clip.cpp 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #define STB_IMAGE_IMPLEMENTATION
  14. #include "stb_image.h"
  15. #include <cassert>
  16. #include <cmath>
  17. #include <cstdlib>
  18. #include <cstring>
  19. #include <fstream>
  20. #include <map>
  21. #include <regex>
  22. #include <stdexcept>
  23. #include <unordered_set>
  24. #include <vector>
  25. #include <sstream>
  26. #include <cinttypes>
  27. #include <limits>
  28. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  29. //#define CLIP_DEBUG_FUNCTIONS
  30. #ifdef CLIP_DEBUG_FUNCTIONS
  31. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  32. std::ofstream file(filename, std::ios::binary);
  33. if (!file.is_open()) {
  34. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  35. return;
  36. }
  37. // PPM header: P6 format, width, height, and max color value
  38. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  39. // Write pixel data
  40. for (size_t i = 0; i < img.buf.size(); i += 3) {
  41. // PPM expects binary data in RGB format, which matches our image buffer
  42. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  43. }
  44. file.close();
  45. }
  46. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  47. std::ofstream file(filename, std::ios::binary);
  48. if (!file.is_open()) {
  49. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  50. return;
  51. }
  52. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  53. int bytesPerPixel = 3;
  54. int widthInBytes = img.nx * bytesPerPixel;
  55. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  56. int stride = widthInBytes + paddingAmount;
  57. // Bitmap file header
  58. unsigned char fileHeader[14] = {
  59. 'B','M', // Signature
  60. 0,0,0,0, // Image file size in bytes
  61. 0,0,0,0, // Reserved
  62. 54,0,0,0 // Start of pixel array
  63. };
  64. // Total file size
  65. fileSize = 54 + (stride * img.ny);
  66. fileHeader[2] = (unsigned char)(fileSize);
  67. fileHeader[3] = (unsigned char)(fileSize >> 8);
  68. fileHeader[4] = (unsigned char)(fileSize >> 16);
  69. fileHeader[5] = (unsigned char)(fileSize >> 24);
  70. // Bitmap information header (BITMAPINFOHEADER)
  71. unsigned char infoHeader[40] = {
  72. 40,0,0,0, // Size of this header (40 bytes)
  73. 0,0,0,0, // Image width
  74. 0,0,0,0, // Image height
  75. 1,0, // Number of color planes
  76. 24,0, // Bits per pixel
  77. 0,0,0,0, // No compression
  78. 0,0,0,0, // Image size (can be 0 for no compression)
  79. 0,0,0,0, // X pixels per meter (not specified)
  80. 0,0,0,0, // Y pixels per meter (not specified)
  81. 0,0,0,0, // Total colors (color table not used)
  82. 0,0,0,0 // Important colors (all are important)
  83. };
  84. // Width and height in the information header
  85. infoHeader[4] = (unsigned char)(img.nx);
  86. infoHeader[5] = (unsigned char)(img.nx >> 8);
  87. infoHeader[6] = (unsigned char)(img.nx >> 16);
  88. infoHeader[7] = (unsigned char)(img.nx >> 24);
  89. infoHeader[8] = (unsigned char)(img.ny);
  90. infoHeader[9] = (unsigned char)(img.ny >> 8);
  91. infoHeader[10] = (unsigned char)(img.ny >> 16);
  92. infoHeader[11] = (unsigned char)(img.ny >> 24);
  93. // Write file headers
  94. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  95. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  96. // Pixel data
  97. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  98. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  99. for (int x = 0; x < img.nx; ++x) {
  100. // Each pixel
  101. size_t pixelIndex = (y * img.nx + x) * 3;
  102. unsigned char pixel[3] = {
  103. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  104. img.buf[pixelIndex + 1],
  105. img.buf[pixelIndex]
  106. };
  107. file.write(reinterpret_cast<char*>(pixel), 3);
  108. }
  109. // Write padding for the row
  110. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  111. }
  112. file.close();
  113. }
  114. // debug function to convert f32 to u8
  115. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  116. dst.nx = src.nx;
  117. dst.ny = src.ny;
  118. dst.buf.resize(3 * src.nx * src.ny);
  119. for (size_t i = 0; i < src.buf.size(); ++i) {
  120. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  121. }
  122. }
  123. #endif
  124. //
  125. // clip layers
  126. //
  127. enum patch_merge_type {
  128. PATCH_MERGE_FLAT,
  129. PATCH_MERGE_SPATIAL_UNPAD,
  130. };
  131. struct clip_hparams {
  132. int32_t image_size;
  133. int32_t patch_size;
  134. int32_t hidden_size;
  135. int32_t n_intermediate;
  136. int32_t projection_dim;
  137. int32_t n_head;
  138. int32_t n_layer;
  139. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  140. float eps;
  141. std::vector<int32_t> image_grid_pinpoints;
  142. int32_t image_crop_resolution;
  143. std::unordered_set<int32_t> vision_feature_layer;
  144. };
  145. struct clip_layer {
  146. // attention
  147. struct ggml_tensor * k_w = nullptr;
  148. struct ggml_tensor * k_b = nullptr;
  149. struct ggml_tensor * q_w = nullptr;
  150. struct ggml_tensor * q_b = nullptr;
  151. struct ggml_tensor * v_w = nullptr;
  152. struct ggml_tensor * v_b = nullptr;
  153. struct ggml_tensor * o_w = nullptr;
  154. struct ggml_tensor * o_b = nullptr;
  155. // layernorm 1
  156. struct ggml_tensor * ln_1_w = nullptr;
  157. struct ggml_tensor * ln_1_b = nullptr;
  158. // ff
  159. struct ggml_tensor * ff_i_w = nullptr;
  160. struct ggml_tensor * ff_i_b = nullptr;
  161. struct ggml_tensor * ff_o_w = nullptr;
  162. struct ggml_tensor * ff_o_b = nullptr;
  163. // layernorm 2
  164. struct ggml_tensor * ln_2_w = nullptr;
  165. struct ggml_tensor * ln_2_b = nullptr;
  166. };
  167. struct clip_vision_model {
  168. struct clip_hparams hparams;
  169. // embeddings
  170. struct ggml_tensor * class_embedding = nullptr;
  171. struct ggml_tensor * patch_embeddings_0 = nullptr;
  172. struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  173. struct ggml_tensor * patch_bias = nullptr;
  174. struct ggml_tensor * position_embeddings = nullptr;
  175. struct ggml_tensor * pre_ln_w = nullptr;
  176. struct ggml_tensor * pre_ln_b = nullptr;
  177. std::vector<clip_layer> layers;
  178. struct ggml_tensor * post_ln_w;
  179. struct ggml_tensor * post_ln_b;
  180. struct ggml_tensor * projection;
  181. // LLaVA projection
  182. struct ggml_tensor * mm_0_w = nullptr;
  183. struct ggml_tensor * mm_0_b = nullptr;
  184. struct ggml_tensor * mm_2_w = nullptr;
  185. struct ggml_tensor * mm_2_b = nullptr;
  186. struct ggml_tensor * image_newline = nullptr;
  187. // Yi type models with mlp+normalization projection
  188. struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  189. struct ggml_tensor * mm_1_b = nullptr;
  190. struct ggml_tensor * mm_3_w = nullptr;
  191. struct ggml_tensor * mm_3_b = nullptr;
  192. struct ggml_tensor * mm_4_w = nullptr;
  193. struct ggml_tensor * mm_4_b = nullptr;
  194. //GLMV-Edge projection
  195. struct ggml_tensor * mm_model_adapter_conv_w = nullptr;
  196. struct ggml_tensor * mm_model_adapter_conv_b = nullptr;
  197. struct ggml_tensor * boi_w = nullptr;
  198. struct ggml_tensor * eoi_w = nullptr;
  199. // MobileVLM projection
  200. struct ggml_tensor * mm_model_mlp_1_w = nullptr;
  201. struct ggml_tensor * mm_model_mlp_1_b = nullptr;
  202. struct ggml_tensor * mm_model_mlp_3_w = nullptr;
  203. struct ggml_tensor * mm_model_mlp_3_b = nullptr;
  204. struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  205. struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  206. struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  207. struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  208. struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  209. struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  210. struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  211. struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  212. struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  213. struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  214. struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  215. struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  216. struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  217. struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  218. struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  219. struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  220. struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  221. struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  222. struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  223. struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  224. // MobileVLM_V2 projection
  225. struct ggml_tensor * mm_model_mlp_0_w = nullptr;
  226. struct ggml_tensor * mm_model_mlp_0_b = nullptr;
  227. struct ggml_tensor * mm_model_mlp_2_w = nullptr;
  228. struct ggml_tensor * mm_model_mlp_2_b = nullptr;
  229. struct ggml_tensor * mm_model_peg_0_w = nullptr;
  230. struct ggml_tensor * mm_model_peg_0_b = nullptr;
  231. // MINICPMV projection
  232. struct ggml_tensor * mm_model_pos_embed_k = nullptr;
  233. struct ggml_tensor * mm_model_query = nullptr;
  234. struct ggml_tensor * mm_model_proj = nullptr;
  235. struct ggml_tensor * mm_model_kv_proj = nullptr;
  236. struct ggml_tensor * mm_model_attn_q_w = nullptr;
  237. struct ggml_tensor * mm_model_attn_q_b = nullptr;
  238. struct ggml_tensor * mm_model_attn_k_w = nullptr;
  239. struct ggml_tensor * mm_model_attn_k_b = nullptr;
  240. struct ggml_tensor * mm_model_attn_v_w = nullptr;
  241. struct ggml_tensor * mm_model_attn_v_b = nullptr;
  242. struct ggml_tensor * mm_model_attn_o_w = nullptr;
  243. struct ggml_tensor * mm_model_attn_o_b = nullptr;
  244. struct ggml_tensor * mm_model_ln_q_w = nullptr;
  245. struct ggml_tensor * mm_model_ln_q_b = nullptr;
  246. struct ggml_tensor * mm_model_ln_kv_w = nullptr;
  247. struct ggml_tensor * mm_model_ln_kv_b = nullptr;
  248. struct ggml_tensor * mm_model_ln_post_w = nullptr;
  249. struct ggml_tensor * mm_model_ln_post_b = nullptr;
  250. // gemma3
  251. struct ggml_tensor * mm_input_proj_w = nullptr;
  252. struct ggml_tensor * mm_soft_emb_norm_w = nullptr;
  253. };
  254. struct clip_ctx {
  255. bool has_text_encoder = false;
  256. bool has_vision_encoder = false;
  257. bool has_llava_projector = false;
  258. bool has_minicpmv_projector = false;
  259. bool has_glm_projector = false;
  260. bool has_qwen2vl_merger = false;
  261. int minicpmv_version = 2;
  262. struct clip_vision_model vision_model;
  263. projector_type proj_type = PROJECTOR_TYPE_MLP;
  264. int32_t max_feature_layer; // unused in newer models like gemma3
  265. float image_mean[3];
  266. float image_std[3];
  267. bool use_gelu = false;
  268. bool use_silu = false;
  269. gguf_context_ptr ctx_gguf;
  270. ggml_context_ptr ctx_data;
  271. std::vector<uint8_t> buf_compute_meta;
  272. std::vector<ggml_backend_t> backend_ptrs;
  273. std::vector<ggml_backend_buffer_type_t> backend_buft;
  274. ggml_backend_t backend;
  275. ggml_backend_t backend_cpu;
  276. ggml_backend_buffer_ptr buf;
  277. ggml_backend_sched_ptr sched;
  278. clip_image_size load_image_size;
  279. clip_ctx(clip_context_params & ctx_params) {
  280. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  281. backend = ctx_params.use_gpu
  282. ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr)
  283. : nullptr;
  284. if (backend) {
  285. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  286. backend_ptrs.push_back(backend);
  287. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  288. } else {
  289. backend = backend_cpu;
  290. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  291. }
  292. backend_ptrs.push_back(backend_cpu);
  293. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  294. sched.reset(
  295. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false)
  296. );
  297. }
  298. ~clip_ctx() {
  299. ggml_backend_free(backend);
  300. if (backend != backend_cpu) {
  301. ggml_backend_free(backend_cpu);
  302. }
  303. }
  304. };
  305. static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  306. const auto & model = ctx->vision_model;
  307. const auto & hparams = model.hparams;
  308. const int image_size = hparams.image_size;
  309. int image_size_width = image_size;
  310. int image_size_height = image_size;
  311. const int patch_size = hparams.patch_size;
  312. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  313. const int hidden_size = hparams.hidden_size;
  314. const int n_head = hparams.n_head;
  315. const int d_head = hidden_size / n_head;
  316. const int n_layer = hparams.n_layer;
  317. const float eps = hparams.eps;
  318. GGML_ASSERT(imgs.entries.size() == 1); // batch_size == 1
  319. struct ggml_init_params params = {
  320. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  321. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  322. /*.no_alloc =*/ true,
  323. };
  324. ggml_context_ptr ctx0_ptr(ggml_init(params));
  325. auto ctx0 = ctx0_ptr.get();
  326. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  327. // input raw
  328. struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3);
  329. ggml_set_name(inp_raw, "inp_raw");
  330. ggml_set_input(inp_raw);
  331. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  332. inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size);
  333. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  334. inp = ggml_add(ctx0, inp, model.patch_bias);
  335. // position embeddings
  336. struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings);
  337. // loop over layers
  338. for (int il = 0; il < n_layer; il++) {
  339. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  340. // layernorm1
  341. {
  342. cur = ggml_norm(ctx0, cur, eps);
  343. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b);
  344. }
  345. // self-attention
  346. {
  347. struct ggml_tensor * Q =
  348. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  349. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches);
  350. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  351. struct ggml_tensor * K =
  352. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  353. K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches);
  354. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  355. struct ggml_tensor * V =
  356. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  357. V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches);
  358. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  359. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  360. KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
  361. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  362. KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head);
  363. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  364. cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches);
  365. }
  366. // attention output
  367. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  368. // re-add the layer input, e.g., residual
  369. cur = ggml_add(ctx0, cur, embeddings);
  370. embeddings = cur; // embeddings = residual, cur = hidden_states
  371. // layernorm2
  372. {
  373. cur = ggml_norm(ctx0, cur, eps);
  374. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  375. }
  376. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  377. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  378. // siglip uses gelu
  379. cur = ggml_gelu(ctx0, cur);
  380. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  381. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  382. // residual 2
  383. cur = ggml_add(ctx0, embeddings, cur);
  384. embeddings = cur;
  385. }
  386. // post-layernorm
  387. if (model.post_ln_w) {
  388. embeddings = ggml_norm(ctx0, embeddings, eps);
  389. ggml_set_name(embeddings, "post_ln");
  390. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  391. }
  392. if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  393. const int batch_size = 1;
  394. const int mm_tokens_per_image = 256; // default value for gemma3
  395. const int tokens_per_side = sqrt(mm_tokens_per_image);
  396. const int patches_per_image = sqrt(num_patches);
  397. const int kernel_size = patches_per_image / tokens_per_side;
  398. embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
  399. embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size);
  400. // doing a pool2d to reduce the number of output tokens to 256
  401. embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  402. embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size);
  403. embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings));
  404. // apply norm before projection
  405. embeddings = ggml_rms_norm(ctx0, embeddings, eps);
  406. embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w);
  407. // apply projection
  408. embeddings = ggml_mul_mat(ctx0,
  409. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  410. embeddings);
  411. }
  412. // build the graph
  413. ggml_build_forward_expand(gf, embeddings);
  414. return gf;
  415. }
  416. static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
  417. if (!ctx->has_vision_encoder) {
  418. LOG_ERR("This gguf file seems to have no vision encoder\n");
  419. return nullptr;
  420. }
  421. const auto & model = ctx->vision_model;
  422. const auto & hparams = model.hparams;
  423. const int image_size = hparams.image_size;
  424. int image_size_width = image_size;
  425. int image_size_height = image_size;
  426. if (ctx->has_minicpmv_projector) {
  427. LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height);
  428. image_size_width = load_image_size.width;
  429. image_size_height = load_image_size.height;
  430. if (is_inf) {
  431. image_size_width = imgs.entries[0]->nx;
  432. image_size_height = imgs.entries[0]->ny;
  433. }
  434. }
  435. else if (ctx->has_qwen2vl_merger) {
  436. // use the image's native resolution when image is avaible
  437. if (is_inf) {
  438. // if (imgs->data->nx && imgs->data->ny) {
  439. image_size_width = imgs.entries[0]->nx;
  440. image_size_height = imgs.entries[0]->ny;
  441. }
  442. }
  443. const int patch_size = hparams.patch_size;
  444. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  445. const int patches_w = image_size_width / patch_size;
  446. const int patches_h = image_size_height / patch_size;
  447. const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
  448. const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
  449. const int hidden_size = hparams.hidden_size;
  450. const int n_head = hparams.n_head;
  451. const int d_head = hidden_size / n_head;
  452. const float eps = hparams.eps;
  453. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  454. const int batch_size = imgs.entries.size();
  455. if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) {
  456. GGML_ASSERT(batch_size == 1);
  457. }
  458. struct ggml_init_params params = {
  459. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  460. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  461. /*.no_alloc =*/ true,
  462. };
  463. ggml_context_ptr ctx0_ptr(ggml_init(params));
  464. auto ctx0 = ctx0_ptr.get();
  465. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  466. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  467. ggml_set_name(inp_raw, "inp_raw");
  468. ggml_set_input(inp_raw);
  469. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  470. if (ctx->has_qwen2vl_merger) {
  471. GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
  472. GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
  473. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  474. inp = ggml_add(ctx0, inp, inp_1);
  475. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  476. inp = ggml_reshape_4d(
  477. ctx0, inp,
  478. hidden_size * 2, patches_w / 2, patches_h, batch_size);
  479. inp = ggml_reshape_4d(
  480. ctx0, inp,
  481. hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
  482. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  483. inp = ggml_reshape_3d(
  484. ctx0, inp,
  485. hidden_size, patches_w * patches_h, batch_size);
  486. }
  487. else {
  488. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  489. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  490. }
  491. if (model.patch_bias) {
  492. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  493. inp = ggml_add(ctx0, inp, model.patch_bias);
  494. }
  495. struct ggml_tensor * embeddings = inp;
  496. struct ggml_tensor * pos_embed = nullptr;
  497. if (ctx->has_llava_projector) {
  498. // concat class_embeddings and patch_embeddings
  499. if (model.class_embedding) {
  500. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  501. ggml_set_name(embeddings, "embeddings");
  502. ggml_set_input(embeddings);
  503. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  504. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  505. embeddings = ggml_acc(ctx0, embeddings, inp,
  506. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  507. }
  508. }
  509. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  510. ggml_set_name(positions, "positions");
  511. ggml_set_input(positions);
  512. if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
  513. embeddings =
  514. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  515. }
  516. if (ctx->has_minicpmv_projector) {
  517. int pos_w = image_size_width/patch_size;
  518. int pos_h = image_size_height/patch_size;
  519. if (ctx->minicpmv_version == 2) {
  520. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  521. }
  522. else if (ctx->minicpmv_version == 3) {
  523. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  524. }
  525. else if (ctx->minicpmv_version == 4) {
  526. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  527. }
  528. ggml_set_name(pos_embed, "pos_embed");
  529. ggml_set_input(pos_embed);
  530. }
  531. // pre-layernorm
  532. if (model.pre_ln_w) {
  533. embeddings = ggml_norm(ctx0, embeddings, eps);
  534. ggml_set_name(embeddings, "pre_ln");
  535. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  536. }
  537. std::vector<struct ggml_tensor *> embedding_stack;
  538. const auto & vision_feature_layer = hparams.vision_feature_layer;
  539. // loop over layers
  540. for (int il = 0; il < ctx->max_feature_layer; il++) {
  541. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  542. // If this is an embedding feature layer, save the output.
  543. // NOTE: 0 index here refers to the input to the encoder.
  544. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  545. embedding_stack.push_back(embeddings);
  546. }
  547. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  548. // layernorm1
  549. {
  550. cur = ggml_norm(ctx0, cur, eps);
  551. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  552. model.layers[il].ln_1_b);
  553. }
  554. // self-attention
  555. {
  556. struct ggml_tensor * Q =
  557. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  558. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  559. if (ctx->has_qwen2vl_merger) {
  560. Q = ggml_rope_multi(
  561. ctx0, Q, positions, nullptr,
  562. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  563. }
  564. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  565. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  566. struct ggml_tensor * K =
  567. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  568. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  569. if (ctx->has_qwen2vl_merger) {
  570. K = ggml_rope_multi(
  571. ctx0, K, positions, nullptr,
  572. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  573. }
  574. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  575. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  576. struct ggml_tensor * V =
  577. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  578. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  579. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  580. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  581. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  582. KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
  583. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  584. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  585. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  586. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  587. }
  588. // attention output
  589. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  590. // re-add the layer input, e.g., residual
  591. cur = ggml_add(ctx0, cur, embeddings);
  592. embeddings = cur; // embeddings = residual, cur = hidden_states
  593. // layernorm2
  594. {
  595. cur = ggml_norm(ctx0, cur, eps);
  596. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  597. }
  598. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  599. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  600. if (ctx->use_gelu) {
  601. cur = ggml_gelu_inplace(ctx0, cur);
  602. } else if (ctx->use_silu) {
  603. cur = ggml_silu_inplace(ctx0, cur);
  604. } else {
  605. cur = ggml_gelu_quick_inplace(ctx0, cur);
  606. }
  607. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  608. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  609. // residual 2
  610. cur = ggml_add(ctx0, embeddings, cur);
  611. embeddings = cur;
  612. }
  613. // post-layernorm
  614. if (model.post_ln_w) {
  615. embeddings = ggml_norm(ctx0, embeddings, eps);
  616. ggml_set_name(embeddings, "post_ln");
  617. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  618. }
  619. // final layer is a vision feature layer
  620. if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
  621. embedding_stack.push_back(embeddings);
  622. }
  623. // If feature layers are explicitly set, stack them (if we have multiple)
  624. if (!embedding_stack.empty()) {
  625. embeddings = embedding_stack[0];
  626. for (size_t i = 1; i < embedding_stack.size(); i++) {
  627. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  628. }
  629. }
  630. // llava projector
  631. if (ctx->has_llava_projector) {
  632. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  633. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  634. ggml_set_name(patches, "patches");
  635. ggml_set_input(patches);
  636. // shape [1, 576, 1024]
  637. // ne is whcn, ne = [1024, 576, 1, 1]
  638. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  639. // print_tensor_info(embeddings, "embeddings");
  640. // llava projector
  641. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  642. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  643. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  644. embeddings = ggml_gelu(ctx0, embeddings);
  645. if (model.mm_2_w) {
  646. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  647. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  648. }
  649. }
  650. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  651. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  652. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  653. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  654. // First LayerNorm
  655. embeddings = ggml_norm(ctx0, embeddings, eps);
  656. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  657. model.mm_1_b);
  658. // GELU activation
  659. embeddings = ggml_gelu(ctx0, embeddings);
  660. // Second linear layer
  661. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  662. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  663. // Second LayerNorm
  664. embeddings = ggml_norm(ctx0, embeddings, eps);
  665. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  666. model.mm_4_b);
  667. }
  668. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  669. // MobileVLM projector
  670. int n_patch = 24;
  671. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  672. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  673. mlp_1 = ggml_gelu(ctx0, mlp_1);
  674. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  675. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  676. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  677. // block 1
  678. struct ggml_tensor * block_1 = nullptr;
  679. {
  680. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  681. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  682. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  683. // stride = 1, padding = 1, bias is nullptr
  684. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  685. // layer norm
  686. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  687. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  688. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  689. block_1 = ggml_norm(ctx0, block_1, eps);
  690. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  691. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  692. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  693. // hardswish
  694. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  695. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  696. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  697. // pointwise conv
  698. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  699. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  700. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  701. block_1 = ggml_relu(ctx0, block_1);
  702. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  703. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  704. block_1 = ggml_hardsigmoid(ctx0, block_1);
  705. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  706. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  707. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  708. int w = block_1->ne[0], h = block_1->ne[1];
  709. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  710. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  711. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  712. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  713. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  714. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  715. block_1 = ggml_norm(ctx0, block_1, eps);
  716. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  717. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  718. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  719. // residual
  720. block_1 = ggml_add(ctx0, mlp_3, block_1);
  721. }
  722. // block_2
  723. {
  724. // stride = 2
  725. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  726. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  727. // layer norm
  728. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  729. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  730. block_1 = ggml_norm(ctx0, block_1, eps);
  731. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  732. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  733. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  734. // hardswish
  735. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  736. // not sure the parameters is right for globalAvgPooling
  737. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  738. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  739. // pointwise conv
  740. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  741. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  742. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  743. block_1 = ggml_relu(ctx0, block_1);
  744. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  745. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  746. block_1 = ggml_hardsigmoid(ctx0, block_1);
  747. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  748. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  749. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  750. int w = block_1->ne[0], h = block_1->ne[1];
  751. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  752. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  753. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  754. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  755. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  756. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  757. block_1 = ggml_norm(ctx0, block_1, eps);
  758. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  759. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  760. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  761. }
  762. embeddings = block_1;
  763. }
  764. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  765. {
  766. int n_patch = 24;
  767. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  768. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  769. mlp_0 = ggml_gelu(ctx0, mlp_0);
  770. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  771. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  772. // mlp_2 ne = [2048, 576, 1, 1]
  773. // // AVG Pool Layer 2*2, strides = 2
  774. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  775. // mlp_2 ne = [576, 2048, 1, 1]
  776. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  777. // mlp_2 ne [24, 24, 2048, 1]
  778. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  779. // weight ne = [3, 3, 2048, 1]
  780. struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  781. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  782. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  783. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  784. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  785. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  786. embeddings = peg_0;
  787. }
  788. else {
  789. GGML_ABORT("fatal error");
  790. }
  791. }
  792. // minicpmv projector
  793. else if (ctx->has_minicpmv_projector)
  794. {
  795. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  796. struct ggml_tensor * q = model.mm_model_query;
  797. { // layernorm
  798. q = ggml_norm(ctx0, q, eps);
  799. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  800. }
  801. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  802. { // layernorm
  803. v = ggml_norm(ctx0, v, eps);
  804. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  805. }
  806. struct ggml_tensor * k;
  807. { // position
  808. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  809. k = ggml_add(ctx0, v, pos_embed);
  810. }
  811. { // attention
  812. int hidden_size = 4096;
  813. const int d_head = 128;
  814. int n_head = hidden_size/d_head;
  815. int num_query = 96;
  816. if (ctx->minicpmv_version == 2) {
  817. hidden_size = 4096;
  818. n_head = hidden_size/d_head;
  819. num_query = 96;
  820. }
  821. else if (ctx->minicpmv_version == 3) {
  822. hidden_size = 3584;
  823. n_head = hidden_size/d_head;
  824. num_query = 64;
  825. }
  826. else if (ctx->minicpmv_version == 4) {
  827. hidden_size = 3584;
  828. n_head = hidden_size/d_head;
  829. num_query = 64;
  830. }
  831. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  832. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  833. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  834. // permute
  835. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  836. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  837. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  838. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  839. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  840. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  841. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  842. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  843. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  844. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  845. KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f);
  846. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  847. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  848. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  849. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  850. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  851. }
  852. { // layernorm
  853. embeddings = ggml_norm(ctx0, embeddings, eps);
  854. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  855. }
  856. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  857. }
  858. else {
  859. GGML_ASSERT(false);
  860. }
  861. }
  862. // glm projector
  863. else if (ctx->has_glm_projector) {
  864. if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  865. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  866. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  867. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  868. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  869. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  870. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  871. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  872. //GLU
  873. {
  874. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  875. embeddings = ggml_norm(ctx0, embeddings, eps);
  876. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  877. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  878. struct ggml_tensor * x = embeddings;
  879. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  880. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  881. embeddings = ggml_silu_inplace(ctx0, embeddings);
  882. embeddings = ggml_mul(ctx0, embeddings,x);
  883. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  884. }
  885. } else {
  886. GGML_ABORT("fatal error");
  887. }
  888. }
  889. else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  890. embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
  891. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  892. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  893. // GELU activation
  894. embeddings = ggml_gelu(ctx0, embeddings);
  895. // Second linear layer
  896. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  897. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  898. }
  899. // build the graph
  900. ggml_build_forward_expand(gf, embeddings);
  901. return gf;
  902. }
  903. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) {
  904. if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  905. return clip_image_build_graph_siglip(ctx, imgs);
  906. } else {
  907. // TODO: we should have one build_* function per model
  908. return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf);
  909. }
  910. }
  911. struct clip_model_loader {
  912. ggml_context_ptr ctx_meta;
  913. gguf_context_ptr ctx_gguf;
  914. clip_ctx & ctx_clip;
  915. std::string fname;
  916. size_t model_size; // in bytes
  917. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model
  918. clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) {
  919. struct ggml_context * meta = nullptr;
  920. struct gguf_init_params params = {
  921. /*.no_alloc = */ true,
  922. /*.ctx = */ &meta,
  923. };
  924. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  925. if (!ctx_gguf.get()) {
  926. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  927. }
  928. ctx_meta.reset(meta);
  929. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  930. // print gguf info
  931. {
  932. std::string name;
  933. get_string(KEY_NAME, name, false);
  934. std::string description;
  935. get_string(KEY_DESCRIPTION, description, false);
  936. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  937. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  938. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  939. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  940. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  941. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  942. LOG_INF("\n");
  943. }
  944. // tensors
  945. {
  946. for (int i = 0; i < n_tensors; ++i) {
  947. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  948. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  949. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  950. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  951. size_t tensor_size = ggml_nbytes(cur);
  952. model_size += tensor_size;
  953. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  954. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  955. }
  956. }
  957. }
  958. void load_hparams() {
  959. // projector type
  960. {
  961. std::string proj_type;
  962. get_string(KEY_PROJ_TYPE, proj_type, false);
  963. if (!proj_type.empty()) {
  964. ctx_clip.proj_type = clip_projector_type_from_string(proj_type);
  965. }
  966. if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  967. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  968. }
  969. }
  970. // other hparams
  971. {
  972. get_bool(KEY_HAS_TEXT_ENC, ctx_clip.has_text_encoder, false);
  973. get_bool(KEY_HAS_VIS_ENC, ctx_clip.has_vision_encoder, false);
  974. GGML_ASSERT(ctx_clip.has_vision_encoder);
  975. GGML_ASSERT(!ctx_clip.has_text_encoder);
  976. // legacy keys, use KEY_PROJ_TYPE instead
  977. get_bool(KEY_HAS_LLAVA_PROJ, ctx_clip.has_llava_projector, false);
  978. get_bool(KEY_HAS_MINICPMV_PROJ, ctx_clip.has_minicpmv_projector, false);
  979. get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false);
  980. get_bool(KEY_HAS_GLM_PROJ, ctx_clip.has_glm_projector, false);
  981. get_bool(KEY_HAS_QWEN2VL_MERGER, ctx_clip.has_qwen2vl_merger, false);
  982. // !!! do NOT extend the list above, use KEY_PROJ_TYPE instead
  983. get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false);
  984. get_bool(KEY_USE_SILU, ctx_clip.use_silu, false);
  985. auto & hparams = ctx_clip.vision_model.hparams;
  986. get_u32(string_format(KEY_N_EMBD, "vision"), hparams.hidden_size);
  987. get_u32(string_format(KEY_N_HEAD, "vision"), hparams.n_head);
  988. get_u32(string_format(KEY_N_FF, "vision"), hparams.n_intermediate);
  989. get_u32(string_format(KEY_N_BLOCK, "vision"), hparams.n_layer);
  990. get_u32(string_format(KEY_PROJ_DIM, "vision"), hparams.projection_dim);
  991. get_f32(string_format(KEY_LAYER_NORM_EPS, "vision"), hparams.eps);
  992. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  993. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  994. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  995. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false);
  996. {
  997. std::string mm_patch_merge_type;
  998. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  999. if (mm_patch_merge_type == "spatial_unpad") {
  1000. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1001. }
  1002. }
  1003. {
  1004. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1005. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1006. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1007. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1008. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1009. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1010. for (int i = 0; i < 3; ++i) {
  1011. ctx_clip.image_mean[i] = mean_data[i];
  1012. ctx_clip.image_std[i] = std_data[i];
  1013. }
  1014. }
  1015. // Load the vision feature layer indices if they are explicitly provided;
  1016. // if multiple vision feature layers are present, the values will be concatenated
  1017. // to form the final visual features.
  1018. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1019. // be non-negative, since we use -1 to mark values as unset here.
  1020. std::vector<int> vision_feature_layer;
  1021. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1022. // convert std::vector to std::unordered_set
  1023. for (auto & layer : vision_feature_layer) {
  1024. hparams.vision_feature_layer.insert(layer);
  1025. }
  1026. // Calculate the deepest feature layer based on hparams and projector type
  1027. ctx_clip.max_feature_layer = get_deepest_feature_layer(&ctx_clip);
  1028. LOG_INF("%s: text_encoder: %d\n", __func__, ctx_clip.has_text_encoder);
  1029. LOG_INF("%s: vision_encoder: %d\n", __func__, ctx_clip.has_vision_encoder);
  1030. LOG_INF("%s: llava_projector: %d\n", __func__, ctx_clip.has_llava_projector);
  1031. LOG_INF("%s: minicpmv_projector: %d\n", __func__, ctx_clip.has_minicpmv_projector);
  1032. LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version);
  1033. LOG_INF("%s: glm_projector: %d\n", __func__, ctx_clip.has_glm_projector);
  1034. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1035. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1036. }
  1037. }
  1038. void load_tensors() {
  1039. std::map<std::string, size_t> tensor_offset;
  1040. std::vector<ggml_tensor *> tensors_to_load;
  1041. // get offsets
  1042. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1043. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1044. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1045. }
  1046. // create data context
  1047. struct ggml_init_params params = {
  1048. /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1049. /*.mem_buffer =*/ NULL,
  1050. /*.no_alloc =*/ true,
  1051. };
  1052. ctx_clip.ctx_data.reset(ggml_init(params));
  1053. if (!ctx_clip.ctx_data) {
  1054. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1055. }
  1056. // helper function
  1057. auto get_tensor = [&](const std::string & name, bool required = true) {
  1058. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1059. if (!cur && required) {
  1060. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1061. }
  1062. if (cur) {
  1063. tensors_to_load.push_back(cur);
  1064. // add tensors to context
  1065. struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1066. ggml_set_name(data_tensor, cur->name);
  1067. cur = data_tensor;
  1068. }
  1069. return cur;
  1070. };
  1071. auto & vision_model = ctx_clip.vision_model;
  1072. vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1073. vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false);
  1074. vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false);
  1075. vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false);
  1076. vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false);
  1077. vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  1078. vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  1079. vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  1080. if (vision_model.patch_embeddings_1 == nullptr) {
  1081. ctx_clip.has_qwen2vl_merger = false;
  1082. }
  1083. vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false);
  1084. // layers
  1085. vision_model.layers.resize(vision_model.hparams.n_layer);
  1086. for (int il = 0; il < vision_model.hparams.n_layer; ++il) {
  1087. auto & layer = vision_model.layers[il];
  1088. layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight"));
  1089. layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight"));
  1090. layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight"));
  1091. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1092. layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false);
  1093. layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false);
  1094. layer.ff_i_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight"));
  1095. layer.ff_o_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight"));
  1096. layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false);
  1097. layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false);
  1098. layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false);
  1099. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false);
  1100. layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false);
  1101. layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false);
  1102. layer.ff_i_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false);
  1103. layer.ff_o_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false);
  1104. }
  1105. switch (ctx_clip.proj_type) {
  1106. case PROJECTOR_TYPE_MLP:
  1107. case PROJECTOR_TYPE_MLP_NORM:
  1108. {
  1109. // LLaVA projection
  1110. vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  1111. vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  1112. // Yi-type llava
  1113. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  1114. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  1115. // missing in Yi-type llava
  1116. vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  1117. vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  1118. // Yi-type llava
  1119. vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  1120. vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  1121. vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  1122. vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  1123. if (vision_model.mm_3_w) {
  1124. // TODO: this is a hack to support Yi-type llava
  1125. ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM;
  1126. }
  1127. vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  1128. } break;
  1129. case PROJECTOR_TYPE_LDP:
  1130. {
  1131. // MobileVLM projection
  1132. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1133. vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1134. vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1135. vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1136. vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1137. vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1138. vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1139. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1140. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1141. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1142. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1143. vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1144. vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1145. vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1146. vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1147. vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1148. vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1149. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1150. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1151. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1152. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1153. vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1154. vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1155. vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1156. } break;
  1157. case PROJECTOR_TYPE_LDPV2:
  1158. {
  1159. // MobilVLM_V2 projection
  1160. vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1161. vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1162. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1163. vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1164. vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1165. vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1166. } break;
  1167. case PROJECTOR_TYPE_RESAMPLER:
  1168. {
  1169. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1170. vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  1171. vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  1172. vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  1173. vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  1174. vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  1175. vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  1176. vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  1177. vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  1178. vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  1179. vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  1180. vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  1181. vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  1182. vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  1183. vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  1184. vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  1185. vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  1186. vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  1187. vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  1188. } break;
  1189. case PROJECTOR_TYPE_GLM_EDGE:
  1190. {
  1191. vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  1192. vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  1193. vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight"));
  1194. vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight"));
  1195. vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias"));
  1196. vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight"));
  1197. vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight"));
  1198. vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight"));
  1199. vision_model.boi_w = get_tensor(TN_GLM_BOI_W);
  1200. vision_model.eoi_w = get_tensor(TN_GLM_EOI_W);
  1201. } break;
  1202. case PROJECTOR_TYPE_MERGER:
  1203. {
  1204. vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  1205. vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  1206. vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  1207. vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  1208. } break;
  1209. case PROJECTOR_TYPE_GEMMA3:
  1210. {
  1211. vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  1212. vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  1213. } break;
  1214. default:
  1215. GGML_ASSERT(false && "unknown projector type");
  1216. }
  1217. // load data
  1218. {
  1219. std::vector<uint8_t> read_buf;
  1220. auto fin = std::ifstream(fname, std::ios::binary);
  1221. if (!fin) {
  1222. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  1223. }
  1224. // alloc memory and offload data
  1225. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  1226. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  1227. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  1228. for (auto & t : tensors_to_load) {
  1229. struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  1230. const size_t offset = tensor_offset[t->name];
  1231. fin.seekg(offset, std::ios::beg);
  1232. if (!fin) {
  1233. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  1234. }
  1235. size_t num_bytes = ggml_nbytes(cur);
  1236. if (ggml_backend_buft_is_host(buft)) {
  1237. // for the CPU and Metal backend, we can read directly into the tensor
  1238. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1239. } else {
  1240. // read into a temporary buffer first, then copy to device memory
  1241. read_buf.resize(num_bytes);
  1242. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1243. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1244. }
  1245. }
  1246. fin.close();
  1247. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  1248. }
  1249. }
  1250. void alloc_compute_meta() {
  1251. ctx_clip.buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1252. // create a fake batch
  1253. clip_image_f32_batch batch;
  1254. clip_image_f32_ptr img(clip_image_f32_init());
  1255. clip_image_size image_size;
  1256. image_size.width = clip_get_image_size(&ctx_clip);
  1257. image_size.height = clip_get_image_size(&ctx_clip);
  1258. int n_patches = clip_get_image_size(&ctx_clip) / image_size.width;
  1259. img->nx = n_patches;
  1260. img->ny = n_patches;
  1261. img->buf.resize(n_patches * image_size.width * image_size.height * 3);
  1262. batch.entries.push_back(std::move(img));
  1263. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false);
  1264. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  1265. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  1266. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  1267. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  1268. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  1269. if (size > 1) {
  1270. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  1271. ggml_backend_buft_name(buft),
  1272. size / 1024.0 / 1024.0);
  1273. }
  1274. }
  1275. }
  1276. void get_bool(const std::string & key, bool & output, bool required = true) {
  1277. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1278. if (i < 0) {
  1279. if (required) throw std::runtime_error("Key not found: " + key);
  1280. return;
  1281. }
  1282. output = gguf_get_val_bool(ctx_gguf.get(), i);
  1283. }
  1284. void get_i32(const std::string & key, int & output, bool required = true) {
  1285. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1286. if (i < 0) {
  1287. if (required) throw std::runtime_error("Key not found: " + key);
  1288. return;
  1289. }
  1290. output = gguf_get_val_i32(ctx_gguf.get(), i);
  1291. }
  1292. void get_u32(const std::string & key, int & output, bool required = true) {
  1293. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1294. if (i < 0) {
  1295. if (required) throw std::runtime_error("Key not found: " + key);
  1296. return;
  1297. }
  1298. output = gguf_get_val_u32(ctx_gguf.get(), i);
  1299. }
  1300. void get_f32(const std::string & key, float & output, bool required = true) {
  1301. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1302. if (i < 0) {
  1303. if (required) throw std::runtime_error("Key not found: " + key);
  1304. return;
  1305. }
  1306. output = gguf_get_val_f32(ctx_gguf.get(), i);
  1307. }
  1308. void get_string(const std::string & key, std::string & output, bool required = true) {
  1309. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1310. if (i < 0) {
  1311. if (required) throw std::runtime_error("Key not found: " + key);
  1312. return;
  1313. }
  1314. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  1315. }
  1316. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  1317. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  1318. if (i < 0) {
  1319. if (required) throw std::runtime_error("Key not found: " + key);
  1320. return;
  1321. }
  1322. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  1323. output.resize(n);
  1324. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  1325. for (int i = 0; i < n; ++i) {
  1326. output[i] = values[i];
  1327. }
  1328. }
  1329. };
  1330. // read and create ggml_context containing the tensors and their data
  1331. struct clip_ctx * clip_model_load(const char * fname, const int verbosity) {
  1332. return clip_init(fname, clip_context_params{
  1333. /* use_gpu */ true,
  1334. /* verbosity */ static_cast<ggml_log_level>(verbosity),
  1335. });
  1336. }
  1337. struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) {
  1338. g_logger_state.verbosity_thold = ctx_params.verbosity;
  1339. clip_ctx * ctx_clip = new clip_ctx(ctx_params);
  1340. try {
  1341. clip_model_loader loader(fname, *ctx_clip);
  1342. loader.load_hparams();
  1343. loader.load_tensors();
  1344. loader.alloc_compute_meta();
  1345. } catch (const std::exception & e) {
  1346. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  1347. delete ctx_clip;
  1348. return nullptr;
  1349. }
  1350. return ctx_clip;
  1351. }
  1352. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1353. ctx_clip->load_image_size = *load_image_size; // copy
  1354. }
  1355. struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
  1356. return &ctx_clip->load_image_size;
  1357. }
  1358. struct clip_image_size * clip_image_size_init() {
  1359. struct clip_image_size * load_image_size = new struct clip_image_size();
  1360. load_image_size->width = 448;
  1361. load_image_size->height = 448;
  1362. return load_image_size;
  1363. }
  1364. struct clip_image_u8 * clip_image_u8_init() {
  1365. return new clip_image_u8();
  1366. }
  1367. struct clip_image_f32 * clip_image_f32_init() {
  1368. return new clip_image_f32();
  1369. }
  1370. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  1371. return new clip_image_f32_batch();
  1372. }
  1373. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  1374. if (nx) *nx = img->nx;
  1375. if (ny) *ny = img->ny;
  1376. return img->buf.data();
  1377. }
  1378. void clip_image_size_free(struct clip_image_size * load_image_size) {
  1379. if (load_image_size == nullptr) {
  1380. return;
  1381. }
  1382. delete load_image_size;
  1383. }
  1384. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  1385. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  1386. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  1387. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  1388. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  1389. return batch->entries.size();
  1390. }
  1391. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  1392. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1393. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1394. return 0;
  1395. }
  1396. return batch->entries[idx]->nx;
  1397. }
  1398. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  1399. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1400. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1401. return 0;
  1402. }
  1403. return batch->entries[idx]->ny;
  1404. }
  1405. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  1406. if (idx < 0 || idx >= (int)batch->entries.size()) {
  1407. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  1408. return nullptr;
  1409. }
  1410. return batch->entries[idx].get();
  1411. }
  1412. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  1413. img->nx = nx;
  1414. img->ny = ny;
  1415. img->buf.resize(3 * nx * ny);
  1416. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  1417. }
  1418. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1419. int nx, ny, nc;
  1420. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1421. if (!data) {
  1422. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  1423. return false;
  1424. }
  1425. clip_build_img_from_pixels(data, nx, ny, img);
  1426. stbi_image_free(data);
  1427. return true;
  1428. }
  1429. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1430. int nx, ny, nc;
  1431. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1432. if (!data) {
  1433. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  1434. return false;
  1435. }
  1436. clip_build_img_from_pixels(data, nx, ny, img);
  1437. stbi_image_free(data);
  1438. return true;
  1439. }
  1440. // Linear interpolation between two points
  1441. inline float clip_lerp(float s, float e, float t) {
  1442. return s + (e - s) * t;
  1443. }
  1444. // Bilinear resize function
  1445. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1446. dst.nx = target_width;
  1447. dst.ny = target_height;
  1448. dst.buf.resize(3 * target_width * target_height);
  1449. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1450. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1451. for (int y = 0; y < target_height; y++) {
  1452. for (int x = 0; x < target_width; x++) {
  1453. float px = x_ratio * x;
  1454. float py = y_ratio * y;
  1455. int x_floor = static_cast<int>(px);
  1456. int y_floor = static_cast<int>(py);
  1457. float x_lerp = px - x_floor;
  1458. float y_lerp = py - y_floor;
  1459. for (int c = 0; c < 3; c++) {
  1460. float top = clip_lerp(
  1461. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1462. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1463. x_lerp
  1464. );
  1465. float bottom = clip_lerp(
  1466. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1467. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1468. x_lerp
  1469. );
  1470. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1471. }
  1472. }
  1473. }
  1474. }
  1475. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1476. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  1477. dst.nx = src.nx;
  1478. dst.ny = src.ny;
  1479. dst.buf.resize(src.buf.size());
  1480. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  1481. for (size_t i = 0; i < src.buf.size(); ++i) {
  1482. int c = i % 3; // rgb
  1483. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  1484. }
  1485. }
  1486. inline int clip(int x, int lower, int upper) {
  1487. return std::max(lower, std::min(x, upper));
  1488. }
  1489. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  1490. const int nx = img.nx;
  1491. const int ny = img.ny;
  1492. dst.nx = target_width;
  1493. dst.ny = target_height;
  1494. dst.buf.resize(3 * target_width * target_height);
  1495. float Cc;
  1496. float C[5];
  1497. float d0, d2, d3, a0, a1, a2, a3;
  1498. int i, j, k, jj;
  1499. int x, y;
  1500. float dx, dy;
  1501. float tx, ty;
  1502. tx = (float)nx / (float)target_width;
  1503. ty = (float)ny / (float)target_height;
  1504. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1505. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1506. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1507. for (i = 0; i < target_height; i++) {
  1508. for (j = 0; j < target_width; j++) {
  1509. x = (int)(tx * j);
  1510. y = (int)(ty * i);
  1511. dx = tx * j - x;
  1512. dy = ty * i - y;
  1513. for (k = 0; k < 3; k++) {
  1514. for (jj = 0; jj <= 3; jj++) {
  1515. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1516. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1517. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1518. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1519. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1520. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1521. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1522. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1523. d0 = C[0] - C[1];
  1524. d2 = C[2] - C[1];
  1525. d3 = C[3] - C[1];
  1526. a0 = C[1];
  1527. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1528. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1529. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1530. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1531. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1532. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1533. }
  1534. }
  1535. }
  1536. }
  1537. return true;
  1538. }
  1539. // llava-1.6 type of resize_and_pad (black)
  1540. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1541. int target_width = target_resolution.first;
  1542. int target_height = target_resolution.second;
  1543. float scale_w = static_cast<float>(target_width) / image.nx;
  1544. float scale_h = static_cast<float>(target_height) / image.ny;
  1545. int new_width, new_height;
  1546. if (scale_w < scale_h) {
  1547. new_width = target_width;
  1548. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1549. } else {
  1550. new_height = target_height;
  1551. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1552. }
  1553. clip_image_u8 resized_image;
  1554. // bilinear_resize(image, resized_image, new_width, new_height);
  1555. bicubic_resize(image, resized_image, new_width, new_height);
  1556. clip_image_u8 padded_image;
  1557. padded_image.nx = target_width;
  1558. padded_image.ny = target_height;
  1559. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1560. // Calculate padding offsets
  1561. int pad_x = (target_width - new_width) / 2;
  1562. int pad_y = (target_height - new_height) / 2;
  1563. // Copy the resized image into the center of the padded buffer
  1564. for (int y = 0; y < new_height; ++y) {
  1565. for (int x = 0; x < new_width; ++x) {
  1566. for (int c = 0; c < 3; ++c) {
  1567. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1568. }
  1569. }
  1570. }
  1571. image_output = std::move(padded_image);
  1572. }
  1573. /**
  1574. * Selects the best resolution from a list of possible resolutions based on the original size.
  1575. *
  1576. * @param original_size The original size of the image in the format (width, height).
  1577. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1578. * @return The best fit resolution in the format (width, height).
  1579. */
  1580. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1581. int original_width = original_size.first;
  1582. int original_height = original_size.second;
  1583. std::pair<int, int> best_fit;
  1584. int max_effective_resolution = 0;
  1585. int min_wasted_resolution = std::numeric_limits<int>::max();
  1586. for (const auto& resolution : possible_resolutions) {
  1587. int width = resolution.first;
  1588. int height = resolution.second;
  1589. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1590. int downscaled_width = static_cast<int>(original_width * scale);
  1591. int downscaled_height = static_cast<int>(original_height * scale);
  1592. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1593. int wasted_resolution = (width * height) - effective_resolution;
  1594. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1595. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1596. max_effective_resolution = effective_resolution;
  1597. min_wasted_resolution = wasted_resolution;
  1598. best_fit = resolution;
  1599. }
  1600. }
  1601. return best_fit;
  1602. }
  1603. static std::vector<clip_image_u8_ptr> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1604. std::vector<clip_image_u8_ptr> patches;
  1605. int width = image.nx;
  1606. int height = image.ny;
  1607. for (int i = 0; i < height; i += patch_size) {
  1608. for (int j = 0; j < width; j += patch_size) {
  1609. clip_image_u8_ptr patch(clip_image_u8_init());
  1610. patch->nx = std::min(patch_size, width - j);
  1611. patch->ny = std::min(patch_size, height - i);
  1612. patch->buf.resize(3 * patch->nx * patch->ny);
  1613. for (int y = 0; y < patch->ny; ++y) {
  1614. for (int x = 0; x < patch->nx; ++x) {
  1615. for (int c = 0; c < 3; ++c) {
  1616. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1617. }
  1618. }
  1619. }
  1620. patches.push_back(std::move(patch));
  1621. }
  1622. }
  1623. return patches;
  1624. }
  1625. static int ensure_divide(int length, int patch_size) {
  1626. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1627. }
  1628. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1629. int width = original_size.first;
  1630. int height = original_size.second;
  1631. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1632. float r = static_cast<float>(width) / height;
  1633. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1634. width = static_cast<int>(height * r);
  1635. }
  1636. int best_width = ensure_divide(width, patch_size);
  1637. int best_height = ensure_divide(height, patch_size);
  1638. return std::make_pair(best_width, best_height);
  1639. }
  1640. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1641. int width, height;
  1642. std::tie(width, height) = original_size;
  1643. int grid_x, grid_y;
  1644. std::tie(grid_x, grid_y) = grid;
  1645. int refine_width = ensure_divide(width, grid_x);
  1646. int refine_height = ensure_divide(height, grid_y);
  1647. int grid_width = refine_width / grid_x;
  1648. int grid_height = refine_height / grid_y;
  1649. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1650. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1651. int best_grid_width, best_grid_height;
  1652. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1653. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1654. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1655. return refine_size;
  1656. }
  1657. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1658. std::vector<int> candidate_split_grids_nums;
  1659. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1660. if (i == 1 || i > max_slice_nums) {
  1661. continue;
  1662. }
  1663. candidate_split_grids_nums.push_back(i);
  1664. }
  1665. std::vector<std::pair<int, int>> candidate_grids;
  1666. for (int split_grids_nums : candidate_split_grids_nums) {
  1667. int m = 1;
  1668. while (m <= split_grids_nums) {
  1669. if (split_grids_nums % m == 0) {
  1670. candidate_grids.emplace_back(m, split_grids_nums / m);
  1671. }
  1672. ++m;
  1673. }
  1674. }
  1675. std::pair<int, int> best_grid{1, 1};
  1676. float min_error = std::numeric_limits<float>::infinity();
  1677. for (const auto& grid : candidate_grids) {
  1678. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1679. if (error < min_error) {
  1680. best_grid = grid;
  1681. min_error = error;
  1682. }
  1683. }
  1684. return best_grid;
  1685. }
  1686. // inspired from LLaVA-UHD:
  1687. // -> https://arxiv.org/pdf/2403.11703
  1688. // -> https://github.com/thunlp/LLaVA-UHD
  1689. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1690. static std::vector<std::vector<clip_image_u8_ptr>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1691. const std::pair<int, int> original_size={img->nx,img->ny};
  1692. const int original_width = img->nx;
  1693. const int original_height = img->ny;
  1694. const float log_ratio = log(1.0*original_width/original_height);
  1695. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1696. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1697. std::vector<std::vector<clip_image_u8_ptr>> images;
  1698. LOG_DBG("%s: multiple %d\n", __func__, multiple);
  1699. images.push_back(std::vector<clip_image_u8_ptr>());
  1700. if (multiple <= 1) {
  1701. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1702. clip_image_u8_ptr source_image(clip_image_u8_init());
  1703. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1704. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1705. images.back().push_back(std::move(source_image));
  1706. }
  1707. else if (multiple > 1) {
  1708. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1709. clip_image_u8_ptr source_image(clip_image_u8_init());
  1710. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1711. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1712. LOG_DBG("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1713. images.back().push_back(std::move(source_image));
  1714. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1715. LOG_DBG("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1716. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1717. clip_image_u8_ptr refine_image(clip_image_u8_init());
  1718. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1719. LOG_DBG("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1720. // split_to_patches
  1721. int width = refine_image->nx;
  1722. int height = refine_image->ny;
  1723. int grid_x = int(width / best_grid.first);
  1724. int grid_y = int(height / best_grid.second);
  1725. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1726. images.push_back(std::vector<clip_image_u8_ptr>());
  1727. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1728. clip_image_u8_ptr patch(clip_image_u8_init());
  1729. patch->nx = grid_x;
  1730. patch->ny = grid_y;
  1731. patch->buf.resize(3 * patch->nx * patch->ny);
  1732. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1733. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1734. const int i = 3 * (y * refine_image->nx + x);
  1735. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1736. patch->buf[j] = refine_image->buf[i];
  1737. patch->buf[j+1] = refine_image->buf[i+1];
  1738. patch->buf[j+2] = refine_image->buf[i+2];
  1739. }
  1740. }
  1741. images.back().push_back(std::move(patch));
  1742. }
  1743. }
  1744. }
  1745. return images;
  1746. }
  1747. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1748. const int max_slice_nums=9;
  1749. const int scale_resolution=448;
  1750. const int original_width = ctx_clip->load_image_size.width;
  1751. const int original_height = ctx_clip->load_image_size.height;
  1752. const float log_ratio = log(1.0*original_width/original_height);
  1753. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1754. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1755. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1756. return best_grid.first;
  1757. }
  1758. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1759. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1760. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  1761. if (clip_is_minicpmv(ctx)) {
  1762. int max_slice_nums = 9;
  1763. std::vector<std::vector<clip_image_u8_ptr>> imgs = uhd_slice_image(img, max_slice_nums);
  1764. for (size_t i = 0; i < imgs.size(); ++i) {
  1765. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1766. LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1767. clip_image_f32_ptr res(clip_image_f32_init());
  1768. normalize_image_u8_to_f32(*imgs[i][j], *res, ctx->image_mean, ctx->image_std);
  1769. res_imgs->entries.push_back(std::move(res));
  1770. }
  1771. }
  1772. return true;
  1773. }
  1774. else if (ctx->has_qwen2vl_merger) {
  1775. clip_image_u8 resized;
  1776. auto patch_size = clip_get_patch_size(ctx) * 2;
  1777. int nx = ceil((float)img->nx / patch_size) * patch_size;
  1778. int ny = ceil((float)img->ny / patch_size) * patch_size;
  1779. bicubic_resize(*img, resized, nx, ny);
  1780. clip_image_f32_ptr img_f32(clip_image_f32_init());
  1781. // clip_image_f32_ptr res(clip_image_f32_init());
  1782. normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std);
  1783. // res_imgs->data[0] = *res;
  1784. res_imgs->entries.push_back(std::move(img_f32));
  1785. return true;
  1786. }
  1787. if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  1788. clip_image_u8 resized_image;
  1789. int32_t sz=ctx->vision_model.hparams.image_size;
  1790. bicubic_resize(*img, resized_image,sz,sz);
  1791. clip_image_f32_ptr img_f32(clip_image_f32_init());
  1792. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  1793. normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
  1794. res_imgs->entries.push_back(std::move(img_f32));
  1795. return true;
  1796. }
  1797. bool pad_to_square = true;
  1798. if (!ctx->has_vision_encoder) {
  1799. LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
  1800. return false;
  1801. }
  1802. auto & params = ctx->vision_model.hparams;
  1803. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1804. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  1805. pad_to_square = false;
  1806. }
  1807. // free the previous res_imgs if any set
  1808. res_imgs->entries.clear();
  1809. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1810. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1811. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  1812. if (pad_to_square && img->nx != img->ny) {
  1813. int longer_side = std::max(img->nx, img->ny);
  1814. temp->nx = longer_side;
  1815. temp->ny = longer_side;
  1816. temp->buf.resize(3 * longer_side * longer_side);
  1817. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1818. // fill with background color
  1819. for (size_t i = 0; i < temp->buf.size(); i++) {
  1820. temp->buf[i] = bc[i % 3];
  1821. }
  1822. // copy from the input image
  1823. for (int y = 0; y < img->ny; y++) {
  1824. for (int x = 0; x < img->nx; x++) {
  1825. const int i = 3 * (y * img->nx + x);
  1826. const int j = 3 * (y * temp->nx + x);
  1827. temp->buf[j] = img->buf[i];
  1828. temp->buf[j+1] = img->buf[i+1];
  1829. temp->buf[j+2] = img->buf[i+2];
  1830. }
  1831. }
  1832. } else {
  1833. if (!params.image_grid_pinpoints.empty()) {
  1834. // "spatial_unpad" with "anyres" processing for llava-1.6
  1835. std::vector<std::pair<int, int>> possible_resolutions;
  1836. for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
  1837. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1838. }
  1839. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1840. // clip_image_save_to_bmp(*img, "input.bmp");
  1841. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1842. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1843. // visually verify normalized image:
  1844. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1845. // {
  1846. // clip_image_u8 * temp2 = clip_image_u8_init();
  1847. // clip_image_convert_f32_to_u8(*res, *temp2);
  1848. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1849. // clip_image_u8_free(temp2);
  1850. // }
  1851. std::vector<clip_image_u8_ptr> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1852. clip_image_u8_ptr image_original_resize(clip_image_u8_init());
  1853. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1854. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1855. patches.insert(patches.begin(), std::move(image_original_resize));
  1856. for (auto & patch : patches) {
  1857. clip_image_f32_ptr res(clip_image_f32_init());
  1858. normalize_image_u8_to_f32(*patch, *res, ctx->image_mean, ctx->image_std);
  1859. res_imgs->entries.push_back(std::move(res));
  1860. }
  1861. return true;
  1862. } else {
  1863. temp->nx = img->nx;
  1864. temp->ny = img->ny;
  1865. temp->buf.resize(img->buf.size());
  1866. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1867. }
  1868. }
  1869. const int nx = temp->nx;
  1870. const int ny = temp->ny;
  1871. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1872. const int nx2 = ctx->vision_model.hparams.image_size;
  1873. const int ny2 = ctx->vision_model.hparams.image_size;
  1874. clip_image_f32_ptr res(clip_image_f32_init());
  1875. res->nx = nx2;
  1876. res->ny = ny2;
  1877. res->buf.resize(3 * nx2 * ny2);
  1878. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  1879. const int nx3 = int(nx / scale + 0.5f);
  1880. const int ny3 = int(ny / scale + 0.5f);
  1881. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  1882. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  1883. for (int y = 0; y < ny3; y++) {
  1884. for (int x = 0; x < nx3; x++) {
  1885. for (int c = 0; c < 3; c++) {
  1886. // linear interpolation
  1887. const float sx = (x + 0.5f) * scale - 0.5f;
  1888. const float sy = (y + 0.5f) * scale - 0.5f;
  1889. const int x0 = std::max(0, (int)std::floor(sx));
  1890. const int y0 = std::max(0, (int)std::floor(sy));
  1891. const int x1 = std::min(x0 + 1, nx - 1);
  1892. const int y1 = std::min(y0 + 1, ny - 1);
  1893. const float dx = sx - x0;
  1894. const float dy = sy - y0;
  1895. const int j00 = 3 * (y0 * nx + x0) + c;
  1896. const int j01 = 3 * (y0 * nx + x1) + c;
  1897. const int j10 = 3 * (y1 * nx + x0) + c;
  1898. const int j11 = 3 * (y1 * nx + x1) + c;
  1899. const float v00 = temp->buf[j00];
  1900. const float v01 = temp->buf[j01];
  1901. const float v10 = temp->buf[j10];
  1902. const float v11 = temp->buf[j11];
  1903. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  1904. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  1905. const float v = v0 * (1.0f - dy) + v1 * dy;
  1906. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  1907. const int i = 3 * (y * nx3 + x) + c;
  1908. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  1909. }
  1910. }
  1911. }
  1912. // {
  1913. // clip_image_u8 * temp2 = clip_image_u8_init();
  1914. // clip_image_convert_f32_to_u8(*res, *temp2);
  1915. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  1916. // clip_image_u8_free(temp2);
  1917. // }
  1918. // res_imgs.push_back(res);
  1919. res_imgs->entries.push_back(std::move(res));
  1920. return true;
  1921. }
  1922. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  1923. return ctx->vision_model.image_newline;
  1924. }
  1925. void clip_free(clip_ctx * ctx) {
  1926. if (ctx == nullptr) {
  1927. return;
  1928. }
  1929. delete ctx;
  1930. }
  1931. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  1932. int extra_tokens = ctx->has_glm_projector ? 2 : 0;
  1933. return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1934. }
  1935. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
  1936. clip_image_f32 img;
  1937. img.nx = img_w;
  1938. img.ny = img_h;
  1939. return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1940. }
  1941. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  1942. return ctx->vision_model.hparams.image_size;
  1943. }
  1944. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  1945. return ctx->vision_model.hparams.patch_size;
  1946. }
  1947. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  1948. return ctx->vision_model.hparams.hidden_size;
  1949. }
  1950. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  1951. return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  1952. }
  1953. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  1954. if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
  1955. return &ctx->vision_model.hparams.image_grid_pinpoints.front();
  1956. }
  1957. return nullptr;
  1958. }
  1959. size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
  1960. return ctx->vision_model.hparams.image_grid_pinpoints.size();
  1961. }
  1962. int clip_n_patches(const struct clip_ctx * ctx) {
  1963. clip_image_f32 img;
  1964. img.nx = ctx->vision_model.hparams.image_size;
  1965. img.ny = ctx->vision_model.hparams.image_size;
  1966. return clip_n_patches_by_img(ctx, &img);
  1967. }
  1968. int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  1969. const auto & params = ctx->vision_model.hparams;
  1970. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  1971. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) {
  1972. n_patches /= 4;
  1973. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1974. if (ctx->minicpmv_version == 2) {
  1975. n_patches = 96;
  1976. }
  1977. else if (ctx->minicpmv_version == 3) {
  1978. n_patches = 64;
  1979. }
  1980. else if (ctx->minicpmv_version == 4) {
  1981. n_patches = 64;
  1982. }
  1983. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  1984. int patch_size = params.patch_size * 2;
  1985. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  1986. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  1987. n_patches = x_patch * y_patch;
  1988. } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  1989. n_patches = 256;
  1990. }
  1991. return n_patches;
  1992. }
  1993. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  1994. assert(embed_dim % 2 == 0);
  1995. int H = pos.size();
  1996. int W = pos[0].size();
  1997. std::vector<float> omega(embed_dim / 2);
  1998. for (int i = 0; i < embed_dim / 2; ++i) {
  1999. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2000. }
  2001. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2002. for (int h = 0; h < H; ++h) {
  2003. for (int w = 0; w < W; ++w) {
  2004. for (int d = 0; d < embed_dim / 2; ++d) {
  2005. float out_value = pos[h][w] * omega[d];
  2006. emb[h][w][d] = sin(out_value);
  2007. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2008. }
  2009. }
  2010. }
  2011. return emb;
  2012. }
  2013. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  2014. assert(embed_dim % 2 == 0);
  2015. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  2016. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  2017. int H = emb_h.size();
  2018. int W = emb_h[0].size();
  2019. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2020. for (int h = 0; h < H; ++h) {
  2021. for (int w = 0; w < W; ++w) {
  2022. for (int d = 0; d < embed_dim / 2; ++d) {
  2023. emb[h][w][d] = emb_h[h][w][d];
  2024. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  2025. }
  2026. }
  2027. }
  2028. return emb;
  2029. }
  2030. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  2031. int grid_h_size = image_size.first;
  2032. int grid_w_size = image_size.second;
  2033. std::vector<float> grid_h(grid_h_size);
  2034. std::vector<float> grid_w(grid_w_size);
  2035. for (int i = 0; i < grid_h_size; ++i) {
  2036. grid_h[i] = static_cast<float>(i);
  2037. }
  2038. for (int i = 0; i < grid_w_size; ++i) {
  2039. grid_w[i] = static_cast<float>(i);
  2040. }
  2041. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  2042. for (int h = 0; h < grid_h_size; ++h) {
  2043. for (int w = 0; w < grid_w_size; ++w) {
  2044. grid[h][w] = grid_w[w];
  2045. }
  2046. }
  2047. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  2048. for (int h = 0; h < grid_h_size; ++h) {
  2049. for (int w = 0; w < grid_w_size; ++w) {
  2050. grid_2d[0][h][w] = grid_h[h];
  2051. grid_2d[1][h][w] = grid_w[w];
  2052. }
  2053. }
  2054. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2055. int H = image_size.first;
  2056. int W = image_size.second;
  2057. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2058. for (int h = 0; h < H; ++h) {
  2059. for (int w = 0; w < W; ++w) {
  2060. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2061. }
  2062. }
  2063. return pos_embed_2d;
  2064. }
  2065. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2066. if (!ctx->has_vision_encoder) {
  2067. LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
  2068. return false;
  2069. }
  2070. clip_image_f32_batch imgs;
  2071. clip_image_f32_ptr img_copy(clip_image_f32_init());
  2072. *img_copy = *img;
  2073. imgs.entries.push_back(std::move(img_copy));
  2074. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2075. }
  2076. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  2077. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  2078. if (!ctx->has_vision_encoder) {
  2079. LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
  2080. return false;
  2081. }
  2082. int batch_size = imgs.entries.size();
  2083. if (ctx->has_llava_projector) {
  2084. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  2085. }
  2086. if (ctx->has_minicpmv_projector) {
  2087. GGML_ASSERT(batch_size == 1);
  2088. }
  2089. if (ctx->has_glm_projector) {
  2090. GGML_ASSERT(batch_size == 1);
  2091. ggml_tensor * boi = ctx->vision_model.boi_w;
  2092. ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi));
  2093. vec = (float*)(vec+ggml_nelements(boi)); //offset for boi
  2094. }
  2095. // build the inference graph
  2096. ggml_backend_sched_reset(ctx->sched.get());
  2097. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  2098. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  2099. // set inputs
  2100. const auto & model = ctx->vision_model;
  2101. const auto & hparams = model.hparams;
  2102. const int image_size = hparams.image_size;
  2103. int image_size_width = image_size;
  2104. int image_size_height = image_size;
  2105. if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
  2106. image_size_width = imgs.entries[0]->nx;
  2107. image_size_height = imgs.entries[0]->ny;
  2108. }
  2109. const int patch_size = hparams.patch_size;
  2110. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2111. const int num_positions = num_patches + (model.class_embedding ? 1 : 0);
  2112. const int pos_w = ctx->load_image_size.width / patch_size;
  2113. const int pos_h = ctx->load_image_size.height / patch_size;
  2114. {
  2115. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2116. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2117. for (size_t i = 0; i < imgs.entries.size(); i++) {
  2118. const int nx = imgs.entries[i]->nx;
  2119. const int ny = imgs.entries[i]->ny;
  2120. if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
  2121. GGML_ASSERT(nx == image_size && ny == image_size);
  2122. }
  2123. const int n = nx * ny;
  2124. for (int b = 0; b < batch_size; b++) {
  2125. for (int k = 0; k < 3; k++) {
  2126. for (int y = 0; y < ny; y++) {
  2127. for (int x = 0; x < nx; x++) {
  2128. data[(b * 3 * n) + k * n + y * nx + x] = imgs.entries[b]->buf[3 * (y * nx + x) + k];
  2129. }
  2130. }
  2131. }
  2132. }
  2133. }
  2134. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2135. free(data);
  2136. }
  2137. if (ctx->has_minicpmv_projector) {
  2138. {
  2139. // inspired from siglip:
  2140. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2141. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2142. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2143. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2144. int bucket_coords_h[1024];
  2145. int bucket_coords_w[1024];
  2146. for (int i = 0; i < pos_h; i++){
  2147. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2148. }
  2149. for (int i = 0; i < pos_w; i++){
  2150. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2151. }
  2152. for (int i = 0, id = 0; i < pos_h; i++){
  2153. for (int j = 0; j < pos_w; j++){
  2154. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2155. }
  2156. }
  2157. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2158. free(positions_data);
  2159. }
  2160. {
  2161. // inspired from resampler of Qwen-VL:
  2162. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2163. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2164. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2165. int embed_dim = 4096;
  2166. if (ctx->minicpmv_version == 2) {
  2167. embed_dim = 4096;
  2168. }
  2169. else if (ctx->minicpmv_version == 3) {
  2170. embed_dim = 3584;
  2171. }
  2172. else if (ctx->minicpmv_version == 4) {
  2173. embed_dim = 3584;
  2174. }
  2175. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2176. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2177. for(int i=0;i < pos_w * pos_h; ++i){
  2178. for(int j=0; j < embed_dim; ++j){
  2179. pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
  2180. }
  2181. }
  2182. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2183. free(pos_embed_data);
  2184. }
  2185. }
  2186. else {
  2187. if (model.class_embedding) {
  2188. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2189. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2190. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2191. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2192. free(zero_mem);
  2193. }
  2194. if (ctx->has_qwen2vl_merger) {
  2195. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2196. const int pw = image_size_width / patch_size;
  2197. const int ph = image_size_height / patch_size;
  2198. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2199. int ptr = 0;
  2200. for (int y = 0; y < ph; y+=2)
  2201. {
  2202. for (int x = 0; x < pw; x+=2)
  2203. {
  2204. for (int dy = 0; dy < 2; dy++) {
  2205. for (int dx = 0; dx < 2; dx++) {
  2206. positions_data[ptr] = y + dy;
  2207. positions_data[num_patches + ptr] = x + dx;
  2208. positions_data[num_patches * 2 + ptr] = y + dy;
  2209. positions_data[num_patches * 3 + ptr] = x + dx;
  2210. ptr++;
  2211. }
  2212. }
  2213. }
  2214. }
  2215. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2216. free(positions_data);
  2217. }
  2218. else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  2219. // do nothing
  2220. }
  2221. else {
  2222. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2223. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2224. for (int i = 0; i < num_positions; i++) {
  2225. positions_data[i] = i;
  2226. }
  2227. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2228. free(positions_data);
  2229. if (!ctx->has_glm_projector) {
  2230. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2231. // The patches vector is used to get rows to index into the embeds with;
  2232. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  2233. // when retrieving the rows.
  2234. int patch_offset = model.class_embedding ? 1 : 0;
  2235. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2236. for (int i = 0; i < num_patches; i++) {
  2237. patches_data[i] = i + patch_offset;
  2238. }
  2239. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2240. free(patches_data);
  2241. }
  2242. }
  2243. }
  2244. ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  2245. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  2246. if (status != GGML_STATUS_SUCCESS) {
  2247. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  2248. return false;
  2249. }
  2250. // the last node is the embedding tensor
  2251. struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2252. // copy the embeddings to the location passed by the user
  2253. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2254. if (ctx->has_glm_projector) {
  2255. //eoi
  2256. ggml_tensor * eoi = ctx->vision_model.eoi_w;
  2257. int offset = ggml_nelements(embeddings);
  2258. ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi));
  2259. }
  2260. return true;
  2261. }
  2262. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2263. assert(itype < GGML_TYPE_COUNT);
  2264. ggml_type type = static_cast<ggml_type>(itype);
  2265. auto * ctx_clip = clip_init(fname_inp, clip_context_params{
  2266. /* use_gpu */ false,
  2267. /* verbosity */ GGML_LOG_LEVEL_ERROR,
  2268. });
  2269. const auto & ctx_src = ctx_clip->ctx_gguf.get();
  2270. const auto & ctx_data = ctx_clip->ctx_data.get();
  2271. auto * ctx_out = gguf_init_empty();
  2272. gguf_set_kv(ctx_out, ctx_src);
  2273. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2274. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2275. auto fout = std::ofstream(fname_out, std::ios::binary);
  2276. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2277. for (int i = 0; i < n_tensors; ++i) {
  2278. const char * name = gguf_get_tensor_name(ctx_src, i);
  2279. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2280. gguf_add_tensor(ctx_out, cur);
  2281. }
  2282. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2283. for (size_t i = 0; i < meta_size; ++i) {
  2284. fout.put(0);
  2285. }
  2286. // regexes of tensor names to be quantized
  2287. const std::vector<std::string> k_names = {
  2288. ".*weight",
  2289. };
  2290. std::vector<uint8_t> work(512);
  2291. std::vector<float> conv_buf(512);
  2292. size_t total_size_org = 0;
  2293. size_t total_size_new = 0;
  2294. for (int i = 0; i < n_tensors; ++i) {
  2295. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2296. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2297. enum ggml_type new_type;
  2298. void * new_data;
  2299. size_t new_size;
  2300. bool quantize = false;
  2301. for (const auto & s : k_names) {
  2302. if (std::regex_match(name, std::regex(s))) {
  2303. quantize = true;
  2304. break;
  2305. }
  2306. }
  2307. // quantize only 2D tensors and bigger than block size
  2308. quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
  2309. if (quantize) {
  2310. new_type = type;
  2311. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2312. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2313. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2314. }
  2315. const size_t n_elms = ggml_nelements(cur);
  2316. float * f32_data;
  2317. switch (cur->type) {
  2318. case GGML_TYPE_F32:
  2319. f32_data = (float *)cur->data;
  2320. break;
  2321. case GGML_TYPE_F16:
  2322. if (conv_buf.size() < n_elms) {
  2323. conv_buf.resize(n_elms);
  2324. }
  2325. for (size_t j = 0; j < n_elms; ++j) {
  2326. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2327. }
  2328. f32_data = (float *)conv_buf.data();
  2329. break;
  2330. default:
  2331. LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__);
  2332. gguf_free(ctx_out);
  2333. return false;
  2334. }
  2335. if (work.size() < n_elms * 4) {
  2336. work.resize(n_elms * 4);
  2337. }
  2338. new_data = work.data();
  2339. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2340. } else {
  2341. new_type = cur->type;
  2342. new_data = cur->data;
  2343. new_size = ggml_nbytes(cur);
  2344. }
  2345. const size_t orig_size = ggml_nbytes(cur);
  2346. total_size_org += orig_size;
  2347. total_size_new += new_size;
  2348. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2349. GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
  2350. gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
  2351. fout.write((const char *)new_data, new_size);
  2352. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2353. for (size_t j = 0; j < pad; ++j) {
  2354. fout.put(0);
  2355. }
  2356. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2357. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2358. }
  2359. // go back to beginning of file and write the updated metadata
  2360. fout.seekp(0, std::ios::beg);
  2361. std::vector<uint8_t> meta(meta_size);
  2362. gguf_get_meta_data(ctx_out, meta.data());
  2363. fout.write((const char *)meta.data(), meta_size);
  2364. fout.close();
  2365. clip_free(ctx_clip);
  2366. gguf_free(ctx_out);
  2367. {
  2368. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2369. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2370. }
  2371. return true;
  2372. }
  2373. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2374. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2375. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2376. }
  2377. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2378. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2379. }
  2380. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2381. return ctx->vision_model.mm_2_b->ne[0];
  2382. }
  2383. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2384. return ctx->vision_model.mm_3_b->ne[0];
  2385. }
  2386. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2387. if (ctx->minicpmv_version == 2) {
  2388. return 4096;
  2389. }
  2390. else if (ctx->minicpmv_version == 3) {
  2391. return 3584;
  2392. }
  2393. else if (ctx->minicpmv_version == 4) {
  2394. return 3584;
  2395. }
  2396. }
  2397. if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){
  2398. return ctx->vision_model.mm_model_mlp_3_w->ne[1];
  2399. }
  2400. if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2401. return ctx->vision_model.mm_1_b->ne[0];
  2402. }
  2403. if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
  2404. return ctx->vision_model.mm_input_proj_w->ne[0];
  2405. }
  2406. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2407. throw std::runtime_error(string_format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2408. }
  2409. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2410. if (ctx->has_minicpmv_projector) {
  2411. return ctx->minicpmv_version;
  2412. }
  2413. return 0;
  2414. }
  2415. bool clip_is_glm(const struct clip_ctx * ctx) {
  2416. return ctx->has_glm_projector;
  2417. }
  2418. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  2419. return ctx->has_qwen2vl_merger;
  2420. }
  2421. bool clip_is_llava(const struct clip_ctx * ctx) {
  2422. return ctx->has_llava_projector;
  2423. }
  2424. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  2425. return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
  2426. }
  2427. // Determine the number of encoder layers to iterate over
  2428. int get_deepest_feature_layer(const struct clip_ctx * ctx) {
  2429. // Get the index of the second to last layer; this is the
  2430. // default for models that have a llava projector
  2431. const auto & hparams = ctx->vision_model.hparams;
  2432. int n_layer = hparams.n_layer - 1;
  2433. int deepest_feature_layer = -1;
  2434. // Handle other projectors; incrementing here indicates that we
  2435. // should use the last encoder layer for the vision features.
  2436. if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
  2437. n_layer += 1;
  2438. }
  2439. // If we set explicit vision feature layers, only go up to the deepest one
  2440. for (const auto & feature_layer : hparams.vision_feature_layer) {
  2441. if (feature_layer > deepest_feature_layer) {
  2442. deepest_feature_layer = feature_layer;
  2443. }
  2444. }
  2445. return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
  2446. }
  2447. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  2448. clip_image_f32 clip_img;
  2449. clip_img.buf.resize(h * w * 3);
  2450. for (int i = 0; i < h*w*3; i++)
  2451. {
  2452. clip_img.buf[i] = img[i];
  2453. }
  2454. clip_img.nx = w;
  2455. clip_img.ny = h;
  2456. clip_image_encode(ctx, n_threads, &clip_img, vec);
  2457. return true;
  2458. }
  2459. //
  2460. // API used internally with mtmd
  2461. //
  2462. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  2463. return ctx->proj_type;
  2464. }