tensor_mapping.py 74 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. "model.norm", # cogvlm
  100. ),
  101. # Rope frequencies
  102. MODEL_TENSOR.ROPE_FREQS: (
  103. "rope.freqs", # llama-pth
  104. "rotary_pos_emb.inv_freq", # chatglm
  105. ),
  106. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  107. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  108. MODEL_TENSOR.CONV1D: (
  109. "backbone.embed", # roberta
  110. ),
  111. }
  112. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  113. # Attention norm
  114. MODEL_TENSOR.ATTN_NORM: (
  115. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  116. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  117. "transformer.blocks.{bid}.norm_1", # mpt
  118. "transformer.h.{bid}.input_layernorm", # falcon7b
  119. "h.{bid}.input_layernorm", # bloom
  120. "transformer.h.{bid}.ln_mlp", # falcon40b
  121. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  122. "layers.{bid}.attention_norm", # llama-pth
  123. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  124. "model.layers.{bid}.ln1", # yi
  125. "h.{bid}.ln_1", # gpt2
  126. "transformer.h.{bid}.ln", # phi2
  127. "model.layers.layers.{bid}.norm", # plamo
  128. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  129. "model.layers.{bid}.attention_norm", # internlm2
  130. "model.layers.{bid}.norm", # mamba-qbert
  131. "backbone.layers.{bid}.norm", # mamba
  132. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  133. "model.layers.{bid}.pre_attn_norm", # grok-2
  134. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  135. "encoder.layers.{bid}.input_layernorm", # chatglm
  136. "transformer.layers.{bid}.attn_norm", # openelm
  137. "rwkv.blocks.{bid}.ln1", # rwkv6
  138. "model.layers.{bid}.ln1", # rwkv7
  139. "model.layers.{bid}.input_layernorm", # llama4
  140. "layers.{bid}.input_layernorm", # embeddinggemma
  141. "transformer_encoder.{bid}.attention_norm", # neobert
  142. "model.layers.{bid}.operator_norm", # lfm2
  143. "model.transformer.blocks.{bid}.attn_norm", # llada
  144. "layers.{bid}.input_layernorm", # qwen3-embedding
  145. "model.layers.{bid}.attention_layernorm" # apertus
  146. ),
  147. # Attention norm 2
  148. MODEL_TENSOR.ATTN_NORM_2: (
  149. "transformer.h.{bid}.ln_attn", # falcon40b
  150. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  151. "rwkv.blocks.{bid}.ln2", # rwkv6
  152. "model.layers.{bid}.ln2", # rwkv7
  153. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  154. ),
  155. # Attention query-key-value
  156. MODEL_TENSOR.ATTN_QKV: (
  157. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  158. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  159. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  160. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  161. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  162. "h.{bid}.self_attention.query_key_value", # bloom
  163. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  164. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  165. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  166. "h.{bid}.attn.c_attn", # gpt2
  167. "transformer.h.{bid}.mixer.Wqkv", # phi2
  168. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  169. "encoder.layers.{bid}.mixer.Wqkv", # jina
  170. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  171. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  172. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  173. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  174. "transformer_encoder.{bid}.qkv", # neobert
  175. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  176. ),
  177. # Attention query
  178. MODEL_TENSOR.ATTN_Q: (
  179. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  180. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  181. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  182. "layers.{bid}.attention.wq", # llama-pth
  183. "encoder.layer.{bid}.attention.self.query", # bert
  184. "transformer.layer.{bid}.attention.q_lin", # distillbert
  185. "transformer.h.{bid}.attn.q_proj", # gpt-j
  186. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  187. "model.layers.{bid}.attention.wq", # internlm2
  188. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  189. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  190. "model.layers.{bid}.self_attn.q_proj", # llama4
  191. "model.transformer.blocks.{bid}.q_proj", # llada
  192. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  193. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  194. ),
  195. # Attention key
  196. MODEL_TENSOR.ATTN_K: (
  197. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  198. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  199. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  200. "layers.{bid}.attention.wk", # llama-pth
  201. "encoder.layer.{bid}.attention.self.key", # bert
  202. "transformer.layer.{bid}.attention.k_lin", # distillbert
  203. "transformer.h.{bid}.attn.k_proj", # gpt-j
  204. "transformer.h.{bid}.attn.k", # refact
  205. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  206. "model.layers.{bid}.attention.wk", # internlm2
  207. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  208. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  209. "model.layers.{bid}.self_attn.k_proj", # llama4
  210. "model.transformer.blocks.{bid}.k_proj", # llada
  211. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  212. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  213. ),
  214. # Attention value
  215. MODEL_TENSOR.ATTN_V: (
  216. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  217. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  218. "layers.{bid}.attention.wv", # llama-pth
  219. "encoder.layer.{bid}.attention.self.value", # bert
  220. "transformer.layer.{bid}.attention.v_lin", # distillbert
  221. "transformer.h.{bid}.attn.v_proj", # gpt-j
  222. "transformer.h.{bid}.attn.v", # refact
  223. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  224. "model.layers.{bid}.attention.wv", # internlm2
  225. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  226. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  227. "model.layers.{bid}.self_attn.v_proj", # llama4
  228. "model.transformer.blocks.{bid}.v_proj", # llada
  229. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  230. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  231. ),
  232. # Attention output
  233. MODEL_TENSOR.ATTN_OUT: (
  234. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  235. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  236. "transformer.blocks.{bid}.attn.out_proj", # mpt
  237. "transformer.h.{bid}.self_attention.dense", # falcon
  238. "h.{bid}.self_attention.dense", # bloom
  239. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  240. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  241. "model.layers.{bid}.self_attn.out_proj", # lfm2
  242. "model.layers.{bid}.self_attn.linear_attn", # deci
  243. "layers.{bid}.attention.wo", # llama-pth
  244. "encoder.layer.{bid}.attention.output.dense", # bert
  245. "transformer.layer.{bid}.attention.out_lin", # distillbert
  246. "transformer.h.{bid}.attn.out_proj", # gpt-j
  247. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  248. "model.layers.{bid}.self_attn.dense", # persimmon
  249. "model.layers.{bid}.attention.dense", # bailingmoe2
  250. "h.{bid}.attn.c_proj", # gpt2
  251. "transformer.h.{bid}.mixer.out_proj", # phi2
  252. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  253. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  254. "model.layers.{bid}.attention.wo", # internlm2
  255. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  256. "encoder.layers.{bid}.mixer.out_proj", # jina
  257. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  258. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  259. "encoder.layers.{bid}.self_attention.dense", # chatglm
  260. "transformer.layers.{bid}.attn.out_proj", # openelm
  261. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  262. "model.layers.{bid}.self_attn.o_proj", # llama4
  263. "transformer_encoder.{bid}.wo", # neobert
  264. "model.transformer.blocks.{bid}.attn_out", # llada
  265. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  266. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  267. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  268. ),
  269. # Attention output norm
  270. MODEL_TENSOR.ATTN_OUT_NORM: (
  271. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  272. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  273. "encoder.layers.{bid}.norm1", # nomic-bert
  274. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  275. "model.layers.{bid}.post_attn_norm", # grok-2
  276. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  277. ),
  278. MODEL_TENSOR.ATTN_POST_NORM: (
  279. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  280. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  281. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  282. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  283. ),
  284. # Rotary embeddings
  285. MODEL_TENSOR.ATTN_ROT_EMBD: (
  286. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  287. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  288. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  289. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  290. ),
  291. MODEL_TENSOR.ATTN_SINKS: (
  292. "model.layers.{bid}.self_attn.sinks", # openai-moe
  293. ),
  294. # Feed-forward norm
  295. MODEL_TENSOR.FFN_NORM: (
  296. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  297. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  298. "h.{bid}.post_attention_layernorm", # bloom
  299. "transformer.blocks.{bid}.norm_2", # mpt
  300. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  301. "layers.{bid}.ffn_norm", # llama-pth
  302. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  303. "model.layers.{bid}.ln2", # yi
  304. "h.{bid}.ln_2", # gpt2
  305. "model.layers.{bid}.ffn_norm", # internlm2
  306. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  307. "model.layers.{bid}.pre_moe_norm", # grok-2
  308. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  309. "transformer.layers.{bid}.ffn_norm", # openelm
  310. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  311. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  312. "model.layers.{bid}.post_attention_layernorm", # llama4
  313. "transformer_encoder.{bid}.ffn_norm", # neobert
  314. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  315. "model.transformer.blocks.{bid}.ff_norm", # llada
  316. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  317. "model.layers.{bid}.feedforward_layernorm", # apertus
  318. ),
  319. # Post feed-forward norm
  320. MODEL_TENSOR.FFN_PRE_NORM: (
  321. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  322. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  323. "model.layers.{bid}.pre_ff_layernorm.weight",
  324. ),
  325. # Post feed-forward norm
  326. MODEL_TENSOR.FFN_POST_NORM: (
  327. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  328. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  329. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  330. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  331. "model.layers.{bid}.feed_forward.up_proj",
  332. "model.layers.{bid}.post_moe_norm", # grok-2
  333. ),
  334. MODEL_TENSOR.FFN_GATE_INP: (
  335. "layers.{bid}.feed_forward.gate", # mixtral
  336. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  337. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  338. "transformer.decoder_layer.{bid}.router", # Grok
  339. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  340. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  341. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  342. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  343. "model.layers.{bid}.mlp.router", # openai-moe
  344. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  345. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  346. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  347. ),
  348. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  349. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  350. ),
  351. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  352. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  353. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  354. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  355. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  356. ),
  357. # Feed-forward up
  358. MODEL_TENSOR.FFN_UP: (
  359. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  360. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  361. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  362. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  363. "h.{bid}.mlp.dense_h_to_4h", # bloom
  364. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  365. "layers.{bid}.mlp.up_proj", # embeddinggemma
  366. "layers.{bid}.feed_forward.w3", # llama-pth
  367. "encoder.layer.{bid}.intermediate.dense", # bert
  368. "transformer.layer.{bid}.ffn.lin1", # distillbert
  369. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  370. "transformer.h.{bid}.mlp.linear_3", # refact
  371. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  372. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  373. "transformer.h.{bid}.mlp.w1", # qwen
  374. "h.{bid}.mlp.c_fc", # gpt2
  375. "transformer.h.{bid}.mlp.fc1", # phi2
  376. "model.layers.{bid}.mlp.fc1", # phi2
  377. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  378. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  379. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  380. "model.layers.{bid}.feed_forward.w3", # internlm2
  381. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  382. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  383. "model.layers.{bid}.mlp.c_fc", # starcoder2
  384. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  385. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  386. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  387. "model.layers.{bid}.residual_mlp.w3", # arctic
  388. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  389. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  390. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  391. "transformer_encoder.{bid}.ffn.w12", # neobert
  392. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  393. "model.transformer.blocks.{bid}.up_proj", # llada
  394. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  395. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  396. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  397. ),
  398. MODEL_TENSOR.FFN_UP_EXP: (
  399. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  400. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  401. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  402. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  403. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  404. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  405. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  406. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  407. ),
  408. MODEL_TENSOR.FFN_UP_SHEXP: (
  409. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  410. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  411. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  412. "model.layers.{bid}.feed_forward.down_proj",
  413. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  414. ),
  415. MODEL_TENSOR.FFN_UP_CHEXP: (
  416. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  417. ),
  418. # AWQ-activation gate
  419. MODEL_TENSOR.FFN_ACT: (
  420. "transformer.blocks.{bid}.ffn.act", # mpt
  421. ),
  422. # Feed-forward gate
  423. MODEL_TENSOR.FFN_GATE: (
  424. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  425. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  426. "layers.{bid}.feed_forward.w1", # llama-pth
  427. "transformer.h.{bid}.mlp.w2", # qwen
  428. "transformer.h.{bid}.mlp.c_fc2", # jais
  429. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  430. "model.layers.{bid}.feed_forward.w1", # internlm2
  431. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  432. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  433. "transformer.h.{bid}.mlp.linear_1", # refact
  434. "model.layers.{bid}.residual_mlp.w1", # arctic
  435. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  436. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  437. "model.transformer.blocks.{bid}.ff_proj", # llada
  438. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  439. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  440. ),
  441. MODEL_TENSOR.FFN_GATE_EXP: (
  442. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  443. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  444. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  445. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  446. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  447. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  448. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  449. ),
  450. MODEL_TENSOR.FFN_GATE_SHEXP: (
  451. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  452. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  453. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  454. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  455. ),
  456. MODEL_TENSOR.FFN_GATE_CHEXP: (
  457. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  458. ),
  459. # Feed-forward down
  460. MODEL_TENSOR.FFN_DOWN: (
  461. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  462. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  463. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  464. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  465. "h.{bid}.mlp.dense_4h_to_h", # bloom
  466. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  467. "layers.{bid}.mlp.down_proj", # embeddinggemma
  468. "layers.{bid}.feed_forward.w2", # llama-pth
  469. "encoder.layer.{bid}.output.dense", # bert
  470. "transformer.layer.{bid}.ffn.lin2", # distillbert
  471. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  472. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  473. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  474. "h.{bid}.mlp.c_proj", # gpt2
  475. "transformer.h.{bid}.mlp.fc2", # phi2
  476. "model.layers.{bid}.mlp.fc2", # phi2
  477. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  478. "model.layers.{bid}.feed_forward.w2", # internlm2
  479. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  480. "model.layers.{bid}.mlp.c_proj", # starcoder2
  481. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  482. "transformer.layers.{bid}.ffn.proj_2", # openelm
  483. "model.layers.{bid}.residual_mlp.w2", # arctic
  484. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  485. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  486. "model.layers.h.{bid}.mlp.c_proj", # exaone
  487. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  488. "transformer_encoder.{bid}.ffn.w3", # neobert
  489. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  490. "model.transformer.blocks.{bid}.ff_out", # llada
  491. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  492. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  493. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  494. ),
  495. MODEL_TENSOR.FFN_DOWN_EXP: (
  496. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  497. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  498. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  499. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  500. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  501. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  502. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  503. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  504. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  505. ),
  506. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  507. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  508. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  509. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  510. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  511. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  512. ),
  513. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  514. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  515. ),
  516. MODEL_TENSOR.ATTN_Q_NORM: (
  517. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  518. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  519. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  520. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  521. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  522. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  523. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  524. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  525. "transformer.layers.{bid}.attn.q_norm", # openelm
  526. "model.layers.layers.{bid}.mixer.q", # plamo2
  527. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  528. "model.layers.{bid}.attention.query_layernorm", # apertus
  529. ),
  530. MODEL_TENSOR.ATTN_K_NORM: (
  531. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  532. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  533. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  534. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  535. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  536. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  537. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  538. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  539. "transformer.layers.{bid}.attn.k_norm", # openelm
  540. "model.layers.layers.{bid}.mixer.k", # plamo2
  541. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  542. "model.layers.{bid}.attention.key_layernorm", # apertus
  543. ),
  544. MODEL_TENSOR.ROPE_FREQS: (
  545. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  546. ),
  547. MODEL_TENSOR.LAYER_OUT_NORM: (
  548. "encoder.layer.{bid}.output.LayerNorm", # bert
  549. "transformer.layer.{bid}.output_layer_norm", # distillbert
  550. "encoder.layers.{bid}.norm2", # nomic-bert
  551. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  552. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  553. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  554. "model.layers.{bid}.final_layernorm", # bailingmoe2
  555. ),
  556. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  557. "model.embed_tokens_per_layer", # gemma3n
  558. ),
  559. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  560. "model.per_layer_model_projection", # gemma3n
  561. ),
  562. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  563. "model.per_layer_projection_norm", # gemma3n
  564. ),
  565. MODEL_TENSOR.ALTUP_PROJ: (
  566. "model.altup_projections", # gemma3n
  567. ),
  568. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  569. "model.altup_unembed_projections", # gemma3n
  570. ),
  571. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  572. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  573. ),
  574. MODEL_TENSOR.PER_LAYER_PROJ: (
  575. "model.layers.{bid}.per_layer_projection", # gemma3n
  576. ),
  577. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  578. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  579. ),
  580. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  581. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  582. ),
  583. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  584. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  585. ),
  586. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  587. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  588. ),
  589. MODEL_TENSOR.ALTUP_ROUTER: (
  590. "model.layers.{bid}.altup.modality_router", # gemma3n
  591. ),
  592. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  593. "model.layers.{bid}.altup.router_norm", # gemma3n
  594. ),
  595. MODEL_TENSOR.LAUREL_L: (
  596. "model.layers.{bid}.laurel.linear_left", # gemma3n
  597. ),
  598. MODEL_TENSOR.LAUREL_R: (
  599. "model.layers.{bid}.laurel.linear_right", # gemma3n
  600. ),
  601. MODEL_TENSOR.LAUREL_POST_NORM: (
  602. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  603. ),
  604. MODEL_TENSOR.SSM_IN: (
  605. "model.layers.{bid}.in_proj", # mamba-hf
  606. "backbone.layers.{bid}.mixer.in_proj", # mamba
  607. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  608. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  609. ),
  610. MODEL_TENSOR.SSM_CONV1D: (
  611. "model.layers.{bid}.conv1d", # mamba-hf
  612. "backbone.layers.{bid}.mixer.conv1d", # mamba
  613. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  614. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  615. ),
  616. MODEL_TENSOR.SSM_X: (
  617. "model.layers.{bid}.x_proj", # mamba-hf
  618. "backbone.layers.{bid}.mixer.x_proj", # mamba
  619. "model.layers.{bid}.mamba.x_proj", # jamba
  620. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  621. ),
  622. MODEL_TENSOR.SSM_DT: (
  623. "model.layers.{bid}.dt_proj", # mamba-hf
  624. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  625. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  626. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  627. ),
  628. MODEL_TENSOR.SSM_DT_NORM: (
  629. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  630. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  631. ),
  632. MODEL_TENSOR.SSM_A: (
  633. "model.layers.{bid}.A_log", # mamba-hf
  634. "backbone.layers.{bid}.mixer.A_log", # mamba
  635. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  636. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  637. ),
  638. MODEL_TENSOR.SSM_B_NORM: (
  639. "model.layers.{bid}.mamba.b_layernorm", # jamba
  640. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  641. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  642. ),
  643. MODEL_TENSOR.SSM_C_NORM: (
  644. "model.layers.{bid}.mamba.c_layernorm", # jamba
  645. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  646. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  647. ),
  648. MODEL_TENSOR.SSM_D: (
  649. "model.layers.{bid}.D", # mamba-hf
  650. "backbone.layers.{bid}.mixer.D", # mamba
  651. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  652. "model.layers.layers.{bid}.mixer.D", # plamo2
  653. ),
  654. MODEL_TENSOR.SSM_NORM: (
  655. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  656. "backbone.layers.{bid}.mixer.norm", # mamba2
  657. ),
  658. MODEL_TENSOR.SSM_OUT: (
  659. "model.layers.{bid}.out_proj", # mamba-hf
  660. "backbone.layers.{bid}.mixer.out_proj", # mamba
  661. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  662. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  663. ),
  664. MODEL_TENSOR.TIME_MIX_W0: (
  665. "model.layers.{bid}.attention.w0", # rwkv7
  666. ),
  667. MODEL_TENSOR.TIME_MIX_W1: (
  668. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  669. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  670. "model.layers.{bid}.attention.w1", # rwkv7
  671. ),
  672. MODEL_TENSOR.TIME_MIX_W2: (
  673. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  674. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  675. "model.layers.{bid}.attention.w2", # rwkv7
  676. ),
  677. MODEL_TENSOR.TIME_MIX_A0: (
  678. "model.layers.{bid}.attention.a0", # rwkv7
  679. ),
  680. MODEL_TENSOR.TIME_MIX_A1: (
  681. "model.layers.{bid}.attention.a1", # rwkv7
  682. ),
  683. MODEL_TENSOR.TIME_MIX_A2: (
  684. "model.layers.{bid}.attention.a2", # rwkv7
  685. ),
  686. MODEL_TENSOR.TIME_MIX_V0: (
  687. "model.layers.{bid}.attention.v0", # rwkv7
  688. ),
  689. MODEL_TENSOR.TIME_MIX_V1: (
  690. "model.layers.{bid}.attention.v1", # rwkv7
  691. ),
  692. MODEL_TENSOR.TIME_MIX_V2: (
  693. "model.layers.{bid}.attention.v2", # rwkv7
  694. ),
  695. MODEL_TENSOR.TIME_MIX_G1: (
  696. "model.layers.{bid}.attention.g1", # rwkv7
  697. ),
  698. MODEL_TENSOR.TIME_MIX_G2: (
  699. "model.layers.{bid}.attention.g2", # rwkv7
  700. ),
  701. MODEL_TENSOR.TIME_MIX_K_K: (
  702. "model.layers.{bid}.attention.k_k", # rwkv7
  703. ),
  704. MODEL_TENSOR.TIME_MIX_K_A: (
  705. "model.layers.{bid}.attention.k_a", # rwkv7
  706. ),
  707. MODEL_TENSOR.TIME_MIX_R_K: (
  708. "model.layers.{bid}.attention.r_k", # rwkv7
  709. ),
  710. MODEL_TENSOR.TIME_MIX_LERP_X: (
  711. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  712. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  713. ),
  714. MODEL_TENSOR.TIME_MIX_LERP_K: (
  715. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  716. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  717. ),
  718. MODEL_TENSOR.TIME_MIX_LERP_V: (
  719. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  720. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  721. ),
  722. MODEL_TENSOR.TIME_MIX_LERP_R: (
  723. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  724. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  725. ),
  726. MODEL_TENSOR.TIME_MIX_LERP_G: (
  727. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  728. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  729. ),
  730. MODEL_TENSOR.TIME_MIX_LERP_W: (
  731. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  732. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  733. ),
  734. MODEL_TENSOR.TIME_MIX_FIRST: (
  735. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  736. ),
  737. MODEL_TENSOR.TIME_MIX_DECAY: (
  738. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  739. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  740. ),
  741. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  742. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  743. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  744. ),
  745. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  746. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  747. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  748. ),
  749. MODEL_TENSOR.TIME_MIX_KEY: (
  750. "rwkv.blocks.{bid}.attention.key", # rwkv6
  751. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  752. "model.layers.{bid}.attention.key", # rwkv7
  753. "model.layers.{bid}.attention.k_proj", # rwkv7
  754. ),
  755. MODEL_TENSOR.TIME_MIX_VALUE: (
  756. "rwkv.blocks.{bid}.attention.value", # rwkv6
  757. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  758. "model.layers.{bid}.attention.value", # rwkv7
  759. "model.layers.{bid}.attention.v_proj", # rwkv7
  760. ),
  761. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  762. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  763. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  764. "model.layers.{bid}.attention.receptance", # rwkv7
  765. "model.layers.{bid}.attention.r_proj", # rwkv7
  766. ),
  767. MODEL_TENSOR.TIME_MIX_GATE: (
  768. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  769. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  770. ),
  771. MODEL_TENSOR.TIME_MIX_LN: (
  772. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  773. "model.layers.{bid}.attention.ln_x" # rwkv7
  774. ),
  775. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  776. "rwkv.blocks.{bid}.attention.output", # rwkv6
  777. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  778. "model.layers.{bid}.attention.output", # rwkv7
  779. "model.layers.{bid}.attention.o_proj", # rwkv7
  780. ),
  781. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  782. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  783. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  784. ),
  785. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  786. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  787. ),
  788. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  789. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  790. "model.layers.{bid}.feed_forward.key", # rwkv7
  791. ),
  792. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  793. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  794. ),
  795. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  796. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  797. "model.layers.{bid}.feed_forward.value", # rwkv7
  798. ),
  799. MODEL_TENSOR.ATTN_Q_A: (
  800. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  801. ),
  802. MODEL_TENSOR.ATTN_Q_B: (
  803. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  804. ),
  805. MODEL_TENSOR.ATTN_KV_A_MQA: (
  806. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  807. ),
  808. MODEL_TENSOR.ATTN_KV_B: (
  809. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  810. ),
  811. MODEL_TENSOR.ATTN_K_B: (
  812. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  813. ),
  814. MODEL_TENSOR.ATTN_V_B: (
  815. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  816. ),
  817. MODEL_TENSOR.ATTN_Q_A_NORM: (
  818. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  819. ),
  820. MODEL_TENSOR.ATTN_KV_A_NORM: (
  821. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  822. ),
  823. MODEL_TENSOR.ATTN_SUB_NORM: (
  824. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  825. ),
  826. MODEL_TENSOR.FFN_SUB_NORM: (
  827. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  828. ),
  829. MODEL_TENSOR.DEC_ATTN_NORM: (
  830. "decoder.block.{bid}.layer.0.layer_norm", # t5
  831. ),
  832. MODEL_TENSOR.DEC_ATTN_Q: (
  833. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  834. ),
  835. MODEL_TENSOR.DEC_ATTN_K: (
  836. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  837. ),
  838. MODEL_TENSOR.DEC_ATTN_V: (
  839. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  840. ),
  841. MODEL_TENSOR.DEC_ATTN_OUT: (
  842. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  843. ),
  844. MODEL_TENSOR.DEC_ATTN_REL_B: (
  845. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  846. ),
  847. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  848. "decoder.block.{bid}.layer.1.layer_norm", # t5
  849. ),
  850. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  851. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  852. ),
  853. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  854. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  855. ),
  856. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  857. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  858. ),
  859. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  860. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  861. ),
  862. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  863. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  864. ),
  865. MODEL_TENSOR.DEC_FFN_NORM: (
  866. "decoder.block.{bid}.layer.2.layer_norm", # t5
  867. ),
  868. MODEL_TENSOR.DEC_FFN_GATE: (
  869. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  870. ),
  871. MODEL_TENSOR.DEC_FFN_UP: (
  872. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  873. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  874. ),
  875. MODEL_TENSOR.DEC_FFN_DOWN: (
  876. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  877. ),
  878. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  879. "decoder.final_layer_norm", # t5
  880. ),
  881. MODEL_TENSOR.ENC_ATTN_NORM: (
  882. "encoder.block.{bid}.layer.0.layer_norm", # t5
  883. ),
  884. MODEL_TENSOR.ENC_ATTN_Q: (
  885. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  886. ),
  887. MODEL_TENSOR.ENC_ATTN_K: (
  888. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  889. ),
  890. MODEL_TENSOR.ENC_ATTN_V: (
  891. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  892. ),
  893. MODEL_TENSOR.ENC_ATTN_OUT: (
  894. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  895. ),
  896. MODEL_TENSOR.ENC_ATTN_REL_B: (
  897. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  898. ),
  899. MODEL_TENSOR.ENC_FFN_NORM: (
  900. "encoder.block.{bid}.layer.1.layer_norm", # t5
  901. ),
  902. MODEL_TENSOR.ENC_FFN_GATE: (
  903. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  904. ),
  905. MODEL_TENSOR.ENC_FFN_UP: (
  906. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  907. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  908. ),
  909. MODEL_TENSOR.ENC_FFN_DOWN: (
  910. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  911. ),
  912. MODEL_TENSOR.VISEXP_UP: (
  913. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  914. ),
  915. MODEL_TENSOR.VISEXP_GATE: (
  916. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  917. ),
  918. MODEL_TENSOR.VISEXP_DOWN: (
  919. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  920. ),
  921. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  922. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  923. ),
  924. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  925. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  926. ),
  927. ############################################################################
  928. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  929. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  930. "encoder.final_layer_norm", # t5
  931. "layer_norm", # neobert
  932. ),
  933. MODEL_TENSOR.CLS: (
  934. "classifier", # jina
  935. "classifier.dense", # roberta
  936. "pre_classifier", # distillbert
  937. "dense", # neobert
  938. ),
  939. MODEL_TENSOR.CLS_OUT: (
  940. "classifier.out_proj", # roberta
  941. ),
  942. #############################################################################
  943. MODEL_TENSOR.CONVNEXT_DW: (
  944. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  945. ),
  946. MODEL_TENSOR.CONVNEXT_NORM: (
  947. "backbone.convnext.{bid}.norm", # wavtokenizer
  948. ),
  949. MODEL_TENSOR.CONVNEXT_PW1: (
  950. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  951. ),
  952. MODEL_TENSOR.CONVNEXT_PW2: (
  953. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  954. ),
  955. MODEL_TENSOR.CONVNEXT_GAMMA: (
  956. "backbone.convnext.{bid}.gamma", # wavtokenizer
  957. ),
  958. MODEL_TENSOR.POSNET_CONV1: (
  959. "backbone.posnet.{bid}.conv1", # wavtokenizer
  960. ),
  961. MODEL_TENSOR.POSNET_CONV2: (
  962. "backbone.posnet.{bid}.conv2", # wavtokenizer
  963. ),
  964. MODEL_TENSOR.POSNET_NORM: (
  965. "backbone.posnet.{bid}.norm", # wavtokenizer
  966. ),
  967. MODEL_TENSOR.POSNET_NORM1: (
  968. "backbone.posnet.{bid}.norm1", # wavtokenizer
  969. ),
  970. MODEL_TENSOR.POSNET_NORM2: (
  971. "backbone.posnet.{bid}.norm2", # wavtokenizer
  972. ),
  973. MODEL_TENSOR.POSNET_ATTN_NORM: (
  974. "backbone.posnet.{bid}.norm", # wavtokenizer
  975. ),
  976. MODEL_TENSOR.POSNET_ATTN_Q: (
  977. "backbone.posnet.{bid}.q", # wavtokenizer
  978. ),
  979. MODEL_TENSOR.POSNET_ATTN_K: (
  980. "backbone.posnet.{bid}.k", # wavtokenizer
  981. ),
  982. MODEL_TENSOR.POSNET_ATTN_V: (
  983. "backbone.posnet.{bid}.v", # wavtokenizer
  984. ),
  985. MODEL_TENSOR.POSNET_ATTN_OUT: (
  986. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  987. ),
  988. MODEL_TENSOR.SHORTCONV_CONV: (
  989. "model.layers.{bid}.conv.conv",
  990. ),
  991. MODEL_TENSOR.SHORTCONV_INPROJ: (
  992. "model.layers.{bid}.conv.in_proj",
  993. ),
  994. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  995. "model.layers.{bid}.conv.out_proj",
  996. ),
  997. #############################################################################
  998. ## Vision encoder
  999. MODEL_TENSOR.V_MMPROJ: (
  1000. "multi_modal_projector.linear_{bid}",
  1001. "visual.merger.mlp.{bid}", # qwen2vl
  1002. ),
  1003. MODEL_TENSOR.V_MMPROJ_FC: (
  1004. "model.connector.modality_projection.proj", # SmolVLM
  1005. "model.vision.linear_proj.linear_proj", # cogvlm
  1006. ),
  1007. MODEL_TENSOR.V_MMPROJ_MLP: (
  1008. "model.mm_projector.mlp.mlp.{bid}",
  1009. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1010. "mlp1.{bid}", # InternVL
  1011. ),
  1012. MODEL_TENSOR.V_MMPROJ_PEG: (
  1013. "model.mm_projector.peg.peg.{bid}",
  1014. ),
  1015. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1016. "vision_tower.vision_model.embeddings.class_embedding",
  1017. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1018. "vision_model.class_embedding", # llama 4
  1019. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1020. ),
  1021. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1022. "vision_tower.vision_model.embeddings.patch_embedding",
  1023. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1024. "vpm.embeddings.patch_embedding",
  1025. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1026. "vision_tower.patch_conv", # pixtral-hf
  1027. "vision_encoder.patch_conv", # pixtral
  1028. "vision_model.patch_embedding.linear", # llama 4
  1029. "visual.patch_embed.proj", # qwen2vl
  1030. "vision_tower.patch_embed.proj", # kimi-vl
  1031. "model.vision.patch_embedding.proj", # cogvlm
  1032. ),
  1033. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1034. "vision_tower.vision_model.embeddings.position_embedding",
  1035. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1036. "vpm.embeddings.position_embedding",
  1037. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1038. "vision_model.positional_embedding_vlm", # llama 4
  1039. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1040. "visual.pos_embed", # qwen3vl
  1041. "model.vision.patch_embedding.position_embedding", # cogvlm
  1042. ),
  1043. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1044. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1045. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1046. ),
  1047. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1048. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1049. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1050. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1051. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1052. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1053. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1054. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1055. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1056. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1057. ),
  1058. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1059. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1060. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1061. ),
  1062. MODEL_TENSOR.V_ENC_ATTN_K: (
  1063. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1064. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1065. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1066. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1067. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1068. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1069. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1070. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1071. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1072. ),
  1073. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1074. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1075. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1076. ),
  1077. MODEL_TENSOR.V_ENC_ATTN_V: (
  1078. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1079. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1080. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1081. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1082. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1083. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1084. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1085. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1086. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1087. ),
  1088. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1089. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1090. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1091. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1092. "vpm.encoder.layers.{bid}.layer_norm1",
  1093. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1094. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1095. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1096. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1097. "visual.blocks.{bid}.norm1", # qwen2vl
  1098. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1099. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1100. ),
  1101. MODEL_TENSOR.V_ENC_ATTN_O: (
  1102. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1103. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1104. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1105. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1106. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1107. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1108. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1109. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1110. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1111. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1112. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1113. ),
  1114. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1115. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1116. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1117. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1118. "vpm.encoder.layers.{bid}.layer_norm2",
  1119. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1120. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1121. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1122. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1123. "visual.blocks.{bid}.norm2", # qwen2vl
  1124. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1125. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1126. ),
  1127. MODEL_TENSOR.V_ENC_FFN_UP: (
  1128. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1129. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1130. "vpm.encoder.layers.{bid}.mlp.fc1",
  1131. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1132. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1133. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1134. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1135. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1136. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1137. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1138. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1139. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1140. ),
  1141. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1142. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1143. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1144. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1145. ),
  1146. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1147. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1148. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1149. "vpm.encoder.layers.{bid}.mlp.fc2",
  1150. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1151. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1152. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1153. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1154. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1155. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1156. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1157. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1158. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1159. ),
  1160. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1161. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1162. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1163. ),
  1164. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1165. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1166. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1167. ),
  1168. MODEL_TENSOR.V_PRE_NORM: (
  1169. "vision_tower.vision_model.pre_layrnorm",
  1170. "vision_tower.ln_pre", # pixtral-hf
  1171. "vision_encoder.ln_pre", # pixtral
  1172. "vision_model.layernorm_pre", # llama4
  1173. ),
  1174. MODEL_TENSOR.V_POST_NORM: (
  1175. "vision_tower.vision_model.post_layernorm",
  1176. "model.vision_model.post_layernorm", # SmolVLM
  1177. "vision_model.layernorm_post", # llama4
  1178. "visual.merger.ln_q", # qwen2vl
  1179. "vision_tower.encoder.final_layernorm", # kimi-vl
  1180. ),
  1181. MODEL_TENSOR.V_MM_INP_PROJ: (
  1182. "multi_modal_projector.mm_input_projection",
  1183. ),
  1184. MODEL_TENSOR.V_MM_INP_NORM: (
  1185. "multi_modal_projector.norm",
  1186. "multi_modal_projector.layer_norm",
  1187. "multi_modal_projector.pre_norm",
  1188. "pre_mm_projector_norm",
  1189. "model.vision.linear_proj.norm1", # cogvlm
  1190. ),
  1191. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1192. "multi_modal_projector.mm_soft_emb_norm",
  1193. ),
  1194. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1195. "resampler.pos_embed_k",
  1196. ),
  1197. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1198. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1199. ),
  1200. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1201. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1202. ),
  1203. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1204. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1205. ),
  1206. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1207. "resampler.attn.out_proj",
  1208. ),
  1209. MODEL_TENSOR.V_RESMPL_KV: (
  1210. "resampler.kv_proj",
  1211. ),
  1212. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1213. "resampler.ln_post",
  1214. ),
  1215. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1216. "resampler.ln_kv",
  1217. ),
  1218. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1219. "resampler.ln_q",
  1220. ),
  1221. MODEL_TENSOR.V_RESMPL_PROJ: (
  1222. "resampler.proj",
  1223. ),
  1224. MODEL_TENSOR.V_RESMPL_QUERY: (
  1225. "resampler.query",
  1226. ),
  1227. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1228. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1229. ),
  1230. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1231. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1232. "patch_merger.merging_layer", # mistral
  1233. ),
  1234. MODEL_TENSOR.V_DS_NORM: (
  1235. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1236. ),
  1237. MODEL_TENSOR.V_DS_FC1: (
  1238. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1239. ),
  1240. MODEL_TENSOR.V_DS_FC2: (
  1241. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1242. ),
  1243. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1244. "model.vision.linear_proj.norm1", # cogvlm
  1245. ),
  1246. MODEL_TENSOR.V_MM_UP: (
  1247. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1248. ),
  1249. MODEL_TENSOR.V_MM_DOWN: (
  1250. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1251. ),
  1252. MODEL_TENSOR.V_MM_GATE: (
  1253. "model.vision.linear_proj.gate_proj", # cogvlm
  1254. ),
  1255. MODEL_TENSOR.V_TOK_BOI: (
  1256. "model.vision.boi", # cogvlm
  1257. ),
  1258. MODEL_TENSOR.V_TOK_EOI: (
  1259. "model.vision.eoi", # cogvlm
  1260. ),
  1261. # audio (mtmd)
  1262. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1263. "audio_tower.embed_positions", # ultravox
  1264. ),
  1265. MODEL_TENSOR.A_ENC_CONV1D: (
  1266. "audio_tower.conv{bid}", # ultravox
  1267. ),
  1268. MODEL_TENSOR.A_PRE_NORM: (),
  1269. MODEL_TENSOR.A_POST_NORM: (
  1270. "audio_tower.layer_norm", # ultravox
  1271. "audio_tower.ln_post", # qwen2omni
  1272. ),
  1273. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1274. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1275. ),
  1276. MODEL_TENSOR.A_ENC_ATTN_K: (
  1277. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1278. ),
  1279. MODEL_TENSOR.A_ENC_ATTN_V: (
  1280. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1281. ),
  1282. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1283. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1284. ),
  1285. MODEL_TENSOR.A_ENC_OUTPUT: (
  1286. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1287. ),
  1288. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1289. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1290. ),
  1291. MODEL_TENSOR.A_ENC_FFN_UP: (
  1292. "audio_tower.layers.{bid}.fc1", # ultravox
  1293. ),
  1294. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1295. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1296. "audio_tower.layers.{bid}.fc2", # ultravox
  1297. ),
  1298. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1299. # this prefix is added in the conversion code in modify_tensors()
  1300. MODEL_TENSOR.A_MMPROJ: (
  1301. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1302. ),
  1303. MODEL_TENSOR.A_MMPROJ_FC: (
  1304. "audio.multi_modal_projector.linear", # qwen2audio
  1305. "audio_tower.proj", # qwen2omni
  1306. ),
  1307. MODEL_TENSOR.A_MM_NORM_PRE: (
  1308. "audio.multi_modal_projector.ln_pre", # ultravox
  1309. ),
  1310. MODEL_TENSOR.A_MM_NORM_MID: (
  1311. "audio.multi_modal_projector.ln_mid", # ultravox
  1312. ),
  1313. # NextN/MTP tensors for GLM4_MOE
  1314. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1315. "model.layers.{bid}.eh_proj",
  1316. ),
  1317. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1318. "model.layers.{bid}.embed_tokens",
  1319. ),
  1320. MODEL_TENSOR.NEXTN_ENORM: (
  1321. "model.layers.{bid}.enorm",
  1322. ),
  1323. MODEL_TENSOR.NEXTN_HNORM: (
  1324. "model.layers.{bid}.hnorm",
  1325. ),
  1326. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1327. "model.layers.{bid}.shared_head.head",
  1328. ),
  1329. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1330. "model.layers.{bid}.shared_head.norm",
  1331. ),
  1332. }
  1333. # architecture-specific block mappings
  1334. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1335. MODEL_ARCH.ARCTIC: {
  1336. MODEL_TENSOR.FFN_NORM: (
  1337. "model.layers.{bid}.residual_layernorm",
  1338. ),
  1339. MODEL_TENSOR.FFN_NORM_EXP: (
  1340. "model.layers.{bid}.post_attention_layernorm",
  1341. ),
  1342. },
  1343. }
  1344. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1345. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1346. self.mapping = {}
  1347. for tensor, keys in self.mappings_cfg.items():
  1348. if tensor not in MODEL_TENSORS[arch]:
  1349. continue
  1350. tensor_name = TENSOR_NAMES[tensor]
  1351. self.mapping[tensor_name] = (tensor, tensor_name)
  1352. for key in keys:
  1353. self.mapping[key] = (tensor, tensor_name)
  1354. if arch in self.arch_block_mappings_cfg:
  1355. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1356. for bid in range(n_blocks):
  1357. for tensor, keys in self.block_mappings_cfg.items():
  1358. if tensor not in MODEL_TENSORS[arch]:
  1359. continue
  1360. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1361. self.mapping[tensor_name] = (tensor, tensor_name)
  1362. for key in keys:
  1363. key = key.format(bid = bid)
  1364. self.mapping[key] = (tensor, tensor_name)
  1365. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1366. result = self.mapping.get(key)
  1367. if result is not None:
  1368. return result
  1369. for suffix in try_suffixes:
  1370. if key.endswith(suffix):
  1371. result = self.mapping.get(key[:-len(suffix)])
  1372. if result is not None:
  1373. return result[0], result[1] + suffix
  1374. return None
  1375. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1376. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1377. if result is None:
  1378. return None
  1379. return result[1]
  1380. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1381. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1382. if result is None:
  1383. return None
  1384. return result[0]
  1385. def __getitem__(self, key: str) -> str:
  1386. try:
  1387. return self.mapping[key][1]
  1388. except KeyError:
  1389. raise KeyError(key)
  1390. def __contains__(self, key: str) -> bool:
  1391. return key in self.mapping
  1392. def __repr__(self) -> str:
  1393. return repr(self.mapping)
  1394. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1395. return TensorNameMap(arch, n_blocks)