ggml.h 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdbool.h>
  212. #include <stddef.h>
  213. #include <stdint.h>
  214. #include <stdio.h>
  215. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  216. #define GGML_FILE_VERSION 1
  217. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  218. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  219. #define GGML_MAX_DIMS 4
  220. #define GGML_MAX_PARAMS 2048
  221. #define GGML_MAX_CONTEXTS 64
  222. #define GGML_MAX_SRC 10
  223. #ifndef GGML_MAX_NAME
  224. #define GGML_MAX_NAME 64
  225. #endif
  226. #define GGML_MAX_OP_PARAMS 64
  227. #define GGML_DEFAULT_N_THREADS 4
  228. #define GGML_DEFAULT_GRAPH_SIZE 2048
  229. #if UINTPTR_MAX == 0xFFFFFFFF
  230. #define GGML_MEM_ALIGN 4
  231. #else
  232. #define GGML_MEM_ALIGN 16
  233. #endif
  234. #define GGML_EXIT_SUCCESS 0
  235. #define GGML_EXIT_ABORTED 1
  236. #define GGML_ROPE_TYPE_NEOX 2
  237. #define GGUF_MAGIC "GGUF"
  238. #define GGUF_VERSION 3
  239. #define GGUF_DEFAULT_ALIGNMENT 32
  240. #define GGML_UNUSED(x) (void)(x)
  241. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  242. #ifndef NDEBUG
  243. #define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  244. #elif defined(__GNUC__)
  245. #define GGML_UNREACHABLE() __builtin_unreachable()
  246. #elif defined(_MSC_VER)
  247. #define GGML_UNREACHABLE() __assume(0)
  248. #else
  249. #define GGML_UNREACHABLE() ((void) 0)
  250. #endif
  251. #ifdef __cplusplus
  252. #define GGML_NORETURN [[noreturn]]
  253. #elif defined(_MSC_VER)
  254. #define GGML_NORETURN __declspec(noreturn)
  255. #else
  256. #define GGML_NORETURN _Noreturn
  257. #endif
  258. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  259. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  260. // used to copy the number of elements and stride in bytes of tensors into local variables.
  261. // main purpose is to reduce code duplication and improve readability.
  262. //
  263. // example:
  264. //
  265. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  266. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  267. //
  268. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  269. const type prefix##0 = (pointer)->array[0]; \
  270. GGML_UNUSED(prefix##0);
  271. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  272. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  273. const type prefix##1 = (pointer)->array[1]; \
  274. GGML_UNUSED(prefix##1);
  275. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  276. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  277. const type prefix##2 = (pointer)->array[2]; \
  278. GGML_UNUSED(prefix##2);
  279. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  280. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  281. const type prefix##3 = (pointer)->array[3]; \
  282. GGML_UNUSED(prefix##3);
  283. #define GGML_TENSOR_UNARY_OP_LOCALS \
  284. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  286. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  287. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  288. #define GGML_TENSOR_BINARY_OP_LOCALS \
  289. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  291. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  292. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  293. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  294. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  295. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  296. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  297. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  298. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  299. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  300. #ifdef __cplusplus
  301. extern "C" {
  302. #endif
  303. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  304. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  305. enum ggml_status {
  306. GGML_STATUS_ALLOC_FAILED = -2,
  307. GGML_STATUS_FAILED = -1,
  308. GGML_STATUS_SUCCESS = 0,
  309. GGML_STATUS_ABORTED = 1,
  310. };
  311. // get ggml_status name string
  312. GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
  313. // ieee 754-2008 half-precision float16
  314. // todo: make this not an integral type
  315. typedef uint16_t ggml_fp16_t;
  316. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  317. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  318. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  319. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  320. // google brain half-precision bfloat16
  321. typedef struct { uint16_t bits; } ggml_bf16_t;
  322. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  323. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  324. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  325. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  326. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  327. struct ggml_object;
  328. struct ggml_context;
  329. // NOTE: always add types at the end of the enum to keep backward compatibility
  330. enum ggml_type {
  331. GGML_TYPE_F32 = 0,
  332. GGML_TYPE_F16 = 1,
  333. GGML_TYPE_Q4_0 = 2,
  334. GGML_TYPE_Q4_1 = 3,
  335. // GGML_TYPE_Q4_2 = 4, support has been removed
  336. // GGML_TYPE_Q4_3 = 5, support has been removed
  337. GGML_TYPE_Q5_0 = 6,
  338. GGML_TYPE_Q5_1 = 7,
  339. GGML_TYPE_Q8_0 = 8,
  340. GGML_TYPE_Q8_1 = 9,
  341. GGML_TYPE_Q2_K = 10,
  342. GGML_TYPE_Q3_K = 11,
  343. GGML_TYPE_Q4_K = 12,
  344. GGML_TYPE_Q5_K = 13,
  345. GGML_TYPE_Q6_K = 14,
  346. GGML_TYPE_Q8_K = 15,
  347. GGML_TYPE_IQ2_XXS = 16,
  348. GGML_TYPE_IQ2_XS = 17,
  349. GGML_TYPE_IQ3_XXS = 18,
  350. GGML_TYPE_IQ1_S = 19,
  351. GGML_TYPE_IQ4_NL = 20,
  352. GGML_TYPE_IQ3_S = 21,
  353. GGML_TYPE_IQ2_S = 22,
  354. GGML_TYPE_IQ4_XS = 23,
  355. GGML_TYPE_I8 = 24,
  356. GGML_TYPE_I16 = 25,
  357. GGML_TYPE_I32 = 26,
  358. GGML_TYPE_I64 = 27,
  359. GGML_TYPE_F64 = 28,
  360. GGML_TYPE_IQ1_M = 29,
  361. GGML_TYPE_BF16 = 30,
  362. GGML_TYPE_Q4_0_4_4 = 31,
  363. GGML_TYPE_Q4_0_4_8 = 32,
  364. GGML_TYPE_Q4_0_8_8 = 33,
  365. GGML_TYPE_COUNT,
  366. };
  367. // precision
  368. enum ggml_prec {
  369. GGML_PREC_DEFAULT,
  370. GGML_PREC_F32,
  371. };
  372. enum ggml_backend_type {
  373. GGML_BACKEND_TYPE_CPU = 0,
  374. GGML_BACKEND_TYPE_GPU = 10,
  375. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  376. };
  377. // model file types
  378. enum ggml_ftype {
  379. GGML_FTYPE_UNKNOWN = -1,
  380. GGML_FTYPE_ALL_F32 = 0,
  381. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  382. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  383. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  384. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  385. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  389. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  394. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  395. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  396. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  397. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  398. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  400. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  402. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  403. GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
  404. GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
  405. GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
  406. };
  407. // available tensor operations:
  408. enum ggml_op {
  409. GGML_OP_NONE = 0,
  410. GGML_OP_DUP,
  411. GGML_OP_ADD,
  412. GGML_OP_ADD1,
  413. GGML_OP_ACC,
  414. GGML_OP_SUB,
  415. GGML_OP_MUL,
  416. GGML_OP_DIV,
  417. GGML_OP_SQR,
  418. GGML_OP_SQRT,
  419. GGML_OP_LOG,
  420. GGML_OP_SUM,
  421. GGML_OP_SUM_ROWS,
  422. GGML_OP_MEAN,
  423. GGML_OP_ARGMAX,
  424. GGML_OP_REPEAT,
  425. GGML_OP_REPEAT_BACK,
  426. GGML_OP_CONCAT,
  427. GGML_OP_SILU_BACK,
  428. GGML_OP_NORM, // normalize
  429. GGML_OP_RMS_NORM,
  430. GGML_OP_RMS_NORM_BACK,
  431. GGML_OP_GROUP_NORM,
  432. GGML_OP_MUL_MAT,
  433. GGML_OP_MUL_MAT_ID,
  434. GGML_OP_OUT_PROD,
  435. GGML_OP_SCALE,
  436. GGML_OP_SET,
  437. GGML_OP_CPY,
  438. GGML_OP_CONT,
  439. GGML_OP_RESHAPE,
  440. GGML_OP_VIEW,
  441. GGML_OP_PERMUTE,
  442. GGML_OP_TRANSPOSE,
  443. GGML_OP_GET_ROWS,
  444. GGML_OP_GET_ROWS_BACK,
  445. GGML_OP_DIAG,
  446. GGML_OP_DIAG_MASK_INF,
  447. GGML_OP_DIAG_MASK_ZERO,
  448. GGML_OP_SOFT_MAX,
  449. GGML_OP_SOFT_MAX_BACK,
  450. GGML_OP_ROPE,
  451. GGML_OP_ROPE_BACK,
  452. GGML_OP_CLAMP,
  453. GGML_OP_CONV_TRANSPOSE_1D,
  454. GGML_OP_IM2COL,
  455. GGML_OP_CONV_TRANSPOSE_2D,
  456. GGML_OP_POOL_1D,
  457. GGML_OP_POOL_2D,
  458. GGML_OP_UPSCALE, // nearest interpolate
  459. GGML_OP_PAD,
  460. GGML_OP_ARANGE,
  461. GGML_OP_TIMESTEP_EMBEDDING,
  462. GGML_OP_ARGSORT,
  463. GGML_OP_LEAKY_RELU,
  464. GGML_OP_FLASH_ATTN_EXT,
  465. GGML_OP_FLASH_ATTN_BACK,
  466. GGML_OP_SSM_CONV,
  467. GGML_OP_SSM_SCAN,
  468. GGML_OP_WIN_PART,
  469. GGML_OP_WIN_UNPART,
  470. GGML_OP_GET_REL_POS,
  471. GGML_OP_ADD_REL_POS,
  472. GGML_OP_UNARY,
  473. GGML_OP_MAP_UNARY,
  474. GGML_OP_MAP_BINARY,
  475. GGML_OP_MAP_CUSTOM1_F32,
  476. GGML_OP_MAP_CUSTOM2_F32,
  477. GGML_OP_MAP_CUSTOM3_F32,
  478. GGML_OP_MAP_CUSTOM1,
  479. GGML_OP_MAP_CUSTOM2,
  480. GGML_OP_MAP_CUSTOM3,
  481. GGML_OP_CROSS_ENTROPY_LOSS,
  482. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  483. GGML_OP_COUNT,
  484. };
  485. enum ggml_unary_op {
  486. GGML_UNARY_OP_ABS,
  487. GGML_UNARY_OP_SGN,
  488. GGML_UNARY_OP_NEG,
  489. GGML_UNARY_OP_STEP,
  490. GGML_UNARY_OP_TANH,
  491. GGML_UNARY_OP_ELU,
  492. GGML_UNARY_OP_RELU,
  493. GGML_UNARY_OP_SIGMOID,
  494. GGML_UNARY_OP_GELU,
  495. GGML_UNARY_OP_GELU_QUICK,
  496. GGML_UNARY_OP_SILU,
  497. GGML_UNARY_OP_HARDSWISH,
  498. GGML_UNARY_OP_HARDSIGMOID,
  499. GGML_UNARY_OP_COUNT,
  500. };
  501. enum ggml_object_type {
  502. GGML_OBJECT_TYPE_TENSOR,
  503. GGML_OBJECT_TYPE_GRAPH,
  504. GGML_OBJECT_TYPE_WORK_BUFFER
  505. };
  506. enum ggml_log_level {
  507. GGML_LOG_LEVEL_ERROR = 2,
  508. GGML_LOG_LEVEL_WARN = 3,
  509. GGML_LOG_LEVEL_INFO = 4,
  510. GGML_LOG_LEVEL_DEBUG = 5
  511. };
  512. enum ggml_tensor_flag {
  513. GGML_TENSOR_FLAG_INPUT = 1,
  514. GGML_TENSOR_FLAG_OUTPUT = 2,
  515. GGML_TENSOR_FLAG_PARAM = 4,
  516. };
  517. // ggml object
  518. struct ggml_object {
  519. size_t offs;
  520. size_t size;
  521. struct ggml_object * next;
  522. enum ggml_object_type type;
  523. char padding[4];
  524. };
  525. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  526. // n-dimensional tensor
  527. struct ggml_tensor {
  528. enum ggml_type type;
  529. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  530. struct ggml_backend_buffer * buffer;
  531. int64_t ne[GGML_MAX_DIMS]; // number of elements
  532. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  533. // nb[0] = ggml_type_size(type)
  534. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  535. // nb[i] = nb[i-1] * ne[i-1]
  536. // compute data
  537. enum ggml_op op;
  538. // op params - allocated as int32_t for alignment
  539. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  540. int32_t flags;
  541. struct ggml_tensor * grad;
  542. struct ggml_tensor * src[GGML_MAX_SRC];
  543. // source tensor and offset for views
  544. struct ggml_tensor * view_src;
  545. size_t view_offs;
  546. void * data;
  547. char name[GGML_MAX_NAME];
  548. void * extra; // extra things e.g. for ggml-cuda.cu
  549. // char padding[4];
  550. };
  551. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  552. // Abort callback
  553. // If not NULL, called before ggml computation
  554. // If it returns true, the computation is aborted
  555. typedef bool (*ggml_abort_callback)(void * data);
  556. // the compute plan that needs to be prepared for ggml_graph_compute()
  557. // since https://github.com/ggerganov/ggml/issues/287
  558. struct ggml_cplan {
  559. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  560. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  561. int n_threads;
  562. // abort ggml_graph_compute when true
  563. ggml_abort_callback abort_callback;
  564. void * abort_callback_data;
  565. };
  566. enum ggml_cgraph_eval_order {
  567. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  568. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  569. GGML_CGRAPH_EVAL_ORDER_COUNT
  570. };
  571. typedef uint32_t ggml_bitset_t;
  572. struct ggml_hash_set {
  573. size_t size;
  574. ggml_bitset_t * used;
  575. struct ggml_tensor ** keys;
  576. };
  577. // computation graph
  578. struct ggml_cgraph {
  579. int size;
  580. int n_nodes;
  581. int n_leafs;
  582. struct ggml_tensor ** nodes;
  583. struct ggml_tensor ** grads;
  584. struct ggml_tensor ** leafs;
  585. struct ggml_hash_set visited_hash_set;
  586. enum ggml_cgraph_eval_order order;
  587. };
  588. // scratch buffer
  589. struct ggml_scratch {
  590. size_t offs;
  591. size_t size;
  592. void * data;
  593. };
  594. struct ggml_init_params {
  595. // memory pool
  596. size_t mem_size; // bytes
  597. void * mem_buffer; // if NULL, memory will be allocated internally
  598. bool no_alloc; // don't allocate memory for the tensor data
  599. };
  600. // numa strategies
  601. enum ggml_numa_strategy {
  602. GGML_NUMA_STRATEGY_DISABLED = 0,
  603. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  604. GGML_NUMA_STRATEGY_ISOLATE = 2,
  605. GGML_NUMA_STRATEGY_NUMACTL = 3,
  606. GGML_NUMA_STRATEGY_MIRROR = 4,
  607. GGML_NUMA_STRATEGY_COUNT
  608. };
  609. //
  610. // GUID
  611. //
  612. // GUID types
  613. typedef uint8_t ggml_guid[16];
  614. typedef ggml_guid * ggml_guid_t;
  615. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  616. // misc
  617. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  618. GGML_API int64_t ggml_time_ms(void);
  619. GGML_API int64_t ggml_time_us(void);
  620. GGML_API int64_t ggml_cycles(void);
  621. GGML_API int64_t ggml_cycles_per_ms(void);
  622. // accepts a UTF-8 path, even on Windows
  623. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  624. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  625. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  626. GGML_API void ggml_print_object (const struct ggml_object * obj);
  627. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  628. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  629. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  630. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  631. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  632. GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
  633. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  634. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  635. GGML_DEPRECATED(
  636. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  637. "use ggml_row_size() instead");
  638. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  639. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  640. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  641. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  642. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  643. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  644. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  645. // TODO: temporary until model loading of ggml examples is refactored
  646. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  647. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  648. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  649. GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
  650. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  651. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  652. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  653. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  654. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  655. GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  656. GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  657. GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  658. GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  659. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  660. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  661. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  662. // use this to compute the memory overhead of a tensor
  663. GGML_API size_t ggml_tensor_overhead(void);
  664. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  665. // main
  666. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  667. GGML_API void ggml_free(struct ggml_context * ctx);
  668. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  669. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  670. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  671. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  672. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  673. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  674. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  675. GGML_API struct ggml_tensor * ggml_new_tensor(
  676. struct ggml_context * ctx,
  677. enum ggml_type type,
  678. int n_dims,
  679. const int64_t *ne);
  680. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  681. struct ggml_context * ctx,
  682. enum ggml_type type,
  683. int64_t ne0);
  684. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  685. struct ggml_context * ctx,
  686. enum ggml_type type,
  687. int64_t ne0,
  688. int64_t ne1);
  689. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  690. struct ggml_context * ctx,
  691. enum ggml_type type,
  692. int64_t ne0,
  693. int64_t ne1,
  694. int64_t ne2);
  695. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  696. struct ggml_context * ctx,
  697. enum ggml_type type,
  698. int64_t ne0,
  699. int64_t ne1,
  700. int64_t ne2,
  701. int64_t ne3);
  702. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  703. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  704. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  705. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  706. // Context tensor enumeration and lookup
  707. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  708. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  709. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  710. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  711. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  712. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  713. // Converts a flat index into coordinates
  714. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  715. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  716. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  717. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  718. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  719. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  720. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  721. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  722. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  723. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  724. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  725. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  726. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  727. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  728. GGML_ATTRIBUTE_FORMAT(2, 3)
  729. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  730. //
  731. // operations on tensors with backpropagation
  732. //
  733. GGML_API struct ggml_tensor * ggml_dup(
  734. struct ggml_context * ctx,
  735. struct ggml_tensor * a);
  736. // in-place, returns view(a)
  737. GGML_API struct ggml_tensor * ggml_dup_inplace(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a);
  740. GGML_API struct ggml_tensor * ggml_add(
  741. struct ggml_context * ctx,
  742. struct ggml_tensor * a,
  743. struct ggml_tensor * b);
  744. GGML_API struct ggml_tensor * ggml_add_inplace(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a,
  747. struct ggml_tensor * b);
  748. GGML_API struct ggml_tensor * ggml_add_cast(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a,
  751. struct ggml_tensor * b,
  752. enum ggml_type type);
  753. GGML_API struct ggml_tensor * ggml_add1(
  754. struct ggml_context * ctx,
  755. struct ggml_tensor * a,
  756. struct ggml_tensor * b);
  757. GGML_API struct ggml_tensor * ggml_add1_inplace(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a,
  760. struct ggml_tensor * b);
  761. // dst = a
  762. // view(dst, nb1, nb2, nb3, offset) += b
  763. // return dst
  764. GGML_API struct ggml_tensor * ggml_acc(
  765. struct ggml_context * ctx,
  766. struct ggml_tensor * a,
  767. struct ggml_tensor * b,
  768. size_t nb1,
  769. size_t nb2,
  770. size_t nb3,
  771. size_t offset);
  772. GGML_API struct ggml_tensor * ggml_acc_inplace(
  773. struct ggml_context * ctx,
  774. struct ggml_tensor * a,
  775. struct ggml_tensor * b,
  776. size_t nb1,
  777. size_t nb2,
  778. size_t nb3,
  779. size_t offset);
  780. GGML_API struct ggml_tensor * ggml_sub(
  781. struct ggml_context * ctx,
  782. struct ggml_tensor * a,
  783. struct ggml_tensor * b);
  784. GGML_API struct ggml_tensor * ggml_sub_inplace(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a,
  787. struct ggml_tensor * b);
  788. GGML_API struct ggml_tensor * ggml_mul(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a,
  791. struct ggml_tensor * b);
  792. GGML_API struct ggml_tensor * ggml_mul_inplace(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a,
  795. struct ggml_tensor * b);
  796. GGML_API struct ggml_tensor * ggml_div(
  797. struct ggml_context * ctx,
  798. struct ggml_tensor * a,
  799. struct ggml_tensor * b);
  800. GGML_API struct ggml_tensor * ggml_div_inplace(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a,
  803. struct ggml_tensor * b);
  804. GGML_API struct ggml_tensor * ggml_sqr(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a);
  807. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  808. struct ggml_context * ctx,
  809. struct ggml_tensor * a);
  810. GGML_API struct ggml_tensor * ggml_sqrt(
  811. struct ggml_context * ctx,
  812. struct ggml_tensor * a);
  813. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  814. struct ggml_context * ctx,
  815. struct ggml_tensor * a);
  816. GGML_API struct ggml_tensor * ggml_log(
  817. struct ggml_context * ctx,
  818. struct ggml_tensor * a);
  819. GGML_API struct ggml_tensor * ggml_log_inplace(
  820. struct ggml_context * ctx,
  821. struct ggml_tensor * a);
  822. // return scalar
  823. GGML_API struct ggml_tensor * ggml_sum(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a);
  826. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  827. GGML_API struct ggml_tensor * ggml_sum_rows(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a);
  830. // mean along rows
  831. GGML_API struct ggml_tensor * ggml_mean(
  832. struct ggml_context * ctx,
  833. struct ggml_tensor * a);
  834. // argmax along rows
  835. GGML_API struct ggml_tensor * ggml_argmax(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a);
  838. // if a is the same shape as b, and a is not parameter, return a
  839. // otherwise, return a new tensor: repeat(a) to fit in b
  840. GGML_API struct ggml_tensor * ggml_repeat(
  841. struct ggml_context * ctx,
  842. struct ggml_tensor * a,
  843. struct ggml_tensor * b);
  844. // sums repetitions in a into shape of b
  845. GGML_API struct ggml_tensor * ggml_repeat_back(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a,
  848. struct ggml_tensor * b);
  849. // concat a and b along dim
  850. // used in stable-diffusion
  851. GGML_API struct ggml_tensor * ggml_concat(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a,
  854. struct ggml_tensor * b,
  855. int dim);
  856. GGML_API struct ggml_tensor * ggml_abs(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a);
  859. GGML_API struct ggml_tensor * ggml_abs_inplace(
  860. struct ggml_context * ctx,
  861. struct ggml_tensor * a);
  862. GGML_API struct ggml_tensor * ggml_sgn(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a);
  865. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  866. struct ggml_context * ctx,
  867. struct ggml_tensor * a);
  868. GGML_API struct ggml_tensor * ggml_neg(
  869. struct ggml_context * ctx,
  870. struct ggml_tensor * a);
  871. GGML_API struct ggml_tensor * ggml_neg_inplace(
  872. struct ggml_context * ctx,
  873. struct ggml_tensor * a);
  874. GGML_API struct ggml_tensor * ggml_step(
  875. struct ggml_context * ctx,
  876. struct ggml_tensor * a);
  877. GGML_API struct ggml_tensor * ggml_step_inplace(
  878. struct ggml_context * ctx,
  879. struct ggml_tensor * a);
  880. GGML_API struct ggml_tensor * ggml_tanh(
  881. struct ggml_context * ctx,
  882. struct ggml_tensor * a);
  883. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  884. struct ggml_context * ctx,
  885. struct ggml_tensor * a);
  886. GGML_API struct ggml_tensor * ggml_elu(
  887. struct ggml_context * ctx,
  888. struct ggml_tensor * a);
  889. GGML_API struct ggml_tensor * ggml_elu_inplace(
  890. struct ggml_context * ctx,
  891. struct ggml_tensor * a);
  892. GGML_API struct ggml_tensor * ggml_relu(
  893. struct ggml_context * ctx,
  894. struct ggml_tensor * a);
  895. GGML_API struct ggml_tensor * ggml_leaky_relu(
  896. struct ggml_context * ctx,
  897. struct ggml_tensor * a, float negative_slope, bool inplace);
  898. GGML_API struct ggml_tensor * ggml_relu_inplace(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a);
  901. GGML_API struct ggml_tensor * ggml_sigmoid(
  902. struct ggml_context * ctx,
  903. struct ggml_tensor * a);
  904. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a);
  907. GGML_API struct ggml_tensor * ggml_gelu(
  908. struct ggml_context * ctx,
  909. struct ggml_tensor * a);
  910. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  911. struct ggml_context * ctx,
  912. struct ggml_tensor * a);
  913. GGML_API struct ggml_tensor * ggml_gelu_quick(
  914. struct ggml_context * ctx,
  915. struct ggml_tensor * a);
  916. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  917. struct ggml_context * ctx,
  918. struct ggml_tensor * a);
  919. GGML_API struct ggml_tensor * ggml_silu(
  920. struct ggml_context * ctx,
  921. struct ggml_tensor * a);
  922. GGML_API struct ggml_tensor * ggml_silu_inplace(
  923. struct ggml_context * ctx,
  924. struct ggml_tensor * a);
  925. // a - x
  926. // b - dy
  927. GGML_API struct ggml_tensor * ggml_silu_back(
  928. struct ggml_context * ctx,
  929. struct ggml_tensor * a,
  930. struct ggml_tensor * b);
  931. // hardswish(x) = x * relu6(x + 3) / 6
  932. GGML_API struct ggml_tensor * ggml_hardswish(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a);
  935. // hardsigmoid(x) = relu6(x + 3) / 6
  936. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  937. struct ggml_context * ctx,
  938. struct ggml_tensor * a);
  939. // normalize along rows
  940. GGML_API struct ggml_tensor * ggml_norm(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a,
  943. float eps);
  944. GGML_API struct ggml_tensor * ggml_norm_inplace(
  945. struct ggml_context * ctx,
  946. struct ggml_tensor * a,
  947. float eps);
  948. GGML_API struct ggml_tensor * ggml_rms_norm(
  949. struct ggml_context * ctx,
  950. struct ggml_tensor * a,
  951. float eps);
  952. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a,
  955. float eps);
  956. // group normalize along ne0*ne1*n_groups
  957. // used in stable-diffusion
  958. GGML_API struct ggml_tensor * ggml_group_norm(
  959. struct ggml_context * ctx,
  960. struct ggml_tensor * a,
  961. int n_groups,
  962. float eps);
  963. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  964. struct ggml_context * ctx,
  965. struct ggml_tensor * a,
  966. int n_groups,
  967. float eps);
  968. // a - x
  969. // b - dy
  970. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. struct ggml_tensor * b,
  974. float eps);
  975. // A: k columns, n rows => [ne03, ne02, n, k]
  976. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  977. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  978. GGML_API struct ggml_tensor * ggml_mul_mat(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a,
  981. struct ggml_tensor * b);
  982. // change the precision of a matrix multiplication
  983. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  984. GGML_API void ggml_mul_mat_set_prec(
  985. struct ggml_tensor * a,
  986. enum ggml_prec prec);
  987. // indirect matrix multiplication
  988. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  989. struct ggml_context * ctx,
  990. struct ggml_tensor * as,
  991. struct ggml_tensor * b,
  992. struct ggml_tensor * ids);
  993. // A: m columns, n rows,
  994. // B: p columns, n rows,
  995. // result is m columns, p rows
  996. GGML_API struct ggml_tensor * ggml_out_prod(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a,
  999. struct ggml_tensor * b);
  1000. //
  1001. // operations on tensors without backpropagation
  1002. //
  1003. GGML_API struct ggml_tensor * ggml_scale(
  1004. struct ggml_context * ctx,
  1005. struct ggml_tensor * a,
  1006. float s);
  1007. // in-place, returns view(a)
  1008. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1009. struct ggml_context * ctx,
  1010. struct ggml_tensor * a,
  1011. float s);
  1012. // b -> view(a,offset,nb1,nb2,3), return modified a
  1013. GGML_API struct ggml_tensor * ggml_set(
  1014. struct ggml_context * ctx,
  1015. struct ggml_tensor * a,
  1016. struct ggml_tensor * b,
  1017. size_t nb1,
  1018. size_t nb2,
  1019. size_t nb3,
  1020. size_t offset);
  1021. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1022. GGML_API struct ggml_tensor * ggml_set_inplace(
  1023. struct ggml_context * ctx,
  1024. struct ggml_tensor * a,
  1025. struct ggml_tensor * b,
  1026. size_t nb1,
  1027. size_t nb2,
  1028. size_t nb3,
  1029. size_t offset);
  1030. GGML_API struct ggml_tensor * ggml_set_1d(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a,
  1033. struct ggml_tensor * b,
  1034. size_t offset);
  1035. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1036. struct ggml_context * ctx,
  1037. struct ggml_tensor * a,
  1038. struct ggml_tensor * b,
  1039. size_t offset);
  1040. // b -> view(a,offset,nb1,nb2,3), return modified a
  1041. GGML_API struct ggml_tensor * ggml_set_2d(
  1042. struct ggml_context * ctx,
  1043. struct ggml_tensor * a,
  1044. struct ggml_tensor * b,
  1045. size_t nb1,
  1046. size_t offset);
  1047. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1048. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1049. struct ggml_context * ctx,
  1050. struct ggml_tensor * a,
  1051. struct ggml_tensor * b,
  1052. size_t nb1,
  1053. size_t offset);
  1054. // a -> b, return view(b)
  1055. GGML_API struct ggml_tensor * ggml_cpy(
  1056. struct ggml_context * ctx,
  1057. struct ggml_tensor * a,
  1058. struct ggml_tensor * b);
  1059. GGML_API struct ggml_tensor * ggml_cast(
  1060. struct ggml_context * ctx,
  1061. struct ggml_tensor * a,
  1062. enum ggml_type type);
  1063. // make contiguous
  1064. GGML_API struct ggml_tensor * ggml_cont(
  1065. struct ggml_context * ctx,
  1066. struct ggml_tensor * a);
  1067. // make contiguous, with new shape
  1068. GGML_API struct ggml_tensor * ggml_cont_1d(
  1069. struct ggml_context * ctx,
  1070. struct ggml_tensor * a,
  1071. int64_t ne0);
  1072. GGML_API struct ggml_tensor * ggml_cont_2d(
  1073. struct ggml_context * ctx,
  1074. struct ggml_tensor * a,
  1075. int64_t ne0,
  1076. int64_t ne1);
  1077. GGML_API struct ggml_tensor * ggml_cont_3d(
  1078. struct ggml_context * ctx,
  1079. struct ggml_tensor * a,
  1080. int64_t ne0,
  1081. int64_t ne1,
  1082. int64_t ne2);
  1083. GGML_API struct ggml_tensor * ggml_cont_4d(
  1084. struct ggml_context * ctx,
  1085. struct ggml_tensor * a,
  1086. int64_t ne0,
  1087. int64_t ne1,
  1088. int64_t ne2,
  1089. int64_t ne3);
  1090. // return view(a), b specifies the new shape
  1091. // TODO: when we start computing gradient, make a copy instead of view
  1092. GGML_API struct ggml_tensor * ggml_reshape(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. struct ggml_tensor * b);
  1096. // return view(a)
  1097. // TODO: when we start computing gradient, make a copy instead of view
  1098. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1099. struct ggml_context * ctx,
  1100. struct ggml_tensor * a,
  1101. int64_t ne0);
  1102. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1103. struct ggml_context * ctx,
  1104. struct ggml_tensor * a,
  1105. int64_t ne0,
  1106. int64_t ne1);
  1107. // return view(a)
  1108. // TODO: when we start computing gradient, make a copy instead of view
  1109. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1110. struct ggml_context * ctx,
  1111. struct ggml_tensor * a,
  1112. int64_t ne0,
  1113. int64_t ne1,
  1114. int64_t ne2);
  1115. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1116. struct ggml_context * ctx,
  1117. struct ggml_tensor * a,
  1118. int64_t ne0,
  1119. int64_t ne1,
  1120. int64_t ne2,
  1121. int64_t ne3);
  1122. // offset in bytes
  1123. GGML_API struct ggml_tensor * ggml_view_1d(
  1124. struct ggml_context * ctx,
  1125. struct ggml_tensor * a,
  1126. int64_t ne0,
  1127. size_t offset);
  1128. GGML_API struct ggml_tensor * ggml_view_2d(
  1129. struct ggml_context * ctx,
  1130. struct ggml_tensor * a,
  1131. int64_t ne0,
  1132. int64_t ne1,
  1133. size_t nb1, // row stride in bytes
  1134. size_t offset);
  1135. GGML_API struct ggml_tensor * ggml_view_3d(
  1136. struct ggml_context * ctx,
  1137. struct ggml_tensor * a,
  1138. int64_t ne0,
  1139. int64_t ne1,
  1140. int64_t ne2,
  1141. size_t nb1, // row stride in bytes
  1142. size_t nb2, // slice stride in bytes
  1143. size_t offset);
  1144. GGML_API struct ggml_tensor * ggml_view_4d(
  1145. struct ggml_context * ctx,
  1146. struct ggml_tensor * a,
  1147. int64_t ne0,
  1148. int64_t ne1,
  1149. int64_t ne2,
  1150. int64_t ne3,
  1151. size_t nb1, // row stride in bytes
  1152. size_t nb2, // slice stride in bytes
  1153. size_t nb3,
  1154. size_t offset);
  1155. GGML_API struct ggml_tensor * ggml_permute(
  1156. struct ggml_context * ctx,
  1157. struct ggml_tensor * a,
  1158. int axis0,
  1159. int axis1,
  1160. int axis2,
  1161. int axis3);
  1162. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1163. GGML_API struct ggml_tensor * ggml_transpose(
  1164. struct ggml_context * ctx,
  1165. struct ggml_tensor * a);
  1166. // supports 3D: a->ne[2] == b->ne[1]
  1167. GGML_API struct ggml_tensor * ggml_get_rows(
  1168. struct ggml_context * ctx,
  1169. struct ggml_tensor * a,
  1170. struct ggml_tensor * b);
  1171. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1172. struct ggml_context * ctx,
  1173. struct ggml_tensor * a,
  1174. struct ggml_tensor * b,
  1175. struct ggml_tensor * c);
  1176. GGML_API struct ggml_tensor * ggml_diag(
  1177. struct ggml_context * ctx,
  1178. struct ggml_tensor * a);
  1179. // set elements above the diagonal to -INF
  1180. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1181. struct ggml_context * ctx,
  1182. struct ggml_tensor * a,
  1183. int n_past);
  1184. // in-place, returns view(a)
  1185. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1186. struct ggml_context * ctx,
  1187. struct ggml_tensor * a,
  1188. int n_past);
  1189. // set elements above the diagonal to 0
  1190. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1191. struct ggml_context * ctx,
  1192. struct ggml_tensor * a,
  1193. int n_past);
  1194. // in-place, returns view(a)
  1195. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1196. struct ggml_context * ctx,
  1197. struct ggml_tensor * a,
  1198. int n_past);
  1199. GGML_API struct ggml_tensor * ggml_soft_max(
  1200. struct ggml_context * ctx,
  1201. struct ggml_tensor * a);
  1202. // in-place, returns view(a)
  1203. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1204. struct ggml_context * ctx,
  1205. struct ggml_tensor * a);
  1206. // fused soft_max(a*scale + mask*(ALiBi slope))
  1207. // mask is optional
  1208. // max_bias = 0.0f for no ALiBi
  1209. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1210. struct ggml_context * ctx,
  1211. struct ggml_tensor * a,
  1212. struct ggml_tensor * mask,
  1213. float scale,
  1214. float max_bias);
  1215. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1216. struct ggml_context * ctx,
  1217. struct ggml_tensor * a,
  1218. struct ggml_tensor * b);
  1219. // in-place, returns view(a)
  1220. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1221. struct ggml_context * ctx,
  1222. struct ggml_tensor * a,
  1223. struct ggml_tensor * b);
  1224. // rotary position embedding
  1225. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1226. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1227. //
  1228. // b is an int32 vector with size a->ne[2], it contains the positions
  1229. GGML_API struct ggml_tensor * ggml_rope(
  1230. struct ggml_context * ctx,
  1231. struct ggml_tensor * a,
  1232. struct ggml_tensor * b,
  1233. int n_dims,
  1234. int mode);
  1235. // in-place, returns view(a)
  1236. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1237. struct ggml_context * ctx,
  1238. struct ggml_tensor * a,
  1239. struct ggml_tensor * b,
  1240. int n_dims,
  1241. int mode);
  1242. // custom RoPE
  1243. // c is freq factors (e.g. phi3-128k), (optional)
  1244. GGML_API struct ggml_tensor * ggml_rope_ext(
  1245. struct ggml_context * ctx,
  1246. struct ggml_tensor * a,
  1247. struct ggml_tensor * b,
  1248. struct ggml_tensor * c,
  1249. int n_dims,
  1250. int mode,
  1251. int n_ctx_orig,
  1252. float freq_base,
  1253. float freq_scale,
  1254. float ext_factor,
  1255. float attn_factor,
  1256. float beta_fast,
  1257. float beta_slow);
  1258. // in-place, returns view(a)
  1259. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1260. struct ggml_context * ctx,
  1261. struct ggml_tensor * a,
  1262. struct ggml_tensor * b,
  1263. struct ggml_tensor * c,
  1264. int n_dims,
  1265. int mode,
  1266. int n_ctx_orig,
  1267. float freq_base,
  1268. float freq_scale,
  1269. float ext_factor,
  1270. float attn_factor,
  1271. float beta_fast,
  1272. float beta_slow);
  1273. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1274. struct ggml_context * ctx,
  1275. struct ggml_tensor * a,
  1276. struct ggml_tensor * b,
  1277. int n_dims,
  1278. int mode,
  1279. int n_ctx_orig,
  1280. float freq_base,
  1281. float freq_scale,
  1282. float ext_factor,
  1283. float attn_factor,
  1284. float beta_fast,
  1285. float beta_slow),
  1286. "use ggml_rope_ext instead");
  1287. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1288. struct ggml_context * ctx,
  1289. struct ggml_tensor * a,
  1290. struct ggml_tensor * b,
  1291. int n_dims,
  1292. int mode,
  1293. int n_ctx_orig,
  1294. float freq_base,
  1295. float freq_scale,
  1296. float ext_factor,
  1297. float attn_factor,
  1298. float beta_fast,
  1299. float beta_slow),
  1300. "use ggml_rope_ext_inplace instead");
  1301. // compute correction dims for YaRN RoPE scaling
  1302. GGML_CALL void ggml_rope_yarn_corr_dims(
  1303. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1304. // rotary position embedding backward, i.e compute dx from dy
  1305. // a - dy
  1306. GGML_API struct ggml_tensor * ggml_rope_back(
  1307. struct ggml_context * ctx,
  1308. struct ggml_tensor * a,
  1309. struct ggml_tensor * b,
  1310. struct ggml_tensor * c,
  1311. int n_dims,
  1312. int mode,
  1313. int n_ctx_orig,
  1314. float freq_base,
  1315. float freq_scale,
  1316. float ext_factor,
  1317. float attn_factor,
  1318. float beta_fast,
  1319. float beta_slow);
  1320. // clamp
  1321. // in-place, returns view(a)
  1322. GGML_API struct ggml_tensor * ggml_clamp(
  1323. struct ggml_context * ctx,
  1324. struct ggml_tensor * a,
  1325. float min,
  1326. float max);
  1327. GGML_API struct ggml_tensor * ggml_im2col(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * a,
  1330. struct ggml_tensor * b,
  1331. int s0,
  1332. int s1,
  1333. int p0,
  1334. int p1,
  1335. int d0,
  1336. int d1,
  1337. bool is_2D,
  1338. enum ggml_type dst_type);
  1339. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1340. struct ggml_context * ctx,
  1341. struct ggml_tensor * a,
  1342. struct ggml_tensor * b,
  1343. int s0,
  1344. int s1,
  1345. int p0,
  1346. int p1,
  1347. int d0,
  1348. int d1);
  1349. GGML_API struct ggml_tensor * ggml_conv_1d(
  1350. struct ggml_context * ctx,
  1351. struct ggml_tensor * a,
  1352. struct ggml_tensor * b,
  1353. int s0, // stride
  1354. int p0, // padding
  1355. int d0); // dilation
  1356. // conv_1d with padding = half
  1357. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1358. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1359. struct ggml_context * ctx,
  1360. struct ggml_tensor * a,
  1361. struct ggml_tensor * b,
  1362. int s,
  1363. int d);
  1364. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1365. struct ggml_context * ctx,
  1366. struct ggml_tensor * a,
  1367. struct ggml_tensor * b,
  1368. int s0,
  1369. int p0,
  1370. int d0);
  1371. GGML_API struct ggml_tensor * ggml_conv_2d(
  1372. struct ggml_context * ctx,
  1373. struct ggml_tensor * a,
  1374. struct ggml_tensor * b,
  1375. int s0,
  1376. int s1,
  1377. int p0,
  1378. int p1,
  1379. int d0,
  1380. int d1);
  1381. // kernel size is a->ne[0] x a->ne[1]
  1382. // stride is equal to kernel size
  1383. // padding is zero
  1384. // example:
  1385. // a: 16 16 3 768
  1386. // b: 1024 1024 3 1
  1387. // res: 64 64 768 1
  1388. // used in sam
  1389. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1390. struct ggml_context * ctx,
  1391. struct ggml_tensor * a,
  1392. struct ggml_tensor * b);
  1393. // kernel size is a->ne[0] x a->ne[1]
  1394. // stride is 1
  1395. // padding is half
  1396. // example:
  1397. // a: 3 3 256 256
  1398. // b: 64 64 256 1
  1399. // res: 64 64 256 1
  1400. // used in sam
  1401. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a,
  1404. struct ggml_tensor * b);
  1405. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1406. struct ggml_context * ctx,
  1407. struct ggml_tensor * a,
  1408. struct ggml_tensor * b,
  1409. int stride);
  1410. enum ggml_op_pool {
  1411. GGML_OP_POOL_MAX,
  1412. GGML_OP_POOL_AVG,
  1413. GGML_OP_POOL_COUNT,
  1414. };
  1415. GGML_API struct ggml_tensor * ggml_pool_1d(
  1416. struct ggml_context * ctx,
  1417. struct ggml_tensor * a,
  1418. enum ggml_op_pool op,
  1419. int k0, // kernel size
  1420. int s0, // stride
  1421. int p0); // padding
  1422. // the result will have 2*p0 padding for the first dimension
  1423. // and 2*p1 padding for the second dimension
  1424. GGML_API struct ggml_tensor * ggml_pool_2d(
  1425. struct ggml_context * ctx,
  1426. struct ggml_tensor * a,
  1427. enum ggml_op_pool op,
  1428. int k0,
  1429. int k1,
  1430. int s0,
  1431. int s1,
  1432. float p0,
  1433. float p1);
  1434. // nearest interpolate
  1435. // multiplies ne0 and ne1 by scale factor
  1436. // used in stable-diffusion
  1437. GGML_API struct ggml_tensor * ggml_upscale(
  1438. struct ggml_context * ctx,
  1439. struct ggml_tensor * a,
  1440. int scale_factor);
  1441. // nearest interpolate
  1442. // nearest interpolate to specified dimensions
  1443. // used in tortoise.cpp
  1444. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1445. struct ggml_context * ctx,
  1446. struct ggml_tensor * a,
  1447. int ne0,
  1448. int ne1,
  1449. int ne2,
  1450. int ne3);
  1451. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1452. GGML_API struct ggml_tensor * ggml_pad(
  1453. struct ggml_context * ctx,
  1454. struct ggml_tensor * a,
  1455. int p0,
  1456. int p1,
  1457. int p2,
  1458. int p3);
  1459. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1460. // timesteps: [N,]
  1461. // return: [N, dim]
  1462. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1463. struct ggml_context * ctx,
  1464. struct ggml_tensor * timesteps,
  1465. int dim,
  1466. int max_period);
  1467. // sort rows
  1468. enum ggml_sort_order {
  1469. GGML_SORT_ORDER_ASC,
  1470. GGML_SORT_ORDER_DESC,
  1471. };
  1472. GGML_API struct ggml_tensor * ggml_argsort(
  1473. struct ggml_context * ctx,
  1474. struct ggml_tensor * a,
  1475. enum ggml_sort_order order);
  1476. GGML_API struct ggml_tensor * ggml_arange(
  1477. struct ggml_context * ctx,
  1478. float start,
  1479. float stop,
  1480. float step);
  1481. // top k elements per row
  1482. GGML_API struct ggml_tensor * ggml_top_k(
  1483. struct ggml_context * ctx,
  1484. struct ggml_tensor * a,
  1485. int k);
  1486. #define GGML_KQ_MASK_PAD 32
  1487. // q: [n_embd, n_batch, n_head, 1]
  1488. // k: [n_embd, n_kv, n_head_kv, 1]
  1489. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1490. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1491. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1492. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1493. struct ggml_context * ctx,
  1494. struct ggml_tensor * q,
  1495. struct ggml_tensor * k,
  1496. struct ggml_tensor * v,
  1497. struct ggml_tensor * mask,
  1498. float scale,
  1499. float max_bias,
  1500. float logit_softcap);
  1501. GGML_API void ggml_flash_attn_ext_set_prec(
  1502. struct ggml_tensor * a,
  1503. enum ggml_prec prec);
  1504. // TODO: needs to be adapted to ggml_flash_attn_ext
  1505. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1506. struct ggml_context * ctx,
  1507. struct ggml_tensor * q,
  1508. struct ggml_tensor * k,
  1509. struct ggml_tensor * v,
  1510. struct ggml_tensor * d,
  1511. bool masked);
  1512. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1513. struct ggml_context * ctx,
  1514. struct ggml_tensor * sx,
  1515. struct ggml_tensor * c);
  1516. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1517. struct ggml_context * ctx,
  1518. struct ggml_tensor * s,
  1519. struct ggml_tensor * x,
  1520. struct ggml_tensor * dt,
  1521. struct ggml_tensor * A,
  1522. struct ggml_tensor * B,
  1523. struct ggml_tensor * C);
  1524. // partition into non-overlapping windows with padding if needed
  1525. // example:
  1526. // a: 768 64 64 1
  1527. // w: 14
  1528. // res: 768 14 14 25
  1529. // used in sam
  1530. GGML_API struct ggml_tensor * ggml_win_part(
  1531. struct ggml_context * ctx,
  1532. struct ggml_tensor * a,
  1533. int w);
  1534. // reverse of ggml_win_part
  1535. // used in sam
  1536. GGML_API struct ggml_tensor * ggml_win_unpart(
  1537. struct ggml_context * ctx,
  1538. struct ggml_tensor * a,
  1539. int w0,
  1540. int h0,
  1541. int w);
  1542. GGML_API struct ggml_tensor * ggml_unary(
  1543. struct ggml_context * ctx,
  1544. struct ggml_tensor * a,
  1545. enum ggml_unary_op op);
  1546. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1547. struct ggml_context * ctx,
  1548. struct ggml_tensor * a,
  1549. enum ggml_unary_op op);
  1550. // used in sam
  1551. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1552. struct ggml_context * ctx,
  1553. struct ggml_tensor * a,
  1554. int qh,
  1555. int kh);
  1556. // used in sam
  1557. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1558. struct ggml_context * ctx,
  1559. struct ggml_tensor * a,
  1560. struct ggml_tensor * pw,
  1561. struct ggml_tensor * ph);
  1562. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1563. struct ggml_context * ctx,
  1564. struct ggml_tensor * a,
  1565. struct ggml_tensor * pw,
  1566. struct ggml_tensor * ph);
  1567. // custom operators
  1568. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1569. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1570. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1571. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1572. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1573. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1574. struct ggml_context * ctx,
  1575. struct ggml_tensor * a,
  1576. ggml_unary_op_f32_t fun),
  1577. "use ggml_map_custom1 instead");
  1578. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1579. struct ggml_context * ctx,
  1580. struct ggml_tensor * a,
  1581. ggml_unary_op_f32_t fun),
  1582. "use ggml_map_custom1_inplace instead");
  1583. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1584. struct ggml_context * ctx,
  1585. struct ggml_tensor * a,
  1586. struct ggml_tensor * b,
  1587. ggml_binary_op_f32_t fun),
  1588. "use ggml_map_custom2 instead");
  1589. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1590. struct ggml_context * ctx,
  1591. struct ggml_tensor * a,
  1592. struct ggml_tensor * b,
  1593. ggml_binary_op_f32_t fun),
  1594. "use ggml_map_custom2_inplace instead");
  1595. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1596. struct ggml_context * ctx,
  1597. struct ggml_tensor * a,
  1598. ggml_custom1_op_f32_t fun),
  1599. "use ggml_map_custom1 instead");
  1600. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1601. struct ggml_context * ctx,
  1602. struct ggml_tensor * a,
  1603. ggml_custom1_op_f32_t fun),
  1604. "use ggml_map_custom1_inplace instead");
  1605. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1606. struct ggml_context * ctx,
  1607. struct ggml_tensor * a,
  1608. struct ggml_tensor * b,
  1609. ggml_custom2_op_f32_t fun),
  1610. "use ggml_map_custom2 instead");
  1611. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1612. struct ggml_context * ctx,
  1613. struct ggml_tensor * a,
  1614. struct ggml_tensor * b,
  1615. ggml_custom2_op_f32_t fun),
  1616. "use ggml_map_custom2_inplace instead");
  1617. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1618. struct ggml_context * ctx,
  1619. struct ggml_tensor * a,
  1620. struct ggml_tensor * b,
  1621. struct ggml_tensor * c,
  1622. ggml_custom3_op_f32_t fun),
  1623. "use ggml_map_custom3 instead");
  1624. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1625. struct ggml_context * ctx,
  1626. struct ggml_tensor * a,
  1627. struct ggml_tensor * b,
  1628. struct ggml_tensor * c,
  1629. ggml_custom3_op_f32_t fun),
  1630. "use ggml_map_custom3_inplace instead");
  1631. // custom operators v2
  1632. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1633. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1634. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1635. #define GGML_N_TASKS_MAX -1
  1636. GGML_API struct ggml_tensor * ggml_map_custom1(
  1637. struct ggml_context * ctx,
  1638. struct ggml_tensor * a,
  1639. ggml_custom1_op_t fun,
  1640. int n_tasks,
  1641. void * userdata);
  1642. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1643. struct ggml_context * ctx,
  1644. struct ggml_tensor * a,
  1645. ggml_custom1_op_t fun,
  1646. int n_tasks,
  1647. void * userdata);
  1648. GGML_API struct ggml_tensor * ggml_map_custom2(
  1649. struct ggml_context * ctx,
  1650. struct ggml_tensor * a,
  1651. struct ggml_tensor * b,
  1652. ggml_custom2_op_t fun,
  1653. int n_tasks,
  1654. void * userdata);
  1655. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1656. struct ggml_context * ctx,
  1657. struct ggml_tensor * a,
  1658. struct ggml_tensor * b,
  1659. ggml_custom2_op_t fun,
  1660. int n_tasks,
  1661. void * userdata);
  1662. GGML_API struct ggml_tensor * ggml_map_custom3(
  1663. struct ggml_context * ctx,
  1664. struct ggml_tensor * a,
  1665. struct ggml_tensor * b,
  1666. struct ggml_tensor * c,
  1667. ggml_custom3_op_t fun,
  1668. int n_tasks,
  1669. void * userdata);
  1670. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1671. struct ggml_context * ctx,
  1672. struct ggml_tensor * a,
  1673. struct ggml_tensor * b,
  1674. struct ggml_tensor * c,
  1675. ggml_custom3_op_t fun,
  1676. int n_tasks,
  1677. void * userdata);
  1678. // loss function
  1679. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1680. struct ggml_context * ctx,
  1681. struct ggml_tensor * a,
  1682. struct ggml_tensor * b);
  1683. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1684. struct ggml_context * ctx,
  1685. struct ggml_tensor * a,
  1686. struct ggml_tensor * b,
  1687. struct ggml_tensor * c);
  1688. //
  1689. // automatic differentiation
  1690. //
  1691. GGML_API void ggml_set_param(
  1692. struct ggml_context * ctx,
  1693. struct ggml_tensor * tensor);
  1694. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1695. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1696. // graph allocation in a context
  1697. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1698. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1699. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1700. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1701. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1702. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1703. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1704. GGML_API size_t ggml_graph_overhead(void);
  1705. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1706. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1707. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1708. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1709. GGML_API enum ggml_status ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1710. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1711. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1712. GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1713. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1714. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1715. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1716. // print info and performance information for the graph
  1717. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1718. // dump the graph into a file using the dot format
  1719. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1720. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1721. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1722. // but without the second forward pass nodes.
  1723. GGML_API void ggml_build_backward_gradient_checkpointing(
  1724. struct ggml_context * ctx,
  1725. struct ggml_cgraph * gf,
  1726. struct ggml_cgraph * gb,
  1727. struct ggml_cgraph * gb_tmp,
  1728. struct ggml_tensor * * checkpoints,
  1729. int n_checkpoints);
  1730. //
  1731. // optimization
  1732. //
  1733. // optimization methods
  1734. enum ggml_opt_type {
  1735. GGML_OPT_TYPE_ADAM,
  1736. GGML_OPT_TYPE_LBFGS,
  1737. };
  1738. // linesearch methods
  1739. enum ggml_linesearch {
  1740. GGML_LINESEARCH_DEFAULT = 1,
  1741. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1742. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1743. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1744. };
  1745. // optimization return values
  1746. enum ggml_opt_result {
  1747. GGML_OPT_RESULT_OK = 0,
  1748. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1749. GGML_OPT_RESULT_NO_CONTEXT,
  1750. GGML_OPT_RESULT_INVALID_WOLFE,
  1751. GGML_OPT_RESULT_FAIL,
  1752. GGML_OPT_RESULT_CANCEL,
  1753. GGML_LINESEARCH_FAIL = -128,
  1754. GGML_LINESEARCH_MINIMUM_STEP,
  1755. GGML_LINESEARCH_MAXIMUM_STEP,
  1756. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1757. GGML_LINESEARCH_INVALID_PARAMETERS,
  1758. };
  1759. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1760. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1761. // optimization parameters
  1762. //
  1763. // see ggml.c (ggml_opt_default_params) for default values
  1764. //
  1765. struct ggml_opt_params {
  1766. enum ggml_opt_type type;
  1767. size_t graph_size;
  1768. int n_threads;
  1769. // delta-based convergence test
  1770. //
  1771. // if past == 0 - disabled
  1772. // if past > 0:
  1773. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1774. //
  1775. int past;
  1776. float delta;
  1777. // maximum number of iterations without improvement
  1778. //
  1779. // if 0 - disabled
  1780. // if > 0:
  1781. // assume convergence if no cost improvement in this number of iterations
  1782. //
  1783. int max_no_improvement;
  1784. bool print_forward_graph;
  1785. bool print_backward_graph;
  1786. int n_gradient_accumulation;
  1787. // ADAM parameters
  1788. struct {
  1789. int n_iter;
  1790. float sched; // schedule multiplier (fixed, decay or warmup)
  1791. float decay; // weight decay for AdamW, use 0.0f to disable
  1792. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1793. float alpha; // learning rate
  1794. float beta1;
  1795. float beta2;
  1796. float eps; // epsilon for numerical stability
  1797. float eps_f; // epsilon for convergence test
  1798. float eps_g; // epsilon for convergence test
  1799. float gclip; // gradient clipping
  1800. } adam;
  1801. // LBFGS parameters
  1802. struct {
  1803. int m; // number of corrections to approximate the inv. Hessian
  1804. int n_iter;
  1805. int max_linesearch;
  1806. float eps; // convergence tolerance
  1807. float ftol; // line search tolerance
  1808. float wolfe;
  1809. float min_step;
  1810. float max_step;
  1811. enum ggml_linesearch linesearch;
  1812. } lbfgs;
  1813. };
  1814. struct ggml_opt_context {
  1815. struct ggml_context * ctx;
  1816. struct ggml_opt_params params;
  1817. int iter;
  1818. int64_t nx; // number of parameter elements
  1819. bool just_initialized;
  1820. float loss_before;
  1821. float loss_after;
  1822. struct {
  1823. struct ggml_tensor * g; // current gradient
  1824. struct ggml_tensor * m; // first moment
  1825. struct ggml_tensor * v; // second moment
  1826. struct ggml_tensor * pf; // past function values
  1827. float fx_best;
  1828. float fx_prev;
  1829. int n_no_improvement;
  1830. } adam;
  1831. struct {
  1832. struct ggml_tensor * x; // current parameters
  1833. struct ggml_tensor * xp; // previous parameters
  1834. struct ggml_tensor * g; // current gradient
  1835. struct ggml_tensor * gp; // previous gradient
  1836. struct ggml_tensor * d; // search direction
  1837. struct ggml_tensor * pf; // past function values
  1838. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1839. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1840. struct ggml_tensor * lms; // the L-BFGS memory s
  1841. struct ggml_tensor * lmy; // the L-BFGS memory y
  1842. float fx_best;
  1843. float step;
  1844. int j;
  1845. int k;
  1846. int end;
  1847. int n_no_improvement;
  1848. } lbfgs;
  1849. };
  1850. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1851. // optimize the function defined by the tensor f
  1852. GGML_API enum ggml_opt_result ggml_opt(
  1853. struct ggml_context * ctx,
  1854. struct ggml_opt_params params,
  1855. struct ggml_tensor * f);
  1856. // initialize optimizer context
  1857. GGML_API void ggml_opt_init(
  1858. struct ggml_context * ctx,
  1859. struct ggml_opt_context * opt,
  1860. struct ggml_opt_params params,
  1861. int64_t nx);
  1862. // continue optimizing the function defined by the tensor f
  1863. GGML_API enum ggml_opt_result ggml_opt_resume(
  1864. struct ggml_context * ctx,
  1865. struct ggml_opt_context * opt,
  1866. struct ggml_tensor * f);
  1867. // continue optimizing the function defined by the tensor f
  1868. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1869. struct ggml_context * ctx,
  1870. struct ggml_opt_context * opt,
  1871. struct ggml_tensor * f,
  1872. struct ggml_cgraph * gf,
  1873. struct ggml_cgraph * gb,
  1874. ggml_opt_callback callback,
  1875. void * callback_data);
  1876. //
  1877. // tensor flags
  1878. //
  1879. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1880. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1881. //
  1882. // quantization
  1883. //
  1884. // - ggml_quantize_init can be called multiple times with the same type
  1885. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1886. // automatically called by ggml_quantize_chunk for convenience
  1887. //
  1888. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1889. // call this at the end of the program to avoid memory leaks
  1890. //
  1891. // note: these are thread-safe
  1892. //
  1893. GGML_API void ggml_quantize_init(enum ggml_type type);
  1894. GGML_API void ggml_quantize_free(void);
  1895. // some quantization type cannot be used without an importance matrix
  1896. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1897. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1898. GGML_API size_t ggml_quantize_chunk(
  1899. enum ggml_type type,
  1900. const float * src,
  1901. void * dst,
  1902. int64_t start,
  1903. int64_t nrows,
  1904. int64_t n_per_row,
  1905. const float * imatrix);
  1906. //
  1907. // gguf
  1908. //
  1909. enum gguf_type {
  1910. GGUF_TYPE_UINT8 = 0,
  1911. GGUF_TYPE_INT8 = 1,
  1912. GGUF_TYPE_UINT16 = 2,
  1913. GGUF_TYPE_INT16 = 3,
  1914. GGUF_TYPE_UINT32 = 4,
  1915. GGUF_TYPE_INT32 = 5,
  1916. GGUF_TYPE_FLOAT32 = 6,
  1917. GGUF_TYPE_BOOL = 7,
  1918. GGUF_TYPE_STRING = 8,
  1919. GGUF_TYPE_ARRAY = 9,
  1920. GGUF_TYPE_UINT64 = 10,
  1921. GGUF_TYPE_INT64 = 11,
  1922. GGUF_TYPE_FLOAT64 = 12,
  1923. GGUF_TYPE_COUNT, // marks the end of the enum
  1924. };
  1925. struct gguf_context;
  1926. struct gguf_init_params {
  1927. bool no_alloc;
  1928. // if not NULL, create a ggml_context and allocate the tensor data in it
  1929. struct ggml_context ** ctx;
  1930. };
  1931. GGML_API struct gguf_context * gguf_init_empty(void);
  1932. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1933. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1934. GGML_API void gguf_free(struct gguf_context * ctx);
  1935. GGML_API const char * gguf_type_name(enum gguf_type type);
  1936. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1937. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1938. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1939. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1940. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1941. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1942. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1943. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1944. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1945. // will abort if the wrong type is used for the key
  1946. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1947. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1948. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1949. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1950. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1951. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1952. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1953. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1954. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1955. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1956. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1957. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1958. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1959. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1960. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1961. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1962. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1963. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1964. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1965. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1966. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1967. // removes key if it exists
  1968. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  1969. // overrides existing values or adds a new one
  1970. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1971. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1972. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1973. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1974. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1975. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1976. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1977. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1978. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1979. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1980. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1981. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1982. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1983. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1984. // set or add KV pairs from another context
  1985. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1986. // manage tensor info
  1987. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1988. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1989. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1990. // writing gguf files can be done in 2 ways:
  1991. //
  1992. // - write the entire gguf_context to a binary file in a single pass:
  1993. //
  1994. // gguf_write_to_file(ctx, fname);
  1995. //
  1996. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1997. //
  1998. // FILE * f = fopen(fname, "wb");
  1999. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2000. // fwrite(f, ...);
  2001. // void * data = gguf_meta_get_meta_data(ctx);
  2002. // fseek(f, 0, SEEK_SET);
  2003. // fwrite(f, data, gguf_get_meta_size(ctx));
  2004. // free(data);
  2005. // fclose(f);
  2006. //
  2007. // write the entire context to a binary file
  2008. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2009. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2010. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2011. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2012. //
  2013. // system info
  2014. //
  2015. GGML_API int ggml_cpu_has_avx (void);
  2016. GGML_API int ggml_cpu_has_avx_vnni (void);
  2017. GGML_API int ggml_cpu_has_avx2 (void);
  2018. GGML_API int ggml_cpu_has_avx512 (void);
  2019. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2020. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2021. GGML_API int ggml_cpu_has_avx512_bf16(void);
  2022. GGML_API int ggml_cpu_has_fma (void);
  2023. GGML_API int ggml_cpu_has_neon (void);
  2024. GGML_API int ggml_cpu_has_sve (void);
  2025. GGML_API int ggml_cpu_has_arm_fma (void);
  2026. GGML_API int ggml_cpu_has_metal (void);
  2027. GGML_API int ggml_cpu_has_f16c (void);
  2028. GGML_API int ggml_cpu_has_fp16_va (void);
  2029. GGML_API int ggml_cpu_has_wasm_simd (void);
  2030. GGML_API int ggml_cpu_has_blas (void);
  2031. GGML_API int ggml_cpu_has_cuda (void);
  2032. GGML_API int ggml_cpu_has_vulkan (void);
  2033. GGML_API int ggml_cpu_has_kompute (void);
  2034. GGML_API int ggml_cpu_has_gpublas (void);
  2035. GGML_API int ggml_cpu_has_sse3 (void);
  2036. GGML_API int ggml_cpu_has_ssse3 (void);
  2037. GGML_API int ggml_cpu_has_sycl (void);
  2038. GGML_API int ggml_cpu_has_rpc (void);
  2039. GGML_API int ggml_cpu_has_vsx (void);
  2040. GGML_API int ggml_cpu_has_matmul_int8(void);
  2041. GGML_API int ggml_cpu_has_cann (void);
  2042. GGML_API int ggml_cpu_has_llamafile (void);
  2043. //
  2044. // Internal types and functions exposed for tests and benchmarks
  2045. //
  2046. #ifdef __cplusplus
  2047. // restrict not standard in C++
  2048. #define GGML_RESTRICT
  2049. #else
  2050. #define GGML_RESTRICT restrict
  2051. #endif
  2052. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2053. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2054. typedef void (*ggml_from_float_to_mat_t)
  2055. (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
  2056. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  2057. const void * GGML_RESTRICT y, size_t by, int nrc);
  2058. typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
  2059. const void * GGML_RESTRICT y, int nr, int nc);
  2060. typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
  2061. const void * GGML_RESTRICT y, int nr, int nc);
  2062. typedef struct {
  2063. const char * type_name;
  2064. int64_t blck_size;
  2065. int64_t blck_size_interleave; // interleave elements in blocks
  2066. size_t type_size;
  2067. bool is_quantized;
  2068. ggml_to_float_t to_float;
  2069. ggml_from_float_t from_float;
  2070. ggml_from_float_t from_float_ref;
  2071. ggml_from_float_to_mat_t from_float_to_mat;
  2072. ggml_vec_dot_t vec_dot;
  2073. enum ggml_type vec_dot_type;
  2074. int64_t nrows; // number of rows to process simultaneously
  2075. int64_t ncols; // number of columns to process simultaneously
  2076. ggml_gemv_t gemv;
  2077. ggml_gemm_t gemm;
  2078. } ggml_type_traits_t;
  2079. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2080. #ifdef __cplusplus
  2081. }
  2082. #endif