perplexity.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "build-info.h"
  4. #include <cmath>
  5. #include <cstdio>
  6. #include <cstring>
  7. #include <ctime>
  8. #include <sstream>
  9. #include <thread>
  10. #include <mutex>
  11. #include <vector>
  12. #if defined(_MSC_VER)
  13. #pragma warning(disable: 4244 4267) // possible loss of data
  14. #endif
  15. struct results_perplexity {
  16. std::vector<llama_token> tokens;
  17. double ppl_value;
  18. std::vector<float> logits;
  19. std::vector<float> probs;
  20. };
  21. struct results_log_softmax {
  22. double log_softmax;
  23. float logit;
  24. float prob;
  25. };
  26. void write_logfile(const llama_context * ctx, const gpt_params & params,
  27. const llama_model * model, const struct results_perplexity & results) {
  28. if (params.logdir.empty()) {
  29. return;
  30. }
  31. if (params.hellaswag) {
  32. fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  33. return;
  34. }
  35. const std::string timestamp = get_sortable_timestamp();
  36. const bool success = create_directory_with_parents(params.logdir);
  37. if (!success) {
  38. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  39. __func__, params.logdir.c_str());
  40. return;
  41. }
  42. const std::string logfile_path = params.logdir + timestamp + ".yml";
  43. FILE * logfile = fopen(logfile_path.c_str(), "w");
  44. if (logfile == NULL) {
  45. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  46. return;
  47. }
  48. fprintf(logfile, "binary: main\n");
  49. char model_desc[128];
  50. llama_model_desc(model, model_desc, sizeof(model_desc));
  51. dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
  52. fprintf(logfile, "\n");
  53. fprintf(logfile, "######################\n");
  54. fprintf(logfile, "# Perplexity Results #\n");
  55. fprintf(logfile, "######################\n");
  56. fprintf(logfile, "\n");
  57. dump_vector_float_yaml(logfile, "logits", results.logits);
  58. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  59. dump_vector_float_yaml(logfile, "probs", results.probs);
  60. llama_dump_timing_info_yaml(logfile, ctx);
  61. fclose(logfile);
  62. }
  63. std::vector<float> softmax(const std::vector<float>& logits) {
  64. std::vector<float> probs(logits.size());
  65. float max_logit = logits[0];
  66. for (float v : logits) max_logit = std::max(max_logit, v);
  67. double sum_exp = 0.0;
  68. for (size_t i = 0; i < logits.size(); i++) {
  69. // Subtract the maximum logit value from the current logit value for numerical stability
  70. const float logit = logits[i] - max_logit;
  71. const float exp_logit = expf(logit);
  72. sum_exp += exp_logit;
  73. probs[i] = exp_logit;
  74. }
  75. for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
  76. return probs;
  77. }
  78. results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  79. float max_logit = logits[0];
  80. for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
  81. double sum_exp = 0.0;
  82. for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
  83. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  84. }
  85. void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  86. double & nll, double & nll2, float * logit_history, float * prob_history) {
  87. std::mutex mutex;
  88. int counter = 0;
  89. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  90. double local_nll = 0, local_nll2 = 0;
  91. while (true) {
  92. std::unique_lock<std::mutex> lock(mutex);
  93. int i = counter++;
  94. if (i >= n_token) {
  95. nll += local_nll; nll2 += local_nll2;
  96. break;
  97. }
  98. lock.unlock();
  99. const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  100. const double v = -results.log_softmax;
  101. local_nll += v;
  102. local_nll2 += v*v;
  103. logit_history[i] = results.logit;
  104. prob_history[i] = results.prob;
  105. }
  106. };
  107. for (auto & w : workers) w = std::thread(compute);
  108. compute();
  109. for (auto & w : workers) w.join();
  110. }
  111. results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
  112. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  113. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  114. // Output: `perplexity: 13.5106 [114/114]`
  115. // BOS tokens will be added for each chunk before eval
  116. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  117. const bool add_bos = is_spm;
  118. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  119. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  120. if (int(tokens.size()) < 2*params.n_ctx) {
  121. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
  122. params.n_ctx);
  123. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  124. return {std::move(tokens), 0., {}, {}};
  125. }
  126. std::vector<float> logit_history;
  127. std::vector<float> prob_history;
  128. logit_history.resize(tokens.size());
  129. prob_history.resize(tokens.size());
  130. if (params.ppl_stride <= 0) {
  131. fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  132. return {tokens, -1, logit_history, prob_history};
  133. }
  134. const int calc_chunk = params.n_ctx;
  135. fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  136. if (int(tokens.size()) <= calc_chunk) {
  137. fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  138. tokens.size(), params.n_ctx, params.ppl_stride);
  139. return {tokens, -1, logit_history, prob_history};
  140. }
  141. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  142. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  143. const int n_vocab = llama_n_vocab(ctx);
  144. const int n_batch = params.n_batch;
  145. int count = 0;
  146. double nll = 0.0;
  147. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  148. for (int i = 0; i < n_chunk; ++i) {
  149. const int start = i * params.ppl_stride;
  150. const int end = start + calc_chunk;
  151. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  152. //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  153. std::vector<float> logits;
  154. const auto t_start = std::chrono::high_resolution_clock::now();
  155. for (int j = 0; j < num_batches; ++j) {
  156. const int batch_start = start + j * n_batch;
  157. const int batch_size = std::min(end - batch_start, n_batch);
  158. //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  159. if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
  160. //fprintf(stderr, "%s : failed to eval\n", __func__);
  161. return {tokens, -1, logit_history, prob_history};
  162. }
  163. // save original token and restore it after eval
  164. const auto token_org = tokens[batch_start];
  165. // add BOS token for the first batch of each chunk
  166. if (add_bos && j == 0) {
  167. tokens[batch_start] = llama_token_bos(ctx);
  168. }
  169. const auto batch_logits = llama_get_logits(ctx);
  170. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  171. if (j == 0) {
  172. tokens[batch_start] = token_org;
  173. }
  174. }
  175. const auto t_end = std::chrono::high_resolution_clock::now();
  176. if (i == 0) {
  177. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  178. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  179. int total_seconds = (int)(t_total * n_chunk);
  180. if (total_seconds >= 60*60) {
  181. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  182. total_seconds = total_seconds % (60*60);
  183. }
  184. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  185. }
  186. //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  187. for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
  188. // Calculate probability of next token, given the previous ones.
  189. const std::vector<float> tok_logits(
  190. logits.begin() + (j + 0) * n_vocab,
  191. logits.begin() + (j + 1) * n_vocab);
  192. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  193. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  194. prob_history[start + j + 1] = prob;
  195. nll += -std::log(prob);
  196. ++count;
  197. }
  198. // perplexity is e^(average negative log-likelihood)
  199. if (params.ppl_output_type == 0) {
  200. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  201. } else {
  202. printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  203. }
  204. fflush(stdout);
  205. }
  206. printf("\n");
  207. return {tokens, std::exp(nll / count), logit_history, prob_history};
  208. }
  209. results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
  210. if (params.ppl_stride > 0) {
  211. return perplexity_v2(ctx, params);
  212. }
  213. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  214. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  215. // Output: `perplexity: 13.5106 [114/114]`
  216. // BOS tokens will be added for each chunk before eval
  217. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  218. const bool add_bos = is_spm;
  219. auto tim1 = std::chrono::high_resolution_clock::now();
  220. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  221. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  222. auto tim2 = std::chrono::high_resolution_clock::now();
  223. fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  224. if (int(tokens.size()) < 2*params.n_ctx) {
  225. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
  226. params.n_ctx);
  227. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  228. return {std::move(tokens), 0., {}, {}};
  229. }
  230. std::vector<float> logit_history;
  231. logit_history.resize(tokens.size());
  232. std::vector<float> prob_history;
  233. prob_history.resize(tokens.size());
  234. const int n_chunk_max = tokens.size() / params.n_ctx;
  235. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  236. const int n_vocab = llama_n_vocab(ctx);
  237. const int n_batch = params.n_batch;
  238. int count = 0;
  239. double nll = 0.0;
  240. double nll2 = 0.0;
  241. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  242. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  243. for (int i = 0; i < n_chunk; ++i) {
  244. const int start = i * params.n_ctx;
  245. const int end = start + params.n_ctx;
  246. const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
  247. std::vector<float> logits;
  248. const auto t_start = std::chrono::high_resolution_clock::now();
  249. for (int j = 0; j < num_batches; ++j) {
  250. const int batch_start = start + j * n_batch;
  251. const int batch_size = std::min(end - batch_start, n_batch);
  252. // save original token and restore it after eval
  253. const auto token_org = tokens[batch_start];
  254. // add BOS token for the first batch of each chunk
  255. if (add_bos && j == 0) {
  256. tokens[batch_start] = llama_token_bos(ctx);
  257. }
  258. if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
  259. fprintf(stderr, "%s : failed to eval\n", __func__);
  260. return {tokens, -1, logit_history, prob_history};
  261. }
  262. // restore the original token in case it was set to BOS
  263. tokens[batch_start] = token_org;
  264. const auto batch_logits = llama_get_logits(ctx);
  265. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  266. }
  267. const auto t_end = std::chrono::high_resolution_clock::now();
  268. if (i == 0) {
  269. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  270. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  271. int total_seconds = (int)(t_total * n_chunk);
  272. if (total_seconds >= 60*60) {
  273. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  274. total_seconds = total_seconds % (60*60);
  275. }
  276. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  277. }
  278. // We get the logits for all the tokens in the context window (params.n_ctx)
  279. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  280. // calculate the perplexity over the last half of the window (so the model always has
  281. // some context to predict the token).
  282. //
  283. // We rely on the fact that attention in the forward pass only looks at previous
  284. // tokens here, so the logits returned for each token are an accurate representation
  285. // of what the model would have predicted at that point.
  286. //
  287. // Example, we have a context window of 512, we will compute perplexity for each of the
  288. // last 256 tokens. Then, we split the input up into context window size chunks to
  289. // process the entire prompt.
  290. const int first = params.n_ctx/2;
  291. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
  292. workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
  293. count += params.n_ctx - first - 1;
  294. // perplexity is e^(average negative log-likelihood)
  295. if (params.ppl_output_type == 0) {
  296. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  297. } else {
  298. double av = nll/count;
  299. double av2 = nll2/count - av*av;
  300. if (av2 > 0) av2 = sqrt(av2/(count-1));
  301. printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
  302. }
  303. fflush(stdout);
  304. }
  305. printf("\n");
  306. nll2 /= count;
  307. nll /= count;
  308. const double ppl = exp(nll);
  309. nll2 -= nll * nll;
  310. if (nll2 > 0) {
  311. nll2 = sqrt(nll2/(count-1));
  312. printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  313. } else {
  314. printf("Unexpected negative standard deviation of log(prob)\n");
  315. }
  316. return {tokens, ppl, logit_history, prob_history};
  317. }
  318. std::vector<float> hellaswag_evaluate_tokens(llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch,
  319. int n_vocab, int n_thread) {
  320. std::vector<float> result;
  321. result.reserve(tokens.size() * n_vocab);
  322. size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
  323. for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
  324. size_t n_tokens = tokens.size() - i_chunk * n_batch;
  325. n_tokens = std::min(n_tokens, size_t(n_batch));
  326. if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
  327. fprintf(stderr, "%s : failed to eval\n", __func__);
  328. return {};
  329. }
  330. const auto logits = llama_get_logits(ctx);
  331. result.insert(result.end(), logits, logits + n_tokens * n_vocab);
  332. n_past += n_tokens;
  333. }
  334. return result;
  335. }
  336. void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  337. // Calculates hellaswag score (acc_norm) from prompt
  338. //
  339. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  340. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  341. //
  342. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  343. //
  344. // Datafile layout:
  345. // ['??'] denotes json fields
  346. // 6 lines per task:
  347. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  348. // ['label'] - The index the best common sense ending aka gold ending
  349. // ['endings'][0] - Endings added to the first part of the query
  350. // ['endings'][1]
  351. // ['endings'][2]
  352. // ['endings'][3]
  353. std::vector<std::string> prompt_lines;
  354. std::istringstream strstream(params.prompt);
  355. std::string line;
  356. while (std::getline(strstream,line,'\n')) {
  357. prompt_lines.push_back(line);
  358. }
  359. if( prompt_lines.size() % 6 != 0) {
  360. fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
  361. return;
  362. }
  363. size_t hs_task_count = prompt_lines.size()/6;
  364. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  365. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  366. fprintf(stderr, "================================= is_spm = %d\n", is_spm);
  367. // This is needed as usual for LLaMA models
  368. const bool add_bos = is_spm;
  369. // Number of tasks to use when computing the score
  370. if ( params.hellaswag_tasks < hs_task_count ) {
  371. hs_task_count = params.hellaswag_tasks;
  372. }
  373. // The tasks should be randomized so the score stabilizes quickly.
  374. bool randomize_tasks = true;
  375. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  376. std::mt19937 rng(1);
  377. // Dataholder for hellaswag tasks
  378. struct hs_data_t {
  379. std::string context;
  380. size_t gold_ending_idx;
  381. std::string ending[4];
  382. size_t ending_logprob_count[4];
  383. double ending_logprob[4];
  384. };
  385. fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  386. // Select and read data from prompt lines
  387. hs_data_t *hs_data = new hs_data_t[hs_task_count];
  388. for (size_t i=0; i < hs_task_count; i++) {
  389. size_t idx = i;
  390. // Select a random example of those left in the prompt
  391. if (randomize_tasks) {
  392. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  393. idx = dist(rng);
  394. }
  395. hs_data[i].context = prompt_lines[idx*6];
  396. hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  397. for (size_t j=0; j < 4; j++) {
  398. hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
  399. }
  400. // Delete the selected random example from the prompt
  401. if (randomize_tasks) {
  402. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  403. }
  404. }
  405. fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
  406. printf("\ntask\tacc_norm\n");
  407. double acc = 0.0f;
  408. const int n_vocab = llama_n_vocab(ctx);
  409. std::vector<std::vector<int>> ending_tokens(4);
  410. std::vector<float> tok_logits(n_vocab);
  411. for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
  412. // Tokenize the context to count tokens
  413. std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
  414. size_t context_size = context_embd.size();
  415. for (int i = 0; i < 4; ++i) {
  416. ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
  417. for (int k = 0; k < int(context_size); ++k) {
  418. if (ending_tokens[i][k] != context_embd[k]) {
  419. fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
  420. break;
  421. }
  422. }
  423. }
  424. // Do the 1st ending
  425. // In this case we include the context when evaluating
  426. //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
  427. auto query_embd = ending_tokens[0];
  428. auto query_size = query_embd.size();
  429. // Stop if query wont fit the ctx window
  430. if (query_size > (size_t)params.n_ctx) {
  431. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  432. return;
  433. }
  434. // Speedup small evaluations by evaluating atleast 32 tokens
  435. if (query_size < 32) {
  436. query_embd.resize(32);
  437. }
  438. auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
  439. if (logits.empty()) {
  440. fprintf(stderr, "%s : failed to eval\n", __func__);
  441. return;
  442. }
  443. std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
  444. const auto first_probs = softmax(tok_logits);
  445. hs_data[task_idx].ending_logprob_count[0] = 1;
  446. hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
  447. // Calculate the logprobs over the ending
  448. for (size_t j = context_size; j < query_size - 1; j++) {
  449. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  450. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  451. hs_data[task_idx].ending_logprob[0] += std::log(prob);
  452. hs_data[task_idx].ending_logprob_count[0]++;
  453. }
  454. // Calculate the mean token logprob for acc_norm
  455. hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
  456. // Do the remaining endings
  457. // For these, we use the bare ending with n_past = context_size
  458. //
  459. for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
  460. // Tokenize the query
  461. query_embd.resize(ending_tokens[ending_idx].size() - context_size);
  462. std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
  463. query_size = query_embd.size();
  464. // Stop if query wont fit the ctx window
  465. if (context_size + query_size > (size_t)params.n_ctx) {
  466. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  467. return;
  468. }
  469. // Speedup small evaluations by evaluating atleast 32 tokens
  470. // No, resizing to 32 is actually slightly slower (at least on CUDA)
  471. //if (query_size < 32) {
  472. // query_embd.resize(32);
  473. //}
  474. // Evaluate the query
  475. logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
  476. if (logits.empty()) {
  477. fprintf(stderr, "%s : failed to eval\n", __func__);
  478. return;
  479. }
  480. hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
  481. hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
  482. // Calculate the logprobs over the ending
  483. for (size_t j = 0; j < query_size - 1; j++) {
  484. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  485. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  486. hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
  487. hs_data[task_idx].ending_logprob_count[ending_idx]++;
  488. }
  489. // Calculate the mean token logprob for acc_norm
  490. hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
  491. // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
  492. // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
  493. }
  494. // Find the ending with maximum logprob
  495. size_t ending_logprob_max_idx = 0;
  496. double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
  497. for (size_t j = 1; j < 4; j++) {
  498. if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
  499. ending_logprob_max_idx = j;
  500. ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
  501. }
  502. }
  503. // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
  504. // If the gold ending got the maximum logprobe add one accuracy point
  505. if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
  506. acc += 1.0;
  507. }
  508. // Print the accumulated accuracy mean x 100
  509. printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
  510. fflush(stdout);
  511. }
  512. delete [] hs_data;
  513. printf("\n");
  514. }
  515. int main(int argc, char ** argv) {
  516. gpt_params params;
  517. params.n_batch = 512;
  518. if (!gpt_params_parse(argc, argv, params)) {
  519. return 1;
  520. }
  521. params.perplexity = true;
  522. params.n_batch = std::min(params.n_batch, params.n_ctx);
  523. if (params.ppl_stride > 0) {
  524. fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  525. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  526. params.n_ctx += params.ppl_stride/2;
  527. }
  528. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  529. if (params.seed == LLAMA_DEFAULT_SEED) {
  530. params.seed = time(NULL);
  531. }
  532. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  533. std::mt19937 rng(params.seed);
  534. if (params.random_prompt) {
  535. params.prompt = gpt_random_prompt(rng);
  536. }
  537. llama_backend_init(params.numa);
  538. llama_model * model;
  539. llama_context * ctx;
  540. // load the model and apply lora adapter, if any
  541. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  542. if (model == NULL) {
  543. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  544. return 1;
  545. }
  546. const int n_ctx_train = llama_n_ctx_train(ctx);
  547. if (params.n_ctx > n_ctx_train) {
  548. fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
  549. __func__, n_ctx_train, params.n_ctx);
  550. }
  551. // print system information
  552. {
  553. fprintf(stderr, "\n");
  554. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  555. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  556. }
  557. struct results_perplexity results;
  558. if (params.hellaswag) {
  559. hellaswag_score(ctx, params);
  560. } else {
  561. results = perplexity(ctx, params);
  562. }
  563. llama_print_timings(ctx);
  564. write_logfile(ctx, params, model, results);
  565. llama_free(ctx);
  566. llama_free_model(model);
  567. llama_backend_free();
  568. return 0;
  569. }