  1043. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1044. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1045. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1046. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1047. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1048. # load preprocessor config
  1049. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1050. self.preprocessor_config = json.load(f)
  1051. def get_vision_config(self) -> dict[str, Any] | None:
  1052. return self.global_config.get("vision_config")
  1053. def get_audio_config(self) -> dict[str, Any] | None:
  1054. return self.global_config.get("audio_config")
  1055. def set_type(self):
  1056. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1057. def set_gguf_parameters(self):
  1058. self.gguf_writer.add_file_type(self.ftype)
  1059. if self.has_vision_encoder:
  1060. self.gguf_writer.add_clip_has_vision_encoder(True)
  1061. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1062. # vision config
  1063. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1064. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1065. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1066. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1067. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1068. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1069. # preprocessor config
  1070. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1071. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1072. if self.has_audio_encoder:
  1073. self.gguf_writer.add_clip_has_audio_encoder(True)
  1074. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1075. # audio config
  1076. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1077. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1078. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1079. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1080. if not self.has_vision_encoder and not self.has_audio_encoder:
  1081. raise ValueError("MmprojModel must have either vision or audio encoder")
  1082. def write_vocab(self):
  1083. raise ValueError("MmprojModel does not support vocab writing")
  1084. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1085. assert self.hparams_vision is not None
  1086. return self._find_param(self.hparams_vision, keys, optional)
  1087. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1088. assert self.hparams_audio is not None
  1089. return self._find_param(self.hparams_audio, keys, optional)
  1090. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1091. key = next((k for k in keys if k in obj), None)
  1092. if key is not None:
  1093. return obj[key]
  1094. if optional:
  1095. return None
  1096. raise KeyError(f"could not find any of: {keys}")
  1097. @ModelBase.register("GPTNeoXForCausalLM")
  1098. class GPTNeoXModel(TextModel):
  1099. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1100. def set_gguf_parameters(self):
  1101. block_count = self.hparams["num_hidden_layers"]
  1102. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1103. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1104. self.gguf_writer.add_block_count(block_count)
  1105. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1106. self.gguf_writer.add_rope_dimension_count(
  1107. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1108. )
  1109. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1110. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1111. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1112. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1113. del bid # unused
  1114. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1115. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1116. tensors: list[tuple[str, Tensor]] = []
  1117. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1118. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1119. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1120. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1121. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1122. data_torch = torch.cat(
  1123. (
  1124. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1125. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1126. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1127. ),
  1128. dim=0,
  1129. )
  1130. logger.info("re-format attention.linear_qkv.weight")
  1131. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1132. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1133. data_torch = torch.cat(
  1134. (
  1135. qkv_bias[:, 0, :].reshape((n_embed,)),
  1136. qkv_bias[:, 1, :].reshape((n_embed,)),
  1137. qkv_bias[:, 2, :].reshape((n_embed,)),
  1138. ),
  1139. dim=0,
  1140. )
  1141. logger.info("re-format attention.linear_qkv.bias")
  1142. tensors.append((self.map_tensor_name(name), data_torch))
  1143. return tensors
  1144. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1145. class BloomModel(TextModel):
  1146. model_arch = gguf.MODEL_ARCH.BLOOM
  1147. def set_gguf_parameters(self):
  1148. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1149. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1150. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1151. self.gguf_writer.add_embedding_length(n_embed)
  1152. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1153. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1154. self.gguf_writer.add_head_count(n_head)
  1155. self.gguf_writer.add_head_count_kv(n_head)
  1156. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1157. self.gguf_writer.add_file_type(self.ftype)
  1158. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1159. del bid # unused
  1160. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1161. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1162. name = re.sub(r'transformer\.', '', name)
  1163. tensors: list[tuple[str, Tensor]] = []
  1164. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1165. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1166. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1167. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1168. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1169. data_torch = torch.cat(
  1170. (
  1171. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1172. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1173. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1174. ),
  1175. dim=0,
  1176. )
  1177. logger.info("re-format attention.linear_qkv.weight")
  1178. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1179. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1180. data_torch = torch.cat(
  1181. (
  1182. qkv_bias[:, 0, :].reshape((n_embed,)),
  1183. qkv_bias[:, 1, :].reshape((n_embed,)),
  1184. qkv_bias[:, 2, :].reshape((n_embed,)),
  1185. ),
  1186. dim=0,
  1187. )
  1188. logger.info("re-format attention.linear_qkv.bias")
  1189. tensors.append((self.map_tensor_name(name), data_torch))
  1190. return tensors
  1191. @ModelBase.register("MPTForCausalLM")
  1192. class MPTModel(TextModel):
  1193. model_arch = gguf.MODEL_ARCH.MPT
  1194. def set_vocab(self):
  1195. try:
  1196. self._set_vocab_gpt2()
  1197. except Exception:
  1198. # Fallback for SEA-LION model
  1199. self._set_vocab_sentencepiece()
  1200. self.gguf_writer.add_add_bos_token(False)
  1201. self.gguf_writer.add_pad_token_id(3)
  1202. self.gguf_writer.add_eos_token_id(1)
  1203. self.gguf_writer.add_unk_token_id(0)
  1204. def set_gguf_parameters(self):
  1205. block_count = self.hparams["n_layers"]
  1206. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1207. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1208. self.gguf_writer.add_block_count(block_count)
  1209. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1210. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1211. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1212. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1213. self.gguf_writer.add_layer_norm_eps(1e-5)
  1214. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1215. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1216. if self.hparams["attn_config"]["alibi"]:
  1217. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1218. else:
  1219. self.gguf_writer.add_max_alibi_bias(0.0)
  1220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1221. del bid # unused
  1222. if "scales" in name:
  1223. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1224. new_name = new_name.replace("scales", "act.scales")
  1225. else:
  1226. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1227. return [(new_name, data_torch)]
  1228. @ModelBase.register("OrionForCausalLM")
  1229. class OrionModel(TextModel):
  1230. model_arch = gguf.MODEL_ARCH.ORION
  1231. def set_vocab(self):
  1232. self._set_vocab_sentencepiece()
  1233. def set_gguf_parameters(self):
  1234. block_count = self.hparams["num_hidden_layers"]
  1235. head_count = self.hparams["num_attention_heads"]
  1236. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1237. ctx_length = 0
  1238. if "max_sequence_length" in self.hparams:
  1239. ctx_length = self.hparams["max_sequence_length"]
  1240. elif "max_position_embeddings" in self.hparams:
  1241. ctx_length = self.hparams["max_position_embeddings"]
  1242. elif "model_max_length" in self.hparams:
  1243. ctx_length = self.hparams["model_max_length"]
  1244. else:
  1245. raise ValueError("gguf: can not find ctx length parameter.")
  1246. self.gguf_writer.add_file_type(self.ftype)
  1247. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1248. self.gguf_writer.add_context_length(ctx_length)
  1249. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1250. self.gguf_writer.add_block_count(block_count)
  1251. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1252. self.gguf_writer.add_head_count(head_count)
  1253. self.gguf_writer.add_head_count_kv(head_count_kv)
  1254. # note: config provides rms norm but it is actually layer norm
  1255. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1256. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1257. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1258. class BaichuanModel(TextModel):
  1259. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1260. def set_vocab(self):
  1261. self._set_vocab_sentencepiece()
  1262. def set_gguf_parameters(self):
  1263. block_count = self.hparams["num_hidden_layers"]
  1264. head_count = self.hparams["num_attention_heads"]
  1265. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1266. ctx_length = 0
  1267. if "max_sequence_length" in self.hparams:
  1268. ctx_length = self.hparams["max_sequence_length"]
  1269. elif "max_position_embeddings" in self.hparams:
  1270. ctx_length = self.hparams["max_position_embeddings"]
  1271. elif "model_max_length" in self.hparams:
  1272. ctx_length = self.hparams["model_max_length"]
  1273. else:
  1274. raise ValueError("gguf: can not find ctx length parameter.")
  1275. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1276. self.gguf_writer.add_context_length(ctx_length)
  1277. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1278. self.gguf_writer.add_block_count(block_count)
  1279. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1280. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1281. self.gguf_writer.add_head_count(head_count)
  1282. self.gguf_writer.add_head_count_kv(head_count_kv)
  1283. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1284. self.gguf_writer.add_file_type(self.ftype)
  1285. rope_scaling = self.hparams.get("rope_scaling") or {}
  1286. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1287. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1288. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1289. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1290. head_count = self.hparams["num_attention_heads"]
  1291. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1292. tensors: list[tuple[str, Tensor]] = []
  1293. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1294. logger.info(f"Unpacking and permuting layer {bid}")
  1295. tensors = [
  1296. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1297. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1298. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1299. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1300. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1301. self._reverse_hf_part(data_torch, 2)),
  1302. ]
  1303. else:
  1304. tensors = [(self.map_tensor_name(name), data_torch)]
  1305. return tensors
  1306. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1307. if n_kv_head is not None and n_head != n_kv_head:
  1308. n_head //= n_kv_head
  1309. return (
  1310. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1311. .swapaxes(1, 2)
  1312. .reshape(weights.shape)
  1313. )
  1314. def _reverse_hf_permute_part(
  1315. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1316. ) -> Tensor:
  1317. r = weights.shape[0] // 3
  1318. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1319. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1320. r = weights.shape[0] // 3
  1321. return weights[r * n_part:r * n_part + r, ...]
  1322. @ModelBase.register("XverseForCausalLM")
  1323. class XverseModel(TextModel):
  1324. model_arch = gguf.MODEL_ARCH.XVERSE
  1325. def set_vocab(self):
  1326. assert (self.dir_model / "tokenizer.json").is_file()
  1327. dir_model = self.dir_model
  1328. hparams = self.hparams
  1329. tokens: list[bytes] = []
  1330. toktypes: list[int] = []
  1331. from transformers import AutoTokenizer
  1332. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1333. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1334. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1335. # because vocab_size is the count of items, and indexes start at 0.
  1336. max_vocab_index = max(tokenizer.get_vocab().values())
  1337. if max_vocab_index >= vocab_size:
  1338. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1339. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1340. added_vocab = tokenizer.get_added_vocab()
  1341. for token_id in range(vocab_size):
  1342. token_text = reverse_vocab[token_id].encode('utf-8')
  1343. # replace "\x00" to string with length > 0
  1344. if token_text == b"\x00":
  1345. toktype = gguf.TokenType.BYTE # special
  1346. token_text = f"<{token_text}>".encode('utf-8')
  1347. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1348. toktype = gguf.TokenType.BYTE # special
  1349. elif reverse_vocab[token_id] in added_vocab:
  1350. if tokenizer.added_tokens_decoder[token_id].special:
  1351. toktype = gguf.TokenType.CONTROL
  1352. else:
  1353. toktype = gguf.TokenType.USER_DEFINED
  1354. else:
  1355. toktype = gguf.TokenType.NORMAL
  1356. tokens.append(token_text)
  1357. toktypes.append(toktype)
  1358. self.gguf_writer.add_tokenizer_model("llama")
  1359. self.gguf_writer.add_tokenizer_pre("default")
  1360. self.gguf_writer.add_token_list(tokens)
  1361. self.gguf_writer.add_token_types(toktypes)
  1362. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1363. special_vocab.add_to_gguf(self.gguf_writer)
  1364. def set_gguf_parameters(self):
  1365. block_count = self.hparams["num_hidden_layers"]
  1366. head_count = self.hparams["num_attention_heads"]
  1367. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1368. ctx_length = 0
  1369. if "max_sequence_length" in self.hparams:
  1370. ctx_length = self.hparams["max_sequence_length"]
  1371. elif "max_position_embeddings" in self.hparams:
  1372. ctx_length = self.hparams["max_position_embeddings"]
  1373. elif "model_max_length" in self.hparams:
  1374. ctx_length = self.hparams["model_max_length"]
  1375. else:
  1376. raise ValueError("gguf: can not find ctx length parameter.")
  1377. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1378. self.gguf_writer.add_context_length(ctx_length)
  1379. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1380. self.gguf_writer.add_block_count(block_count)
  1381. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1382. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1383. self.gguf_writer.add_head_count(head_count)
  1384. self.gguf_writer.add_head_count_kv(head_count_kv)
  1385. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1386. self.gguf_writer.add_file_type(self.ftype)
  1387. rope_scaling = self.hparams.get("rope_scaling") or {}
  1388. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1389. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1390. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1392. del bid # unused
  1393. head_count = self.hparams["num_attention_heads"]
  1394. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1395. # HF models permute some of the tensors, so we need to undo that
  1396. if name.endswith("q_proj.weight"):
  1397. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1398. if name.endswith("k_proj.weight"):
  1399. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1400. return [(self.map_tensor_name(name), data_torch)]
  1401. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1402. if n_kv_head is not None and n_head != n_kv_head:
  1403. n_head //= n_kv_head
  1404. return (
  1405. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1406. .swapaxes(1, 2)
  1407. .reshape(weights.shape)
  1408. )
  1409. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1410. class FalconModel(TextModel):
  1411. model_arch = gguf.MODEL_ARCH.FALCON
  1412. def set_gguf_parameters(self):
  1413. block_count = self.hparams.get("num_hidden_layers")
  1414. if block_count is None:
  1415. block_count = self.hparams["n_layer"] # old name
  1416. n_head = self.hparams.get("num_attention_heads")
  1417. if n_head is None:
  1418. n_head = self.hparams["n_head"] # old name
  1419. n_head_kv = self.hparams.get("num_kv_heads")
  1420. if n_head_kv is None:
  1421. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1422. self.gguf_writer.add_context_length(2048) # not in config.json
  1423. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1424. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1425. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1426. self.gguf_writer.add_block_count(block_count)
  1427. self.gguf_writer.add_head_count(n_head)
  1428. self.gguf_writer.add_head_count_kv(n_head_kv)
  1429. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1430. self.gguf_writer.add_file_type(self.ftype)
  1431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1432. del bid # unused
  1433. # QKV tensor transform
  1434. # The original query_key_value tensor contains n_head_kv "kv groups",
  1435. # each consisting of n_head/n_head_kv query weights followed by one key
  1436. # and one value weight (shared by all query heads in the kv group).
  1437. # This layout makes it a big pain to work with in GGML.
  1438. # So we rearrange them here,, so that we have n_head query weights
  1439. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1440. # in contiguous fashion.
  1441. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1442. if "query_key_value" in name:
  1443. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1444. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1445. head_dim = self.hparams["hidden_size"] // n_head
  1446. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1447. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1448. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1449. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1450. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1451. return [(self.map_tensor_name(name), data_torch)]
  1452. @ModelBase.register("GPTBigCodeForCausalLM")
  1453. class StarCoderModel(TextModel):
  1454. model_arch = gguf.MODEL_ARCH.STARCODER
  1455. def set_gguf_parameters(self):
  1456. block_count = self.hparams["n_layer"]
  1457. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1458. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1459. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1460. self.gguf_writer.add_block_count(block_count)
  1461. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1462. self.gguf_writer.add_head_count_kv(1)
  1463. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1464. self.gguf_writer.add_file_type(self.ftype)
  1465. @ModelBase.register("GPTRefactForCausalLM")
  1466. class RefactModel(TextModel):
  1467. model_arch = gguf.MODEL_ARCH.REFACT
  1468. def set_vocab(self):
  1469. super().set_vocab()
  1470. # TODO: how to determine special FIM tokens automatically?
  1471. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1472. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1473. special_vocab._set_special_token("prefix", 1)
  1474. special_vocab._set_special_token("suffix", 3)
  1475. special_vocab._set_special_token("middle", 2)
  1476. special_vocab.chat_template = None # do not add it twice
  1477. special_vocab.add_to_gguf(self.gguf_writer)
  1478. def set_gguf_parameters(self):
  1479. hidden_dim = self.hparams["n_embd"]
  1480. inner_dim = 4 * hidden_dim
  1481. hidden_dim = int(2 * inner_dim / 3)
  1482. multiple_of = 256
  1483. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1484. block_count = self.hparams["n_layer"]
  1485. # refact uses Alibi. So this is from config.json which might be used by training.
  1486. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1487. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1488. self.gguf_writer.add_feed_forward_length(ff_dim)
  1489. self.gguf_writer.add_block_count(block_count)
  1490. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1491. self.gguf_writer.add_head_count_kv(1)
  1492. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1493. self.gguf_writer.add_file_type(self.ftype)
  1494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1495. hidden_dim = self.hparams["n_embd"]
  1496. inner_dim = 4 * hidden_dim
  1497. hidden_dim = int(2 * inner_dim / 3)
  1498. multiple_of = 256
  1499. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1500. n_head = self.hparams["n_head"]
  1501. n_head_kv = 1
  1502. head_dim = self.hparams["n_embd"] // n_head
  1503. tensors: list[tuple[str, Tensor]] = []
  1504. if bid is not None:
  1505. if name == f"transformer.h.{bid}.attn.kv.weight":
  1506. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1507. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1508. elif name == f"transformer.h.{bid}.attn.q.weight":
  1509. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1510. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1511. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1512. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1513. if len(tensors) == 0:
  1514. tensors.append((self.map_tensor_name(name), data_torch))
  1515. return tensors
  1516. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1517. class StableLMModel(TextModel):
  1518. model_arch = gguf.MODEL_ARCH.STABLELM
  1519. def set_vocab(self):
  1520. if (self.dir_model / "tokenizer.json").is_file():
  1521. self._set_vocab_gpt2()
  1522. else:
  1523. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1524. self._set_vocab_qwen()
  1525. def set_gguf_parameters(self):
  1526. hparams = self.hparams
  1527. block_count = hparams["num_hidden_layers"]
  1528. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1529. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1530. self.gguf_writer.add_block_count(block_count)
  1531. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1532. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1533. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1534. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1535. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1536. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1537. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1538. self.gguf_writer.add_file_type(self.ftype)
  1539. _q_norms: list[dict[str, Tensor]] | None = None
  1540. _k_norms: list[dict[str, Tensor]] | None = None
  1541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1542. n_head = self.hparams["num_attention_heads"]
  1543. n_kv_head = self.hparams["num_key_value_heads"]
  1544. if name.find("q_layernorm.norms") != -1:
  1545. assert bid is not None
  1546. if self._q_norms is None:
  1547. self._q_norms = [{} for _ in range(self.block_count)]
  1548. self._q_norms[bid][name] = data_torch
  1549. if len(self._q_norms[bid]) >= n_head:
  1550. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1551. else:
  1552. return []
  1553. if name.find("k_layernorm.norms") != -1:
  1554. assert bid is not None
  1555. if self._k_norms is None:
  1556. self._k_norms = [{} for _ in range(self.block_count)]
  1557. self._k_norms[bid][name] = data_torch
  1558. if len(self._k_norms[bid]) >= n_kv_head:
  1559. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1560. else:
  1561. return []
  1562. return [(self.map_tensor_name(name), data_torch)]
  1563. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1564. datas: list[Tensor] = []
  1565. # extract the norms in order
  1566. for xid in range(n_head):
  1567. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1568. datas.append(norms[ename])
  1569. del norms[ename]
  1570. data_torch = torch.stack(datas, dim=0)
  1571. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1572. new_name = self.map_tensor_name(merged_name)
  1573. return [(new_name, data_torch)]
  1574. def prepare_tensors(self):
  1575. super().prepare_tensors()
  1576. if self._q_norms is not None or self._k_norms is not None:
  1577. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1578. norms = (
  1579. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1580. ) + (
  1581. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1582. )
  1583. if len(norms) > 0:
  1584. raise ValueError(f"Unprocessed norms: {norms}")
  1585. @ModelBase.register(
  1586. "LLaMAForCausalLM",
  1587. "LlamaForCausalLM",
  1588. "MistralForCausalLM",
  1589. "MixtralForCausalLM",
  1590. "VLlama3ForCausalLM",
  1591. "LlavaForConditionalGeneration",
  1592. "VoxtralForConditionalGeneration",
  1593. "LlamaModel")
  1594. class LlamaModel(TextModel):
  1595. model_arch = gguf.MODEL_ARCH.LLAMA
  1596. undo_permute = True
  1597. def __init__(self, *args, **kwargs):
  1598. super().__init__(*args, **kwargs)
  1599. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1600. if self.hf_arch == "VLlama3ForCausalLM":
  1601. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1602. def set_vocab(self):
  1603. path_tekken_json = self.dir_model / "tekken.json"
  1604. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1605. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1606. return self.set_vocab_tekken()
  1607. try:
  1608. self._set_vocab_sentencepiece()
  1609. except FileNotFoundError:
  1610. try:
  1611. self._set_vocab_llama_hf()
  1612. except (FileNotFoundError, TypeError):
  1613. # Llama 3
  1614. self._set_vocab_gpt2()
  1615. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1616. if self.hparams.get("vocab_size", 32000) == 32016:
  1617. special_vocab = gguf.SpecialVocab(
  1618. self.dir_model, load_merges=False,
  1619. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1620. )
  1621. special_vocab._set_special_token("prefix", 32007)
  1622. special_vocab._set_special_token("suffix", 32008)
  1623. special_vocab._set_special_token("middle", 32009)
  1624. special_vocab._set_special_token("eot", 32010)
  1625. special_vocab.add_to_gguf(self.gguf_writer)
  1626. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1627. if tokenizer_config_file.is_file():
  1628. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1629. tokenizer_config_json = json.load(f)
  1630. if "add_prefix_space" in tokenizer_config_json:
  1631. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1632. # Apply to granite small models only
  1633. if self.hparams.get("vocab_size", 32000) == 49152:
  1634. self.gguf_writer.add_add_bos_token(False)
  1635. def set_vocab_tekken(self):
  1636. vocab = gguf.vocab.MistralVocab(self.dir_model)
  1637. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1638. tokens = []
  1639. scores = []
  1640. toktypes = []
  1641. for text, score, toktype in vocab.all_tokens():
  1642. tokens.append(text)
  1643. scores.append(score)
  1644. toktypes.append(toktype)
  1645. assert len(tokens) == vocab.vocab_size, (
  1646. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1647. )
  1648. if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
  1649. self.gguf_writer.add_tokenizer_pre("tekken")
  1650. self.gguf_writer.add_token_merges(
  1651. vocab.extract_vocab_merges_from_model()
  1652. )
  1653. logger.info(
  1654. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1655. )
  1656. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1657. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1658. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1659. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1660. self.gguf_writer.add_token_list(tokens)
  1661. self.gguf_writer.add_token_scores(scores)
  1662. self.gguf_writer.add_token_types(toktypes)
  1663. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1664. self.gguf_writer.add_add_bos_token(True)
  1665. self.gguf_writer.add_add_eos_token(False)
  1666. script_dir = Path(__file__).parent
  1667. template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
  1668. with open(template_path, "r", encoding="utf-8") as f:
  1669. template = f.read()
  1670. self.gguf_writer.add_chat_template(template)
  1671. def set_gguf_parameters(self):
  1672. super().set_gguf_parameters()
  1673. hparams = self.hparams
  1674. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1675. if (rope_dim := hparams.get("head_dim")) is None:
  1676. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1677. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1678. rope_scaling = self.hparams.get("rope_scaling") or {}
  1679. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1680. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1681. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1682. @staticmethod
  1683. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1684. if n_head_kv is not None and n_head != n_head_kv:
  1685. n_head = n_head_kv
  1686. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1687. .swapaxes(1, 2)
  1688. .reshape(weights.shape))
  1689. _experts: list[dict[str, Tensor]] | None = None
  1690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1691. n_head = self.hparams["num_attention_heads"]
  1692. n_kv_head = self.hparams.get("num_key_value_heads")
  1693. is_multimodal_tensor = "vision_tower" in name \
  1694. or "vision_model" in name \
  1695. or "audio_tower" in name \
  1696. or "model.connector" in name \
  1697. or "multi_modal_projector" in name
  1698. if is_multimodal_tensor:
  1699. return [] # skip vision tensors
  1700. elif self.hf_arch == "LlamaModel":
  1701. name = "model." + name
  1702. elif name.startswith("model.text_model"):
  1703. name = name.replace("text_model.", "") # for SmolVLM
  1704. elif name.startswith("language_model."):
  1705. name = name.replace("language_model.", "") # for the rest
  1706. if self.undo_permute:
  1707. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1708. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1709. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1710. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1711. # process the experts separately
  1712. if name.find("block_sparse_moe.experts") != -1:
  1713. n_experts = self.hparams["num_local_experts"]
  1714. assert bid is not None
  1715. if self._experts is None:
  1716. self._experts = [{} for _ in range(self.block_count)]
  1717. self._experts[bid][name] = data_torch
  1718. if len(self._experts[bid]) >= n_experts * 3:
  1719. tensors: list[tuple[str, Tensor]] = []
  1720. # merge the experts into a single 3d tensor
  1721. for wid in ["w1", "w2", "w3"]:
  1722. datas: list[Tensor] = []
  1723. for xid in range(n_experts):
  1724. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1725. datas.append(self._experts[bid][ename])
  1726. del self._experts[bid][ename]
  1727. data_torch = torch.stack(datas, dim=0)
  1728. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1729. new_name = self.map_tensor_name(merged_name)
  1730. tensors.append((new_name, data_torch))
  1731. return tensors
  1732. else:
  1733. return []
  1734. return [(self.map_tensor_name(name), data_torch)]
  1735. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1736. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1737. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1738. base = self.hparams.get("rope_theta", 10000.0)
  1739. if (dim := self.hparams.get("head_dim")) is None:
  1740. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1741. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1742. factor = rope_scaling.get("factor", 8.0)
  1743. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1744. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1745. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1746. low_freq_wavelen = old_context_len / low_freq_factor
  1747. high_freq_wavelen = old_context_len / high_freq_factor
  1748. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1749. rope_factors = []
  1750. for freq in freqs:
  1751. wavelen = 2 * math.pi / freq
  1752. if wavelen < high_freq_wavelen:
  1753. rope_factors.append(1)
  1754. elif wavelen > low_freq_wavelen:
  1755. rope_factors.append(factor)
  1756. else:
  1757. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1758. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1759. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1760. def prepare_tensors(self):
  1761. super().prepare_tensors()
  1762. if self._experts is not None:
  1763. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1764. experts = [k for d in self._experts for k in d.keys()]
  1765. if len(experts) > 0:
  1766. raise ValueError(f"Unprocessed experts: {experts}")
  1767. @ModelBase.register("ArceeForCausalLM")
  1768. class ArceeModel(LlamaModel):
  1769. model_arch = gguf.MODEL_ARCH.ARCEE
  1770. def set_gguf_parameters(self):
  1771. super().set_gguf_parameters()
  1772. self._try_set_pooling_type()
  1773. rope_scaling = self.hparams.get("rope_scaling") or {}
  1774. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1775. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1776. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1777. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1778. @ModelBase.register(
  1779. "LlavaForConditionalGeneration", # pixtral
  1780. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1781. )
  1782. class LlavaVisionModel(MmprojModel):
  1783. img_break_tok_id = -1
  1784. def __init__(self, *args, **kwargs):
  1785. super().__init__(*args, **kwargs)
  1786. if self.hparams["model_type"] == "pixtral":
  1787. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1788. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1789. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1790. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1791. else:
  1792. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1793. def get_token_id(self, token: str) -> int:
  1794. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1795. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1796. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1797. for id_, token_data in added_tokens_decoder.items():
  1798. if token_data["content"] == token:
  1799. return int(id_)
  1800. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1801. def set_gguf_parameters(self):
  1802. super().set_gguf_parameters()
  1803. hparams = self.hparams
  1804. if hparams["model_type"] == "pixtral":
  1805. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1806. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1807. # hidden_act
  1808. if hparams["hidden_act"] == "silu":
  1809. self.gguf_writer.add_vision_use_silu(True)
  1810. elif hparams["hidden_act"] == "gelu":
  1811. self.gguf_writer.add_vision_use_gelu(True)
  1812. else:
  1813. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1814. # spatial_merge_size
  1815. if "spatial_merge_size" in self.global_config:
  1816. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1818. del bid # unused
  1819. n_head = self.hparams["num_attention_heads"]
  1820. n_kv_head = n_head
  1821. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1822. # process vision tensors
  1823. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1824. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1825. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1826. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1827. return [(self.map_tensor_name(name), data_torch)]
  1828. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1829. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1830. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1831. img_break_embd = data_torch[self.img_break_tok_id]
  1832. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1833. return [(self.map_tensor_name(name), img_break_embd)]
  1834. return [] # skip other tensors
  1835. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1836. class SmolVLMModel(MmprojModel):
  1837. def __init__(self, *args, **kwargs):
  1838. super().__init__(*args, **kwargs)
  1839. if self.hparams["model_type"] == "smolvlm_vision":
  1840. # fix for SmolVLM2, missing some keys in config.json
  1841. # default values are taken from transformers code
  1842. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1843. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1844. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1845. def set_gguf_parameters(self):
  1846. super().set_gguf_parameters()
  1847. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1848. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1849. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1850. self.gguf_writer.add_vision_use_gelu(True)
  1851. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1852. del bid, new_name, n_dims # unused
  1853. if ".embeddings." in name:
  1854. return gguf.GGMLQuantizationType.F32
  1855. return False
  1856. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1857. del bid # unused
  1858. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1859. if is_vision_tensor:
  1860. return [(self.map_tensor_name(name), data_torch)]
  1861. return [] # skip other tensors
  1862. @ModelBase.register("Llama4ForConditionalGeneration")
  1863. class Llama4Model(LlamaModel):
  1864. model_arch = gguf.MODEL_ARCH.LLAMA4
  1865. undo_permute = False
  1866. def __init__(self, *args, **kwargs):
  1867. super().__init__(*args, **kwargs)
  1868. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1869. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1870. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1871. def set_vocab(self):
  1872. self._set_vocab_gpt2()
  1873. def set_gguf_parameters(self):
  1874. super().set_gguf_parameters()
  1875. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1876. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1877. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1878. if name.startswith("language_model."):
  1879. name = name.replace("language_model.", "")
  1880. # split the gate_up into gate and up
  1881. if "gate_up_proj" in name:
  1882. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1883. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1884. dim_half = data_torch.shape[-1] // 2
  1885. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1886. return [
  1887. (self.map_tensor_name(name_gate), gate_proj_weight),
  1888. (self.map_tensor_name(name_up), up_proj_weight)
  1889. ]
  1890. if name.endswith("down_proj"):
  1891. name += ".weight"
  1892. data_torch = data_torch.transpose(-1, -2)
  1893. if "multi_modal_projector" in name or "vision_model" in name:
  1894. return []
  1895. return super().modify_tensors(data_torch, name, bid)
  1896. @ModelBase.register("Llama4ForConditionalGeneration")
  1897. class Llama4VisionModel(MmprojModel):
  1898. def set_gguf_parameters(self):
  1899. super().set_gguf_parameters()
  1900. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1901. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1902. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1903. assert self.hparams["hidden_act"] == "gelu"
  1904. self.gguf_writer.add_vision_use_gelu(True)
  1905. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1906. del bid # unused
  1907. if "multi_modal_projector" in name or "vision_model" in name:
  1908. # process vision tensors
  1909. if "positional_embedding_vlm" in name and ".weight" not in name:
  1910. name += ".weight"
  1911. if "multi_modal_projector.linear_1" in name:
  1912. # despite the name with number postfix, this is a single fully connected layer
  1913. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1914. return [(self.map_tensor_name(name), data_torch)]
  1915. return []
  1916. @ModelBase.register("Mistral3ForConditionalGeneration")
  1917. class Mistral3Model(LlamaModel):
  1918. model_arch = gguf.MODEL_ARCH.LLAMA
  1919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1920. name = name.replace("language_model.", "")
  1921. if "multi_modal_projector" in name or "vision_tower" in name:
  1922. return []
  1923. return super().modify_tensors(data_torch, name, bid)
  1924. @ModelBase.register("DeciLMForCausalLM")
  1925. class DeciModel(TextModel):
  1926. model_arch = gguf.MODEL_ARCH.DECI
  1927. @staticmethod
  1928. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1929. # DeciLM-specific code
  1930. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1931. return DeciModel._find_multiple(intermediate_size, 256)
  1932. @staticmethod
  1933. def _find_multiple(n: int, k: int) -> int:
  1934. # DeciLM-specific code
  1935. if n % k == 0:
  1936. return n
  1937. return n + k - (n % k)
  1938. def __init__(self, *args, **kwargs):
  1939. super().__init__(*args, **kwargs)
  1940. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1941. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1942. assert self.block_count == len(_block_configs)
  1943. self._num_kv_heads = list()
  1944. self._num_heads = list()
  1945. _ffn_multipliers = list()
  1946. # ***linear attention layer***
  1947. # if n_heads_in_group is None and replace_with_linear is True
  1948. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1949. # ***attention-free layer***
  1950. # if n_heads_in_group is None and replace_with_linear is False
  1951. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1952. # ***normal attention-layer***
  1953. # if n_heads_in_group is not None, then
  1954. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1955. # _num_heads[il] is num_attention_head
  1956. # ***dummy layer*** for nemotron 253B
  1957. # if n_heads_in_group is None and ffn_mult is None
  1958. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1959. for il in range(len(_block_configs)):
  1960. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1961. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1962. self._num_kv_heads.append(0)
  1963. self._num_heads.append(self.hparams["num_attention_heads"])
  1964. else:
  1965. self._num_kv_heads.append(0)
  1966. self._num_heads.append(0)
  1967. else:
  1968. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1969. self._num_heads.append(self.hparams["num_attention_heads"])
  1970. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1971. _ffn_multipliers.append(0.0)
  1972. else:
  1973. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1974. assert self.block_count == len(self._num_kv_heads)
  1975. assert self.block_count == len(self._num_heads)
  1976. assert self.block_count == len(_ffn_multipliers)
  1977. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1978. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1979. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1980. self._ffn_dims: list[int] = [
  1981. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1982. for multiplier in _ffn_multipliers
  1983. ]
  1984. def set_vocab(self):
  1985. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1986. # eos_token from '|eot_id|' to '|end_of_text|'
  1987. if self.hparams.get("vocab_size", 128256) == 128256:
  1988. tokens, toktypes, tokpre = self.get_vocab_base()
  1989. self.gguf_writer.add_tokenizer_model("gpt2")
  1990. self.gguf_writer.add_tokenizer_pre(tokpre)
  1991. self.gguf_writer.add_token_list(tokens)
  1992. self.gguf_writer.add_token_types(toktypes)
  1993. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1994. special_vocab.add_to_gguf(self.gguf_writer)
  1995. else:
  1996. # DeciLM-7B
  1997. self._set_vocab_llama_hf()
  1998. def set_gguf_parameters(self):
  1999. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2000. assert self.block_count == len(self._num_kv_heads)
  2001. assert self.block_count == len(self._num_heads)
  2002. assert self.block_count == len(self._ffn_dims)
  2003. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2004. self.gguf_writer.add_rope_freq_base(rope_theta)
  2005. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2006. self.gguf_writer.add_head_count(self._num_heads)
  2007. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2008. self.gguf_writer.add_block_count(self.block_count)
  2009. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2010. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2011. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2012. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2013. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2014. self.gguf_writer.add_file_type(self.ftype)
  2015. else: # DeciLM-7B
  2016. super().set_gguf_parameters()
  2017. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2018. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2019. assert self.block_count == len(self._num_kv_heads)
  2020. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2021. hparams = self.hparams
  2022. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2023. if (rope_dim := hparams.get("head_dim")) is None:
  2024. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2025. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2026. rope_scaling = self.hparams.get("rope_scaling") or {}
  2027. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2028. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2029. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2030. @staticmethod
  2031. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2032. if n_head_kv is not None and n_head != n_head_kv:
  2033. n_head = n_head_kv
  2034. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2035. .swapaxes(1, 2)
  2036. .reshape(weights.shape))
  2037. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2038. n_head = self.hparams["num_attention_heads"]
  2039. if bid is not None:
  2040. if "num_key_value_heads_per_layer" in self.hparams:
  2041. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2042. elif "block_configs" in self.hparams:
  2043. n_kv_head = self._num_kv_heads[bid]
  2044. n_head = self._num_heads[bid]
  2045. else:
  2046. n_kv_head = self.hparams.get("num_key_value_heads")
  2047. else:
  2048. n_kv_head = self.hparams.get("num_key_value_heads")
  2049. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2050. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2051. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2052. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2053. return [(self.map_tensor_name(name), data_torch)]
  2054. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2055. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2056. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2057. base = self.hparams.get("rope_theta", 10000.0)
  2058. if (dim := self.hparams.get("head_dim")) is None:
  2059. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2060. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2061. factor = rope_scaling.get("factor", 8.0)
  2062. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2063. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2064. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2065. low_freq_wavelen = old_context_len / low_freq_factor
  2066. high_freq_wavelen = old_context_len / high_freq_factor
  2067. assert low_freq_wavelen != high_freq_wavelen
  2068. rope_factors = []
  2069. for freq in freqs:
  2070. wavelen = 2 * math.pi / freq
  2071. if wavelen < high_freq_wavelen:
  2072. rope_factors.append(1)
  2073. elif wavelen > low_freq_wavelen:
  2074. rope_factors.append(factor)
  2075. else:
  2076. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2077. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2078. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2079. def prepare_tensors(self):
  2080. super().prepare_tensors()
  2081. @ModelBase.register("BitnetForCausalLM")
  2082. class BitnetModel(TextModel):
  2083. model_arch = gguf.MODEL_ARCH.BITNET
  2084. def set_vocab(self):
  2085. self._set_vocab_sentencepiece()
  2086. def set_gguf_parameters(self):
  2087. super().set_gguf_parameters()
  2088. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2089. self.gguf_writer.add_rope_scaling_factor(1.0)
  2090. def weight_quant(self, weight: Tensor) -> Tensor:
  2091. dtype = weight.dtype
  2092. weight = weight.float()
  2093. scale = weight.abs().mean().clamp(min=1e-5)
  2094. iscale = 1 / scale
  2095. # TODO: multiply by the scale directly instead of inverting it twice
  2096. # (this is also unnecessarily doubly inverted upstream)
  2097. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2098. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2099. return result.type(dtype)
  2100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2101. new_name = self.map_tensor_name(name)
  2102. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2103. gguf.MODEL_TENSOR.ATTN_Q,
  2104. gguf.MODEL_TENSOR.ATTN_K,
  2105. gguf.MODEL_TENSOR.ATTN_V,
  2106. gguf.MODEL_TENSOR.ATTN_OUT,
  2107. gguf.MODEL_TENSOR.FFN_UP,
  2108. gguf.MODEL_TENSOR.FFN_DOWN,
  2109. gguf.MODEL_TENSOR.FFN_GATE,
  2110. ]):
  2111. # transform weight into 1/0/-1 (in fp32)
  2112. data_torch = self.weight_quant(data_torch)
  2113. yield (new_name, data_torch)
  2114. @ModelBase.register("GrokForCausalLM")
  2115. class GrokModel(TextModel):
  2116. model_arch = gguf.MODEL_ARCH.GROK
  2117. def set_vocab(self):
  2118. self._set_vocab_sentencepiece()
  2119. def __init__(self, *args, **kwargs):
  2120. super().__init__(*args, **kwargs)
  2121. def set_gguf_parameters(self):
  2122. super().set_gguf_parameters()
  2123. _experts: list[dict[str, Tensor]] | None = None
  2124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2125. # process the experts separately
  2126. if name.find(".moe.") != -1:
  2127. n_experts = self.hparams["num_local_experts"]
  2128. assert bid is not None
  2129. if self._experts is None:
  2130. self._experts = [{} for _ in range(self.block_count)]
  2131. self._experts[bid][name] = data_torch
  2132. if len(self._experts[bid]) >= n_experts * 3:
  2133. tensors: list[tuple[str, Tensor]] = []
  2134. # merge the experts into a single 3d tensor
  2135. for wid in ["linear", "linear_1", "linear_v"]:
  2136. datas: list[Tensor] = []
  2137. for xid in range(n_experts):
  2138. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2139. datas.append(self._experts[bid][ename])
  2140. del self._experts[bid][ename]
  2141. data_torch = torch.stack(datas, dim=0)
  2142. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2143. new_name = self.map_tensor_name(merged_name)
  2144. tensors.append((new_name, data_torch))
  2145. return tensors
  2146. else:
  2147. return []
  2148. return [(self.map_tensor_name(name), data_torch)]
  2149. @ModelBase.register("DbrxForCausalLM")
  2150. class DbrxModel(TextModel):
  2151. model_arch = gguf.MODEL_ARCH.DBRX
  2152. def set_gguf_parameters(self):
  2153. ffn_config = self.hparams["ffn_config"]
  2154. attn_config = self.hparams["attn_config"]
  2155. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2156. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2157. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2158. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2159. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2160. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2161. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2162. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2163. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2164. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2165. self.gguf_writer.add_layer_norm_eps(1e-5)
  2166. self.gguf_writer.add_file_type(self.ftype)
  2167. logger.info(f"gguf: file type = {self.ftype}")
  2168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2169. del bid # unused
  2170. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2171. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2172. n_embd = self.hparams["d_model"]
  2173. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2174. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2175. # But llama.cpp moe graph works differently
  2176. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2177. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2178. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2179. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2180. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2181. experts = False
  2182. for exp_tensor_name in exp_tensor_names.keys():
  2183. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2184. experts = True
  2185. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2186. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2187. data_torch = data_torch.permute(*permute_tensor)
  2188. break
  2189. # map tensor names
  2190. # In MoE models the ffn tensors are typically most of the model weights,
  2191. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2192. # Every other model has the weight names ending in .weight,
  2193. # let's assume that is the convention which is not the case for dbrx:
  2194. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2195. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2196. return [(new_name, data_torch)]
  2197. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2198. del name, new_name, bid # unused
  2199. return n_dims > 1
  2200. @ModelBase.register("MiniCPMForCausalLM")
  2201. class MiniCPMModel(TextModel):
  2202. model_arch = gguf.MODEL_ARCH.MINICPM
  2203. def set_gguf_parameters(self):
  2204. super().set_gguf_parameters()
  2205. embedding_scale = float(self.hparams["scale_emb"])
  2206. self.gguf_writer.add_embedding_scale(embedding_scale)
  2207. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2208. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2209. self.gguf_writer.add_residual_scale(residual_scale)
  2210. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2211. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2212. self.gguf_writer.add_logit_scale(logit_scale)
  2213. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2214. rope_scaling = self.hparams.get("rope_scaling") or {}
  2215. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2216. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2217. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2218. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2219. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2220. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2221. if rope_scaling is not None:
  2222. long_factors = rope_scaling.get('long_factor', None)
  2223. short_factors = rope_scaling.get('short_factor', None)
  2224. if long_factors is None or short_factors is None:
  2225. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2226. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2227. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2228. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2229. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2230. def set_vocab(self):
  2231. self._set_vocab_sentencepiece()
  2232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2233. del bid # unused
  2234. n_head = self.hparams["num_attention_heads"]
  2235. n_kv_head = self.hparams.get("num_key_value_heads")
  2236. # HF models permute some of the tensors, so we need to undo that
  2237. if name.endswith(("q_proj.weight")):
  2238. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2239. if name.endswith(("k_proj.weight")):
  2240. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2241. return [(self.map_tensor_name(name), data_torch)]
  2242. @ModelBase.register("MiniCPM3ForCausalLM")
  2243. class MiniCPM3Model(TextModel):
  2244. model_arch = gguf.MODEL_ARCH.MINICPM3
  2245. def set_gguf_parameters(self):
  2246. hparams = self.hparams
  2247. self.gguf_writer.add_file_type(self.ftype)
  2248. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2249. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2250. self.gguf_writer.add_block_count(self.block_count)
  2251. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2252. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2253. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2254. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2255. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2256. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2257. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2258. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2259. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2260. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2261. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2262. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2263. if rope_scaling is not None:
  2264. rope_dims = self.hparams["qk_rope_head_dim"]
  2265. long_factors = rope_scaling.get('long_factor', None)
  2266. short_factors = rope_scaling.get('short_factor', None)
  2267. if long_factors is None or short_factors is None:
  2268. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2269. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2270. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2271. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2272. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2273. def set_vocab(self):
  2274. self._set_vocab_sentencepiece()
  2275. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2276. if n_kv_head is not None and n_head != n_kv_head:
  2277. n_head //= n_kv_head
  2278. return (
  2279. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2280. .swapaxes(1, 2)
  2281. .reshape(weights.shape)
  2282. )
  2283. @ModelBase.register("QWenLMHeadModel")
  2284. class QwenModel(TextModel):
  2285. model_arch = gguf.MODEL_ARCH.QWEN
  2286. @staticmethod
  2287. def token_bytes_to_string(b):
  2288. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2289. byte_encoder = bytes_to_unicode()
  2290. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2291. @staticmethod
  2292. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2293. parts = [bytes([b]) for b in token]
  2294. while True:
  2295. min_idx = None
  2296. min_rank = None
  2297. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2298. rank = mergeable_ranks.get(pair[0] + pair[1])
  2299. if rank is not None and (min_rank is None or rank < min_rank):
  2300. min_idx = i
  2301. min_rank = rank
  2302. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2303. break
  2304. assert min_idx is not None
  2305. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2306. return parts
  2307. def set_vocab(self):
  2308. self._set_vocab_qwen()
  2309. def set_gguf_parameters(self):
  2310. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2311. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2312. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2313. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2314. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2315. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2316. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2317. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2318. self.gguf_writer.add_file_type(self.ftype)
  2319. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2320. class Qwen2Model(TextModel):
  2321. model_arch = gguf.MODEL_ARCH.QWEN2
  2322. def set_vocab(self):
  2323. try:
  2324. self._set_vocab_sentencepiece()
  2325. except FileNotFoundError:
  2326. self._set_vocab_gpt2()
  2327. def set_gguf_parameters(self):
  2328. super().set_gguf_parameters()
  2329. self._try_set_pooling_type()
  2330. rope_scaling = self.hparams.get("rope_scaling") or {}
  2331. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2332. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2333. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2334. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2335. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2336. if self.hf_arch == "Qwen2Model":
  2337. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2338. if "language_model." in name:
  2339. name = name.replace("language_model.", "") # for InternVL
  2340. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2341. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2342. # skip vision and audio tensors
  2343. return []
  2344. yield from super().modify_tensors(data_torch, name, bid)
  2345. @ModelBase.register("DreamModel")
  2346. class DreamModel(TextModel):
  2347. model_arch = gguf.MODEL_ARCH.DREAM
  2348. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2349. tokens: list[str] = []
  2350. toktypes: list[int] = []
  2351. from transformers import AutoTokenizer
  2352. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2353. vocab_dict = tokenizer.get_vocab()
  2354. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2355. assert max(vocab_dict.values()) < vocab_size
  2356. tokpre = self.get_vocab_base_pre(tokenizer)
  2357. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2358. added_vocab = tokenizer.get_added_vocab()
  2359. for i in range(vocab_size):
  2360. if i not in reverse_vocab:
  2361. tokens.append(f"[PAD{i}]")
  2362. toktypes.append(gguf.TokenType.UNUSED)
  2363. elif reverse_vocab[i] in added_vocab:
  2364. tokens.append(reverse_vocab[i])
  2365. # Check if it's a special token - treat special tokens as CONTROL tokens
  2366. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2367. if tokenizer.added_tokens_decoder[i].special:
  2368. toktypes.append(gguf.TokenType.CONTROL)
  2369. else:
  2370. toktypes.append(gguf.TokenType.USER_DEFINED)
  2371. else:
  2372. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2373. toktypes.append(gguf.TokenType.CONTROL)
  2374. else:
  2375. tokens.append(reverse_vocab[i])
  2376. toktypes.append(gguf.TokenType.NORMAL)
  2377. return tokens, toktypes, tokpre
  2378. def set_vocab(self):
  2379. try:
  2380. self._set_vocab_sentencepiece()
  2381. except FileNotFoundError:
  2382. self._set_vocab_gpt2()
  2383. def set_gguf_parameters(self):
  2384. super().set_gguf_parameters()
  2385. self._try_set_pooling_type()
  2386. # Dream models use non-causal attention for diffusion
  2387. self.gguf_writer.add_causal_attention(False)
  2388. # Handle RoPE scaling similar to Qwen2
  2389. rope_scaling = self.hparams.get("rope_scaling") or {}
  2390. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2391. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2392. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2393. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2394. # Add Dream-specific parameters
  2395. mask_token_id = self.hparams.get("mask_token_id")
  2396. if mask_token_id is not None:
  2397. self.gguf_writer.add_mask_token_id(mask_token_id)
  2398. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2399. # Dream model tensors should be mapped directly since it's the base model
  2400. yield from super().modify_tensors(data_torch, name, bid)
  2401. @ModelBase.register("LLaDAModelLM")
  2402. class LLaDAModel(TextModel):
  2403. model_arch = gguf.MODEL_ARCH.LLADA
  2404. undo_permute = True
  2405. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2406. tokens: list[str] = []
  2407. toktypes: list[int] = []
  2408. from transformers import AutoTokenizer
  2409. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2410. vocab_dict = tokenizer.get_vocab()
  2411. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2412. assert max(vocab_dict.values()) < vocab_size
  2413. tokpre = self.get_vocab_base_pre(tokenizer)
  2414. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2415. added_vocab = tokenizer.get_added_vocab()
  2416. for i in range(vocab_size):
  2417. if i not in reverse_vocab:
  2418. tokens.append(f"[PAD{i}]")
  2419. toktypes.append(gguf.TokenType.UNUSED)
  2420. elif reverse_vocab[i] in added_vocab:
  2421. tokens.append(reverse_vocab[i])
  2422. # Check if it's a special token - treat special tokens as CONTROL tokens
  2423. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2424. if tokenizer.added_tokens_decoder[i].special:
  2425. toktypes.append(gguf.TokenType.CONTROL)
  2426. else:
  2427. toktypes.append(gguf.TokenType.USER_DEFINED)
  2428. else:
  2429. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2430. toktypes.append(gguf.TokenType.CONTROL)
  2431. else:
  2432. tokens.append(reverse_vocab[i])
  2433. toktypes.append(gguf.TokenType.NORMAL)
  2434. return tokens, toktypes, tokpre
  2435. def set_vocab(self):
  2436. self._set_vocab_gpt2()
  2437. # LLaDA specific parameters
  2438. self.gguf_writer.add_add_bos_token(True)
  2439. def set_gguf_parameters(self):
  2440. super().set_gguf_parameters()
  2441. self._try_set_pooling_type()
  2442. # Add parameters similar to LlamaModel
  2443. hparams = self.hparams
  2444. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2445. if (rope_dim := hparams.get("head_dim")) is None:
  2446. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2447. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2448. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2449. # Set context length for LLaDA
  2450. context_length = self.hparams.get("max_sequence_length", 4096)
  2451. self.gguf_writer.add_context_length(context_length)
  2452. # Set embedding length (dimension size)
  2453. embedding_length = self.hparams.get("d_model", 4096)
  2454. self.gguf_writer.add_embedding_length(embedding_length)
  2455. # Set feed forward length (MLP hidden size)
  2456. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2457. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2458. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2459. self.gguf_writer.add_causal_attention(False)
  2460. # LLaDA models don't shift their logits
  2461. self.gguf_writer.add_diffusion_shift_logits(False)
  2462. @staticmethod
  2463. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2464. if n_head_kv is not None and n_head != n_head_kv:
  2465. n_head = n_head_kv
  2466. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2467. .swapaxes(1, 2)
  2468. .reshape(weights.shape))
  2469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2470. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2471. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2472. if self.undo_permute:
  2473. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2474. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2475. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2476. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2477. # LLaDA model tensors should be mapped directly since it's the base model
  2478. yield from super().modify_tensors(data_torch, name, bid)
  2479. @ModelBase.register("Ernie4_5_ForCausalLM")
  2480. class Ernie4_5Model(TextModel):
  2481. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2482. def set_vocab(self):
  2483. self._set_vocab_sentencepiece()
  2484. def set_gguf_parameters(self):
  2485. super().set_gguf_parameters()
  2486. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2487. num_heads = self.hparams["num_attention_heads"]
  2488. num_kv_heads = self.hparams["num_key_value_heads"]
  2489. if (head_dim := self.hparams.get("head_dim")) is None:
  2490. head_dim = self.hparams["hidden_size"] // num_heads
  2491. if "ernie." in name:
  2492. name = name.replace("ernie.", "model.")
  2493. # split the qkv weights
  2494. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2495. if "qkv_proj" in name:
  2496. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2497. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2498. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2499. total_q_dim = num_heads * head_dim
  2500. total_k_dim = num_kv_heads * head_dim
  2501. total_v_dim = num_kv_heads * head_dim
  2502. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2503. return [
  2504. (self.map_tensor_name(name_q), q_proj_weight),
  2505. (self.map_tensor_name(name_k), k_proj_weight),
  2506. (self.map_tensor_name(name_v), v_proj_weight)
  2507. ]
  2508. # split the up_gate_proj into gate and up
  2509. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2510. if "up_gate_proj" in name:
  2511. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2512. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2513. dim_half = data_torch.shape[0] // 2
  2514. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2515. return [
  2516. (self.map_tensor_name(name_gate), gate_proj_weight),
  2517. (self.map_tensor_name(name_up), up_proj_weight)
  2518. ]
  2519. return [(self.map_tensor_name(name), data_torch)]
  2520. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2521. class Ernie4_5MoeModel(Ernie4_5Model):
  2522. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2523. _experts: list[dict[str, Tensor]] | None = None
  2524. def __init__(self, *args, **kwargs):
  2525. super().__init__(*args, **kwargs)
  2526. self._experts = [{} for _ in range(self.block_count)]
  2527. def set_gguf_parameters(self):
  2528. super().set_gguf_parameters()
  2529. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2530. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2531. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2532. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2533. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2534. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2535. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2536. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2537. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2538. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2539. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2540. # Modify correction bias name as in DeepseekV2
  2541. if name.endswith("e_score_correction_bias"):
  2542. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2543. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2544. match = re.match(r"model.mtp_block.(\d+)", name)
  2545. if match:
  2546. return []
  2547. # skip all other MTP tensors for now
  2548. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2549. if match:
  2550. return []
  2551. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2552. if match:
  2553. return []
  2554. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2555. if match:
  2556. return []
  2557. # process the experts separately
  2558. if name.find("mlp.experts") != -1:
  2559. n_experts = self.hparams["moe_num_experts"]
  2560. assert bid is not None
  2561. if self._experts is None:
  2562. self._experts = [{} for _ in range(self.block_count)]
  2563. self._experts[bid][name] = data_torch
  2564. if len(self._experts[bid]) >= n_experts * 3:
  2565. tensors: list[tuple[str, Tensor]] = []
  2566. # merge the experts into a single 3d tensor
  2567. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2568. datas: list[Tensor] = []
  2569. for xid in range(n_experts):
  2570. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2571. datas.append(self._experts[bid][ename_to_retrieve])
  2572. del self._experts[bid][ename_to_retrieve]
  2573. data_torch = torch.stack(datas, dim=0)
  2574. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2575. new_name = self.map_tensor_name(merged_name)
  2576. tensors.append((new_name, data_torch))
  2577. return tensors
  2578. else:
  2579. return []
  2580. return [(self.map_tensor_name(name), data_torch)]
  2581. def prepare_tensors(self):
  2582. super().prepare_tensors()
  2583. if self._experts is not None:
  2584. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2585. experts = [k for d in self._experts for k in d.keys()]
  2586. if len(experts) > 0:
  2587. raise ValueError(f"Unprocessed experts: {experts}")
  2588. @ModelBase.register(
  2589. "Qwen2VLModel",
  2590. "Qwen2VLForConditionalGeneration",
  2591. "Qwen2_5_VLForConditionalGeneration",
  2592. "Qwen2_5OmniModel",
  2593. )
  2594. class Qwen2VLModel(TextModel):
  2595. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2596. def set_gguf_parameters(self):
  2597. super().set_gguf_parameters()
  2598. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2599. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2600. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2601. def set_vocab(self):
  2602. try:
  2603. self._set_vocab_sentencepiece()
  2604. except FileNotFoundError:
  2605. self._set_vocab_gpt2()
  2606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2607. del bid # unused
  2608. if name.startswith("thinker."):
  2609. name = name.replace("thinker.", "")
  2610. if name.startswith("visual") or name.startswith("audio") or \
  2611. name.startswith("talker") or name.startswith("token2wav"):
  2612. # skip multimodal tensors
  2613. return []
  2614. return [(self.map_tensor_name(name), data_torch)]
  2615. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2616. class Qwen2VLVisionModel(MmprojModel):
  2617. def __init__(self, *args, **kwargs):
  2618. super().__init__(*args, **kwargs)
  2619. assert self.hparams_vision is not None
  2620. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2621. # rename config.json values
  2622. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2623. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2624. if "embed_dim" in self.hparams_vision: # qwen2vl
  2625. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2626. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2627. def set_gguf_parameters(self):
  2628. super().set_gguf_parameters()
  2629. assert self.hparams_vision is not None
  2630. hparams = self.hparams_vision
  2631. model_type = self.global_config['model_type']
  2632. if model_type == 'qwen2_vl':
  2633. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2634. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2635. if model_type == 'qwen2_5_omni':
  2636. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2637. else:
  2638. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2639. self.gguf_writer.add_vision_use_silu(True)
  2640. # find n_wa_pattern (window attention pattern)
  2641. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2642. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2643. n_wa_pattern = fullatt_block_indexes[0] + 1
  2644. # validate n_wa_pattern
  2645. for i in range(1, len(fullatt_block_indexes)):
  2646. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2647. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2648. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2649. else:
  2650. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2651. # default values below are taken from HF tranformers code
  2652. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2653. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2654. del bid, name, n_dims # unused
  2655. if ".patch_embd." in new_name:
  2656. return gguf.GGMLQuantizationType.F16
  2657. if ".position_embd." in new_name:
  2658. return gguf.GGMLQuantizationType.F32
  2659. return False
  2660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2661. del bid # unused
  2662. if name.startswith("visual."):
  2663. # process visual tensors
  2664. # split QKV tensors if needed
  2665. if ".qkv." in name:
  2666. if data_torch.ndim == 2: # weight
  2667. c3, _ = data_torch.shape
  2668. else: # bias
  2669. c3 = data_torch.shape[0]
  2670. assert c3 % 3 == 0
  2671. c = c3 // 3
  2672. wq = data_torch[:c]
  2673. wk = data_torch[c: c * 2]
  2674. wv = data_torch[c * 2:]
  2675. return [
  2676. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2677. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2678. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2679. ]
  2680. elif 'patch_embed.proj.weight' in name:
  2681. # split Conv3D into Conv2Ds
  2682. c1, c2, kt, kh, kw = data_torch.shape
  2683. del c1, c2, kh, kw # unused
  2684. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2685. return [
  2686. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2687. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2688. ]
  2689. else:
  2690. return [(self.map_tensor_name(name), data_torch)]
  2691. return [] # skip other tensors
  2692. @ModelBase.register("Qwen2_5OmniModel")
  2693. class Qwen25OmniModel(Qwen2VLVisionModel):
  2694. has_vision_encoder = True
  2695. has_audio_encoder = True
  2696. def __init__(self, *args, **kwargs):
  2697. super().__init__(*args, **kwargs)
  2698. assert self.hparams_audio is not None
  2699. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2700. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2701. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2702. def set_gguf_parameters(self):
  2703. super().set_gguf_parameters()
  2704. assert self.hparams_audio is not None
  2705. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2706. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2707. def get_vision_config(self) -> dict[str, Any] | None:
  2708. return self.global_config["thinker_config"].get("vision_config")
  2709. def get_audio_config(self) -> dict[str, Any] | None:
  2710. return self.global_config["thinker_config"].get("audio_config")
  2711. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2712. # SinusoidsPositionEmbedding
  2713. assert self.hparams_audio is not None
  2714. max_timescale = 10000
  2715. length = 1500
  2716. channels = self.hparams_audio["hidden_size"]
  2717. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2718. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2719. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2720. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2721. yield ("audio_tower.embed_positions.weight", pos_embd)
  2722. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2723. del bid, new_name, n_dims # unused
  2724. if ".conv" in name and ".weight" in name:
  2725. return gguf.GGMLQuantizationType.F16
  2726. return False
  2727. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2728. if name.startswith("thinker."):
  2729. name = name.replace("thinker.", "")
  2730. if name.startswith("audio_tower"):
  2731. # process audio tensors
  2732. if "conv1.bias" in name or "conv2.bias" in name:
  2733. # transpose conv1 and conv2 bias
  2734. data_torch = data_torch.unsqueeze(-1)
  2735. if "audio_bos_eos_token" in name:
  2736. # this tensor is left unused in transformers code
  2737. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2738. return []
  2739. return [(self.map_tensor_name(name), data_torch)]
  2740. return super().modify_tensors(data_torch, name, bid)
  2741. @ModelBase.register("InternVisionModel")
  2742. class InternVisionModel(MmprojModel):
  2743. def set_gguf_parameters(self):
  2744. assert self.hparams_vision is not None
  2745. if isinstance(self.hparams_vision['image_size'], list):
  2746. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2747. if isinstance(self.hparams_vision['patch_size'], list):
  2748. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2749. super().set_gguf_parameters()
  2750. hparams = self.hparams
  2751. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2752. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2753. # hidden_act
  2754. if hparams["hidden_act"] == "silu":
  2755. self.gguf_writer.add_vision_use_silu(True)
  2756. elif hparams["hidden_act"] == "gelu":
  2757. self.gguf_writer.add_vision_use_gelu(True)
  2758. else:
  2759. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2760. # downsample_ratio
  2761. downsample_ratio = self.global_config.get("downsample_ratio")
  2762. assert downsample_ratio is not None
  2763. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2764. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2765. del bid, name, n_dims # unused
  2766. if ".patch_embd." in new_name:
  2767. return gguf.GGMLQuantizationType.F16
  2768. if ".position_embd." in new_name:
  2769. return gguf.GGMLQuantizationType.F32
  2770. return False
  2771. def _mapping_interns1_name(self, name):
  2772. names_map = {
  2773. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2774. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2775. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2776. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2777. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2778. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2779. }
  2780. if name in names_map:
  2781. name = names_map[name]
  2782. return name
  2783. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2784. del bid # unused
  2785. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2786. # deal with intern-s1 special case
  2787. name = self._mapping_interns1_name(name)
  2788. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2789. # process visual tensors
  2790. # correct name
  2791. if name.startswith("vision_model"):
  2792. name = "vision_tower." + name
  2793. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2794. name += ".weight"
  2795. # split QKV tensors if needed
  2796. if ".qkv." in name:
  2797. if data_torch.ndim == 2: # weight
  2798. c3, _ = data_torch.shape
  2799. else: # bias
  2800. c3 = data_torch.shape[0]
  2801. assert c3 % 3 == 0
  2802. c = c3 // 3
  2803. wq = data_torch[:c]
  2804. wk = data_torch[c: c * 2]
  2805. wv = data_torch[c * 2:]
  2806. return [
  2807. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2808. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2809. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2810. ]
  2811. return [(self.map_tensor_name(name), data_torch)]
  2812. return [] # skip other tensors
  2813. @ModelBase.register("WavTokenizerDec")
  2814. class WavTokenizerDecModel(TextModel):
  2815. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2817. del bid # unused
  2818. if \
  2819. name.endswith("codebook.cluster_size") or \
  2820. name.endswith("codebook.embed_avg") or \
  2821. name.endswith("codebook.inited"):
  2822. logger.debug(f"Skipping {name!r}")
  2823. return []
  2824. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2825. return [(self.map_tensor_name(name), data_torch)]
  2826. def set_vocab(self):
  2827. self._set_vocab_none()
  2828. def set_gguf_parameters(self):
  2829. super().set_gguf_parameters()
  2830. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2831. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2832. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2833. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2834. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2835. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2836. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2837. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2838. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2839. self.gguf_writer.add_causal_attention(False)
  2840. @ModelBase.register("Qwen2MoeForCausalLM")
  2841. class Qwen2MoeModel(TextModel):
  2842. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2843. def set_gguf_parameters(self):
  2844. super().set_gguf_parameters()
  2845. if (n_experts := self.hparams.get("num_experts")) is not None:
  2846. self.gguf_writer.add_expert_count(n_experts)
  2847. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2848. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2849. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2850. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2851. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2852. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2853. # YaRN is not enabled by default
  2854. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2855. rope_scaling = self.hparams.get("rope_scaling") or {}
  2856. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2857. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2858. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2859. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2860. _experts: list[dict[str, Tensor]] | None = None
  2861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2862. # process the experts separately
  2863. name = name.replace("language_model.", "") # InternVL
  2864. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2865. # skip visual tensors
  2866. return []
  2867. if name.find("experts") != -1:
  2868. n_experts = self.hparams["num_experts"]
  2869. assert bid is not None
  2870. if self._experts is None:
  2871. self._experts = [{} for _ in range(self.block_count)]
  2872. self._experts[bid][name] = data_torch
  2873. if len(self._experts[bid]) >= n_experts * 3:
  2874. tensors: list[tuple[str, Tensor]] = []
  2875. # merge the experts into a single 3d tensor
  2876. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2877. datas: list[Tensor] = []
  2878. for xid in range(n_experts):
  2879. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2880. datas.append(self._experts[bid][ename])
  2881. del self._experts[bid][ename]
  2882. data_torch = torch.stack(datas, dim=0)
  2883. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2884. new_name = self.map_tensor_name(merged_name)
  2885. tensors.append((new_name, data_torch))
  2886. return tensors
  2887. else:
  2888. return []
  2889. return [(self.map_tensor_name(name), data_torch)]
  2890. def prepare_tensors(self):
  2891. super().prepare_tensors()
  2892. if self._experts is not None:
  2893. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2894. experts = [k for d in self._experts for k in d.keys()]
  2895. if len(experts) > 0:
  2896. raise ValueError(f"Unprocessed experts: {experts}")
  2897. @ModelBase.register("Qwen3ForCausalLM")
  2898. class Qwen3Model(Qwen2Model):
  2899. model_arch = gguf.MODEL_ARCH.QWEN3
  2900. @ModelBase.register("Qwen3MoeForCausalLM")
  2901. class Qwen3MoeModel(Qwen2MoeModel):
  2902. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2903. def __init__(self, *args, **kwargs):
  2904. super().__init__(*args, **kwargs)
  2905. hparams = ModelBase.load_hparams(self.dir_model)
  2906. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2907. def set_vocab(self):
  2908. # deal with intern-s1
  2909. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  2910. self._set_vocab_interns1()
  2911. return
  2912. try:
  2913. self._set_vocab_sentencepiece()
  2914. except FileNotFoundError:
  2915. self._set_vocab_gpt2()
  2916. def _set_vocab_interns1(self):
  2917. tokens: list[str] = []
  2918. toktypes: list[int] = []
  2919. from transformers import AutoTokenizer
  2920. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2921. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  2922. vocab_size = self.hparams.get("vocab_size", len(vocab))
  2923. assert max(vocab.values()) < vocab_size
  2924. tokpre = self.get_vocab_base_pre(tokenizer)
  2925. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  2926. added_vocab = tokenizer.get_added_vocab()
  2927. added_tokens_decoder = tokenizer.added_tokens_decoder
  2928. for i in range(vocab_size):
  2929. if i not in reverse_vocab:
  2930. tokens.append(f"[PAD{i}]")
  2931. toktypes.append(gguf.TokenType.UNUSED)
  2932. else:
  2933. token: str = reverse_vocab[i]
  2934. if token in added_vocab:
  2935. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  2936. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  2937. if not added_tokens_decoder[i].normalized:
  2938. previous_token = token
  2939. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  2940. if previous_token != token:
  2941. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  2942. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  2943. toktypes.append(gguf.TokenType.CONTROL)
  2944. else:
  2945. toktypes.append(gguf.TokenType.USER_DEFINED)
  2946. else:
  2947. toktypes.append(gguf.TokenType.NORMAL)
  2948. tokens.append(token)
  2949. self.gguf_writer.add_tokenizer_model("gpt2")
  2950. self.gguf_writer.add_tokenizer_pre(tokpre)
  2951. self.gguf_writer.add_token_list(tokens)
  2952. self.gguf_writer.add_token_types(toktypes)
  2953. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2954. special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
  2955. additional_special_tokens = []
  2956. if special_tokens_map_file.is_file():
  2957. with open(special_tokens_map_file, encoding = 'utf-8') as f:
  2958. additional_special_tokens = json.load(f).get('additional_special_tokens', [])
  2959. tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
  2960. if tokenizer_cfg_file.is_file():
  2961. with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
  2962. added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
  2963. token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
  2964. for token in additional_special_tokens:
  2965. if token in token2ids_map:
  2966. special_vocab._set_special_token(token, token2ids_map[token])
  2967. special_vocab._set_special_token('eos', 151645)
  2968. special_vocab._set_special_token("bos", 151643)
  2969. special_vocab.add_to_gguf(self.gguf_writer)
  2970. @ModelBase.register("GPT2LMHeadModel")
  2971. class GPT2Model(TextModel):
  2972. model_arch = gguf.MODEL_ARCH.GPT2
  2973. def set_gguf_parameters(self):
  2974. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2975. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2976. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2977. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2978. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2979. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2980. self.gguf_writer.add_file_type(self.ftype)
  2981. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2982. del bid # unused
  2983. tensors: list[tuple[str, Tensor]] = []
  2984. # we don't need these
  2985. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2986. return tensors
  2987. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2988. data_torch = data_torch.transpose(1, 0)
  2989. new_name = self.map_tensor_name(name)
  2990. tensors.append((new_name, data_torch))
  2991. return tensors
  2992. @ModelBase.register("PhiForCausalLM")
  2993. class Phi2Model(TextModel):
  2994. model_arch = gguf.MODEL_ARCH.PHI2
  2995. def set_gguf_parameters(self):
  2996. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2997. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2998. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2999. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3000. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3001. self.gguf_writer.add_embedding_length(n_embd)
  3002. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3003. self.gguf_writer.add_block_count(block_count)
  3004. self.gguf_writer.add_head_count(n_head)
  3005. self.gguf_writer.add_head_count_kv(n_head)
  3006. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3007. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3008. self.gguf_writer.add_file_type(self.ftype)
  3009. self.gguf_writer.add_add_bos_token(False)
  3010. @ModelBase.register("Phi3ForCausalLM")
  3011. class Phi3MiniModel(TextModel):
  3012. model_arch = gguf.MODEL_ARCH.PHI3
  3013. def set_vocab(self):
  3014. # Phi-4 model uses GPT2Tokenizer
  3015. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3016. if tokenizer_config_file.is_file():
  3017. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3018. tokenizer_config_json = json.load(f)
  3019. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3020. if tokenizer_class == 'GPT2Tokenizer':
  3021. return self._set_vocab_gpt2()
  3022. from sentencepiece import SentencePieceProcessor
  3023. tokenizer_path = self.dir_model / 'tokenizer.model'
  3024. if not tokenizer_path.is_file():
  3025. raise ValueError(f'Error: Missing {tokenizer_path}')
  3026. tokenizer = SentencePieceProcessor()
  3027. tokenizer.LoadFromFile(str(tokenizer_path))
  3028. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3029. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3030. scores: list[float] = [-10000.0] * vocab_size
  3031. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3032. for token_id in range(tokenizer.vocab_size()):
  3033. piece = tokenizer.IdToPiece(token_id)
  3034. text = piece.encode("utf-8")
  3035. score = tokenizer.GetScore(token_id)
  3036. toktype = SentencePieceTokenTypes.NORMAL
  3037. if tokenizer.IsUnknown(token_id):
  3038. toktype = SentencePieceTokenTypes.UNKNOWN
  3039. elif tokenizer.IsControl(token_id):
  3040. toktype = SentencePieceTokenTypes.CONTROL
  3041. elif tokenizer.IsUnused(token_id):
  3042. toktype = SentencePieceTokenTypes.UNUSED
  3043. elif tokenizer.IsByte(token_id):
  3044. toktype = SentencePieceTokenTypes.BYTE
  3045. tokens[token_id] = text
  3046. scores[token_id] = score
  3047. toktypes[token_id] = toktype
  3048. added_tokens_file = self.dir_model / 'added_tokens.json'
  3049. if added_tokens_file.is_file():
  3050. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3051. added_tokens_json = json.load(f)
  3052. for key in added_tokens_json:
  3053. token_id = added_tokens_json[key]
  3054. if token_id >= vocab_size:
  3055. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3056. continue
  3057. tokens[token_id] = key.encode("utf-8")
  3058. scores[token_id] = -1000.0
  3059. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3060. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3061. if tokenizer_config_file.is_file():
  3062. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3063. tokenizer_config_json = json.load(f)
  3064. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3065. for token_id, foken_data in added_tokens_decoder.items():
  3066. token_id = int(token_id)
  3067. token = foken_data["content"].encode("utf-8")
  3068. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3069. if tokens[token_id] != token:
  3070. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3071. tokens[token_id] = token
  3072. scores[token_id] = -1000.0
  3073. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3074. if foken_data.get("special"):
  3075. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3076. tokenizer_file = self.dir_model / 'tokenizer.json'
  3077. if tokenizer_file.is_file():
  3078. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3079. tokenizer_json = json.load(f)
  3080. added_tokens = tokenizer_json.get("added_tokens", [])
  3081. for foken_data in added_tokens:
  3082. token_id = int(foken_data["id"])
  3083. token = foken_data["content"].encode("utf-8")
  3084. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3085. if tokens[token_id] != token:
  3086. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3087. tokens[token_id] = token
  3088. scores[token_id] = -1000.0
  3089. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3090. if foken_data.get("special"):
  3091. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3092. self.gguf_writer.add_tokenizer_model("llama")
  3093. self.gguf_writer.add_tokenizer_pre("default")
  3094. self.gguf_writer.add_token_list(tokens)
  3095. self.gguf_writer.add_token_scores(scores)
  3096. self.gguf_writer.add_token_types(toktypes)
  3097. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3098. special_vocab.add_to_gguf(self.gguf_writer)
  3099. def set_gguf_parameters(self):
  3100. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3101. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3102. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3103. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3104. rms_eps = self.find_hparam(["rms_norm_eps"])
  3105. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3106. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3107. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3108. rope_dims = int(rot_pct * n_embd) // n_head
  3109. self.gguf_writer.add_context_length(max_pos_embds)
  3110. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3111. self.gguf_writer.add_embedding_length(n_embd)
  3112. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3113. self.gguf_writer.add_block_count(block_count)
  3114. self.gguf_writer.add_head_count(n_head)
  3115. self.gguf_writer.add_head_count_kv(n_head_kv)
  3116. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3117. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3118. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3119. self.gguf_writer.add_file_type(self.ftype)
  3120. sliding_window = self.hparams.get("sliding_window")
  3121. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3122. if sliding_window is None:
  3123. sliding_window = 0
  3124. self.gguf_writer.add_sliding_window(sliding_window)
  3125. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3126. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3127. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3128. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3129. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3130. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3131. rope_dims = int(rot_pct * n_embd) // n_head
  3132. # write rope scaling for long context (128k) model
  3133. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3134. if rope_scaling is None:
  3135. return
  3136. scale = max_pos_embds / orig_max_pos_embds
  3137. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3138. if len(rope_scaling_type) == 0:
  3139. raise KeyError('Missing the required key rope_scaling.type')
  3140. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3141. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3142. elif rope_scaling_type == 'yarn':
  3143. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3144. else:
  3145. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3146. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3147. long_factors = rope_scaling.get('long_factor', None)
  3148. short_factors = rope_scaling.get('short_factor', None)
  3149. if long_factors is None or short_factors is None:
  3150. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3151. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3152. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3153. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3154. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3155. @ModelBase.register("PhiMoEForCausalLM")
  3156. class PhiMoeModel(Phi3MiniModel):
  3157. model_arch = gguf.MODEL_ARCH.PHIMOE
  3158. _experts: list[dict[str, Tensor]] | None = None
  3159. def set_gguf_parameters(self):
  3160. super().set_gguf_parameters()
  3161. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3162. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3163. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3164. # process the experts separately
  3165. if name.find("block_sparse_moe.experts") != -1:
  3166. n_experts = self.hparams["num_local_experts"]
  3167. assert bid is not None
  3168. if self._experts is None:
  3169. self._experts = [{} for _ in range(self.block_count)]
  3170. self._experts[bid][name] = data_torch
  3171. if len(self._experts[bid]) >= n_experts * 3:
  3172. tensors: list[tuple[str, Tensor]] = []
  3173. # merge the experts into a single 3d tensor
  3174. for w_name in ["w1", "w2", "w3"]:
  3175. datas: list[Tensor] = []
  3176. for xid in range(n_experts):
  3177. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3178. datas.append(self._experts[bid][ename])
  3179. del self._experts[bid][ename]
  3180. data_torch = torch.stack(datas, dim=0)
  3181. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3182. new_name = self.map_tensor_name(merged_name)
  3183. tensors.append((new_name, data_torch))
  3184. return tensors
  3185. else:
  3186. return []
  3187. return [(self.map_tensor_name(name), data_torch)]
  3188. def prepare_tensors(self):
  3189. super().prepare_tensors()
  3190. if self._experts is not None:
  3191. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3192. experts = [k for d in self._experts for k in d.keys()]
  3193. if len(experts) > 0:
  3194. raise ValueError(f"Unprocessed experts: {experts}")
  3195. @ModelBase.register("PlamoForCausalLM")
  3196. class PlamoModel(TextModel):
  3197. model_arch = gguf.MODEL_ARCH.PLAMO
  3198. def set_vocab(self):
  3199. self._set_vocab_sentencepiece()
  3200. def set_gguf_parameters(self):
  3201. hparams = self.hparams
  3202. block_count = hparams["num_hidden_layers"]
  3203. self.gguf_writer.add_context_length(4096) # not in config.json
  3204. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3205. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3206. self.gguf_writer.add_block_count(block_count)
  3207. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3208. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3209. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3210. self.gguf_writer.add_file_type(self.ftype)
  3211. def shuffle_attn_q_weight(self, data_torch):
  3212. assert data_torch.size() == (5120, 5120)
  3213. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3214. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3215. data_torch = torch.reshape(data_torch, (5120, 5120))
  3216. return data_torch
  3217. def shuffle_attn_output_weight(self, data_torch):
  3218. assert data_torch.size() == (5120, 5120)
  3219. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3220. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3221. data_torch = torch.reshape(data_torch, (5120, 5120))
  3222. return data_torch
  3223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3224. del bid # unused
  3225. new_name = self.map_tensor_name(name)
  3226. # shuffle for broadcasting of gqa in ggml_mul_mat
  3227. if new_name.endswith("attn_q.weight"):
  3228. data_torch = self.shuffle_attn_q_weight(data_torch)
  3229. elif new_name.endswith("attn_output.weight"):
  3230. data_torch = self.shuffle_attn_output_weight(data_torch)
  3231. return [(new_name, data_torch)]
  3232. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3233. class Plamo2Model(TextModel):
  3234. model_arch = gguf.MODEL_ARCH.PLAMO2
  3235. def set_vocab(self):
  3236. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3237. # We need to handle this specially
  3238. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3239. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3240. if not tokenizer_jsonl_path.is_file():
  3241. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3242. # Load tokenizer config
  3243. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3244. tokenizer_config = json.load(f)
  3245. # Load tokens from JSONL file (actually a list format)
  3246. tokens = []
  3247. scores = []
  3248. toktypes = []
  3249. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3250. for line_num, line in enumerate(f):
  3251. if line.strip():
  3252. token_data = json.loads(line)
  3253. # Format: [token, score, type, ?, ?, ?, ?]
  3254. token = token_data[0].encode("utf-8")
  3255. score = float(token_data[1])
  3256. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3257. tokens.append(token)
  3258. scores.append(score)
  3259. # Map token type strings to GGUF token types
  3260. if token_type_str == "UNKNOWN":
  3261. toktypes.append(gguf.TokenType.UNKNOWN)
  3262. elif token_type_str == "CONTROL":
  3263. toktypes.append(gguf.TokenType.CONTROL)
  3264. elif token_type_str == "BYTE":
  3265. toktypes.append(gguf.TokenType.BYTE)
  3266. else:
  3267. # Check for PLaMo-2 special tokens
  3268. token_str = token_data[0]
  3269. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3270. toktypes.append(gguf.TokenType.CONTROL)
  3271. else:
  3272. toktypes.append(gguf.TokenType.NORMAL)
  3273. vocab_size = self.hparams["vocab_size"]
  3274. if vocab_size > len(tokens):
  3275. pad_count = vocab_size - len(tokens)
  3276. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3277. for i in range(1, pad_count + 1):
  3278. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3279. scores.append(-1000.0)
  3280. toktypes.append(gguf.TokenType.UNUSED)
  3281. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3282. self.gguf_writer.add_tokenizer_model("plamo2")
  3283. self.gguf_writer.add_tokenizer_pre("default")
  3284. self.gguf_writer.add_token_list(tokens)
  3285. self.gguf_writer.add_token_scores(scores)
  3286. self.gguf_writer.add_token_types(toktypes)
  3287. # Add special tokens from config
  3288. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3289. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3290. self.gguf_writer.add_bos_token_id(token_id)
  3291. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3292. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3293. self.gguf_writer.add_eos_token_id(token_id)
  3294. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3295. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3296. self.gguf_writer.add_pad_token_id(token_id)
  3297. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3298. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3299. self.gguf_writer.add_sep_token_id(token_id)
  3300. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3301. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3302. self.gguf_writer.add_unk_token_id(token_id)
  3303. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3304. self.gguf_writer.add_eot_token_id(4)
  3305. self.gguf_writer.add_add_space_prefix(False)
  3306. def set_gguf_parameters(self):
  3307. hparams = self.hparams
  3308. block_count = hparams["num_hidden_layers"]
  3309. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3310. # Which layers are Mamba layers
  3311. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3312. # This logic matches modeling_plamo.py's is_mamba function
  3313. mamba_step = hparams.get("mamba_step", 2)
  3314. mamba_enabled = hparams.get("mamba_enabled", True)
  3315. mamba_layers = []
  3316. if mamba_enabled:
  3317. for i in range(block_count):
  3318. if block_count <= (mamba_step // 2):
  3319. # use attention in last layer
  3320. is_mamba = (i != block_count - 1)
  3321. else:
  3322. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3323. if is_mamba:
  3324. mamba_layers.append(0)
  3325. else:
  3326. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3327. if mamba_layers:
  3328. self.gguf_writer.add_head_count_kv(mamba_layers)
  3329. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3330. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3331. self.gguf_writer.add_block_count(block_count)
  3332. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3333. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3334. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3335. # Mamba parameters
  3336. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3337. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3338. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3339. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3340. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3341. self.gguf_writer.add_ssm_group_count(0)
  3342. # MLP feed forward parameters (for attention layers)
  3343. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3344. self.gguf_writer.add_file_type(self.ftype)
  3345. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3346. del bid # unused
  3347. if name.endswith(".A_log"):
  3348. data_torch = -torch.exp(data_torch)
  3349. elif name.endswith(".dt_bias"):
  3350. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3351. elif name.endswith(".dt_norm_weight"):
  3352. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3353. elif name.endswith(".B_norm_weight"):
  3354. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3355. elif name.endswith(".C_norm_weight"):
  3356. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3357. elif name.endswith(".k_weight"):
  3358. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3359. elif name.endswith(".q_weight"):
  3360. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3361. elif name.endswith(".conv1d.weight"):
  3362. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3363. assert data_torch.ndim == 2
  3364. elif name.endswith(".pre_mixer_norm.weight"):
  3365. data_torch += 1.0
  3366. elif name.endswith(".post_mixer_norm.weight"):
  3367. data_torch += 1.0 / 5
  3368. elif name.endswith(".pre_mlp_norm.weight"):
  3369. data_torch += 1.0
  3370. elif name.endswith(".post_mlp_norm.weight"):
  3371. data_torch += 1.0 / (5**1.5)
  3372. elif name.endswith(".norm.weight"):
  3373. data_torch += 1.0
  3374. new_name = self.map_tensor_name(name)
  3375. return [(new_name, data_torch)]
  3376. @ModelBase.register("CodeShellForCausalLM")
  3377. class CodeShellModel(TextModel):
  3378. model_arch = gguf.MODEL_ARCH.CODESHELL
  3379. def set_gguf_parameters(self):
  3380. block_count = self.hparams["n_layer"]
  3381. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3382. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3383. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3384. self.gguf_writer.add_block_count(block_count)
  3385. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3386. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3387. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3388. self.gguf_writer.add_file_type(self.ftype)
  3389. self.gguf_writer.add_rope_freq_base(10000.0)
  3390. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3391. self.gguf_writer.add_rope_scaling_factor(1.0)
  3392. _has_tok_embd = False
  3393. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3394. del bid # unused
  3395. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3396. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3397. new_name = self.map_tensor_name(name)
  3398. # assuming token_embd.weight is seen before output.weight
  3399. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3400. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3401. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3402. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3403. self.tensor_names.remove("transformer.wte.weight")
  3404. elif new_name == tok_embd_name:
  3405. self._has_tok_embd = True
  3406. return [(new_name, data_torch)]
  3407. @ModelBase.register("InternLM2ForCausalLM")
  3408. class InternLM2Model(TextModel):
  3409. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3410. def set_vocab(self):
  3411. # (TODO): Is there a better way?
  3412. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3413. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3414. # recognized as an empty string in C++.
  3415. from sentencepiece import SentencePieceProcessor
  3416. from sentencepiece import sentencepiece_model_pb2 as model
  3417. tokenizer_path = self.dir_model / 'tokenizer.model'
  3418. tokens: list[bytes] = []
  3419. scores: list[float] = []
  3420. toktypes: list[int] = []
  3421. if not tokenizer_path.is_file():
  3422. logger.error(f'Error: Missing {tokenizer_path}')
  3423. sys.exit(1)
  3424. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3425. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3426. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3427. tokenizer = SentencePieceProcessor()
  3428. tokenizer.LoadFromFile(str(tokenizer_path))
  3429. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3430. for token_id in range(vocab_size):
  3431. piece = tokenizer.IdToPiece(token_id)
  3432. text = piece.encode("utf-8")
  3433. score = tokenizer.GetScore(token_id)
  3434. if text == b"\x00":
  3435. # (TODO): fixme
  3436. # Hack here and replace the \x00 characters.
  3437. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3438. text = "🐉".encode("utf-8")
  3439. toktype = SentencePieceTokenTypes.NORMAL
  3440. if tokenizer.IsUnknown(token_id):
  3441. toktype = SentencePieceTokenTypes.UNKNOWN
  3442. elif tokenizer.IsControl(token_id):
  3443. toktype = SentencePieceTokenTypes.CONTROL
  3444. elif tokenizer.IsUnused(token_id):
  3445. toktype = SentencePieceTokenTypes.UNUSED
  3446. elif tokenizer.IsByte(token_id):
  3447. toktype = SentencePieceTokenTypes.BYTE
  3448. # take care of ununsed raw token
  3449. if piece.startswith('[UNUSED'):
  3450. toktype = SentencePieceTokenTypes.UNUSED
  3451. tokens.append(text)
  3452. scores.append(score)
  3453. toktypes.append(toktype)
  3454. added_tokens_file = self.dir_model / 'added_tokens.json'
  3455. if added_tokens_file.is_file():
  3456. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3457. added_tokens_json = json.load(f)
  3458. for key in added_tokens_json:
  3459. tokens.append(key.encode("utf-8"))
  3460. scores.append(-1000.0)
  3461. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3462. chat_eos_token = '<|im_end|>'
  3463. chat_eos_token_id = None
  3464. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3465. if tokenizer_config_file.is_file():
  3466. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3467. tokenizer_config_json = json.load(f)
  3468. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3469. for token_id, foken_data in added_tokens_decoder.items():
  3470. token_id = int(token_id)
  3471. token = foken_data["content"]
  3472. if token == chat_eos_token:
  3473. chat_eos_token_id = token_id
  3474. token = token.encode("utf-8")
  3475. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3476. if tokens[token_id] != token:
  3477. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3478. tokens[token_id] = token
  3479. scores[token_id] = -1000.0
  3480. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3481. if foken_data.get("special"):
  3482. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3483. tokenizer_file = self.dir_model / 'tokenizer.json'
  3484. if tokenizer_file.is_file():
  3485. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3486. tokenizer_json = json.load(f)
  3487. added_tokens = tokenizer_json.get("added_tokens", [])
  3488. for foken_data in added_tokens:
  3489. token_id = int(foken_data["id"])
  3490. token = foken_data["content"]
  3491. if token == chat_eos_token:
  3492. chat_eos_token_id = token_id
  3493. token = token.encode("utf-8")
  3494. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3495. if tokens[token_id] != token:
  3496. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3497. tokens[token_id] = token
  3498. scores[token_id] = -1000.0
  3499. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3500. if foken_data.get("special"):
  3501. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3502. self.gguf_writer.add_tokenizer_model("llama")
  3503. self.gguf_writer.add_tokenizer_pre("default")
  3504. self.gguf_writer.add_token_list(tokens)
  3505. self.gguf_writer.add_token_scores(scores)
  3506. self.gguf_writer.add_token_types(toktypes)
  3507. self.gguf_writer.add_add_space_prefix(add_prefix)
  3508. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3509. old_eos = special_vocab.special_token_ids["eos"]
  3510. if chat_eos_token_id is not None:
  3511. # For the chat model, we replace the eos with '<|im_end|>'.
  3512. # TODO: this is a hack, should be fixed
  3513. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3514. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3515. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3516. " in chat mode so that the conversation can end normally.")
  3517. special_vocab.add_to_gguf(self.gguf_writer)
  3518. def set_gguf_parameters(self):
  3519. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3520. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3521. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3522. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3523. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3524. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3525. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3526. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3527. self.gguf_writer.add_file_type(self.ftype)
  3528. rope_scaling = self.hparams.get("rope_scaling") or {}
  3529. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3530. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3531. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3533. num_heads = self.hparams["num_attention_heads"]
  3534. num_kv_heads = self.hparams["num_key_value_heads"]
  3535. n_embd = self.hparams["hidden_size"]
  3536. q_per_kv = num_heads // num_kv_heads
  3537. head_dim = n_embd // num_heads
  3538. num_groups = num_heads // q_per_kv
  3539. name = name.replace("language_model.", "") # InternVL
  3540. if name.startswith("mlp") or name.startswith("vision_model"):
  3541. # skip visual tensors
  3542. return []
  3543. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3544. qkv = data_torch
  3545. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3546. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3547. # The model weights of q and k equire additional reshape.
  3548. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3549. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3550. v = v.reshape((-1, v.shape[-1]))
  3551. return [
  3552. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3553. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3554. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3555. ]
  3556. else:
  3557. return [(self.map_tensor_name(name), data_torch)]
  3558. @ModelBase.register("InternLM3ForCausalLM")
  3559. class InternLM3Model(TextModel):
  3560. model_arch = gguf.MODEL_ARCH.LLAMA
  3561. def set_vocab(self):
  3562. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3563. self.gguf_writer.add_tokenizer_model("llama")
  3564. self.gguf_writer.add_tokenizer_pre("default")
  3565. self.gguf_writer.add_token_list(tokens)
  3566. self.gguf_writer.add_token_scores(scores)
  3567. self.gguf_writer.add_token_types(toktypes)
  3568. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3569. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3570. if tokenizer_config_file.is_file():
  3571. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3572. tokenizer_config_json = json.load(f)
  3573. if "add_prefix_space" in tokenizer_config_json:
  3574. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3575. if "added_tokens_decoder" in tokenizer_config_json:
  3576. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3577. if token_data.get("special"):
  3578. token_id = int(token_id)
  3579. token = token_data["content"]
  3580. special_vocab._set_special_token(token, token_id)
  3581. # update eos token
  3582. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3583. special_vocab.special_token_ids["eos"] = token_id
  3584. special_vocab.add_to_gguf(self.gguf_writer)
  3585. def set_gguf_parameters(self):
  3586. super().set_gguf_parameters()
  3587. hparams = self.hparams
  3588. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3589. if (rope_dim := hparams.get("head_dim")) is None:
  3590. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3591. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3592. rope_scaling = self.hparams.get("rope_scaling") or {}
  3593. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3594. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3595. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3597. n_head = self.hparams["num_attention_heads"]
  3598. n_kv_head = self.hparams.get("num_key_value_heads")
  3599. name = name.replace("language_model.", "") # InternVL
  3600. if name.startswith("mlp") or name.startswith("vision_model"):
  3601. # skip visual tensors
  3602. return []
  3603. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3604. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3605. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3606. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3607. return [(self.map_tensor_name(name), data_torch)]
  3608. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3609. class BertModel(TextModel):
  3610. model_arch = gguf.MODEL_ARCH.BERT
  3611. def __init__(self, *args, **kwargs):
  3612. super().__init__(*args, **kwargs)
  3613. self.vocab_size = None
  3614. if cls_out_labels := self.hparams.get("id2label"):
  3615. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3616. # Remove dummy labels added by AutoConfig
  3617. cls_out_labels = None
  3618. self.cls_out_labels = cls_out_labels
  3619. def set_gguf_parameters(self):
  3620. super().set_gguf_parameters()
  3621. self.gguf_writer.add_causal_attention(False)
  3622. self._try_set_pooling_type()
  3623. if self.cls_out_labels:
  3624. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3625. def set_vocab(self):
  3626. tokens, toktypes, tokpre = self.get_vocab_base()
  3627. self.vocab_size = len(tokens)
  3628. # we need this to validate the size of the token_type embeddings
  3629. # though currently we are passing all zeros to the token_type embeddings
  3630. # "Sequence A" or "Sequence B"
  3631. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3632. # convert to phantom space vocab
  3633. def phantom(tok):
  3634. if tok.startswith("[") and tok.endswith("]"):
  3635. return tok
  3636. if tok.startswith("##"):
  3637. return tok[2:]
  3638. return "\u2581" + tok
  3639. tokens = list(map(phantom, tokens))
  3640. # add vocab to gguf
  3641. self.gguf_writer.add_tokenizer_model("bert")
  3642. self.gguf_writer.add_tokenizer_pre(tokpre)
  3643. self.gguf_writer.add_token_list(tokens)
  3644. self.gguf_writer.add_token_types(toktypes)
  3645. # handle special tokens
  3646. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3647. special_vocab.add_to_gguf(self.gguf_writer)
  3648. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3649. del bid # unused
  3650. if name.startswith("bert."):
  3651. name = name[5:]
  3652. if name.endswith(".gamma"):
  3653. name = name[:-6] + ".weight"
  3654. if name.endswith(".beta"):
  3655. name = name[:-5] + ".bias"
  3656. # we are only using BERT for embeddings so we don't need the pooling layer
  3657. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3658. return [] # we don't need these
  3659. if name.startswith("cls.predictions"):
  3660. return []
  3661. if name.startswith("cls.seq_relationship"):
  3662. return []
  3663. if self.cls_out_labels:
  3664. # For BertForSequenceClassification (direct projection layer)
  3665. if name == "classifier.weight":
  3666. name = "classifier.out_proj.weight"
  3667. if name == "classifier.bias":
  3668. name = "classifier.out_proj.bias"
  3669. return [(self.map_tensor_name(name), data_torch)]
  3670. def _xlmroberta_tokenizer_init(self) -> None:
  3671. # we need the pad_token_id to know how to chop down position_embd matrix
  3672. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3673. self._position_offset = 1 + pad_token_id
  3674. if "max_position_embeddings" in self.hparams:
  3675. self.hparams["max_position_embeddings"] -= self._position_offset
  3676. else:
  3677. self._position_offset = None
  3678. def _xlmroberta_set_vocab(self) -> None:
  3679. # to avoid TypeError: Descriptors cannot be created directly
  3680. # exception when importing sentencepiece_model_pb2
  3681. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3682. from sentencepiece import SentencePieceProcessor
  3683. from sentencepiece import sentencepiece_model_pb2 as model
  3684. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3685. tokenizer_json = {}
  3686. tokenizer_config_json = {}
  3687. if not tokenizer_path.is_file():
  3688. tokenizer_path = self.dir_model / 'tokenizer.json'
  3689. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3690. if not tokenizer_path.is_file():
  3691. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3692. from base64 import b64decode
  3693. from transformers import AutoTokenizer
  3694. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3695. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3696. tokenizer_json = json.load(fp)
  3697. if tokenizer_config_path.is_file():
  3698. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3699. tokenizer_config_json = json.load(fp)
  3700. add_prefix = tokenizer.add_prefix_space
  3701. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3702. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3703. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3704. else:
  3705. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3706. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3707. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3708. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3709. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3710. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3711. tokenizer = SentencePieceProcessor()
  3712. tokenizer.LoadFromFile(str(tokenizer_path))
  3713. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3714. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3715. scores: list[float] = [-10000.0] * vocab_size
  3716. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3717. if isinstance(tokenizer, SentencePieceProcessor):
  3718. for token_id in range(tokenizer.vocab_size()):
  3719. piece = tokenizer.IdToPiece(token_id)
  3720. text = piece.encode("utf-8")
  3721. score = tokenizer.GetScore(token_id)
  3722. toktype = SentencePieceTokenTypes.NORMAL
  3723. if tokenizer.IsUnknown(token_id):
  3724. toktype = SentencePieceTokenTypes.UNKNOWN
  3725. elif tokenizer.IsControl(token_id):
  3726. toktype = SentencePieceTokenTypes.CONTROL
  3727. elif tokenizer.IsUnused(token_id):
  3728. toktype = SentencePieceTokenTypes.UNUSED
  3729. elif tokenizer.IsByte(token_id):
  3730. toktype = SentencePieceTokenTypes.BYTE
  3731. tokens[token_id] = text
  3732. scores[token_id] = score
  3733. toktypes[token_id] = toktype
  3734. else:
  3735. added_vocab = tokenizer.get_added_vocab()
  3736. unk_token = tokenizer_config_json.get("unk_token")
  3737. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3738. for token_id in range(tokenizer.vocab_size):
  3739. piece = tokenizer._convert_id_to_token(token_id)
  3740. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3741. text = piece.encode("utf-8")
  3742. score = tokenizer_json["model"]["vocab"][token_id][1]
  3743. toktype = SentencePieceTokenTypes.NORMAL
  3744. if token_id == unk_token_id:
  3745. toktype = SentencePieceTokenTypes.UNKNOWN
  3746. elif token_id in tokenizer.all_special_ids:
  3747. toktype = SentencePieceTokenTypes.CONTROL
  3748. elif token_id in added_vocab.values():
  3749. toktype = SentencePieceTokenTypes.USER_DEFINED
  3750. # No reliable way to detect this, but jina doesn't have any
  3751. # elif tokenizer.IsByte(token_id):
  3752. # toktype = SentencePieceTokenTypes.BYTE
  3753. tokens[token_id] = text
  3754. scores[token_id] = score
  3755. toktypes[token_id] = toktype
  3756. if isinstance(tokenizer, SentencePieceProcessor):
  3757. # realign tokens (see HF tokenizer code)
  3758. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3759. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3760. toktypes = [
  3761. SentencePieceTokenTypes.CONTROL,
  3762. SentencePieceTokenTypes.CONTROL,
  3763. SentencePieceTokenTypes.CONTROL,
  3764. SentencePieceTokenTypes.UNKNOWN,
  3765. ] + toktypes[3:-1]
  3766. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3767. # Add mask token missing from sentencepiece.bpe.model
  3768. tokens[250001] = b'<mask>'
  3769. scores[250001] = 0.0
  3770. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3771. self.gguf_writer.add_tokenizer_model("t5")
  3772. self.gguf_writer.add_tokenizer_pre("default")
  3773. self.gguf_writer.add_token_list(tokens)
  3774. self.gguf_writer.add_token_scores(scores)
  3775. self.gguf_writer.add_token_types(toktypes)
  3776. self.gguf_writer.add_add_space_prefix(add_prefix)
  3777. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3778. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3779. if precompiled_charsmap:
  3780. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3781. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3782. special_vocab.add_to_gguf(self.gguf_writer)
  3783. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3784. class DistilBertModel(BertModel):
  3785. model_arch = gguf.MODEL_ARCH.BERT
  3786. def set_gguf_parameters(self):
  3787. self.gguf_writer.add_layer_norm_eps(1e-12)
  3788. logger.info("gguf: layer norm epsilon = 1e-12")
  3789. super().set_gguf_parameters()
  3790. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3791. if name.startswith("distilbert."):
  3792. name = name[11:]
  3793. # These layers act as MLM head, so we don't need them
  3794. if name.startswith("vocab_"):
  3795. return []
  3796. return super().modify_tensors(data_torch, name, bid)
  3797. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3798. class RobertaModel(BertModel):
  3799. model_arch = gguf.MODEL_ARCH.BERT
  3800. def __init__(self, *args, **kwargs):
  3801. super().__init__(*args, **kwargs)
  3802. # we need the pad_token_id to know how to chop down position_embd matrix
  3803. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3804. self._position_offset = 1 + pad_token_id
  3805. if "max_position_embeddings" in self.hparams:
  3806. self.hparams["max_position_embeddings"] -= self._position_offset
  3807. else:
  3808. self._position_offset = None
  3809. def set_vocab(self):
  3810. """Support BPE tokenizers for roberta models"""
  3811. bpe_tok_path = self.dir_model / "tokenizer.json"
  3812. if bpe_tok_path.exists():
  3813. self._set_vocab_gpt2()
  3814. # we need this to validate the size of the token_type embeddings
  3815. # though currently we are passing all zeros to the token_type embeddings
  3816. # "Sequence A" or "Sequence B"
  3817. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3818. else:
  3819. return super().set_vocab()
  3820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3821. # if name starts with "roberta.", remove the prefix
  3822. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3823. if name.startswith("roberta."):
  3824. name = name[8:]
  3825. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3826. if name == "embeddings.position_embeddings.weight":
  3827. if self._position_offset is not None:
  3828. data_torch = data_torch[self._position_offset:,:]
  3829. return super().modify_tensors(data_torch, name, bid)
  3830. @ModelBase.register("NomicBertModel")
  3831. class NomicBertModel(BertModel):
  3832. model_arch = gguf.MODEL_ARCH.BERT
  3833. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3834. hparams = kwargs.pop("hparams", None)
  3835. if hparams is None:
  3836. hparams = ModelBase.load_hparams(dir_model)
  3837. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3838. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3839. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3840. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3841. if self._tokenizer_is_xlmroberta:
  3842. self._xlmroberta_tokenizer_init()
  3843. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3844. if npos == 8192 and mtp == 2048:
  3845. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3846. elif npos == 2048 and mtp == 2048:
  3847. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3848. else:
  3849. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3850. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3851. # this doesn't do anything in the HF version
  3852. assert self.hparams["causal"] is False
  3853. # no bias tensors unless MoE
  3854. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3855. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3856. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3857. # norm at end of layer
  3858. assert self.hparams["prenorm"] is False
  3859. # standard RoPE
  3860. assert self.hparams["rotary_emb_fraction"] == 1.0
  3861. assert self.hparams["rotary_emb_interleaved"] is False
  3862. assert self.hparams["rotary_emb_scale_base"] is None
  3863. def set_vocab(self) -> None:
  3864. if self._tokenizer_is_xlmroberta:
  3865. return self._xlmroberta_set_vocab()
  3866. return super().set_vocab()
  3867. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3868. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3869. if "mlp.experts.bias" in name:
  3870. return [] # Explicitly return an empty list.
  3871. if "mlp.experts.mlp.w1" in name:
  3872. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3873. name += ".weight"
  3874. if "mlp.experts.mlp.w2" in name:
  3875. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3876. data_torch = data_torch.transpose(1, 2)
  3877. name += ".weight"
  3878. return [(self.map_tensor_name(name), data_torch)]
  3879. def set_gguf_parameters(self):
  3880. super().set_gguf_parameters()
  3881. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3882. if self.is_moe:
  3883. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3884. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3885. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3886. def _is_tokenizer_xlmroberta(self) -> bool:
  3887. with open(self.dir_model / "tokenizer.json") as f:
  3888. tokenizer_json = json.load(f)
  3889. toktyp = tokenizer_json["model"]["type"]
  3890. if toktyp == "Unigram":
  3891. return True
  3892. if toktyp == "WordPiece":
  3893. return False
  3894. raise ValueError(f"unknown tokenizer: {toktyp}")
  3895. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3896. class NeoBert(BertModel):
  3897. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3898. def set_gguf_parameters(self):
  3899. super().set_gguf_parameters()
  3900. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3901. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3902. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3903. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3904. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3905. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3906. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3907. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3908. def modify_tensors(self, data_torch, name, bid):
  3909. if name.startswith("decoder."):
  3910. return []
  3911. if name.startswith("model."):
  3912. name = name[6:]
  3913. return super().modify_tensors(data_torch, name, bid)
  3914. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3915. class XLMRobertaModel(BertModel):
  3916. model_arch = gguf.MODEL_ARCH.BERT
  3917. def __init__(self, *args, **kwargs):
  3918. super().__init__(*args, **kwargs)
  3919. self._xlmroberta_tokenizer_init()
  3920. def set_vocab(self):
  3921. self._xlmroberta_set_vocab()
  3922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3923. # if name starts with "roberta.", remove the prefix
  3924. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3925. if name.startswith("roberta."):
  3926. name = name[8:]
  3927. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3928. if name == "embeddings.position_embeddings.weight":
  3929. if self._position_offset is not None:
  3930. data_torch = data_torch[self._position_offset:,:]
  3931. return super().modify_tensors(data_torch, name, bid)
  3932. @ModelBase.register("GemmaForCausalLM")
  3933. class GemmaModel(TextModel):
  3934. model_arch = gguf.MODEL_ARCH.GEMMA
  3935. def set_vocab(self):
  3936. self._set_vocab_sentencepiece()
  3937. # TODO: these special tokens should be exported only for the CodeGemma family
  3938. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3939. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3940. special_vocab._set_special_token("prefix", 67)
  3941. special_vocab._set_special_token("suffix", 69)
  3942. special_vocab._set_special_token("middle", 68)
  3943. special_vocab._set_special_token("fsep", 70)
  3944. special_vocab._set_special_token("eot", 107)
  3945. special_vocab.chat_template = None # do not add it twice
  3946. special_vocab.add_to_gguf(self.gguf_writer)
  3947. self.gguf_writer.add_add_space_prefix(False)
  3948. def set_gguf_parameters(self):
  3949. hparams = self.hparams
  3950. block_count = hparams["num_hidden_layers"]
  3951. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3952. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3953. self.gguf_writer.add_block_count(block_count)
  3954. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3955. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3956. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3957. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3958. self.gguf_writer.add_key_length(hparams["head_dim"])
  3959. self.gguf_writer.add_value_length(hparams["head_dim"])
  3960. self.gguf_writer.add_file_type(self.ftype)
  3961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3962. del bid # unused
  3963. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3964. # To prevent errors, skip loading lm_head.weight.
  3965. if name == "lm_head.weight":
  3966. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3967. return []
  3968. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3969. if name.endswith("norm.weight"):
  3970. data_torch = data_torch + 1
  3971. return [(self.map_tensor_name(name), data_torch)]
  3972. @ModelBase.register("Gemma2ForCausalLM")
  3973. class Gemma2Model(TextModel):
  3974. model_arch = gguf.MODEL_ARCH.GEMMA2
  3975. def set_vocab(self):
  3976. self._set_vocab_sentencepiece()
  3977. self.gguf_writer.add_add_space_prefix(False)
  3978. def set_gguf_parameters(self):
  3979. hparams = self.hparams
  3980. block_count = hparams["num_hidden_layers"]
  3981. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3982. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3983. self.gguf_writer.add_block_count(block_count)
  3984. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3985. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3986. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3987. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3988. self.gguf_writer.add_key_length(hparams["head_dim"])
  3989. self.gguf_writer.add_value_length(hparams["head_dim"])
  3990. self.gguf_writer.add_file_type(self.ftype)
  3991. self.gguf_writer.add_attn_logit_softcapping(
  3992. self.hparams["attn_logit_softcapping"]
  3993. )
  3994. self.gguf_writer.add_final_logit_softcapping(
  3995. self.hparams["final_logit_softcapping"]
  3996. )
  3997. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3999. del bid # unused
  4000. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4001. # To prevent errors, skip loading lm_head.weight.
  4002. if name == "lm_head.weight":
  4003. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4004. return []
  4005. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4006. if name.endswith("norm.weight"):
  4007. data_torch = data_torch + 1
  4008. return [(self.map_tensor_name(name), data_torch)]
  4009. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4010. class Gemma3Model(TextModel):
  4011. model_arch = gguf.MODEL_ARCH.GEMMA3
  4012. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4013. def set_vocab(self):
  4014. self._set_vocab_sentencepiece()
  4015. self.gguf_writer.add_add_space_prefix(False)
  4016. def set_gguf_parameters(self):
  4017. hparams = self.hparams
  4018. block_count = hparams["num_hidden_layers"]
  4019. # some default values are not specified in the hparams
  4020. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4021. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4022. self.gguf_writer.add_block_count(block_count)
  4023. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4024. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4025. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4026. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4027. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4028. self.gguf_writer.add_file_type(self.ftype)
  4029. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4030. # attn_logit_softcapping is removed in Gemma3
  4031. assert hparams.get("attn_logit_softcapping") is None
  4032. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4033. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4034. if hparams.get("rope_scaling") is not None:
  4035. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4036. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4037. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4038. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4039. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4040. del bid # unused
  4041. if "language_model." in name:
  4042. name = name.replace("language_model.", "")
  4043. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4044. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4045. return [] # skip vision tensors
  4046. # remove OOV (out-of-vocabulary) rows in token_embd
  4047. if "embed_tokens.weight" in name:
  4048. vocab = self._create_vocab_sentencepiece()
  4049. tokens = vocab[0]
  4050. data_torch = data_torch[:len(tokens)]
  4051. # ref code in Gemma3RMSNorm
  4052. # output = output * (1.0 + self.weight.float())
  4053. # note: this is not the case on gemma3n
  4054. if name.endswith("norm.weight"):
  4055. data_torch = data_torch + self.norm_shift
  4056. return [(self.map_tensor_name(name), data_torch)]
  4057. @ModelBase.register("Gemma3ForConditionalGeneration")
  4058. class Gemma3VisionModel(MmprojModel):
  4059. def set_gguf_parameters(self):
  4060. super().set_gguf_parameters()
  4061. hparams = self.hparams
  4062. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4063. # default values below are taken from HF tranformers code
  4064. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4065. self.gguf_writer.add_vision_use_gelu(True)
  4066. # calculate proj_scale_factor (used by tinygemma3 test model)
  4067. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4068. n_per_side = int(image_seq_length ** 0.5)
  4069. image_size = self.hparams["image_size"]
  4070. patch_size = self.hparams["patch_size"]
  4071. proj_scale_factor = (image_size // patch_size) // n_per_side
  4072. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4073. # we only need to write this if it's not the default value
  4074. # in this case, we are converting a test model
  4075. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4076. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4077. del bid, new_name, n_dims # unused
  4078. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4079. if "input_projection" in name:
  4080. return gguf.GGMLQuantizationType.F16
  4081. if ".embeddings." in name:
  4082. return gguf.GGMLQuantizationType.F32
  4083. return False
  4084. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4085. del bid # unused
  4086. if "vision_model.head." in name:
  4087. return [] # skip redundant tensors for tinygemma3
  4088. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4089. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4090. # process vision tensors
  4091. name = name.replace("_weight", ".weight")
  4092. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4093. # the other norm values are part of SigLIP model, and they are already correct
  4094. # ref code: Gemma3RMSNorm
  4095. if "soft_emb_norm.weight" in name:
  4096. logger.info(f"Correcting norm value for '{name}'")
  4097. data_torch = data_torch + 1
  4098. return [(self.map_tensor_name(name), data_torch)]
  4099. return [] # skip other tensors
  4100. @ModelBase.register("Gemma3nForConditionalGeneration")
  4101. class Gemma3NModel(Gemma3Model):
  4102. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4103. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4104. _altup_proj: list[Tensor] = []
  4105. _altup_unembd: list[Tensor] = []
  4106. def __init__(self, *args, **kwargs):
  4107. super().__init__(*args, **kwargs)
  4108. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4109. self._altup_proj = [
  4110. torch.Tensor(), # to be replaced
  4111. torch.Tensor(), # to be replaced
  4112. torch.Tensor(), # to be replaced
  4113. ]
  4114. self._altup_unembd = [
  4115. torch.Tensor(), # to be replaced
  4116. torch.Tensor(), # to be replaced
  4117. torch.Tensor(), # to be replaced
  4118. ]
  4119. def set_vocab(self):
  4120. super().set_vocab()
  4121. def set_gguf_parameters(self):
  4122. super().set_gguf_parameters()
  4123. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4124. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4125. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4126. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4127. activation_sparsity_scale = []
  4128. for s in self.hparams["activation_sparsity_pattern"]:
  4129. normal_dist = torch.distributions.normal.Normal(0, 1)
  4130. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4131. activation_sparsity_scale.append(std_multiplier.item())
  4132. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4133. sliding_window_pattern = []
  4134. for t in self.hparams["layer_types"]:
  4135. sliding_window_pattern.append(t == "sliding_attention")
  4136. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4137. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4138. has_all = all(m.numel() > 0 for m in matrices)
  4139. if not has_all:
  4140. return None
  4141. else:
  4142. return torch.stack(matrices, dim=0)
  4143. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4144. if name.endswith("_scale"):
  4145. name = name + ".weight"
  4146. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4147. if "language_model." not in name:
  4148. return [] # skip non-language model tensors
  4149. if "altup_unembed_projections" in name:
  4150. data_torch = data_torch.to(device="cpu")
  4151. if ".0." in name:
  4152. self._altup_unembd[0] = data_torch
  4153. elif ".1." in name:
  4154. self._altup_unembd[1] = data_torch
  4155. elif ".2." in name:
  4156. self._altup_unembd[2] = data_torch
  4157. else:
  4158. raise ValueError(f"Unknown name: {name}")
  4159. out = self._stack_matrices(self._altup_unembd)
  4160. if out is not None:
  4161. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4162. else:
  4163. return []
  4164. if "altup_projections" in name:
  4165. data_torch = data_torch.to(device="cpu")
  4166. if ".0." in name:
  4167. self._altup_proj[0] = data_torch
  4168. elif ".1." in name:
  4169. self._altup_proj[1] = data_torch
  4170. elif ".2." in name:
  4171. self._altup_proj[2] = data_torch
  4172. else:
  4173. raise ValueError(f"Unknown name: {name}")
  4174. out = self._stack_matrices(self._altup_proj)
  4175. if out is not None:
  4176. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4177. else:
  4178. return []
  4179. return super().modify_tensors(data_torch, name, bid)
  4180. @ModelBase.register("Starcoder2ForCausalLM")
  4181. class StarCoder2Model(TextModel):
  4182. model_arch = gguf.MODEL_ARCH.STARCODER2
  4183. @ModelBase.register("Rwkv6ForCausalLM")
  4184. class Rwkv6Model(TextModel):
  4185. model_arch = gguf.MODEL_ARCH.RWKV6
  4186. def set_vocab(self):
  4187. self._set_vocab_rwkv_world()
  4188. def set_gguf_parameters(self):
  4189. block_count = self.hparams["num_hidden_layers"]
  4190. head_size = self.hparams["head_size"]
  4191. hidden_size = self.hparams["hidden_size"]
  4192. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4193. rescale_every_n_layers = self.hparams["rescale_every"]
  4194. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4195. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4196. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4197. # RWKV isn't context limited
  4198. self.gguf_writer.add_context_length(1048576)
  4199. self.gguf_writer.add_embedding_length(hidden_size)
  4200. self.gguf_writer.add_block_count(block_count)
  4201. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4202. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4203. self.gguf_writer.add_wkv_head_size(head_size)
  4204. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4205. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4206. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4207. self.gguf_writer.add_file_type(self.ftype)
  4208. # required by llama.cpp, unused
  4209. self.gguf_writer.add_head_count(0)
  4210. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4211. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4212. new_name = self.map_tensor_name(name)
  4213. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4214. new_name += ".weight"
  4215. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4216. data_torch = data_torch.transpose(0, 1)
  4217. if new_name.endswith("time_mix_w2.weight"):
  4218. data_torch = data_torch.permute(0, 2, 1)
  4219. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4220. data_torch = data_torch.squeeze()
  4221. try:
  4222. rescale_every_n_layers = self.hparams["rescale_every"]
  4223. if rescale_every_n_layers > 0:
  4224. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4225. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4226. except KeyError:
  4227. pass
  4228. # concat time_mix_lerp weights to reduce some cpu overhead
  4229. # also reduces the number of tensors in the model
  4230. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4231. try:
  4232. self.lerp_weights[bid][new_name] = data_torch
  4233. except KeyError:
  4234. self.lerp_weights[bid] = {new_name: data_torch}
  4235. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4236. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4237. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4238. yield (new_name, data)
  4239. return
  4240. yield (new_name, data_torch)
  4241. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4242. class RWKV6Qwen2Model(Rwkv6Model):
  4243. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4244. def set_vocab(self):
  4245. try:
  4246. self._set_vocab_sentencepiece()
  4247. except FileNotFoundError:
  4248. self._set_vocab_gpt2()
  4249. def set_gguf_parameters(self):
  4250. block_count = self.hparams["num_hidden_layers"]
  4251. num_attention_heads = self.hparams["num_attention_heads"]
  4252. num_key_value_heads = self.hparams["num_key_value_heads"]
  4253. hidden_size = self.hparams["hidden_size"]
  4254. head_size = hidden_size // num_attention_heads
  4255. rms_norm_eps = self.hparams["rms_norm_eps"]
  4256. intermediate_size = self.hparams["intermediate_size"]
  4257. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4258. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4259. # RWKV isn't context limited
  4260. self.gguf_writer.add_context_length(1048576)
  4261. self.gguf_writer.add_embedding_length(hidden_size)
  4262. self.gguf_writer.add_block_count(block_count)
  4263. self.gguf_writer.add_wkv_head_size(head_size)
  4264. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4265. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4266. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4267. self.gguf_writer.add_file_type(self.ftype)
  4268. # special parameters for time_mixing in RWKV6QWEN2
  4269. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4270. self.gguf_writer.add_token_shift_count(1)
  4271. # RWKV6QWEN2 use grouped key/value like GQA
  4272. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4273. # required by llama.cpp, unused
  4274. self.gguf_writer.add_head_count(0)
  4275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4276. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4277. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4278. data = data.view(5, -1, data.shape[-1])
  4279. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4280. # permute them here to avoid code changes
  4281. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4282. if "w2" in new_name:
  4283. data = data.view(5, -1, data.shape[-1])
  4284. yield (new_name, data)
  4285. continue
  4286. yield (new_name, data)
  4287. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4288. class Rwkv7Model(TextModel):
  4289. model_arch = gguf.MODEL_ARCH.RWKV7
  4290. def set_vocab(self):
  4291. self._set_vocab_rwkv_world()
  4292. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4293. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4294. def set_gguf_parameters(self):
  4295. block_count = self.hparams["num_hidden_layers"]
  4296. try:
  4297. head_size = self.hparams["head_size"]
  4298. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4299. except KeyError:
  4300. head_size = self.hparams["head_dim"]
  4301. layer_norm_eps = self.hparams["norm_eps"]
  4302. hidden_size = self.hparams["hidden_size"]
  4303. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4304. # ICLR: In-Context-Learning-Rate
  4305. try:
  4306. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4307. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4308. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4309. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4310. except KeyError:
  4311. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4312. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4313. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4314. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4315. # RWKV isn't context limited
  4316. self.gguf_writer.add_context_length(1048576)
  4317. self.gguf_writer.add_embedding_length(hidden_size)
  4318. self.gguf_writer.add_block_count(block_count)
  4319. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4320. self.gguf_writer.add_wkv_head_size(head_size)
  4321. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4322. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4323. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4324. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4325. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4326. self.gguf_writer.add_file_type(self.ftype)
  4327. # required by llama.cpp, unused
  4328. self.gguf_writer.add_head_count(0)
  4329. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4330. lora_needs_transpose: bool = True
  4331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4332. # unify tensor names here to make life easier
  4333. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4334. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4335. name = name.replace("time_mixer.", "")
  4336. # lora layer names in fla-hub's impl
  4337. if "_lora.lora" in name:
  4338. self.lora_needs_transpose = False
  4339. name = name.replace("_lora.lora.0.weight", "1.weight")
  4340. name = name.replace("_lora.lora.2.weight", "2.weight")
  4341. name = name.replace("_lora.lora.2.bias", "0.weight")
  4342. name = name.replace("feed_forward_norm", "ln2")
  4343. name = name.replace("g_norm", "ln_x")
  4344. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4345. # some models have dummy v0/v1/v2 on first layer while others don't
  4346. # ignore them all since they are not used
  4347. return
  4348. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4349. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4350. if bid is not None and "attention.x_" in name:
  4351. if "attention.x_x" in name:
  4352. # already concatenated
  4353. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4354. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4355. yield (new_name, data)
  4356. else:
  4357. try:
  4358. self.lerp_weights[bid][name] = data_torch
  4359. except KeyError:
  4360. self.lerp_weights[bid] = {name: data_torch}
  4361. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4362. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4363. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4364. yield (new_name, data)
  4365. return
  4366. else:
  4367. data_torch = data_torch.squeeze()
  4368. new_name = self.map_tensor_name(name)
  4369. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4370. new_name += ".weight"
  4371. if self.lora_needs_transpose and any(
  4372. new_name.endswith(t) for t in [
  4373. "time_mix_w1.weight", "time_mix_w2.weight",
  4374. "time_mix_a1.weight", "time_mix_a2.weight",
  4375. "time_mix_v1.weight", "time_mix_v2.weight",
  4376. "time_mix_g1.weight", "time_mix_g2.weight",
  4377. ]
  4378. ):
  4379. data_torch = data_torch.transpose(0, 1)
  4380. if 'r_k' in new_name:
  4381. data_torch = data_torch.flatten()
  4382. if bid == 0 and "time_mix_a" in new_name:
  4383. # dummy v0/v1/v2 on first layer
  4384. # easist way to make llama happy
  4385. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4386. yield (new_name, data_torch)
  4387. @ModelBase.register("RwkvHybridForCausalLM")
  4388. class ARwkv7Model(Rwkv7Model):
  4389. model_arch = gguf.MODEL_ARCH.ARWKV7
  4390. def set_vocab(self):
  4391. try:
  4392. self._set_vocab_sentencepiece()
  4393. except FileNotFoundError:
  4394. self._set_vocab_gpt2()
  4395. def set_gguf_parameters(self):
  4396. block_count = self.hparams["num_hidden_layers"]
  4397. hidden_size = self.hparams["hidden_size"]
  4398. head_size = self.hparams["head_size"]
  4399. rms_norm_eps = self.hparams["rms_norm_eps"]
  4400. intermediate_size = self.hparams["intermediate_size"]
  4401. wkv_has_gate = self.hparams["wkv_has_gate"]
  4402. assert self.hparams["wkv_version"] == 7
  4403. # ICLR: In-Context-Learning-Rate
  4404. lora_rank_decay = 64
  4405. lora_rank_iclr = 64
  4406. lora_rank_value_residual_mix = 32
  4407. lora_rank_gate = 128 if wkv_has_gate else 0
  4408. # RWKV isn't context limited
  4409. self.gguf_writer.add_context_length(1048576)
  4410. self.gguf_writer.add_embedding_length(hidden_size)
  4411. self.gguf_writer.add_block_count(block_count)
  4412. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4413. self.gguf_writer.add_wkv_head_size(head_size)
  4414. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4415. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4416. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4417. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4418. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4419. self.gguf_writer.add_file_type(self.ftype)
  4420. self.gguf_writer.add_token_shift_count(1)
  4421. # required by llama.cpp, unused
  4422. self.gguf_writer.add_head_count(0)
  4423. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4424. class MambaModel(TextModel):
  4425. model_arch = gguf.MODEL_ARCH.MAMBA
  4426. def __init__(self, dir_model: Path, *args, **kwargs):
  4427. # Avoid using AutoConfig for hparams
  4428. hparams = kwargs.pop("hparams", None)
  4429. if hparams is None:
  4430. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4431. hparams = json.load(f)
  4432. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4433. def set_vocab(self):
  4434. vocab_size = self.hparams["vocab_size"]
  4435. # Round vocab size to next multiple of 8
  4436. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4437. # pad using ceiling division
  4438. # ref: https://stackoverflow.com/a/17511341/22827863
  4439. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4440. self.hparams["vocab_size"] = vocab_size
  4441. if (self.dir_model / "tokenizer.json").is_file():
  4442. self._set_vocab_gpt2()
  4443. elif (self.dir_model / "tokenizer.model").is_file():
  4444. self._set_vocab_sentencepiece()
  4445. else:
  4446. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4447. self._set_vocab_builtin("gpt-neox", vocab_size)
  4448. def set_gguf_parameters(self):
  4449. d_model = self.find_hparam(["hidden_size", "d_model"])
  4450. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4451. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4452. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4453. # ceiling division
  4454. # ref: https://stackoverflow.com/a/17511341/22827863
  4455. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4456. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4457. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4458. use_dt_b_c_norm = False
  4459. # For falconmamba we do apply RMS norm on B / DT and C layers
  4460. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4461. use_dt_b_c_norm = True
  4462. # Fail early for models which don't have a block expansion factor of 2
  4463. assert d_inner == 2 * d_model
  4464. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4465. self.gguf_writer.add_embedding_length(d_model)
  4466. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4467. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4468. self.gguf_writer.add_block_count(self.block_count)
  4469. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4470. self.gguf_writer.add_ssm_inner_size(d_inner)
  4471. self.gguf_writer.add_ssm_state_size(d_state)
  4472. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4473. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4474. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4475. self.gguf_writer.add_file_type(self.ftype)
  4476. _tok_embd = None
  4477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4478. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4479. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4480. new_name = self.map_tensor_name(name)
  4481. if name.endswith(".A_log"):
  4482. logger.debug("A_log --> A ==> " + new_name)
  4483. data_torch = -torch.exp(data_torch)
  4484. # [4 1 8192 1] -> [4 8192 1 1]
  4485. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4486. data_torch = data_torch.squeeze()
  4487. # assuming token_embd.weight is seen before output.weight
  4488. if self._tok_embd is not None and new_name == output_name:
  4489. if torch.equal(self._tok_embd, data_torch):
  4490. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4491. return []
  4492. elif new_name == tok_embd_name:
  4493. self._tok_embd = data_torch
  4494. return [(new_name, data_torch)]
  4495. @ModelBase.register("Mamba2ForCausalLM")
  4496. class Mamba2Model(TextModel):
  4497. model_arch = gguf.MODEL_ARCH.MAMBA2
  4498. def __init__(self, dir_model: Path, *args, **kwargs):
  4499. # Avoid using AutoConfig for hparams
  4500. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4501. hparams = kwargs.pop("hparams", None)
  4502. if hparams is None:
  4503. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4504. hparams = json.load(f)
  4505. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4506. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4507. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4508. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4509. def set_vocab(self):
  4510. vocab_size = self.hparams["vocab_size"]
  4511. # Round vocab size to next multiple of 16
  4512. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4513. # pad using ceiling division
  4514. # ref: https://stackoverflow.com/a/17511341/22827863
  4515. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4516. self.hparams["vocab_size"] = vocab_size
  4517. if (self.dir_model / "tokenizer.model").is_file():
  4518. self._set_vocab_sentencepiece()
  4519. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4520. # mamba-codestral
  4521. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4522. elif (self.dir_model / "tokenizer.json").is_file():
  4523. self._set_vocab_gpt2()
  4524. else:
  4525. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4526. self._set_vocab_builtin("gpt-neox", vocab_size)
  4527. def set_gguf_parameters(self):
  4528. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4529. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4530. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4531. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4532. # Fail early for models which don't have a block expansion factor of 2
  4533. # TODO: does this really matter?
  4534. # skip the assertion for FalconH1 Model
  4535. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4536. assert self.d_inner == 2 * self.d_model
  4537. assert self.d_inner % head_dim == 0
  4538. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4539. self.gguf_writer.add_embedding_length(self.d_model)
  4540. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4541. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4542. self.gguf_writer.add_block_count(self.block_count)
  4543. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4544. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4545. self.gguf_writer.add_ssm_state_size(d_state)
  4546. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4547. self.gguf_writer.add_ssm_group_count(self.n_group)
  4548. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4549. self.gguf_writer.add_file_type(self.ftype)
  4550. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4551. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4552. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4553. name = name.removeprefix("model.")
  4554. if name.endswith(".dt_bias"):
  4555. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4556. new_name = self.map_tensor_name(name)
  4557. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4558. data_torch = data_torch.squeeze()
  4559. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4560. gguf.MODEL_TENSOR.SSM_A,
  4561. gguf.MODEL_TENSOR.SSM_D,
  4562. ]):
  4563. # unsqueeze A to use similar shape semantics as Mamba-1
  4564. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4565. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4566. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4567. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4568. if name.endswith(".A_log"):
  4569. logger.debug("A_log --> A ==> " + new_name)
  4570. data_torch = -torch.exp(data_torch)
  4571. yield (new_name, data_torch)
  4572. @ModelBase.register("JambaForCausalLM")
  4573. class JambaModel(TextModel):
  4574. model_arch = gguf.MODEL_ARCH.JAMBA
  4575. def get_vocab_base_pre(self, tokenizer) -> str:
  4576. del tokenizer # unused
  4577. return "gpt-2"
  4578. def set_vocab(self):
  4579. if (self.dir_model / "tokenizer.model").is_file():
  4580. # Using Jamba's tokenizer.json causes errors on model load
  4581. # (something about "byte not found in vocab"),
  4582. # but there's a working tokenizer.model
  4583. self._set_vocab_sentencepiece()
  4584. else:
  4585. # Some Jamba models only have a tokenizer.json, which works.
  4586. self._set_vocab_gpt2()
  4587. def set_gguf_parameters(self):
  4588. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4589. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4590. d_inner = self.hparams["mamba_expand"] * d_model
  4591. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4592. # ceiling division
  4593. # ref: https://stackoverflow.com/a/17511341/22827863
  4594. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4595. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4596. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4597. n_kv_head = self.hparams["num_key_value_heads"]
  4598. attn_offset = self.hparams["attn_layer_offset"]
  4599. attn_period = self.hparams["attn_layer_period"]
  4600. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4601. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4602. ]
  4603. self.gguf_writer.add_block_count(self.block_count)
  4604. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4605. self.gguf_writer.add_embedding_length(d_model)
  4606. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4607. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4608. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4609. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4610. self.gguf_writer.add_ssm_inner_size(d_inner)
  4611. self.gguf_writer.add_ssm_state_size(d_state)
  4612. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4613. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4614. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4615. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4616. self.gguf_writer.add_file_type(self.ftype)
  4617. _experts: list[dict[str, Tensor]] | None = None
  4618. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4619. # Mini-Jamba
  4620. name = name.replace(".moe.", ".feed_forward.")
  4621. if bid is not None:
  4622. moe_offset = self.hparams["expert_layer_offset"]
  4623. moe_period = self.hparams["expert_layer_period"]
  4624. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4625. name = name.replace(".experts.0.", ".")
  4626. # process the experts separately
  4627. if ".feed_forward.experts." in name:
  4628. n_experts = self.hparams["num_experts"]
  4629. assert bid is not None
  4630. if self._experts is None:
  4631. self._experts = [{} for _ in range(self.block_count)]
  4632. self._experts[bid][name] = data_torch
  4633. if len(self._experts[bid]) >= n_experts * 3:
  4634. # merge the experts into a single 3d tensor
  4635. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4636. datas: list[Tensor] = []
  4637. for xid in range(n_experts):
  4638. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4639. datas.append(self._experts[bid][ename])
  4640. del self._experts[bid][ename]
  4641. data_torch = torch.stack(datas, dim=0)
  4642. # using the same merged name as qwen2moe
  4643. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4644. new_name = self.map_tensor_name(merged_name)
  4645. yield new_name, data_torch
  4646. return
  4647. new_name = self.map_tensor_name(name)
  4648. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4649. data_torch = data_torch.squeeze()
  4650. if name.endswith(".A_log"):
  4651. logger.debug("A_log --> A ==> " + new_name)
  4652. data_torch = -torch.exp(data_torch)
  4653. yield (new_name, data_torch)
  4654. def prepare_tensors(self):
  4655. super().prepare_tensors()
  4656. if self._experts is not None:
  4657. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4658. experts = [k for d in self._experts for k in d.keys()]
  4659. if len(experts) > 0:
  4660. raise ValueError(f"Unprocessed experts: {experts}")
  4661. @ModelBase.register("CohereForCausalLM")
  4662. class CommandR2Model(TextModel):
  4663. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4664. def __init__(self, *args, **kwargs):
  4665. super().__init__(*args, **kwargs)
  4666. # max_position_embeddings = 8192 in config.json but model was actually
  4667. # trained on 128k context length
  4668. # aya-23 models don't have model_max_length specified
  4669. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4670. def set_gguf_parameters(self):
  4671. super().set_gguf_parameters()
  4672. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4673. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4674. @ModelBase.register("Cohere2ForCausalLM")
  4675. class Cohere2Model(TextModel):
  4676. model_arch = gguf.MODEL_ARCH.COHERE2
  4677. def set_gguf_parameters(self):
  4678. super().set_gguf_parameters()
  4679. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4680. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4681. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4682. rotary_pct = self.hparams["rotary_pct"]
  4683. hidden_size = self.hparams["hidden_size"]
  4684. num_attention_heads = self.hparams["num_attention_heads"]
  4685. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4686. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4687. @ModelBase.register("OlmoForCausalLM")
  4688. @ModelBase.register("OLMoForCausalLM")
  4689. class OlmoModel(TextModel):
  4690. model_arch = gguf.MODEL_ARCH.OLMO
  4691. def set_gguf_parameters(self):
  4692. super().set_gguf_parameters()
  4693. self.gguf_writer.add_layer_norm_eps(1e-5)
  4694. clip_qkv = self.hparams.get("clip_qkv")
  4695. if clip_qkv is not None:
  4696. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4697. # Same as super class, but permuting q_proj, k_proj
  4698. # Copied from: LlamaModel
  4699. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4700. del bid # unused
  4701. n_head = self.hparams["num_attention_heads"]
  4702. n_kv_head = self.hparams.get("num_key_value_heads")
  4703. if name.endswith("q_proj.weight"):
  4704. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4705. if name.endswith("k_proj.weight"):
  4706. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4707. return [(self.map_tensor_name(name), data_torch)]
  4708. @ModelBase.register("Olmo2ForCausalLM")
  4709. class Olmo2Model(TextModel):
  4710. model_arch = gguf.MODEL_ARCH.OLMO2
  4711. @ModelBase.register("OlmoeForCausalLM")
  4712. class OlmoeModel(TextModel):
  4713. model_arch = gguf.MODEL_ARCH.OLMOE
  4714. def set_gguf_parameters(self):
  4715. super().set_gguf_parameters()
  4716. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4717. if (n_experts := self.hparams.get("num_experts")) is not None:
  4718. self.gguf_writer.add_expert_count(n_experts)
  4719. _experts: list[dict[str, Tensor]] | None = None
  4720. # Copied from: Qwen2MoeModel
  4721. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4722. # process the experts separately
  4723. if name.find("experts") != -1:
  4724. n_experts = self.hparams["num_experts"]
  4725. assert bid is not None
  4726. if self._experts is None:
  4727. self._experts = [{} for _ in range(self.block_count)]
  4728. self._experts[bid][name] = data_torch
  4729. if len(self._experts[bid]) >= n_experts * 3:
  4730. tensors: list[tuple[str, Tensor]] = []
  4731. # merge the experts into a single 3d tensor
  4732. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4733. datas: list[Tensor] = []
  4734. for xid in range(n_experts):
  4735. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4736. datas.append(self._experts[bid][ename])
  4737. del self._experts[bid][ename]
  4738. data_torch = torch.stack(datas, dim=0)
  4739. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4740. new_name = self.map_tensor_name(merged_name)
  4741. tensors.append((new_name, data_torch))
  4742. return tensors
  4743. else:
  4744. return []
  4745. return [(self.map_tensor_name(name), data_torch)]
  4746. # Copied from: Qwen2MoeModel
  4747. def prepare_tensors(self):
  4748. super().prepare_tensors()
  4749. if self._experts is not None:
  4750. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4751. experts = [k for d in self._experts for k in d.keys()]
  4752. if len(experts) > 0:
  4753. raise ValueError(f"Unprocessed experts: {experts}")
  4754. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4755. class JinaBertV2Model(BertModel):
  4756. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4757. def set_vocab(self):
  4758. tokenizer_class = 'BertTokenizer'
  4759. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4760. tokenizer_class = json.load(f)['tokenizer_class']
  4761. if tokenizer_class == 'BertTokenizer':
  4762. super().set_vocab()
  4763. elif tokenizer_class == 'RobertaTokenizer':
  4764. self._set_vocab_gpt2()
  4765. self.gguf_writer.add_token_type_count(2)
  4766. else:
  4767. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4768. @ModelBase.register("OpenELMForCausalLM")
  4769. class OpenELMModel(TextModel):
  4770. model_arch = gguf.MODEL_ARCH.OPENELM
  4771. @staticmethod
  4772. def _make_divisible(v: float | int, divisor: int) -> int:
  4773. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4774. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4775. # Make sure that round down does not go down by more than 10%.
  4776. if new_v < 0.9 * v:
  4777. new_v += divisor
  4778. return new_v
  4779. def __init__(self, *args, **kwargs):
  4780. super().__init__(*args, **kwargs)
  4781. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4782. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4783. self._n_embd: int = self.hparams["model_dim"]
  4784. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4785. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4786. self._ffn_dims: list[int] = [
  4787. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4788. for multiplier in ffn_multipliers
  4789. ]
  4790. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4791. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4792. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4793. def set_vocab(self):
  4794. try:
  4795. self._set_vocab_sentencepiece()
  4796. except FileNotFoundError:
  4797. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4798. def set_gguf_parameters(self):
  4799. n_embd = self._n_embd
  4800. head_dim = self.hparams["head_dim"]
  4801. rot_pct = 1.0
  4802. assert self.block_count == len(self._num_kv_heads)
  4803. assert self.block_count == len(self._num_query_heads)
  4804. assert self.block_count == len(self._ffn_dims)
  4805. self.gguf_writer.add_block_count(self.block_count)
  4806. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4807. self.gguf_writer.add_embedding_length(n_embd)
  4808. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4809. self.gguf_writer.add_head_count(self._num_query_heads)
  4810. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4811. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4812. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4813. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4814. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4815. self.gguf_writer.add_key_length(head_dim)
  4816. self.gguf_writer.add_value_length(head_dim)
  4817. self.gguf_writer.add_file_type(self.ftype)
  4818. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4819. if "n_layers" in keys:
  4820. return self.hparams["num_transformer_layers"]
  4821. return super().find_hparam(keys, optional)
  4822. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4823. # split ff
  4824. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4825. ff_dim = self._ffn_dims[bid]
  4826. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4827. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4828. return
  4829. yield (self.map_tensor_name(name), data_torch)
  4830. @ModelBase.register("ArcticForCausalLM")
  4831. class ArcticModel(TextModel):
  4832. model_arch = gguf.MODEL_ARCH.ARCTIC
  4833. def set_vocab(self):
  4834. # The reason for using a custom implementation here is that the
  4835. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4836. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4837. from sentencepiece import SentencePieceProcessor
  4838. tokenizer_path = self.dir_model / 'tokenizer.model'
  4839. if not tokenizer_path.is_file():
  4840. logger.error(f'Error: Missing {tokenizer_path}')
  4841. sys.exit(1)
  4842. # Read the whole vocabulary from the tokenizer.model file
  4843. tokenizer = SentencePieceProcessor()
  4844. tokenizer.LoadFromFile(str(tokenizer_path))
  4845. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4846. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4847. scores: list[float] = [-10000.0] * vocab_size
  4848. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4849. for token_id in range(tokenizer.vocab_size()):
  4850. piece = tokenizer.IdToPiece(token_id)
  4851. text = piece.encode("utf-8")
  4852. score = tokenizer.GetScore(token_id)
  4853. toktype = SentencePieceTokenTypes.NORMAL
  4854. if tokenizer.IsUnknown(token_id):
  4855. toktype = SentencePieceTokenTypes.UNKNOWN
  4856. elif tokenizer.IsControl(token_id):
  4857. toktype = SentencePieceTokenTypes.CONTROL
  4858. elif tokenizer.IsUnused(token_id):
  4859. toktype = SentencePieceTokenTypes.UNUSED
  4860. elif tokenizer.IsByte(token_id):
  4861. toktype = SentencePieceTokenTypes.BYTE
  4862. tokens[token_id] = text
  4863. scores[token_id] = score
  4864. toktypes[token_id] = toktype
  4865. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4866. # of information about added/redefined tokens and modify them accordingly.
  4867. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4868. if tokenizer_config_file.is_file():
  4869. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4870. tokenizer_config_json = json.load(f)
  4871. if "added_tokens_decoder" in tokenizer_config_json:
  4872. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4873. for token_id, token_json in added_tokens_decoder.items():
  4874. token_id = int(token_id)
  4875. if token_id >= vocab_size:
  4876. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4877. continue
  4878. token_content = token_json["content"]
  4879. token_type = SentencePieceTokenTypes.USER_DEFINED
  4880. token_score = -10000.0
  4881. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4882. # Set the score to 0.0 as in the original tokenizer.model
  4883. if ("special" in token_json) and token_json["special"]:
  4884. if token_content == tokenizer_config_json["unk_token"]:
  4885. token_type = SentencePieceTokenTypes.UNKNOWN
  4886. else:
  4887. token_type = SentencePieceTokenTypes.CONTROL
  4888. token_score = 0.0
  4889. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4890. tokens[token_id] = token_content.encode("utf-8")
  4891. toktypes[token_id] = token_type
  4892. scores[token_id] = token_score
  4893. self.gguf_writer.add_tokenizer_model("llama")
  4894. self.gguf_writer.add_tokenizer_pre("default")
  4895. self.gguf_writer.add_token_list(tokens)
  4896. self.gguf_writer.add_token_scores(scores)
  4897. self.gguf_writer.add_token_types(toktypes)
  4898. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4899. special_vocab.add_to_gguf(self.gguf_writer)
  4900. def set_gguf_parameters(self):
  4901. super().set_gguf_parameters()
  4902. hparams = self.hparams
  4903. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4904. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4905. _experts: list[dict[str, Tensor]] | None = None
  4906. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4907. n_head = self.hparams["num_attention_heads"]
  4908. n_kv_head = self.hparams.get("num_key_value_heads")
  4909. if name.endswith("q_proj.weight"):
  4910. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4911. if name.endswith("k_proj.weight"):
  4912. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4913. # process the experts separately
  4914. if name.find("block_sparse_moe.experts") != -1:
  4915. n_experts = self.hparams["num_local_experts"]
  4916. assert bid is not None
  4917. if self._experts is None:
  4918. self._experts = [{} for _ in range(self.block_count)]
  4919. self._experts[bid][name] = data_torch
  4920. if len(self._experts[bid]) >= n_experts * 3:
  4921. tensors: list[tuple[str, Tensor]] = []
  4922. # merge the experts into a single 3d tensor
  4923. for wid in ["w1", "w2", "w3"]:
  4924. datas: list[Tensor] = []
  4925. for xid in range(n_experts):
  4926. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4927. datas.append(self._experts[bid][ename])
  4928. del self._experts[bid][ename]
  4929. data_torch = torch.stack(datas, dim=0)
  4930. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4931. new_name = self.map_tensor_name(merged_name)
  4932. tensors.append((new_name, data_torch))
  4933. return tensors
  4934. else:
  4935. return []
  4936. return [(self.map_tensor_name(name), data_torch)]
  4937. def prepare_tensors(self):
  4938. super().prepare_tensors()
  4939. if self._experts is not None:
  4940. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4941. experts = [k for d in self._experts for k in d.keys()]
  4942. if len(experts) > 0:
  4943. raise ValueError(f"Unprocessed experts: {experts}")
  4944. @ModelBase.register("DeepseekForCausalLM")
  4945. class DeepseekModel(TextModel):
  4946. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4947. def set_vocab(self):
  4948. try:
  4949. self._set_vocab_sentencepiece()
  4950. except FileNotFoundError:
  4951. self._set_vocab_gpt2()
  4952. def set_gguf_parameters(self):
  4953. super().set_gguf_parameters()
  4954. hparams = self.hparams
  4955. if (rope_dim := hparams.get("head_dim")) is None:
  4956. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4957. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4958. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4959. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4960. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4961. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4962. self.gguf_writer.add_expert_weights_scale(1.0)
  4963. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4964. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4965. _experts: list[dict[str, Tensor]] | None = None
  4966. @staticmethod
  4967. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4968. if n_head_kv is not None and n_head != n_head_kv:
  4969. n_head = n_head_kv
  4970. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4971. .swapaxes(1, 2)
  4972. .reshape(weights.shape))
  4973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4974. n_head = self.hparams["num_attention_heads"]
  4975. n_kv_head = self.hparams.get("num_key_value_heads")
  4976. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4977. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4978. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4979. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4980. # process the experts separately
  4981. if name.find("mlp.experts") != -1:
  4982. n_experts = self.hparams["n_routed_experts"]
  4983. assert bid is not None
  4984. if self._experts is None:
  4985. self._experts = [{} for _ in range(self.block_count)]
  4986. self._experts[bid][name] = data_torch
  4987. if len(self._experts[bid]) >= n_experts * 3:
  4988. tensors: list[tuple[str, Tensor]] = []
  4989. # merge the experts into a single 3d tensor
  4990. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4991. datas: list[Tensor] = []
  4992. for xid in range(n_experts):
  4993. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4994. datas.append(self._experts[bid][ename])
  4995. del self._experts[bid][ename]
  4996. data_torch = torch.stack(datas, dim=0)
  4997. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4998. new_name = self.map_tensor_name(merged_name)
  4999. tensors.append((new_name, data_torch))
  5000. return tensors
  5001. else:
  5002. return []
  5003. return [(self.map_tensor_name(name), data_torch)]
  5004. def prepare_tensors(self):
  5005. super().prepare_tensors()
  5006. if self._experts is not None:
  5007. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5008. experts = [k for d in self._experts for k in d.keys()]
  5009. if len(experts) > 0:
  5010. raise ValueError(f"Unprocessed experts: {experts}")
  5011. @ModelBase.register("DeepseekV2ForCausalLM")
  5012. @ModelBase.register("DeepseekV3ForCausalLM")
  5013. @ModelBase.register("KimiVLForConditionalGeneration")
  5014. class DeepseekV2Model(TextModel):
  5015. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5016. def set_vocab(self):
  5017. try:
  5018. self._set_vocab_gpt2()
  5019. return
  5020. except Exception:
  5021. pass
  5022. from transformers import AutoTokenizer
  5023. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5024. tokpre = self.get_vocab_base_pre(tokenizer)
  5025. if tokpre == "kimi-k2":
  5026. # Build merges list using the approach similar to HunYuanMoE
  5027. merges = []
  5028. vocab = {}
  5029. mergeable_ranks = tokenizer.model._mergeable_ranks
  5030. for token, rank in mergeable_ranks.items():
  5031. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5032. if len(token) == 1:
  5033. continue
  5034. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5035. if len(merged) == 2:
  5036. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5037. # Build token list
  5038. vocab_size = self.hparams["vocab_size"]
  5039. special_tokens = tokenizer.special_tokens
  5040. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5041. tokens: list[str] = []
  5042. toktypes: list[int] = []
  5043. for i in range(vocab_size):
  5044. if i not in reverse_vocab:
  5045. tokens.append(f"[PAD{i}]")
  5046. toktypes.append(gguf.TokenType.UNUSED)
  5047. else:
  5048. token = reverse_vocab[i]
  5049. tokens.append(token)
  5050. if i in special_tokens.values():
  5051. toktypes.append(gguf.TokenType.CONTROL)
  5052. else:
  5053. toktypes.append(gguf.TokenType.NORMAL)
  5054. self.gguf_writer.add_tokenizer_model("gpt2")
  5055. self.gguf_writer.add_tokenizer_pre(tokpre)
  5056. self.gguf_writer.add_token_list(tokens)
  5057. self.gguf_writer.add_token_types(toktypes)
  5058. self.gguf_writer.add_token_merges(merges)
  5059. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5060. special_vocab.add_to_gguf(self.gguf_writer)
  5061. else:
  5062. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5063. def set_gguf_parameters(self):
  5064. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5065. self.hparams["num_key_value_heads"] = 1
  5066. super().set_gguf_parameters()
  5067. hparams = self.hparams
  5068. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5069. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5070. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5071. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5072. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5073. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5074. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5075. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5076. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5077. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5078. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5079. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5080. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5081. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5082. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5083. if hparams["scoring_func"] == "sigmoid":
  5084. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5085. elif hparams["scoring_func"] == "softmax":
  5086. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5087. else:
  5088. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5089. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5090. rope_scaling = self.hparams.get("rope_scaling") or {}
  5091. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5092. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5093. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5094. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5095. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5096. _experts: list[dict[str, Tensor]] | None = None
  5097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5098. # skip vision tensors and remove "language_model." for Kimi-VL
  5099. if "vision_tower" in name or "multi_modal_projector" in name:
  5100. return []
  5101. if name.startswith("language_model."):
  5102. name = name.replace("language_model.", "")
  5103. # rename e_score_correction_bias tensors
  5104. if name.endswith("e_score_correction_bias"):
  5105. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5106. # skip Multi-Token Prediction (MTP) layers
  5107. block_count = self.hparams["num_hidden_layers"]
  5108. match = re.match(r"model.layers.(\d+)", name)
  5109. if match and int(match.group(1)) >= block_count:
  5110. return []
  5111. # process the experts separately
  5112. if name.find("mlp.experts") != -1:
  5113. n_experts = self.hparams["n_routed_experts"]
  5114. assert bid is not None
  5115. if self._experts is None:
  5116. self._experts = [{} for _ in range(self.block_count)]
  5117. self._experts[bid][name] = data_torch
  5118. if len(self._experts[bid]) >= n_experts * 3:
  5119. tensors: list[tuple[str, Tensor]] = []
  5120. # merge the experts into a single 3d tensor
  5121. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5122. datas: list[Tensor] = []
  5123. for xid in range(n_experts):
  5124. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5125. datas.append(self._experts[bid][ename])
  5126. del self._experts[bid][ename]
  5127. data_torch = torch.stack(datas, dim=0)
  5128. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5129. new_name = self.map_tensor_name(merged_name)
  5130. tensors.append((new_name, data_torch))
  5131. return tensors
  5132. else:
  5133. return []
  5134. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5135. if name.endswith("kv_b_proj.weight"):
  5136. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5137. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5138. n_head_kv = self.hparams["num_key_value_heads"]
  5139. v_head_dim = self.hparams["v_head_dim"]
  5140. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5141. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5142. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5143. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5144. k_b = k_b.transpose(1, 2)
  5145. return [
  5146. (self.map_tensor_name(name_kb), k_b),
  5147. (self.map_tensor_name(name_vb), v_b)
  5148. ]
  5149. return [(self.map_tensor_name(name), data_torch)]
  5150. def prepare_tensors(self):
  5151. super().prepare_tensors()
  5152. if self._experts is not None:
  5153. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5154. experts = [k for d in self._experts for k in d.keys()]
  5155. if len(experts) > 0:
  5156. raise ValueError(f"Unprocessed experts: {experts}")
  5157. @ModelBase.register("Dots1ForCausalLM")
  5158. class Dots1Model(Qwen2MoeModel):
  5159. model_arch = gguf.MODEL_ARCH.DOTS1
  5160. def __init__(self, *args, **kwargs):
  5161. super().__init__(*args, **kwargs)
  5162. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5163. def set_gguf_parameters(self):
  5164. super().set_gguf_parameters()
  5165. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5166. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5167. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5168. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5169. if self.hparams["scoring_func"] == "noaux_tc":
  5170. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5171. else:
  5172. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5173. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5174. if name.endswith("e_score_correction_bias"):
  5175. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5176. if "shared_experts" in name:
  5177. return [(self.map_tensor_name(name), data_torch)]
  5178. return super().modify_tensors(data_torch, name, bid)
  5179. @ModelBase.register("PLMForCausalLM")
  5180. class PLMModel(TextModel):
  5181. model_arch = gguf.MODEL_ARCH.PLM
  5182. def set_vocab(self):
  5183. self._set_vocab_gpt2()
  5184. def set_gguf_parameters(self):
  5185. super().set_gguf_parameters()
  5186. hparams = self.hparams
  5187. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5188. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5189. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5190. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5191. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5192. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5193. return [(self.map_tensor_name(name), data_torch)]
  5194. def prepare_tensors(self):
  5195. super().prepare_tensors()
  5196. @ModelBase.register("T5WithLMHeadModel")
  5197. @ModelBase.register("T5ForConditionalGeneration")
  5198. @ModelBase.register("MT5ForConditionalGeneration")
  5199. @ModelBase.register("UMT5ForConditionalGeneration")
  5200. class T5Model(TextModel):
  5201. model_arch = gguf.MODEL_ARCH.T5
  5202. def __init__(self, *args, **kwargs):
  5203. super().__init__(*args, **kwargs)
  5204. self.shared_token_embeddings_found = False
  5205. def set_vocab(self):
  5206. # to avoid TypeError: Descriptors cannot be created directly
  5207. # exception when importing sentencepiece_model_pb2
  5208. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5209. from sentencepiece import SentencePieceProcessor
  5210. from sentencepiece import sentencepiece_model_pb2 as model
  5211. tokenizer_path = self.dir_model / 'tokenizer.model'
  5212. # many older models use spiece.model tokenizer model filename
  5213. if not tokenizer_path.is_file():
  5214. tokenizer_path = self.dir_model / 'spiece.model'
  5215. if not tokenizer_path.is_file():
  5216. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5217. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5218. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5219. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5220. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5221. # assure the tokenizer model file name is correct
  5222. assert tokenizer_path.name == 'tokenizer.model'
  5223. return self._set_vocab_sentencepiece()
  5224. else:
  5225. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5226. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5227. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5228. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5229. tokenizer = SentencePieceProcessor()
  5230. tokenizer.LoadFromFile(str(tokenizer_path))
  5231. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5232. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5233. scores: list[float] = [-10000.0] * vocab_size
  5234. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5235. for token_id in range(tokenizer.vocab_size()):
  5236. piece = tokenizer.IdToPiece(token_id)
  5237. text = piece.encode("utf-8")
  5238. score = tokenizer.GetScore(token_id)
  5239. toktype = SentencePieceTokenTypes.NORMAL
  5240. if tokenizer.IsUnknown(token_id):
  5241. toktype = SentencePieceTokenTypes.UNKNOWN
  5242. elif tokenizer.IsControl(token_id):
  5243. toktype = SentencePieceTokenTypes.CONTROL
  5244. elif tokenizer.IsUnused(token_id):
  5245. toktype = SentencePieceTokenTypes.UNUSED
  5246. elif tokenizer.IsByte(token_id):
  5247. toktype = SentencePieceTokenTypes.BYTE
  5248. tokens[token_id] = text
  5249. scores[token_id] = score
  5250. toktypes[token_id] = toktype
  5251. added_tokens_file = self.dir_model / 'added_tokens.json'
  5252. if added_tokens_file.is_file():
  5253. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5254. added_tokens_json = json.load(f)
  5255. for key in added_tokens_json:
  5256. token_id = added_tokens_json[key]
  5257. if token_id >= vocab_size:
  5258. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5259. continue
  5260. tokens[token_id] = key.encode("utf-8")
  5261. scores[token_id] = -1000.0
  5262. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5263. if vocab_size > len(tokens):
  5264. pad_count = vocab_size - len(tokens)
  5265. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5266. for i in range(1, pad_count + 1):
  5267. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5268. scores.append(-1000.0)
  5269. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5270. self.gguf_writer.add_tokenizer_model("t5")
  5271. self.gguf_writer.add_tokenizer_pre("default")
  5272. self.gguf_writer.add_token_list(tokens)
  5273. self.gguf_writer.add_token_scores(scores)
  5274. self.gguf_writer.add_token_types(toktypes)
  5275. self.gguf_writer.add_add_space_prefix(add_prefix)
  5276. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5277. if precompiled_charsmap:
  5278. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5279. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5280. special_vocab.add_to_gguf(self.gguf_writer)
  5281. def set_gguf_parameters(self):
  5282. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5283. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5284. n_ctx = 512
  5285. self.gguf_writer.add_context_length(n_ctx)
  5286. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5287. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5288. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5289. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5290. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5291. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5292. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5293. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5294. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5295. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5296. self.gguf_writer.add_file_type(self.ftype)
  5297. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5298. del bid # unused
  5299. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5300. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5301. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5302. # and decoder and ignore the remaining ones.
  5303. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5304. if not self.shared_token_embeddings_found:
  5305. name = "shared.weight"
  5306. self.shared_token_embeddings_found = True
  5307. else:
  5308. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5309. return []
  5310. return [(self.map_tensor_name(name), data_torch)]
  5311. @ModelBase.register("T5EncoderModel")
  5312. class T5EncoderModel(TextModel):
  5313. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5314. def __init__(self, *args, **kwargs):
  5315. super().__init__(*args, **kwargs)
  5316. self.shared_token_embeddings_found = False
  5317. def set_vocab(self):
  5318. # to avoid TypeError: Descriptors cannot be created directly
  5319. # exception when importing sentencepiece_model_pb2
  5320. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5321. from sentencepiece import SentencePieceProcessor
  5322. from sentencepiece import sentencepiece_model_pb2 as model
  5323. tokenizer_path = self.dir_model / 'tokenizer.model'
  5324. # many older models use spiece.model tokenizer model filename
  5325. if not tokenizer_path.is_file():
  5326. tokenizer_path = self.dir_model / 'spiece.model'
  5327. if not tokenizer_path.is_file():
  5328. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5329. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5330. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5331. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5332. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5333. # assure the tokenizer model file name is correct
  5334. assert tokenizer_path.name == 'tokenizer.model'
  5335. return self._set_vocab_sentencepiece()
  5336. else:
  5337. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5338. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5339. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5340. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5341. tokenizer = SentencePieceProcessor()
  5342. tokenizer.LoadFromFile(str(tokenizer_path))
  5343. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5344. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5345. scores: list[float] = [-10000.0] * vocab_size
  5346. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5347. for token_id in range(tokenizer.vocab_size()):
  5348. piece = tokenizer.IdToPiece(token_id)
  5349. text = piece.encode("utf-8")
  5350. score = tokenizer.GetScore(token_id)
  5351. toktype = SentencePieceTokenTypes.NORMAL
  5352. if tokenizer.IsUnknown(token_id):
  5353. toktype = SentencePieceTokenTypes.UNKNOWN
  5354. elif tokenizer.IsControl(token_id):
  5355. toktype = SentencePieceTokenTypes.CONTROL
  5356. elif tokenizer.IsUnused(token_id):
  5357. toktype = SentencePieceTokenTypes.UNUSED
  5358. elif tokenizer.IsByte(token_id):
  5359. toktype = SentencePieceTokenTypes.BYTE
  5360. tokens[token_id] = text
  5361. scores[token_id] = score
  5362. toktypes[token_id] = toktype
  5363. added_tokens_file = self.dir_model / 'added_tokens.json'
  5364. if added_tokens_file.is_file():
  5365. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5366. added_tokens_json = json.load(f)
  5367. for key in added_tokens_json:
  5368. token_id = added_tokens_json[key]
  5369. if token_id >= vocab_size:
  5370. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5371. continue
  5372. tokens[token_id] = key.encode("utf-8")
  5373. scores[token_id] = -1000.0
  5374. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5375. if vocab_size > len(tokens):
  5376. pad_count = vocab_size - len(tokens)
  5377. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5378. for i in range(1, pad_count + 1):
  5379. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5380. scores.append(-1000.0)
  5381. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5382. self.gguf_writer.add_tokenizer_model("t5")
  5383. self.gguf_writer.add_tokenizer_pre("default")
  5384. self.gguf_writer.add_token_list(tokens)
  5385. self.gguf_writer.add_token_scores(scores)
  5386. self.gguf_writer.add_token_types(toktypes)
  5387. self.gguf_writer.add_add_space_prefix(add_prefix)
  5388. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5389. if precompiled_charsmap:
  5390. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5391. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5392. special_vocab.add_to_gguf(self.gguf_writer)
  5393. def set_gguf_parameters(self):
  5394. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5395. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5396. n_ctx = 512
  5397. self.gguf_writer.add_context_length(n_ctx)
  5398. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5399. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5400. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5401. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5402. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5403. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5404. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5405. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5406. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5407. self.gguf_writer.add_file_type(self.ftype)
  5408. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5409. del bid # unused
  5410. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5411. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5412. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5413. # and decoder and ignore the remaining ones.
  5414. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5415. if not self.shared_token_embeddings_found:
  5416. name = "shared.weight"
  5417. self.shared_token_embeddings_found = True
  5418. else:
  5419. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5420. return []
  5421. return [(self.map_tensor_name(name), data_torch)]
  5422. @ModelBase.register("JAISLMHeadModel")
  5423. class JaisModel(TextModel):
  5424. model_arch = gguf.MODEL_ARCH.JAIS
  5425. def __init__(self, *args, **kwargs):
  5426. super().__init__(*args, **kwargs)
  5427. # SwigLU activation
  5428. assert self.hparams["activation_function"] == "swiglu"
  5429. # ALiBi position embedding
  5430. assert self.hparams["position_embedding_type"] == "alibi"
  5431. # Embeddings scale
  5432. self.embeddings_scale = 1.0
  5433. if 'mup_embeddings_scale' in self.hparams:
  5434. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5435. elif 'embeddings_scale' in self.hparams:
  5436. self.embeddings_scale = self.hparams['embeddings_scale']
  5437. else:
  5438. assert False
  5439. self.width_scale = 1.0
  5440. if 'mup_output_alpha' in self.hparams:
  5441. assert 'mup_width_scale' in self.hparams
  5442. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5443. elif 'width_scale' in self.hparams:
  5444. self.width_scale = self.hparams['width_scale']
  5445. else:
  5446. assert False
  5447. self.max_alibi_bias = 8.0
  5448. def set_vocab(self):
  5449. self._set_vocab_gpt2()
  5450. def set_gguf_parameters(self):
  5451. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5452. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5453. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5454. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5455. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5456. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5457. self.gguf_writer.add_file_type(self.ftype)
  5458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5459. del bid # unused
  5460. tensors: list[tuple[str, Tensor]] = []
  5461. # we don't need these
  5462. if name.endswith((".attn.bias")):
  5463. return tensors
  5464. if name.endswith(("relative_pe.slopes")):
  5465. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5466. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5467. # but Jais's PyTorch model simply precalculates the slope values and places them
  5468. # in relative_pes.slopes
  5469. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5470. first_val = float(data_torch[0].item())
  5471. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5472. return tensors
  5473. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5474. data_torch = data_torch.transpose(1, 0)
  5475. new_name = self.map_tensor_name(name)
  5476. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5477. tensors.append((new_name, data_torch * self.embeddings_scale))
  5478. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5479. tensors.append((new_name, data_torch * self.width_scale))
  5480. else:
  5481. tensors.append((new_name, data_torch))
  5482. return tensors
  5483. def prepare_tensors(self):
  5484. super().prepare_tensors()
  5485. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5486. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5487. class Glm4Model(TextModel):
  5488. model_arch = gguf.MODEL_ARCH.GLM4
  5489. def set_vocab(self):
  5490. from transformers import AutoTokenizer
  5491. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5492. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5493. tokens, toktypes, tokpre = self.get_vocab_base()
  5494. self.gguf_writer.add_tokenizer_model("gpt2")
  5495. self.gguf_writer.add_tokenizer_pre(tokpre)
  5496. self.gguf_writer.add_token_list(tokens)
  5497. self.gguf_writer.add_token_types(toktypes)
  5498. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5499. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5500. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5501. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5502. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5503. special_vocab.add_to_gguf(self.gguf_writer)
  5504. def set_gguf_parameters(self):
  5505. super().set_gguf_parameters()
  5506. if (rope_dim := self.hparams.get("head_dim")) is None:
  5507. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5508. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5509. rope_scaling = self.hparams.get("rope_scaling") or {}
  5510. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5511. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5512. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5513. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5515. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5516. return []
  5517. elif name.startswith("model.language_model."):
  5518. name = name.replace("language_model.", "") # for Glm4v
  5519. return super().modify_tensors(data_torch, name, bid)
  5520. @ModelBase.register("Glm4MoeForCausalLM")
  5521. class Glm4MoeModel(TextModel):
  5522. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5523. def __init__(self, *args, **kwargs):
  5524. super().__init__(*args, **kwargs)
  5525. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5526. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5527. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5528. def set_vocab(self):
  5529. from transformers import AutoTokenizer
  5530. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5531. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5532. tokens, toktypes, tokpre = self.get_vocab_base()
  5533. self.gguf_writer.add_tokenizer_model("gpt2")
  5534. self.gguf_writer.add_tokenizer_pre(tokpre)
  5535. self.gguf_writer.add_token_list(tokens)
  5536. self.gguf_writer.add_token_types(toktypes)
  5537. # Special tokens
  5538. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5539. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5540. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5541. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5542. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5543. # Patch broken chat template
  5544. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5545. special_vocab.chat_template = special_vocab.chat_template.replace(
  5546. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5547. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5548. special_vocab.add_to_gguf(self.gguf_writer)
  5549. def set_gguf_parameters(self):
  5550. super().set_gguf_parameters()
  5551. if (rope_dim := self.hparams.get("head_dim")) is None:
  5552. rope_dim = (
  5553. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5554. )
  5555. self.gguf_writer.add_rope_dimension_count(
  5556. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5557. )
  5558. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5559. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5560. self.gguf_writer.add_expert_count(n_routed_experts)
  5561. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5562. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5563. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5564. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5565. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5566. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5567. # Expert gating function (sigmoid for GLM4_MOE)
  5568. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5569. # Routed scaling factor
  5570. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5571. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5572. # Normalise topk probabilities
  5573. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5574. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5575. # NextN/MTP prediction layers
  5576. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5577. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5578. _experts: list[dict[str, Tensor]] | None = None
  5579. def modify_tensors(
  5580. self, data_torch: Tensor, name: str, bid: int | None
  5581. ) -> Iterable[tuple[str, Tensor]]:
  5582. if name.startswith("model.visual."): # ignore visual part
  5583. return []
  5584. elif name.startswith("model.language_model."):
  5585. name = name.replace("language_model.", "") # for multimodal variants
  5586. # Handle main token embedding (but not layer-specific NextN embeddings)
  5587. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5588. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5589. # Handle routed experts
  5590. if name.find("mlp.experts") != -1:
  5591. n_experts = self.hparams["n_routed_experts"]
  5592. assert bid is not None
  5593. if self._experts is None:
  5594. self._experts = [{} for _ in range(self.block_count)]
  5595. self._experts[bid][name] = data_torch
  5596. if len(self._experts[bid]) >= n_experts * 3:
  5597. tensors: list[tuple[str, Tensor]] = []
  5598. # merge the experts into a single 3d tensor
  5599. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5600. datas: list[Tensor] = []
  5601. for xid in range(n_experts):
  5602. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5603. datas.append(self._experts[bid][ename])
  5604. del self._experts[bid][ename]
  5605. data_torch = torch.stack(datas, dim=0)
  5606. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5607. new_name = self.map_tensor_name(merged_name)
  5608. tensors.append((new_name, data_torch))
  5609. return tensors
  5610. else:
  5611. return []
  5612. if name.endswith("e_score_correction_bias"):
  5613. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5614. new_name = self.map_tensor_name(name)
  5615. return [(new_name, data_torch)]
  5616. def prepare_tensors(self):
  5617. super().prepare_tensors()
  5618. if self._experts is not None:
  5619. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5620. experts = [k for d in self._experts for k in d.keys()]
  5621. if len(experts) > 0:
  5622. raise ValueError(f"Unprocessed experts: {experts}")
  5623. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5624. class ChatGLMModel(TextModel):
  5625. model_arch = gguf.MODEL_ARCH.CHATGLM
  5626. def set_vocab_chatglm3(self):
  5627. dir_model = self.dir_model
  5628. hparams = self.hparams
  5629. tokens: list[bytes] = []
  5630. toktypes: list[int] = []
  5631. scores: list[float] = []
  5632. from transformers import AutoTokenizer
  5633. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5634. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5635. assert max(tokenizer.get_vocab().values()) < vocab_size
  5636. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5637. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5638. for token_id in range(vocab_size):
  5639. piece = tokenizer._convert_id_to_token(token_id)
  5640. if token_id == 0:
  5641. piece = "<unk>"
  5642. elif token_id == 1:
  5643. piece = "<bos>"
  5644. elif token_id == 2:
  5645. piece = "<eos>"
  5646. text = piece.encode("utf-8")
  5647. score = 0.0
  5648. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5649. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5650. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5651. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5652. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5653. if piece in special_tokens:
  5654. toktype = SentencePieceTokenTypes.CONTROL
  5655. elif len(piece) == 0:
  5656. text = f"[PAD{token_id}]".encode("utf-8")
  5657. toktype = SentencePieceTokenTypes.UNUSED
  5658. else:
  5659. toktype = SentencePieceTokenTypes.USER_DEFINED
  5660. tokens.append(text)
  5661. scores.append(score)
  5662. toktypes.append(toktype)
  5663. continue
  5664. toktype = SentencePieceTokenTypes.NORMAL
  5665. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5666. toktype = SentencePieceTokenTypes.UNKNOWN
  5667. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5668. toktype = SentencePieceTokenTypes.CONTROL
  5669. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5670. toktype = SentencePieceTokenTypes.UNUSED
  5671. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5672. toktype = SentencePieceTokenTypes.BYTE
  5673. tokens.append(text)
  5674. scores.append(score)
  5675. toktypes.append(toktype)
  5676. self.gguf_writer.add_tokenizer_model("llama")
  5677. # glm3 needs prefix and suffix formatted as:
  5678. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5679. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5680. self.gguf_writer.add_token_list(tokens)
  5681. self.gguf_writer.add_token_scores(scores)
  5682. self.gguf_writer.add_token_types(toktypes)
  5683. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5684. special_vocab.add_to_gguf(self.gguf_writer)
  5685. @staticmethod
  5686. def token_bytes_to_string(b):
  5687. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5688. byte_encoder = bytes_to_unicode()
  5689. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5690. @staticmethod
  5691. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5692. parts = [bytes([b]) for b in token]
  5693. while True:
  5694. min_idx = None
  5695. min_rank = None
  5696. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5697. rank = mergeable_ranks.get(pair[0] + pair[1])
  5698. if rank is not None and (min_rank is None or rank < min_rank):
  5699. min_idx = i
  5700. min_rank = rank
  5701. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5702. break
  5703. assert min_idx is not None
  5704. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5705. return parts
  5706. def set_vocab(self):
  5707. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5708. self.set_vocab_chatglm3()
  5709. return
  5710. dir_model = self.dir_model
  5711. hparams = self.hparams
  5712. tokens: list[str] = []
  5713. toktypes: list[int] = []
  5714. from transformers import AutoTokenizer
  5715. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5716. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5717. assert max(tokenizer.get_vocab().values()) < vocab_size
  5718. tokens, toktypes, tokpre = self.get_vocab_base()
  5719. self.gguf_writer.add_tokenizer_model("gpt2")
  5720. self.gguf_writer.add_tokenizer_pre(tokpre)
  5721. self.gguf_writer.add_token_list(tokens)
  5722. self.gguf_writer.add_token_types(toktypes)
  5723. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5724. # only add special tokens when they were not already loaded from config.json
  5725. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5726. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5727. # this one is usually not in config.json anyway
  5728. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5729. special_vocab.add_to_gguf(self.gguf_writer)
  5730. def set_gguf_parameters(self):
  5731. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5732. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5733. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5734. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5735. self.gguf_writer.add_embedding_length(n_embed)
  5736. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5737. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5738. self.gguf_writer.add_head_count(n_head)
  5739. self.gguf_writer.add_head_count_kv(n_head_kv)
  5740. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5741. self.gguf_writer.add_file_type(self.ftype)
  5742. if "attention_dim" in self.hparams:
  5743. rope_dim = self.hparams["attention_dim"]
  5744. else:
  5745. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5746. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5747. self.gguf_writer.add_add_bos_token(False)
  5748. rope_freq = 10000
  5749. if "rope_ratio" in self.hparams:
  5750. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5751. self.gguf_writer.add_rope_freq_base(rope_freq)
  5752. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5753. del bid # unused
  5754. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5755. return []
  5756. name = name.removeprefix("transformer.")
  5757. return [(self.map_tensor_name(name), data_torch)]
  5758. @ModelBase.register("NemotronForCausalLM")
  5759. class NemotronModel(TextModel):
  5760. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5761. def set_vocab(self):
  5762. self._set_vocab_sentencepiece()
  5763. self.gguf_writer.add_pad_token_id(0)
  5764. self.gguf_writer.add_unk_token_id(1)
  5765. def set_gguf_parameters(self):
  5766. super().set_gguf_parameters()
  5767. hparams = self.hparams
  5768. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5769. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5770. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5771. # * Partial RoPE
  5772. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5773. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5774. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5775. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5776. # * RopeScaling for Nemotron
  5777. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5778. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5779. else:
  5780. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5781. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5782. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5783. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5784. # model.layers.{l}.input_layernorm.weight
  5785. # model.layers.{l}.post_attention_layernorm.weight
  5786. # model.norm.weight
  5787. if name.endswith("norm.weight"):
  5788. data_torch = data_torch + 1
  5789. return [(self.map_tensor_name(name), data_torch)]
  5790. @ModelBase.register("ExaoneForCausalLM")
  5791. class ExaoneModel(TextModel):
  5792. model_arch = gguf.MODEL_ARCH.EXAONE
  5793. def set_gguf_parameters(self):
  5794. hparams = self.hparams
  5795. assert (hparams["activation_function"] == "silu")
  5796. max_position_embeddings = hparams["max_position_embeddings"]
  5797. embed_dim = hparams["hidden_size"]
  5798. num_heads = hparams["num_attention_heads"]
  5799. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5800. layer_norm_eps = hparams["layer_norm_epsilon"]
  5801. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5802. num_layers = hparams["num_layers"]
  5803. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5804. # attention_dropout_rate = hparams["attention_dropout"]
  5805. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5806. # embed_dropout_rate = hparams["embed_dropout"]
  5807. self.gguf_writer.add_embedding_length(embed_dim)
  5808. self.gguf_writer.add_head_count(num_heads)
  5809. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5810. self.gguf_writer.add_context_length(max_position_embeddings)
  5811. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5812. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5813. self.gguf_writer.add_block_count(num_layers)
  5814. self.gguf_writer.add_file_type(self.ftype)
  5815. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5816. self.gguf_writer.add_rope_freq_base(rope_theta)
  5817. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5818. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5819. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5820. rope_scaling = self.hparams.get("rope_scaling") or {}
  5821. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5822. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5823. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5824. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5825. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5826. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5827. base = self.hparams.get("rope_theta", 10000.0)
  5828. if (dim := self.hparams.get("head_dim")) is None:
  5829. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5830. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5831. factor = rope_scaling.get("factor", 8.0)
  5832. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5833. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5834. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5835. low_freq_wavelen = old_context_len / low_freq_factor
  5836. high_freq_wavelen = old_context_len / high_freq_factor
  5837. assert low_freq_wavelen != high_freq_wavelen
  5838. rope_factors = []
  5839. for freq in freqs:
  5840. wavelen = 2 * math.pi / freq
  5841. if wavelen < high_freq_wavelen:
  5842. rope_factors.append(1)
  5843. elif wavelen > low_freq_wavelen:
  5844. rope_factors.append(factor)
  5845. else:
  5846. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5847. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5848. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5849. @ModelBase.register("Exaone4ForCausalLM")
  5850. class Exaone4Model(TextModel):
  5851. model_arch = gguf.MODEL_ARCH.EXAONE4
  5852. def set_vocab(self):
  5853. tokens, toktypes, tokpre = self.get_vocab_base()
  5854. self.gguf_writer.add_tokenizer_model("gpt2")
  5855. self.gguf_writer.add_tokenizer_pre(tokpre)
  5856. self.gguf_writer.add_token_list(tokens)
  5857. self.gguf_writer.add_token_types(toktypes)
  5858. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5859. special_vocab.add_to_gguf(self.gguf_writer)
  5860. def set_gguf_parameters(self):
  5861. super().set_gguf_parameters()
  5862. hparams = self.hparams
  5863. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5864. if hparams.get("sliding_window") is not None:
  5865. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5866. if "layer_types" in hparams:
  5867. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5868. elif "sliding_window_pattern" in hparams:
  5869. sliding_window_pattern = []
  5870. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5871. for i in range(hparams["num_hidden_layers"]):
  5872. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5873. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5874. for i in range(hparams["num_hidden_layers"]):
  5875. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5876. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5877. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5878. rope_scaling = self.hparams.get("rope_scaling") or {}
  5879. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5880. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5881. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5882. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5883. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5884. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5885. base = self.hparams.get("rope_theta", 10_000.0)
  5886. if (dim := self.hparams.get("head_dim")) is None:
  5887. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5888. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5889. factor = rope_scaling.get("factor", 16.0)
  5890. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5891. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5892. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5893. low_freq_wavelen = old_context_len / low_freq_factor
  5894. high_freq_wavelen = old_context_len / high_freq_factor
  5895. rope_factors = []
  5896. for freq in freqs:
  5897. wavelen = 2 * math.pi / freq
  5898. if wavelen < high_freq_wavelen:
  5899. rope_factors.append(1)
  5900. elif wavelen > low_freq_wavelen:
  5901. rope_factors.append(factor)
  5902. else:
  5903. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5904. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5905. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5906. @ModelBase.register("GraniteForCausalLM")
  5907. class GraniteModel(LlamaModel):
  5908. """Conversion for IBM's GraniteForCausalLM"""
  5909. model_arch = gguf.MODEL_ARCH.GRANITE
  5910. def set_gguf_parameters(self):
  5911. """Granite uses standard llama parameters with the following differences:
  5912. - No head_dim support
  5913. - New multiplier params:
  5914. - attention_scale
  5915. - embedding_scale
  5916. - residual_scale
  5917. - logits_scaling
  5918. """
  5919. if head_dim := self.hparams.pop("head_dim", None):
  5920. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5921. super().set_gguf_parameters()
  5922. # NOTE: Convert _multiplier params to _scale params for naming
  5923. # consistency
  5924. if attention_scale := self.hparams.get("attention_multiplier"):
  5925. self.gguf_writer.add_attention_scale(attention_scale)
  5926. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5927. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5928. self.gguf_writer.add_embedding_scale(embedding_scale)
  5929. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5930. if residual_scale := self.hparams.get("residual_multiplier"):
  5931. self.gguf_writer.add_residual_scale(residual_scale)
  5932. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5933. if logits_scale := self.hparams.get("logits_scaling"):
  5934. self.gguf_writer.add_logit_scale(logits_scale)
  5935. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5936. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5937. class GraniteMoeModel(GraniteModel):
  5938. """Conversion for IBM's GraniteMoeForCausalLM"""
  5939. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5940. def set_gguf_parameters(self):
  5941. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5942. - shared_intermediate_size
  5943. """
  5944. super().set_gguf_parameters()
  5945. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5946. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5947. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5949. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5950. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5951. the hidden size that is then split during forward. To keep compatibility
  5952. with existing mixtral support, we pull them apart here.
  5953. """
  5954. if name.endswith("block_sparse_moe.input_linear.weight"):
  5955. ffn_dim = self.hparams["intermediate_size"]
  5956. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5957. gate, up = data_torch.split(ffn_dim, dim=-2)
  5958. return [
  5959. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5960. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5961. ]
  5962. has_experts = bool(self.hparams.get('num_local_experts'))
  5963. if name.endswith("shared_mlp.input_linear.weight"):
  5964. ffn_dim = self.hparams["shared_intermediate_size"]
  5965. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5966. gate, up = data_torch.split(ffn_dim, dim=-2)
  5967. if has_experts:
  5968. return [
  5969. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5970. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5971. ]
  5972. return [
  5973. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5974. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5975. ]
  5976. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5977. return [
  5978. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5979. ]
  5980. return super().modify_tensors(data_torch, name, bid)
  5981. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5982. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5983. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5984. layers and optionally uses MoE w/ a shared expert"""
  5985. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5986. undo_permute = True
  5987. def __init__(self, *args, **kwargs):
  5988. # Hybrid mamba models use a prefix for the mamba-specific params.
  5989. # TODO: Extend this if the prefix(es) need to be configurable
  5990. self.hparam_prefixes = ["mamba"]
  5991. super().__init__(*args, **kwargs)
  5992. # Lists of which layers use ssm vs attention
  5993. self._attn_layers = self.get_attn_layers()
  5994. self._ssm_layers = [
  5995. i for i in range(self.block_count)
  5996. if i not in self._attn_layers
  5997. ]
  5998. # n_group and d_inner are used during reshape_tensors for mamba2
  5999. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  6000. self.n_group = self.find_hparam(["n_groups"])
  6001. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  6002. def get_attn_layers(self):
  6003. # Explicit list of layer type names
  6004. if layer_types := self.hparams.get("layer_types"):
  6005. return [
  6006. i for i, typ in enumerate(layer_types)
  6007. if typ == "attention"
  6008. ]
  6009. # Layer types indicated by index or period
  6010. attn_layers = self.hparams.get("attn_layer_indices", [])
  6011. if not attn_layers:
  6012. attn_period = self.hparams.get("attn_layer_period")
  6013. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6014. attn_offset = self.hparams.get("attn_layer_offset")
  6015. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6016. attn_layers = [
  6017. i for i in range(self.block_count)
  6018. if i % attn_period == attn_offset
  6019. ]
  6020. return attn_layers
  6021. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6022. prefixed = []
  6023. for pfx in self.hparam_prefixes:
  6024. prefixed.extend(
  6025. "_".join([pfx, k])
  6026. for k in keys
  6027. )
  6028. keys = list(keys) + prefixed
  6029. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6030. def modify_tensors(
  6031. self, data_torch: Tensor, name: str, bid: int | None
  6032. ) -> Iterable[tuple[str, Tensor]]:
  6033. if (
  6034. name.endswith("block_sparse_moe.input_linear.weight")
  6035. or "shared_mlp" in name
  6036. ):
  6037. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6038. # Determine whether this is a mamba layer or an attention layer
  6039. if bid in self._ssm_layers:
  6040. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6041. elif bid in self._attn_layers:
  6042. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6043. return [(self.map_tensor_name(name), data_torch)]
  6044. def set_gguf_parameters(self):
  6045. """This method merges params from both parents and some that are
  6046. specific to this model. The result is some duplication of how the params
  6047. get set. The following warnings are expected during conversion:
  6048. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6049. WARNING:Duplicated key name 'granitehybrid.context_length'
  6050. """
  6051. GraniteMoeModel.set_gguf_parameters(self)
  6052. ## Mamba mixer params ##
  6053. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6054. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  6055. self.gguf_writer.add_ssm_group_count(self.n_group)
  6056. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6057. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6058. # in llama.cpp
  6059. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  6060. ## Attention params ##
  6061. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6062. head_count_kv_vec = [
  6063. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6064. ]
  6065. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6066. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6067. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6068. ## If Bamba, use rope, otherwise don't
  6069. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  6070. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6071. if not use_rope:
  6072. self.gguf_writer.add_context_length(2**20)
  6073. ## Validation ##
  6074. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6075. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6076. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6077. def set_vocab(self):
  6078. self.hparams["pad_vocab_size_multiple"] = 8
  6079. Mamba2Model.set_vocab(self)
  6080. @ModelBase.register("BailingMoeForCausalLM")
  6081. class BailingMoeModel(TextModel):
  6082. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6083. def set_vocab(self):
  6084. self._set_vocab_gpt2()
  6085. def set_gguf_parameters(self):
  6086. super().set_gguf_parameters()
  6087. hparams = self.hparams
  6088. if (rope_dim := hparams.get("head_dim")) is None:
  6089. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6090. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6091. rope_scaling = self.hparams.get("rope_scaling") or {}
  6092. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6093. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6094. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6095. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6096. else:
  6097. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6098. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6099. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6100. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6101. self.gguf_writer.add_expert_weights_scale(1.0)
  6102. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6103. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6104. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6105. _experts: list[dict[str, Tensor]] | None = None
  6106. @staticmethod
  6107. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6108. if n_head_kv is not None and n_head != n_head_kv:
  6109. n_head = n_head_kv
  6110. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6111. .swapaxes(1, 2)
  6112. .reshape(weights.shape))
  6113. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6114. n_head = self.hparams["num_attention_heads"]
  6115. n_kv_head = self.hparams.get("num_key_value_heads")
  6116. n_embd = self.hparams["hidden_size"]
  6117. if (head_dim := self.hparams.get("head_dim")) is None:
  6118. head_dim = n_embd // n_head
  6119. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6120. if name.endswith("attention.dense.weight"):
  6121. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6122. elif name.endswith("query_key_value.weight"):
  6123. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6124. return [
  6125. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6126. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6127. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6128. ]
  6129. elif name.find("mlp.experts") != -1:
  6130. n_experts = self.hparams["num_experts"]
  6131. assert bid is not None
  6132. tensors: list[tuple[str, Tensor]] = []
  6133. if self._experts is None:
  6134. self._experts = [{} for _ in range(self.block_count)]
  6135. self._experts[bid][name] = data_torch
  6136. if len(self._experts[bid]) >= n_experts * 3:
  6137. # merge the experts into a single 3d tensor
  6138. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6139. datas: list[Tensor] = []
  6140. for xid in range(n_experts):
  6141. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6142. datas.append(self._experts[bid][ename])
  6143. del self._experts[bid][ename]
  6144. data_torch = torch.stack(datas, dim=0)
  6145. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6146. new_name = self.map_tensor_name(merged_name)
  6147. tensors.append((new_name, data_torch))
  6148. return tensors
  6149. new_name = self.map_tensor_name(name)
  6150. if new_name == output_name and self.hparams.get("norm_head"):
  6151. data_torch = data_torch.float()
  6152. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6153. return [(new_name, data_torch)]
  6154. def prepare_tensors(self):
  6155. super().prepare_tensors()
  6156. if self._experts is not None:
  6157. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6158. experts = [k for d in self._experts for k in d.keys()]
  6159. if len(experts) > 0:
  6160. raise ValueError(f"Unprocessed experts: {experts}")
  6161. @ModelBase.register("ChameleonForConditionalGeneration")
  6162. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6163. class ChameleonModel(TextModel):
  6164. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6165. def set_gguf_parameters(self):
  6166. super().set_gguf_parameters()
  6167. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6168. def set_vocab(self):
  6169. self._set_vocab_gpt2()
  6170. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6171. # ignore image tokenizer for now
  6172. # TODO: remove this once image support is implemented for Chameleon
  6173. if name.startswith("model.vqmodel"):
  6174. return []
  6175. n_head = self.hparams["num_attention_heads"]
  6176. n_kv_head = self.hparams.get("num_key_value_heads")
  6177. hidden_dim = self.hparams.get("hidden_size")
  6178. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6179. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6180. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6181. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6182. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6183. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6184. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6185. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6186. return [(self.map_tensor_name(name), data_torch)]
  6187. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6188. @staticmethod
  6189. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6190. head_dim = hidden_dim // n_heads
  6191. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6192. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6193. return data_torch
  6194. @ModelBase.register("UltravoxModel")
  6195. class UltravoxModel(TextModel):
  6196. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6197. def __init__(self, *args, **kwargs):
  6198. super().__init__(*args, **kwargs)
  6199. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6200. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6201. class WhisperEncoderModel(MmprojModel):
  6202. has_vision_encoder = False # no vision encoder
  6203. has_audio_encoder = True
  6204. def __init__(self, *args, **kwargs):
  6205. super().__init__(*args, **kwargs)
  6206. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6207. self.hparams["hidden_size"] = self.hparams["d_model"]
  6208. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6209. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6210. def set_gguf_parameters(self):
  6211. super().set_gguf_parameters()
  6212. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6213. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6214. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6215. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6216. del bid, new_name, n_dims # unused
  6217. if ".conv" in name and ".weight" in name:
  6218. return gguf.GGMLQuantizationType.F16
  6219. return False
  6220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6221. del bid # unused
  6222. if name.startswith("language_model."):
  6223. # skip language model tensors
  6224. return []
  6225. # prevent clash naming with vision tensors
  6226. if name.startswith("multi_modal_projector"):
  6227. name = "audio." + name
  6228. if "conv1.bias" in name or "conv2.bias" in name:
  6229. # transpose conv1 and conv2 bias
  6230. data_torch = data_torch.unsqueeze(-1)
  6231. return [(self.map_tensor_name(name), data_torch)]
  6232. @ModelBase.register("UltravoxModel")
  6233. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6234. has_vision_encoder = False # no vision encoder
  6235. has_audio_encoder = True
  6236. def set_gguf_parameters(self):
  6237. super().set_gguf_parameters()
  6238. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6239. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6240. @ModelBase.register("VoxtralForConditionalGeneration")
  6241. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6242. has_vision_encoder = False # no vision encoder
  6243. has_audio_encoder = True
  6244. def set_gguf_parameters(self):
  6245. super().set_gguf_parameters()
  6246. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6247. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6248. @ModelBase.register("FalconH1ForCausalLM")
  6249. class FalconH1Model(Mamba2Model):
  6250. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6251. def __init__(self, *args, **kwargs):
  6252. # Set the hparam prefixes for Falcon Mamba2
  6253. self.hparam_prefixes = ["mamba"]
  6254. # Initialize the base Mamba2Model
  6255. super().__init__(*args, **kwargs)
  6256. # Use Llama conversion for attention
  6257. self._transformer_model_class = LlamaModel
  6258. # n_group and d_inner are used during reshape_tensors for mamba2
  6259. self.n_group = self.find_hparam(["n_groups"])
  6260. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6261. self.d_head = self.find_hparam(["d_head"])
  6262. # Initialize any Falcon Mamba2 specific attributes
  6263. self.has_attention = True # Falcon Mamba2 has attention components
  6264. # Load Falcon-H1 multipliers from hyperparameters
  6265. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6266. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6267. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6268. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6269. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6270. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6271. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6272. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6273. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6274. prefixed = []
  6275. for pfx in self.hparam_prefixes:
  6276. prefixed.extend(
  6277. "_".join([pfx, k])
  6278. for k in keys
  6279. )
  6280. keys = list(keys) + prefixed
  6281. return super().find_hparam(keys, *args, **kwargs)
  6282. def set_vocab(self):
  6283. self._set_vocab_gpt2()
  6284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6285. tensors = list(super().modify_tensors(data_torch, name, bid))
  6286. tensor = tensors[0][1]
  6287. if "down_proj" in name:
  6288. tensor = tensor * self.mlp_multipliers[1]
  6289. elif "gate_proj" in name:
  6290. tensor = tensor * self.mlp_multipliers[0]
  6291. elif "k_proj" in name:
  6292. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6293. elif "q_proj" in name:
  6294. tensor = tensor * self.attention_in_multiplier
  6295. elif "v_proj" in name:
  6296. tensor = tensor * self.attention_in_multiplier
  6297. elif "o_proj" in name:
  6298. tensor = tensor * self.attention_out_multiplier
  6299. elif "out_proj" in name:
  6300. tensor = tensor * self.ssm_out_multiplier
  6301. elif "in_proj" in name:
  6302. tensor = tensor * self.ssm_in_multiplier
  6303. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6304. intermediate_size = self.hparams["mamba_d_ssm"]
  6305. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6306. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6307. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6308. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6309. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6310. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6311. elif "lm_head" in name:
  6312. tensor = tensor * self.hparams["lm_head_multiplier"]
  6313. elif "embed_tokens" in name:
  6314. tensor = tensor * self.hparams["embedding_multiplier"]
  6315. elif "mamba.norm" in name:
  6316. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6317. tensors = [(tensors[0][0], tensor)]
  6318. return tensors
  6319. def set_gguf_parameters(self):
  6320. super().set_gguf_parameters()
  6321. ## General Params ##
  6322. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6323. # Override some Mamba2 defaults
  6324. self.gguf_writer.add_block_count(self.block_count)
  6325. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6326. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6327. ## Attention params ##
  6328. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6329. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6330. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6331. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6332. ## Validation ##
  6333. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6334. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6335. # Add any other Falcon Mamba2 specific configuration
  6336. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6337. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6338. class HunYuanMoEModel(TextModel):
  6339. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6340. def set_vocab(self):
  6341. from transformers import AutoTokenizer
  6342. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6343. # 1. Get the pre-tokenizer identifier hash
  6344. tokpre = self.get_vocab_base_pre(tokenizer)
  6345. # 2. Reverse-engineer the merges list from mergeable_ranks
  6346. merges = []
  6347. vocab = {}
  6348. mergeable_ranks = tokenizer.mergeable_ranks
  6349. for token, rank in mergeable_ranks.items():
  6350. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6351. if len(token) == 1:
  6352. continue
  6353. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6354. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6355. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6356. # 3. Generate the tokens and toktypes lists
  6357. vocab_size = self.hparams["vocab_size"]
  6358. assert tokenizer.vocab_size == vocab_size
  6359. special_tokens = tokenizer.special_tokens
  6360. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6361. tokens: list[str] = []
  6362. toktypes: list[int] = []
  6363. for i in range(vocab_size):
  6364. if i not in reverse_vocab:
  6365. tokens.append(f"[PAD{i}]")
  6366. toktypes.append(gguf.TokenType.UNUSED)
  6367. else:
  6368. token = reverse_vocab[i]
  6369. tokens.append(token)
  6370. if i in special_tokens.values():
  6371. toktypes.append(gguf.TokenType.CONTROL)
  6372. else:
  6373. toktypes.append(gguf.TokenType.NORMAL)
  6374. # 4. Write all vocab-related fields to the GGUF writer
  6375. self.gguf_writer.add_tokenizer_model("gpt2")
  6376. self.gguf_writer.add_tokenizer_pre(tokpre)
  6377. self.gguf_writer.add_token_list(tokens)
  6378. self.gguf_writer.add_token_types(toktypes)
  6379. self.gguf_writer.add_token_merges(merges)
  6380. # 5. Add special tokens and chat templates
  6381. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6382. special_vocab.add_to_gguf(self.gguf_writer)
  6383. # FIX for BOS token: Overwrite incorrect id read from config.json
  6384. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6385. def set_gguf_parameters(self):
  6386. super().set_gguf_parameters()
  6387. hparams = self.hparams
  6388. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6389. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6390. moe_intermediate_size = hparams["moe_intermediate_size"]
  6391. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6392. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6393. moe_topk = hparams["moe_topk"]
  6394. assert all(topk == moe_topk[0] for topk in moe_topk)
  6395. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6396. moe_shared_expert = hparams["num_shared_expert"]
  6397. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6398. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6399. # Rope
  6400. rope_scaling = hparams.get("rope_scaling", {})
  6401. if rope_scaling.get("type") == "dynamic":
  6402. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6403. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6404. alpha = rope_scaling.get("alpha", 1000)
  6405. base = hparams.get("rope_theta", 10000.0)
  6406. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6407. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6408. self.gguf_writer.add_rope_freq_base(scaled_base)
  6409. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6410. self.gguf_writer.add_rope_scaling_factor(1)
  6411. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6412. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6413. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6414. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6415. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6416. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6417. _experts: list[dict[str, Tensor]] | None = None
  6418. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6419. if name == "lm_head.weight":
  6420. if self.hparams.get("tie_word_embeddings", False):
  6421. logger.info("Skipping tied output layer 'lm_head.weight'")
  6422. return []
  6423. if name.find("mlp.experts") != -1:
  6424. n_experts = self.hparams["num_experts"]
  6425. assert bid is not None
  6426. if self._experts is None:
  6427. self._experts = [{} for _ in range(self.block_count)]
  6428. self._experts[bid][name] = data_torch
  6429. if len(self._experts[bid]) >= n_experts * 3:
  6430. # merge the experts into a single 3d tensor
  6431. tensors: list[tuple[str, Tensor]] = []
  6432. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6433. datas: list[Tensor] = []
  6434. for xid in range(n_experts):
  6435. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6436. datas.append(self._experts[bid][ename])
  6437. del self._experts[bid][ename]
  6438. data_torch = torch.stack(datas, dim=0)
  6439. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6440. new_name = self.map_tensor_name(merged_name)
  6441. tensors.append((new_name, data_torch))
  6442. return tensors
  6443. else:
  6444. return []
  6445. return [(self.map_tensor_name(name), data_torch)]
  6446. def prepare_tensors(self):
  6447. super().prepare_tensors()
  6448. if self._experts is not None:
  6449. experts = [k for d in self._experts for k in d.keys()]
  6450. if len(experts) > 0:
  6451. raise ValueError(f"Unprocessed experts: {experts}")
  6452. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6453. class HunYuanModel(TextModel):
  6454. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6455. def set_vocab(self):
  6456. if (self.dir_model / "tokenizer.json").is_file():
  6457. self._set_vocab_gpt2()
  6458. else:
  6459. from transformers import AutoTokenizer
  6460. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6461. # 1. Get the pre-tokenizer identifier hash
  6462. tokpre = self.get_vocab_base_pre(tokenizer)
  6463. # 2. Reverse-engineer the merges list from mergeable_ranks
  6464. merges = []
  6465. vocab = {}
  6466. mergeable_ranks = tokenizer.mergeable_ranks
  6467. for token, rank in mergeable_ranks.items():
  6468. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6469. if len(token) == 1:
  6470. continue
  6471. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6472. if len(merged) == 2:
  6473. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6474. # 3. Generate the tokens and toktypes lists
  6475. vocab_size = self.hparams["vocab_size"]
  6476. assert tokenizer.vocab_size == vocab_size
  6477. special_tokens = tokenizer.special_tokens
  6478. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6479. tokens: list[str] = []
  6480. toktypes: list[int] = []
  6481. for i in range(vocab_size):
  6482. if i not in reverse_vocab:
  6483. tokens.append(f"[PAD{i}]")
  6484. toktypes.append(gguf.TokenType.UNUSED)
  6485. else:
  6486. token = reverse_vocab[i]
  6487. tokens.append(token)
  6488. if i in special_tokens.values():
  6489. toktypes.append(gguf.TokenType.CONTROL)
  6490. else:
  6491. toktypes.append(gguf.TokenType.NORMAL)
  6492. # 4. Write all vocab-related fields to the GGUF writer
  6493. self.gguf_writer.add_tokenizer_model("gpt2")
  6494. self.gguf_writer.add_tokenizer_pre(tokpre)
  6495. self.gguf_writer.add_token_list(tokens)
  6496. self.gguf_writer.add_token_types(toktypes)
  6497. self.gguf_writer.add_token_merges(merges)
  6498. # 5. Add special tokens and chat templates
  6499. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6500. special_vocab.add_to_gguf(self.gguf_writer)
  6501. # FIX for BOS token: Overwrite incorrect id read from config.json
  6502. if self.hparams['hidden_size'] == 4096:
  6503. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6504. def set_gguf_parameters(self):
  6505. super().set_gguf_parameters()
  6506. hparams = self.hparams
  6507. # Rope
  6508. rope_scaling = hparams.get("rope_scaling", {})
  6509. if rope_scaling.get("type") == "dynamic":
  6510. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6511. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6512. alpha = rope_scaling.get("alpha", 50)
  6513. base = hparams.get("rope_theta", 10000.0)
  6514. dim = hparams["head_dim"]
  6515. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6516. self.gguf_writer.add_rope_freq_base(scaled_base)
  6517. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6518. self.gguf_writer.add_rope_scaling_factor(1)
  6519. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6520. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6521. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6522. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6523. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6524. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6525. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6526. if name == "lm_head.weight":
  6527. if self.hparams.get("tie_word_embeddings", False):
  6528. logger.info("Skipping tied output layer 'lm_head.weight'")
  6529. return []
  6530. return [(self.map_tensor_name(name), data_torch)]
  6531. @ModelBase.register("SmolLM3ForCausalLM")
  6532. class SmolLM3Model(LlamaModel):
  6533. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6534. def set_vocab(self):
  6535. super().set_vocab()
  6536. # remove unsupported array slicing in chat template
  6537. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6538. from transformers import AutoTokenizer
  6539. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6540. if tokenizer.chat_template is not None:
  6541. chat_template = tokenizer.chat_template.replace("[:]", "")
  6542. self.gguf_writer.add_chat_template(chat_template)
  6543. @ModelBase.register("GptOssForCausalLM")
  6544. class GptOssModel(TextModel):
  6545. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6546. def transform_nibble_layout(self, tensor):
  6547. assert tensor.dtype == torch.uint8
  6548. assert tensor.shape[-1] == 16
  6549. # swap nibbles
  6550. t_lo = tensor & 0x0F
  6551. t_hi = tensor & 0xF0
  6552. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6553. tensor = t_swapped
  6554. # transform aaaa...bbbb... to abababab...
  6555. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6556. # get a_
  6557. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6558. blk_a1 = (blk_a << 4).view(-1, 1)
  6559. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6560. # get _b
  6561. blk_b0 = (blk_b >> 4).view(-1, 1)
  6562. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6563. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6564. # swap once more
  6565. out = blk_a | blk_b
  6566. out_h = out & 0xF0
  6567. out_l = out & 0x0F
  6568. out = (out_h >> 4) | (out_l << 4)
  6569. return out
  6570. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6571. assert blocks.dtype == torch.uint8
  6572. assert scales.dtype == torch.uint8
  6573. scales = scales.unsqueeze(-1)
  6574. assert len(blocks.shape) == 4
  6575. assert len(scales.shape) == 4
  6576. blocks = self.transform_nibble_layout(blocks)
  6577. new_data = torch.concat((scales, blocks), dim=-1)
  6578. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6579. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6580. # flatten last dim
  6581. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6582. new_data = new_data.numpy()
  6583. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6584. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6585. blocks0: Tensor = torch.zeros(1)
  6586. blocks1: Tensor = torch.zeros(1)
  6587. # we assume that tensors are loaded in the correct order
  6588. for name, data_torch in self.get_tensors():
  6589. if "mlp.experts.down_proj_blocks" in name:
  6590. blocks0 = data_torch
  6591. elif "mlp.experts.down_proj_scales" in name:
  6592. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6593. self.repack_mxfp4(new_name, blocks0, data_torch)
  6594. elif "mlp.experts.gate_up_proj_blocks" in name:
  6595. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6596. elif "mlp.experts.gate_up_proj_scales" in name:
  6597. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6598. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6599. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6600. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6601. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6602. return []
  6603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6604. del bid # unused
  6605. if "sinks" in name:
  6606. name += ".weight"
  6607. # correct naming for down_proj
  6608. if "down_proj" in name:
  6609. if name.endswith("_bias"):
  6610. name = name.replace("down_proj_bias", "down_proj.bias")
  6611. elif "_blocks" not in name and "_scales" not in name:
  6612. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6613. name = name.replace("down_proj", "down_proj.weight")
  6614. data_torch = data_torch.transpose(-1, -2)
  6615. else:
  6616. # otherwise, it should already be repacked to ggml MXFP4 format
  6617. return []
  6618. # split the gate_up into gate and up
  6619. if "gate_up_proj" in name:
  6620. if name.endswith("_bias"):
  6621. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6622. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6623. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6624. return [
  6625. (self.map_tensor_name(name_gate), gate_proj_bias),
  6626. (self.map_tensor_name(name_up), up_proj_bias)
  6627. ]
  6628. elif "_blocks" not in name and "_scales" not in name:
  6629. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6630. name_up = name.replace("gate_up_proj", "up_proj.weight")
  6631. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  6632. data_torch = data_torch.transpose(-1, -2)
  6633. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6634. return [
  6635. (self.map_tensor_name(name_gate), gate_proj_weight),
  6636. (self.map_tensor_name(name_up), up_proj_weight)
  6637. ]
  6638. else:
  6639. # otherwise, it should already be repacked to ggml MXFP4 format
  6640. return []
  6641. return [(self.map_tensor_name(name), data_torch)]
  6642. def set_vocab(self):
  6643. self._set_vocab_gpt2()
  6644. def set_gguf_parameters(self):
  6645. super().set_gguf_parameters()
  6646. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6647. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6648. rope_scaling = self.hparams.get("rope_scaling") or {}
  6649. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6650. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6651. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6652. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6653. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6654. @ModelBase.register("Lfm2ForCausalLM")
  6655. @ModelBase.register("LFM2ForCausalLM")
  6656. class LFM2Model(TextModel):
  6657. model_arch = gguf.MODEL_ARCH.LFM2
  6658. def _add_feed_forward_length(self):
  6659. ff_dim = self.hparams["block_ff_dim"]
  6660. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6661. ff_dim = self.hparams["block_ff_dim"]
  6662. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6663. multiple_of = self.hparams["block_multiple_of"]
  6664. if auto_adjust_ff_dim:
  6665. ff_dim = int(2 * ff_dim / 3)
  6666. # custom dim factor multiplier
  6667. if ffn_dim_multiplier is not None:
  6668. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6669. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6670. self.gguf_writer.add_feed_forward_length(ff_dim)
  6671. def set_gguf_parameters(self):
  6672. # set num_key_value_heads only for attention layers
  6673. self.hparams["num_key_value_heads"] = [
  6674. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6675. for layer_type in self.hparams["layer_types"]
  6676. ]
  6677. super().set_gguf_parameters()
  6678. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6679. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6680. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6681. self._add_feed_forward_length()
  6682. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6683. # conv op requires 2d tensor
  6684. if 'conv.conv' in name:
  6685. data_torch = data_torch.squeeze(1)
  6686. return [(self.map_tensor_name(name), data_torch)]
  6687. @ModelBase.register("SmallThinkerForCausalLM")
  6688. class SmallThinkerModel(TextModel):
  6689. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6690. def set_gguf_parameters(self):
  6691. super().set_gguf_parameters()
  6692. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6693. self.gguf_writer.add_expert_count(n_experts)
  6694. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6695. self.gguf_writer.add_expert_used_count(n_experts_used)
  6696. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6697. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6698. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6699. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6700. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6701. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6702. else:
  6703. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6704. # YaRN is not enabled by default
  6705. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6706. rope_scaling = self.hparams.get("rope_scaling") or {}
  6707. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6708. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6709. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6710. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6711. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6712. if sliding_window_layout:
  6713. for i in sliding_window_layout:
  6714. if i != 0:
  6715. sliding_window = self.hparams.get("sliding_window_size")
  6716. if sliding_window:
  6717. self.gguf_writer.add_sliding_window(sliding_window)
  6718. break
  6719. _experts: list[dict[str, Tensor]] | None = None
  6720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6721. # process the experts separately
  6722. if name.find("experts") != -1:
  6723. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6724. assert bid is not None
  6725. if self._experts is None:
  6726. self._experts = [{} for _ in range(self.block_count)]
  6727. self._experts[bid][name] = data_torch
  6728. if len(self._experts[bid]) >= n_experts * 3:
  6729. tensors: list[tuple[str, Tensor]] = []
  6730. # merge the experts into a single 3d tensor
  6731. for w_name in ["down", "gate", "up"]:
  6732. datas: list[Tensor] = []
  6733. for xid in range(n_experts):
  6734. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6735. datas.append(self._experts[bid][ename])
  6736. del self._experts[bid][ename]
  6737. data_torch = torch.stack(datas, dim=0)
  6738. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6739. new_name = self.map_tensor_name(merged_name)
  6740. tensors.append((new_name, data_torch))
  6741. return tensors
  6742. else:
  6743. return []
  6744. return [(self.map_tensor_name(name), data_torch)]
  6745. def prepare_tensors(self):
  6746. super().prepare_tensors()
  6747. if self._experts is not None:
  6748. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6749. experts = [k for d in self._experts for k in d.keys()]
  6750. if len(experts) > 0:
  6751. raise ValueError(f"Unprocessed experts: {experts}")
  6752. ###### CONVERSION LOGIC ######
  6753. # tree of lazy tensors
  6754. class LazyTorchTensor(gguf.LazyBase):
  6755. _tensor_type = torch.Tensor
  6756. # to keep the type-checker happy
  6757. dtype: torch.dtype
  6758. shape: torch.Size
  6759. # only used when converting a torch.Tensor to a np.ndarray
  6760. _dtype_map: dict[torch.dtype, type] = {
  6761. torch.float16: np.float16,
  6762. torch.float32: np.float32,
  6763. torch.uint8: np.uint8,
  6764. }
  6765. # used for safetensors slices
  6766. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6767. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6768. _dtype_str_map: dict[str, torch.dtype] = {
  6769. "F64": torch.float64,
  6770. "F32": torch.float32,
  6771. "BF16": torch.bfloat16,
  6772. "F16": torch.float16,
  6773. # "U64": torch.uint64,
  6774. "I64": torch.int64,
  6775. # "U32": torch.uint32,
  6776. "I32": torch.int32,
  6777. # "U16": torch.uint16,
  6778. "I16": torch.int16,
  6779. "U8": torch.uint8,
  6780. "I8": torch.int8,
  6781. "BOOL": torch.bool,
  6782. "F8_E4M3": torch.float8_e4m3fn,
  6783. "F8_E5M2": torch.float8_e5m2,
  6784. }
  6785. def numpy(self) -> gguf.LazyNumpyTensor:
  6786. dtype = self._dtype_map[self.dtype]
  6787. return gguf.LazyNumpyTensor(
  6788. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6789. args=(self,),
  6790. func=(lambda s: s.numpy())
  6791. )
  6792. @classmethod
  6793. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6794. return torch.empty(size=shape, dtype=dtype, device="meta")
  6795. @classmethod
  6796. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6797. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6798. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6799. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6800. return cast(torch.Tensor, lazy)
  6801. @classmethod
  6802. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6803. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6804. shape = remote_tensor.shape
  6805. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6806. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6807. return cast(torch.Tensor, lazy)
  6808. @classmethod
  6809. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6810. del types # unused
  6811. if kwargs is None:
  6812. kwargs = {}
  6813. if func is torch.Tensor.numpy:
  6814. return args[0].numpy()
  6815. return cls._wrap_fn(func)(*args, **kwargs)
  6816. def parse_args() -> argparse.Namespace:
  6817. parser = argparse.ArgumentParser(
  6818. description="Convert a huggingface model to a GGML compatible file")
  6819. parser.add_argument(
  6820. "--vocab-only", action="store_true",
  6821. help="extract only the vocab",
  6822. )
  6823. parser.add_argument(
  6824. "--outfile", type=Path,
  6825. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6826. )
  6827. parser.add_argument(
  6828. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6829. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6830. )
  6831. parser.add_argument(
  6832. "--bigendian", action="store_true",
  6833. help="model is executed on big endian machine",
  6834. )
  6835. parser.add_argument(
  6836. "model", type=str,
  6837. help="directory containing model file or huggingface repository ID (if --remote)",
  6838. nargs="?",
  6839. )
  6840. parser.add_argument(
  6841. "--use-temp-file", action="store_true",
  6842. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6843. )
  6844. parser.add_argument(
  6845. "--no-lazy", action="store_true",
  6846. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6847. )
  6848. parser.add_argument(
  6849. "--model-name", type=str, default=None,
  6850. help="name of the model",
  6851. )
  6852. parser.add_argument(
  6853. "--verbose", action="store_true",
  6854. help="increase output verbosity",
  6855. )
  6856. parser.add_argument(
  6857. "--split-max-tensors", type=int, default=0,
  6858. help="max tensors in each split",
  6859. )
  6860. parser.add_argument(
  6861. "--split-max-size", type=str, default="0",
  6862. help="max size per split N(M|G)",
  6863. )
  6864. parser.add_argument(
  6865. "--dry-run", action="store_true",
  6866. help="only print out a split plan and exit, without writing any new files",
  6867. )
  6868. parser.add_argument(
  6869. "--no-tensor-first-split", action="store_true",
  6870. help="do not add tensors to the first split (disabled by default)"
  6871. )
  6872. parser.add_argument(
  6873. "--metadata", type=Path,
  6874. help="Specify the path for an authorship metadata override file"
  6875. )
  6876. parser.add_argument(
  6877. "--print-supported-models", action="store_true",
  6878. help="Print the supported models"
  6879. )
  6880. parser.add_argument(
  6881. "--remote", action="store_true",
  6882. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6883. )
  6884. parser.add_argument(
  6885. "--mmproj", action="store_true",
  6886. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6887. )
  6888. args = parser.parse_args()
  6889. if not args.print_supported_models and args.model is None:
  6890. parser.error("the following arguments are required: model")
  6891. return args
  6892. def split_str_to_n_bytes(split_str: str) -> int:
  6893. if split_str.endswith("K"):
  6894. n = int(split_str[:-1]) * 1000
  6895. elif split_str.endswith("M"):
  6896. n = int(split_str[:-1]) * 1000 * 1000
  6897. elif split_str.endswith("G"):
  6898. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6899. elif split_str.isnumeric():
  6900. n = int(split_str)
  6901. else:
  6902. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6903. if n < 0:
  6904. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6905. return n
  6906. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6907. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6908. # maybe we should fallback to text model's arch in that case, since not many models have both
  6909. text_config = hparams.get("text_config", {})
  6910. vision_config = hparams.get("vision_config", {})
  6911. arch = None
  6912. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6913. arch = arches[0]
  6914. elif "ssm_cfg" in hparams:
  6915. # For non-hf Mamba and Mamba2 models
  6916. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6917. # if "architectures" is found in the sub-config, use that instead
  6918. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6919. arch = text_config["architectures"][0]
  6920. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6921. arch = vision_config["architectures"][0]
  6922. if arch is None:
  6923. raise ValueError("Failed to detect model architecture")
  6924. return arch
  6925. def main() -> None:
  6926. args = parse_args()
  6927. if args.print_supported_models:
  6928. logger.error("Supported models:")
  6929. ModelBase.print_registered_models()
  6930. sys.exit(0)
  6931. if args.verbose:
  6932. logging.basicConfig(level=logging.DEBUG)
  6933. else:
  6934. logging.basicConfig(level=logging.INFO)
  6935. if args.remote:
  6936. hf_repo_id = args.model
  6937. from huggingface_hub import snapshot_download
  6938. local_dir = snapshot_download(
  6939. repo_id=hf_repo_id,
  6940. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6941. dir_model = Path(local_dir)
  6942. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6943. else:
  6944. hf_repo_id = None
  6945. dir_model = Path(args.model)
  6946. if not dir_model.is_dir():
  6947. logger.error(f'Error: {dir_model} is not a directory')
  6948. sys.exit(1)
  6949. ftype_map: dict[str, gguf.LlamaFileType] = {
  6950. "f32": gguf.LlamaFileType.ALL_F32,
  6951. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6952. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6953. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6954. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6955. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6956. "auto": gguf.LlamaFileType.GUESSED,
  6957. }
  6958. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6959. if args.use_temp_file and is_split:
  6960. logger.error("Error: Cannot use temp file when splitting")
  6961. sys.exit(1)
  6962. if args.outfile is not None:
  6963. fname_out = args.outfile
  6964. elif hf_repo_id:
  6965. # if remote, use the model ID as the output file name
  6966. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6967. else:
  6968. fname_out = dir_model
  6969. logger.info(f"Loading model: {dir_model.name}")
  6970. if args.mmproj:
  6971. if "mmproj" not in fname_out.name:
  6972. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6973. with torch.inference_mode():
  6974. output_type = ftype_map[args.outtype]
  6975. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6976. hparams = ModelBase.load_hparams(dir_model)
  6977. model_architecture = get_model_architecture(hparams, model_type)
  6978. logger.info(f"Model architecture: {model_architecture}")
  6979. try:
  6980. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6981. except NotImplementedError:
  6982. logger.error(f"Model {model_architecture} is not supported")
  6983. sys.exit(1)
  6984. model_instance = model_class(dir_model, output_type, fname_out,
  6985. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6986. eager=args.no_lazy,
  6987. metadata_override=args.metadata, model_name=args.model_name,
  6988. split_max_tensors=args.split_max_tensors,
  6989. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6990. small_first_shard=args.no_tensor_first_split,
  6991. remote_hf_model_id=hf_repo_id)
  6992. if args.vocab_only:
  6993. logger.info("Exporting model vocab...")
  6994. model_instance.write_vocab()
  6995. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6996. else:
  6997. logger.info("Exporting model...")
  6998. model_instance.write()
  6999. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7000. logger.info(f"Model successfully exported to {out_path}")
  7001. if __name__ == '__main__':
  7002. main()