| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- #include "common.h"
- #include "llama.h"
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- int main(int argc, char ** argv) {
- gpt_params params;
- if (argc == 1 || argv[1][0] == '-') {
- printf("usage: %s MODEL_PATH [PROMPT]\n" , argv[0]);
- return 1 ;
- }
- if (argc >= 2) {
- params.model = argv[1];
- }
- if (argc >= 3) {
- params.prompt = argv[2];
- }
- if (params.prompt.empty()) {
- params.prompt = "Hello my name is";
- }
- // init LLM
- llama_backend_init(params.numa);
- llama_context_params ctx_params = llama_context_default_params();
- llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
- // tokenize the prompt
- std::vector<llama_token> tokens_list;
- tokens_list = ::llama_tokenize(ctx, params.prompt, true);
- const int max_context_size = llama_n_ctx(ctx);
- const int max_tokens_list_size = max_context_size - 4;
- if ((int) tokens_list.size() > max_tokens_list_size) {
- fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) tokens_list.size(), max_tokens_list_size);
- return 1;
- }
- fprintf(stderr, "\n\n");
- for (auto id : tokens_list) {
- fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
- }
- fflush(stderr);
- // main loop
- // The LLM keeps a contextual cache memory of previous token evaluation.
- // Usually, once this cache is full, it is required to recompute a compressed context based on previous
- // tokens (see "infinite text generation via context swapping" in the main example), but in this minimalist
- // example, we will just stop the loop once this cache is full or once an end of stream is detected.
- const int n_gen = std::min(32, max_context_size);
- while (llama_get_kv_cache_token_count(ctx) < n_gen) {
- // evaluate the transformer
- if (llama_eval(ctx, tokens_list.data(), int(tokens_list.size()), llama_get_kv_cache_token_count(ctx), params.n_threads)) {
- fprintf(stderr, "%s : failed to eval\n", __func__);
- return 1;
- }
- tokens_list.clear();
- // sample the next token
- llama_token new_token_id = 0;
- auto logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- new_token_id = llama_sample_token_greedy(ctx , &candidates_p);
- // is it an end of stream ?
- if (new_token_id == llama_token_eos(ctx)) {
- fprintf(stderr, " [end of text]\n");
- break;
- }
- // print the new token :
- printf("%s", llama_token_to_piece(ctx, new_token_id).c_str());
- fflush(stdout);
- // push this new token for next evaluation
- tokens_list.push_back(new_token_id);
- }
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- fprintf(stderr, "\n\n");
- return 0;
- }
|