tensor_mapping.py 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. ),
  100. # Rope frequencies
  101. MODEL_TENSOR.ROPE_FREQS: (
  102. "rope.freqs", # llama-pth
  103. "rotary_pos_emb.inv_freq", # chatglm
  104. ),
  105. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  106. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  107. MODEL_TENSOR.CONV1D: (
  108. "backbone.embed", # roberta
  109. ),
  110. }
  111. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  112. # Attention norm
  113. MODEL_TENSOR.ATTN_NORM: (
  114. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  115. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  116. "transformer.blocks.{bid}.norm_1", # mpt
  117. "transformer.h.{bid}.input_layernorm", # falcon7b
  118. "h.{bid}.input_layernorm", # bloom
  119. "transformer.h.{bid}.ln_mlp", # falcon40b
  120. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  121. "layers.{bid}.attention_norm", # llama-pth
  122. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  123. "model.layers.{bid}.ln1", # yi
  124. "h.{bid}.ln_1", # gpt2
  125. "transformer.h.{bid}.ln", # phi2
  126. "model.layers.layers.{bid}.norm", # plamo
  127. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  128. "model.layers.{bid}.attention_norm", # internlm2
  129. "model.layers.{bid}.norm", # mamba-qbert
  130. "backbone.layers.{bid}.norm", # mamba
  131. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  132. "model.layers.{bid}.pre_attn_norm", # grok-2
  133. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  134. "encoder.layers.{bid}.input_layernorm", # chatglm
  135. "transformer.layers.{bid}.attn_norm", # openelm
  136. "rwkv.blocks.{bid}.ln1", # rwkv6
  137. "model.layers.{bid}.ln1", # rwkv7
  138. "model.layers.{bid}.input_layernorm", # llama4
  139. "layers.{bid}.input_layernorm", # embeddinggemma
  140. "transformer_encoder.{bid}.attention_norm", # neobert
  141. "model.layers.{bid}.operator_norm", # lfm2
  142. "model.transformer.blocks.{bid}.attn_norm", # llada
  143. "layers.{bid}.input_layernorm", # qwen3-embedding
  144. "model.layers.{bid}.attention_layernorm" # apertus
  145. ),
  146. # Attention norm 2
  147. MODEL_TENSOR.ATTN_NORM_2: (
  148. "transformer.h.{bid}.ln_attn", # falcon40b
  149. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  150. "rwkv.blocks.{bid}.ln2", # rwkv6
  151. "model.layers.{bid}.ln2", # rwkv7
  152. ),
  153. # Attention query-key-value
  154. MODEL_TENSOR.ATTN_QKV: (
  155. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  156. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  157. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  158. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  159. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  160. "h.{bid}.self_attention.query_key_value", # bloom
  161. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  162. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  163. "h.{bid}.attn.c_attn", # gpt2
  164. "transformer.h.{bid}.mixer.Wqkv", # phi2
  165. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  166. "encoder.layers.{bid}.mixer.Wqkv", # jina
  167. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  168. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  169. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  170. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  171. "transformer_encoder.{bid}.qkv", # neobert
  172. ),
  173. # Attention query
  174. MODEL_TENSOR.ATTN_Q: (
  175. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  176. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  177. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  178. "layers.{bid}.attention.wq", # llama-pth
  179. "encoder.layer.{bid}.attention.self.query", # bert
  180. "transformer.layer.{bid}.attention.q_lin", # distillbert
  181. "transformer.h.{bid}.attn.q_proj", # gpt-j
  182. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  183. "model.layers.{bid}.attention.wq", # internlm2
  184. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  185. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  186. "model.layers.{bid}.self_attn.q_proj", # llama4
  187. "model.transformer.blocks.{bid}.q_proj", # llada
  188. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  189. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  190. ),
  191. # Attention key
  192. MODEL_TENSOR.ATTN_K: (
  193. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  194. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  195. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  196. "layers.{bid}.attention.wk", # llama-pth
  197. "encoder.layer.{bid}.attention.self.key", # bert
  198. "transformer.layer.{bid}.attention.k_lin", # distillbert
  199. "transformer.h.{bid}.attn.k_proj", # gpt-j
  200. "transformer.h.{bid}.attn.k", # refact
  201. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  202. "model.layers.{bid}.attention.wk", # internlm2
  203. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  204. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  205. "model.layers.{bid}.self_attn.k_proj", # llama4
  206. "model.transformer.blocks.{bid}.k_proj", # llada
  207. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  208. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  209. ),
  210. # Attention value
  211. MODEL_TENSOR.ATTN_V: (
  212. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  213. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  214. "layers.{bid}.attention.wv", # llama-pth
  215. "encoder.layer.{bid}.attention.self.value", # bert
  216. "transformer.layer.{bid}.attention.v_lin", # distillbert
  217. "transformer.h.{bid}.attn.v_proj", # gpt-j
  218. "transformer.h.{bid}.attn.v", # refact
  219. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  220. "model.layers.{bid}.attention.wv", # internlm2
  221. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  222. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  223. "model.layers.{bid}.self_attn.v_proj", # llama4
  224. "model.transformer.blocks.{bid}.v_proj", # llada
  225. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  226. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  227. ),
  228. # Attention output
  229. MODEL_TENSOR.ATTN_OUT: (
  230. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  231. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  232. "transformer.blocks.{bid}.attn.out_proj", # mpt
  233. "transformer.h.{bid}.self_attention.dense", # falcon
  234. "h.{bid}.self_attention.dense", # bloom
  235. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  236. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  237. "model.layers.{bid}.self_attn.out_proj", # lfm2
  238. "model.layers.{bid}.self_attn.linear_attn", # deci
  239. "layers.{bid}.attention.wo", # llama-pth
  240. "encoder.layer.{bid}.attention.output.dense", # bert
  241. "transformer.layer.{bid}.attention.out_lin", # distillbert
  242. "transformer.h.{bid}.attn.out_proj", # gpt-j
  243. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  244. "model.layers.{bid}.self_attn.dense", # persimmon
  245. "h.{bid}.attn.c_proj", # gpt2
  246. "transformer.h.{bid}.mixer.out_proj", # phi2
  247. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  248. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  249. "model.layers.{bid}.attention.wo", # internlm2
  250. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  251. "encoder.layers.{bid}.mixer.out_proj", # jina
  252. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  253. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  254. "encoder.layers.{bid}.self_attention.dense", # chatglm
  255. "transformer.layers.{bid}.attn.out_proj", # openelm
  256. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  257. "model.layers.{bid}.self_attn.o_proj", # llama4
  258. "transformer_encoder.{bid}.wo", # neobert
  259. "model.transformer.blocks.{bid}.attn_out", # llada
  260. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  261. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  262. ),
  263. # Attention output norm
  264. MODEL_TENSOR.ATTN_OUT_NORM: (
  265. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  266. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  267. "encoder.layers.{bid}.norm1", # nomic-bert
  268. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  269. "model.layers.{bid}.post_attn_norm", # grok-2
  270. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  271. ),
  272. MODEL_TENSOR.ATTN_POST_NORM: (
  273. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  274. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  275. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  276. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  277. ),
  278. # Rotary embeddings
  279. MODEL_TENSOR.ATTN_ROT_EMBD: (
  280. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  281. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  282. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  283. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  284. ),
  285. MODEL_TENSOR.ATTN_SINKS: (
  286. "model.layers.{bid}.self_attn.sinks", # openai-moe
  287. ),
  288. # Feed-forward norm
  289. MODEL_TENSOR.FFN_NORM: (
  290. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  291. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  292. "h.{bid}.post_attention_layernorm", # bloom
  293. "transformer.blocks.{bid}.norm_2", # mpt
  294. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  295. "layers.{bid}.ffn_norm", # llama-pth
  296. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  297. "model.layers.{bid}.ln2", # yi
  298. "h.{bid}.ln_2", # gpt2
  299. "model.layers.{bid}.ffn_norm", # internlm2
  300. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  301. "model.layers.{bid}.pre_moe_norm", # grok-2
  302. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  303. "transformer.layers.{bid}.ffn_norm", # openelm
  304. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  305. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  306. "model.layers.{bid}.post_attention_layernorm", # llama4
  307. "transformer_encoder.{bid}.ffn_norm", # neobert
  308. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  309. "model.transformer.blocks.{bid}.ff_norm", # llada
  310. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  311. "model.layers.{bid}.feedforward_layernorm", # apertus
  312. ),
  313. # Post feed-forward norm
  314. MODEL_TENSOR.FFN_PRE_NORM: (
  315. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  316. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  317. "model.layers.{bid}.pre_ff_layernorm.weight",
  318. ),
  319. # Post feed-forward norm
  320. MODEL_TENSOR.FFN_POST_NORM: (
  321. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  322. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  323. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  324. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  325. "model.layers.{bid}.feed_forward.up_proj",
  326. "model.layers.{bid}.post_moe_norm", # grok-2
  327. ),
  328. MODEL_TENSOR.FFN_GATE_INP: (
  329. "layers.{bid}.feed_forward.gate", # mixtral
  330. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  331. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  332. "transformer.decoder_layer.{bid}.router", # Grok
  333. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  334. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  335. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  336. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  337. "model.layers.{bid}.mlp.router", # openai-moe
  338. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  339. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  340. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  341. ),
  342. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  343. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  344. ),
  345. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  346. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  347. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  348. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  349. ),
  350. # Feed-forward up
  351. MODEL_TENSOR.FFN_UP: (
  352. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  353. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  354. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  355. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  356. "h.{bid}.mlp.dense_h_to_4h", # bloom
  357. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  358. "layers.{bid}.mlp.up_proj", # embeddinggemma
  359. "layers.{bid}.feed_forward.w3", # llama-pth
  360. "encoder.layer.{bid}.intermediate.dense", # bert
  361. "transformer.layer.{bid}.ffn.lin1", # distillbert
  362. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  363. "transformer.h.{bid}.mlp.linear_3", # refact
  364. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  365. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  366. "transformer.h.{bid}.mlp.w1", # qwen
  367. "h.{bid}.mlp.c_fc", # gpt2
  368. "transformer.h.{bid}.mlp.fc1", # phi2
  369. "model.layers.{bid}.mlp.fc1", # phi2
  370. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  371. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  372. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  373. "model.layers.{bid}.feed_forward.w3", # internlm2
  374. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  375. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  376. "model.layers.{bid}.mlp.c_fc", # starcoder2
  377. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  378. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  379. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  380. "model.layers.{bid}.residual_mlp.w3", # arctic
  381. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  382. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  383. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  384. "transformer_encoder.{bid}.ffn.w12", # neobert
  385. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  386. "model.transformer.blocks.{bid}.up_proj", # llada
  387. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  388. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  389. ),
  390. MODEL_TENSOR.FFN_UP_EXP: (
  391. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  392. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  393. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  394. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  395. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  396. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  397. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  398. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  399. ),
  400. MODEL_TENSOR.FFN_UP_SHEXP: (
  401. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  402. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  403. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  404. "model.layers.{bid}.feed_forward.down_proj",
  405. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  406. ),
  407. MODEL_TENSOR.FFN_UP_CHEXP: (
  408. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  409. ),
  410. # AWQ-activation gate
  411. MODEL_TENSOR.FFN_ACT: (
  412. "transformer.blocks.{bid}.ffn.act", # mpt
  413. ),
  414. # Feed-forward gate
  415. MODEL_TENSOR.FFN_GATE: (
  416. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  417. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  418. "layers.{bid}.feed_forward.w1", # llama-pth
  419. "transformer.h.{bid}.mlp.w2", # qwen
  420. "transformer.h.{bid}.mlp.c_fc2", # jais
  421. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  422. "model.layers.{bid}.feed_forward.w1", # internlm2
  423. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  424. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  425. "transformer.h.{bid}.mlp.linear_1", # refact
  426. "model.layers.{bid}.residual_mlp.w1", # arctic
  427. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  428. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  429. "model.transformer.blocks.{bid}.ff_proj", # llada
  430. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  431. ),
  432. MODEL_TENSOR.FFN_GATE_EXP: (
  433. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  434. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  435. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  436. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  437. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  438. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  439. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  440. ),
  441. MODEL_TENSOR.FFN_GATE_SHEXP: (
  442. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  443. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  444. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  445. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  446. ),
  447. MODEL_TENSOR.FFN_GATE_CHEXP: (
  448. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  449. ),
  450. # Feed-forward down
  451. MODEL_TENSOR.FFN_DOWN: (
  452. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  453. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  454. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  455. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  456. "h.{bid}.mlp.dense_4h_to_h", # bloom
  457. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  458. "layers.{bid}.mlp.down_proj", # embeddinggemma
  459. "layers.{bid}.feed_forward.w2", # llama-pth
  460. "encoder.layer.{bid}.output.dense", # bert
  461. "transformer.layer.{bid}.ffn.lin2", # distillbert
  462. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  463. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  464. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  465. "h.{bid}.mlp.c_proj", # gpt2
  466. "transformer.h.{bid}.mlp.fc2", # phi2
  467. "model.layers.{bid}.mlp.fc2", # phi2
  468. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  469. "model.layers.{bid}.feed_forward.w2", # internlm2
  470. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  471. "model.layers.{bid}.mlp.c_proj", # starcoder2
  472. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  473. "transformer.layers.{bid}.ffn.proj_2", # openelm
  474. "model.layers.{bid}.residual_mlp.w2", # arctic
  475. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  476. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  477. "model.layers.h.{bid}.mlp.c_proj", # exaone
  478. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  479. "transformer_encoder.{bid}.ffn.w3", # neobert
  480. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  481. "model.transformer.blocks.{bid}.ff_out", # llada
  482. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  483. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  484. ),
  485. MODEL_TENSOR.FFN_DOWN_EXP: (
  486. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  487. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  488. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  489. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  490. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  491. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  492. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  493. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  494. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  495. ),
  496. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  497. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  498. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  499. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  500. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  501. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  502. ),
  503. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  504. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  505. ),
  506. MODEL_TENSOR.ATTN_Q_NORM: (
  507. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  508. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  509. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  510. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  511. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  512. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  513. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  514. "transformer.layers.{bid}.attn.q_norm", # openelm
  515. "model.layers.layers.{bid}.mixer.q", # plamo2
  516. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  517. "model.layers.{bid}.attention.query_layernorm", # apertus
  518. ),
  519. MODEL_TENSOR.ATTN_K_NORM: (
  520. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  521. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  522. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  523. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  524. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  525. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  526. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  527. "transformer.layers.{bid}.attn.k_norm", # openelm
  528. "model.layers.layers.{bid}.mixer.k", # plamo2
  529. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  530. "model.layers.{bid}.attention.key_layernorm", # apertus
  531. ),
  532. MODEL_TENSOR.ROPE_FREQS: (
  533. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  534. ),
  535. MODEL_TENSOR.LAYER_OUT_NORM: (
  536. "encoder.layer.{bid}.output.LayerNorm", # bert
  537. "transformer.layer.{bid}.output_layer_norm", # distillbert
  538. "encoder.layers.{bid}.norm2", # nomic-bert
  539. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  540. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  541. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  542. ),
  543. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  544. "model.embed_tokens_per_layer", # gemma3n
  545. ),
  546. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  547. "model.per_layer_model_projection", # gemma3n
  548. ),
  549. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  550. "model.per_layer_projection_norm", # gemma3n
  551. ),
  552. MODEL_TENSOR.ALTUP_PROJ: (
  553. "model.altup_projections", # gemma3n
  554. ),
  555. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  556. "model.altup_unembed_projections", # gemma3n
  557. ),
  558. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  559. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  560. ),
  561. MODEL_TENSOR.PER_LAYER_PROJ: (
  562. "model.layers.{bid}.per_layer_projection", # gemma3n
  563. ),
  564. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  565. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  566. ),
  567. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  568. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  569. ),
  570. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  571. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  572. ),
  573. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  574. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  575. ),
  576. MODEL_TENSOR.ALTUP_ROUTER: (
  577. "model.layers.{bid}.altup.modality_router", # gemma3n
  578. ),
  579. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  580. "model.layers.{bid}.altup.router_norm", # gemma3n
  581. ),
  582. MODEL_TENSOR.LAUREL_L: (
  583. "model.layers.{bid}.laurel.linear_left", # gemma3n
  584. ),
  585. MODEL_TENSOR.LAUREL_R: (
  586. "model.layers.{bid}.laurel.linear_right", # gemma3n
  587. ),
  588. MODEL_TENSOR.LAUREL_POST_NORM: (
  589. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  590. ),
  591. MODEL_TENSOR.SSM_IN: (
  592. "model.layers.{bid}.in_proj", # mamba-hf
  593. "backbone.layers.{bid}.mixer.in_proj", # mamba
  594. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  595. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  596. ),
  597. MODEL_TENSOR.SSM_CONV1D: (
  598. "model.layers.{bid}.conv1d", # mamba-hf
  599. "backbone.layers.{bid}.mixer.conv1d", # mamba
  600. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  601. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  602. ),
  603. MODEL_TENSOR.SSM_X: (
  604. "model.layers.{bid}.x_proj", # mamba-hf
  605. "backbone.layers.{bid}.mixer.x_proj", # mamba
  606. "model.layers.{bid}.mamba.x_proj", # jamba
  607. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  608. ),
  609. MODEL_TENSOR.SSM_DT: (
  610. "model.layers.{bid}.dt_proj", # mamba-hf
  611. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  612. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  613. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  614. ),
  615. MODEL_TENSOR.SSM_DT_NORM: (
  616. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  617. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  618. ),
  619. MODEL_TENSOR.SSM_A: (
  620. "model.layers.{bid}.A_log", # mamba-hf
  621. "backbone.layers.{bid}.mixer.A_log", # mamba
  622. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  623. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  624. ),
  625. MODEL_TENSOR.SSM_B_NORM: (
  626. "model.layers.{bid}.mamba.b_layernorm", # jamba
  627. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  628. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  629. ),
  630. MODEL_TENSOR.SSM_C_NORM: (
  631. "model.layers.{bid}.mamba.c_layernorm", # jamba
  632. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  633. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  634. ),
  635. MODEL_TENSOR.SSM_D: (
  636. "model.layers.{bid}.D", # mamba-hf
  637. "backbone.layers.{bid}.mixer.D", # mamba
  638. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  639. "model.layers.layers.{bid}.mixer.D", # plamo2
  640. ),
  641. MODEL_TENSOR.SSM_NORM: (
  642. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  643. "backbone.layers.{bid}.mixer.norm", # mamba2
  644. ),
  645. MODEL_TENSOR.SSM_OUT: (
  646. "model.layers.{bid}.out_proj", # mamba-hf
  647. "backbone.layers.{bid}.mixer.out_proj", # mamba
  648. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  649. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  650. ),
  651. MODEL_TENSOR.TIME_MIX_W0: (
  652. "model.layers.{bid}.attention.w0", # rwkv7
  653. ),
  654. MODEL_TENSOR.TIME_MIX_W1: (
  655. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  656. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  657. "model.layers.{bid}.attention.w1", # rwkv7
  658. ),
  659. MODEL_TENSOR.TIME_MIX_W2: (
  660. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  661. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  662. "model.layers.{bid}.attention.w2", # rwkv7
  663. ),
  664. MODEL_TENSOR.TIME_MIX_A0: (
  665. "model.layers.{bid}.attention.a0", # rwkv7
  666. ),
  667. MODEL_TENSOR.TIME_MIX_A1: (
  668. "model.layers.{bid}.attention.a1", # rwkv7
  669. ),
  670. MODEL_TENSOR.TIME_MIX_A2: (
  671. "model.layers.{bid}.attention.a2", # rwkv7
  672. ),
  673. MODEL_TENSOR.TIME_MIX_V0: (
  674. "model.layers.{bid}.attention.v0", # rwkv7
  675. ),
  676. MODEL_TENSOR.TIME_MIX_V1: (
  677. "model.layers.{bid}.attention.v1", # rwkv7
  678. ),
  679. MODEL_TENSOR.TIME_MIX_V2: (
  680. "model.layers.{bid}.attention.v2", # rwkv7
  681. ),
  682. MODEL_TENSOR.TIME_MIX_G1: (
  683. "model.layers.{bid}.attention.g1", # rwkv7
  684. ),
  685. MODEL_TENSOR.TIME_MIX_G2: (
  686. "model.layers.{bid}.attention.g2", # rwkv7
  687. ),
  688. MODEL_TENSOR.TIME_MIX_K_K: (
  689. "model.layers.{bid}.attention.k_k", # rwkv7
  690. ),
  691. MODEL_TENSOR.TIME_MIX_K_A: (
  692. "model.layers.{bid}.attention.k_a", # rwkv7
  693. ),
  694. MODEL_TENSOR.TIME_MIX_R_K: (
  695. "model.layers.{bid}.attention.r_k", # rwkv7
  696. ),
  697. MODEL_TENSOR.TIME_MIX_LERP_X: (
  698. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  699. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  700. ),
  701. MODEL_TENSOR.TIME_MIX_LERP_K: (
  702. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  703. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  704. ),
  705. MODEL_TENSOR.TIME_MIX_LERP_V: (
  706. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  707. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  708. ),
  709. MODEL_TENSOR.TIME_MIX_LERP_R: (
  710. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  711. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  712. ),
  713. MODEL_TENSOR.TIME_MIX_LERP_G: (
  714. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  715. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  716. ),
  717. MODEL_TENSOR.TIME_MIX_LERP_W: (
  718. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  719. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  720. ),
  721. MODEL_TENSOR.TIME_MIX_FIRST: (
  722. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  723. ),
  724. MODEL_TENSOR.TIME_MIX_DECAY: (
  725. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  726. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  727. ),
  728. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  729. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  730. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  731. ),
  732. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  733. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  734. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  735. ),
  736. MODEL_TENSOR.TIME_MIX_KEY: (
  737. "rwkv.blocks.{bid}.attention.key", # rwkv6
  738. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  739. "model.layers.{bid}.attention.key", # rwkv7
  740. "model.layers.{bid}.attention.k_proj", # rwkv7
  741. ),
  742. MODEL_TENSOR.TIME_MIX_VALUE: (
  743. "rwkv.blocks.{bid}.attention.value", # rwkv6
  744. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  745. "model.layers.{bid}.attention.value", # rwkv7
  746. "model.layers.{bid}.attention.v_proj", # rwkv7
  747. ),
  748. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  749. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  750. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  751. "model.layers.{bid}.attention.receptance", # rwkv7
  752. "model.layers.{bid}.attention.r_proj", # rwkv7
  753. ),
  754. MODEL_TENSOR.TIME_MIX_GATE: (
  755. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  756. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  757. ),
  758. MODEL_TENSOR.TIME_MIX_LN: (
  759. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  760. "model.layers.{bid}.attention.ln_x" # rwkv7
  761. ),
  762. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  763. "rwkv.blocks.{bid}.attention.output", # rwkv6
  764. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  765. "model.layers.{bid}.attention.output", # rwkv7
  766. "model.layers.{bid}.attention.o_proj", # rwkv7
  767. ),
  768. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  769. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  770. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  771. ),
  772. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  773. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  774. ),
  775. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  776. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  777. "model.layers.{bid}.feed_forward.key", # rwkv7
  778. ),
  779. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  780. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  781. ),
  782. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  783. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  784. "model.layers.{bid}.feed_forward.value", # rwkv7
  785. ),
  786. MODEL_TENSOR.ATTN_Q_A: (
  787. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  788. ),
  789. MODEL_TENSOR.ATTN_Q_B: (
  790. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  791. ),
  792. MODEL_TENSOR.ATTN_KV_A_MQA: (
  793. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  794. ),
  795. MODEL_TENSOR.ATTN_KV_B: (
  796. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  797. ),
  798. MODEL_TENSOR.ATTN_K_B: (
  799. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  800. ),
  801. MODEL_TENSOR.ATTN_V_B: (
  802. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  803. ),
  804. MODEL_TENSOR.ATTN_Q_A_NORM: (
  805. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  806. ),
  807. MODEL_TENSOR.ATTN_KV_A_NORM: (
  808. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  809. ),
  810. MODEL_TENSOR.ATTN_SUB_NORM: (
  811. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  812. ),
  813. MODEL_TENSOR.FFN_SUB_NORM: (
  814. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  815. ),
  816. MODEL_TENSOR.DEC_ATTN_NORM: (
  817. "decoder.block.{bid}.layer.0.layer_norm", # t5
  818. ),
  819. MODEL_TENSOR.DEC_ATTN_Q: (
  820. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  821. ),
  822. MODEL_TENSOR.DEC_ATTN_K: (
  823. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  824. ),
  825. MODEL_TENSOR.DEC_ATTN_V: (
  826. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  827. ),
  828. MODEL_TENSOR.DEC_ATTN_OUT: (
  829. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  830. ),
  831. MODEL_TENSOR.DEC_ATTN_REL_B: (
  832. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  833. ),
  834. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  835. "decoder.block.{bid}.layer.1.layer_norm", # t5
  836. ),
  837. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  838. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  839. ),
  840. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  841. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  842. ),
  843. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  844. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  845. ),
  846. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  847. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  848. ),
  849. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  850. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  851. ),
  852. MODEL_TENSOR.DEC_FFN_NORM: (
  853. "decoder.block.{bid}.layer.2.layer_norm", # t5
  854. ),
  855. MODEL_TENSOR.DEC_FFN_GATE: (
  856. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  857. ),
  858. MODEL_TENSOR.DEC_FFN_UP: (
  859. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  860. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  861. ),
  862. MODEL_TENSOR.DEC_FFN_DOWN: (
  863. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  864. ),
  865. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  866. "decoder.final_layer_norm", # t5
  867. ),
  868. MODEL_TENSOR.ENC_ATTN_NORM: (
  869. "encoder.block.{bid}.layer.0.layer_norm", # t5
  870. ),
  871. MODEL_TENSOR.ENC_ATTN_Q: (
  872. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  873. ),
  874. MODEL_TENSOR.ENC_ATTN_K: (
  875. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  876. ),
  877. MODEL_TENSOR.ENC_ATTN_V: (
  878. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  879. ),
  880. MODEL_TENSOR.ENC_ATTN_OUT: (
  881. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  882. ),
  883. MODEL_TENSOR.ENC_ATTN_REL_B: (
  884. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  885. ),
  886. MODEL_TENSOR.ENC_FFN_NORM: (
  887. "encoder.block.{bid}.layer.1.layer_norm", # t5
  888. ),
  889. MODEL_TENSOR.ENC_FFN_GATE: (
  890. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  891. ),
  892. MODEL_TENSOR.ENC_FFN_UP: (
  893. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  894. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  895. ),
  896. MODEL_TENSOR.ENC_FFN_DOWN: (
  897. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  898. ),
  899. ############################################################################
  900. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  901. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  902. "encoder.final_layer_norm", # t5
  903. "layer_norm", # neobert
  904. ),
  905. MODEL_TENSOR.CLS: (
  906. "classifier", # jina
  907. "classifier.dense", # roberta
  908. "pre_classifier", # distillbert
  909. "dense", # neobert
  910. ),
  911. MODEL_TENSOR.CLS_OUT: (
  912. "classifier.out_proj", # roberta
  913. ),
  914. #############################################################################
  915. MODEL_TENSOR.CONVNEXT_DW: (
  916. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  917. ),
  918. MODEL_TENSOR.CONVNEXT_NORM: (
  919. "backbone.convnext.{bid}.norm", # wavtokenizer
  920. ),
  921. MODEL_TENSOR.CONVNEXT_PW1: (
  922. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  923. ),
  924. MODEL_TENSOR.CONVNEXT_PW2: (
  925. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  926. ),
  927. MODEL_TENSOR.CONVNEXT_GAMMA: (
  928. "backbone.convnext.{bid}.gamma", # wavtokenizer
  929. ),
  930. MODEL_TENSOR.POSNET_CONV1: (
  931. "backbone.posnet.{bid}.conv1", # wavtokenizer
  932. ),
  933. MODEL_TENSOR.POSNET_CONV2: (
  934. "backbone.posnet.{bid}.conv2", # wavtokenizer
  935. ),
  936. MODEL_TENSOR.POSNET_NORM: (
  937. "backbone.posnet.{bid}.norm", # wavtokenizer
  938. ),
  939. MODEL_TENSOR.POSNET_NORM1: (
  940. "backbone.posnet.{bid}.norm1", # wavtokenizer
  941. ),
  942. MODEL_TENSOR.POSNET_NORM2: (
  943. "backbone.posnet.{bid}.norm2", # wavtokenizer
  944. ),
  945. MODEL_TENSOR.POSNET_ATTN_NORM: (
  946. "backbone.posnet.{bid}.norm", # wavtokenizer
  947. ),
  948. MODEL_TENSOR.POSNET_ATTN_Q: (
  949. "backbone.posnet.{bid}.q", # wavtokenizer
  950. ),
  951. MODEL_TENSOR.POSNET_ATTN_K: (
  952. "backbone.posnet.{bid}.k", # wavtokenizer
  953. ),
  954. MODEL_TENSOR.POSNET_ATTN_V: (
  955. "backbone.posnet.{bid}.v", # wavtokenizer
  956. ),
  957. MODEL_TENSOR.POSNET_ATTN_OUT: (
  958. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  959. ),
  960. MODEL_TENSOR.SHORTCONV_CONV: (
  961. "model.layers.{bid}.conv.conv",
  962. ),
  963. MODEL_TENSOR.SHORTCONV_INPROJ: (
  964. "model.layers.{bid}.conv.in_proj",
  965. ),
  966. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  967. "model.layers.{bid}.conv.out_proj",
  968. ),
  969. #############################################################################
  970. ## Vision encoder
  971. MODEL_TENSOR.V_MMPROJ: (
  972. "multi_modal_projector.linear_{bid}",
  973. "visual.merger.mlp.{bid}", # qwen2vl
  974. ),
  975. MODEL_TENSOR.V_MMPROJ_FC: (
  976. "model.connector.modality_projection.proj", # SmolVLM
  977. ),
  978. MODEL_TENSOR.V_MMPROJ_MLP: (
  979. "model.mm_projector.mlp.mlp.{bid}",
  980. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  981. "mlp1.{bid}", # InternVL
  982. ),
  983. MODEL_TENSOR.V_MMPROJ_PEG: (
  984. "model.mm_projector.peg.peg.{bid}",
  985. ),
  986. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  987. "vision_tower.vision_model.embeddings.class_embedding",
  988. "model.vision_tower.embeddings.cls_token", # Intern-S1
  989. "vision_model.class_embedding", # llama 4
  990. ),
  991. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  992. "vision_tower.vision_model.embeddings.patch_embedding",
  993. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  994. "vpm.embeddings.patch_embedding",
  995. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  996. "vision_tower.patch_conv", # pixtral-hf
  997. "vision_encoder.patch_conv", # pixtral
  998. "vision_model.patch_embedding.linear", # llama 4
  999. "visual.patch_embed.proj", # qwen2vl
  1000. "vision_tower.patch_embed.proj", # kimi-vl
  1001. ),
  1002. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1003. "vision_tower.vision_model.embeddings.position_embedding",
  1004. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1005. "vpm.embeddings.position_embedding",
  1006. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1007. "vision_model.positional_embedding_vlm", # llama 4
  1008. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1009. ),
  1010. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1011. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1012. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1013. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1014. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1015. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1016. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1017. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1018. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1019. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1020. ),
  1021. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1022. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1023. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1024. ),
  1025. MODEL_TENSOR.V_ENC_ATTN_K: (
  1026. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1027. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1028. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1029. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1030. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1031. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1032. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1033. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1034. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1035. ),
  1036. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1037. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1038. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1039. ),
  1040. MODEL_TENSOR.V_ENC_ATTN_V: (
  1041. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1042. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1043. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1044. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1045. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1046. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1047. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1048. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1049. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1050. ),
  1051. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1052. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1053. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1054. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1055. "vpm.encoder.layers.{bid}.layer_norm1",
  1056. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1057. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1058. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1059. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1060. "visual.blocks.{bid}.norm1", # qwen2vl
  1061. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1062. ),
  1063. MODEL_TENSOR.V_ENC_ATTN_O: (
  1064. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1065. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1066. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1067. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1068. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1069. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1070. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1071. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1072. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1073. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1074. ),
  1075. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1076. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1077. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1078. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1079. "vpm.encoder.layers.{bid}.layer_norm2",
  1080. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1081. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1082. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1083. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1084. "visual.blocks.{bid}.norm2", # qwen2vl
  1085. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1086. ),
  1087. MODEL_TENSOR.V_ENC_FFN_UP: (
  1088. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1089. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1090. "vpm.encoder.layers.{bid}.mlp.fc1",
  1091. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1092. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1093. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1094. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1095. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1096. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1097. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1098. ),
  1099. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1100. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1101. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1102. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1103. ),
  1104. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1105. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1106. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1107. "vpm.encoder.layers.{bid}.mlp.fc2",
  1108. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1109. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1110. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1111. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1112. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1113. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1114. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1115. ),
  1116. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1117. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1118. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1119. ),
  1120. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1121. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1122. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1123. ),
  1124. MODEL_TENSOR.V_PRE_NORM: (
  1125. "vision_tower.vision_model.pre_layrnorm",
  1126. "vision_tower.ln_pre", # pixtral-hf
  1127. "vision_encoder.ln_pre", # pixtral
  1128. "vision_model.layernorm_pre", # llama4
  1129. ),
  1130. MODEL_TENSOR.V_POST_NORM: (
  1131. "vision_tower.vision_model.post_layernorm",
  1132. "model.vision_model.post_layernorm", # SmolVLM
  1133. "vision_model.layernorm_post", # llama4
  1134. "visual.merger.ln_q", # qwen2vl
  1135. "vision_tower.encoder.final_layernorm", # kimi-vl
  1136. ),
  1137. MODEL_TENSOR.V_MM_INP_PROJ: (
  1138. "multi_modal_projector.mm_input_projection",
  1139. ),
  1140. MODEL_TENSOR.V_MM_INP_NORM: (
  1141. "multi_modal_projector.norm",
  1142. "multi_modal_projector.layer_norm",
  1143. "multi_modal_projector.pre_norm",
  1144. "pre_mm_projector_norm",
  1145. ),
  1146. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1147. "multi_modal_projector.mm_soft_emb_norm",
  1148. ),
  1149. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1150. "resampler.pos_embed_k",
  1151. ),
  1152. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1153. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1154. ),
  1155. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1156. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1157. ),
  1158. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1159. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1160. ),
  1161. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1162. "resampler.attn.out_proj",
  1163. ),
  1164. MODEL_TENSOR.V_RESMPL_KV: (
  1165. "resampler.kv_proj",
  1166. ),
  1167. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1168. "resampler.ln_post",
  1169. ),
  1170. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1171. "resampler.ln_kv",
  1172. ),
  1173. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1174. "resampler.ln_q",
  1175. ),
  1176. MODEL_TENSOR.V_RESMPL_PROJ: (
  1177. "resampler.proj",
  1178. ),
  1179. MODEL_TENSOR.V_RESMPL_QUERY: (
  1180. "resampler.query",
  1181. ),
  1182. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1183. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1184. ),
  1185. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1186. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1187. "patch_merger.merging_layer", # mistral
  1188. ),
  1189. # audio (mtmd)
  1190. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1191. "audio_tower.embed_positions", # ultravox
  1192. ),
  1193. MODEL_TENSOR.A_ENC_CONV1D: (
  1194. "audio_tower.conv{bid}", # ultravox
  1195. ),
  1196. MODEL_TENSOR.A_PRE_NORM: (),
  1197. MODEL_TENSOR.A_POST_NORM: (
  1198. "audio_tower.layer_norm", # ultravox
  1199. "audio_tower.ln_post", # qwen2omni
  1200. ),
  1201. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1202. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1203. ),
  1204. MODEL_TENSOR.A_ENC_ATTN_K: (
  1205. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1206. ),
  1207. MODEL_TENSOR.A_ENC_ATTN_V: (
  1208. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1209. ),
  1210. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1211. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1212. ),
  1213. MODEL_TENSOR.A_ENC_OUTPUT: (
  1214. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1215. ),
  1216. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1217. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1218. ),
  1219. MODEL_TENSOR.A_ENC_FFN_UP: (
  1220. "audio_tower.layers.{bid}.fc1", # ultravox
  1221. ),
  1222. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1223. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1224. "audio_tower.layers.{bid}.fc2", # ultravox
  1225. ),
  1226. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1227. # this prefix is added in the conversion code in modify_tensors()
  1228. MODEL_TENSOR.A_MMPROJ: (
  1229. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1230. ),
  1231. MODEL_TENSOR.A_MMPROJ_FC: (
  1232. "audio.multi_modal_projector.linear", # qwen2audio
  1233. "audio_tower.proj", # qwen2omni
  1234. ),
  1235. MODEL_TENSOR.A_MM_NORM_PRE: (
  1236. "audio.multi_modal_projector.ln_pre", # ultravox
  1237. ),
  1238. MODEL_TENSOR.A_MM_NORM_MID: (
  1239. "audio.multi_modal_projector.ln_mid", # ultravox
  1240. ),
  1241. # NextN/MTP tensors for GLM4_MOE
  1242. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1243. "model.layers.{bid}.eh_proj",
  1244. ),
  1245. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1246. "model.layers.{bid}.embed_tokens",
  1247. ),
  1248. MODEL_TENSOR.NEXTN_ENORM: (
  1249. "model.layers.{bid}.enorm",
  1250. ),
  1251. MODEL_TENSOR.NEXTN_HNORM: (
  1252. "model.layers.{bid}.hnorm",
  1253. ),
  1254. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1255. "model.layers.{bid}.shared_head.head",
  1256. ),
  1257. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1258. "model.layers.{bid}.shared_head.norm",
  1259. ),
  1260. }
  1261. # architecture-specific block mappings
  1262. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1263. MODEL_ARCH.ARCTIC: {
  1264. MODEL_TENSOR.FFN_NORM: (
  1265. "model.layers.{bid}.residual_layernorm",
  1266. ),
  1267. MODEL_TENSOR.FFN_NORM_EXP: (
  1268. "model.layers.{bid}.post_attention_layernorm",
  1269. ),
  1270. },
  1271. }
  1272. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1273. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1274. self.mapping = {}
  1275. for tensor, keys in self.mappings_cfg.items():
  1276. if tensor not in MODEL_TENSORS[arch]:
  1277. continue
  1278. tensor_name = TENSOR_NAMES[tensor]
  1279. self.mapping[tensor_name] = (tensor, tensor_name)
  1280. for key in keys:
  1281. self.mapping[key] = (tensor, tensor_name)
  1282. if arch in self.arch_block_mappings_cfg:
  1283. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1284. for bid in range(n_blocks):
  1285. for tensor, keys in self.block_mappings_cfg.items():
  1286. if tensor not in MODEL_TENSORS[arch]:
  1287. continue
  1288. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1289. self.mapping[tensor_name] = (tensor, tensor_name)
  1290. for key in keys:
  1291. key = key.format(bid = bid)
  1292. self.mapping[key] = (tensor, tensor_name)
  1293. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1294. result = self.mapping.get(key)
  1295. if result is not None:
  1296. return result
  1297. for suffix in try_suffixes:
  1298. if key.endswith(suffix):
  1299. result = self.mapping.get(key[:-len(suffix)])
  1300. if result is not None:
  1301. return result[0], result[1] + suffix
  1302. return None
  1303. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1304. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1305. if result is None:
  1306. return None
  1307. return result[1]
  1308. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1309. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1310. if result is None:
  1311. return None
  1312. return result[0]
  1313. def __getitem__(self, key: str) -> str:
  1314. try:
  1315. return self.mapping[key][1]
  1316. except KeyError:
  1317. raise KeyError(key)
  1318. def __contains__(self, key: str) -> bool:
  1319. return key in self.mapping
  1320. def __repr__(self) -> str:
  1321. return repr(self.mapping)
  1322. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1323. return TensorNameMap(arch, n_blocks)