1
0

perplexity.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. #include "common.h"
  2. #include "llama.h"
  3. #include <cmath>
  4. #include <cstdio>
  5. #include <cstring>
  6. #include <ctime>
  7. #include <sstream>
  8. #include <thread>
  9. #include <mutex>
  10. #include <vector>
  11. #if defined(_MSC_VER)
  12. #pragma warning(disable: 4244 4267) // possible loss of data
  13. #endif
  14. struct results_perplexity {
  15. std::vector<llama_token> tokens;
  16. double ppl_value;
  17. std::vector<float> logits;
  18. std::vector<float> probs;
  19. };
  20. struct results_log_softmax {
  21. double log_softmax;
  22. float logit;
  23. float prob;
  24. };
  25. static void write_logfile(
  26. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  27. const struct results_perplexity & results
  28. ) {
  29. if (params.logdir.empty()) {
  30. return;
  31. }
  32. if (params.hellaswag) {
  33. fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
  34. return;
  35. }
  36. const std::string timestamp = get_sortable_timestamp();
  37. const bool success = create_directory_with_parents(params.logdir);
  38. if (!success) {
  39. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  40. __func__, params.logdir.c_str());
  41. return;
  42. }
  43. const std::string logfile_path = params.logdir + timestamp + ".yml";
  44. FILE * logfile = fopen(logfile_path.c_str(), "w");
  45. if (logfile == NULL) {
  46. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  47. return;
  48. }
  49. fprintf(logfile, "binary: main\n");
  50. char model_desc[128];
  51. llama_model_desc(model, model_desc, sizeof(model_desc));
  52. dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
  53. fprintf(logfile, "\n");
  54. fprintf(logfile, "######################\n");
  55. fprintf(logfile, "# Perplexity Results #\n");
  56. fprintf(logfile, "######################\n");
  57. fprintf(logfile, "\n");
  58. dump_vector_float_yaml(logfile, "logits", results.logits);
  59. fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
  60. dump_vector_float_yaml(logfile, "probs", results.probs);
  61. llama_dump_timing_info_yaml(logfile, ctx);
  62. fclose(logfile);
  63. }
  64. static std::vector<float> softmax(const std::vector<float>& logits) {
  65. std::vector<float> probs(logits.size());
  66. float max_logit = logits[0];
  67. for (float v : logits) max_logit = std::max(max_logit, v);
  68. double sum_exp = 0.0;
  69. for (size_t i = 0; i < logits.size(); i++) {
  70. // Subtract the maximum logit value from the current logit value for numerical stability
  71. const float logit = logits[i] - max_logit;
  72. const float exp_logit = expf(logit);
  73. sum_exp += exp_logit;
  74. probs[i] = exp_logit;
  75. }
  76. for (size_t i = 0; i < probs.size(); i++) probs[i] /= sum_exp;
  77. return probs;
  78. }
  79. static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
  80. float max_logit = logits[0];
  81. for (int i = 1; i < n_vocab; ++i) max_logit = std::max(max_logit, logits[i]);
  82. double sum_exp = 0.0;
  83. for (int i = 0; i < n_vocab; ++i) sum_exp += expf(logits[i] - max_logit);
  84. return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
  85. }
  86. static void process_logits(
  87. int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
  88. double & nll, double & nll2, float * logit_history, float * prob_history
  89. ) {
  90. std::mutex mutex;
  91. int counter = 0;
  92. auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
  93. double local_nll = 0, local_nll2 = 0;
  94. while (true) {
  95. std::unique_lock<std::mutex> lock(mutex);
  96. int i = counter++;
  97. if (i >= n_token) {
  98. nll += local_nll; nll2 += local_nll2;
  99. break;
  100. }
  101. lock.unlock();
  102. const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
  103. const double v = -results.log_softmax;
  104. local_nll += v;
  105. local_nll2 += v*v;
  106. logit_history[i] = results.logit;
  107. prob_history[i] = results.prob;
  108. }
  109. };
  110. for (auto & w : workers) w = std::thread(compute);
  111. compute();
  112. for (auto & w : workers) w.join();
  113. }
  114. static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
  115. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  116. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  117. // Output: `perplexity: 13.5106 [114/114]`
  118. // BOS tokens will be added for each chunk before eval
  119. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  120. const bool add_bos = is_spm;
  121. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  122. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  123. if (int(tokens.size()) < 2*params.n_ctx) {
  124. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
  125. params.n_ctx);
  126. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  127. return {std::move(tokens), 0., {}, {}};
  128. }
  129. std::vector<float> logit_history;
  130. std::vector<float> prob_history;
  131. logit_history.resize(tokens.size());
  132. prob_history.resize(tokens.size());
  133. if (params.ppl_stride <= 0) {
  134. fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
  135. return {tokens, -1, logit_history, prob_history};
  136. }
  137. const int calc_chunk = params.n_ctx;
  138. fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
  139. if (int(tokens.size()) <= calc_chunk) {
  140. fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
  141. tokens.size(), params.n_ctx, params.ppl_stride);
  142. return {tokens, -1, logit_history, prob_history};
  143. }
  144. const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
  145. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  146. const int n_vocab = llama_n_vocab(ctx);
  147. const int n_batch = params.n_batch;
  148. int count = 0;
  149. double nll = 0.0;
  150. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  151. for (int i = 0; i < n_chunk; ++i) {
  152. const int start = i * params.ppl_stride;
  153. const int end = start + calc_chunk;
  154. const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
  155. //fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
  156. std::vector<float> logits;
  157. const auto t_start = std::chrono::high_resolution_clock::now();
  158. for (int j = 0; j < num_batches; ++j) {
  159. const int batch_start = start + j * n_batch;
  160. const int batch_size = std::min(end - batch_start, n_batch);
  161. //fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
  162. if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
  163. //fprintf(stderr, "%s : failed to eval\n", __func__);
  164. return {tokens, -1, logit_history, prob_history};
  165. }
  166. // save original token and restore it after eval
  167. const auto token_org = tokens[batch_start];
  168. // add BOS token for the first batch of each chunk
  169. if (add_bos && j == 0) {
  170. tokens[batch_start] = llama_token_bos(ctx);
  171. }
  172. const auto batch_logits = llama_get_logits(ctx);
  173. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  174. if (j == 0) {
  175. tokens[batch_start] = token_org;
  176. }
  177. }
  178. const auto t_end = std::chrono::high_resolution_clock::now();
  179. if (i == 0) {
  180. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  181. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  182. int total_seconds = (int)(t_total * n_chunk);
  183. if (total_seconds >= 60*60) {
  184. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  185. total_seconds = total_seconds % (60*60);
  186. }
  187. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  188. }
  189. //fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
  190. for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
  191. // Calculate probability of next token, given the previous ones.
  192. const std::vector<float> tok_logits(
  193. logits.begin() + (j + 0) * n_vocab,
  194. logits.begin() + (j + 1) * n_vocab);
  195. const float prob = softmax(tok_logits)[tokens[start + j + 1]];
  196. logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
  197. prob_history[start + j + 1] = prob;
  198. nll += -std::log(prob);
  199. ++count;
  200. }
  201. // perplexity is e^(average negative log-likelihood)
  202. if (params.ppl_output_type == 0) {
  203. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  204. } else {
  205. printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
  206. }
  207. fflush(stdout);
  208. }
  209. printf("\n");
  210. return {tokens, std::exp(nll / count), logit_history, prob_history};
  211. }
  212. static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
  213. if (params.ppl_stride > 0) {
  214. return perplexity_v2(ctx, params);
  215. }
  216. // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  217. // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
  218. // Output: `perplexity: 13.5106 [114/114]`
  219. // BOS tokens will be added for each chunk before eval
  220. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  221. const bool add_bos = is_spm;
  222. auto tim1 = std::chrono::high_resolution_clock::now();
  223. fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
  224. std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
  225. auto tim2 = std::chrono::high_resolution_clock::now();
  226. fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
  227. if (int(tokens.size()) < 2*params.n_ctx) {
  228. fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
  229. params.n_ctx);
  230. fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
  231. return {std::move(tokens), 0., {}, {}};
  232. }
  233. std::vector<float> logit_history;
  234. logit_history.resize(tokens.size());
  235. std::vector<float> prob_history;
  236. prob_history.resize(tokens.size());
  237. const int n_chunk_max = tokens.size() / params.n_ctx;
  238. const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
  239. const int n_vocab = llama_n_vocab(ctx);
  240. const int n_batch = params.n_batch;
  241. int count = 0;
  242. double nll = 0.0;
  243. double nll2 = 0.0;
  244. fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
  245. std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
  246. for (int i = 0; i < n_chunk; ++i) {
  247. const int start = i * params.n_ctx;
  248. const int end = start + params.n_ctx;
  249. const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
  250. std::vector<float> logits;
  251. const auto t_start = std::chrono::high_resolution_clock::now();
  252. for (int j = 0; j < num_batches; ++j) {
  253. const int batch_start = start + j * n_batch;
  254. const int batch_size = std::min(end - batch_start, n_batch);
  255. // save original token and restore it after eval
  256. const auto token_org = tokens[batch_start];
  257. // add BOS token for the first batch of each chunk
  258. if (add_bos && j == 0) {
  259. tokens[batch_start] = llama_token_bos(ctx);
  260. }
  261. if (llama_eval(ctx, tokens.data() + batch_start, batch_size, j * n_batch, params.n_threads)) {
  262. fprintf(stderr, "%s : failed to eval\n", __func__);
  263. return {tokens, -1, logit_history, prob_history};
  264. }
  265. // restore the original token in case it was set to BOS
  266. tokens[batch_start] = token_org;
  267. const auto batch_logits = llama_get_logits(ctx);
  268. logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
  269. }
  270. const auto t_end = std::chrono::high_resolution_clock::now();
  271. if (i == 0) {
  272. const float t_total = std::chrono::duration<float>(t_end - t_start).count();
  273. fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
  274. int total_seconds = (int)(t_total * n_chunk);
  275. if (total_seconds >= 60*60) {
  276. fprintf(stderr, "%d hours ", total_seconds / (60*60));
  277. total_seconds = total_seconds % (60*60);
  278. }
  279. fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
  280. }
  281. // We get the logits for all the tokens in the context window (params.n_ctx)
  282. // from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
  283. // calculate the perplexity over the last half of the window (so the model always has
  284. // some context to predict the token).
  285. //
  286. // We rely on the fact that attention in the forward pass only looks at previous
  287. // tokens here, so the logits returned for each token are an accurate representation
  288. // of what the model would have predicted at that point.
  289. //
  290. // Example, we have a context window of 512, we will compute perplexity for each of the
  291. // last 256 tokens. Then, we split the input up into context window size chunks to
  292. // process the entire prompt.
  293. const int first = params.n_ctx/2;
  294. process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
  295. workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
  296. count += params.n_ctx - first - 1;
  297. // perplexity is e^(average negative log-likelihood)
  298. if (params.ppl_output_type == 0) {
  299. printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
  300. } else {
  301. double av = nll/count;
  302. double av2 = nll2/count - av*av;
  303. if (av2 > 0) av2 = sqrt(av2/(count-1));
  304. printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
  305. }
  306. fflush(stdout);
  307. }
  308. printf("\n");
  309. nll2 /= count;
  310. nll /= count;
  311. const double ppl = exp(nll);
  312. nll2 -= nll * nll;
  313. if (nll2 > 0) {
  314. nll2 = sqrt(nll2/(count-1));
  315. printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
  316. } else {
  317. printf("Unexpected negative standard deviation of log(prob)\n");
  318. }
  319. return {tokens, ppl, logit_history, prob_history};
  320. }
  321. static std::vector<float> hellaswag_evaluate_tokens(
  322. llama_context * ctx, const std::vector<int>& tokens, int n_past, int n_batch, int n_vocab, int n_thread
  323. ) {
  324. std::vector<float> result;
  325. result.reserve(tokens.size() * n_vocab);
  326. size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
  327. for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
  328. size_t n_tokens = tokens.size() - i_chunk * n_batch;
  329. n_tokens = std::min(n_tokens, size_t(n_batch));
  330. if (llama_eval(ctx, tokens.data() + i_chunk * n_batch, n_tokens, n_past, n_thread)) {
  331. fprintf(stderr, "%s : failed to eval\n", __func__);
  332. return {};
  333. }
  334. const auto logits = llama_get_logits(ctx);
  335. result.insert(result.end(), logits, logits + n_tokens * n_vocab);
  336. n_past += n_tokens;
  337. }
  338. return result;
  339. }
  340. static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
  341. // Calculates hellaswag score (acc_norm) from prompt
  342. //
  343. // Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
  344. // All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
  345. //
  346. // All 10042 tasks should be extracted to keep the results standardized like other implementations.
  347. //
  348. // Datafile layout:
  349. // ['??'] denotes json fields
  350. // 6 lines per task:
  351. // ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
  352. // ['label'] - The index the best common sense ending aka gold ending
  353. // ['endings'][0] - Endings added to the first part of the query
  354. // ['endings'][1]
  355. // ['endings'][2]
  356. // ['endings'][3]
  357. std::vector<std::string> prompt_lines;
  358. std::istringstream strstream(params.prompt);
  359. std::string line;
  360. while (std::getline(strstream,line,'\n')) {
  361. prompt_lines.push_back(line);
  362. }
  363. if( prompt_lines.size() % 6 != 0) {
  364. fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
  365. return;
  366. }
  367. size_t hs_task_count = prompt_lines.size()/6;
  368. fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
  369. const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  370. fprintf(stderr, "================================= is_spm = %d\n", is_spm);
  371. // This is needed as usual for LLaMA models
  372. const bool add_bos = is_spm;
  373. // Number of tasks to use when computing the score
  374. if ( params.hellaswag_tasks < hs_task_count ) {
  375. hs_task_count = params.hellaswag_tasks;
  376. }
  377. // The tasks should be randomized so the score stabilizes quickly.
  378. bool randomize_tasks = true;
  379. // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
  380. std::mt19937 rng(1);
  381. // Dataholder for hellaswag tasks
  382. struct hs_data_t {
  383. std::string context;
  384. size_t gold_ending_idx;
  385. std::string ending[4];
  386. size_t ending_logprob_count[4];
  387. double ending_logprob[4];
  388. };
  389. fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
  390. // Select and read data from prompt lines
  391. hs_data_t *hs_data = new hs_data_t[hs_task_count];
  392. for (size_t i=0; i < hs_task_count; i++) {
  393. size_t idx = i;
  394. // Select a random example of those left in the prompt
  395. if (randomize_tasks) {
  396. std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
  397. idx = dist(rng);
  398. }
  399. hs_data[i].context = prompt_lines[idx*6];
  400. hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
  401. for (size_t j=0; j < 4; j++) {
  402. hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
  403. }
  404. // Delete the selected random example from the prompt
  405. if (randomize_tasks) {
  406. prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
  407. }
  408. }
  409. fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
  410. printf("\ntask\tacc_norm\n");
  411. double acc = 0.0f;
  412. const int n_vocab = llama_n_vocab(ctx);
  413. std::vector<std::vector<int>> ending_tokens(4);
  414. std::vector<float> tok_logits(n_vocab);
  415. for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
  416. // Tokenize the context to count tokens
  417. std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
  418. size_t context_size = context_embd.size();
  419. for (int i = 0; i < 4; ++i) {
  420. ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
  421. for (int k = 0; k < int(context_size); ++k) {
  422. if (ending_tokens[i][k] != context_embd[k]) {
  423. fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
  424. break;
  425. }
  426. }
  427. }
  428. // Do the 1st ending
  429. // In this case we include the context when evaluating
  430. //auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
  431. auto query_embd = ending_tokens[0];
  432. auto query_size = query_embd.size();
  433. // Stop if query wont fit the ctx window
  434. if (query_size > (size_t)params.n_ctx) {
  435. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  436. return;
  437. }
  438. // Speedup small evaluations by evaluating atleast 32 tokens
  439. if (query_size < 32) {
  440. query_embd.resize(32);
  441. }
  442. auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
  443. if (logits.empty()) {
  444. fprintf(stderr, "%s : failed to eval\n", __func__);
  445. return;
  446. }
  447. std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
  448. const auto first_probs = softmax(tok_logits);
  449. hs_data[task_idx].ending_logprob_count[0] = 1;
  450. hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
  451. // Calculate the logprobs over the ending
  452. for (size_t j = context_size; j < query_size - 1; j++) {
  453. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  454. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  455. hs_data[task_idx].ending_logprob[0] += std::log(prob);
  456. hs_data[task_idx].ending_logprob_count[0]++;
  457. }
  458. // Calculate the mean token logprob for acc_norm
  459. hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
  460. // Do the remaining endings
  461. // For these, we use the bare ending with n_past = context_size
  462. //
  463. for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
  464. // Tokenize the query
  465. query_embd.resize(ending_tokens[ending_idx].size() - context_size);
  466. std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
  467. query_size = query_embd.size();
  468. // Stop if query wont fit the ctx window
  469. if (context_size + query_size > (size_t)params.n_ctx) {
  470. fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
  471. return;
  472. }
  473. // Speedup small evaluations by evaluating atleast 32 tokens
  474. // No, resizing to 32 is actually slightly slower (at least on CUDA)
  475. //if (query_size < 32) {
  476. // query_embd.resize(32);
  477. //}
  478. // Evaluate the query
  479. logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
  480. if (logits.empty()) {
  481. fprintf(stderr, "%s : failed to eval\n", __func__);
  482. return;
  483. }
  484. hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
  485. hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
  486. // Calculate the logprobs over the ending
  487. for (size_t j = 0; j < query_size - 1; j++) {
  488. std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
  489. const float prob = softmax(tok_logits)[query_embd[j + 1]];
  490. hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
  491. hs_data[task_idx].ending_logprob_count[ending_idx]++;
  492. }
  493. // Calculate the mean token logprob for acc_norm
  494. hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
  495. // printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
  496. // task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
  497. }
  498. // Find the ending with maximum logprob
  499. size_t ending_logprob_max_idx = 0;
  500. double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
  501. for (size_t j = 1; j < 4; j++) {
  502. if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
  503. ending_logprob_max_idx = j;
  504. ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
  505. }
  506. }
  507. // printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
  508. // If the gold ending got the maximum logprobe add one accuracy point
  509. if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
  510. acc += 1.0;
  511. }
  512. // Print the accumulated accuracy mean x 100
  513. printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
  514. fflush(stdout);
  515. }
  516. delete [] hs_data;
  517. printf("\n");
  518. }
  519. int main(int argc, char ** argv) {
  520. gpt_params params;
  521. params.n_batch = 512;
  522. if (!gpt_params_parse(argc, argv, params)) {
  523. return 1;
  524. }
  525. params.perplexity = true;
  526. params.n_batch = std::min(params.n_batch, params.n_ctx);
  527. if (params.ppl_stride > 0) {
  528. fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
  529. params.n_ctx, params.n_ctx + params.ppl_stride/2);
  530. params.n_ctx += params.ppl_stride/2;
  531. }
  532. print_build_info();
  533. if (params.seed == LLAMA_DEFAULT_SEED) {
  534. params.seed = time(NULL);
  535. }
  536. fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
  537. std::mt19937 rng(params.seed);
  538. if (params.random_prompt) {
  539. params.prompt = gpt_random_prompt(rng);
  540. }
  541. llama_backend_init(params.numa);
  542. llama_model * model;
  543. llama_context * ctx;
  544. // load the model and apply lora adapter, if any
  545. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  546. if (model == NULL) {
  547. fprintf(stderr, "%s: error: unable to load model\n", __func__);
  548. return 1;
  549. }
  550. const int n_ctx_train = llama_n_ctx_train(ctx);
  551. if (params.n_ctx > n_ctx_train) {
  552. fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
  553. __func__, n_ctx_train, params.n_ctx);
  554. }
  555. // print system information
  556. {
  557. fprintf(stderr, "\n");
  558. fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
  559. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  560. }
  561. struct results_perplexity results;
  562. if (params.hellaswag) {
  563. hellaswag_score(ctx, params);
  564. } else {
  565. results = perplexity(ctx, params);
  566. }
  567. llama_print_timings(ctx);
  568. write_logfile(ctx, params, model, results);
  569. llama_free(ctx);
  570. llama_free_model(model);
  571. llama_backend_free();
  572. return 0;
  573. }